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Study of the Electric Field Inside Microchannel Plate Multipliers3)

E. Gattib), K. 0ba®) and P. Rehak
Brookhaven National Laboratory

Upton, New York

Abstract

Electric field inside high gain microchannel
plate multipliers was studied. The calculations were
based directly on the solution of the Maxwell equa-
tions applied to the microchannel plate (MCP) rather
than on the conventional lumped RC model. The results
are important to explain the performance of MCP's, 1)
under a pulsed bias tension and, 11) at high rate
conditions. The results were tested experimentally
and a new method of MCP operation free from the
positive ion feedback was demonstrated.

I. Introduction

This paper investigates the electric field inside
microchannel plate multipliers (MCP) 1) under pulsed
applied tension and 11) due to electronms participating
in a cascade and leaving the channel of an MCP.

The analysis is performed for a standard MCP with
the conductivity due to the surface of the chaunnel
walls only and for a hypotnetical MCP having a certain
bulk conductivity.

Section II of the paper studles the behavior of
an MCP under pulsed applied tension theoretically and
experimentally, A new method of MCP operation free
from positive ion feedback is shown.

Section III studies the change of the electric
field inside an MCP due to the multiplication process
itself. It is shown that the channel recharging time
of a standard MCP is much larger than could be guessed
by a naive RC model. The possible improvement due to
the bulk conductivity of a hypothetical MCP is shown.

II. MCP Under Pulsed Applied Tension

A, Theory

Figure 1 shows an MCP with the bias cut angle o
defined as an angle between the axis of the channel
and the normal to the face plane of an MCP.

First, let us consider a steady (DC) tension
applied between the input.and the output face of am
MCP. One channel of a biased MCP together with its
conductive surface unfolded and placed into the x-y
plane 13 also shown in Fig. l. The channel surface
was cut in a plane containing the channel axis and a
normal to the MCP face, (design plane on the left side
of the Fig. 1) thus the upper and lower boundaries of
the unfolded surface have the form of the simple
cosine function.
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Under steady conditione the potential U on the
unfolded surface in the x-y plane has to obey
Laplace's equation

AU =0 (1)

The potentials of the upper and lower boundaries are
defined by the applied tension.

U=0 at y = -r.tga.cos(x/r)
U=D atys= L-r.tga.cos(x/r) (2)

where r and L are the channel radius and length,
respectively, and the blas angle a was defined
previously. The vertical boundaries are artificial
and the function U has to be periodic with the space
period 2rr.

Equation (1) with the given boundary conditions

(2) can be solved by the Fourier method of sep—
aration., The solution can be written approximately as

ux,3) = % o+ Jo

L L
.tga.r.cos(x/r){exp(y/r)-exp(=y/r) }

exp(L/r)+l
which for y € L gives
v v )
U(x,y) = _0 .y+ _o .tga.r.cos(x/r).exp(-y/r)
L L

Equipotentials calculated from equation (3) for the
lower part of the x-y plane are shown in Fig. 2, From
equation (3) and/or from Fig. 2 we can aee that inside
an MCP channel (i.e. more than two channoel radii from
either face of an MCP) the potential 1is independent of
the azimuthal coordinate. Folding the x-y plame back
into real space the equipotentiala form closed circles
perpendicular to the channel axis. Therefore, under
steady conditions the electtif field in an MCP is
parallel to the channel axis.

Secondly, let us consider the electric field
after a step tension is applied to the input face of a
biased MCP. The electric field at time t = OF is
similar to the field of a parallel plate capacitor
which is perpendicular to the faces of the MCP. BDue
to the difference of tbe dielectric constants of the
lead glass channel wall and of the vacuum inside the
channel the equipotentials are broken at these
boundaries. Fig. 3a shows an equipotential line at
time t = O* which satisfies the well known boundary
conditions between the two dielectrics. We can gee
that the field vector E, is inclined even more with
respect to the channel axis than the field of a simple
parallel plate capacitor.

Fig. 3a shows also an equipotential line in the
DC limit. When a step tension is applied to the imput
face the field inside a channel of an MCP is estab-
lished at the angle 8pax relative to the channel
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,axis and rotates Zo its steady (DC) direction which
coincides with the axis.

The rotation of the electric field is due to the
flow of azimuthal currents in the surface of an MCP
channel. Fig. 3b shows the other view of an MCP
.(parallel to the input face) where the azimuthal cur-
rents are visible. A negative charge flows towards
points A and B from the left hand side and positive |
,charge from the right hand side. Points A and B thus i
receive zero nst charge and represent a virtual |
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ground. For similar symmetry reasons the potential on'
the lines having the same distance from two
neighboring ch ls (solid h on Fig. 3b) does
not change in value and these lines are also
considered as ground lines.

1
|
' The time constant of the rotation of the electric
field 1g thus the time constant of the distributed RC

line between points A and B. The resistance per unitc

length R 1is related to the total MCP resistance and ,
‘the capacitance per unit length C is given by the .
geometry and by the dielectric constant of the channel |
walls.

The time constant of the fundamental harmonics of
a digtributed RC lige is
t = Rc2? )

2

1
|
1
!
4

|
where L is the length of the line and R,C were previ- |
ously defined. Expressing the variables in eq.(4) by
directly measurable MCP parameters and after simple
manipulations we obtain

T = (R, 0eCrp) 2X0AR + D !
BcerCuce ToiE D_c:::D (5) .

where Rycp, Cwcp are the resistance and
capacitance of the MCP measured between the imput and
the output faces, OAR is the open area ratios
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o

and D,Dcc are the channel diameter and the distance
between the axis of two neighboring channels (see
Fig. 3b).

The product BRycp.Cycp 18 the “natural” time
constant of the MCP. We see that the electric fileld
rotates at a much slower rate (~i0 timeq) than that
which would correspond to this "natural® time
constant. i

The direction of the electric field inside an MCP
channel influences the electron acceieration along the :
channel and thus the cascade process®, and of more
importance the positive ion feedback mechanism. This
feedback limits the attainable gain of stanmdard
straight channel MCPs.

fhed LUMPALE

B. Experimental Results

A train of square high temsion pulses was applied
to the input face of a 2 mm thick Hamamatsu MCP (D =
_12 5 M, Dgc = 154, OAR = .63, 2/D = 160).
l The schematics of the high tension pulser and the
wavefom of the applied high tension are shown in
'Pig. 4. The switching elements were LED controlled
'triace (MOC3021)., The relevant time constants were
.adjusted in such a way that the rise time was 3 ps and
'the applied tension was constant within * ,1% from 6us
1on.

If the time between two consecutive pulses
'T(Pig. 4b) 1s much samaller than the time constant of
,the rotation of the electric field, the angle 8
between the direction of the electric field (during
the time AT when the high tension is applied) and the
,channel axis is independent of the time constant and
given by the following equation
]

' e-em.'r;a-r;'r(r

\where 6pax 18 the maximum angle (Fig. 3a).
I
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Amplification characteristicg of the MCP as a
[function of the angle 8 were studied. Fig. 5 shows
.single photoelectron spectra of the MCP excited by a
Uv-light for different values of the angle 8. A 6
kGauss external (static) magnetic field perpendicular
to the MCP faces was applied in order to suppress
afterpulses. All gpectra show a clear peak; however,
the high charge tail which dominates the shape of the
distributions is a strong function the aogle 8, Fig.
b summarizes the spectra. It shows the peak gain (the
most probable gain) as a function of the angle 6.

The dependence shown in Fig. 6 was used as a
calibration for the measurement of the electric field
rotation tice constant. For this measurement the
period T of the pulsed tension (Fig. 4b) was made much
longer than the expected time constant. Thus each
pulse AT can be considered to be an independent step
function and the angle 6 should change in time
according to the simple equation

e =8
max

. exp (-t/1) 7)
where time t is measured from the leading edge of the
high tension pulse. From measured spectra for
different time intervals (t,t+At) it is possible
(paking use of the “calibration” in Fig. 6) to deduce
the angle 6 within this time ioterval. The result is
shown in Fig. 7. The angle between the direction of
the electric fi=ld and the channel axis 8 follows
approximately equation (7) with the time constant
(230 = 20)mas. The measured MCP had the “natural”
constant Tycp = Rycp X Cycp = 20 ms, thus the
measured value of‘*r agrees with the equation (5).

T =
time

' The most important result is presented in Fig.

8. It shows the probability of an afterpulse as a
function of angle 8. There was no magnetic field im
the MCP during this measurement. We can see that
already at a small angle between the direction of the
electric field and the channel axis the probability of
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an afterpulse 1s substantially reduced, and for more
than a half of all possible angles this probability is
reduced by two orders of magnitude.

This improvement in the performance of a MCP
amplifier can be easily understood. When the direc-
tion of the electric fjeld in a MCP channel is
inclined with re.nect to the channel axis positive
ions produced by bu.carding electrons in the cascade
travel a amaller distance backward inside the channel
befsre hitting the channel wall.Thus they have less
energy to produce a secondary electron by the impact
and restart a new cascade. Moreover the cascade would
start closer to the output face of a MCP and thus less
l1ikely to develop.

For a large clsse of applications (gating, strob-
ing, detection around pulsed accelerators, etc.) the
MCP 1is or can be used in a pulsed mode. If the MCP
parameters are suitably chosen the time constant of
the electric field rotation {(equation 5) can be
matched with the duty cycle required by the particular
application. The operation of the MCP can be pract-
icglly free of positive lon feedback and a gain up to

can be obtained from a single straight MCP.

There 1s a different way to obtain a? inclined
electric field inside channels of an MCP. If glass
walls between channels of an MCP were made from a con-
ductive material the DC-limit equipotential line
(upper line in Fig. 3a) 1n the conductive wall would
have to be almost perpendicular to the wall bound-
aries. Therefore, the electric field in an MCP having
conductive walls should always be inclined with
respect to the channel axis and the amplification
should be practically free from positive lon feed-
back. In the following section it is shown that such
an MCP should also have a better rate performance than
a standard channel surface conductive MCP.

III. Rate Limitations of an MCP.

The electric field along a channel of an MCP
supplies the energy to the electron cascade process.
The fleld is changed in the process due to the charge
of electrous leaving the walls of the channel. The
change in the electric field is such that the new
field is less suitable to produce a cascade process.
The rate capbility of an MCP is related to the time
needed to reestablish the electric field along the
channel (recharging time constant).

To calculate this recharging time constant, up to
now only a crude RC model was used.” In our model we
treat an MCP as an anisotropic medium where the
conductivity and the dielectric constant depend on the
direction. To simplify tne calculation the cut bias
of the MCP angle 1is supposed to be zero and we close
the channel direction along the z-axis. Due to the
linearity of the laws of electrodynamics the MCP
recharging time in our model is the relaxatlon tine of
the anisotropic medium (placed between two grounded
parallel conductive plates) after a point charge Qg 1is
put into the medium.

Ohm's law for our MCP mudel is written as:

j mo0B; ] =~=0gE; j =oE (8)
x rx Yy ry =z zz

where 3 , |1, j (x,y,z,t) are the components of
x y z

the current density; o, the mean conductivity along
the channel (z) axis; op(=0x=cy) is the conductivity
perpendicular to the channel direction, and E,, ’
Ez(x,y,2,t) are the components of the electric field.
Gauss' law under the same anisotropic assumptions is
written as

(al’.'x +_z +e :E_z_ (9)

where €p, £; are the dielectric constants im their
respective direccions and p(x,y,z,t) 1s the charge
density.

The continuity equation has its usual form
30
div 7+22ap (10)

We define the electric potential U(x,y,z,t) in a
standard way

Em-grad v (11)

If the output face of the MCP 1s placed in the plane
2z = 0 and the input face is in the plape z = £ the
boundary conditions are

U(x,y,z = 0,t) = U(x,y,z = £,t) = 0 (12)

Equations (B~12) define mathematically the
problem. To find the solution we substitute the
current densities j-s from equatio (8) into equation
10. We express the electric fieldng using the
potential U (equation 11) and take the laplace

transform with respect to time variablz t. Equations
(9) and (10) can be then written
2 2 2
3%u 3Tuy _ u o= .
-ct( . + ) €, P 9°)
3x’ ay2 3:2
o, (azu + azu -o 3%+ 8p =p(x,¥,z,t=0) (10)
3:2 ayz az2

where u(x,y.z,s),s(x,y,z,s) are the Laplace transforms
of U and p, respectively, and s 1s the Laplace
variable. Initial distribution of the charge demsity
in our case 1s a spatial Dirac's delta function

p(x,y,2,t=0) = Q 8(x-x )8(y-y )é&(z-z ) (13)
L] o o o

where Q, was defined previously and xg, Yor Zo



are the coordinates of the point charge. Erom
equations (9') and (10') we can eliminate p and after
a rearrangement we obtain

(o 4 9) (22w + 2%} + (o, +e,8) u
7 .2 222

ax ay

(14)
= Q8 (x=x,) §(y-y,)8(z~z ).

Equation (14) 18 very similar to “classical” equation
of electrostatics

bu = =§(F~T,) (15)
with the well known solution

1

41’;-;0,

u=

The left hand side of the equation (l4) can take the
form of a simple Laplacian in the new coordinates £,n
and { defined by the following equations.

x = E*Yop+ers

y = neYdyter.s (16)
T = [*Y0,4E,.8
Equation (l4) thus becomes
ﬁ+a_2|x_+az_u-- 8C&~E ) 8(n=n ) 8(z-¢ )
3&2 anz 3C2 (ur+ers) v’uz+ezs an

where in the right hand side of equation (17) we have
used the formal relation

s{(k(e-€ )= ¢ 66-6,) (18)

where k 1s an arbitrary conmstant. Equation (17) 1s no
identical to equation (15) which allows us to write
down immediately the solution.

QO -

1 (19)

Ne-g Jetomm ) ore—c )

Now we can return to the space coordinate x,y,z and
from equation (19), after some cumbersome algebra,
obtain the following expression

q, 1 1
I"Erfv(r-ro)zﬂz-zo)z /1/1r+s 7bts

u(x,y,z,8) = (20)

T = £ €E_ 3 T = ¢ a_s - e M
vhere Y z/ eF Tr r/ 5T z/cvz,

() = G 4 )

2 2
and b = ¥(r l'o) /Tz+(z-z°) /Tr

Y(r-r°)2+(z-z°)2 .

The form of equation (20) has a known laplace
{nverse-transform which is:

U(x,y,z,t) = Qc * exp[_zl(b"'l/"r)c]
4nE_Jy(r-t “yHz~z >
T [+] o
1 <
Io[f(b—l/ T)e) . (21)
where I, is the Modified Bessel Function. Equation

{(21) is a solution of differential equations (9) and
(10) but it does mnot satisfy the beundary conditions
(12). The final solution of our problem is an
infinite sum of terms (21) where source positions are
reflected in conductive planes z = 0 and Z = ¢,
(Standard method of reflectioms.)

In the special case of an isotropic medium
(er=€zm€q, Cy ™ d,) equation (21) reduces
into

U(x,y,s,t) = 9

72 2 V4
4::1 r ro) +(z-z°,.

+ exp(~t/1,) (22)

where Ty(=Te=t;) = Rycp*Cucp is the
“gatural” time congtant of an MCP.

Recharging behavior of different MCP's waw
studied by evaluating the sum of solutions (21).
Fig. %9a shows the time development of the voltage
along a channel of a 1 mm thick standard MCP with the
conductivity exclusively due to the channel surface.
(ap=0, one directional conductivity.) The charge



Qo (= .1pC) was put ,2 um from the output face of an
MCP imitating the effect of electrons belonging to a
cascade and leaving the channel. The voltage is shown
for a channel with a cascade in it and for 1its first
and second neighbor (total 1,6 and 12 channels for a
cloge packed hexagonal structure of a MCP.) Ten
individual curves are spaced by increments of half
the "natural” time constant from O {(the cascade time)
to 5 tz. We can see that the decay 1s slow and
after a lapsed time of 5 T, the voltage i3 still
about 40X of the initial perturbation.

Fig. 9b shows the same results for a hypothetical
MCP with an isotropic conductivity. According to
equarion (22) the initial perturbance decays
exponentially with the "natural” time constant of che
MCP. We can see that after a time 5T the remaining
voltage 1s at ,5% the level of the initial value.

The isotropic conductivity of an MCP is
impogsible to realize. Fig. 9c shows the relaxation
properties of a hypothetical MCP made of conductive
glass wall vhere the average gp = 0;/2. The decay
of the initial perturbance is slower than for am
isotropic MCP; however, it is substantially faster
than for a standard linear conductive MCP,

The reagon for the shorter decay time of bulk
conductive MCPs 18 the presence of the radial current
contributing to the neutralization of the charge
Qo- The absence of these radial currents in the
case of a standard MCP requires all the charge to be
supplied along one channel with its full resistance
resulting in a longer decay time.

Comparing Fig. 9a,b,c we can conclude that the
bulk conductivity MCP improves substantially the rate
capability of an MCP when compared with a standard MCP
of the same DC power dissipation.

Conclusions

It was shown that 1) a standard MCP can be
operated practically free from positive ion feedback
" under a pulsed applied temsion at the sacrifice of the
duty cyele. A hypothetical bulk conductive MCP should
operate free of feedback under any DC applied tension.

11) the rate capability of an MCP could also be
subatantially increased by “he effect of the bulk
conductivicy.

We would like to thank R. Boie now at Bell
Telephone Laboratories for the design of the high
tension pulser.
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Fig. 2. Equipotential lines in a DC limit of the
unfolded chann:l surface. The thick 1line shows the
lower boundary of the channel surface.



MCP INPUT FACE

Fig. 3. a) Equipotential lines and electric field
vectors lmside a standard MCP. a is the bias cut
angle, Opax 18 the maximum angle between the
direction of the electric field and the channel axis.
The lower line showing the configuration of the field
at time t = 01 for the pulsed applied temsion is
similar to a steady field of a bulk conductive MCP.

b) Aziguthal currents responsible for the field
rotation in an MCP. C is the distributed capacitance
between the conductive channel surface and the virtual
ground,
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Fig. 4. a) Schematic of the pulser of the applied
tension. b) The appliad waveform. . ’

Fig. 5. Single photoelectron spectra for differemt
angles between the electric field and the channel axis
in a magnetic field. The vertical scale showing the
number of events 18 logarithmic where 2 divisions
equal a factor 10. On the horizontal scale one
division corresponds tc the gains of 4 x 10°.

a) spectra for 8 = 17,15,13 and 11°.

b) spectra for € = 15°,13°,9° and 5° (the peak
positon moves to the right with decreasing angle).
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Fig. 8. Relative probability of an afterpulse for the
MCP with no magnetic field as a function of angle @.
For angles larger than 8° we can see practically no
positive ion feedback.
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Fig. 9. Development of the voltage along channels of
3 1 ma thick MCP. A point charge of .lpC was
deposited .2 m from the output face. The voltage is
shown along the channel where the charge was deposited
as well as for the first and the second neighbor
channel. Individual curves are spaced 4t = 1,/l in
time (7 = Rycp x Cycp) starting at time = O up

to 5 Tz« a) for a standard MCP with the
conductivity exclusively due to the channel surfaces.
b} for a hypothetical MCP with isotropic
conductivity. c) for a hypothetical MCP with or =
9z/2.



