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L .  ABSTRACT ' ' 

This paper presents some f i r s t  resul ts  from ongoing experimental 

work to  compare effects  of 1 ight ion and fusion neutron damage on ten- 

s i le  yield strengths of N i  and f4b. Comparisons of these results  w i t h  

calculated damage energy values are discussed, and t h e  significance of 

such measurements eya1 uated. 
The present paucity of data on the influence tha t  fusion neutron 

I 

induced damage has on the mechanical properties of materials is an 

immediate concern to  the U.S. fusion reactor program, Relatfvely l i t t l e  

time remains to  accumulate the 6ul k material data needed t o  design and 1 
..a 

build an operational power reactor system by the year 2000, the target 

date fo r  operation of a Demonstration Power Reactor (DPR), To meet 

t h i s  schedule requires that  materials selection for  such systems be 

made by 1985 i n  order that  newly developed materials be available, . I 

commercially, i n  time fo r  reactor construction. Such decisions must be. ! 
based, t o  a large extent, on our understanding of damage effects  of 

fusion neutrons a t  f7 uxes and to1 erabl e f l  uences anticipated fo r  fusion 

reactors; present designs indicate abou t  cm-'s-' and lo2' cm-', 
I 

respectively. B u t  neutrons are not available presently a t  fluxes needed ' I 

I 
f o r  accel erated damage studies, a1 though construction has begun on sources 

13 14 -2-1 which w i l l  produce useable fluxes of the order of 10 -1 0 cm s . 
Early fusion neutron bulk radiation damage design data w i l l ,  therefore, 

re ly  heavily on damage studies by particles other than fusion neutrons; 

f o r  example, f ission neutron damage experiments or charged par t ic le  

irradiat ion damage experiments. 
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I can be used to  produce the displaced atom (dpa)/helium ra t ios  induced - 

I i n  these materials by fusion environments. He1 ium production by the 

I thermal spectra i s  through the following two stage transmutation reaction: 

4 5 9 ~ i  + n . . . 56~e  + He. 

Buk t h i s  technique is  not applicable to  other materials,  nor does i t  

include the  high energy neuiion component which is  contained i n  t he  fus ion ,  

I environment. . . 

I Until high f lux,  fusion neutron sources become avai lable ,  the rela- ,  

1 .  t ionship between damage by fusjon neutrons and mechanical properties w i l l  

I have to  be studied, t o  a large extent,  using charged pa r t i c l e s  a s  the 

I i r r ad ia t ing  species. For example, i r rad ia t ion  by protons of the appro- 

I p r i a t e  energy may produce a defect  s t ruc ture  which resembles the damage 

I froin 14 MeV neutrons. Indeed, Logan, Anderson and ~ u k h e r j e e l  have cal-  

culated, f r ~ m  e las t ic -sca t te r ing  'and ine las t ic  reaction cross-section 
. . . . . . . . . . 

d a t a ,  t h a t 1 6  MeV pr'otons and 1,4 l<eV neutrons produce s imilar  displace- '' 

I. '*. . ,. 

ment damages ir. niobium when recoi! energies a re  greater  than 10 kev. 
. . . . .  ... . 

However, i t  shouid be noted tha t  these displacement .energies diverge 

I considerably a t  1 ower recoi i energies. Simi 1 a r  resul t s  a r e  obtained from 

I damage cz'lculations by Omar, Robinson and Thompson f o r  Fe, Hi, Cu, Zr 

1 .  and ~ b . 2  Comparisons of 14 MeV neutron and 16 MeV proton radiat ion 

I damage have also been made by comparing microstructures of i r rad ia ted  

1 copper sampl e sO3  These resul t s  i ndicate close s i m i l a r i t i e s  between 

I defect  c l u s t e r  dens i t ies  and s izes  f o r  1013 and 5 x 1011 cK2s-' proton 

and neutron fluxes,  respectively.  

To be useful,  f o r  simulating bulk i r rad ia t ion  by f a s t  neutrons, 
I 

I '  the ion beams must be capable of producing bul k damage ra t e s  equal t o  

and in excess of damage ra t e s  expected from neutron f i e l d s  i n  magnetic 

fusion energy devices. Existing accelerators  can produce 1 014 cm-2s-1 

1 f l  uxes of charged par t ic l  es with di spl acenent cross-sections greater  
I 

I than the ' fus ion  neutron displacement cross-sections, Ratios of 16 MeV 
I . . proton to  14 MeV neutron displacement cross-sect ions.are  about 3 and 1 . 6 '  1.. . . 

1 , .  
f o r  Ni and Nby respectively.  I t  i s  l i ke ly ,  therefore,  t h a t  the beam 

I .  . . . . 
, . 



in tens i ty  will  not be the fac tor  1 imi t ing  meani ngful accelerated damage 

s tudies  by l i g h t  charged pa r t i c l e  i r rad ia t ion .  The capabi l i ty  of remov- 

ing the thermal energy, induced i n .  the t e s t  samples by charged par t ic le  

bombardment, i s  more l ike ly  to  l i m i t  the  damage production ra te .  

Bulk behavior should be simulated by the unirradiated and i r radiated 

small t e s t  samples required f o r  ion i r radiat ion.  Unfortunately, these 

re1 a t ive ly  small sample thicknesses, imposed by ion penetration depths, 

can have a s ign i f i can t  influence on the  mec.hanica1 properties being invest i -  

gated. T h i s  dependence of mechanical properties on sampl e' s i z e  can' be 

a t t r ibu ted  t o  t h r e e  factors:  1 ) .  the influence of surfaces and surface . . 

contamination on dis locat ion motion via image forces and surface energy, 
I 2)  influence of e f fec t ive  grain s i z e  t o  sample s i ze  r a t i o s  on f low. .  

propert ies ,  and 3 )  s t r e s ses  introduced on t ens i l e  t e s t  samples by sample 

g r i p  clamping procedures. These f ac to r s  a re  of major importance i n  the . . 

design and control of the ion simulation experiment. 

Contamination of the t e s t  sample can r e su l t  from contaminants i n  

the t e s t  chamber, from the sample cooling procedures or  from contaminants 

i n  the  ion Seam. These contaminants can a l t e r  the surface energy o r  the ... 
sample ch2mi s t ry .  Grain boundary d i  ffgsion and precipi ta t ion of contami- . . 

nants a r e  1 i kely, and the resul t i  ng e f f ec t s  could dominate mechanical 

behavior even more than surface contamination. However, f o r  surface 

re la ted  ef foc ts  on mechanical behavior, image forces on near-surface . . ' 

4 dislocat ions a r e  l i ke ly  t o  be most s igni f icant ;  

There have been numerous observations of the strong influence of . 

environments on mechanical properties.  For exampl e,  the fa t igue  1 i f e  of 
5 copper was measured by Wadsworth t o  increase from 5 x 10 . cycles a t  760 

7 t o r r  t o  10 cycles a t  Shahanian and Achter found creep 

r a t e s  of nickel to  be highest in a nitrogen atmosphere and lowest in 

vacuum while creep r a t e s  in a i r  and a he1 i u m  -27% oxygen mixture were 

i ntermediate.6 Johnson, Barrett  and Nix measured mi n imum creep ra tes  of 

a Ni - 6% W a l loy  a t  t o r r  and one atrr.osphere of commercial purity 

argon.7 They found environmental e f f ec t s  to  occur fo r  samples containing 

e ight  grains across the thinnest direct ion of the gauge section. 

In order tha t  charged pa r t i c l e  i r rad ia t ions  not introduce bulk . . 

chemical contami nation the sanpl e must be transparent to  the i r rad ia t ing  

species. For high z ions having several MeV energy, sample dimensions . . - - ' -  of a few microns in the beam direct ion fo r  low Z ions. Figure 1 shows ." 



the displacement cross-section p ro f i l e  f o r  10 and 16 MeV protons on N i  

and Nb. I t  i s  apparent tha t ,  in  order to  minimize damage gradients along 

the beam di rec t ion ,  t h i s  sample dimension must be considerably smaller 

than the ion range in  the sample material .  I t  i s  apparent, from the 

above discussion, t ha t  d i f f i c u l t i e s  involving experimental investigations 

of 1 ight  ion damage e f fec t s  on mechanical propert ies  a re  related primarily 

t o  .sample s i z e  and contamination. 

I r rad ia t ion  creep has typical l y  been the principal parameter measured 

i n  studi.es of mechanical behavior of materials i r radiated w i t h  1 i g h t  

ions. However, dpa ra tes  from neutrons produced by existing fusion . - 

. neutron sources a r e  not l i k e l y  t o  be su f f i c i en t '  for  s imilar  creep s tudies  

of neutron e f fec t s ;  other mechanical parameters have to  be measured. 

Table I l i s t s  measured yield strength changes fo r  several fluences . . 
of 16 MeV'protons and 14 MeV neutrons. The previously discussed r e su l t s  

. . .  from damage energy calculations and defect  cl.usters measurements a re  

included, w i t h  calculated displacement cross-sections, fo r  comparison. 

Inconsistencies with to ta l  damage energies nay be explained by differegces . . . . .  . . 

b .  
. . 

. . in the darnage energy spectra.  T h e  protons produced more low energy re- ..!. 

c o i l s  2nd possibly more simple point defects as  predicted by the Kinchin 

and Pease model;'' divacancy and small vacancy c lus te r  formation can then 

follow, Kimura and Maddin have shown t h a t  fo r  gold and copper, a t  l e a s t ,  
11 these vacsncy combinations will not .increase the yield strength. 
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Captions 

Figure 1.  Displacement cross-section depth prof i les  f o r  10 and 16 FleV 

protons incident on Ni and Nb. 



TABLE I 

COMPARISON OF 16 MeV PROTON/14 MeV NEUTRON DAMAGE PARAF.1ETERS 

Nickel 

t 0.02% y i e l d  s t r e s s  

..tf lower y i e l d  point  

Target 
Material 

I.: Cp.pper . 

Niobium 

Damage Parameter. 

Total Damage Energy 
(barn-kev) . . . . . . 

D i  spl acement, . . 

Cross-Section, 
(k i lobarn)  . . . . '. 

AYS @ Fl uence 

Defect Clus te r s  
25-50, A" 
50-75 A" 

100-1 25 A" 
' 

Total Dzmage Energy 
(barn-kev) 

Total Dagage Energy 
(barn- ktv) 

D i  spl aceinent 
cross-sect ion 

(ki  lobarn) 

A Y S * ~  @ Fluence 

16 MeV Proton 

t . 592 . 
. . . . .  . 

4.6 
Coulomb 

. Sca t te r ing  Only 

4MPa @ 5x1 0' ~ m - ~  
1 OMPa @ 6x1 016 cm-2 

18MPa @ 1.1 x10' 

2.1~1015 cm-3 
4 . 5 ~ 1 0 ~ 4  cm-3 
5.2~1013 .cz-~ 
+=I 013/cIil2-5 

I 

53 9 

7 93 
(636 @ T > .035 kev) 

600 

4.0 
coulomb 
Sca t te r ing  Only 

lMPa @ 5x1 o1 ern';! 
4MPa @ 6x1 016 cmm2 

lOMPa O 1,1 ~ 1 0 1 7  cm-2 

14 MeV Neutron 

. 254 

1,s 

. . 

28MPa @ 8x1 016 cm-2 

1 OOMPa @ 2x1 017 

1,7x1015 
5.8~1014 cm-3 
8 , 0 x 1 0 ~ ~  cm-3; - 
$=5x101.l/cm2-s 

267 

266 

258 

2.5 

28;-IPa @ 8x1 016 cm-2 

37MPa @ 2x1017 cm-2 
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