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Study of the Electric Field Inside MicroChannel Plate Multipliers3'

E. Gattib>, K. Obac> and P. Rehak
Brookhaven National Laboratory

Upton, New York 11973

Abstract

Electric field inside High gala mlcrochannel
plate multipliers was studied. The calculations were
based directly on the solution of the Maxwell equa-
tions applied to the microchannel plate (HCF) rather
than on the conventional lumped RC model. The results
are Important to explain the performance of MCP's, i)
under a pulsed bias tension and, 11) at high rate
conditions. The results were tested experimentally
and a new method of MCP operation free from the
positive ion feedback was demonstrated.

I. Introduction

This paper Investigates the electric field Inside
microchannel plate multipliers (HCF) 1) under pulsed
applied tension and il) due to electrons participating
in a cascade and leaving the channel of an MCP.

The analysis is performed for a standard MCP with
the conductivity due to the surface of the channel
walls only and for a hypotnetical MCP having a certain
bulk conductivity.

Section IX of the paper studies the behavior of
an MCP under pulsed applied tension theoretically and
experimentally. A new method of MCP operation free
from positive Ion feedback is shown.

Section III studies the change of the electric
field inside an MCP due to the multiplication process
Itself. It is shown that the channel recharging time
of a standard MCP is much larger than could be guessed
by a naive RC model. The possible improvement due to
the bulk conductivity of a hypothetical MCP is shown.

II. MCP Under Pulsed Applied Tension

A. Theory

Figure 1 shows an MCP with the bias cut angle a
defined as an angle between the axis of the channel
and the normal to the face plane of an MCP.

First, let us consider a steady (DC) tension
applied between the input-and the output face of an
MCP. One channel of a biased MCP together with its
conductive surface unfolded and placed into the x-y
plane Is also shown in Fig. 1. The channel surface
was cut in a plane containing the channel axis and a
normal to the MCP face, (design plane on the left side
of the Fig. 1) thus the upper and lower boundaries of
the unfolded surface have the form of the simple
cosine function.
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Under steady conditions the potential U on the
unfolded surface in the x-y plane has to obey
Laplace's equation

AU - 0 U)

The potentials of the upper and lower boundaries are
defined by the applied tension.

U - 0 at y r.tga.cos(x/r)

I • 1 it j • L-r.tga.cos(x/r) (2)

where r and L are the channel radius and length,
respectively, and the bias angle a was defined
previously. The vertical boundaries are artificial
and the function U has to be periodic with the space
period 2wr.

Equation (1) with the given boundary conditions
(2) can be solved by the Fourier method of sep-
aration. The solution can be written approximately as

U(x.y) - ̂ o .y+ ̂ o

L L

•tga.r.cos(x/r)(exp(y/r)-exp(-y/r)1
exp(L/r)+l

which for y < L gives

U U < 3 )

U(x,y) - _o_ .y+ _£ .tga.r.co»(x/r).exp(-y/r)
L L

Equipotentlals calculated from equation (3) for the
lower part of the x-y plane are shown in Fig. 2. From
equation (3) and/or from Fig. 2 we can see that Inside
an MCP channel (i.e. more than two channel radii from
either face of an MCP) the potential la Independent of
the azlmuchal coordinate. Folding the x-y plane back
into real space the equipotentlals form closed clrde6
perpendicular to the channel axis. Therefore, under
steady conditions the electric field in an MCP is
parallel to the channel axis.

Secondly, let us consider the electric field
after a step tension is applied to the input face of a
biased MCF. The electric field at time t - 0 + Is
similar to the field of a parallel plate capacitor
which is perpendicular to the faces of the MCP. Due
to the difference of the dielectric constants of the
lead glass channel wall and of the vacuum Inside the
channel the equipotentials are broken at these
boundaries. Fig. 3a shows an equipotential line at
time t - 0 + which satisfies the well known boundary
conditions between the two dielectrics. We can see
that the field vector EQ IS inclined even more with
respect to the channel axis than the field of a simple
parallel plate capacitor.

Fig. 3a shows also an equipotential line In the
DC limit. When a step tension is applied to the input
face the field inside a channel of an MCP is estab-
lished at che angle Q^ax relative to the channel



'axis and rotates to its steady (DC) direction which j
coincides with the axis. i

The rotation of the electric field is due to the I
flow of azimuthal currents in the surface of an MCP j
channel. Fig. 3b shows the other view of an MCP j
.(parallel to the input face) where the azimuthal cur- i
rents are visible. A negative charge flows towards
points A and B from the left hand side and positive i
charge from the right hand side. Points A and B thus ,
receive zero net charge and represent a virtual .
ground. For similar symmetry reasons the potential on '
the lines having the same distance from two i
neighboring channels (solid hexagon on Fig. 3b) does
not change in value and these lines are also j
considered as ground lines.

1 The time constant of the rotation of the electric
field ls thus the time constant of the distributed RC
line between points A and B. The resistance per unit •
length R is related to the total MCP resistance and ,
the capacitance per unit length C is given by the [
geometry and by the dielectric constant of the channel '
wallB.

The time constant of the fundamental harmonics of
a distributed RC line is

T - RCZ2 (4)

where i ia the length of the line and R,C were previ-
ously defined. Expressing the variables in eq.(4) by
directly measurable MCP parameters and after simple
manipulations we obtain

(5)

where B^CP* ^MCP are c^e resistance and
capacitance of the MCP measured between the Input and
the output faces, OAR is the open area ratios

B. Experimental Results
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channel diameterand D,DCC are the channel diameter and the distance

between the axis of two neighboring channels (see
Fig. 3b).

The product %CP-CHCP ls tne "natural" time
constant of the MCP. We see that the electric field
rotates at a much slower rate ("10 tinea) than that
which would correspond to this "natural" tine
constant.

The direction of the electric field inside an MCP
channel influences the electron acceleration along the
channel and thus the cascade process , and of more
importance the positive ion feedback mechanism. This
feedback limits toe attainable gain of standard
straight channel HCPs.

A train of square high tension pulses was applied
'' to the input face of a 2 nm thick Hamamatsu MCP (D -
12.5 u, D c c - 15u, QAR - .63, i/D - 160).

. The schematics of the high tension pulser aod the
' waveform of the applied high tension are shown in
Fig. 4. The switching elements were LED controlled

1 triacs (M0C3021). The relevant time constants were
adjusted in such a way that the rise time was 3 MS and
; the applied tension was constant within ± .IX from 6us
on.

If the time between two consecutive pulses
T(Fig. 4b) is ouch smaller than the time constant of
Che rotation of the electric field, the angle 6
between the direction of the electric field (during
the time AT when the high tension is applied) and the
channel axis is Independent of the time constant and
given by Che following equation

8 " M (6)

.where 8 M I is the maximum angle (Fig. 3a).

Amplification characteristics of the MCP as a
function of the angle 8 were studied. Fig. S shows
single photoelectron spectra of the MCP excited by a
UV-light for different values of the angle 8. A 6
kGauss external (static) magnetic field perpendicular
to the HCP faces was applied in order to suppress
afterpulses. All spectra show a clear peak; however,
the high charge tall which dominates the shape of the
distributions is a strong function the angle 8. Fig.
6 summarizes the spectra. It shows the peak gain (the
most probable gain) as a function of the angle 6.

The dependence shown in Fig. 6 was used as a
calibration for the measurement of the electric field
rotation tioe constant. For this measurement the
period T of the pulsed tension (Fig. 4b) was made much
longer than the expected tiae constant. Thus each
pulse AT can be considered to be an Independent step
function and the angle 6 should change in cime
according to the simple equation

e - e (7)

where tine t is measured from the leading edge of the
high tension pulse. From measured spectra for
different tin* intervals (t,t+at) it is possible
(making use of the "calibration" in Fig. 6) to deduce
the angle 8 within this time interval. The result ls
shown In Fig. 7. The angle between the direction of
the electric fiald and the channel axis 8 follows
approximately equation (7) with the time constant T -
(230 ± 20)ms. The measured MCP had the "natural" time
constant TMCp - % c p

 x CMCF * 20 ms, thus the
measured value of T agrees with the equation (5).

The most Important result is presented in Fig.
8. It shows the probability of an afterpulse as a
function of angle S. There was no magnetic field In
the MCP during this measurement. We can see that
already at a snail angle between the direction of the
electric field and the channel axis the probability of



an afterpulse Is substantially reduced, and for more
than a half of all possible angles this probability Is
reduced by two orders of magnitude.

Thia Improvement in the performance of a MCP
amplifier can be easily understood. When the direc-
tion of the electric field in a MCP channel is
inclined with respect to the channel axis positive
ions produced by bo-oardlng electrons in the cascade
travel a smaller distance backward inBide the channel
before hitting the channel wall.Thus they have leas
energy to produce a secondary electron by the impact
and restart a new cascade. Moreover the cascade would
start closer to the output face of a MCP and thus less
likely to develop.

For a large class of applications (gating, strob-
ing, detection around pulsed accelerators, etc.) the
MCP Is or can be used in a pulsed mode. If the MCP
parameters are suitably chosen Che time constant of
the electric field rotation (equation 5) can be
matched with the duty cycle required by the particular
application. The operation of the MCP can be pract-
ically free of positive Ion feedback and a gain up to
10 can be obtained from a single straight MCF.

There is a different way to obtain an inclined
electric field Inside channels of an MCP. If glass
walls between channels of an MCF were made from a con-
ductive material the DC-limit equlpotential line
(upper line in Fig. 3a) in the conductive wall would
have to be almost perpendicular to the wall bound-
aries. Therefore, the electric field in an MCP having
conductive walls should always be Inclined with
respect to the channel axis and the amplification
should be practically free from positive ion feed-
back. In the following section it is shown that such
an MCP should al6O have a better rate performance than
a standard channel surface conductive MCP.

III. Rate Limitations of an MCP.

The electric field along a channel of an MCP
supplies the energy to the electron cascade process.
The field is changed In the process due to the charge
of electrons leaving Che walls of the channel. The
change in the electric field is such that the new
field is less suitable to produce a cascade process.
The rate capbllity of an MCP Is related to the time
needed to reestablish the electric field along the
channel (recharging time constant).

To calculate this recharging tine constant, up to
now only a crude RC model was used.3 In our model we
treat an MCF as an anisotroplc medium where the
conductivity and the dielectric constant depend on the
direction. To simplify tne calculation the cut bias
of the MCP angle is supposed to be zero and we close
the channel direction along the z-uis. Due to the
linearity of the laws of electrodynamics the MCP
recharging time In our model Is the relaxation time of
the anisotropic medium (placed between two grounded
parallel conductive plates) after a point charge Qo is
put into the medium.

Ohm's law for our MCP mjdel is written as:

j - o E ; j - o E ; j
x r x y r y z

o E
z z

(8)

the current density; o 2 the mean conductivity along
the channel (z) axis; or(-ox»oy) is the conductivity
perpendicular to the channel direction, and Ex, Ey,
Ez(x,y,z,t) are the components of the electric field.
Gauss' law under the same anisotroplc assumptions is
written as

(9)

where e r, zz are the dielectric constants in their
respective directions and p(x,y,z,t) is the charge
density.

The continuity equation has its usual form

d i v j + | f - 0 (10)

He define the electric potential U(x,y,z,t) in a
standard way

I - - gracf U (11)

If the output face of the MCP is placed in the plane
z - 0 and the input face Is In the plane z - I the
boundary conditions are

U(x,y,2 « 0,t) - U(x,y,z - t,t) (12)

Equations (8-12) define mathematically the
problem. To find the solution we substitute the
current densities J-s from equation* (8) into equation
10. We expresB the electric field E using the
potential U (equation 11) and take the Laplace
transform with respect to time variable t. Equations
(9) and (10) can be then mitten

(9-)

where u(x,y,z,s),p(x,y,z,s) are the Laplace transforms
of U and p, respectively, and s Is the Laplace
variable. Initial distribution of the charge density
in our case is a spatial Dirac's delta function

p(x,y,z,t-0) =• q 6(x-x )6(y-y )6(z-z ) (13)
o o o o

where Q,, was defined previously and x,,, y0, zo

where J , j , j (xty,z,t) are the components of
x y z



are the coordinates of the point charge. From
equations (91) and (10*) we can eliminate p and after
a rearrangement we obtain

{o +e 3) (3 u + 3 u] + (0 +e a) 3 u
r r — ^ —zf z z —5-

3xZ 3y lzl

(14)

Equation (14) Is very similar to "classical" equation
of electrostatics

(15)

The l e f t hand side of the equation (14) can take the
fora of a simple Laplacian In the new coordinates (>n
and c defined by the following equations.

r (16)

z - fi'0j+ez.s

Equation (14) thus becomes

a2u + 32u + a2u - - o m - y c n -
2 2 2 ~rV :Vr

where in the right hand side of equation (17) we have

used the formal relation

(18)

where k Is an arbitrary constant. Equation (17) Is no
Identical to equation (IS) which allows us to write
down immediately the solution.

(19)

Now we can return to the space coordinate x,y,z and
from equation (19), after some cumbersome algebra,
obtain the following expression

1 (20)

4»E /r(r-r )Z-K
r o v

where T " e
z^

£
ri

 T
r "

 E
r
/ a

r>

«o>*

and b

The form of equation (20) has a known Laplace

inverse-transform which is:

UU.y.z.t) -.

4»Er/r(r-ro
Z)

(21)

where Io is the Hodlfied Bessel Function. Equation
(21) is a solution of differential equations (9) and
(10) but it does not satisfy the boundary conditions
(12). The final solution of our problem is an
Infinite sun of terms (21) where source positions are
reflected in conductive planes z « 0 and Z - I.
(Standard method of reflections.)

In the special case of an lsotropic medium
or » oz) equation (21) reduces

Into

U(x,y,s,t)

4*e, /r^-r /-Kz-z
i O O

exp(-c/T1) (22)

where ^ ( - T J - T J ) - S H C P ' ^ C P 1 S t h e

"natural" time constant of an MCP.

Recharging behavior of different MCP's vau
studied by evaluating the sun of solutions (21).
Fig. 9a shows the time development of the voltage
along a channel of a 1 am thick standard MCP with the
conductivity exclusively due to the channel surface.
(ar*0, one directional conductivity.) The charge



Qo (• >lpC) was put .2 an from the outpuc face of an
HCP Imitating the effect of electrons belonging to a
cascade and leaving the channel* The voltage is shown
for a channel with a cascade in it and for its first
and second neighbor (total 1,6 and 12 channels for a
close packed hexagonal structure of a HCP.) Ten
individual curves are spaced by Increments of half
the "natural" time conBtant from 0 (the cascade time)
to 5 rz. We can see that the decay is slow and
after a lapsed time of 5 T Z the voltage is still
about 40% of the initial perturbation.

Fig. 9b shows Che same results for a hypothetical
HCP with an liocroplc conductivity. According to
equai. Ion (22) the initial perturbance decays
exponentially with the "natural" time constant of che
MCP. We can see that after a time 5T the remaining
voltage is at .Si the level of the Initial value.

The lsotroplc conductivity of an HCP is
impossible to realize. Fig. 9c shows the relaxation
properties of a hypothetical HCP made of conductive
glass wall where the average ar • cz/2. The decay
of the initial perturbance is slower than for an
lsotropic MCP; however, It Is substantially faster
than for a standard linear conductive MCP.

INPUT FACE

The reason for the shorter decay time of bulk
conductive MCPs is the presence of the radial current
contributing to the neutralization of the charge
qo. The absence of these radial currents in the
case of a standard HCP requires all the charge to be
supplied along one channel with its full resistance
resulting in a longer decay time.

Comparing Fig. 9a,b,c we can conclude that the
bulk conductivity MCP improves substantially the rate
capability of an HCP when compared with a standard HCP
of the same DC power dissipation.

Conclusions

It was shown that 1) a standard MCP can be
operated practically free from positive ion feedback
under a pulsed applied tension at the sacrifice of the
duty cycle. A hypothetical bulk conductive MCP should
operate free of feedback under any DC applied tension.

il) the rate capability of an HCP could also be
substantially increased by '.he effect of the bulk
conductivity.

We would like to thank R. Bole now at Bell
Telephone Laboratories for the design of the high
tension pulser.

ONE CHANNEL
OF A BIASED MCP

SHAPE OF THE UNFOLDED
CHANNEL SURFACE

Fig. 1. MCP with a bias cut angle a. The surface of
a channel shown at the left hand side was cut in the
paper plane and unfolded.
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Fig. 2. Equipotentlal lines in a DC limit of the
unfolded channel surface. The thick line shows the
lower boundary of the channel surface.



Fig. 3. a) EqulpoCential lines and electric field
vectors Inside a standard MCP. a is the bias cut
angle, 9Qax

 l s Che maximum angle between the
direction of the electric field and the channel axis.
The lower line showing the configuration of the field
at time t - 0 + for the pulsed applied tension is
similar co a steady field of a bulk, conductive MCP.
b) AzimuChal currents responsible for che field
rotation in an MCP. C Is the distributed capacitance
between the conductive channel surface and the virtual
ground.
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Fig. 5. Single photoelectron spectra for different
angles between the electric field and the channel axis
in a magnetic field. The vertical scale showing the
nuober of events is logarithmic where 2 divisions
equal a factor 10. On the horizontal scale one
dlvliion corresponds tc che gains of 4 x 105.

a) spectra for 8 - 17,15,13 and 11*.
b) spectra for 8 - 15",13*,9* and 5* (the peak

positon moves to the right with decreasing angle).

Fig. 4. a) Schematic of the pulsef of the applied
tension, b) The applied waveform. .-
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Fig. 6. The moot probable gain (peak position) as a
function of the angle between the e lectr ic field and
the channel axis.

. 1 %

= 2.9kV

20

1.0

Fig. 8. Relative probability of an afterpulse for the
MCP with no magnetic field aa a function of angle 8.
For angles larger than 8* we can see practically no
positive ion feedback.
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Fig. 7. The angle 6 between the electric field and
the channel axis as a function of time from the
leading edge of the applied pulse.
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Fig. 9. Development of the voltage along channels of
a i m thick MCP. A point charge of . lpC was
deposited .2 am from the output face. The voltage Is
shown along the channel where the charge was deposited
as well as for the first and the second neighbor
channel. Individual curves are spaced At * Tz/1 in
tlae (TZ

 m %c? x ^kcp) starting at time * 0 up
to 5 t , . a) for a standard MCP with the
conductivity exclusively due to the channel surfaces,
b) for a hypothetical MCP with lsotroplc
conductivity, c) for a hypothetical MCP with or "
" / 2


