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Abstract

Differential-algebraic boundary value problems arise in the mod-

elling of singular optimal control problems and in parameter estima-

tion for singular systems. A new class of numerical methods for these

problems is introduced, and shown to overcome difficulties with pre-

viously defined numericalmethods.
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1 ,Introduction

In this paper we describe a new class of numerical methods, Projected Im-
plicit Ftunge-Kutta methods (PIRK), for the solution of index-two Hessenberg
systems of initial and boundary value differential-algebraic equations (DAEs)

x' = gl(x,y,t) (la)

0 = g2(x,t) • (iu)
0 = b(x(0),x(1)) (lc)

, ,,

The system is index-two if (Og2/Ox)(Ogl/Oy) is nonsingular. These types
of systems arise for example in the modelling of singular optimal control

problems[5,11], where y is the control variable in (1), and in parameter es-
timation for differential-algebraic equations such as multibody systems[6] 1.
The new methods appear to be particularly promising for the solution of
boundary value problems of the form (1), where the need to maintain stabil-
ity in the differential part of the system often necessitates the use of methods

based on symmetri c discretizations. Previously defined numerical methods
based on symmetric discretizations have been shown to have severe limita-
tions, including instability, oscillation and loss of accuracy, when applied to
(1)[3,7,10]. The new methods overcome these difficulties, Numerical re-
sults have so far been very encouraging. However, much work remains to
be done before these methods can be made available in the form of a robust

general-purpose code such as those now available for ODE boundary value
problems[4]. We provide here an overview of our recent results and future
plans; for a detailed examination of the methods and analysis, see [1].

2 Problem conditioning

lt is well-known (see e.g. [9],[2]), that sae problems with index exceed-
ing one are in a sense ill-posed. Hence it is important to investigate the

1Multibody systems are often formulated initially as index-three DAEs. ltowever, they
can easily be converted to the index-two form'by techniques introduced by Gear[8]. lt
canbe shown that, this reduction does not introduce any conditioning difficulties into the
system.
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conditioning (stability) of such problems carefully. Such a conditioning etnal-
ysisenables t'he evaluation of stability of the w_rious possible formulations
of the DAE, as well as of the stability of numerical methods for its solution.
Consider the linear index-two Hessenberg boundary value problem

.x' = Gllx + G12y "t-ql (2a)

0 = G=lx+ q2 (2b)

/3= B0x(0)+ B,x(1) (2_)

where Gli, G12 and G21 are smooth functions of t, 0 _< t _< 1, Gll(t) E

7_m,×m', Gl=(t) E_ mx×my, G21(t) E 7_m_×m', my <_ rna, G2IG,2 is nonsin-
gular for each t (hence the DAE is index two), and B0, B1 E _7_(m''_)×'_.,
All matrices involved are assumed .to be uniformly bounded in norm by a
coastant of moderate size. The inhomogeneities are q_(t) E 7_r_x,q2(t) E
R m_,_ E R m_-''_.

We seek conditions under which this BYP is guaranteed to be well-

conditioned (stable) in an appropriate sense. Since G21G12 is nonsingular,
G12 has full rank. Hence there exists a smooth, bounded matrix function
R(t) E 7_('_-'_)×m" whose linearly independent rows form a basis for the
nullspace of Grs. Further, R(t) can be taken to be orthonormal [1]. Thus,
for eacht, 0_<t_< 1,

RG_ = 0. (3)
' We assume, more strongly, that there exists a constant/_" of moderate size

for orthonormal R(t)satisfying (3)such that [1]

- '
m

/ I< £" (4)
w

Multiplying (2a) by R wehave

Rx' = R(G,,x + q,). (5)

Let
v = Rx 0 < t < 1. (6)

Then, using (2b), the inverse transformation is given by

/ )-'(v), x = -,.gv + _t (7)
C;_1 -q2



where S(t) E TC'_,×('_-mv) satisfies

RS = I, G21S 0 (8)

Differentiating (6)and substituting (5), we obtain the underlying ODE

V / ,= [(RGil + R')S]v + [Rql q-(RGll + R')_I] (9)

which is subject to ,n_- my boundary conditions, obtained from (2c) using
(7).

' (BoS(0))v(0)+ (B_S(1))v(1)=/_- Bo_l(0) - B_t(1). (10)

Now, if the ordinary BVP (9), (10) is stable, i.e. if its Green's function is
bounded by a constant of moderate size, then a similar conclusion holds for

the DAE. We obtain the following stability theorem:

Theorem 1 Let the B VP (2) have smooth, bounded coefficients, and assume
that (4)holds and that the underlying B VP (9)-(I0) is stable. Then, there is
a constant K of moderate size such that

Ix I -< K(llq_I+ IIq21+ _l) (lla)

lyl[ -< K(llq'_[+ Iq_l + Ilq_ + Ilq21./31) (llb)

Proof:

Our assumptions guarantee the well-conditioning of the transformation
(6), (7). Hence, the inhomogeneities appearing in (9), (10) are bounded in

terms of the original ones. The stability of the BVP (9), (10) guarantees a
similar bound for Ilvl[. Conclusion (1la)is then obtained using (7).

Now, given xwe obtain y through multiplying (2) by G21, yielcl]ng

Y = (G21GI2)-lG21(x '- Gllx - ql). (12)

The bound (llb) is obtained from this expression using (lla) and (4). []



3 Projected IRK methods

Consider the DAE problem (l) Let b = (b_,...,bk)T,c - (cl, ..., ck)T, A
a k( ij)i.j=! be the Coefficients of a k-stage Implicit Runge-Kutta (IRK) scheme

(see, e.g., [7]). We assume that 0 _< Cl _< c2 _< ... _< ck _< 1 and that ,4
is nonsingular (which excludes Lobatto schemes but leaves in all other IRK
schemes of practical interest). Denote theinternalstage order by k} (kt >__1
for consistency) and the nonstiff order at mesh points by kd (kd <2k). For
collocation schemes, in particular, k r = k and the ci are distinct.

Given a mesh

Tr' 0 -- to <tl <...,_ tN = 1

:= - (13)
h := max{h,_, 1 _<n _<N}

a projected IRK method for (1) samples (lc), requires

0 = g2(x0,0)

and approximates (la.),(lb) on each mesh subinterval [tn-l,t,_], 1 _<n %_N,
by

X'i = g,(Xi,Yi,ti) (14a)

0 = g2(Xi,ti), i = 1,2,...,k (14b)

k

Xn -" Xn-1-a t- hn _ bjX} + Gr_2,,_n (14c)
j=l

0 = g2(x,,,t,,), (14d)

where ti t.-I + h.ci, Xi x.-1 + h. ,k ,-- -- _-'_j=l aijXj and G_2 = °0-_y(x,, y,_, t_)i
Observe that if we drop the requirement (14d) and set _ = 0 then an

IRK method is obtained as discussed in [7,10]. Thus, if _,, is the result of
one IRK step starting from xn-1, then xn is given by

'q'" ,\ (1,5)



and can be viewed as the projection of 5% onto the algebraic manifold at the
next mesh point t,.,. _

We now give a basic existence, stability and Convergence theorem for the
linear case.

Theorem 2 Given a stable, semi'explicit, linear Hessenberg index two sys-
tem (2) to be solved numerically by the k-stageprojected IRI( method, then
for h sufficiently small

I. The local error in x is O(h._n(kd+'l'k_+2)).

2. There exists a unique projected IRA" .solution.

3. The projected IRI( method is stable, with a moderate stability constant,
provided that the B VP has a moderate stability constant K.

_. The global error in x. is O(h"_n(kd'k1+l)).

5. The errors in the intermediate variables X} and Xi are O(h m;n(k_'kl))
and O(hmin(kd'k_+l)), respectively.

In the practically important case where the unprojected IRK scheme is a
collocation scheme, (14) defines a class of projected collocation methods. For
these methods, we can give a much sharper order result, namely

Theorem 3 Under the assumptions of Theorem 2, the projected collocation
method satisfies for 0 < t .< 1

x_.(t) - x(t)l = O(h m''(k+l'kd)) (16a)

Ix',_(t) - x'(,t) I = O(h k) (l.6b)

y.,(t) - y(t)l = O(hk). (16c)

Let the coefficient functions and the inhomogeneities in (2) be in Ck"+a[0, 1].
Then the 'nonstiff superconvergence order holds for" the projected collocation
melhod,

Ix_ - x(tn)l = O(h kd) 0 < n < N. (17)

Finally, the results from q'heorems 1-3 can be combined using sta.ndard
arguments to yield a convergence theorem for projected collocation methods i

applied to nonlinear problems.



T!_eorem 4 Let x(t), y(t) bc an isolated solution of the DAE problem (2)
and assume that gl and g2 have continuous second partial derivatives and that
the smoothness assumptions of Theorem 3hold for the linearized problem in

the neighborhood of x(t), y(t) Then there are positive consta_tts p and ho
such that for all meshes with h <_ho

1. rhere is a unique solution x,_(t),y,_(t) to the projected collocation equa-

tions (1._) in a tube Sp(x,y) of radius p around x(t), y(t).

2. This solution can be obtained by Newton's method, which convcTyes

quadratically provided that the initial guess ]or" x_(t), y_(t) is suffi-
ciently close to x(t), y(t).

3. The error estimates (I6)-(17) hold.
, , , , ,

4 Numerical Experiment

To illustrate how well the projected implicit Runge-Kutta methods work,
as compared with their non-projected counterparts, we solved the following
linear problem

X t )_ 2-t= 1-:_ z+ y+
_ -1 A-l, 2-t

0 = (t+2 t 2 ....4)x-(t2+t-2)e ', _>0

with initial wlue zl(0) -- 1. This problem has the true solution

_,e t

x=(et et)' Y-2-t

In Table 1, we present the results of solving this problem, with A 50,
with the projected and unprojected forms of the 3-stage Gaussian collocation
method, with various uniform meshes. The error shown is the error in x l
and x2. Behavior of the methods for other positive values of A and for other
Gaussian collocation methods wa.s similar.

The results clearly show that the projected methods solve the instability
problem a,nd achieve a, high rate of convergence.

!

i



Method Mesh size: Error1 Er' ror_
9 fProjected 10 ,,6e- 3 18e-3

Projected 20 .71e-7 .59e-7

Projected 40 .... .74e-9 .45e-9
Projected ....80....... ii 0e-9 .59e-1
Unprojected 10 ' .19e+9 .18e+9

Unprojec.ted ' 29 '.61e+i0 .59e+10
Unprojected 40 .1See+8 .18e+8
Unprojected 80 .79e+6 .78e+6 ....

Table 1' Errors for projected vs. unprojected Gaussian collocation

5 Conclusion
)

We have introduced a new class of numerical methods, Projected Implicit
Runge-Kutta Methods, for the solution of index-two Hessenberg differential-
algebraic systems. The new methods appear to be particularly promising
for boundary value problems, and overcome many of the difficulties associ-
ated with previously defined methods for this class of problems. We have
developed some important tools for stability analysis and introduced the

underlying ODE, which enable the understanding of numerical stability be-
havior for linear systems. Future work is planned to include a nonlinear
stability analysis, unified numerical methods for index O - 2, and methods
for inequality co'_straints and singular segments. A robust general-purpose
code is planned, based on collocation methods. It is expected that the new
methods and software will ultimately lead to the solution of a wide variety
of applications from control and parameter estimation.
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