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ABSTRACT

Both analytical and experimental research studies have shown thai the effect of crack

length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this

report is to recommend those research investigations that are necessary to understand the

phenomenon of shallow behavior as it affects fracture toughness so that the results can be used

properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws.

Preliminal)' test results of A 533 B steel show an elevated crack-tip-opening displacement

(CTOD) toughness similar to that oDserved for structural steels tested at the University of

Kansas. Thus, the inherent resistaJ_ce to fracture initiation of A 533 B steel with shallow flaws

appears to be higher than that used in the current American Society of Mechanical Engineers

(ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this

higher toughness of laboratory, specimens with shallow flaws can be transferred to a higher

resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear

vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw

test results. This elevation in toughness and greater resistance to fracture would be a very"

desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which

shallow flaws are assumed to exist.

Before any advantage can be taken of this possible increase in initiation toughness,

numerous factors must be analyzed to ensure the transferability of the data. This report reviews

those factors and makes recommendations of studies that are needed to assess the transferability

of shallow-flaw toughness test results to the structural margin assessment of RPV 'with shallow

flaws.
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STATUS REPORT ON THE BEHAVIOR OF SHALLOW FLAWS
IN REACTOR PRESSURE VESSELS

S. T. Rolfe

1. BACKGROUND

Analytical and experimental research at the University of Kansas 1,2 have shown that the

effect of crack length, a, on the elastic-plastic fracture toughness of structural steels is

significant. Test specimens with shallow flaws have higher toughness levels than test specimens

with deep flaws when both specimens are loaded to the same level of crack-opening stress, Oy,

at the crack tip. This higher level of toughness at fracture is caused by a loss of in-plane

constraint in specimens with shallow flaws.

Comparison of two-dimensional (2-D) plane strain finite-element results of test specimens

with various crack-depth to specimen-width ratios, a/W, showed a fundamental change in the

nonlinear st:,ess field at an a/W ratio of-0.15. Specimens with shorter cracks (a/W = 0.10 and

0.05) showed yielding to the front (tension) surface behind the crack well before the formation

of the plastic hinge. Specimens with deeper cracks (a/W >_0.20) developed a plastic hinge

before the plastic zone extended from the crack tip back to the front surface.

The analytical results were verified experimentally for an A 36 steel (_ys = 248 MPa) and

an A 517 steel (Oys = 690 MPa). The yield strengths and strain-hardening exponents of these

steels bound that of A 533 B steel (Cys = 470 MPa), which is used in the construction of reactor

pressure vessels (RPVs). The experimental results for the A 36 and A 517 steels tested at the

University of Kansas are presented in Fig. 1. Preliminary test results conducted at the Oak Ridge

National Laboratory (ORNL) 3 show that similar behavior exists for A 533 B steel (Figs. 2 and

3). The results presented in Figs. 1--3 are in terms of the elastic-plastic fracture mechanics

parameter, crack-tip-opening displacement (CFOD). The CTOD parameter was used because

the inherent toughness at the temperatures of interest was beyond the limits of plane-strain

linear-elastic fracture mechanics KIc, yet there was no significant stable crack growth, and thus

JIc could not be measured either.

Because current RPV life assessments are strongly dependent on the ability of the vessel

material to withstand load in the presence of a flaw (i.e., sufficient fracture toughness), it is

important that realistic assessments of the fracture toughness of pressure vessel steels be made.

The fracture toughness value used in RPV life assessments to date has been generated using

deep-notch specimens. On the basis of the test results presented in Figs. 1-3 and recent finite-
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clement analyses of both deep-notch and shallow-notch specimens, 1'2 it now appears that

determining fracture toughness using deep-notch specimens may be an unduly conservative

approach for service applications in which shallow flaws are the ones of primary interest.

Therefore, the Heavy-Section Steel Technology (HSST) Program under sponsorship of the

Nuclear Regulatory Commission (NRC) is investigating the influence of crack depth on the

fracture toughness of RPV steel. 4

The ultimate goal of the investigation is the generation of a limited number of elastic-

plastic fracture toughness values appropriate for shallow flaws in an RPV a_;d guidelines

concerning the application of these data to reactor vessel life assessments. This study is not

intended to be a complete experimental investigation that would result in a new design

methodology. Rather, it is a limited experimental and analytical study of the behavior of shallow
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flaws in reactor pressure vessels. Relatively large beams are being tested (50, 100, and 150 mm

thick by 100 mm deep) to simulate the stress state in a flawed RPV as closely as is practical.

Crack depths, a, currently being considered range from -_hallow (10 to 15 mm) to deep (50 mm).

Probabilistic fracture mechanics evaluations of operating nuclear facilities in the Integrated

Pressurized-Thermal Shock (IPTS) studies have shown that shallow rather than deep cracks in

the RPV contribute predominantly to the calculated probability of vessel failure. 5-7 The

dominance of shallow rather than deep flaws in the probabilistic fracture mechanics evaluations

in part results from the higher density of shallow flaws assumed or predicted to exist in the

vessel wall, the increased radiation damage, and the severity of the thermal shock on the vessel

inner surface. IPTS studies 5-7 indicate that -95% of all the flaws that are predicted to initiate

during the dominant transients for the three plants considered were 25 mm (1 in.) deep or less.

Thus, the enhancement of the toughness of steels used in vessels with shallow flaws could have

a si_ificant impact on the structural margin assessment of RPVs with flaw's.



2. EXISTING METHODOLOGY

Existing methodologies to assess the fracture toughness behavior of steels for nuclear

RPVs are based in part on Sect. XI of the American Society of Mechanical Engineers (ASME)

Boiler and Pressure Vessel Code. 8 In the ASME Code initiation and arrest curves KIc and KIa

are referenced to the RTNDT temperature as shown in Fig. 4. The KIa reference toughness curve

was developed by plotting all known data (static, dynamic, and arrest values) vs the temperature

relative to RTNDT and constructing a lower4evel curve not transgressed by any of "the data.

Data 9 used to develop the KIc reference curve are presented in Fig. 5.

Subsequent test results for small specimens, some oi which were adjusted using Irwin's _Ic

correction, as well as several HSST thermal-shock experiments, verify that the ASME Sect. XI

reference curve is indeed a lower-bound curve 1° (Fig. 6).
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Use of laboratory test specimens with a/W ratios of 0.5 leads to maximum constraint in

most laboratory test specimens and appears to be a conservative approach to analyzing the

behavior of pressure vessel steels for nuclear reactors. Concem about PTS loading of vessels

with shallow flaws has led to PTS testing of vessels as well as various analyses of the PTS

problem with the objective of refining the technology used in analysis of RPV fracture margins

under PTS loading.

Among the concerns during PTS loading is the indication that the majority of possible

crack initiations would originate at flaws 5 to 15 mm deep (0.2 to 0.6 in.) located on the inside

of the wall; the stresses due to thermal shock would be greatest and the resistance to fracture

would be lowest because of irradiation damage. Finally, the material would be at its lowest

temperature because of the application of cooling water to the inner wall surface. Thus, the

toughness would be at a lower level corresponding to the lower service temperature. These 5- to
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15-mm-deep (0.2- to 0.6-in.) flaws are considered to be shallow and can be beuer represented

by shallow-flaw data; yet the toughness values used to analyze the behavior of actual vessels

subjected to PTS loading are based on results of deep-notch fracture toughness specimens.



3. RECOMMENDATIONS

Preliminary test results of A 533 B steel show an elevated CTOD toughness (Figs. 2 a_d 3)

similar to that observed for structural steels tested at the University of Kansas (Fig. 1). Thus, the

inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher

than that used in the current ASME design curves based on linear-ela:;tic fracture mechamcs

KIc. If this higher toughness can be transferred to a higher resistance to failure in RPV design or

analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater

than is currently assumed on the basis of deep-flaw test results. Obviously, this elevation in

toughness and greater resistance to fracture would be a very desirable situation, particularly for

the PTS analysis in which shallow flaws are assumed to exist.

Before any advantage can be taken of this observed increase in initiation toughness,

numerous factors must be analyzed to ensure the transferability of the data. Accordingly, it is

recommended that the following studies be made to assess the transferability of shallow-flaw

toughness test results to the structural margin assessment of RPVs with shallow flaws.

1. Obviously, the first step is to conduct shallow-flaw tests of A 533 B steel. If the !ests

show no significant effect, then continued study of 1he possible benefits of enhanced toughness

levels would be inappropriate. However, preliminary test results (Figs. 2 and 3) clearly indicate

an increased toughness associated with shallow-flaw specimens compared with deep-notch

specimens. Additional tests of A 533 B specimens with various crack lengths, a, should be

conducted at additional temperatures to verify these preliminary results.

The A 533 B steel specimens with shallow flaws tested to date exhibit greater toughness

levels than specimens with deep flaws for 50-, 100-, and 150-mm-thick (2-, 4-, and 6-in.)

specimens. These large specimens are believed to be fairly repr,,sentative of actual vessels.

Thus, the question of whether crack length, a, or the a/W ratio controls the behavior becomes

less important because crack depths of 10 and 15 mm (0.4 and 0.6 in.) are also representative of

the shallow-flaw depths believed to be present in actual vessels. The analytical phase of the

program (Recommendations 2 and 3) should model full thickness vessels (e.g., 203 mm) and

thus help to determine the controlling parameter (a or a/W) for reactor vessel analysis. However,

as will be discussed later in this report, crack length, a, is believed to be the primary factor, and

the a/W ratio is believed to _ a secondary factor.

To date, the test results have exceeded the limits of plane strain American Society for

Testing and Materials (ASTM) E-399 behavior, that is, valid Kic test results. Al_o, ASTM E-

813 criteria for J-integral testing do not apply because in the lower transition region, Aa _--0 and

thus JIc cannot be determined. However, it is possible that a Jc value can be inferred



experimentally from the P-A curve. Accgrdingly, use of the ASTM E-1290 CTOD parameter is

necessary. However, relations do exist between CTOD, J, and K so that the results can be

evaluated in several ways.

2. Concurrently, analytical studies that model the test specimens should be conducted to

better ur_derstand the reasons for the toughness elevation and te verify the experimental results.

Research at the University of Kansas has shown that in the lower ,._ransition region, where
i

considerable plastic deformation and crack-tip blunting occurs prior to brittle fracture, the

experimental lower-bound fracture toughness results of shallow-crack specimens are two to four

times larger than the results of the deep-crack specimens in terms of CTOD at identical

temperatures (Fig. 1). At equivalent KI levels in the elastic-plastic regime, finite-element

analyses reveal significant differences in the cra,':k-tip stresses between the deep- and shallow-

crack specimens. The deep-crack specimens exhibit significantly higher opening-mode stresses

near the crack tip compared to the shallow-crack specimens (Fig. 7). Correspondingly, at
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Analytical Comparison of Short-Crack and Deep-Crack CTOD Fracture Specimens of an A 36

Steel," WRC Bulletin 351, Welding Research Council, February 1990.
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equivalent levels of opening mode stress, the shallow-crack specimens had CTOD (and

J-integral) values -2.5 times that the of deep-crack specimen (CTOD of 0.25 mm compared

with 0.10 mm, respectively). The phenomenon of elevated fracture toughness associated with a

shallow crack is a consequence of the relaxation of in-plane crack-tip constraint because of the

proximity of the front, free surface, lt is believed that loss of constraint also will take piace at

the inside surface of RPVs with shallow cracks. However, as noted in Recommendation 3,

finite-element analyses of actual RPVs with shallow flaws should be conducted to verify this

assumption.

Analytical studies of A 533 B test specimens under conditions of plane strain (maximum

constraint) should serve as a good indicator of the significance of the shallow-flaw test results to

be obtained as part _f Recommendation 1. The elevated toughness associated with flaws

representative of those existing in an RPV (e.g., 10 to 15 mm) appears to exist in multiple

specimen sizes (Figs. 2 and 3). The magnitude of the toughness increase also appears fairly

consistent in the test data generated to date for specimens with thickness of 50, 100, and

150 mm (2, 4, and 6 in.).

3. Analytical studies that model portions of actual flawed RPV simulating maximum

constraint (plane strain) should be made. Hopefully, the laboratory test specimens selected are

sufficiently large to provide a close approximation to the constraint levels as obtained

analytically under conditions of maximum constraint (plane strain). As discussed in

Recommendation 5, current ORNL studies of advanced fracture methodologies should be very

useful in verifying that the constraint levels in the laboratory test specimens are representative

of the constraint levels in actual vessels. Again, preliminary results of specimens 50, 100, and

150 mm (2, 4, and 6 in.) thick (Figs. 2 and 3) indicate this to be the case in that there is no

decrease in the toughness levels of the 100- and 150-mm-thick (4- and 6-in.) specimens

compared with the 50-mm-thick (2-in.) specimens. Simulations of actual vessels subjected to

PTS loadings should be made. The PTS loading may be representative of the loading

experienced by the bend specimens being tested as part of the experimental program, and this

point needs further study.

4. A detailed reexamination of the thermal shock experiment and pressurized-thermal

shock experiment vessel tests previously conducted should be made to study the influence of

crack size on these tests from the perspective of shallow-crack enhancement. These tests were

conducted at relatively low test temperatures in which the difference in constraint between

shallow and deep flaws would be small. However, because these tests may be ones that most

closely approach the service loading of concern, this reanalysis is especially important.
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5. Several ORNL investigations of advanced fracture methodologies related to correlation

parameters and constraint effects are in progress. These studies were started to obtain an

improved understanding of relationships governing the transfer of fracture toughness data from

small-scale specimens to large-scale applications and will be valuable in the assessment of

safety margins for nuclear vessels with shallow flaws. These investigations consist of several

analytical approaches including a maximum principal stress criterion, plastic zone size, and a

local stress field approach using K-T or J-Q fracture parameters. Hopefully, these studies will

verify the experimental results obtained as part of Recommendation 1 and help to explain

theoretically the effect of in-plane constraint on fracture toughness.

6. In the HSST wide-plate tests of A 533 B steel conducted at the National Institute of

Standards and Technology (NIST), 11 crack initiation consistently occurred at KI values ranging

from two to four times those predicted by the compact-tension (CT) specimens for the A 533 B

specimens. The CT specimens had a/W vahtes of 0.5, whereas the wide-plate specimens had

a/W values close to 0.2. Thus, although the wide-plate tests were conducted to study arrest

behavior, study of the initiation behavior indicates that an a/W ratio can have a significant effect

on the behavior of either large specimens or actual vessels as predicted by small-scale

laboratory test results of specimens with a/W = 05. lt is recommended that the wide-plate

results from the tests at NIST be reanalyzed using data from the perspective of shallow-flaw

testing.

7. In contrast to the test results mentioned in Recommendation 6, the wide-plate results of

a 2 1/4 Cr-1 Mo steel 12 with crack depths such that the a/W ratio was -0.2 apparently exhibited

little effect of crack-depth compared with deep-flaw results. Preliminary assessment indicates

that ongoing ORNL studies of advanced fracture methodologies (Recommendation 5) can

explain this difference on the basis of a K-T fracture analysis. This difference between the wide-

plate test results of A 533 B and 2 1/4 Cr-1 Mo steels should be investigated in detail.

8. The applicability of the Irwin [3c or 13iccorrection to elastic-plastic shallow-flaw CTOD

test results needs to be studied. The 13correction originally was developed to correct for loss of

out-of-plane constraint because of inadequate thickness of very high strength materials with

relatively low toughness levels. In the present study, the preliminary results of Figs. 2 and 3

suggest that there is not a significant loss of out-of-plane constraint between B = 50 mm (2 in.)

and B = 100 or 150 mm (4 or 6 in.) even though the 50- and 100-mm-deep (2- and 4-in.) crack

specimens do not meet the validity requirements of E399. However, a distinct difference exists

in toughness values for shallow-flaw specimens compared with deep-flaw spc:.imens becau_ of

differences in the in-plane constraint.
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It may be possible to use the 13Iccorrection factor in reverse; that is, the 13icfactor can be

used to predict the behavior of shallow-flaw specimens starting _,,ith the existing deep-flaw Kic

reference curve as a base. Merkle 13 v;ed the 13correction to account for the effects of partial

transverse restraint on the fracture behavior of vessels _,ith shallow-nozzle corner cracks. This

methodology has been used successfully by ORNL 3 to predict the effects of crack length on the

fracture of the A 533 B beams to date.

The significance cf the 131cfactor as related to in-plane constraint needs to be established

inasmuch as its original use was to correct for loss of out-of-plane constraint. However, the

results presented in Figs. 2 and 3 show that 50-mm-thick (2-in.) specimens exhibit the same

toughness as 150-mm-thick (6-in.) specimens regardless of crack depth. This behavior would

not be expected using a [3ic correction, and thus the applicability of the 13icfactor for shallow

flaws (if not deep flaws also) should be re-examined.

9. The significance of the correction procedure developed by Dodds and Anderson 14 to

account for loss of in-plane constraint in structural applications such as RPVs should be,

established. The key factor is to establish the conditions of constraint in actual vessels with

shallow flaws. Their procedure can be very helpful in analyzing the geometry dependence of

fracture toughness values for different a/W ratios. Aoalytical studies of full-thickness vessels

under conditions of plane strain (Recommendation 3) should bc helpful in this respect.

4. SUMMARY AND DISCUSSION

The previous investigations need to be conducted to ensure that the increase irl fracture

toughness observed in laboratory specimens can be explained theoretically so that the enhanced

fracture toughness data can be used to predi.ct the bchaviar of actual RPVs with confidence.

This question of transferability of data must _heanswered before any advantege can be taken in

design or analyses of shallow-flaw test results, lt is anticipated _at the above investigations will

verify that the predicted initiation fracture toughness of actual RPVs with shallow cracks is

greater than the predicted toughness based on test results of specimens with deep flaws. Even if

the increase is small, the improved understanding of the behavior of shallow flaws in vessels

subjected to ,rlTS should be well worth the effort. Hopefully, the preliminary experimental

results shown in Figs. 2 and 3 will be substantiated, and the transferability wi.ll be established on

the basis of the analytical studies. If so, that would lead to the conclusion that the reliability of

RPVs is greater than is currently predicted on the basis of deep-crack test results.
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One way of using the enhanced shallow-flaw toughness results would be to develop a new

Kc reference curve for shallow-flaw results. As an example only, "shallow-flaw" reference

curve for the A 36 steel tested at the University of Kansas is presented in Fig. 8. These data

were developed using C'[OD specimens although the results also were analyzed in terms of J.

Because relationships exist between K, J, and CTOD, it is possible to use Kj or KCTOD results

to obtain a new shallow-flaw reference curve. Once again, if the various investigations

recommended in this report verify that shallow-flaw toughness results can be used safely to

predict the behavior of RPVs, a new reference curve such as the example one shown in Fig. 8

could be developed. A new reference curve would be one way to use the enhanced toughness

results; another way would be to modify the crack driving force equations by the addition of

such parameters as T or Q (Recommendation 5).

The issue of whether the actual crack depth, a, or the relative crack depth, a/W, is the

controlling fracture toughness parameter should be studied as a part of this program. Hopefully,

the fact that moderately large specimen sizes are tested will make the issue one of secondary

irr_portance.
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Preliminary analysis indicates that three primary factors affect shallow-flaw bchavior in

either laboratory specimens or actual structures:

1. toughness level--whether measured by K, J, or CTOD,

2. strength level---either yield or flow stress, and

3. crack length, a.

These three parameters appear to be the primary ones based on the fact that K, c_,and a, are

the primary factors in basic fracture studies of infinite plates..Secondary factors believed to

affect shallow-flaw behavior include the inherent size of the specimens and/or structure, again

consistent with basic studies of the driving force KI in finite-width plates. Thus, the a/W ratio

would appear to be of less significance than the absolute crack length, a.

In addition to the PTS problem in nuclear RPVs, the preliminary observations in Figs. 1-3

of enhanced shallow-flaw toughness have considerable implications for the application of

laboratory test results to failure analyses and specification development in other areas, such as

support structures. For failure and fitness-for-purpose analyses, the crack depth selected for

laboratory testing should reflect the flaw size and crack-tip constraint present in a given

structure. Accurate representation of actual structural conditions should improve the confidence

and reliability of using laboratory specimen test results to predict structural behavior; that is, the

automatic adoption of lower-bound toughness values obtained using deep-crack specimens may

be uilduly conservative. Finally, fracture control plans should establish the required toughness

levels of materials using the most probable flaw sizes that can occur in actual structures, for

example, support structures as well as RPVs. These flaws certainly should be small compared

with most structural dimensions and should thus be considered shallow.

In summary, the enhancement in fracture toughness of an A 533 B steel, representative of

steel used in RPVs, appears to be real. Additional studies, both experimental and analytical, are

desirable to provide a sound engineering basis for transferring this information to the structural

margin assessment of RPVs with flaws.
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