UCRL-JC--104926

DE91 000660

Projected Implicit Runge—Kutta Methods
for Differential- Algebraic Boundary Value
‘Problems

- Uri Ascher*
Department of Computer Science
University of British Columbia
Vancouver, British Columbia

“Canada V6T 1W5
Linda R. Petzold!

Computing & Mathematics Research Division
Lawrence Livermore National Laboratory, L-316
Livermore, California 94550

August 17, 1990

Abstract

Differential-algebraic boundary value problems arise in the mod-
elling of singular optimal control problems and in parameter estima-
tion for singular systems. A new class of numerical methods for these

problems is introduced, and shown to overcome difficulties with pre-
viously defined numerical methods.
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1 Introduction

In this paper we describe a new class of numerical methods, Projected Im-
plicit Runge-Kutta methods (PIRK), for the solution of index-two Hessenberg
systems of initial and boundary value differential-algebraic equations (DAEs)

X = gloyit) (1)
0 = gx,t) ‘ © (1b)
0 = b(x(0),x(1)) (o)

The system is index-two if (Ogz/0z)(8g1/dy) is nonsingular. These types
of systems arise for example in the modelling of singular optimal control
problems(5,11], where y is the control variable in (1), and in parameter es-
timation for differential-algebraic equations such as multibody systems[6]'.
The new methods appear to be particularly promising for the solution of
boundary value problems of the form (1), where the need to maintain stabil-
ity in the differential part of the system often necessitates the use of methods
based on symmetric discretizations. Previously defined numerical methods
based on symmetric discretizations have been shown to have severe limita-
tions, including instability, oscillation and loss of accuracy, when applied to
(1)[3,7,10] . The new methods overcome these difficulties. Numerical re-
sults have so far been very encouraging. However, much work remains to
be done before these methods can be made available in the form of a robust
general-purpose code such as those now available for ODE boundary value
problems[4]. We provide here an overview of our recent results and future
plans; for a detailed examination of the methods and analysis, see [1].

2 Problem conditioning

It is well-known (see e.g. [9], [2]) that DAE problems with index exceed-
ing one are in a sense ill-posed. Hence it is important to investigate the

'Multibody systems are often formulated initially as index-three DAEs. However, they
can easily be converted to the index-two form by techniques introduced by Gear[8]. It
can.be shown that this reduction does not introduce any conditioning difficulties into the
system.
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conditioning (stability) of such problems carefully. Such a conditioning anal-
ysis enables the evaluation of stability of the various possible formulations
of the DAE, as well as of the stability of numerical methods for its solution.
Consider the linear index-two Hessenberg boundary value problem

X = Gux+Guy+a | - (2a)
0 = Gux+q : ‘ ‘ (2b)

B = Box(0) + Bix(1) (2¢)

where Gqi, Gi2 and Gy are smooth functions of ¢, 0 < t < 1, Gyy(t) €
Rm=xms (G ,(t) € R™=*™v, G (t) € R™*™=, my < my, G31Gy; is nonsin-
gular for each t (hence the DAE is index two), and Bo, By € R{ma=my)xma,
All matrices involved are assumed to be uniformly bounded in norm by a
constant of moderate size. The inhomogeneities are qi(t) € R™,qq(t) €
Rmy ,8 E Rm;—my

~ 'We seek conditions under which thls BVP is guaranteed to be well-
conditioned (stable) in an appropriate sense. Since GGy, is nonsingular,
G1. has full rank. Hence there exists a smooth, bounded matrix function
R(t) € R(ms=mw)Xm=z whose linearly independent rows form a basis for the
nullspace of GT,. Further, R(t) can be taken to be orthonormal [1]. Thus,
foreacht,0<t <1, '

We assume, more strongly, that there exists a constant K of moderate size
for orthonormal R(t) satisfying (3) such that {1]

-1 ’
(g ) 1=k W
Multiplying (2a) by R we have

RX' = R(Gux + ). (5)
Let,

v = Rx ‘ 0<t <. (6)

Then, using (2b), the inverse transformation is given by

-1
R v N . -
X——((I,;n) (—qZ):‘9V+q » (()




where S(t) € R™M=*(m=-my) gatisfies

RS =1, G218 = 0. (8)

Differentiating (6) and substituting (5), we obtain the underlying ODE
v =[(RGu + R)SIv + [Ray + (RGu + R&l, (9)

which is subject to my — m, boundary. conditions, obtained from (2c) using
(7): ’ ‘ “ ‘
(Bo5(0)v(0) + (B15(1))v(1) = B ~ Bog(0) — B1§(1). (10)
Now, if the ordinary BVP (9), (10) is stable, i.e. if its Green’s function is
bounded by a constant of moderate size, then a similar conclusion holds for
the DAE. We obtain the following stability theorem:

Theorem 1 Let the BVP (2) have smooth; bounded coefficients, and assume
that (4) holds and that the underlying BVP (9)-(10) is stable. Then there is -

a constant K of moderate size such that

< K(llall + llazil + 181) (11a)
Iyl < Kl + llazll + llaull + [zl +181) (11b)

Proof: \ ‘

Our assumptions guarantee the well-conditioning of the transformation
(6), (7). Hence, the inhomogeneities appearing in (9), (10) are bounded in
terms of the original ones. The stability of the BVP (9), (10) guarantees a
similar bound for ||v||. Conclusion (11a) is then obtained using (7).

Now, given x we obtain y through multiplying (2) by Ga, yielding

Y = (G21G12) 7 G (X' = Gux — qu). (12)

The bound (11b) is obtained from this expression using (11a) and (4). O




3 Projected IRK methods

Consider the DAE problem (1). Let b = (bl,...,bk)T,‘c‘ = (cl,...,ck)T, A=
(a,-j)f.‘lj___1 be the coefficients of a k-stage Implicit Runge-Kutta (IRK) scheme
(see, e.g., [7]). We assume that 0 < ¢; <cg £ .. ¢ L1 and that A
is nonsingular (which excludes Lobatto schemes but leaves in all other IRK
schemes of practical interest). Denote the internal stage order by ky (k; > 1
for consistency) and the nonstiff order at mesh points by kg4 (k¢ < 2k). For
collocation schemes, in particular, k; = k and the ¢; are distinct.
Given a mesh ‘
mil=t<thi <. <iy=1 ‘
hn = tn - tn——l ‘ l (13)
h:= max{h,,1 <n < N}
a projected IRK method for (1) samples (1c), requires
0= g?(x010)
and approximates (1a),(1b) on each mesh subinterval [th-1,tn)s1 €n <N,
by
X: = gl(X;,Y;,ti) ‘ (14&)
0 = gg(X,-,t;), 'é= 1,2,...,]0 (14b)
k
Xn = Xno1+ hn 20X+ GloAn (L4c)
j=1
0 = gz(xmtn)» | (14(1)
where t; = th_q1 + hnciy X = X1 + by, Zf=1 a,-jX;. and G, = %g;(xn,yn,tn)Q
Observe that if we drop the requirement (14d) and set A, = 0 then an
IRK method is obtained as discussed in [7,10]. Thus, if %, is the result of
one IRK step starting from x,-1, then x, is given by
. | | Xn = %y + G\, (15)
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and can be viewed as the projection of X,, onto the algebraic manifold at the
next mesh point t,,.

We now give a basic existence, stability and convergencc theorem for the
linear case.

Theorem 2 Given a stable, semi-explicit, linear Hessenberg index two sys-
tem (@) to be solved numerically by the k-stage projected IRK method, then
for h su/ﬁczentIJ small

1. The local error in X is O(hmintkat1ki+2)),

2. There exists a unique projected IRK solution.

3. The projected IRK method is stable, with a moderate stability conetani
provided that the BVP has a moderate stability constant K.

4. The global error in X is O(hmin(kakr+1)y,

5. The errors.in the intermediate variables X| and X; are O( """(kd""))
and O(hmintkaki+1)) - respectively.

In the practically important case where the unprojected IRK scheme is a
collocation scheme, (14) defines a class of projected collocation methods. For
these methods, we can give a much sharper order result, namely

Theorem 3 Under the assumptions of Theorem 2, the projected collocation
“method satisfies for 0 <t <1

% (1) = x(2)] = O(h™n{k+1ka)) (16a)
X (1) - X'(t)] = O(h") (16b)
yet) =y = O(h*). o (16e)

Let the coefficient functions and the inhomogeneities in (2) be in C*+1[0, 1],
Then the nonstiff superconvergence order holds for the projected collocation
method, :
|Xn = x(tn)| = O(h*) 0<n<N. | (17)

Finally, the results fromn Theorems 1-3 can be combined using standard
arguments to yield a convergence theorem for projected collocation met hods
applied to nonlinear problems.




Theorem 4 Let x(t), y(t) be an isolated solution of the DAE problem (2)
and assume that g, and g, have continuous second purtial derivatives and that
the smoothness assumptions of Theorem 8 hold for the linearized problem in
the neighborhood of x(1), y(t). Then there are positive constants p and ho
such that for all meshes with h < hy ‘ ‘ ‘

1. There is a unique solution x,.(t),yx(t) to the projected collocation equa-
tions (14) in a tube S,(x,y) of radius p around x(t), y(t).

2. This solution can be obtained by Newton’s method, which converges
‘quadratically provided that the initial guess for xx(t), yr(t) is suffi-
ciently close to x(1), y(t). ‘

3. The error estimates (16)-(17) hold.

4 Numerical Experiment

To illustrate how well the projected implicit Runge-Kutta methods work,
as compared with their non-projected counterparts, we solved the following
linear problem

A—=L 0 2 — ) (3¢
o = (,lf—,j?_t -1)m+<(x—2->y+<g—t)et

0 = (t+2 t?—d)z—(t*+t-2)¢, A>0

with initial value x;(0) = 1. This problem has the true solution

In Table 1, we present the results of solving this problem, with A = 50,
with the projected and unprojected forms of the 3-stage Gaussian collocation
method, with various uniform meshes. The error shown is the error in @,
and z,. Behavior of the methods for other positive values of A and for other
Glaussian collocation methods was similar.

The results clearly show that the projected methods solve the instability
problem and achieve a high rate of convergence.




Method | Mesh size | Errory | Errorg
i Projected 10 26e-3 .18e-3
Projected 20 | Tle-T | .59e-T
Projected 40 Tde-9 .45e-9
Projected 80 10e-9 | .59e-10
Unprojected 10 19e+9 | .18e+9
Unprojected 20 6le+10 | .5%e+10
Unprojected 40 | .18ee+8 | .18e+8
Unprojected 80. 19e+6 | .78e+6

Table 1: Errors for projected vs. unprojected Gaussian collocation

5 Conclusion

We have introduced a new class of numerical methods, Projected. Implicit
Runge-Kutta Methods, for the solution of index-two Hessenberg differential-
algebraic systems. The new methods appear to be particularly promising
for boundary value problems, and overcome many of the difficulties associ-
ated with previously defined methods for this class of problems. We have
developed some important tools for stability analysis and introduced the
underlying ODE, which enable the understanding of numerical stability be-
havior for linear systems. Future work is planned to include a nonlinear
stability analysis, unified numerical methods for index 0 — 2, and methods
for inequality constraints and singular segments. A robust general-purpose
code is planned, based on collocation methods. It is expected that the new
methods and software will ultimately lead to the solution of a wide variety
of applications from control and parameter estimation.
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