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Abstract

A knowledge of primary damage production as a function of recoil

energy is essential for predicting defect production in radiation environ-

ments of practical interest. The damage function V ( T ) , i.e., the number of

Frenkel pairs as a function of recoil energy is determined for Cu from

electron and ion damage-rate measurements. v(T) shows a plateau at

v « 0.54 which extends up to ~ 7xT°in. Therefore, simple danage models,

such as the modified Kinchin-Pease expression, are inappropriate not only

at high recoil energies where stimulated recombination in cascades reduces

defect production, but also in the single displacement regime. As a con-

sequence, no simple relation between T m i n and T|v is expected to exist. A

procedure is suggested which uses anisotropy measurements in combination
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with polycrystal electron and ion Irradiations to construct absolute damage

functions in metals.

1. Introduction

In the present paper, we are concerned with the primary-damage produc-

tion as a function of recoil energy. In defect production studies atten-

tion is generally limited to averaged characteristics of damage observed in

a single grain of the material for an isotopic distribution of recoil

directions or for damage in a non-textured polycrystal. Even for such an

averaged situation many damage parameters are necessary for a complete

description of the primary damage state. However, we shall consider here

only the damage function, v(T), i.e., the average number of Frenkel pairs

(FF) produced by a recoil of energy T. The damage function allows the

prediction of Np, the number of FP's produced for irradiations with mono-

energetic particles of energy E

N p - N «j> / K(E,T) v(T)dT (1)

T

or for irradiations with a distribution of particle energies

4>(E)K(E,T) v(T) dEdT (2)

"E 'T

or for the production of defects along the range of a particle
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Np - / / ^ H ^ v(T)

where N is the number of atoms, K(E,T) is the differential scattering cross

section, S(E) the stopping power, <t> and <KE) are the dose and the dose-

spectrum, respectively.

The motivation for determining the damage function is therefore this

predictive capability regarding the defect production in practically any

irradiation field. In addition to this, studies of the damage function may

lead to an understanding of the physical processes involved when energetic

recoils interact with lattice atoms.

In the past, electrical resistivity measurements have provided a

convenient tool for monitoring defect production in metals. In the

following the application of this method to studies of the damage function

shall be discussed.

2. Daaage Rate Measurements

The damage rate, i.e., the change in resistivity Ap per particle dose

is assumed to be proportional to the change in concentration C of FP's

p dC
d<|> F d«

where Pp is the Frenkel pair resistivity. The total cross section for FP-

production Opp can then be determined from measurements of the damage rate

in the undamaged material

a -JL
FP P_

r
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Generally, several problems and uncertainties are encountered in estab-

lishing absolute damage rates: (1) Pp is not known with good accuracy.

(2) When using thin foils, the measurements have to be corrected for the

electrical size effect. (3) Extrapolation to Ap = 0 requires a knowledge

of the saturation behavior. (4) The effective Ppp may be changed due to

clustering of point defects. The latter may occur as a function of dose or

when energetic displacement cascades are produced. The corrections due to

items 2 and 3 can generally be obtained with good confidence, while item 4

Introduces an uncertainty which is very difficult to estimate for large

clusters (N i 100), while small clusters are thought to have a FP resis-

tivity very close to the sum of the resistivity of isolated defects. »

A major point of concern is, however, the uncertainty in item 1, the

FP resistivity, which has important consequences regarding the damage

function behavior at low energy.

3. Damage Function Hear Threshold (v ̂  1)

3.1 Fundamentals

From single crystal electron irradiation experiments a threshold

energy surface T^C^) c a n ^e derived if the assumption is valid that a

recoil in the direction ^ creates just one FP whenever the recoil energy

exceeds TJ(8O )•"*** The damage function is then given by »

v(T) - /H[T-*d<a2)] ̂ ± for v < I (6)
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where H[x) = 0 for K < 0 and Hlx] = I for x _> 0.

Generally FP production is dominated by recoils close to the direc-

tions of close packed lattice rows which lead via replacement sequences to

well separated interstitial-vacancy pairs. As a consequence, the minimum

threshold energy T m n is followed by a steep increase of V(T) in a small

range of T. From threshold anisotropy studies on Cu, by King et al., it

has recently been found that production of defects in the remaining direc-

tions usually requires much higher energies. • Therefore, the damage

function shows a plateau at v < 1. The height of the plateau is determined

by the fractional solid angle subtended by the "easy" directions and the

extent of the plateau depends on the magnitude of the threshold energies in

the "difficult" directions.

A plateau at v < 1 is expected in any crystalline material whenever

there is a clear energy gap between the easy and hard directions. It has

been shown that single crystal experiments can establish particularly well

the low energy regions of the threshold surface, while considerable

uncertainties exist regarding the details of the high energy regions. »"

In terms of the damage function this means that the onset of damage and the

height of the plateau can be very well established from the experimental

threshold surface, but not the details of the transition to higher

energies.

Damage rate measurements as a function of energy atid direction in

single crystals also provide a means for an independent determination of

the FP resistivity. ' • ' This is an extremely important aspect of single
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crystal experiments since a knowledge of P p is indispensable for deriving

absolute defect production rates from resistivity measurements.

Unfortunately, up to this date most anisotropy measurements and their

analyses have not been of sufficient extent and accuracy to provide Pp

values that are as precise as one would like to have them for damage

function studies (~ ± 10%).

Once the FP-resistivity is established, electron damage rate measure-

ments on polycrystals can be used to derive the damage function. The FP

production cross section for monoenergetic particles is given by

o_(E) • — 5 r - - / K(E,T) v(T) dT (7)
F P_. d9 J

If the differential scattering cross section K(E,T) is known, this integral

equation can be solved numerically for v(T) using an experimentally deter-

mined set of ° F(E) values. In electron irradiations K(E,T) is given by the

Mott cross section. v(T) is usually constructed by using multistep and

linear functions that are adjusted such that the standard deviation between

R—1 1calculated and measured damage rates are minimized.

A check on the consistency of the data and analysis can be made by

comparing the damage function derived from single crystal data via Eq. (6)

with the damage function derived from polycrystal data (Eq. (7). In a

recent compilation by Jung 1 1 quite poor agreement between single crystal

results is indicated for the fee metals Cu and Al. Pt, however, shows

consistency between the poly- and single-crystal analysis.
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3.2 Electron Daaage Rate Measurements in Cu

In this section results from HVEM resistivity damage rate measurements

on polycrystalline thin film specimens are reported and compared to single

crystal results. The main aspects of the experimental procedures have

been previously described. In order to avoid texture imposed by a

crystalline substrate, polycrystal films were prepared by vacuum evapora-

tion of Cu onto thin layers of carbon. Damage rate measurements as a

function of specimen tilt confirmed the absence of texture effects in the

present experiments.

There are two basically equivalent approaches to constructing a damage

function from damage rate measurements on polycrystals. The first is to

use the FP resistivity as determined in anisotropy measurements and to

construct the damage function from polycrystal data alone using Eq. (7).

The second is to derive the low energy part of the damage function

Tmin — T Jl 2Train directly from the experimental threshold surface via Eq.

(6). Low energy electron defect production (DP) cross sections are then

calculated from this part of the damage function. The Pp value to ba used

for the polycrystalline data is determined by the best match to tne poly-

crystal electron DP cross sections at low energy. The latter procedure is

used in the present paper since it makes use only of the topology of the

threshold surface which is largely independent of systematic errors (such

as introduced by size effect, dosimetry, specimen geometry factor, devia-

tions from Matthiessen's rule etc.) that may be present when irradiations

on different specimens are compared.
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Flpure I shows the calculated cross sections as a function of electron

energy based on the threshold function in Fig. 2 and a FP resistivity of

Pp = 2.6x10"^ ftcm. The latter Is derived as discussed above through a

match to the detailed threshold function below the plateau. A straight

line is a good approximation to the real v(T) in this range. The height of

the plateau is at v « 0.54, slightly changed from the single crystal value

due to the use of a different Pp. The most striking feature of our damage

function is the very great range of the plateau which extends up to

~ 7xTmj_. The existence of such a plateau was indicated by the molecular

dynamics calculations of King and Benedek. The plateau is followed by a

step rise in v which is determined by a fit to high energy electron DP

data. It should be noted that the continuation of the straight line

fitted does not go through the origin, as in the Kinchin-Pease model. A

satisfactory match could not be obtained if a straight line through the

origin was chosen. A low energy proton irradiation in the stopped mode

supports the surprisingly steep onset of DP in the multiple displacement

regime.

Comparison between the polycrystal and the single crystal damage

function shows good agreement at low energy, however, the extent of the

plateau is quite different. This comes from the fact that the details of

the high energy threshold regions are poorly known from single crystal

results. » Therefore, the transition from the plateau to v = '}, and beyond

is best studied using polycrystal data. The single crystal analysis is
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important for establishing the value of Pp. and the details of the damage

function near threshold.

4. Multiple Defect Production

The approach of determining v(T) via Eq. (7) together with damage

cross section measurements can be extended to much higher recoil energies

by a suitable choice of irradiating particle mass and energy. Since the

evaluation of damage production at high energy always had to rely heavily

on theoretical concepts and since the DP experiments almost always are

discussed in reference to simple theoretical models we shall interject at

this point some remarks about the most widely used one.

4.1 The Modified Kinchin-Pease Model

The damage function in the modified Kinchin-Pease model is given by

0 for T < T*:ff
d

v_.(T) = 1 for T, < T < 2.5 T®ff

Kr Q d

- ^ for e > 2.5 T;
f f (8)

d

where < is the displacement efficiency factor (< " 0.8), the damage

energy e is the recoil energy reduced by the total electronic losses and

T j f f is an effective threshold energy. A knowledge of the detailed

threshold function V ( T ) for v ̂  1 could now be used to improve on Eq. (8)

by setting
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v(T) , v _<

\>(T) =
K £

• ~ n r >V>1 (9)

v(T) for v ̂  1 would also be expected co serve as a guide for determining

the effective threshold energy. If 0 < v(T) < 1 is replaced by a step

function and if v(Tj) = 1, T*j can be defined as

J f v(T)dT- J f dT (10)
Tmin Teff
Ld V

T l
For hard sphere scattering T^ f f = T | v , i . e . , I v(T) dT = Tj - T® f f.

min

For real potentials T| f f < T^[v. Therefore, if T| f f in Eq. (9) is replaced

by TJ|V, the displacement efficiency factor < would be increased. However,

since the correction factor depends on the shape of the threshold function

no universal constant can be given.

The basic assumptions of the Kinchin-Pease model are strongly violated

whenever T^ » T m , as is indicated by our experiments in Cu. Under these

circumstances multiple defect production becomes much more complicated than

implied by the simple model. Some of the consequences of anis^tropy have

been discussed in detail by Lucasson. Results from molecular dynamics

calculations suggest that a linear approximation may be used in Cu for
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1 £ v(T) < 2.5 However, It should be pointed out that for Tj » T^in the

slope of the linear region in Eqs. (8) and (9) is not necessarily

determined by T*[ff or T|v as calculated from Eq. (10). Empirically when

the damage function is assumed to be linear in e in this range T^ would

then have to be determined from high energy electrou or low energy proton

damage rate measurements via Eqs. (7) and (9).

When comparing damage rate data with calculations of DP it is often

convenient to use an efficiency factor

N

where Ne is the experimental and Nt the theoretical number of defects.

4.2 Ion Irradiations

Compared to electron irradiation, the range of available recoil
i

energies is greatly increased In ion damage studies. The damage function

i

can thus be studied over the whole range of interest in the multiple dis-

placement and cascade regime. Two approaches have been used.

In the first approach thin target foils are irradiated with mono-

energetic ion beams in transmission. The FP production cross section Op is

measured as a function of ion mass and energy. Similar to the electron

case, information on v(T) can then be extracted from Eqs. (7) or (3) as

long as the differential scattering cross sections are known. It is

desirable to stay in energy well below the Coulomb barrier in order to
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avoid complications in the recoil spectrum due to nuclear reactions. The

differential scattering cross sections are generally obtained through the

formulation of Lindhard et al., which is based on the Thomas-Fermi

potential. In some instances improved potentials and more accurate cross

sections are available. »

In utilizing Eq. (7) it is assumed that the defects created by

different recoils along the path of the incident ion are additive, that is

that overlap effects are insignificant. This assumption should be well

fulfilled in light ion irradiations, but for heavy ion irradiations at low

energy, damage overlap may be important.

Figure 3 shows the fraction F(T) of defects produced by recoils <_T

for a selection of ion irradiations of Cu.

T

F(T) =* a"1 / K(E,T) V(T) dT (12)

T

Recoil energies can be changed over a wide range, but damage in any single

irradiation is generally also produced over a wide distribution of recoil

energies. This limits the sensitivity with which the damage function can

be probed. A characteristic median energy Tj/2» defined as F(Tw?) • 0.5

is useful in pointing out the magnitude of the recoil energies near which a

majority of the damage is produced in any given irradiation. From Fig. 3

it is seen that T J M can range over several orders of magnitude. In order

to have similar recoil energies as in even the most energetic electron

irradiations that have been used in the past in DP studies one has to
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irradiate with protons at quite low energy. This necessitates very thin

specimens, on the order of 100 nm, if the recoil range near the threshold

for multiple displacement is to be investigated.

In the second approach to studies of the damage function at high

energy the irradiating particle is stopped inside the thin film specimen.

In this manner the total number of defects produced along the path of the

ion can be measured. Particularly for self-ions, the cascade initiated by

the incoming ion (energy E) can be considered equal to a recoil cascade of

energy T • E whose damage function value V ( T ) can thus be directly mea-

sured. By irradiation with a number of different heavy ions it has been

found that the defect production at high energy (Tj/2 ^ ^ keV) is propor-

tional to the damage energy. Such behavior is Indeed expected in the sub-

cas cade regime.

4.3 Damage Function of Cu at High Energy

It would be most desirable to be able to construct a damage function

based on electron and ion damage measurements on the same specimen. Such

measurements will soon be possible at the ANL HVEM Tandem Facility. At

present, however, there is a paucity of ion damage rate data on Cu, in the

important transition region between high energy electron and low energy

proton irradiations. The complete damage function in Fig. 4 is a con-

tinuation of the function in Fig. 2 to higher energies, using ion damage

rates together with damage calculations using PINTO. At very high energy

10 keV) it has previously been found by Averback et al.^ that the
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nufflber of defects is proportional to the damage energy. The slope of the

damage function v(c) in this region (4.2 FP/keV) was obtained from the

number of defects/cascade produced in self-ion bombardment,24 taken as the

average over the two available measurements at 500 and 560

proton transmission value at low energy (150 keV) was used for establish-

ing the onset of the departure from the steep slope in the multiple dis-

placement regime. An additional linear portion was used together with a

smooth transition to approach the final slope of the damage function.

The goodness of fit of this damage function can be judged from a plot

of the damage efficiency as a function of T j ^ * I n FiS« 5> results from

high energy light ion damage experiments * as well as stopped ion data

up to 0 + and the self ion points are included. It is seen that the

calculated damage rates according to our damage function agree very well

with the experimental ones over the whole range. In contrast to this the

efficiency strongly decreases with energy when the modified Kinchin-Pease

model is employed.

S. Su—nry and Discussion

A recently derived threshold energy surface has indicated that the

anisotropy in copper is more pronounced and that FP production is somewhat

lower than had previously been thought. » The new FP resistivity

determined m this work was used to obtain polycrystal defect production

cross sections from electron and ion Irradiations. A damage function

consistent with the available data has been derived. This function



-2 5-

exhibits an extended plateau at v « 0.54 followed by a steep r̂ .se up to

v ~ 4. The transition to the final section in v(T) which was assumed to be

proportional to damage energy takes place in the range 300 eV to 4 keV.

This transition to lower defect production in the keV range has

previously been suggested to come to a large part from the stimulated

recombination of FP's during the cooling phase of energetic cascades.

Molecular dynamics simulations have shown that stimulated recombination of

19FP's is a natural component of defect production also at low energy. The

damage function studies seem to suggest that appreciable enhanced recombi-

nation extends from several hundred to several thousands of eV. At high

energy the FP production is again proportional to £ as a consequence of

subcascade formation.

If the damage function would increase from 0 to 1 in a rather narrow

range of T, a step function, approximation would be appropriate. The

presence of an extended plateau at v much below 1, however, makes it

impossible to use a simple sharp-threshold model such as Kinchin-Pease for

describing defect production.

The fractional solid angle subtended by the easy directions determines

the height of the plateau, which could therefore be expected to increase

from the light to the heavy metals. This would be consistent with a cor-

responding decrease in the ratio of the effective to the minimum chreshold

energy as implied by Jung's analysis.

Since multiple defect production must be quite complicated in the

presence of strong anisotropy it is not clear whether the continuation of
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the damage function In 1 < v < 4 can be reasonably well approximated by a

linear function. Also, the steep rise in the damage function in this range

is of considerable interest to our understanding of multiple defect pro-

duction. However, any fine detail of the damage function in regions not

close to threshold must be viewed with considerable caution because of

inherent inaccuracies in the analysis. It would, however, be of interest

to perform a detailed study of this range using a combination of high

energy electron and low energy proton it-radiation. A global analysis of

highly accurate data should certainly give a more detailed damage function

in this important low energy range. Nevertheless, the deteiiled functional

dependence may not be completely accessible experimentally.

The most important result of the present work is the existence of an

extended plateau in Cu at v < 1. This has interesting implications

concerning defect production mechanisms which will be discussed elsewhere.

In the context of damage prediction this me^ns, however, that simple

models such as Kinchin-Pease are not only deficient in the cascade region

but are also completely inadequate from a conceptual point of view whenever

the threshold surface predicts strong anisotropy and an appreciable energy

gap exists between easy and difficult directions.

Previous conclusions » » regarding the reduction of DP in cascades

by stimulated recombination are reinforced by the present analysis. It is

interesting to note that the transition starts out at quite low energy and
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that the spike effect is quite well developed already in cascades which

produce less than LO FP's.

We would like to suggest the following procedure for obtaining

experimental information on the damage function:

1. Obtain threshold surface and FP resistivity by single crystal electron

irradiation.

2. Establish damage function in low energy range by electron and proton

irradiation of polycrystals.

3. Determine defect production in self-ion or heavy-ion bombardment in

the stopped mode to obtain the defect production in energetic

cascades.

4. Use trial and error or minimization procedure to arrive at a damage

function consistent with all defect production measurements.
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Figure Captious

Fig. 1. Frenkel pair production cross sections for polycrystals at electron

energies up to 3 MeV. A Ref. 10, + Ref. 27, this work. The

solid line is the calculated cross section using the present damage

function and the Mott-cross section.

Fig. 2. Damage function v(T) near threshold. The dotted line indicates the

threshold function obtained from the single-crystal analysis.

Fig. 3. Fraction of Frenkel pairs produced in Cu by recoils below T for

electron and ion irradiations (transmission case).

Fig. 4. Damage function in Cu.

Fig. S. Ratio of experimental to calculated defect production for various

ions as a function of Tw2« The calculations are based on the

present threshold funtion and the modified Kinchin-Pease expression

with T|v = 29 eV.
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