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ABSTRACT

In nonlinear applications of computational
fracture mechanics, energy release rate techniques are
used increasingly for computing stress intensity
parameters of crack configurations. Recently,
deLorenzi used the virtual-crack-extension method to
derive an analytical expression for the energy release
rate that is better suited for three-dimensional
calculations than the well-known J-integral. Certain
studies of fracture phenomena, such as pressurized-
thermal-shock of cracked structures, require that crack
tip parameters be determined for combined thermal and
mechanical loads. A method is proposed here that
modifies the isothermal formulation of deLorenzi to
account for thermal strains in cracked bodie3. This
combined thermo-mechanical formulation of the energy
release rate is valid for general fracture, including
nonplanar fracture, and applies to thermo-elastic as
well as deformation plasticity material models. Two
applications of the technique are described here. In
the first, semi-elliptical surface cracks in an
experimental test vessel are analyzed under elastic-
plastic conditions using the finite element method.
The second application is a thick-walled test vessel
subjected to combined pressure and thermal shock
loading.

NOMENCLATURE

A - Crack face area
a - Crack depth
b - Half-length of surface crack
C - Surface domain
E - Elastic modulus
F - Components of surface traction

f - Components of body force

G,, - Energy release rate, equation (12)

G* - Energy release, equation (11)
h - Heat transfer coefficient
Ja - Components of J-integral, equation (18)

J, - Applied J, a function of geometry and
applied load

Jlc Critical J for fracture initiation, a
material property

Tearing resistance, a material property

Stress intensity factor (mode I)

Components of unit normal

Internal pressure

Radial coordinate, measured from
crack tip
Surface domain
Temperature
Time
Components of surface displacement

Components of interior displacement

Volume domain
Strain energy density function
Plate width or wall thickness
General spatial coordinates

GREEK SYMBOLS

a8

°a6

Thermal expansion coefficient
Kronecker delta

Incremental change in kernel
Components of total strain

Components of mechanical strain

Hoop strain

Components of thermal strain

Components of stress

Yield stress in uniaxial tension

Poisson's ratio
Elliptic angle

SUBSCRIPTS

I , II
a, 6, Y, 5

Volume or surface sub-domain
Component indices (range 1, 2, 3)



INTRODUCTION ENERGY RELEASE RATE CALCULATIONS

Nonlinear methods in computational fracture
mechanics have focused increasingly on energy release
rate techniques for computing 3tress intensity
parameters of crack configurations. For two-
dimensional (2-0) problems, the path-independent J-
integral IT) is conveniently used to compute energy
release rates for linearly elast ic and deformation
plast ici ty material models. However, the extension of
the J-integral to three dimensions is unwieldy because
of the necessity of evaluating the J-function over
defined surfaces in three-dimensional (3-D) space. A
method better suited for 3-D calculations is the
virtual-crack-extension technique, introduced by Hellen
(2) and Parks (2) in the context of f ini te elements.
The formulations of Hellen and Parks were based on
calculations of the energy released when a crack front
in a finite element model is given a virtual
displacement to simulate crack extension. Recently,
deLorenzi 00 used the virtual extension method and
continuum theory to derive an analytical expression for
the energy release rate that is not tied to a
particular numerical technique. The formulation is
valid for general isothermal fracture behavior,
including nonplanar fracture, and applies to elast ic as
well as deformation plas t ic i ty material models. In
applications, deLorenzi (.5.6.) used the f ini te element
method to evaluate i\he energy release rate function.

Certain studies of fracture phenomena, such as
those associated with pressurized-thermal-shock (J),
require that crack t ip stress intensity parameters -,be
determined for cracked structures subjected to combined
thermal and mechanical loads. A method is proposed
here that modifies the isothermal formulation of
deLorenzi to account for thermal strains in cracked
bodies. The modification is s t r i c t ly valid for
hyperelastic materials, but an approximation to
incremental thermo-elastic-plastic theory can be
achieved provided there i s no unloading and the
departure from a radial stress path is not severe.
This thermo-mechanical formulation of the energy
release rate is used also to deduce the modified
three-dimensional J-integral expression applicable to
thermally-strained bodies containing planar cracks.
The modified J-integral presented here represents a
generalization of the expressions derived previously by
Ainsworth et al {&) and by Wilson and Yu W for
thermal applications.

The following section presents a summary of the
virtual-crack-extension technique that incorporates the
proposed thermal strain modifications, along with
corresponding changes in the J-integral development.
For brevity, only the essential alterations to
deLorenzi's argument are treated here; the reader is
directed to appropriate references for additional
de ta i l s . This is followed by two applications of the
technique to crack configurations in pressure vessels.
In the f i rs t application, semi-elliptical surface
cracks in an experimental test vessel were analyzed
under e las t ic-plas t ic conditions. Three-dimensional
finite element analyses wer"! performed for a family of
crack configurations and internal pressures using a
deformation plast ic i ty material model. The second
application is a cylindrical tes t vessel subjected to
combined pressure and thermal shock loading. Two-
dimensional finite element analyses were performed on
surface cracks using both the virtual-crack-exts"?ion
and the J-integral techniques. To evaluate che
conclusions derived from the two-dimensional resul ts ,
analyses were also performed on three-dimensional
models of the crack configurations.

Griffith (J_O,JM_) f i r s t suggested a thdrmodynamic
criterion for fracture by considering the change in
energy of a cranked body as the crack length was
increased. The energy based argument presented nere
follows that of deLorenzi (4), but i s modified to
include the effects of thermal s t ra ins . The method
requires calculation of the released energy G*
corresponding to a small crack advance in a cracked
body subjected to surface tractions Fa, body force f3,
and temperature distribution T (see Figure 1). Points
of configuration I (prior to crack advance) are mapped
into configuration II (after crack advance) by the
mapping

(1)

where x_(, x^ correspond to configurations I, II,
respectively, and ^x is the incremental change i.i
coordinates. x

Fig. 1 Crack configuration before and after crack
extension"

The energy release G* due to the virtual extension
rlxa is the difference of the work of the external
forces and the change in strain energy.

G* = / F Au dS + / f AumdV_ys a a Jy a a

- [ f_ WdV - / WdVJ

In Eq. (2), the strain energy density W is given by

f S<>

£aS 6a3

(3)

(4)

where the mechanical strain components ~zla are defined
in terms of the total strains £ a; and the strains of
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are
Aum

the
the

free thermal expansion ®ag- In addition,
components of the stress tensor, Aua

surface and interior displacement increments, dS and dV
the surface and *3lume differentiaZs.

Ths strain energy density in configuration II can
be written as

3W

3W
3ectB

- A 9aS )

where Eq. '1) has been used. The increment in thermal
strains is related to the incremental change in
coordinates by

(6)

values of G-. are evaluated, respectively, from uniform

and local virtual extensions of the crack front.
Eq. (11) for the energy release G* can be used to

derive a modified form of the 3-D J-integral that is
valid in the presence of thermal strains. For the 3-D
planar crack depicted in Figure 3, let Ax^ = Aa^ , a
constant, in region II surrounding the cracfc tip; thus

o in V
II

If the region external to V is
IIg

denoted Vj, the released energy G* of Eq. (11) can be

written

G* dV

ix.dV

and, for a hyperelastio body,

3W
(7)

The following relations from deLorenzi W ) remain valid
in the presence of thermal strains:

Ae

3u 3Axr 3u~ 8Ax.'
a 6 , 3 e

W

dV*

3u
A u

m = Au -

dV

Ax.
6

(8)

(9)

(10)

When Eq. (2) is combined with Eqs. (3)-(10) and the
equilibrium equations i . „ =-f_ . with retention of

only lowar order terms, the energy release parameter G*

becomes

G*
f ( 3ua
I I Q — _

J., \ a6 OKS

3Ax,
dV

3 u

Ax^dV (U)

In the absence of thermal s t r a i n s , Eq. (11) for
re leased energy reduces to the isothermal form of
deLorenzi .

The t o t a l energy r e l e a s e r a t e G_ i s given by

G*/AA (12)

where &.& i s the area increment covered by the v i r t u a l -
crack-extension (see Figure 2 ) . Average and loca l

II

3"
- t ~ /Ax.dV

0 '
(13)

(<J| UNIFORM EXTENSION LOCAL EXTENSION

Fig.? Virtual crack extension for calculating
energy release rate G- for (a) uniform extension and
(b) local extension

Fig.3 Section normal, to crack front showing
regions used to calculate G



When integration by parts and the divergence theorem
are applied to the f i r s t volume integral , Eq. (13)
becomes

G* =

, 6 °aS

36 „ 3u
o R - ^ - f ,-2t 1 Ax J dVa6 ox, a 3x, / 5 |

99a
( U )

where ST i s the surface of region I, including surface
C, which separates regions I and I I . In Eq. (14), the
volume integral over V. i s identically zero because of
the equilibrium equations and the relat ions

3u 3u,
(15)

and

3x5 " 3 e a3 5 x5

•jg,
r̂  a (16)

S o

on ST excluding
73u \

3,YnY fe) Ax< ' °-
_ i. J _ IF > ~ — -J f fr L _

DeLorenzi (4_) assumes that one or a combination of
the following conditions holds on 3 ^ excluding

C: ;-x. = 0; a £n3 = 0; or
o a6 3

Thus, because Ax^ = ia, is constant in V and C, the

o * II

released energy G* becomes

G* = j .Ax.

(17)

where

. = I [ W 0 - . - J , ^—^ ] n , d
' ^C V ° S 'JB J X 5 / &

I I

dV (18)

Eq.In the absence of body forces, the J^ component of
(1R) was derived previously by Ainsworth, et al (%).
The surface integral term of Eq. (18) was derived for
2-D formulations by Eshelby (_1_2) -ind Rice (V) , and for
j-D formulations by Knowles and St':rnberg (13) •

The formulations of energy release rate (1?), and
modified J-integral (18) are strictly valid for

hyperelastic materials, with the stress state given by
Eq. (7). In applications of these techniques,
elastic-plastic material behavior can be modeled by
deformation plasticity theory when unloading and severe
departure from proportional loading are restricted to a
small region of the structure. If thermal as well as
mechanical loads are present, a greater potential
exists for violating these restrictions on the loading
path. Thus, care must be exercised in applying the
theory to combined loading situations.

In applications described below, the energy
release rate G_ and the modified J-integral are
evaluated numerically using results obtained from
conventional finite element analyses. For three-
dimensional calculations of G , the area increment Lk
covered by the virtual crack extension is computed from
conventional finite element isoparametric interpolating
functions (JJO .

NONLINEAR ANALYSIS OF PRESSURE VESSEL

The virtual-crack-extension technique was applied
to semi-elliptical surface cracks in an experimental
teat vessel (identified in C_15̂ ) as Intermediate test
vessel ITV V-8A) under elastic-plastic conditions. The
vessel will be used in laboratory tests to validate
analytical and computational techniques for ductile
fracture analysis of part-through cracks in pressure
vessels (_15) • The cracked region of the test vessel is
designed to have low upper shelf fracture toughness in
order to investigate the effects of this phenomenon on
some older reactor pressure vessels subjected to
radiation in service. Three-dimensional finite element
analyses were performed for a range of crack depths and
internal pressures using a deformation plasticity
material model. Energy release rates computed from
these analyses were compared with available tearing
resistance data to estimate the onset of stable tearing
as well as unstable tearing of the crack.

Figures U and 5 show the dimensions of a quarter
section of the test vessel as modeled and a portion of
the finite element discretization used in the plane of
the crack. Analyses were performed for five crack
configurations possessing the same ratio of depth to
half-length, a/b = 2/3, with the depth varying from a =
90 mm to a : 100 mm (see Table 1). These finite
element models, as well as those described in the next
section, were produced by the ORMGEN mesh generating
program (JJĵ ). Each of the five models consists of 1678
nodes and 303 isoparametric brick elements, with six
element divisions around the crack front. The detail
of the crack tip (Fig. 5(b)) illustrates the collapsed
prism elements with midside nodes that allow for a 1/r
singularity at the crack front (_T7). In the collapsed
elements, the nodes that initially share the same
locations at the tip will separate with increasing load
to allow for blunting of the crack.

The material response was modeled using
deformation plasticity theory (18) and a multi-linear

Table 1. Dimensions of Semi-Elliptical
Surface Cracks

Model

1

2

3
«
5

a(mm)

90.0
92.5
95
97.5

100.0

b(mm)

135.0
138.75
112.5
116.25
150.0



DIMENSIONS IN mm

495

343

Fig.4 Description of ITV V-8A cylinder analyzed
showing crack and quarter cylinder as modeled.

approximation to the experimental uniaxial stress-
strain curve depicted in Figure 6. This material model
was implemented in the Oak Ridge version of the finite
element structures program ADINA (JJ?) . which was the
application program Tor the analyses described below.
For the five models that were analyzed, material
properties were taken to be Young's modulus E = . ?096 x
10 >4ra, Poisson's ratio v = 0.3 and initial yield
stress c = U27.5 MPa.

In tKe analysis of each model, the pressure load p
was applied in six steps, from p = 105 MPa to p s 163
IPa (see Table 3). Figure 7 depicts the variation of
crack mouth opening displacement (CMOD) with pressure
in the axial symmetry plane at the outer surface
(location B in Figure " ) . The variation of hoop strain
^n with pressure near the outer surface at a point
removed from the crack (location D In Figure U) is
shown in Figure 8. The variations of hoop strain smong
the five models are not discernible on the scale of
these plots. Measured data for CKOD and hoop strain
will be recorded near locations B and D, respectively,
for the laboratory test of the vessel.

For the five models, results fron the ADINA
analyses were post-processed to evaluate numerically
the variations of the energy release rats GT, Eq, (1?.),
along the crack front, ^or Model 1 (a = 90 mm), Figure
9 depicts the variation of G with elliptic angle
•5 (measured from the surface) with pressure p taken as

\

(a) CRACK PLANE

CRACK TIP

(b) CRACK CROSS SECTION

Fij.5 Detail
mediate test vessel

of finite element •nodel of inter-

fa)
(b)

Crack plane
Crack cross section

D3VJ

575

500

425

350

?7*

1

-

-

\

4
j1 ,

1

1

1 1 1 I 1 1
„ , » • • • —

-

MULTILINEAR APPROXIMATION

UNIAXIAL TEST -

1 1 1 1 1

0 1 2 3 4 5 6

TRUE STRAIN (S)

Fig.6 Uniaxial stress-strain curve
mediate test vessel V-8A material

for inter-



Table ?. Pressure Loads for Analyses of
Semi-Elliptical Surface Cracks

Load Step

1

2
3
u
5
6

Pressure (MPa)

105
120
mo
155
160

163

i r T r

105 110 115 120 125 130 135 !40 145 150 155 160 165

PRESSURE (MPal

^is.."7 Variation of crack mouth opening dis-
placement, etOD, with pressure at point B (see Fie;. 1)

I I
MODEL 1

PRESSURE
(MPa)

10 20 30 40 50 60 70 80 90

Fig.9 Variation of energy release rate, <~JT, along
crack front for model 1

a parameter. The curves showing G_ versus pressure p
are plotted in Figure 10 for the same model, with the
angle 6 taken as the parameter. Analogous results for
Model 5 (a ; 100 mm) are given in Figures 11 and 12;
results (not shown here) for the re-naining three models
fall in the range defined by those for models 1 and 5.

The energy release rate values computed for the
five cracks were used to generate conventional J,
versus la crack growth curves for a set of pressure
loads, illustrated in Figure 13. For a given pressure
load, the curve was constructed by recording the
maximum G value along the crack front for each of the
five crack depths (from a = 90 mm to a = 100 mm) and
setting Jft = GT at a. The behavior of a crack is
assumed to be determined by the magnitudes and slopes
of the J, curves relative to the magnitudes and slopes
of a tearing resistance '^o^ curv«?. The tearing
resistance JR is an intrinsic property of the material
determined by'tests of fracture mechanics specimens.

ro
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1
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/
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/ |
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HOOP STRAIN

rig.f? Variat ion of hoop s t r a i n , € with
pressure at point D (see F ig . U)
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Fig.10 Variation of energy release rate,
pressure for model 1

170

•Ji th



- 300

2 250

«" 200

150

J7 a- -° o-

/ A * *-

20 30 40 50 60 70 80 90
6 ideg)

Fig.11 Variation of energy release ra te ,
along crack front for model 5

Indicated in Figure 13 are tearing
curves represented by a power law, JR = 157.0 (.ia)

where
90 mm

resistance
0.2S

and

R

= a~a o, for two initial crack depths, a -
a - 92.5 mm. The parameters in tnls

relation were obtained from fracture test data (20)
compiled for the material in the cracked region of the
vessel. A_,value of tearing Initiation
= 115 kj/m", was also measured.

toughness,
Ie

A crack of given initial depth, e.g., aQ - 90 ram,
until the pressure is increased towill be subcritical

the point that J.
JR tests. For
blunting,
displacement of
Ftaysical tearing
increased to the

observed in
the crack tip is

-la satisfies
Figure 13).

= JT , a critical value
J ?ess than J_

which results in a° slight forward
the crack tip with no tearing,
ensues when pressure p is
point that Ja(p,a) i J- , where

(polRtthe relation JR(£a) = J

Thereafter, stable tearing
L in
will

500

460

400

350

300

250 |-

200 -

!50 -

I00 -

50 -

MODEL 5

100 110 120 130 140 150

PRESSURE IMPal

160 170

Fig. 12 Variation of energy release rate, G_, with
pressure for model 5

progress with increasing load, as determined by
= JR, until a load is
infinitesimal extension of

reached for which a further
:he crack would result in J,

At this unstable tearing load, the Jn> JR (point M ) .
curve is tangent to a J. curve. In Figure 13, the
tearing initiation and instability points for a crack
having an initial depth a o s 92.5 mm are identified as
points N and 0, respectively.

500

400

i i 1 r

TEARING RESISTANCE DATA (REF. 20)
JR = 157.0 (&al

0JE

0 c 155 MPa>J
p = 140 MPa

,P = 105 MPa

91 93 95

a (mml
9? m 99 100

Fig.13 S. and Jn curves for nonlinear analysis of intermediate test vessel V-8A using resistance curve
data from Hef. 20



PRESSURIZED-THERMAL-SHOCK ANALYSIS

The second application is a thick-walled
cylindrical test vessel (ITV) subjected to combined
pressure and thermal-shock loading. The vessel will be
used in pressurized-thermal-shock {PTS) studies I.J)
designed to validate analytical and computational
fraetjre techniques applicable to pressurized water
reactor (FWR) vessels under combined thermo-mechanicai
loading. For these tests, material properties and
pressure-temperature transients will be selected to
produce fracture toughness and stress gradients in the
crack region that are representative of a PWR vessel
under accident conditions.

In preparation for the PTS analysis of the test
vessel, the energy release function Q*, modified for
thermal strains according to Eq. (11), and the J-
integral, similarly modified according to Eq. (18),
were applied to a thermally loaded center-cracked plate
with a known solution,
parabolic temperature distribution

analyzed under 2-D thermo-elastic plane stress
conditions: here x^ is measured from the crack center
ii the plane of the crack and w is the half-width of
the plate. Tf b denotes the half-length of the crack,
the known solution (£) for the stress intensity factor
is given by '<T = 0.5547EaAT(b)''= where ~± is the thermal
expansion coefficient, and E the elastic modulus.
A 2-D energy release rate calculation using Eq. (12)
yielded Kj = >C, E = 0.5568ruflT(b)1^ , for a O.H%
difference from the known solution. The same result
(to four significant digits) was obtained from
application of the modified J-integral, Eq. (18), and

where J was averaged from twelve contours
around trie crack tip.

These techniques were then applied to the test
vessel under combined pressure and thermsl- shock
loading, as shown in Figure 14. The cylinder and
liquid inside and ^outside are initially at uniform

The plate was subjected to a
ribution T = iT (x^w) and

100° In this conditiontemperature T =
zero pressure, the cylinder is free of stress.

and with
4t time

t = 0, the temperature of the outside liquid undergoes
a step change IT =-290 C and an internal pressure p =
68.9 MPa is applied. As Figure 14(b) illustrates, two
different crack configurations were considered: the
end-to-end crack of uniform depth and the long but
finite (i.e. less than end-to-end) crack. Temperature
solutions (assuming an uncracked body) and linear
thermo-elastic solutions for several time steps in the
thermal transient were calculated from 2-D plane strain
and from fully 3-D analyses. The solutions presented
here are for time t = 4 min into the transient, when
maximum KT values wers obtained.

The 2-D plane strain analyses were performed on an
outside surface crack assumed to be of depth a = 64 mm.
For comparison, an axially constrained 3-D model
containing an end-to-end crack of the same uniform
depth was also analyzed. From these solutions, KT

values were determined from Eqs. (12) and (7fl) with
= .GTE' r.J^T. E' = E/(1-.2). In Table 3,
computed KT values at time t = 4 min are given for both
the 2-D ana 3-D solutions, and agree to within 2%. A
slightly greater mesh refinement was used in the 2-D
finite element model, permitting s more accurate
resolution of the radial thermal gradient and,
consequently, the thermal stresses.

Additional 3-D models of the test cylinder were
analyzed to evaluate the applicability of the 2-D
results to finite length cylinders with closed ends and
with finite length cracks. To examine the effects of
finite crack lengt1-., the 3-D model shown in Figure 14
was analyzed for a long but finite crack, with
dimensions a = 5'. HOT and b = 450 mm. A second analysis

the

INSULATED:

• CONVECTIOALELEWENTS
h = 5000 W/m2 K
T (O-) = 100°C
T°IO+) = -190°C *

CONDUCTION ELEMENTS 152 INSULATED

I u CONVECTION ELEMENTS '
; h = 100 W/m2 K 343
' T = CONSTANT = 100°C '

j <t J"
U» 1016 ~

la) BOUNDARY CONDITIONS FOR THERMAL ANALYSIS

DIMENSIONS IN
MILLIMETERS

u, = 0

u3 = 0

END-TO-END
CRACK

INTERNAL
PRESSURE
P * 68.9 MPa

THFRMAL STRESSES
MEASURED RELATIVE
TO STRESS FREE STATE
AT T = 100°C

(b) BOUNDARY CONDITIONS FOR FRACTURE MECHANICS
ANALYSIS

Fig.14
pressurizeci
test vessel

Problem
thermal

de f i n i t i on and dimensions for
shock analysis of an intermediate

Table 3. Computed K̂  (MPa f~m) vali'es for
pre3surized-thermal-shock of an ITV with
an end-to-end crack (a/w = 0.42) on the
outside surface (time i 4 min)

0 T :

2-D modified J-integral:
Pressure only
Thermal only
Combined

2-D energy release rate

Pressure only
Thermal only
Combined

3-D energy release rate G_:'

Pressure only
Thermal only
Combined

Two-Dimensional analyses assuming
plane strain.

Fully three-dimensional analyses,
axially -,-nstrained.

709
190
299

109.
1°0.
299.

107.
186.
294.

.3

.3

.6

,4
,4
,3

3
9
7



was performed on an axially constrained 3-D model with
an end-to-end crack of uniform depth a = 6U ran. The
mesh refinement of the latter end-to-end crack model
was comparable to that of the finite crack model in the
direction of the thermal gradient (but coarser than the
3-D model of the same cracK used for Table 3). Figure
15 shows the variation of K. along the finite crack
front (b = 450mm), computed from the energy release
rate G_ of Eq. (13). The constant KT value for the
end-to-end crack is indicated in the same figure. For
comparison, K^ values computed from application of an
embedded-singularity hybrid-displacement technique (21)
to the finite length crack model are also shown in
Figure 15. For the finite crack, the variation of K
from its maximum value is no more than 5* over a ?00 mm
segment of the crack. Furthermore, the maximum KT

value (located at the center x = 0) for the finite
crack is about 3* less than the value calculated for
the end-to-end crack. The maximum K- values shown in
Figure 15 are from 7% to 10* lower than the 3-D and 3-D
values given in Table 3 for the same problem. This
difference is due primarily to the substantially
greater mesh refinement of the finite element models
used in the computations of Table 3.

To estimate roughly the effect of finite cylinder
length on the K^ distribution, three differt.it boundary
conditions were applied to the ends of the cylinder
containing an end-to-end crack of uniform depth a = 61
mm. The casa of fixed axial displacement, representing
an end-to-end crack in a long cylinder, was referred to
previously in the discussion of Figure 15. A radially
constrained case was included to model approximately
the effects of uncooled heads on the experimental
vessel. The third case is that of free end conditions.
Results from the virtual-crack-extension technique of
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Fig.15 Linear elastic pressurized thermal shock
analysis of an ITV with an outside finite length crack
(b = 450 mm), t = 4 min into transient

the present study and from the hybrid-displacereent
procedure (21_) are shown in Figure 16. The radially-
fixed case, implying the presence of vessel heads,
alters K. near the ends but does not affect its value
significantly at the center of the cylinder. In
addition, the variation of K from its maximum value is
less than 5* within U00 mm of the center.

The results depicted in Figures 15 and 16 and in
Table 3 have implications for the applicability of ?-)
•analysis to PTS studies. The long but finite crack in
the test vessel has a substantial segment over which
the variation in K.. is no greater than "he magnitude of
uncertainty in fracture toughness. End conditions have
little effect on K. distribution near the center of the
crack. Apparently, a long but finite crack can be
represented adequately by the end-to-end crack for
purposes of simplified parameter studies of FTS tests
using less expansive 2-D analysis techniques. However,
more costly 3-D analyses that incorporate elastic-
plastic material response will eventually be required
in the planning of some details of specific PTS
experiments.
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Fig. 16 Linear elastic pressurized thermal shock
analysis of an ITV with an outr,ide end-to-end ax Lai
crack for three different end conditions

CONCLUSION

A modification to the energy release rate
formulation of deLorenzi has been proposed to account
for thermal strains in cracked bodies. The combined
thermo-mechanical formulation is valid for thermo-
elastic as well as deformation plasticity material
models. The technique is better suited for calculators
stress intensity parameters of 3-D crack configurations
than the J-integral, which involves a difficult surface
integral. Two applications of the technique were
described in this study. In the first, the stability
of semi-elliptical surface cracks in an experimental
test vessel was analyzed with the finite element method
and deformation plastic.ty theory. Energy release



rates computed from these analyses were compared with
available te?ring resistance data for two different
initial crack depths. These comparisons were used to
estimate pressure loads for the onset of stable tearing
as well as unstable tearing of the cracks. The second
application was a thick-walled test vessel subjected to
combined pressure and thermal shock loading. Both 2-D
and 3-D analyses were performed for surface cracks in
the vessel to evaluate the applicability of 2-D
techniques to finite length cylinders containing finite
length cracks. Results indicate that 2-D analysis
techniques are adequate for the preliminary design of
pressurized-thermal-shock tests, but 3-D nonlinear
analyses will be necessary for resolving specific
details of the experiraencs.
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