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SUMMARY 

F u r t h e r  p rogress  i n  growth r a t e  has bee made, r each ing  an area th roughpu t  

2 
r a t e  o f  38 cm /min. T h i s  growth r a t e  was achieved, u s i n g  CVD feedstock,  b o t h  

w i t h  a  7.6 cm wide r i b b o n  grown a t . 5  cm/min and a 5  cm.wide r i b b o n  grown a t  

7.6  cm/min. The 5  cm wide r i b b o n  e x h i b i t e d  a  d e n d r i t i c  s t r u c t u r e ;  a l t hough  

t h e  r i b b o n  showed a  tendency t c  buck le  i n  t h e  n o n - d e n d r i t i c  reg ion ,  i t . w a s  

p e r f e c t l y  f l a t  once t h e  d e n d r i t e s  were f i r m l y  e s t a b l i s h e d . .  .The 7.6 cm wide 

r i b b o n  was non -dend r i t i c ,  and had severe b u c k l i n g .  We have a l s o  demonstrated 

m u l t i p l e  r i b b o n  growth ( t h r e e  2.5 cm wide r i bbons  grown a t  2.5 cm/min) and 

arowth u s i n g  t h e  con t inuous  system. 

A new des ign  f o r  an improved fu rnace  f o r  RTR growth  has been completed. 

The main des ign emphasis was t o  reduce comp lex i t y  o f  t h e  furnace,  improve ease 

o f  maintenance, and ex tend  t h e  usef  u  l  I i f e  of t h e  furnace.  We a r e  a  I so 

i n v e s t i g a t i n g  t h e  use o f  h i g h  p u r i t y  AI2O3, BeO, and Si3N4 f o r  t h e  fu rnace  

suppor t  p l a t e s .  S i  N a l s o  appears t o  be a  p rom is i ng  a l t e r n a t i v e  t o  q u a r t z  
3  4 

f o r  t h e  r i b b o n  shroud. 

The semi-cont inuous p o l y s i l  i con  CVD r i b b o n  r e a c t o r  has been designed and 

i s  bc i ng  assembled and t e s t e d .  A s i n g l e  r i b b o n  - 2" x  28" was grown on a  

s t a t i o n a r y  Mo b e l t  i n  t h i s  furnace.  

A s tudy o f  t h e  m i c r o s t r u c t u r e  o f  d e n d r i t e s  g row ing  i n  RTR r i b b o n  has 

shown t h a t  t hey  c o n t a i n  a  smal l ,  u s u a l l y  even, number o f  p a r a l l e l  t w i n s .  The 

d e n d r i t e s  themselves do n o t  have a  measurable e f f e c t  on t h e  r i b b o n ' s  photo- 

response. We have shown t h a t  a  p r e v a l e n t  d e f e c t  s t r u c t u r e  i n  s i l i c o n  r i b b o n  

c o n s i s t s  o f  s t a c k i n g  f a u l t s  ( r a t h e r  t han  grown-in t w i n  boundar ies ) .  These 

s t a c k i n g  f a u l t s  a r e  generated i n  t h e  b u l k  o f  t h e  r i b b o n  a f t e r  s o l i d i f i c a t i o n .  



' E l e c t r i c a l  a c t i v i t y  o f  de fec ts  i n  RTR r ibbon has been s tud ied by 

f a b r i c a t i n g  an ar ray  o f  photodiodes on t h e  ribbon, and using an SEM i n  t h e  

e l e c t r o n  beam induced cu r ren t  (EBIC) mode. We have concluded tha t ,  al though 

g r a i n  boundaries serve as e f f e c t i v e  recomb i n a t  ion centers, they do no t  occur 

f requen t l y  enough t o  g r e a t l y  reduce t h e  generat ion c u r r e n t  i n  a . s t r u c t u r e  as 

6 2 
la rge .as  a  s o l a r  c e l l .  D i s l o c a t i o n  dens i t i es  must exceed 10 /cm i n  order  

t o  s t r o n g l y  reduce t h e  photoresponse o f  a . s o l a r  c e l  I .  

We have fab r i ca ted  our  f i r s t  s o l a r  c e l l  on RTR r ibbon grown from CVD 

2 feedstock. T h e o v e r a l l  e f f i c i e n c y  was 6.78, w i t h  I = 24 m ~ / c m ,  VOC = 0.53 
SC 

2 
v o l t s , ' f i l l  f a c t o r  = 0.53. Tota l  c e l l  area was 2.5 cm . 

The Mo impur i ty  leve l  was measured i n  a  few CVD samples by Neutron A c t i v a t i o n  

ana lys i s .  This ana lys i s  i nd i ca ted  a  Mo l eve l  o f  5  - 10 ppm i n  t h e  b u l k  o f  

t h e  s i  I  icon r ibbon. 

The YAG laser  was used f o r  RTR growth. I t s  s e n s i t i v i t y  t o  module al ignment 

and p o s i t i o n i n g  made. it t o o  d i f f i c u l t  t o  operate cont inuously,  so f u r t h e r  work 

w i l l  proceed using t h e  CO, lasers.  
L 



1 .O GROWTH USING YAG LASERS 

Figure 1 i s  a  comparison o f  t h e  power requirements o f  t h e  C02 and YAG 

lasers.  The r a t i o  o f  t he  slopes shows a  f a c t o r  o f  - 5.6 i n  favor  o f  t h e  YAG 

lasers.  From t h e  p o i n t  o f  view o f  energy u t i l i z a t i o n ,  t h e  two systems a re  

equ iva len t :  t he  h igher  coup l ing  e f f i c i e n c y  o f  t h e  YAG system i s  roughly 

counterba lanced by t h e  overa I  l  h ighe r  e f t  i c i ency  o f  t h e  ~0~ lase r  ( -  10%) 

compared t o  YAG lasers  ( 1  - 2%) .  

The c o s t  o f  a  m u l t i - k i l o w a t t  C02 l ase r  i s  p ro jec ted  a t  $30/watt  i n  moderate 

(10 systems/year) q u a n t i t i e s .  The YAG l ase rs  a r e  roughly t w i c e  as expensive 

- $60/watt. So f o r  a  g iven throughput,  t h e  YAG system would a c t u a l l y  need 

less c a p i t a l  investment. However, t h e  maitenance c o s t  o f  t h e  YAG system 

would be much h igher  (>  $l/hour-module) so t h a t  t h e  o v e r a l l  cos t -e f fec t iveness  

o'f YAG lasers  would n o t  be necessar- i ly  a t t r a c t i v e .  

The most important f a c t o r  a t  t h i s  t ime, however, i s  r e l i a b i l i t y .  The 

YAG systems. a t  present  use 3 modules t o  d e l i v e r  a  t o t a l  o f  - 375/watts system. 

The a l ignment  and p o s i t i o n i n g  of.  these modules a re  c r i t i c a l  t o  o v e r a l l  power 

ou tput .  Th is  s e n s i t i v i t y ,  aggravated by t h e  need f o r  f requent  lamp replacement, 

made i t  atmost impossible t o  operate t h e  YAG systems a t  the . i r  maximum ra ted  

powe I-. 

Our conclus ion i s  t h a t  a l though t h e  YAG lasers  have a  p o t e n t i a l  advantage 

i n  terms o f  c a p i t a l  investment, t h e i r  lack o f  r e l i a b i l i t y  ( i n  h igh  power systems) 

e l im ina tes  them from cons idera t ion  a t  t h t s  t ime.  I f  a  s i n g l e  module, h igh  

power ( >  500 wat ts )  YAG l ase r  w i t h  demonstrable r e l i a b i l i t y  i s  developed, it 

would become a  candidate laser  f o r  t h e  RTR process. U n t i l  then, t h e  C02 lase r  

i s  a  proven, c o s t - e f f e c t i v e  source o f  r a d i a t i o n  f o r  RTR s i l i c o n  r ibbon growth. 
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FIGURE 1 :  M M P A H I S O K  OF POWER REQUIREMENTS USI:NG CCl7 LASERS AND YAG 
LASERS (WIITHOUT PRE-HEATERS). - 



2 .O CRYSTAL GROWTH 

Addi t ion o f  a pre-heater (See Section 3.0) t o  t he  c r ys ta l  growth s t a t i o n  

has enabled us t o  demonstrate some important milestones i n  r ibbon growth. 

Using 250 micron t h i c k  CVD feedstock we have grown 5 cm wide r ibbon a t  

growth ra tes up t o  7.6 cm/min. Close examination o f  a 5 cm-wide r ibbon grown 

a t  7.6 cm/min showed tha t ,  although it had a tendency t o  buckle i n  the  non- 

d e n d r i t i c  region, the buck l ing was el iminated i n  the  dend r i t i c  region. Figure 

2A i s  a photo o f  t h i s  sample. Note that,compared t o  dend r i t i c  r ibbons grown 

from 2.5 cm-wide feedstock, t he  dendr i tes on t he  5 cm wide r ibbon are somewhat 

more regular. Th is  ind icates a r e l a t i v e l y  f l a t  s o l i d - l i q u i d  in ter face across 

t h e  r ibbon width. 

We have succeeded i n  RTR ribbon growth from 7.6 cm wide CVD feedstock 

(See Figure 28). The growth ra te  was 5 cm/min and the  t o t a l  length grown was 

15 cm. This r ibbon was grown i n  t he  r a t i o  (2:1) mode; thus, s ince the feed- 

stock thickness was - 8 mi ls,  t he  grown r ibbon th ickness - 4-5 mi ls .  Hence, 

2 an area r a t e  o f  growth of  38 cm /min has been achieved using both 5 cm-wide 

and 7.6 cm-wide CVD feedstock. 

The p r a c t i c a b i l i t y  o f  m u l t i p l e  r ibbon growth was demonstrated by growing 

three 2.5 cm-wide ribbons a t  2.5 cm/min. The growth was routine; it d id  not  

present any add i t i ona l  d i f f i c u l t i e s  compared t o  growth o f  a s ing le /2 .5  cm 

wide ribbon. 

The new c r ys ta l  growth s ta t ion,  RTR #2 i s  now operat ional .  Ribbon growth 

using the continuous r o l l e r  system was ca r r i ed  ou t  w i th  2.5 cm wide feedstock. 

The length o f  the re -c rys ta l l i zed  r ibbon was 7 cm, and the growth r a t e  was 

2.5 cm/min. This b r i e f  experiment d i d  no t  uncover any s i g n i f i c a n t  problems 

w i th  the  operat ion o f  the continuous r ibbon system. 



Figure 2A. Dendritic Ribbon 



FIGURE 2b: RTR RIBBON 



3.0 FURNACE DEVELOPMENT 

3.1 PRE-HEATER - POST-HEATER COMBINATION AND BUCKLING EFFECTS 

As discussed i n  Section 4.6 o f  the 7 th  Technical Quar ter ly  Report, the  

type  o f  temperature p r o f i l e  now being u t i l i z e d  f o r  wide r ibbon growth i s  

indicated i n  Figure 3. To achieve t h i s  p r o f i l e ,  a pre-heater (w i t h  pre- 

heater con t ro l l e r )  was b u i l t  along s i m i l a r  designs as t he  present post-heater. 

The pre-heater was attached piggyback s t y l e  t o  the  ex i s t i ng  post-heater. 

Prov is ion was made tn a l low var iab le  separation b&tw68n The pra-ar~d post-  

heater aqsarnbl les i r l  or-der t o  control  the  p l ateau temperature level and t o  

ensure unobstructed access of  the laser beams t o  the melt  region. 

The use of t h i s  type o f  temperature p r o f i l e  was dlcated by increased 

f rac tu re  and buckl ing problems as t h e  sample w i d  l h became l argcr. In  

discussing buckl ing problems as appl ied t o  RTR growth, it i s  necessary t o  

d i f f e r e n t i a t e  two observed buckl ing e f fec ts .  The f i r s t  (and perhaps more 

unique t o  RTR growth) i s  a long wavelength buCKlitlg whicll i s  manifestod i n  

a d i f f i c u l t y  t o  maintain an unmelted r ibbon i n  a f l a t  condit ion, Upon 

i n s e r t i  on i n t o  the growth furnace, large rad i us-of-curvature buckl i ng can 

r e s u l t  which makes growth d i f f i c u l t  o r  impossible because o f  inter ference 

w i t h  furnace walls, etc.  The second type o f  buckl ing i s  t h e  periodic, 

shor ter  wavelength va r i e t y  observed i n  gruwrl I- i bbons and i s  the type reported 

by o ther  r i bbon growth resear cllwl-9. 

Results o f  t he  use o f  t h i s  heater combination have been pos i t ive ;  wtde 

r ibbon growth has been achieved w i th  reduced buckl ing tendencies and reduced 

f rac tu re  p robab i l i t i es .  Long wavelength buckl ing does s t i l l  occur, 

however, and t h i s  appears t o  be p r ima r i l y  due t o  the  nonlinear temperature 

p r o f i l e s  a t  the cool ends o f  the  pre- and post-heaters; the p r o f i l e s  w i t h i n  

6 



ONLY 

FIGURE 3: THERMAL PROFILES F 0 R . A  PREHEATER AND POSTHEATER 
COMBINATION WITH LANEAR PROFILE REGIONS BELOW 
APPROX MATE LY 1 200 C . 



t h e  furnace together  w i t h  t h e  occurrence o f  a p l a s t i c  region a t  t h e  non l inear  

peak temperature reg ion should n o t  lend+o buckl ing, b u t  t h e  non l inear  entrance 

and e x i t  regions can cause buck l ing .  Observations tend t o  conf i rm t h i s  

exp lanat ion :  upon i n i t i a l  i n s e r t i o n  o f  a ribbon, buck l ing  occurs almost 

immediately a f t e r  enter ing t h e  opera t ing  furnace. A f t e r  t h e  r ibbon has 

been completely es tab l ished w i t h i n  t h e  furnace, t h e  amount o f  bu;kling has been 

observed t o  decrease. 

Thmr ,e t  i c a l  l y, t h e  c r i t i c a l  s t ress  f o r  buckl ing  i s  strong1 y dependent 

no t  o n l y  on the  dimensions o f  t he  sample, bu t  a l s o  on t h e  l oca t ion  o f  any 

physical  cons t ra in ts  i n  r e l a t i o n  t o  t h e  st ressed region. I n  p a r t i c u l a r ,  i f  

we can impose on t h e  r lbbon a c o n s t r a i n t  t o  be f l a t  c lose  t o  t h e  st ressed 

region, buck l ing  should be s t r o n g l y  i n h i b i t e d .  Consequently, guide s t ruc tu res  

a r e  being designed Po a t tach  t o  t h e  pre- and post-heaters wh ich  w i  l l physical  l y  

c o n s t r a i n  t h e  r ibbons t o  be f l a t  a t  t h e  entrance and w i t  o f  t h e  heater  assembly. 

Once t h e  r ibbon i s  i ns ide  t h e  furnace, no buckl ing s t resses should be present 

and, as a r"9s11l t, i l i s  hoped t h a t  t h i s  long \hiavsleny.l~I~ buckl ing problem w i  I  l  

be g r e a t l y  a l  lev ia ted.  

3.2 NEW. D I S  IGNS- 

Des ign has been cotlipl e ted on a new furnace f o r  r o u t i n e  RTR growth. Wh i l e  

t h e  design i s  s i m i l a r  t o  t h a t  o f  ou r  previous furnace, numerous changes have 

been made t o  "standardize" t h e  par ts ,  improlie ease uC ~nd intensncc, a r~d  lv 

ex tend . the  usefu l  l i f e  o f  t h e  furnace. Some o f  t h e  major fea tures  o f  t h e  new 

furnace dre: 

. Symmetrical and interchangeable pre-heater and post-heater sect ions.  

. Use o f  a s impler  heat ing  element support concept employing an inexpensive 

s l o t t e d  support p l a t e  w i t h  numerous replaceable r e f r a c t o r y  p la tes  

8 



(which support t h e  heat ing  elements) mounted i n  t h e  s l o t s .  

. Prov is ion  f o r  t h e  rap id  replacement o f  any o f  t h e  f o u r  heater  sect ions.  

. Remote and separate con t ro l  o f  t h e  p o s i t i o n  o f  t h e  pre-heater and post- 

heater  sect ions. 

Since much o f  our  down-time i n  t h e  past  can be a t t r i b u t e d  t o  furnace o r  

furnace c o n t r o l l e r  f a i l u r e s  and lack o f  back-up un i t s ,  we a re  cons t ruc t i ng  

several e x t r a  furnaces and furnace c o n t r o l  l e rs .  

F igure  4 i s  a cross sec t ion  o f  t h e  furnace i l l u s t r a t i n g  t h e  heater element 

support p lates,  t h e  heater  elements, and t h e  r e f r a c t o r y  (quar t z )  shroud which 

p ro tec ts  t h e  r ibbon from poss ib le  heater element evaporat ion. Because o f  

h igh  temperatures i n  t h e  v i c i n i t y  o f  t h e  me l t  and t h e  numerous temperature 

cycles,  we have had a severe problem o f  thermal fa t i gue  i n  t h e . r i b b o n  shroud 

and support p la tes .  The r ibbon shroud i s  p resen t l y  fab r i ca ted  from quar tz  wh i l e  

t h e  support elements have been made from hi,gh-alumina-content ceramics. The 

quar tz  has r a p i d l y  d e v i t r i f i e d  (due t o  t h e  numerous temperature cyc les  in.volved 

i n  an RAD environment) and t h e  alumina has n o t  been ab le  t o  handle t h e  thermal 

s t resses -- resu 1 t i ng i n  f rac tu re .  

To combat these problems, we a re  i n v e s t i g a t i n g  a l t e r n a t i v e  r e f r a c t o r i e s . .  

For t h e  i nd i v idua l  support p la tes ,  h igh  p u r i t y  AI2O3, S i  N and Be3 w i  I  I  be 
3 4 

i nves t iga ted.  In  y e t  a new design, t h e  support p l a t e s  a re  independent and 

he1 d i n  a slottedinwber; they  a re  roughly a t  a un i'form temperature lengthwise. 

Free expansion a long t h e  length should prevent f r a c t u r e  o f  these par ts .  For the  

r i  hbon shroud, Si3N4 appears t o  be a reasonable a l t e r n a t i v e  t o  quartz .  a l  t h o ~ ~ g h  

quartz w l l l  cont inue t o  f i n d  use due t o  i t s  r e l a t i v e  ease o f  f a b r i c a t i o n .  
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4.0 STRESS ANALYS I  S 

Ribbon buckl ing, h igh  d i s l o c a t i o n  dens i t ies ,  and res idua l  s t resses a re  

a1 I  r e s u l t s  o f  t he  thermal s t resses act i .ng on t h e  r ibbon dur ing  growth. 

Residual s t resses may be el ' iminated through use o f  a post-heater w i t h  a l i n e a r  

temperature p r o f i l e  i f  the  post-heater parameters are  c o r r e c t l y  chosen.   ow ever, 
as repeatedly mentioned, adequate s t ress  r e l i e f  demands a l i n e a r  p r o f i  l e  w i t h  

a r e l a t i v e l y  smal 1 gradient .  High growth rates, however, demand a steep 

grad ient .  Th is  dichotomy o f  requirements has been met by those working i n  t h e  

f i e l d  by t h e  acceptance o f  a two-zone p o s t - s o l i d i f i c a t i o n  temperature p r o f i l e :  

a t r a n s i t i o n  zone between t h e  molten region and t h e  post-heater which has a 

h igh  thermal gradient ,  and t h e  post-heater zone i t s e l f  which has a shal low 

2 
grad ient .  I nev i tab l y ,  however, t h i s  combination leads t o  la rge axT induced 

st resses i n  t h e  t r a n s i t i o n  region, and r ibbon buck l ing  i s  a consequence. 

Also, r e l i e f  o f  these st resses through p l a s t i c  f low r e s u l t s  i n  t h e  generat ion o f  

s tack ing  f a u l t s  and h igh  d i s l o c a t i o n  dens i t i es .  

Because o f  t h e  need f o r  a b e t t e r  understanding o f  t h e  d i s t r i b u t i o n  and 

magnitude o f  thermal s t resses as a func t i on  o f  t h e  numerous thermal p r o f i l e  

parameters, a program f o r  t h e  numerical so lut . ion o f  t h e  two dimenst ional plane 

s t ress  equations has been developed. Th ls  program solves t h e  biharmonlc 

equation, reference ( 1 )  

2 v4$ = -aEV T ( 1 )  

where 4 i s  t h e  A i r y  s t ress  funct ion,  a i s  t h e  thermal expansion c o e f f i c i e n t  and 

E i s  Young's modulus. T may be a func t i on  o f  X and Y. The s o l u t i o n  i s  obta ined 

through u t i l i z a t i o n  o f  t h e  f i n i t e  d i f f e r e n c e  approximation o f  ( 1 )  i n  an 

a r b i t r a r y  rec tangu lar  ne t  and use o f  a Liebman r e l a x a t i o n  process. Assumed 

geometry f o r  t h e  s o l u t i o n  i s  ind ica ted i n  F igure 5. A s e m i - i n f i n i t e  s t r i p  o f  

w id l l l  2C i s  assumed; f u r t h e r  assumptions are  t h a t  t h e  temperature d i s t r i b u t i o n  

1 1  



F IGURE 5:  GEOMETRY USED I N  STRESS ANALYSIS  



(and the re fo re  t h e ' s t r e s s e s )  i s  symmetrical about y  = and . t h a t . a l l  edges 

a r e  t r a c t i o n  f ree .  The s t resses  a r e  g iven by 

and t h e  t r a c t i o n - f r e e  edges imp1 y  t h a t  'on t h e  edges, 

where n  imp l i es t h e  normal d i r e c t i o n .  'To a  boundary condi t o n  f o r  

X = L, where L i s  t h e  maximum dimension computed, $(L,y) i s '  ctiosen t o  equal 

t h e  exac t  s o l u t i o n  f o r  a  reg ion  f a r  from the .ends  o f  a  rec tangu lar  s t r i p  under '' 

t h e  i n f  l  uence o f  a  g e n t l y  va ry ing  temperature d i s t r i b u t i o n  o f  parabol i c  
.. . 

dependence ( o r  l ess )  i n  X. On iy ' tempera ture  d i s t r i b u t i o n s  a l l o w i n g  t h i s  

assumption a re  u t  i I  'ized. However, t h e  importance o f  t h  i s  boundary c o n d i t i o n  i s  

n o t  ser ious  s ince  a  g iven reg ion  w i l l ,  i n  general,  i n f l uence  o n l y  a  reg-ion o f  

approximately +2C from i t s e l f .  Consequently, i f  X = L i s  a t  l e a s t  2C u n i t s  

from t h e  reg ion  o f  i n t e r e s t ,  l i t t l e  impact w i l l  r e s u l t  from t h e  nature  o f  t h e  

s o l u t i o n  a t  X = L. 

Convergence o f  t h e  r e l a x a t i o n  process i s  p r e s e n t l y  r e l a t i v e l y  slow but  

comparison o f  t h e  r e s u l t s  a f t e r  i h e  maxlmum res idue has been reduced t o  1 p a r t  

4 
i n  10 w i t h  an exadt  s o l u t i o n  i nd i ca tes  accuracies w i t h i n  10 - 2 0 % ' f o r  a  

r e l a t i v e l y  coarse net .  However h igh  accuracy i s  n o t  an essen t i a l  requirement 

a t  present  s i  nce d i s t r i b u t i o n s  and t rends  a r e  of  more i n t e r e s t .  

F i n a l l y , ' i t  should be kept  i n  mind t h a t  these s o l u t i o n s  can o n l y  be a 

guide to .  t r ends  s ince  t h e  e f f e c t s  o f  p ' l a s t i c i  ty a r e  n o t  'accounted f o r .  

Nevertheless,. i f a thermal p r o f  i I  e could be conceived which w i  l  l  a  l low p ro jec ted  

s t resses  based on th i . s  e l a s t i c  model t o  become small ,  it can' sa fe l y  be assumed 

t h a t  s i g n i f i c a n t l y  reduced b u c k l i n g  and generat ions o f  d i s l o c a t i ~ n ~ w i  I I  r e s u l t .  
13 



Discussion o f  App l l ca t l ons  

A t  t h i s  t ime It i s  n o t  usefu l  t o  i l l u s t r a t e  numerous graphical  d isp lays  o f  

s t r e s s  d i s t r i b u t i o n s  s ince ou r  s tud ies  are  no t  complete enough t o  present  these 

i n  an i l l u m i n a t i n g  manner. However, from p re l im ina ry  work it i s  easy t o  

v e r i f y  t h e  profound e f f e c t s  o f  t h e  sample w id th  on r e s u l t i n g  st resses.  The 

previously-mentioned in f l uence  zone o f  2 2C from a  s t rong temperature non- 

l i n e a r i t y  becomes d i s t u r b i n g l y  l a rge  when 2C I s  5 - 10 cm. Thus, a  growth 

ve loc  i t y -  imposed therma l g rad ien t  requ i rement p f  perhaps 1 0 0 0 ~ ~ / c m  and t h e  i dea l 

o f  a  s t ress - f ree  growth environment a re  t o t a l l y  l n c u r ~ ~ p d l i b l a  s ince a scvoro 

temperature n o n - l i n e a r i t y  must occur w i t h i n  - 1.5 cm from t h e  me l t  ( i.e., t h e  

constant  temperature g rad ien t  must te rminate) .  

I I n  add i t i on ,  t h e  e f f e c t s  o f  p l a c i n g  s t rong n o n - l i n e a r i t i e s  o f  temperature 

near t h e  molten zone a r e  a l s o  apparent. As t h e  n o n - l i n e a r i t y  approaches the  

mol ten zone, t h e  l ong i tud ina l  s t resses (a  a r e  damped whi l e  t h e  .I a te ra  l 
XX 

s t resses (a  1 become very la rge lii l l ~ e  inmediafe v i c i n i t y  o f  t h e  m l t e n  
Y Y 

reg  ion. 

Through these i n v e s t i g a t i o n s  we hope t o  i d e n t i f y  t h e  most favorab le  

approach t o  s t ress  reduct ion  compatible w i t h  h igh  growth ra tes .  I t  can 

a  l ready be seen t h a t  an o p t i  muin rf bbon w i d f ll may be def i ned (assumi ng 

achievement o f  an idea l  p r o f i l e )  which would prov ide  subs tan t ia l  improvemenls 

i n  c r y s t a l  qua l i t y  due t o  s t r e s s  reduct ion.  Use o f  mu1 ti p l e  r ibbon growth would 

+hen a l l ow  -Ill& des i red  throughput t o  be achieved. Unfor tunate ly  t h i s  optimum 

w id th  i s  r e l a t i v e l y  srnall,of the o rde r  o f  1 cm, r e q u i r i n g  growth o f  numerous 

r ibbons.  Furthermore, as long as c r y s t a l  impur i ty  appears t o  be t h e  dominat ing 

f a c t o r  i n  reduct ions  o f  s o l a r  c e l l  e f f i c i e n c y ,  such cons idera t ions  a r e  

p r i m a r i l y  o f  longer term i n t e r e s t .  



J 
5.0 CVD R I BBON FEEDSTOCK 

Production o f  lht f  x 9" x .01OV po l ys i l i con  r ibbon i s  cu r ren t l y  being 

sustained f u l l  t ime on 2 R.F. epi reactors f o r  one s h i f t .  Yielded ou t  t h a t  

t rans la tes  i n t o  about 6 ribbons a day. 

Arrangements are being made t o  expand the  p roduc t i v i t y  by a fac to r  o f  2 by 

incorporat ing a second s h i f t  operation. 

Development o f  the  semi-continuous po l ys i l i con  r ibbon reactor continues. 

Tests were performed on the newly designed end seals t o  determine whether 

o r  not  they would contain t h e  atmospheric i n t e g r i t y  w i t h i n  t h e  reactor. The 

t e s t s  included f i l l i n g  t he  chamber w i th  anhydrous HCI and t e s t i n g  f o r  external  

leaks w i t h  NH40H vapors. The other  t e s t  was an examination f o r  Si02 formation 

when S i  was deposited i n  an ambient of H2. Results from both t e s t s  ind icate  

thatatmospheric i n t e g r i t y  w i t h i n  t h e  chamber w i l l  be sa t i s fac to ry  t o  car ry  

ou t  r ibbon growth. 

We have a l so  modif ied t he  end seals t o  accommodate a t h i c k e r  (up t o  0.020" 

molybdenum be1 t. The feed mechanism i s  now compieted,and i s  ready f o r  semi- 

continuous operatlon. We have i ns ta l l ed  a tachometer on t he  b e l t  d r i ve  motor 

so t h a t  the  b e l t  speed may be observed continuously. 

The f i r s t  attempt a t  growth i n  t h e  semi-continuous deposit ion chamber was 

very encouraging. This growth was ca r r i ed  out  on a s ta t ionary  be l t .  A s ing le  

ribon, 28" long was recovered i n t a c t  (See Figure 6). Ribbon thickness ranged 

from 1 t o  10 mils, t he  width from 14" t o  2". This growth was ca r r i ed  ou t  

using SiHCI3 i n  an HZ ambient a t  1 1 5 0 ~ ~  on a 0.0051f Moly be l t .  Since the 

r ibbon exh ib i ted  wide var ia t ions  i n  thickness, width and curvature (See 

Figure 6) we d i d  no t  attempt t o  re-crystal  l ize it i n  t he  RTR apparafus. 





6.0 DENDRITE STRUCTURE 

F igu re2a i s  a photo o f  a ribbon grown i n  the dend r i t i c  regime. This 

5 cm wide sample was grown a t  7.6 cm/min. Note t h a t  before the dend r i t i c  

regime was f i r m l y  established, t he  r ip>on, 
; 3- 

cy t o  buckle. The 
.'b&-'i' 

buckl ing v i r t u a l l y  disappears i n  the  dend r i t i c  ribbon. Figure 7 i s  a schematic 

o f  t h i s  sample, showing the pos i t ion  o f  selected Laue measurements. 

I The o r ien ta t ions  o f  several gra i  ns were determined using a Laue camera. 

I Grain "A" (See Figure 7) i s  -3 mm wide, w i th  a face F - (1  12) and a growth 

d i r ec t i on  G - [513] and t he  expansion d i r ec t i on  E - [131]. Grain "13" i s  5 mm 

wide, w i th  F - (3111, G - [233] and E - [Oil]. Grain "C" i s  4 mm wide w i th  

F - (2231, G - [I311 and E - [1011. I n  each case t he  growth d i r ec t i on  o f  t he  

dendr i te i t s e l f  was c lose t o  [112]. Thus i n  t he  dend r i t i c  regime the  g ra in  

I o r ien ta t ions  are determined p r ima r i l y  by t h e  dend r i t i c  growth requirements. 

The d i r ec t i on  i n  which a dendr i te grows i s  determined by t he  shape o f  the so l id-  - 

l i q u i d  interface. 

1 Figure 8 i s  an SEM view of  t he  top surface o f  a dendrite. The r ibbon was 

' ' texture etched" t o  reveal t h e  d i f f e r i n g  o r ien ta t ions  o f  t h e  c r ys ta l  grains. 

This dendr i te contains a p a i r  o f  tw in  planes, roughly ten microns apart. Note 

I t h a t  t he  c r ys ta l  orieni=ations on both sides o f  the  tw in  p a i r  are ident ica l .  

1 Figure 9a i s  an op t i ca l  micrograph o f  a dendr i te  cross-section, showing a 

I ser ies  o f  tw in  planes. This sample was etched 3 minutes i n  Wright etch t o  

I reveal i t s  defect structure.  Figure 9b i s  an SEM p i c tu re  o f  t he  same dendrite. 

In  t h i s  case the tw in  planes are - 6 um apart. As a general ru le,  Laue photos 1' * 

show on ly  a s ing le  o r i en ta t i on  f o r  each dendrite. Thus t he  dendrites usual ly 

contain an even number o f  pa ra l l e l  twins. I n  some cases (Orientat ion "B", 

1 Figure 7 )  the tw in  spacing was f a r  enough apar t  ( -  a f r a c t i o n  o f  a m i l l ime te r )  

1: t o  be revealed i n  the x-ray pattern. 
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F igu re  7 . D e n d r i t i c  ~i bbons.' The l ines represenf  
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Figure 9a. Dendrite Cross-Sect ion 



Figure 9b.  Dendrite Cross-Section 



7.0 STACK1 NG FAULTS 

Figures 10, 11, 12 are micrographs showing defect s t ructure i n  an RTR 

ribbon. In  each case, the  sample was etched f o r  3 minutes i n  Wright etch t o  

del ineate the  defects. Figure 10 i s  an op t ica l  micrograph o f  tne surface o f  

the  ribbon. This s t ructure of dense planar defects has generally been 

referred t o  as a tw in  boundary s t ructurs (2). This micrograph c lea r l y  

demonstrates tha t  the predominant defect structure i n  s i l i c o n  ribbons consists 

o f  stacking faul ts.  The stacking fau l t s  usually end a t  a gra in boundary, 

o r  the  edge of the  ribbon. In t h i s  case, however, t he  stacking f a u l t  i s  bounded 

by a p a i r  o f  edge dislocations. 

Figures 11 and 12 are SEM micrographs o f  sect ions 's f  RTR ribbons taken 

from an area which contains a r e l a t i v e l y  high planar defect density. The section 

shown i n  Figure 11 was cu t  a t  r i g h t  angles t o  the growth whi le the section shown 

i n  Figure 12 was cu t  pa ra l l e l  t o  the growth d i rec t ion  (and therefore para l le l  

t o  the  planar defects). Figure 12 c lea r l y  shows t h a t  these defects are stacking 

f a u l t s  generated i n  the  bulk  of the ribbon a f t e r  so l i d i f i ca t i on .  This i s  an 

important po int  because it indicates t h a t  the defect density might be reduced, 

i f necessary, by control  l i ng the temperature prof i l e  i n  the ribbon immediately 

a f t e r  so l i d i f i ca t i nn ,  
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8.0 ELECTRICAL ACTIVITY OF DEFECTS 

In  order  t o  s p e c i f i c a l l y  study the e l e c t r i c a l  a c t i v i t y  o f  defects and 

morphologies, an ar ray on n+ - p photodiodes was fabr icated on a few RTR 

s i l i c o n  ribbons. Each diode was a 1 mm x 1 mm square w i th  a small sect ion c u t  

from a corner t o  def ine the  diode o r !  entat  ion. The t o t a  l diode area was 

2 - 0.99 x cn . The shor t  c i r c u i t  cur rent  and open c i r c u i t  voltage were 

measured on each o f  t h e  diodes. These numbers can be used as a rough f i g u r e  

o f  merit i n  evaluat ing t he  r e l a t l v e  q u a l i t y  o f  the  diodes. For comparison, 

a rectangular sect ion o f  a Czochralski wafer was processed along w i t h  the  RTR 

samples. On the Cz sample, ISC - 150 - 160 PA and VOC - 0.50 vo l t s .  On the 

r ibbon diodes IsC ranged from 75 - 130 PA, and VX from 0.42 - 0.47 vo l t s .  

SEM micrographs were then taken o f  asselected number o f  diodes using t h e  

DC Electron Beam Induced Current (EBIC) method. Af ter  the  EBlC micrographs 

were obtained, selected diodes were f u r t he r  etched f o r  3 minutes i n  Wright 

etch, and op t i ca l  micrographs were taken of each diode. Two diodes which 

were very i ns t ruc t i ve  are shown i n  Figures 13 - 17. 

Figures 15 and 14 are EBIC and op t l ca l  micrographs, r.especlively, of diode 

12, 4 on r ibbon 1651. Diode 12, 4 was a r e l a t i v e l y  good performer w i t h  ISC = 

122 PA and VX = 0.47 vo l ts .  Close inspection o f  Figure 14 w i l l  reveal t h a t  

a major p o r t  ion o f  t h i s  d iodels area was covered by a dendrite. Yet t h e  

dendr i te  does not appear a t  a l l  i n  t h e  EBlC micrograph, Figure 13. Some o f  

t h e  planar defects, however, are  e l e c t r i c a l l y  act ive.  Yet even they are no1 

completely "deadw areas, and do produce some response. The l i nea r  densi ty o f  

these planar defects i s  roughly 120/cm. I n  t h i s  density range, they 

c l e a r l y  would not have a devastat ing e f f ec t  on t he  diode's photoresponse. 



Figure13.  EBlC Micrograph - diode 12,4 
on Ribbon 651 





By contrast, diode 4,4 on r ibbon 1651 i s  a poor performer, ISC = 77 PA and 

"oc = 0.43 vo l ts .  The g ra in  boundary (See Figure 15-at the  upper l e f t  corner o f  

t he  diode) i s  c l e a r l y  a very e f f ec t i ve  recombination center. Yet t he  greatest  

p a r t  o f  t he  diode i s  apparently f ree from g ra in  boundaries, tw in  planes o r  

stacking fau l t s .  Figure 16, however, shows tha t  the  apparently c l ea r  area i n  - 
diode 4,4 ac tua l l y  contains a very high density band o f  d is locat ions.  Note t h a t  

even the  general pat tern o f  the  d is loca t ions  i s  reproduced i n  t he  EBlC micro- 

graph. Figure 17 i s  a micrograph o f  a p a r t  (upper l e f t )  o f  diode 4,4, taken 

a t  a higher magnificat6on. The d is loca t ion  densi ty measured i n  t he  densest 

6 2 
p a r t  o f  t he  d is loca t ion  band was 4 x 10 /cm . For comparison, t he  d is loca t ion  

5 2 densi ty measured on diode 12,4 was - 5 x 10 /cm . Note t h a t  t he  area l e f t  

o f  t he  gra in  boundary on Figure 17, which has exce l len t  response i n  the EBlC 

micrograph shown i n  Figure 15, i s  r e l a t i v e l y  f r ee  o f  d is locat ions,  although it 

does contain some non-e lect r ica l ly  ac t i ve  planar defects. 

These resu l t s  are i n  f a i r l y  good agreement w i t h  our  previous study on t he  

e f f e c t  o f  d is loca t ion  densi ty on d i f f us i on  length ( 3 ) .  In  t h a t  study we 

succeeded i n  co r re la t i ng  d i f f u s i o n  length w i th  d is loca t ion  densi ty a t  numerous 

pa in ts  on an RTR ribbon. Away from gra in  boundaries, the d is loca t ion  densi ty 

6 2 
had t o  approach 10 /cm i n  order l o  r-educe t h e  d i f f u s i o n  length below 20 urn. 

We can therefore conclude: 

1. Grain boundaries are o f t en  very e f f e c t i v e  recombination centers. 

However, t h e i r  e f f e c t  i s  l im i t ed  t o  a very narrow area c lose t o  the 

boundary. Since g ra in  boundaries t y p i c a l l y  occur w i th  spacings 

o f  a few m i l  l imeters, they should no t  severely a f f e c t  t he  generation 

cur rent  i n  so la r  c e l l s .  However, f u r t he r  processing might reveal 

o ther  deleter ious ef fec ts ,  e.g., a shunt resistance, which would 

legrade the  c e l l .  
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Figure 15." EBlC Micrograph - diode 4,4 on 
Ribbon 651 







2. The ribbons are f a i r l y  t o l e ran t  o f  dislocations.- They are a major 

source o f  poor performance on ly  when they occur i n  bands w i th  

6 2 
densi t ies exceeding 10 /cm . The t yp i ca l  d is loca t ion  density i n  

5 2 
RTR r ibbon i s  2 - 5 x 10 /cm . 

2 3. Planar defects a t  density - 10 /cm have only a smal l e f f ec t  on the  

generat ion current .  



9.0 SOLAR CELL EVALUATION 

The r e l o c a t i o n  and r e - i n s t a l l a t i o n  o f  our  s o l a r  c e l l  processing f a c i l i t i e s  

was completed du r ing  t h i s  quarter .  We can again process r ibbon samples, and 

c u r r e n t l y  have fou r  l o t s  underway. We have switched from a mesa t o  a p lanar  

s t ruc tu re ,  us ing Si3N4 f o r  masking. Also, we are  at tempt ing t o  inc lude a 

back-surface f i e l d  t o  enhance t h e  open c i r c u i t  voltage. Table 1 presents t h e  

new sequence being fol lowed. No new c e l l s  a r e  c u r r e n t l y  being made w i t h  t h e  

mesa s t r u c l u  re. 

We a r e  ab I  e t o  r e p o r t  resu I  t s  o f  ou r  f i r s t  so l  a r  ce l l made on regrown CVD 

feedstock. The e f f i c i e n c y  under s imulated AM1 i l luminat ion was 6.7%, w i t h  

2 
voc = .53V, JSC = 24 m ~ / c r n ~ ,  and f i l l  f a c t o r  = 53%. The c e l l  area was 2.5 crn . 
A photograph o f  t h e  c e l l  (F igure  18) revea ls  two c h a r a c t e r i s t i c s  o f  t h i s  

device. F i r s t ,  t h e  me ta l . l i za t i on  p a t t e r n  i s  incomplete i n  th ree  important areas. ,&:--:?.I..: L,;: L~--T,,--i\,k,,,'y. 
8. ,5;*- !, ,,! - ,;$ -*- 7: ,.:- -; - z7 . 

\ <-:., - , ' 

These breaks ' in  t h e  narrow f i nge rs  were caused by incomplete masking dur ing  t h e  

pho to res i s t  procedure. I 'h is  flaw i n  processing i s  occas iona l ly  seen on r ibbon 
- - .F 

c e l l s ,  and i s  caused by i n s u f f i c i e n t  c o l l i m a t i o n  o f  our  present  pho to res i s t  a/:..'- -2- 

exposure lamp. I t  i s  aggravated ( i n  t h i s  case) by t h e  extremely uneven surface 

as a r e s u l t  o f  t h e  numerous dendr i tes.  

Th is  b r ings  up t h e  second c h a r a c t e r i s t i c  o f  t h i s  c e l l ,  namely t h a t  it has 

several small dendr i tes  running through it. The la rges t  can be seen r i g h t  a t  

t h e  cen te r  and cross ing t h e  main con tac t  bus. 

Thn incomplota m o t a l l i z n t i o n  p a t t e r n  i s  p a r t i a l l y  respons ib le  fnr t h e  pnor 

f i t  I  f a c t o r  t h a t  i s  observed. F igure  19 shows t h e  i l l um ina ted  I - V  c h a r a c t e r i s t i c s  

f o r  t h e  CVD c e l l .  The se r ies  res is tance f o r  t h i s  device (measured by comparing 

dark and i l l um ina ted  curves) was approximately 1 ohm, 5 - 10 t imes la rge r  than 

normal. Using t h i s  value, t h e  I-V curve f o r  n e g l i g i b l e  s e r i e s  res is tance can 

be c a l c u l a t e d  and i s  p l o t t e d  as a dashed l i n e .  Note t h a t  t h e r e  i s  a s l i a h t  

34 



TABLE 1 

RIBBON SOLAR CELLS - PLANAR PROCESS 

STEP - PROCESS 

HF t o  clear 

5: 1 :4 etch, Remove 2-4 pM 

~ t d .  clean, SI 3N4 700R 

Protect front, s t r ip  back 

B C I ~  pre-dep, IOOOR (glass) 

Protect back, p l anar pattern front 

Planar etch (HF) 

pH3 diffusion 

Str ip  - 5008 of oxide 

AR coat (8508 S 1 3N4) 

Pattern front, s t r i  p back 

Metal I ize 





0.4 

VOLTAGE ( v o l t s )  

FIGURE 19: ILLUMINATED I -V  CHARACTERISTIC 



increase i n  JSC and a  more substant ia l  i ncrease i n  t h e  f i l l  f ac to r ,  from 53% 

t o  57%. Of course, a  f i l  l f a c t o r  o f  57% i s  s t  i l l  unacceptably low, and t h e  

cause can be seen i n  a  semilograthmic p l o t  o f  t h e  dark cur rent -vo l tage character-  

i s t i c s  (F igure  20). A t  vo l tages below about .5 vo l t s ,  t he re  i s  an excessive 

amount o f  leakage cu r ren t .  The cause o f  t h i s  excess cu r ren t  i s  n o t  known a t  

present,  b u t  it i s  encouraging t o  see a  better-than-average value o f  V i'n 
OC 

s p i t e  o f  t h e  high dark cu r ren t .  

7 The s h o r t  c i  r c u i t  cu r ren t  o t  24 mA/cm r q u i  t h a t  t h e  5uLs.l.t-ate mater io l  

possess a  m i n o r i t y  c a r r i e r  d i f f u s i o n  length i n  excess o f  35 PM, (and poss ib l y  

as h i g h  as 100 pM) i n d i c a t i n g  t h a t  regrown CVD mater ia l  can be 'ge t te red .  

F i n a l l y ,  we have successfu l ly  processed a  f u l l  length r ibbon ( 9 " )  wi thout  

breakage. Th is  r ibbon (See Figure 21) i s  heav i l y  d e n d r i t i c  and was grown 

from s i n g l e  c r y s t a l  feedstock. Because o f  t h e  roughness o f  t h e  sur face and our  

r e l a t i v e  inexperience w i t h  t h i s  type o f  mater ia l ,  some o f  t h e  contac t  pa t te rns  d i d  

n o t  open up proper ly  f o r  m e t a l l i z a t i o n .  Nevertheless, as i s  shown i n  Figure 

21, a  complete f i n g e r  p a t t e r n  can 'be opened up on d e n d r i t i c  ma te r ia l .  Note 

a l s o  t h e  smal l p iece which h.as been chipped o f f ;  t h i s  breakage occur,r..,cd on ly  

i n  t h e  non-dendr i t ic  region and stopped a t  t h e  edge o f  t h e  dendr i tes,  graphic 

proof  of  t h e  increase i n  s t reng th  provided by d e n d r i t i c  r ibbon. 



VOLTAGE ( vo l ts ) 

FIGURE 20: DARK I -V  CHARACTERISTIC 
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FIGURE 21: PROCESSED DENDRITIC RIBBON
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,lO.d NEUTRON ACTIVATION ANALYSIS 

Table 2 shows t h e  r e s u l t s  o f  Neutron Activation-Ana1;ysi.s on some CVD and 

RTR samples. These analyses were c a r r i e d  o u t  by Ge'neral A c t i v a t i o n  Analysis, 

Inc., San Diego; C a l i f o r n i a .  We have p rev ious l y  ( 4 )  reported an impur i ty  p r o f i l e  

obta ined using S l M S  (Secondary Ion Mass Spectroscopy) ana lys is .  The sur face 

concentrat ion o f  molvbdenum determined by S l M S  was 5 pprn, and i t  dropped o f f  t o  

t h e  detec t ion  l i m i t  ( <  0.5 ppm) w i t h i n  a depth o f  1 um from t h e  surface. 

The Neutron A c t i v a t i o n  r e s u l t s  reported here imply roughly an order  o f  magnitude 

h igher  Mo contaminat ion than t h e  S l M S  analys is .  

These r e s u l t s  show t h a t  we are g e t t i n g  a r e l a t i v e l y  h i g h  leve l  of M o ' i n t o  

t h e  RTR samples. The b b  i s  probably no t  concentrated exc lus i ve l y  a t  t h e  back 

surface, bu t  i s  spread through the  b u l k  o f  t h e  s i  l icon. Note, however,. t h a t  

some o f  t h e  d i f f e rences  seen i n  Table 2 may be due t o  sample-to-sample v a r i a t i o n s  

r a t h e r  than t o  t h e  s p e c i f i c  sample h i s t o r y .  

These r e s u l t s  a re  ra the r  puzz l i ng  i n  l i g h t  o f  t he  Westinghouse ( 5 )  , 

12 
r e s u l t s :  Mo a t  a concentrat  ion o f  even < 10 pprn se r ious l y  degrades t h e  

performance o f  S i  pho tovo l ta i c  c e l l s .  Yet, i n  Sect ion 9.0 we reported on a 

CVD c e l l ,  presumab.ly con ta in ing  5 - 10 ppm o f  Mo, which was a f a i r l y  good 

2 
pe r fo r r~e r ,  p a r t i c u l a r l y  w i t h  V (0.53V) and 1 .... 124 mA/cm 1.  The VOC ir. OC SL 

a c t u a l l y  h igher  than t h e  t y p i c a l  va.lues we have been measuring on c e l l s  

fab r i ca ted  on RTR r ibbons grown from s i n g l e  c r y s t a l  feedstock. The ISC i s  

lower by 15% - 20%, -- which i s  the  degradation Westinghouse observed f o r  a 

12 3 
10 /cm 140 concentrat ion.  Thus, it i s  poss ib le  t h a t  Mo as an impur i ty  i n  

RTR r ibbcn behaves d i f f e r e n t l y  than Mo i n  a Cz s i n g l e  c r y s t a l .  Possib ly  t h e  

Mo i s  being accumulated a t  c e r t a i n  defects, perhaps in  t h e  form o f  an oxide.  

Fur ther  i nves t i ga t i on  on s o l a r  c e l l s  fab r i ca ted  on CVD feedstock RTR s i l i c o n  

should help resolve t h i s  quest ion. 

4 1 



TABLE 2 

NEUTRON ACTIVATION ANALYSIS 

N.D. Not Detected. The upper l i rn i ts  are based on th ree  standard 
dev ia t ions  from count ing  s t a t i s t i c s .  

- 
SAMPLE 

# 

1 .  

2 

3 

4 

5 

W 
( P P ~ )  

N.D. 
<0.0016 

.0033 

.025 

.0066 1 

N.D. 
<0.0011 

DESCRIPTION 

RTR r ibbon, grown from s i n g l e  
c r y s t a l  feedstock 

CVD r ibbon (as dcpo'sitcd) 

RTR ribbon, grown from CVD 
feedstock 

CVD r i hhon ( 2  m i  l  s etched from 
sur face which was i n  con tac t  
w i t h  Mo subst ra te)  

Plasma deposited r ibbon (as 
deposited) 

b b  
( P P ~ )  

N.D. 
< .088 

6.66 

12.5 

5.60 

3.37 



11.0 PROBLEMS 

Neutron a c t i v a t i o n  a n a l y s i s  on CVD r i b b o n  has shown a  h i g h  ( 5  - 10 ppm) 

l e v e l  , o f  Mo impu r i t y .  However a  s o l a r  c e l l  f a b r i c a t e d  on RTR r i bbon  grown 

f rom t h i s  feedstock i n d i c a t e s  t h a t  t h i s  i m p u r i t y  l eve l  i s  n o t  n e c e s s a r i l y  a  

s e r i o u s  prob lem. 

12.0 PLANS 

1 .  CVD Feedstock - Cont inue p roduc ing  14" x 9" feedstock.  S t a r t  growth 

o f  semicont inuous s i l i c o n  r ibbon;  s t a r t  n i g h t  s h i f t .  

2. C r y s t a l  Growth - I n  a d d i t i o n  t o  r o u t i n e  growth of  I&" wide r i bbon  from 

CVD feedstock, we w i  l  l work on f a s t e r  growth o f  w ider  (2"  - 3 " )  r ibbons.  

3. S t ress  Ana l ys i s  - We w i l l  implement t h e  computer program t o  c a l c u l a t e  

t h e  thermal s t r e s s  d is t r ibu - t - ion  as  a  f u n c t i o n  o f  v a r i o u s  temperature 

p r o f i  l es .  

4. S o l a r  C e l l s  - Eva lua te  s o l a r  c e l l s  b u . i l t  on CVD feedstock.  We w i l l  

a l s o  cons ide r  t h e  e f f e c t s  o f  t h e  new planar/Si3N4 process sequence. 

13.0 NEW TECHNOLOGY 

The f o l l o w i n g  New Technology i t em has been developed on t h i s  program: 

I .  D e s c r i p t i o n  - Polygon Scanner System 

Innova to r  - Dr. R ichard  G u r t l e r  

Progress Repor ts  - Technica l  Progress Repor t  No. 14 October 1977 

Pages - Pages 1 ,  10, l lA ,  and l l  

2. D e s c r i p t i o n :  Hemispherical  R e f l e c t o r  t o  Improve E f f e c t i v e  

Absorp t ion  C o e f f i c i e n t  o f  L i q u i d  S i l i c o n  

Innova to r :  Dr. R ichard G u r t l e r  



Progress Reports: Technical Q u a r t e r l y  Report No. 7, 

Motorola Report 255619,. P January 1978 - 31 March 1978, 

Pages - Appendix Pages 11-13 

14.0 M l LESTONE CHART 

A c + i v i t i e 3  c1330clatod w i t h  t h o  t o t a l  program s r o  shown i n  t h e  

Mi lestone c h a r t  contalned I n  t h e  Appendix. 
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