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Comments on 
U ECH Current Drive By Asymmetric Heating Around the Median Plane" 

(GA Technologies Report # GA-A18656 , October 1986) by Tihiro Ohkawa 

W.M. Nevjns, R.H. Cohen, and L.L. Lodestro 
Lawrence Livermore National Laboratory 

Livermore, CA 94550 

In a recent GA report' Ohkawa describes a novel electron cyclotron current-drive 
(ECCD) scheme. Ohkawa finds a net toroidal plasma current driven by "up-down" asym
metries in the electron pressure anisotropy. i.e., differences in p± - Pj evaluated at the 
same H between the top and bottom half of the poloidal cross-section. Such up-down 
asymmetries arc associated with the 5-dependeut. first order in f/wfc part of the electron 
distribution function (s is distance along a magnetic field line). The current-drive efficiency 
estimated by Ohkawa is competitive with other r.f. current-drive schemes 2. Ohkawa's 
scheme is attractive because it appears that this scheme can produce an r.f.-driven current 
even when the electron-cyclotron power is dissipated on trapped electrons (Ohkawa ex
plicitly makes this claim in his GA report 1): and the scheme requires no selectivity in the 
sign of the parallel velocity of the electrons heated by the electron cyclotron wave. These 
are both significant advantages over the ECCD mechanism of Fisch and Boozer 2. 

In sections 1 through W of this memo we analyze the current-drive calculation pre
sented by Ohkawa in Ref. I. We conclude that, in the limit of long mean-free-path appro
priate to current tokamak experiments and tokamak reactors, the current Ohkawa attempts 
to compute in Ref. 1 see, e.g., Eq. (12) of Ref. 1] from a fluid model is a neoclassical correc
tion to the Fisrh-Boozer current of Ref. 2. Ncoctassical effects that give rise to corrections 
of this sort were first pointed out by Ohkawa in an earlier paper on ECH current drive 3. 
These neoclassical effects (which are associated with magnetic field variations and trapped 
particles) have been treated more accurately by using a kinetic rather than fluid theory in 
several recent papers 4 . They are important because they can reduce the ECCD efficiency 
below the level computed by Fisch and Boozer 2. 

In addition to presenting a fluid calculation of an ECH driven current, Ohkawa's 
approach raises the possibility that currents can be driven by localizing the ECH heating 
zone in order to create spatial variations in the plasma pressure that will in turn drive 
plasma currents. Such effects can be analyzed within kinetic theory by solving for the 
electron distribution function through first order in v/u>t,, where v is a characteristic rate 
of evolution of the electron distribution function due to both Coulomb collisions and ECH 
heating, while ui, is the bounce frequency for trapped particles or the transit frequency for 
passing particles. Such schemes are analyzed in section IV, where we find that even at first 
order in vfuti, the trapped region of phase space cannot contribute to the parallel current. 
In addition, we find that the current-drive efficiency is reduced by a factor of uju>\, relative 
to the currem-drive efficiency calculated by Fisch and Boozer2 and others 4 . Hence, ECCD 

1 

" ! - } , i ' 1

l , ; ' " ' J " : ' " J 5V i : - . ; ; ' • • '•' 



schemes that depend on localized heating cannot yield current-drive efficiencies that are 
competitive with current-drive schemes like that of Fisch and Boozer2 which work by 
producing asymmetries in the electron distribution function at zero order in t/juj\,. 

Finally, in section V we comment on the effect of making urj S> t/.., while keeping 
t/,-/uib <s: l. We find that if, on the one hand. t/,-/ujf, <£ t>rfjUb 'S. 1, the ECCI) efficiency 
is still reduced by a factor of v.-!<*>(, relative to the current-drive efficiency calculated by 
Fisch and Boozer; f r//w(, — 1, on the other hand, requires very large ECH power levels, 
and, while the complete analysis remains to be done, it seoms unlikely to result in a great 
increase in the ECCD efficiency. 

I. Ohkawa 's Fluid Equa t ion 

Ohkawa begins his analysis in Ref. 1 by taking the parallel component of the fluid 
momentum balance equation, having assumed only that the material pressure tensor can 
be written in the form _ 

P = j > J + ( p , j - p i ) B B / S 2 

and having written "geiijjj" for the net parallel component of the Coulomb collision and 
r.f. diffusion terms. (We will discuss this identification further in section II). This results 
in Ohkawa's Eq. (1), which we choose to write in the form 

du du 3p\\ . . 1 dB 

We follow Ohkawa in considering only steady-states (d/di = 0), and focusing on non-
Ohmic current drive by assuming that E. = -dtfrjds. Ohkawa takes a field line average 
of this equation, and proceeds to discuss and model the various terms. We believe that i1 
is instructive to analyze the parallel momentum balance equation before taking a field line 
average since there are important cancellations which Ohkawa has missed. 

We note first, that the axial variations in the perpendicular and parallel pressures are 
related. For any /(t,ji ,cr,5), 

dp B d 1 2jrB f dtdfi 
ds ds B i7j? 

"»«'">;>:" = m r " ^ 7 * m * n u T . + -T" +• (P± - Pi:) D U7 - *'nE-

p+dB qtnd4> d nu2 2n frn^ f v ^ 0 / o / D ~~Z. 

ds 
2* 
m'i 

Using the above expression to eliminate dp,\jds from the parallel momentum equation, we 
obtain 

du d(j> dp» p± - p» dB 
1 ds as ds B as 

dnuiB - -meuB—r^— + 3 = 9 
as 
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where the last equality follows from particle conservation, i.e., 

dt as 

YYe have defined 

- fd3v, 2dJ 
>mev,— 

OS 

Note the cancellation point by point of the large terms on the right-hand side of our 
parallel momentum balance equation. This is important because these terms will become 
the integrand in Ohkawa's Eq. (2). The remaining term arises only from the explicit s-
dependence of the distribution function (note that df/ds is to be taken at constant ( and 
(i). In the long mean-free-path ordering ((//'uj;, <£ 1) the explicit dependence of / on s is 
weak {see section III below). Hence, this term is small point by point. This cancellation 
is lost in Ohkawa's analysis because he, in offset, ignores the term in dpu/ds, retaining 
only the term in (p L - pn)dB/ds. However, Okawa still finds that the integral on the 
right-hana side of Eq. 2 in Ref. ] vanishes at leading order in u/ujy, therefore, he has not 
made a qualitative error by dropping the term. 

]l is instructive, again making use of particle conservation, to write the parallel mo
mentum balance equation in the form 

- - g t n m = B^~(pll+menn ) + - — + 9 e n - . 

The final two terms describe the transfer of momentum from the electrons to the magnetic 
field due to the /j-grad B force, and from the electrons to the ions due to the electrostatic 
potential. Note that 9(s) , written in this way, is again the sum of large terms which cancel 
at leading order. 

We are now ready to take the field line average of the parallel momentum balance 
equation. The most natural field line average to take is the flux tube average, fds/B. 
This operator neatly annihilates the parallel momentum flux term, leaving 

fds u .„ fds (pxdB dd>\ 

which has the straight-foward interpretation that the collisional transfer of momentum 
to the electrons is equal to the sum of /x-grad B and electrostatic forces on the electron 
distribution. 
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IT. The Collisional Momentum Transfer 

It is important to note that the only meaning of the collisional momentum transfer 
term, *qenr)j,", is through its definition 

"fciMM]," = - jd3vmcnC(f}\ 

where the operator C(f) includes both the Coulomb collisions and the quasilinear diffusion 
associated with the electron cyclotron heating. In non-Ohmic current-drive schemes this 
term bears little direct relation to the plasma current. 

To see this, consider first the ECCD mechanism described by Fisch and Boozer 2. 
In this mechanism the ECH is assumed to input zero net momentum into the electrons. 
Nevertheless a current is driven by creating an "asymmetric resistivity". That is, the 
left-going electrons transfer momentum to the ions at a greater rate (i.e., they are moTe 
"resistive") than the right-going electrons. This is possible if the ri^ht-going electrons have 
a larger mean energy than the left-going electrons, as then the right-going electrons will 
be less collisional than the left-going electrons. A steady-state in which there is no net 
transfer of momentum to the ions is then achieved with more right-going than left-going 
electrons, and hence, a net current. In this scenario we have fdsv mev>,C[f) = 0 since both 
the collisional and r.f. momentum transfer rates vanish. However, there is a net current. 

Now consider a lower-hybrid current-drive scheme. In this case the r.f. diffusion puts 
momentum into the electrons and this momentum is removed by collisions with ions. 
The net source of momentum into the electrons from both r.f. and Coulomb collisions 
vanishes, so again we have Jd3v meV[\C{f) = 0. One might try to gain some information 
about the current by separating the collision operator into two pieces: CTf to describe the 
r.f. diffusion, and C\. to describe the Coulomb collisions; and making the identification 
"<7,n.7_}|." =; - fd3v mtv^C,:(f). Unfortunately, even after allowing for the fact that the 
currenUcarrying electrons may have energies large compared to the thermal energy one 
finds that this approach underestimates the current-drive efficiency by a factor of four5 

precisely because it ignores the effect of an asymmetric resistivity described in the previous 
paragraph. 

We have shown that the identification 

- / d3vmevnC(f) = u9e7"?j'|" 

can lead to serious qualitative errors. Is this identification ever of any use? The flux-tube 
average of the parallel momentum balance equation derived in section II suggests that 
this identification may be of some qualitative use in understanding the reduction in the 
current-drive efficiency due to magnetic field variations and trapped particles. To see this, 
consider a plasma in which there are no appreciable variations in the potential <f> along a 
field line, and assume that we are driving a current with ECH as described by Fisch and 
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Boozer 2. Our system differs from that considered in Ref. 2 in that we will allow for periodic 
variations in B. In this current-drive scheme there is little net momentum input from the 
ECH. Hence, fd3v m ei/||C'(/) gives the net transfer of momentum from the electrons to 
the ions. The parallel momentum balance equation tells us that this collisional momentum 
transfer is balanced by the net jx-grad B force on the electrons. 

If we are using the ECH to drive a net current of electrons to the right, there will 
be a tendency for onergetic right-going electrons to be scattered from the passing region 
of phase space into the trapped region by the ECH. This results in both a reduction in 
the ECU current-drive efficiency as calculated in Ref. 4, and a net transfer of momentum 
between the magnetic field and the electron distribution. It is the balance between this 
net force on the electrons from the magnetic field and the collisional drag on the ions that 
is being described by the flux-tube average of the parallel momentum equation. Hence, a 
qualitative estimate of the current lost due to this neoclassical effect might be obtained from 
the parallel momentum balance equation. This is what we believe Ohkawa has qualitatively 
calculated in Ref. 1. Further investigation of this hypothesis requires a short excursion 
into "bounce-averaged= kinetic theory, xvhich we present in the next section. 

I I I . E x p a n d i n g the Kinet ic Equa t ion in t//wj 

A hierarchy of equations can be generated by ordering the steady-state kinetic equa
tion in v/jJt,. where u is a characteristic rate of change in the distribution function due 
to r.f. heating, Coulomb collisions, etc.; and wj ~ v^/L is the axial bounce frequency of a 
trapped particle or the transit frequency of a passing particle. The electron distribution 
function may then be written as 

where i is the energy, fi is the magnetic moment, and a is the sign of the parallel velocity. 
In writing the arguments of J,, we have anticipated the result from the zero-order equation 
in this hierarchy, 

that /o must be independent of s. The effect of r.f. absorption on /o is described by the 
bounce-averaged kinetic equation, 

C(fo] = 0 , 
which arises as a solubility constraint on the first-order equation in the hierarchy. Here 
again the "collision" operator C(/o) includes T.f. diffusion as well as Coulomb collisions. 
C*(/f,J is the bounce average of the collision operator: 

where 
/" ' ds 

Th = / n 
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and st is the turning point for trapped electrons or the magnetic field maximum for pass
ing electrons. This bounce-averaged kinetic equation has been used extensively in the 
previously mentioned studies of ECCD (see, e.g., Ref. 5). It has been shown that the 
absorption of ECH power can produce a parallel current at leading order. The mechanism 
is essentially that first described by Fisch and Boozer 2, although trapped particle effects 
reduce the current-drive efficiency through the mechanism pointed out by Ohkawa in his 
earlier report 3 . 

The mechanism described in Ohkawa's most recent report involves the explicit s-
dependence of the electron distribution function. Hence, it must appear through / ] . The 
variation in } \ is described by the first order kinetic equation: 

as 

The bounce-average of this equation yields C(/o} = 0 as a solubility constraint on / i as 
mentioned above. Here we integrate the equation once in s to find 

•/-* hii 

We are now ready to return to the parallel component of the momentum equation. 
Assume that we are driving current jo at zero order in v/wt, (i.e., jo — qe fd3v «||/o), 
and that the magnetic field has axial variations. What will the lowest significant oider 
momentum balance equation look like? At zero order in vjujt, we simply get 0 = 0. At first 
order we obtain a nonzero contribution to Q(s) from } \ . Upon inserting our expression for 
/ i into the definition of G(s), we obtain 

3(a) = fd3vmevnC{fo} • 

Thus we see that $(s ) , which (apart from a perfect derivative flow term) represents the 
sum of the ^-grad B and electrostatic forces on the electron distribution, balances the 
net collisional drag on the electrons, a first-order quantity in ufui. Hence, the hypothesis 
presented at the end of section II, that the parallel component of the momentum equation 
describes the balance between neoclassical terms associated with axial variations in B, 
trapped particles, etc., and electron-ion drag, is born out. Unfortunately, this same analysis 
shows the futility of attempting to compute the contribution to jo from these neoclassical 
effects using the parallel component of the momentum equation since it is necessary to 
have solved the bounce-averaged kinetic equation for f0 in order to compute the relevant 
part of / i , |i.e., c J ° a p 5]C'"'{/o)l ' i if w e have already computed fo it is easier and moTe 
accurate to compute jo by simply takirg the appropriate moment of fo. 

We now understand why Ohkawa obtained a current of the same order as the Fisch-
Boozcr current by examining the parallel component of the momentum balance equation-
he has simply estimated the neoclassical correction to the Fisch-Boozer current, and this 
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correction is of the same order of magnitude as the Fisch-Boozer current. We have also 
shown that in the long mean-free-path limit (i.e., whe; i//wj, <£ 1) the parallel component 
of the momentum balance equation is inappropriate for calculating these neoclassical cor
rections to jo since it is necessary to know fg and hence j 0 in order to compute the terms 
in the momentum balance equation to lowest significant order. The fundamental reason 
for this is that the net momentum transfer from the (i-gra,d B force, etc. is a consequence 
of the neoclassical correction to j 0 that Ohkawa is trying to compute. 

IV. Cur r en t s at F i r s t Orde r in vjuj,. 

It is nevertheless possible to drive a current in the manner that Ohkawa suggests— 
although we will show now that the efficiency is smaller than that estimated in Ref. 1 
by a factor of t/j^. To see why there should be some current driven by a t>||-symmetric 
heating mechanism, consider the following simple model. We take a periodic (e.g., sinu
soidal) magnetic well and introduce a heating zone part way up one side of each well. 
When an electron crosses a heating zone it receives a fixed increment in magnetic moment 
independent of v\\, and with no change in the parallel energy at the heating zone t — ixBh, 
where B^ is the field at the heating zone. We model collisions by introducing a spatially 
uniform drag toward some thermal value fit of magnetic moment, again with no change in 
( - fiBh- If we follow two electrons with equal but opposite parallel velocities leaving the 
heating zone with magnetic moments such that they are very close to the velocity-space 
separatrix dividing passing and trapped electrons, then the electron travelling toward the 
closer magnetic mirror can take considerably longer to get over the field maximum than 
the one traveling toward the more distant mirror, as the latter has more time to drag 
away from the separatrix before it gets to the mirror, Hence, for an exponentially small 
number of electrons, the time to transit once through the periodic structure can differ by 
order unity for particles with opposite signs of parallel velocity. For the bulk of electrons, 
there is an asymmetry as well, but only of order f/u>t; the net current is smaller than the 
Fisch-Boozer current by a factor of order f/wj,. 

We analyze these schemes by considering the contribution of the first order distribution 
function to the parallel current, 

which may be written as 
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J\ - Qt q, I dsvvnf} 

2-nB f dtdn . , f-r- T d s M<r\t t \ ( + 1 (-

where we hav» used the fact that the "collision" operator C ( / 0 ) conserves particles, i.e., 

fd3vC(f0} = 0 , 

and the relation 

/*--E*?/ dtd/i 

For the trapped electrons the constants of integration, e /~ ' and a ' * are related by 
the boundary condition 

Hence 
a (+) = tt(-) = a{f.,fi) 

for the trapped particle.. We see that only the passing region of phase space contributes 
to the first order parallel current. Hence, mechanisms that attempt to drive a current at 
first order in uiun, cannot drive a current when acting on the trapped electrons. 

Evidently, the first order current is determined by 

Ao((,(j) = al+Hcn) - a^{ttti) • 

An equation for Aa(f ,^) is obtained from the solubility constraint for the second order 
distribution function (i.e., C{f{) = 0): 

ci^r) = --f" ^rc f ^(c<-)(/o)-cf->(/o)) 

This equation together with the boundary condition that Ao vanish on the separatrix 
betveen passing and trapped particks determines the first order current carried by passing 
electrons. 
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De..ning superscript e and o to be even and odd parts in U|| respectively, we hav..- for 
any function 

,<•> - £1±£1 
J 2 

and 

The intepi-and in the source term in the equation for the s-independent pari of the firsl 
order distribution func'.ion, Act, can now be written ?.s 

C ( +>{/o) + C ( - ) ( / 0 ) = 2 (C^(f^) + C W ( / W ) ) . 

Note that if there is a 0-order current, there will a;so be an odd part of the O-order 
Coulomb collision operator. Hence both the even and cdd parts of /o contribute to the 
first-order currer.t, and so efforts to preferentially heat electrons with a particular sir;n of 
parallel velocity, which are crucial to the Fisch-Boozer current-drivs mechanism, are iess 
important to schemes which attempt to drive a current at first order in t/u;;, by localizing 
the ECH heating. Unfortunately, the current-drive efficiency of a scheme that relies on 
the v/u>t, correction to the electron distribution function must be smaller than the Fisch-
Boozer efficiency by a factor of order c/wj since p.wer is dissipated a' zero order in f/uv, 
in both these schemes and the Fisch-Boozer scheme, while the resulting current is smaller 
by a factor of order w/wj, in schemes which generate current only at first order in vjub-

V . Es t ima te of "F i r s t -order c u r r e n t " for a r b i t r a r y wr//wft 

One might hope to overcome the low efficiency of schemes that generate a current 
only at first order in u/'^t, by operating in a regime in which f/t^j, ~ J. Tokamak reactors 
presumably will operate with f, :/wi, < 1, but perhaps the possibility of I/TJ/UII, ~ 1 should 
be considered. H^re v.. and urf are the Coulomb collision frequency and r.f. scattering 
rates. While it is difficult to analyze Mie kinetic equation when i/,//wf, ~ 1", we can 
analyze the case where tv and i/rj are both small compared to u/, but i/rf/i/,. is arbitrary; 
we find that :hc first-order current j \ is smaller than the Fisch-Boozer current jpg by a 
factor of order v. ,\jk. Hence it is unlikely that much will be gained by letting i/rj approach 
-MI,. The argumt;M proceeds as follows: Ry construction Ohkawa's resistivity term is 

uq<nr,jf = -mj d\v{C[f) 

where C is the sum of ihe collisional and r.f. diffusion operators. We assume for the moment 
that there are no Ohmic or Fisch-Roozer currents, so that the collision and r.f. operators 

* indeed, in this limit, the r.m.s. change in perpendicular velocity on a single pas
sage through resonance ':••. of order of the mean speed vt of the distribution, in which case 
not only our expansion ci th» kinetic equation, but also the treatment of the r.f. operator 
as diffusive breaks down. This limit would also require a tremendous expenditure of power. 
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are symmetric in Vf\. Then qtnV3\\ ' s nonzero only to the extent that / is not symmetric 
in v\\. If we order the kinetic equation in powers of u/wt,, then there is no current at zero 
order, since the zero-order distribution function is symmetric in f|| unless driven assymetric 
by external means such as ohmic or Fisch-Boozer drive, which we have excluded. Now, 
what is the order of magnitude of / i ? / i is driven by the local C(/o); we recall that, by 
construction, C(/o) = 0- In the limits where either uTj or i/l: approaches zero, the local 
C(/o) also approaches zero, in the former case because /o approaches a Maxwellian which is 
locally annihilated by the collision operator, and in the latter case because the r.f. operator 
is localized along a field line, so that, in the limit, the C operator is proportional to a delta 
function in position times the bounce-averaged operator. Hence f\ must be down from /o 
by factors of both v,-jv and Vrijn as well as v/ub- Then we see that the right-hand side of 
the above definition of the resistivity term is of order mnviv(ylbii){v,,.jy){vTfjv). Since 
the absorbed power is P j = amnD, where a is a constant of order unity (which depends 
on harmonic number) and D is the bounce-averaged, velocity-space-averaged diffusion 
coefficient, which is in turn approximately Cr/u?, the current density is of order tP&jmvtWb, 
which gives J/Pd of order ua/^b smaller than the Fisch-Boozer current. Here we have 
taken rj to be the Spitzer resistivity; the estimate would be still smaller if we took an 
r.f.-enhanced resistivity for n. 

In summary, it appears that schemes that heat symetrically in t»|| cannot drive cur
rent in tokamak reactors as efficiently as schemes, like the Fisch-Boozer ECH current-drive 
mechanism, which do selectively heat electrons with a particular sign of the parallel veloc
ity. 
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