ION CYCLOTRON AND SPIN-FLIP EMISSIONS FROM FUSION
PRODUCTS IN TOKAMAKS

V. Arunasalam, G. J. Greene, and K. M. Young PPPL~-2875

Princeton University, Plasma Physics Laboratory DE93 007935

Princeton, N.J. 08543
ABSTRACT

Power emission by fusion products (i.e., protons and/or alpha particles) of tokamak plasmas in
their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is
calculated for some specific model fusion product velocity-space distribution functions. The
background plasma of say deuterium (D) is assumed to be in equilibrium (or nonequilibrium) with
a Maxwellian distribution both for the electrons and ions (with a possible temperature anisotropy
and drift velocity for the D ions). The fusion product velocity distributior:s analyzed here are:
(1) A monoenergetic velocity space ring distribution. (2) A monoenergetic isotropic velocity space
spherical shell distribution.(3) An anisotropic Maxwellian distribution with T » Ty and with
appreciable drift velocity along the confining magnetic field. Single “dressed” test particle
spontaneous emission calculations are presented first and the radiation temperature for ion
cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions.
Thresholds for instability and overstability (i.c., negative radiation temperature) conditions are then
examinedandquﬁﬁmcmdnmﬁmrtheaiuofﬂnehcmagmﬁcimcycbmmodesm
discussed. Distinctions between “kinetic or causal instabilities” and *hydrodynamic instabilities”
are drawn and some numerical estimates are presented for typical tokamak parameters.
Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric
decay instabilities as possible mechanisms for spatially localized ICE. Calculations are carried out
both for ky = 0 for ky» 0. The effects of the temperature anisotropy (i.e., T » T} and large
drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance
emission and absorption calculations are also preseated both for thermal equilibrium conditions
and for an “inverted” population of states. The method of analysis is the familiar “master equation
approach” of nonequilibrium quantum statistical mechanics, based on the Einstein A and B
coefficients and the principle of detailed balance. Reasonably good agreement is obtained between
theory and experiment.
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I. INTRODUCTION

Quantitative measurements of ion cyclotron emission (ICE) from energetic ions produced by
fusion reactions or neutral beam injection promises to be a useful diagnostic on large tokamak
devices that are entering the reactor regime of operation. Indeed, the mere qualitative observation
of thermal or superthermal radiation in the ion cyclotron range of frequencies (ICRF) provides, in
principle, a method for detecting and studying these energetic charged particles in magnetic fusion
experiments. Historically, such ICE was first reported by the TFR Group! during neutral beam
injection experiments. Somewhat similar ICE was also observed from neutral beam injected PDX
discharges.2 However, the first observation of ICE from fusion products came from JET
plasmas.3.4 Subsequently, ICE from fusion products has been reported from TFTR discharges.’
These fusion products of the primary DD reaction are given by

3He(0.82 Mev) + n(2.5 MeV)

’ 1
T(1.0 MeV) +p(3.0 MeV) ¢Y)

D+D={

and the secondary reactions are given by

3He + D = p(14.7 MeV) + 4He(3.7 MeV) , )
T +D = 4He(3.6 MeV) +1n(14.7 MeV) . (2a)

There are experimental differences, both qualitative and quantitative, between the features of
ICE observed in different tokamaks. These variations may be related to the different experimental
configurations employed. The JET experiment uses an ICRF heating antenna as a receiver and this
antenna is located at the outer midplane and has significant poloidal and toroidal extent. The TFTR
and FDX experiments have used small magnetic probes to detect ICE. These probes have been
located both at the outer (TFTR) and inner (PDX) midplane and, more recently, near the top and
bottom of the vacuum vessel (TFTR). In general, results from PDX and TFTR experiments are
similar to each other but differ in certain respects from the JET results.

Experiments during neutral beam injection in PDX, TFR, JET, and TFTR!-5 have all revealed
an emission spectrum that includes intense (i.e., 104 times the background level), regularly spaced
peaks whose narrowness (Aw/w << ap/Rp) implies a spatially localized origin (since the ion
cyclotron frequency for an ionic species' of charge qg and mass My, in the tokamak B-field is
Wcg = qgB/Mge o< R-1). Here, Rp and ap are the plasma major and minor radius, respectively.
Emission is seen at approximately nuxg-g, where n is a positive integer and g is the cyclotron



frequency for the ionic species B, evaluated at the outer (low-field) plasma edge on the midplane
(ie., atR =Rp + ap). In PDX and TFTR with different injected and background species, 8 is
determined to be the injected species; however, explanation of data from JET experiments requires
B to be background species. Reported widths of the peaks also differ: in PDX and TFTR, AW is
typically of the order of 0.005; in the JET Experiment, A/ is of the order of 0.05.

Ion cyclotron emission from ohmic discharges in deuterium has been observed in JET3.4 and
TFTR.S In the JET experiment, this emission consists of a series of harmonically related peaks, as
in the beam injection case, occuring near ntqd.g (Where (4. is the deuteron cyclotron frequency
at the outer low-field plasma edge on the midplane). Note that (cd.E = tca-E, Where tcq-E is the
corresponding alpha particle cyclotron frequency at the same location. Typical peak widths are
broader than in the beam injection case: Aw/w = 0.1. In contrast, ohmic ICE in the TFTR
experiment consists of a sequence of peaks at frequencies (n + 1/2)Wcp-g, with peak widths also of
the order of Aw/@ = 0.1 (i.e., broader than the beam injection case by a factor of about 20).
Here, W¢p-E = 20c4.E is the proton cyclotron frequency at the outer low-field plasma edge on the
midplane. In addition, both experiments show considerably less intense ICE in the absence of
beam injection.

Recent observation of inverted ICE sawtooth oscillations® which coincide with the arrival of
the sawtooth heat pulse in the edge plasma in JET give further support to the edge ivcalization of
the emission. These experimental observations suggest that the charged fusion products provide
the free energy to generate the ICE, and these fusion products are apparently localized in the outer,
low B-field side plasma edge region of the tokamak discharges.

In TFTR, an additional feature in the frequency-power spectrum of the ICE signal is observed
in high power neutral beam injected discharges.” When deuterium neutral beams are injected into a
deuterium background plasma, the main sequence of ICE harmonic peaks (occuring at nwed.g) is
accompanied by a broader, background continuum component of the spectrum that begins around
the fifth harmonic of wcg-E. This “background emission” exists roughly over the frequency range
for which the proton spin-flip resonance is within the plasma. (Note that the proton g factor is
equal to 5.59, so the fifth harmonic of wcq.E is near the frequency at which the proton spin-flip

resonance is at the outer plasma edge). A spectrum from TFTR that includes these features is
shown in Fig. 1.

The amplitude of a single ICE peak (n = 2) in JET was found to be proportional to the
measured fusion DD reaction rate (based on 2.5 MeV neutron fluxes) over three orders of
magnitude in signal intensity 4 (i.e., 10-12 < ICE power Picg < 10-9 W for 1010 < total DD



reaction rate < 1013 sec1), supporting a fusion product origin for the emission. Indeed, very
recent measurements in JET during DD and DT experiments have shown 2 linear correlation
between ICE power Picg and the total neutron flux extending over six orders in magnitude? (i.e.,
10-11 <Picg € 10-5 W for 1012 < total neutron source rate < 1018 sec"l); the best fitting
relation is PiCE o< (neutron flux)0-9. Further, by kecping the neutral beam power constant and
comparing the n = 2 PicE from plasmas dorninated by DT fusion reactions with the corresponding
plasmas dominated by the DD fusion reactions, these very recent JET experiments showed that the
ICE signal is related to fusion products, not beam particles. Also, the ICE intensity is anti-
correlated with large amplitude edge-localized modes (ELMs); suggesting that the large ELMs
terminate the ICE by expelling the fast ions, thereby temporarily extinguishing the source. In both
DD and DT plasmas, the ICE emission lines near ® = nW¢d-E each show a fine structure for
n <7, being split into a doublet with Aw/@ =0.06. For n>7, the lines merge into a
continuum, possibly related to the “broadband background spin-flip emission” feature observed in
TFTR.

In TFTR, however, the amplitude of the n =2 ICE peak during beam injection does not
follow the neutron flux (as observed within a single shot). However, the broadband background
continuum component of the spectrum discussed above (between ICE peaks) does follow the time
evolution of the neutron flux, over about 2.5 orders of magnitude, with a delay of about 100 msec.
This delay was observed to be similar to the growth time for DD fusion products.’ In a recent JET
experiment, where the background continuum emission was not observed, the signal obtained by
integrating the entire recorded ICE spectrum (over many harmonics) had a time evolution that
similarly followed the neutron flux with a time delay which is approximately equal to the growth
time of the fusion product population.

It is the aim of this paper to examine all the direct emission processes raat can account
quantitatively for the observed emission from the fusion product protons and alpha particles in
tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at the proton spin-flip
resonance frequency. We obtain closed form analytic expressions for such direct emissions.
These direct emissions include both the single “dressed” test particle spontaneous emission and the
collective many-body emission from systems at thermodynamic equilibrium (i.e., black-body
emission) and also from unstable nonequilibrium systems (i.e., the cyclotron harmonic and spin-
flip laser and maser emission). Indirect emission processes such as those due to mode-
transformation and/or mode-conversionqand those due to the parametric decay instabilities, are
discussed only qualitatively. For example, according to Stix8 one may conceive of the excitation
of electrostatic ion Berstein waves (ESIBW) and subsequent mode-conversion into the transverse
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electromagnetic ion cyclotron harmonic waves at the resonance and/or cut-off layer near the lower
hybrid frequency wLH, Where oLy is given by w3 = (¥ + O)f,i)’l + (W¢j0ce)"1]. Here, 0, Wce,
and p; are the ion cyclotron, electron cyclotron, and the ion plasma frequencies, respectively.
Most of the existing mode conversion calculations8. near the lower (wpy) and the upper (®yR)
hybrid resonance frequencies are, at best, semiguantitative in nature. Here Wy = 02 + @2 and
Wpe is the electron plasma frequency. Calculations of the coefficients of transmission and
reflection at mode conversion, based on the cor.tinuity connections at the joints of piecewise
solutions of the inhomogeneous plasma-wave equation on either side of the mode conversion
layer, are extremely difficult to carry out exactly. However, such a mode-conversion theory has
the attractive feature of the spatial localizability of the emission in the close neighborhood of this
resonance and/or cut-off layer. Indeed, arguing from Stix's analysis,8 Ono has recently
suggested10 such a mode-conversion emission as a possible explanation of the localization of
observed ICE on the low B-field side edge of the tokamak plasma.

A somewhat similar anomalous electron cyclotron emission (ECE) of up to 25 harmonics was
reported in the early literature by Landauer!! and other investigators.}2 The amplitudes of the
successive harmonics, although they are decreasing, are of the same order of magnitude. But
these amplitudes are several orders of magnitude greater than those calculated for a warm plasma
with a Maxwellian distribution of electron velocities. Proposed explanations!3 of these anomalous
ECE results have included sheath phenomenx, inhomogeneous electric fields, distorted
nonequilibrium velocity distribution functions, coupling of electrostatic to electromagnetic
oscillations via Stix's theory of mode conversion,8 and gradients in density and magnetic field.
However at present, fully satisfactory theoretical explanations of these anomalous ECE results do
not exist. Indeed, the ICE problem under study here is closely similar to the familiar Landauer
problem,!!

With this complexity in mind, we examine ICE and also spin-flip emission problems using the
well-known “master equation approach” of nonequilibrium quantum statistical mechanics, based
on the Einstein A and B coefficients and the principle of detailed balance.!4 In Sec. II, we examine
the theory of spontancous emission from “dressed” test particles. Section III addresses the
linearized theory of the radiative steady state. In Sec. IV, we derive and outline the necessary and
sufficient conditions for radiative instability or overstability. Section V discusses quasilinear and
nonlinear theories of the radiative steady state. In Sec. VI, we make some general comments on
instabilities relating to the distinctions between the “kinetic or causal instabilities” and the
“hydrodynamic instabilities.” Section VII offers some numerical estimates for typical tokamak
parameters. In all cases of Secs. II-VII, we examine not only the ion cyclotron harmonic emission



and absorption but also the fusion product protons' spin-flip emission and absorption. Section
VIII, offers some brief qualitative and semiquantitative romarks on wave accessibility, mode
conversion and parametric decay instability. Finally, Sec. IX contains our conclusions and
summary. We believe that the rather extensive and comprehensive analysis in conjunction with
some discussions of relevant side issues presented here not only will be of pedagogical interest (as
it is a particle-orbit analysis based on Einsteii: A and B coefficients for the fundamental emission
and absorption processes) but also will serve as a first step towards a full understanding of the
observed ICE and spin-flip emission in tokamaks.

II. THEORY OF SPONTANEOUS EMISSION

In this section we first examine the spontaneous cyclotron emission both from the background
deuterium plasma ions and the fusion product protons and/or alpha particles, and second we then
examine the spontaneous spin-flip resonance emission from protons.

A. Cyclotron Emission

We consider the cyclotron emission of a particle of charge q; and mass M; in a static magnetic
field B = Bi;. Let A(m) be the Einstein's (quantum mechanical) spontancous emission
probability coefficient for the emission of a photon of frequency ® = maj and wave vector k,
where @ = g;B/Mic is the particle's cyclotron frequency. Then, it shown elsewhere15-18 that [in
the the classical limit) AA(m) is given by

) 412q? '
fA(m) = (f’;go;) [v, TalMi)F 8o - moi - Ky v) 3)

for emission of the extraordinary (X) mode near the m-th harmonic, and

, ) 2
4,‘233) { [(}1 1¢ cos O - v")]lm(li)} §@ - max; - ky vy) 4)

fA(m) =
L3Co sin 6

for emission of the ordinary (O) mode near the m-th harmonic, where A; =k v, /0i, Jm(A) is the
Bessel function of order m, J;,(A) = Im(A)/dA = [Jm-1(A) - Jm+1(A)}/2, O is the angle between
k and B (i.e., cos 8 = ky/k), L3 is the plasma volume under study, and the “dressing” factor19.20
C = [E* (1/20) (3/0w) (02K}p)-EV/(E*-E)]. Here, K;, is the Hermitian portion of the plasma
dielectric tensor K, E is wave electric field, and E* is the complex conjugate of E. This factor C
takes account of the screening in the usual “dressed test particle” approach.2!
For k<< k; (i.e., 8 = /2), the index of refraction of the background medium



u = (ck/o) =ClZ= [(E*Kn-E)/(E*E)]1/2 = [Re(Kyy + K%y/Kxx)]W for the X-mode, and
L= (ck/o) = [(E*.Kp-E)/(E*-E)]1/2 = (Re K;2)!/2 for the O-mode, where Re stands for the
real part and we have chosen Kk to be in the x-z plane. For ky >> k| (i.e., 6 = 0),
i = (ck/o) = [(E*-Kp-E)/(E*-E)]}/2 = [Re(Kxx % iKxy)] 1/2, where the plus and minus signs
correspond to the right and left circular polarizations, respectively. In the O mode result of Eq.
(4), u-1c = ayk = vpn is the phase velocity of the emitted electromagnetic cyclotron harmonic wave
in the background medium. In Egs. (3) and (4) we have neglected the effects of magnetic
curvature drifts. Since the S-functions of these equations are a consequence of the energy and
momentum conservation,18 it is relatively easy to show22 that taking account of the magnetic
curvature drifts in these equations will result in the replacement of 8(® — mej - kyvy) by
8(® — m©¢j - kyj vy - ®mcd) where Omcd = K-Vmed = K1 Vmcd is the magnetic curvature drift
frequency corresponding to the magnetic curvature drift velocity vmed. In a subsequent paper we
will examine the magnetic curvature drift effects.

For Aj = k) vi/wci < 1, Jn(Aj) = (1/m!)(Xi/2)™ and Ty D) = (1/m!)(m/2)(Ay2)m-1
= (m/A)ImAD. Hence, Dot Ai) /T (AD] = Ai/2m) and [viJm AD)/V L In(AD] =
[(v/v )Ai/m)] = (Aym) for v = vy Thus for ky = 0, it is readily seen from Egs. (3) and (4)
that the ratio of the O mode contribution to the intensity of each emission line near ® = ma;j to
that of the X mode = (Aym)2 = (v _L/vph)z; while the ratio of the intensity of the X mode emission
lines at @ = (m + 1)@ to that at @ = ma:; is approximately equal to (Ay2m)2 = (v, /2vph)2. That
is, the ratio of the O to X mode contributions to the intensity of the m-th. harmonic = (1/4) the ratio
of the intensities of the (m + 1) th, to the m-th harmonics. Further, it should be noted from Eq. (4)
that the O mode emission lines near ® = max; will all show a fine structure, 18 being split into a
doublet with a minimum around (!¢ cos 8) = (vph cos 6) = (@ - maci)/ky. Thus for (v 1/vph)?
< 1, the O mode contribution to each of the ICE lines at @ = ma; is small compared to that of the
X mode and hence the double-humped nature!8.2~ of the “Trubnikov O mode factor” will barely
show up as a fine structure doublet splitting near the line centers. This expected picture is
consistent with the JET observations mentioned earlier. However, since the fusion product ICE
occurs in “he background cooler thermal plasma medium, an alternative interpretation® is the self
absorption of the ICE line by the cooler background medium that have a relatively small Doppler
width. We will see later that such self absorption is only possibl: at the fundame:ntal frequency
where the expected optical depth 7 of the background medium is larger than unity, and for the
higher harmonics such self absorption is impossible since T << 1. The diamagnetic drift frequency
rotation of the plasma occurs only in one direction and these effects do not affect the 3-functions of
Egs. (3) and (4). The diamagnetic effects alter the equilibrium distribution function via the guiding



center perpendicular canonical momentum.22 Consequently, the diamagnetic drift frequency
cannot give rise to such doublet splitting of ICE lines as suggested in Ref. 4.

In Egs. (3) and (4) we have used the conventional “box normalization” procedure. Hence the
total spontaneous emission probability for the emission of a photon of frequency w = ma; is given
by

Ee Am) - (22 f aQ f do w? Alm) . 5)

where dQ is the element of solid angle. Since fiw is the photon energy, the classical coefficient of
spontaneous emission T(m) of Egs. (6.13) and (6.14) of Bekefil6 may be obtained from
Egs. (3-5) by using the relation

Zx [AwAm)] = j dQ j don(m) , (6

where the transformation from Bekefi's mks system of units to our Gaussian system of units
requires the replacement €, — (47)"1, and dQ = 2= sin 6 dO is the element of solid angle. Note
that the Einstein A and B coefficients refer to the quantum mechanical transition probability for the
emission of a photon while Bekefi's 1(m) coefficients represent the classical differendal rate at
which energy is emitted per unit solid angle per unit frequency interval, and this difference
accounts for the relatdons of Egs. (5) and (6). Hence, from Egs. (5) and (6), Bekefi's classical
coefficient of spontaneous emission for this test particle is

N(m) = (-1'2%)} RA(m) . @)

If nj is the test particle number density and if (2nv ) f (v,vy) = 2rv ) f] (vy) £y (vy) is the
normalized test particle velocity distribution function, then the total spontaneously radiated power
per unit volurne of these test particles in a particular harmonic m is given by

P(m) = n; j dQI dw j dv, 2nv,) f dvyn(m) f, (v,) f, (v . (8

4

Here we have made the reasonable assumption that the emitting test particles (i.e., the fusion ions)
are nonrelativistic so that f(v,,vy) is decomposable!8 as the product f (v )fy(v;). Such a



decomposition is possible only in a homogeneous plasma model even for the nonrelativistic case.?2
In a subsequent paper we will examine the effects of magnetic curvature and diamagnetic drifts
where such a decomposition is not possible. In the plasma physics litsrature16:24.25 it is well
known that in general it is extremely difficult if not impossible to carry out these czlculations
analytically (i.e., the Bessel function averages over the velocity distribution functions) even with
this decomposition of f(v,,vy) for arbitrary angle 8. Hence, for simplicity we will now examine
the cases of 6 =0,0 =0, 0 =n/2, and 0 = 7t/2, respectively.

Case 1: 0=0,ie,k; =0

Here since k) =0, Aj=k v, /0¢i =0, Jm(Aj) = 0form 2 1, 11(7\.1) Jo(u)/2 = 172, and
Jn i) =0 for m 2 2. In the O mode A(m) of Eq. (4), the contribution from the component of
the electric field E = Ejiz o« (1-1c cos 6 - vy)Jm(Ai) =0. But, the contribution from the
component of the electric field E = Exix o< [cos O (u-1c cos 0 - vy)/sin 0]
ImA) = (H-lc - vi(kvi/2@ci) = (vi/2wci) (R-lck - kvy) = (vi/2@c)(® - kv)) =
(v1/20¢)®¢i = vyi/2 form = 1, and is zero for m 2 2, where we have used the 6-function
condition that w — w¢; - kvy=0 for m=1 and k = k since cos 0=1. In Eq. (3),
viJm(Ai) = vi/2 for m = 1 and is zero for m 22. Thus we see that for 6 =0, there is no
emission for m 2 2. There is ony a circularly polarized wave emission at the fundamental for
m = 1, and from Egs. (3) and (4), we obtain

[ an2q? \|v (i £i ILI
A(l) = 30520 5 &0 - @i - kvy)
41c2q3 ’ﬁ l . 9
(L3Chm1 3 & - g - kvy) . 9

Thus, the Bekefi's classical coefficient of spontaneous emission for this test particle is
(1) = (Lpw/28c)3RA(1) = (W3/C) (qfw?/anc3) vi 8(w ~ i - kvy) = (ngfw/dnc3) vi (o -
@i - kv) since C = p2, and n(m 2 2) = 0. Since V2 = (v sin 8)2, [ dQ (sin 6)2 = 8x/3. Hence,
from Eq. (8) we obtain the total spontaneusly radiated power per unit volume of these test particles
in a given harmonic m as
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.q?
P(1) = (223%‘1—')] dow O)ZI dv J,(2NVJ_)f_L(V1.)ViI dvfy(vy) 8( - @ - kvy)

_ (Zuniqf<v2| >
3c3

[ - 29

_ (2n;q,2<v2| >
3c2

I doof, [v" =£°L—°’°2] : (10)

and P(m 2 2) = 0. Here the angular brackets refer to a statistical average i.e.,
<> = [dv (27v}) £ (v1) V2 = (KT ;/M;), where T; is the perpendicular temperature of
these test particles and x is the Boltzmann constant. In deriving Eq. (10) from Eq. (9) we have to
integrate over all solid angles Q to obtain the total radiated power. Since this is a dipole emission
we have taken a standard dipole emission distribution in d€Q, i.e., we have set [dQ[ 1=2x[F sin
9 d (sin 8)2 { } = (8x/3) { }, where we have written [ ] = (sin 8)2 { }. For cyclotron motion
of the test ions with a Larmor radius PL. the acceleration a = J_/pL = W¢jvy, and hence
the classical spontaneously radiated powerl6.17.26 by this test particle is
(2q?a2/3¢c?) =(2q2@%v3/3¢3). Thus the result of Eq. (10) simply reflects the classical Doppler
broadened spontaneous emission from a system of such test particles in a background medium of
index of refraction . This at least confirms the correctness of our Egs. (3-8).

Case 2: 0 = 0, i.e, k1 << k||

Here since k; << ky, Aj = kyjvi/oci << 1, Jm(A)) = (1/m!) Ay/2)™ = (1/m!)
(ki/20c)™ v, and Jp &) = (UmDH@/2)Ay2)™! = (I/m)(m/2) (ky/206)m1 v, We are
particularly interested in the resonance of the fast Alfven wave of the background deuterium plasma
with the m-th harmonic of the energetic fusion ion products (such as the protons and alpha
particles), and hence the background index of refraction may be written

=k - KI2 .
p=tr=Ky [1+

M}}”Z < (11)
B2 Va '

where the fast Alfven wave phase velocity VA = @w/k = c/(1 + 4nngMyc2/B2)1/2 =
B/(4nngMq)1/2, My is the mass of a deuteron, and nq is the number density of the background
deuterium plasma ions. That is, we are inter:sted in @ = m@¢j £ LY where @iy is the lower
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hybrid frequency of the background plasma. In this case the allowed electromagnetic waves in the
background medium are the fast hydromagnetic Alfven waves with the dispersion relation
® = kVa. Hence, for the m-th harmonic resonance of the test ions @ = m®gj, (k;/20¢;) =
(mk sin 8/2w) = (m sin 68/2V4), Jm(Xi) = (1/m!) (mv, sin 8/2V )™M, and J,(Ai) = (1/m!)(m/2)
(mv, sin 8/2VA)M-1, Thus on making use of Egs. (3) and (4) in Eq. (8), we obtain the
spontaneously radiated power per unit volume of these test particles in a given harmonic m as

’

4uniq? \ sin @
P(m) = (—303—) f do o? I dv, 2rv)f, (v)) [({.}T)z (;;AO_ (m_"ZJ.V_A_.

I dwvify (v.)[l + ‘cos 0- %)2} & - mod; - kyvy)

[t )[m%in e>’““2v%] < (] j wo

3c2cos (m!)222m Va

(12)

{1 +[ cos - i-“’—“m—“’“-')-r} f, [v.. < lonog))

Vak cos 0 kcos 9

For 6 = 0, the factor {1 + [cos 8 — (@ — m®¢i)/V A k cos 0]2} = 2 since ® = mwc;. Thus, it is
relatively easy to show that Eq. (12) reduces to Eq. (10) for the case of 8 = Q. For that case, we
found that there is only emission at the fundamental cyclotron frequency corresponding to m = 1,
and there is no emission at the harmonics corresponding to m = 2. But for 8 = 0 corresponding
to a finite value of k| << ky, there is emission at all the higher harmonics and the emission at the
m-th harmonic is proportional to (<v/VA>)2M = (<v | >/VA)2M,

Case 3: 0 =n/2, ie., k=0

Here since k; =0, p = ck/o = c/Va, and by the 8 functions of Eqs. (3) and (4)
® = mW¢j, Aj =k v /0 = mkv /0 = mv;/Va. Thus on making use of Eqs. (3) and (4) in
Eq. (8), we obtain the spontaneously radiated power per unit volume of these test particles in a
given harmonic m as

L]



P(m) = (4!;1(\:1% , I do o? I dv, (2rv, )£y (v) j dvyfy (vi)

vl s 2 - - ()0 a9

where

Sal[52)- ] = (R (T () (e} 18

L = c/Va, and the angular brackets refer to the statistical average over the perpendicular and the
parallel velocity distribution functions. In the G of Eq. (14) the first term that is proportional to
I, is the contribution of the extraordinary mode and the second term that is proportional t0 viJm is
the contribution of the ordinary mode. Since xJ,(x) = mJpm(X) - XJm+1(x), Gm of Eq. (14) can be
rewritten as

([ B e ) + ()

Chu and Sperling27 have analyzed this problera using the monoenergetic velocity space ring
distribution of the form (27:tv)) f1 (v1) =8(vL - Vo) and fi(vy)) = 8(vy). For this distribution
function, our Eq. (14) or (14a) becomes

(O o ] il s

Our results of Egs. (13) and (15), differ slightly from the corresponding Chu and Sperling2?
results of their Eqgs. (23) and (24), respectively. For example, their Eq. (23) yields a value for
P(m) which is (2%2) (3/4) = (312/2) times larger than that given by our Eq. (13). Their Eq. (24)
contains an extra term (m2w¢i/Wcp)Im(mMV/V o) inside the square drackets on the right hand side
compared to the corresponding ones of our Eg. (15), where @y, is the cyclotron frequency of ions
of the background medium. We do not know the origin of this factor. For example, if the
background medium is vacuum, then wp = O since there are no ions in vacuum. But this terra is
then infinite. Our Egs. (13) and (14), and hence Eqgs. (14a) and (15), agree exactly with the
Trubnikov formulas.!6:17 Further, we have shown in Case 1 of this section that the total emission
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agrees with the well-known classical electrodynamic formula for the emission from an accelerated
charge particle,26 i.e., P = (2q2a2/3c3), where g and a are the particle's charge and acceleration,
respectively. This shows the correctness of the factor 4/3 on the right side of our Eq. (13)
compared to the corresponding factor of 2x2 in Eq. (23) of Chu and Sperling. Hence, we believe
our Eqgs. (13-15) is fully correct:

Case 4: For 0 = %/2, i.e, k|| << k.

Here since k=k;, ® = m@¢j, R =~ ¢/VA and VA = 0/k ~ mw¢i/k, we may write
Ai=k) v /oci =k sin 8 v /wci = mv /Va. Also in Eq. (4) we can set sin 0 = sin /2 = 1.
Then on making use of Egs. (3) and (4) in Eq. (8), we obtain the spontaneously radiated power
per unit volume of these test particles in a given harmonic m as

P(m) -(f%n-ciiﬁ)[dmmzjdu (2mvy) f_L(v_‘)Idw £y (vu)

{[v i (%’:-)]’ + {(sin 6] (Vacos0-v) J,.(‘“V‘HZ } & - ma; - k cos 0 vy)

-(M%’Idm(ﬁm[vuzw >

k cos ©
e

where

o) o[-
g

In the limit 8 — 1/2, cos © — 0, and sinoe | dvyfy(vy) = 1, it is relatively easy to show that Egs.
(16) and (17) reduce to Eqgs. (13) and (14), respectively, as they should.
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B. Spin-Flip Emission

We stated earlier that in TFTR when deuterium beams were injected into a deuterium
background plasma the main sequence of ICE harmonic peaks, which occur at the multiples of the
deuterium cyclotron frequency @cd-E evaluated 2t ihie outer low-field side plasma edge, seems to
ride on a broader background continuum component of the spectrum that begins around the fifti:
harmonic of w¢g-g. This “background continuum” emission exists roughly over the frequenc
range for which the proton spin-flip resonance is within the plasma. Since the proton
gyromagnetic ratio or the g factor is equal to 5.59, the fifth harmonic of txd.E is near the frequency
at which the proton spin-flip resonance is at the outer low-field side plasma edge. Hence, we now
wish to examine the spontaneous spin-flip resonance emission from the fusion product protons as
a possible mechanism for the observed background continuum spectrum seen in Fig. 1.

We, therefore, consider a Fermi particle such as a proton of mass Mp, charge gp, and spin s =
(fi/2) o in a uniform magnetic field B = Bi;. Here ¢ is the familiar Pauli spin matrix. The
proton spin-flip resonance frequency @sp is then given by

er {2} o

where gp = 5.59 is the proton g factor, and p and axq are the proton and the deuteron cyclotron
frequencies, respectively. The energy-level spectrum of this proton may be written28

E(m,,v) = m,ﬂm,p + M%ﬁ (19)

corresponding to the eigenstates Img, v >, where v is the proton's translational velocity, and mg
can have only the two values mig = +1/2 (spin-up) and mg =-1/2 (spin-down). The spin-flip
emission and absorption occurs when the proton makes a transition from the state img, v > to
another state Im,, v' > such that

m=%(m;-mg)=%1 . (20)

Let Ag(m) be the Einstein's (quantum mechanical) spontaneous emission probability coefficient for
the emission of a spin-flip photon of frequency ® = mwsp =+ dsp, and wave vector k. Ag(m) is
given by28
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oG

) i P 8o - mop-kv) 1)
where we tave neglected the Compton recoil velocity corrections of +fik/2Mp to the proton
velocity v. The results of Eqgs. (5-7) are also applicable to this spin-flip case. Let
f(mg,v) = fg(mg)y(v) b the normalized probability per unit volume that the protons in this box
will have an energy I'iing,V) = i ficdgp + Mp v2/2. Then, the total spontaneously radiated spin-flip
power per unit volume of these test fusion product protons in a given polarization m = * 1,
corresponding to the spin-flip frequencies @ = t wp, is given by

Py(m) = npfi{m, = + 1 f dQ I do [ dvE(vny(m) 22)

where ng(m) is related to As(m) by the same relation of Eq. (7), and np is the proton number
density. For a nondegenerate classical system ut thermodynamic eonilibrium

fdema)= (2 cosh (3 ‘P\] expf 250 (@3)

and

)= e e AV @4
2 v 2xT,

where T and Ty are the temperatures appropriate to the spin and the translational degrees of

freedom of the fusion protons, V{ is their drift velocity, and x is the Boltzmann constant. Thus,

from Eqgs. (7), (21), (22-24), we obtain the spontaneously radiated spin-flip power per unit

volume of these test fusion product protons in the polarization m = +1(i.e., @ = +gp) as

i%i%ﬁ) f“'.' %)(Esi)j do “’Z(ﬁ‘p’)z f d"fv(")a(“‘ " Wsp - k-v)

Py+1)=~

(_“_‘lﬂi) (_i) f(+) f do mz(ﬁk)znmlfv[lvi (@-0p) : )] : (25)

3¢c3

<

It is physically instructive to compare the spin-flip result of Eq. (25) with the cyclotron result of
Egs. (10), (12) or (13). It is clear that the cyclohon emission is proportional to the square of the
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average perpendicular velocity of the particle <Vi>, while the spin-flip emission is proportional to
the square of the particle's Compton recoil velocity (flk/Mp)z. In order to make a rough
comparison of the strength of spin-flip emission with that of the cyclotron emission, we will
neglect the Doppler broadening effects in Eq. (25). Then, (e — wsp - k-v) tends to 8(w — wgp) in
Eq. (25). Since p = ck/o = ¢/V A, we obtain the approximate spin-flip power as

o .
=(4n ;ccnchvA [(1, ) (M,,vz) b [+ 1.)] 6

Thus, from Egs. (13) and (26}, we find that

Py(+1)] (1) ) (2/28 (hayM, VA, +1/2)]
P(m) | <G> @n

Since <G1> = 2 < (v;/Va)2 >, we find that [Pg(+1)/P(1)] = 4.37 x 10-24 for the typical tokamak
parameters of Sec. VII if we assume that fg(+1/2) = 1/2. The correctness of the result of Eq. (27)
can be understood from first principles in the following way: The quantum mechanical photon-
proton interaction Hamiltonian that is responsible for transitions in which only one cyclotron light
quantur is involved is He.jnt = -(qp v - A/c), while the corresponding one for which only one
spin-flip light quantum is involved is Hs.int = (gpqps'V x A/2Mpc) = (gpqpfic'V x A/4Mc) =
(gpqpfic-k x A/4Myc). That is, (Hs.iny/Hc-int) = (gpfik/4Mpv). The Einstein A coefficient is
proportional to iHing?, the kA is proportional to | do w2A which in turn is proportional to m3A,
and the emitted power P is proportional to ZxfiwA. Also from Eq. (18), wgp = (gp/2) Wcp.
Hence, the ratio of the of the spin-flip emission to the cyclotron emission (Ps/P¢) is
proportional to @4/Hin|2 which in turn is proportional to [(gp/2)*(gpfik/4Mpv)2]
= ([(gp/2)6 RacpMpVRZV4 <(vi/Va)2>) = ([(gp/2)6 (hacp/MpVE)/2 < Gm >), since @
= cp = k VA. Thus, we see the correctness of the result of Eq. (27) follows trivially from the
fundamental physical principles. Earlier we have shown that our result of Eq. (10) agrees exactly
with the well-known classical emission foimula from an accelerated charged particle (2q%a2/3c3),
as found in standard text books on classical electromagnetic theory.26
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C. Evaluation of Statistical Averages for Various Distributions

In this section we wish to carry out the explicit evaluation of the statistical averages implied by
the angular brackets < - - - > in the earlier sections. These angular brackets refer to statistical
averages over the appropriate perpendicular and parallel velocity space distribution functions.
First, we consider the monoenergetic velocity space ring (or, equivalently, a cylindrical shell)
distribution of Chu and Sperling.2? Second, we consider the monoenergetic isotropic velocity
space spherical shell distribution of Dendy, Lashmore-Davies, and Kam,29 and third, we consider
the conventional anisotropic (T; # Tj;) Maxwell-Boltzmann distribution function. These
monoenergetic distribution functions are a good approximation to the newly born fusion products
such as protons and alpha particles, while the anisotropic Maxwellian disizibution can well describe
the spontaneous emission from the background deuterium plasma icns. We should point out that,
after some period of time from their birth, these fusion products will relax towards the slowing-
down distribution function30 of the form f(v) = (Ag/v3) [1 + (v/v¢)]™3 for v < vy and f(%) =0
for v > vy, where vy = (2Eq/Mq)!/2 is the maximum velocity corresponding to the birth
energy Eq of the fusion product of mass Mg, vc = (3n1/2Z¢sr Me/Mg)!/3 ve, and
Ao=3/{4n Ln[1 + (ve/vm)3]) Here, ve = (2kTe/Me)!/2 is the electron thermal speed, and
Zeff = Zi(niZiz/ne,Mi) is the effective value of the ionic charge. For the sake of analytical simplicity,
we will only consider the monoenergetic ring, monoenergetic spherical shell, and Maxwellian
distributions here. The spontaneous emiss on depends only on the average moments of the
distribution function [such as, for examp.c . -+ 2m-th moment <(V}_m)>] and is hence very
insensitive to the slopes and shapes of the distribution function, while the balance between the
induced emission and absorption which determines the growth or damping of the cyclotron
harmonic waves (to be discussed in a later section) can be a sensitive function of the slope and
shape of the distribution function. For these reasons, the introducticn of a small thermal spread to
the above two monoenergetic cases considered here will not appreciably alter our conclusions
about the spontaneously emitted power.

Case 1: Monoenergetic Ring Distribution

Chu and Sperling27 have used a monoenergetic ring or, equivalently, a cylindrical shell
distribution in perpendicular velocity space and this may be written

f(v) = @rv, ) 8(v, - Vi) (v, . (28)

L
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Here, of course, the statistical averaging is trivial and <V_2L> = V% in Eq. (10);

<V2f"> = V¥ in Eq. (12); and <vi> = 0,<[Jm(mv /VA)I2> = [Tm(mVi/Va)]2,
<[(mv | /V AT p(mv ) /V A)I2> = [(mVi/V A, (mVi/VA))2in Eq. (14).

Case 2: Monoenergetic Isotropic Spherical Shell Distribution

Dendy, Lashmore-Davies, and Kam?? have used a monoenergetic isotropic velocity space
spherical shell distribution as given by f(v) = (41v2)-1 3(v - Vi) . However, in our treatment
we have thus far retained the (L, ) anisotropy and hence we will adopt this spherical shell
distribution as given by

f(v) = 2rv ) 3(v, - V) 8(vy - 212y . (29)

Note that according to Eq. (29), vx=vy=vz = 2-12 V;. Hence Eq. (29) represents a
monoenergetic isotropic velocity space spherical shell distribution with a mean velocity
v=(vi+ v} + v)/2=(3/2)12 V;. That is, Eq. (29) is equivalent to the distribution
f(v) = (4rv2)-1 (v - (3/2)12 Vj]. In this case, all the perpendicular velocity averages
are the same as the previous case 1, and in Eq. (14) <Vﬁ> becomes V2. That is,
<G> = {[(mVyVa) Jp (mVy/V A2 + [(mVy/Va) Im(mVy/V A2 2}, The behavior of <Gp> as
a function of the harmonic number m for (Vy/V ) values of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 are
shown in Figs. 2(a), 2(b), 2(c), 2(d), 2(e) and 2(f), respectively. Fo. the typical tokamak
parameters used in Sec. VII, the value of (Viy/Va) = 2.28. These plots are similar to those given
by Chu and Sperling2 but for a finite <V§> = 2-1 <v3> = VZ/2 instead of <v;> = 0 as assumed
by Chu and Sperling. As we stated earlier, even if we introduce a thermal spread of
€ = [<(AV)2>] << V% to the 8 function distributions of Eqs. (28) and (29), the above results of
cases 1 and 2 for the spontaneously emitted power by the fusion products will not be appreciably
altered. That is, even if we replace 8(v - V) by the function f(v) = {(ne)-1/2 exp[-(v ~ V)¥/e]}
where € << Vj, the above results will not change significantly. Of course, the spectrum will no
longer consist of sharp 3-function lines at each harmonic but will be Doppler broadened with a full
width at half maximum of (Aa/®) = (2k;e1/2/may;). However, the “strength” of every harmonic
resonance m is unchanged. By “strength” of the resonance we mean the frequency
integral under the resonance curve. The reason for this is that in the limite — 0,
f(v) = {(me)-12 exp[- (v — V;)2/e]} = 8(v - Vj). Thus, the Doppler shift of 8(w - mec; - kyvy)
does a one to one mapping of vy to vy = (@ - mai)/ky, preserving the normalization condition
integrals and the resonance strength. Note that the thermal spreading of the perpendicular
8-function velocity distribution gives no change at all and it is only the spreading of the parallel
3-function velocity distribution that will cause the Doppler broadening.
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Case 3: Anisotropic Maxwell-Boltzmann Distribution

As we stated earlier this distribution can well describe the background deuterium plasma ions
and may be written f(v ,vy) = f; (v )f} (v, where

M
D) = 5o ex p[z = } 0Sv, S (30)
and
f,(v,) = M; )Uzex Miv-Va) 1)2 w0y oo, (31)
B A 2rkTy; T 2T I

Here, V3 is a drift velocity in the z direction. In performing the integration over v, we will make
use of the following formula given by Watson3!

f p dp Ju(s1pVnls2p) exx){ p eXP[ —fﬁ] In(—m—) , (32)

o]

where Ip(x) = i"?Jy(ix) is the modified Bessel function of the first kind. From this formula may be
derived the three integrals necessary for the v, integration. These are:

=

|, paoDitse] P exp(-p?) = (L) exal 52 1fs2] (33)

Jr“ p? dp [25a(sp Watsp ) exp(-p2) = ($) expl <) {1 - 1] (34)
and

f p3 dp [T(sp) expl-p?) = (Sgl)exp( X )[(24-4!1-)1 -I] . (35)

In Eqgs. (34) and (35), the prime denotes a derivative with respect to the argument and the argument
of Inand I is (s2/2). Note that in Eq. (34), [2Jn(sp)Jn(sp)] = [dI(sp)1/d(sp)].
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Hence, in Eq. (10), <v3> =(2xT 1i/M;); in Rq. (12), <Vi™ = kT i/M{™ m!;
and in Eq. (14), <vi> = [<(vy - V2)2> + 2<v> Vg - V2] = [(2xTi/M;) + V2] since
<vi> = Vg, <Um(mv /Va)]12> =[exp(-s/2) Im(sz/2)], <[(mv /V )], (mv,/Va)]12>
= (s4/4) exp(-s3/2) [(2 + 4m%/sd) Im(s2/2) - I,(s&/2)] where sm = (m/Va) KT /M2,
Thus for 8 = m/2 and 6 = w/2, the spontaneously radiated power per unit volume of a
Maxwellian distribution of particles in a given harmonic m is given by Egs. (13) and (16), where
<Gm> and < G > of Egs. (14) and (17) become

- 4 \ 2kT\/M;
<Gp>= exp(—szfzﬂ) {m2lm + (S—f) 21, - 1) { +(V2 /M )] } , (36)
and
< G >= exp(—sm) {mZIm _s_‘,}l) (21 - Im) +{cos O - m“)] (sm 9}‘ m2l, } , 37
4  cos 6

respectively. Here again the argument of I, and I, is (s3/2) where sm = (mk /@) (2xT LM =
(m k sin /@) 2xT 1 yM)12 = (m/Va) (kT i/M;)!/2 for near perpendicularly propagating fast
Alfven waves, and the prime denotes a derivative with respect to the argument.

M. LINEARIZED THEORY OF RADIATIVE STEADY STATE

In this section we first examine the linearized theory of the radiative steady state and/or
radiative equilibrium due to the cyclotron harmonic emission and absorption by both the
background deuterium plasma ions and the fusion product protons and/or alpha particles. Second,
we then examine the similar radiative steady state of spin-flip emission and absorption of photons
by the fusion product protons. In both cases we will indicate the conditions for instability leading
to the cyclotron harmonic laser or maser and the spin-flip laser or maser, respectively.

A. For Cyclotron Emission and Absorption

Thus far we have only examined the spontaneous emission of radiation from individual
“dressed test particles.” This spontaneous emission analysis applies equally well both for
background deuterium plasma ions and for newly born fusion products such as protons and alpha
particles. For the newly born fusion product ions, the above spontaneous emission calculations of
the monoenergetic velocity space ring and/or the monoenergetic isotropic velocity space spherical
shell distributions are appropriate, while for the background deuterium plasma ions those of the
Maxwellian distribution calculations should apply. These spontaneous emissions depend only on
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the various moments of the distribution function and are very insensitive to the nature of the slopes
and shapes of these distribution functions. However, the growth or damping of the cyclotron
harmonic fast Alfven waves under consideration can depend sensitively on the slopes and shapes
of the distribution functions since these are determined by the balance between induced or
stimulated emission and absorption. Thus the collective cooperative emission from a statistical
system is a consequence of a detailed balance between these three processes of spontaneous
emission, induced or stimulated emission and absorption. Indeed at the radiative steady state
and/or at radiative equilibrium, the total cooperative spontaneous plus stimulated emissions exactly
balances the total cooperative absorption, and the system as a whole emits from the surface as a
black-body which can be characterized by a radiation temperature T{®,k). It is this problem of the
radiative steady state and/or the radiative equilibrium which we wish to examine in this section.

An analogous problem of the radiation temperature for electron cyclotron emission from
equilibrium and nonequilibrium plasmas has been reczntly analyzed in the literature by one of the
authors (V.A.).18 From the resulis found in Ref. 18, it is relatively easy to show that the rate of
increase of photons [dN(w = ma;,K)/dt]sem in the box of volume L3 under consideration due to
the spontaneous emission of photons of wave vector k near the m-th harmonic (i.e., ® = magj)
may be written

[dN(mmmci,k)]
de

Jsem

= I dv, (2nv l)I dvi [LmA@m)] £, (v ) f(vy) = <[L*mA(m)] >, (38)

and the rate of decrease of these protons {[dAN(® = mwgj,k)/dt]ap - [AN(® = m;,k)/dt]iem} in this
box due to absorption minus the induced emission of photons of wave vector k near the m-th
harmonic is given by

d cis k -‘ dN(w= civk
|Memee ] |vemont] [ aom) [ anfinaco)

2 2 it

av 1 Vi

= < (——-——-rrmwa) —é—
MiV 1 aV_L

[Limaca] + () (éi_) [LniA(m)] } > N(®@ =~ max, K)
. 1 1

=2y ((D = MW, k) N(m = MW, k) ) . (39
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where (@ = md;j, k) is the damping rate of the ion cyclotron harmonic fast Alfven waves whose
optical depth T may be writien as

(0 = meg, k) = f dl (va (40)

since the group velocity of these fast Alfven waves is the same as their phase velocity VA, and d 4
is the incremental path length of the radiation ¢ 21d in the medium under study. In arriving at the
second equality of Eq. (39) we have carried out two integrations by parts, one over dv, and the
other dv),. It should be noted from the A(m)'s of Eqs. (3) and (4) that the particle-wave resonance
occurs only in the parallel velocity distribution function at the parallel cyclotron phase velocity
vp = vy = (@ - max:)/k. Hence, contrary to the intuitive expectations3-22 the damping rate ¥ of
Eq. (39) is not sensitive to the shapcs and slopes of the perpendicular velocity space distribution
function. It is, however, weakly sensitive to the slope of the parallel velocity space distribution
around vy =~ vp = (® - mcj)/ky, and this usually manifests itself as the familiar cyclotron
overstability terms18.2425 in the conventional hot plasma theory.2425

At the radiative steady state, the rate of increase of photons due to the spontaneous emission of
Eq. (38) is exactly equal to the rate of decrease of these photons due to absorption minus the
induced emission of Eq. (39). That is, at the radiative steady state the net rate of increase of
photons of frequency  and wave vector k given by14

[dN((o,k)] ={dN @K)] {[dN(“”kﬂ - [dN(w'k)];em}

dt | dt  Lem d dt 41)

is equal to zero. Then the radiation temperature T{® = magj, k) for these fast Alfven waves may
be defined as

(@,) _ [dN{o)ﬂmmci,k}/dt]sem

fiw/ ™ [Z'Kmmmci,k}]

} <[L3n;A(m)] >
<{(mhcocMiv ) (378w ) [L3n;lm)] + (kM) (976 [L3n;A(m)]}>

(42)
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Here again we wish to emphasize that the Dirac's d functions of Eqgs. (3) and (4) yield the
conventional cyclotron and/or Landau damping which depends on the slope of the parallel velocity
distribution function at vy = vp = (® — mc;)/k, and this in turn yields the familiar cyclotron
overstability terms. Since the relevant physical quantities depend only on the moments of £} (v1)
as in Eq. (42), for example, these quantities are very insensitive to the slope of the perpendicular
velocity distribution function.

If the receiving antenna is only sensitive to a given k direction (i.e., is one dimensional)
then the received radiated power in a frequency bandwidth
Aw/2x is P(m) = (Aw/2x) (KTy) (1-8) [1 - exp (-DI/[1 - Gexp (-7)], where T is the optical
depth and { is the wall reflection coefficient. If the antenna is two dimensional, then the received
radiated power in the frequency bandwidth Aw centered around the frequency ® is
P(m) o< (® Aw), and if the antenna is three dimensional then it is given by P(m) o< (02 Aw).
These differences in P(m) are of course due to the fact16 that in one dimension the phase space
volume is dk, in two dimensions it is 2kdk, and in three dimensions it is 4rmk2dk. This phase
space volume is the measure of the number of plane waves per unit volume per unit frequency
interval dw, and by the classical equipartition theorem the energy per wave is KT. However, since
this cyclotron harmonic emission for m 2 2 is purely due to the finite value of k; and most of this
emission is in the k, direction, it would appear that the system under study would tend to behave
as a two dimensional black-body system even if the antenna is three dimensionally sensitive.

It may be noted from Egs. (38), (39), and (41) that if the absorption exceeds the induced
emission, then ¥ is positive (i.e., the cyclotron harmonic fast Alfven waves are damped) and the
system will reach a radiative steady state with a finite value for the wave energy density
£(0 = mQg;, k) =fio N(@ = mag;, k)/L3.  In this linearized theory, when the absorption is
exactly equal to the induced emission, the system is at marginal stability (i.e. Y= 0) and it is
relatively easy to see from Egs. (38), (39), and (41) that the steady state wave energy density
g(w, k) =fio N(o, k)/L3 tends to infinity. If the distribution function f(v,vu) is such that the
induced emission exéeeds the absorption in Eq. (39), then the system is unstable and behaves as a
cyclotron harmonic fast Alfven wave laser or maser. In a subsequent section we will present the

appropriate coupled pair of quasilinear equations that will govern the time evolution of such a laser
or maser system.

B. For Spin-flip Emission and Absorption

+

The analogous problem of the electrodynamic properties of a gas of spin 1/2 particles in a
uniform external magnetic field has again been analyzed previously by one of the authors
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(V.A.).28 The distribution function f(ms,v) = fs(mg)fy(v), and let Fg(m) = [fs(ms) - fs(-mg)] be
the fractional excess of particles between the spin-up and the spin-down states. Then it is relatively
easy to show from Eq. (74) of Ref. 28 that the rate of increase of spin-flip excitations due to
spontaneous emission is given by

[dN (mzmmsp,k)]

dt J = I dv ﬂ"3npAs(m)] fs(my) fu(v) (43)

and the rate of decrease due to the absorption minuys the induced emission is

dN dN k
{[ ((og.::m‘p,k)}.b _[ ((‘)"::miﬁ_)]iem} = -I dv [L3npAs(m)]

[£my) - £5(-my)] £4(v) N(@ = ma,p, k) =- f dv [L3npAs(m))

Fy(m) £,(v) N(© ~ m@gy, k) = 2y{0 = mo,p, k) N0 ~ mag,, k), @4)

where the Einstein coefficient Ag(m) is given in Eq. (21), and we have neglected the Compton
recoil terms. In Eq. (44), when m = +1, mg = +./2; when m = -1,mg = -1/2; and ;s is the
damping rate of the spin-flip excitations. The optical depth of these spin-flip excitations may be
written

tfo = moy, k) = ] ' vl:; - (45)

where dl and V;, = dw/dk are the incremental path length and the group velocity, respectively, of
the spin-flip excitations in the background medium under study. Since for frequencies w which are
less than the lower hybrid24.30 frequency wyy of the background deuterium plasma the only
allowed electromagnetic wave in this background medium is the hydromagnetic Alfven waves with
© = k V4, it seems reasonable here to take Vgs as equal to V4 and not as it's free space value of c.
The physical reason for this is that these spin-flip excitations are (in the view of the conventional
Bloch's equations for spin-flip resonance>3) indeed either right or left circularly polarized
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transverse electromagnetic waves which are commensurable to the allowed Alfven waves of the
background medium.

Here again, at the radiative steady state the spontaneous emission exactly balances the
absorption minus the induced emission, i.e., the net rate of increase of the spin-flip excitations as
given by Eq. (41) vanishes. Then the radiation temperature for these spin-flip excitations may be
defined as

(_lg'_r_a - [dN(w=mQsp, k)/dt]sem ) (46)
fiw [2V(@=~map, k)] -

If Fs(m) = [fs(m;) - £5(-m;)] > 0, ¥ > 0, and the system will reach a radiative steady state with a
finite value for the spin-flip excitation energy density &(® = mogp, k)=
kT5(@ = mQgp, k) =HoN(® = magy, K)/L3. At marginal stability Fg(m) = [fs(mg) -
fs(-mg)] = 0, i.e., the populations of the spin-up and the spin-down states become equal, ¥ = 0,
the steady state wave energy density and the radiation temperature tends to infinity. When
Fs(m) <0, the population is inverted, and we have a spin-flip laser or maser which we will again

examine in a later section.

C. Evaluation of Optical Depths and Radiation Temperatures for Various
Distributions

In this section we wish to carry out the explicit evaluation of the optical depths T and the
corresponding radiation temperatures Tr both for the cyclotron harmonic waves with the various
distribution functions mentioned earlier and for the spin-flip excitations with the thermodynamic

equilibrium distribution of Eqs. (23) and (24). Let us first examine the case of cyclotron harmonic
fast Alfven waves.
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Case 1: Cyclotron Harmonic Waves with 8 = nt/2

Since the optical depth T will take it's largest value for 8 = ©/2, ie., k=k, and ky =0, for
the purposes of our estimate we will only examine this case and the case of ® = ®t/2 here. Our
main purpose in studying the case of 8 = x/2isto examine the effects of finite value of kjj. Then
on making use of Egs. (3), (4) and (28) in Eq. (39) and carrying out two integration by parts (one
over dv, and one over dvi), we obtain

n_cg;) {s;},a[s,.‘l;n(s.,,)l2

29(® = m®, kK;) = ( > o - moc;) 47
B Sm

for the monoenergetic velocity space ring distribution of Eq. (28). Here
u2 = (ck/)? = (c/Va)2 = C, Sm= (mVi/V4), Opi = (4wng#/MpP12 is the ion plasma
frequency, and the prime in the Bessel function denotes the derivative with respect to the argument.
Since for the tokamak discharge ma¢; = mqiB/Mic = R}, d@ = - d(m®@;) = (m@i/Rc) dR,
where R is the major radius of the torus and Rg is the major radius of the cyclotron resonance
layer. Thus, on making use of Eq. (47) in Eq. (40) we obtain the optical depth T of this cyclotron
resonance layer in the tokamak discharges as

i k)= [Reo v)_ [_Rehi (SHIASmm(Sm)]”
T (0 = MmO, k) (mmd Id(ﬂ (VA, (ZuzmmqVA} 38,0 . 48)

Similarly, from Egs. (3), (4), (28), and (42) we obtain the radiation temperature Ty for these
cyclotron harmonic waves appropriate to the velocity space ring distribution of Eq. (28) as

2 '
KT, ((!) o mmci,kl) = MiV4/m? [Sm,]m Sm]z

- 49
4 ASmIm(Sm)1 /08 m “
For the monoenergetic isotropic spherical shell distribution of Eq. (29) we obtain
2 1 ! 2
w5 2
210 = moouk,) = (uuzp,) (sm a([stm(sm); S+ (SulnGmP2)) 5, - may) 50
m

for the damping rate,

.
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xRw%i | [Sid O([SmIm(Sm)I + [SmIm(Sm)I?/2)
3 civ k =z S
(o = ma *). (mzmmdvA ( . (51)
for the optical depth, and
2 3 (S )PH S I S )2/2
KT, (@ ~ max, k MV, )___[M_@)lﬁ_mﬁ___ 52
J- Sz AlSmi(Sml? HSmIm(Sm)2/2)/@Sm 2

for the radiation temperature of these cyclotron harmonic waves.

For the anisotropic Maxwell-Boltzmann velocity space distribution of Egs. (30) and (31), itis
relatively easy to show that

(st ] o= e

Thus, on making use of Egs. (3), (4), (14), (30-36), and (53) in Egs. (39), (40), and (42) we
obtain

f(vi.v) . (53)

2 M:
2¥(® ~ ma, k) = (umzi )( \;AM‘ ) <Gp> o - ma;) (54)
p? J\m*xT;
for the damping rate,
uRc(D%. ( )
©~ mWg, k)~ <G> (55)
Ho = mat, k) ( l—lzm‘”civA) mTy;)
for the optical depth, and

o) (rowsMyu2)(V <G> 8§ (0 -
ﬂr(m._m%m_[ (ho) (meMy?) ff G 8- mo ] Ta 66
(mfiwe/XT);) (1: My/u )(VA/m)2 <Gp> 8 (0 - ma)
for the radiation temperature, respectively, for the Maxwellian distribution of Egs. (30) and (31).

Here the <Gm> is given by Eq. (36). Itis interesting to note from Eq. (56) that at thermodynamic
equilibrium, the radiation temperature Ty = T | ; implying that the ion cyclotron harmonic radiation
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field is in thermodynamic equilibrium with the radiating ions so as to satisfy the classical
equipartition theorem as it should. According to the classical equipartition theorem14 of course the
energy per degree of freedom is xT/2. The radiation field has two degrees of freedom, one
corresponding to its kinetic energy and the other to its potential energy, so that its energy
density = 2(xT,/2) = xT,. This radiation is due to the perpendicular cyclotron motion of the
particles which also has two degrees of freedom, one corresponding to its motion along the x axis
and the other to its motion along the y axis, so that its average kinetic energy is
2(xT/2) = xT ;.

Case 2: Cyclotron Harmonic Waves with 6 =~ xt/2

In this case it can be seen from Egs. (3) and (4) that for the monoenergetic velocity space ring
distribution of Eq. (28) the damping rate Y, the optical depth t, and the radiation temperature Ty are
given by Eqgs. (47), (48), and (49), respectively, with the following replacement: [S,,,J;,,(Sm)]2 is
now replaced by {[SmIm(Sm)]? + [(m cos 6/sin 8)J(Sm)]2}. Similarly, for the isotropic velocity
space spherical shell distribution of Eq. (29) these variables ¥, T, and T, are given by the Egs. (50),
(51), and (52), respectively, with the following replacement: [SyJm(Sm)]2 is now replaced by
([(m cos © - 2712 S,)/sin 01Jm(Sm)}2. Here again for the anisotropic Maxwell-Boltzmann
velocity space distribution of Eqs. (30) and (31), it can be shown that ¥, T, and T; are given by
Egs. (54), (55), and (56), respectively, with the following replacement: <Gy, > is now replaced by
<Gm > of Eq. (37) and O&(w-mwg) is now replaced by
((k cos 8) fi[vy = (o - mwei)/k cos 8]). It may be noted from Eq. (31) that when
(k cos 8) — 0, the factor { (k cos 8)"" fy[vy = (® - m@;)/k cos 8]) = 5(® - m@;) and hence
the result of Eq. (55) is valid for 6 = nt/2 if we take <Gp> ~ <Gm> after the frequency
integration.

In a similar way from the results found above, one can obtain closed form expressions for the
damping rate Y, the optical depth t, and the radiation temperature T, for the cases of
8 =0 and 6 = 0. As we stated earlier, the largest values of these variables occur for the case of
6 = n/2 which we have discussed in detail here. This follows because the cyclotron harmonic
emission and absorption at @ = m®, form 2 2 occur only due to the finite value of k,, and the
Bessel functions Jm(k v, /ta:i) take large values when k; = ma.i/v,;. We have also discussed the
case of 0 =~ m/2 in order to illustrate the effects of finite ky via the cyclotron overstability type
terms. Indeed, from the formulae given here one can obtain the closed form expressions for all
these parameters ¥, 1, and T, for any arbitrary angle 6.
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Case 3: For Spin-Flip Excitations

~_r the case of fusion product proton spin-flip excitations, on making use of Egs. (21), (23)
and (24) in Eqgs. (44), (45), and (46) we obtain

[——

{M_ L[ Mp |12 xp[-Mp(m ; mm,,oz]} 57

2nxTy, kI22xT,

for their damping rate,

(i) () Fue) (58)

T(® = mWsp, k) = {
2H2C°spVA

for their optical depth in tokamak B fields, and

KT (® = m@sp, k) = (hw,p) fo(ms) [Fs(m)]! = (hosp) £5(my) [fs(ms) - fy(-m,)] !

- -1
= (hedyg) [1 ; %} = (fiedyp) (Ei%.;') = KT, for fiog, << KT, , (59)

for the radiation temperature, respectively. In Eq. (57) we have written
o/k = Va, i.c., ik*/Mpw) = (hk/MpV4) = (/MpV3). In Eq. (58) we have used the fact that
the tokamak confining magnetic field B o« R-! and the major radius of the spin-flip resonance
layer is Rg. In Eq. (59) we have divided both the numerator and the denominator by the common
factor {(xeZyn?) (g§/8) hk?/Mpcw) ki, [Ivl = (@ - wyp)/ikl]}. Note that in Eq. (57), when
Tv — 0 the factor (lkI"/(Mp/27tkT\)!/2 exp[-Mp(® - m@yp)%/ki2 2kTy} — 8(® - Ogp); and
for B e R}, dR =- (R dw,y/®,p) = (R dw/@yp). Thus the result of Eq. (58) follows trivially
from Egs. (45) and (57) since Vgs = Va. Here again we see from Eq. (59) that the spin-flip
excitations obey the classical equipartition theorem at thermodynamic equilibrium as they should of
course.
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1V. CONDITIONS FOR RADIATIVE INSTABILITY AND/OR OVERSTABILITY

In this section we wish to examine briefly the physical conditions for which the system under
study can become unstable both for the cyclotron harmonic emission and for the spin-flip
emission.

Case 1: For Cyclotron Harmonic Emission

It is well known that in the linearized theory the spontaneous emission is independent of the
intensity of the radiation field present in the system while both the induced emission and the direct
absorption depend on the intensity of the radiation field the system is bathed in. In Dirac's
quantum theory of emission and absorption of a single photon,34 this linearized theory
corresponds to the use of the Fermi golden rule approximation in addition to the usual random
phase approximation in the conventional time dependent quantum perturbation theory.35, 36 Thus
it is seen from Egs. (39) and (41) that the most general condition for linear radiative instability is
that

dN(K)] _ [dN(@,K)] 6
[ dt J'[ & L, Y@k Nek20 . (60)

That is, for linear radiative instability in quantum nonequilibrium statistical mechanics we require
that the spontaneous emission exceeds the absorption minus the induced emission, i.c.,
2y(w,k) N(,k) < [dN(w,k)/dt)sem. In classical plasma kinetic theory it is extremely difficult if
not impossible to calculate this spontaneous emission, and thus one usually assumes that the
intensity or the energy density of the radiation field e(w.k) = AwN(w,k)/L> is large enough so that
one can always neglect the spontaneous emission. Thus, for linear radiative instability in classical
plasma kinetic theory we will assume that [AN(®,k)/dt];em = O and we only require that
Y(w,k) S 0, i.e., we only require that the induced emission exceeds the absorption. Under these
conditions the system will behase as an ion cyclotron harmonic laser or maser for the fast Alfven
waves with ® = m;. Thus from Eq. (39) the classical instability and/or the overstability
condition necessary for the cyclotron harmonic laser or maser action may be written

mhwg)[ 9 fiky|( 0
(MiV_L )(au) *\" l(av..)] f(v,vi)

j dv,(2nv)) ] dvy[Ln;A(m))

<
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If the total distribution function f(v, Vi) can be decomposed as a product £, (v,) fi (vi), then by
doing an integration by parts over dv, in Eq. (61) it is relatively easy to see that the sign of the net
result for ¥ is not at all sensitive to the sign of the slope [0f1(v;)/dv.] anywhere in the range

0 S v, <o, since fodv,(2nv,) f; (vy) = 1. The reason for this is that the 8 functions of the
A(m) 's of Egs. (3) and (4) do not select or favor any particular value of v, as a particle-wave
resonance value in f, (v,). These 3 functions do however imply the particle-wave resonance in the
fu(vi) at vy = (@ - mw¢;)/ky, and hence in Eq. (61) the only term whose sign can depend on the
slope of the distribution function is the term (hkyM) -[afu(Vn)/av“]. Thus, for example, if we use
the anisotropic Maxwell-Boltzmann distributions of Eqs. (30) and (31) or equivalently if we make
use of Eq. (53) in Eq. (61), we may write the necessary condition for the cyclotron harmonic
maser as

meg) , (©-ma-kiV,)] 0 62
[T.u )+ T JS ' - (62)

This is the familiar cyclotron overstability condition as found in Stix.24 For ® = m@.;, we see
from Eq. (62) that for a cyclotron harmonic maser we need a large enough drift velocity V, such
that Vz 2 (m@¢;Tu; /kiT ;) = (Va/cos 8) (Tyy/Ty;). For example, for Ti; = Tui, @~mag
and ky=k then for maser action V:2®0/k~Va. For k=0, Eq. (62) yields (W/ma;)
S (1 - Ty#Ty;). This in turn implies that ® < ma,; and T; 2 Ty;. It may be pointed out that
the above analysis also applies equally well to the slow, short wave length electrostatic ion
Bernstein waves (ESIBW). For ESIBW, k=k, and the phase velocity
0/k = mc/k; = mopyk,pi=m (2KT y/M;)12 (k;pi)-1 = m (2kT /M2 since (k,p;) is
of order unity for IBW of interest. In the literature Harris,37 Davidson and Wu,38 Gaffey,
Thompson, and Liu,39 and others40 have examined somewhat similar plasma wave instabilities
and/or negative energy waves.

Case 2. For Spin-Flip Emission

Here again the most general condition for linear radiative instability is the same as that given
by Eq. (60). That is, in quantum nonequilibrium statistical mechanics we require that
the spontaneous emission of spin-flip excitations exceeds the absorption minus the
induced emission for the linear radiative instability, i.e., 2Y,(®@ = @qp, k) N(® = Wsp, k)
< [dN(® = Wqp, K)/dt]sem. Just as in the classical plasma kinetic theory we will assume that the
energy density of the radiation field due to these spin-flip excitations is large enough so that we can
always neglect the spontaneous emission. Thus the necessary condition for the spin-flip laser or
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maser action is that Ys(®, k) 0, i.e., we require that the induced emission exceed the
absorption. Thus for example from Eq. (44) we see that y < 0 if and only if

Fs(m) = [fs(my) - fo(-mg)] 20 . (63)

That is, for a spin-flip maser or laser the statistical population of the spin-up and the spin-down
states must be inverted.41,42 However, in Eq. (44) we have neglected the Compton recoil
contribution to ¥s. Thus, from Eq. (74) of Ref. 28, retaining this Compton recoil contribution to
Y¥s» we obtain

[dN(w,k)/dt]ap - [AN(,k)/dt)iem

275(0)’ k) = N(m k)

=- j dv [LnpA(m)] [fsans)fv (v + ﬁl&) - £,(-me)fy(v)
P

- f dv[L2npA(m)] [Fs(m)+ fy(my) ({311;) -Vv] LV (64

where Fg(m) = [fi(my) - fs(-ms)], and we have Taylor series expanded
fo(v + ik/Mp) = £u(v) + (Ak/Mp) -Vify(v) + - = fu(v) + (ik/Mp)-[9fv(V)/OV] + -
From Eq. (64) we see that taking account of the Compton recoil effects, the necessary condition
for a spin-flip laser or maser may be written

[Fs(m) + fs(ms) (&ip) V()20 . (65)

If we now make use of Eqs. (23) and (24) in Eq. (65), the necessary condition for spin-flip
overstability or instability becomes

{mmsp) N (o.) - MWgp - k-Vd)J <0

KT, « XT, (66)
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It is instructive to compare the spin-flip overstability or spin-flip maser condition of Eq. (66) with
the corresponding cyclotron harmonic overstability or the cyclotron harmonic maser condition of
Eq. (62). The spin temperature [ takes the role of the perpendicular ion temperature T ; while the
kinetic translational temperature Ty plays the same role as the parallel ion temperature Tii; and
k-V4 replaces kyV,. Further, for ® = ma,, we see from Eq. (66) that for a spin-flip laser or
maser we need a large enough drift velocity Vg4 such that (k -Vg) 2 (mwspTy/Ts). For
(k -Vq) =0, Eq. (66) yields I(w/mwsp)! < (1 - Ty/Ts). This in turn implies that
lo! < Imegp! and Ts 2 Ty

V. QUASILINEAR AND/OR NONLINEAR RADIATIVE STEADY STATE

In Sec. III we have examined the linearized theory of the radiative steady state. In this
linearized theory we have made the intrinsic assumption that the particle distribution function
and/or the statistical population of the quantum states is completely unaffected during the entire
time evolution of the total system of particles and their radiation field towards its linear radiative
steady state. That is, the linearized steady state is determined purely by the steady state solution of
the photon master equation [i.e., our Eq. (41)] of nonequilibrium statistical mechanics assuming of
course a fixed given particle distribution function and the sufficiency of the Fermi golden rule
approximation in addition to the usual random phase approximation to the standard time
dependent quantum perturbation theory. However, according to the rules of nonequilibrium
statistical mechanics the time evolution of the coupled photon-particle system is in general
determined by a coupled set of master equations, one [such as for example our Eq. (41)]
describing the time evolution of the radiation field or photon (i.e., the field oscillators) distribution
function and the other describing the time evolution of the emitting and absorbing particle (i.e., the
particle oscillators) distribution function. This is because the processes of emission and absorption
of photons occur only as a consequence of the emitting or absorbing particle changing its statistical
state. Thus the time evolution of the photon distribution function will depend on the instantaneous
value of the particle distribution function and the time evolution of the particle distribution function
will in turn depend on the instantaneous value of the photon distribution function. It is this

coupling between the particle oscillators and the field oscillators which we wish to examine in this
section.

If we use the Fermi golden rule approximation to obtain the Einstein A and B coefficients, then
this coupled pair of equations dcscribir‘ag the photon-particle system form the basis of the
conventional quasilinear theory of the radiative steady state. We will see that in this quasilinear
approximation the master equation for the particle oscillators will reduce in the classical limit to a
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Fokker-Planck equation in which there will appear the usual velocity space diffusion and
dynamical friction terms. The diffusion term will depend on the instantaneous value of the
radiation field intensity since it is a consequence of induced emission minus absorption, while the
dynamical friction term is independent of the field intensity since it is a consequence of
spontaneous emission. In the conventional classical plasma kinetic theory approach it is extremely
difficult if not impossible to derive this dynamical friction term.

However, this Fermi golden rule approx.mation only makes use of the first term of the series
solution of the integral equation for the quantum mechanical transition probabilities due to Heitler
and Ma.33:36 In the modern formal quantum theory of scattering phenomewa in quantum
electrodynamics (QED) this Heitler-Ma integral equation formalism is sometimes referred to as the
Dyson's S and/or T matrix formalism.34:43 Basically, according to Heitler and Ma the quantum
mechanical transition probability j(f;i) from the initial state | i > of energy E;j to a final state | f > of
energy Ef due to an interaction Hamiltonian Tint may be written

j(fd) = (-2%1) I<fITIi>28E:-E) |, (67)

where

[<flTin! £ ><fITIi>]

<fITli>=<f]I T li>+Zpy (E:- Ep)
i~ &

, (68)

where | f' > is an intermediate state of energy Ef'. The series solution of the integral Eq. (68)
may be written

[<f1 Tyl £ > <1 Tineli>)
(Ei - E¢)

<fITli>=<fITipli>+ Zpy

(<1 T 1£'><f 1Ty 1 £7>< £ Tigeli5]

Mtk [E: - Er)(E ~Ec7)]

+ e (69)

where | £ > is another intermediate state of energy Ef . Furthermore, our Einstein's coefficients
A(m)'s of Egs. (3) and (4) ‘are due to the interaction Hamiltonian
Hin = - (qip-A/Mjc) = - (q;v-A/c) which is responsible for transitions in which only one light
quantum is involved. Here A is the vector potential of the transverse radiation field in the box of
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volume L3 expressed in terms of its creation and annihilation operators. However, for the higher
order Heitler-Ma terms of Eq. (69) we must not only include the two-photon interaction
Hamiltonian H'jp = (q%/2Mic2)A2 that is responsible for scattering of transverse photons but also
include the interaction due to the longitudinal and scalar photons.20 Then these higher order
Heitler-Ma terms will yield all the nonlinear processes>0 such as the nonlinear Landau damping,
nonlinear mode coupling, nonlinear decay interactions, linear and nonlinear mode conversion20
G.e., absorption of a transverse or a scalar photon and the subsequent emission of a longitudinal or
transverse photon, respectively), etc. Thus, if we make use of the nonlinear Einstein A and B
coefficients calculated with the full use of the Heitler-Ma time dependent perturbation theory, then
the resultant coupled pair of master equations obtained by using the principle of detailed balance
will in principle determine the nonlinear radiative steady state of the coupled particle-photon (both
the transverse and longitudinal and scalar photons) system. It is not very clear to us whether or not
the bounce frequency effects due to particle trapping, 44,45 the Karplus-Schwinger nonlinear
resonance broada:ning,46»41 and Dupree's 47 turbulens velocity space diffusion broadening are
also embodied in this Heitler-Ma theory.35-36

Although for the sake of completeness we have indicated the physical principles underlying the
development of the full mathematical quantum theory of turbulence in sufficient detail so as to be
physically instructive, pedagogically speaking, we will now only indicate the coupled set of
quasilinear equations here. Further, we are here interested in the classical limit of this coupled pair
of quasilinear equations.48 On making use of Eq. (39) of Ref. 48 in Egs. (16) and (17) of this
reference we obtain

de(m, k)
ot

L= J dv, (2rv,) I dvy[LnfioA(m)] {{e(w, k) Qu) + 1) f(vy, vi)

= (E’:ﬁi@.) (%)2 J dv, (2rv,) f dvy Gm
{ [E((I), k) & - mayg; - kyvi) Qm f (v, Vn)] + [5 (o - mod; - kyvi) £ (v, v")]) (70)

for the rate of growth of the energy density e(®,k) = foN(0,k)/L3 of the cyclotron harmonic
Alfven waves near the m-th harmonic, and
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247 ~
[a_*‘l;*_‘_’ﬂ]m =3, [ (%le—) (Yaf Gm] ([e(@k)Qum (e - medei- kivi)Quaf(v vi)]

+[Qm 8 (@ - meg; - kyv) £(v ., Vu)]) = dQ[ do |{{=—

{ [8((0, k) Qm 8 (® - ma; - kyvi) Qm f(VLV||)] + [Qm 3 (@ - mwg - kyvy) f(VLV||)]} (71)

for the rate of change of the particle distribution function due to the emission and absorption of the
m-th cyclotron harmonic waves, where we have made use of Eq. (5), Gnm is given in Eq. (17), and
the linear diiferential operator

’ 3 ko \[ @
Qn = (Eﬁ"‘)[ YR (avl) + Minl'mci} (av“ﬂ . 72)

The coupled set of classical quasilinear equations, Eqs. (70) and (71), for the wave energy
density and the particle distribution function, respectively, provides a simple physical picture of the
way the quasilinear steady state is established between the ions (i.e., the particle oscillators) and
their cyclotron harmonic Alfven wave radiation field (i.e., the field oscillators). The rate of change
of the wave energy density depends on the instantaneous value of the particle distribution function,
and the rate of change of the particle distribution function in turn depends on the instantaneous
value of the wave energy density. The first term of Eq. (70) represents the rate of damping (the
so-called cyclotron damping; that is, the rate of absorption minus the rate of stimulated or induced
emission) of these Alfven waves, while the second term of this equation gives the appropriate
classical rate of spontaneous emission of the electromagnetic waves. It is seen that Eq. (71) is a
Fokker-Planck equation whose first and second term represent a velocity space “diffusion” and
“dynamical friction,” respectively. This diffusion is proportional to the intensity of the radiation
field e(w,k) and is a consequence of the difference between the induced emission and absorption
while the dynamical friction is a consequence of the spontaneous emission. Arunasalam#9 had
earlier made use of Eq. (71) to study the ion cyclotron resonance heating of plasmas and the
associated longitudi:.cl cooling which Wwas first predicted using numerical simulation and basic
thermodynamic arguments by Busnardo-Neto, Dawson, Kamimura, and Lin30 and subsequently
verified experimentally by Rapozo, de Assis and Busnardo-Neto.d] Since there is increasing
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interest in ion cyclotron resonance heating (ICRH) of tokamak plasmas that are entering the reactor
regime of operation, we wish to draw attention to the fact that an initially isotropic (T = T))
plasma will be forced into an anisotropic (T, # Ty) state in ICRH, thus altering the ratio of
trapped to circulating particles and the associated stability of tokamak plasmas. In particular,
because the high temperature fusion plasmas are practically collisionless, it is extremely difficult (if
not impossible) to avoid this (T 1 , Ty) anisotropy in ICRH experiments. We should also point
out that, in the literature, these types of coupled quasilinear equations were first derived by Pines
and Schrieffer52,19 for electron-plasmon and electron-phonon systems.

In a similar way from Eqs. (74), (75a), and (75b) of Ref. 28, the appropriate coupled pair of
quasilinear equations for spin-flip emission and absorption may be written

2.
[ae(g). k)] = f dv [L3npA(m)] (((, k) Fy(m)f,(v)] + (ha) fo(my)fy(v)) = [ dv {M;\:{g%f;m}
t  |m b .

{ [e@, k) 8 (0 - mogp - k- v) F(m)f(v)] + [ () 8 (@ - maagp - k - v) £(my) £ (v)]} E)

for the rate of growth of the energy density €(®,k) =H0:pN(®,k)/ L3 of the spin-flip excitations
Of(o = mwsp=tmsp, .

[a[Fs(nn fv(vn} .
m

2 \{““’%Lig%ﬁ“’}
ot

Linghw L 8Mc2

([e(@, ) 8 (0 - mog - k-v) F(mf(v)] + [the) (0 - modgp - k-v) fu(my) )]} (74)

for the rate of change of the difference in the population of the two spin states
Fs(m) = [fs(my) - f5(-my)], and [0f,(v)/0t], = 0. Here we have assumed that fik << Mpv and
hence neglected some Compton recoil effect terms. The Z, in Eq. (74) is handled as an integral
over dw as illustrated in Eq. (5). The second terms in Egs. (73) and (74), which are independent
of e(w,k), are due to spontaneous emission and can usually be neglected in solving for the
quasilinear steady state since the energy €(w,k) in the spin-flip excitations at this quasilinear
steady state is considerably larger than their thermal equilibrium value of £°(®,k) = KTs.

A detailed study of the nonlinear stability of spin-flip excitations leading to the understanding
of the spin-flip laser experiments of Patel and Shaw33 has been presented elsewhere by
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Arunasalam.41:42 Following the procedure outlined in these Refs, 41 and 42, one can show that
Egs. (73) and (74) can be combined to yield

3[Fy(m) + (8w awky/nad) (KTMped) 2 [dommamMpc?]} , (75)
2

where o = (qg/fic) = (1/137). In deriving Eq. (75) we first neglect the spontaneous emission
term of Eq. (74) and integrate Eq. (74) over dv using the fact that [9fy(v)/0tly =0, assume that
fdv and Xy processes commute, then make use of Eq. (73) neglecting the spontaneous emission
term of Eq. (73) to substitute and eliminate {dv [ ] in terms of [9€(,k)/0t]m, use Eq. (5) to go
from Zy[ ] to jdco [ 1, and in evaluating the integral over dw obey the restrictions imposed by the
Dirac 3 function 3(® - m®,p - k-v). That is, the limits of the integral over ® are given by
Wsp(l - Vo/C) S @ S Wgp(1 + Vo/c), where the thermal speed Vo = (XTv/Mp)!/2, and we make
use of the approximation [(1 + vo/c)3 - (1 - vo/c)3] = 6vo/c. Itis clear from Egs. (73-75) that
Fs (m) =~ 0 at the quasilinear steady state, i.e., as t—» oo, Fy(m) = F;* =0,
[9e(®,k)/0t]m — O, and [OF;(m) fy(v)/0tlm — 0, where of course we have neglected the
spontaneous emission terms which are independent of €(w,k). Thus at the quasilinear steady state
the populations of the spin-up and the spin-down states are equal to each other and this is in
accordance with the principle of minimum entropy producu'on.39v14

If at time t = 0, the difference in the population of the two spin states F;(m) = F2, the
spin-flip excitations energy €(® = msp) =~ €°, and at the quasilinear steady state
Fs(m) = Fy =0 and &(® = mgp) = €%, then from Eq. (75) we obtain

212 | g2,
€™ - €% = FM 2(&& (__L) , (16)
s MpC ¥T, 8u3aco§p

where the thermal equilibrium initial value €° = XT; = xT,, and €= >>€°, Hence, at the
quasilinear steady state the spin-flip excitations energy density is enhanced by the factor
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above its black-body thermal equilibrium value of kT = xT, = xT.

V1. SOME GENERAL COMMENTS ON INSTABILITIES

In sections IV and V we have examined the conditions for radiative instability and/or
overstability and the subsequent quasilinear and/or the nonlinear time evolution of such instabilities
toward the corresponding quasilinear and/or the nonlinear radiative steady state. However, the
instabilities discussed here are a consequence of the induced emission exceeding the absorption
which in turn is a consequence of the “inverted population” of the statistical states. Hence, these
instabilities may be appropriately called the “causal or kinetic” instabilities. That is, the growth
rates of these instabilities are a consequence of the causality principle and thus depend on the
difference in population of states or on the slope of the particle distribution function. In other
words, the growth rates of these instabilities are determined by the imaginary or the anti-Hermitian
part of the causal dielectric tensor appropriate to the system under study. However, it should be
emphasized that in contrast to the conventional inverse Landau damping which aepends on the
slope of the particle distribution function in the direction of its wave vector k at and around its
phase velocity vp = avk, the inverse cyclotron damping under study does not depend on the slope
of the perpendicular distribution function f) (v|) as can be seen by integrating by parts the
expression for Y, but depends sensitively on the slope of gnly the parallel distribution function at
and around the cyclotron phase velocity vpiz = [(® - m@¢j)/kj|liz via the conventional cyclotron
overstability terms of the standard hot plasma theory. The physical reason for this, as seen from
Eqgs. (3) and (4), is that the particle-wave resonance condition is only on the parallel distribution
function and is totally independent of the nature of the perpendicular distribution function. This
again is a consequence of the fact that the Doppler shift is determined by the conservation of total
energy and the conservation of gnly the parallel canonical momentum for the cyclotron emission
and absorption processes under consideration.

These causal or kinetic instabilities can of course be convective or absolute in nature.54 In the
formalism outlined here we have used the temporal photon master equation to describe the growth
or damping in time of the electromagnetic waves everywhere in the plasma volume under
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consideration. Hence we are in principle assuming that the instability is absolute in nature, i.e., a
growing disturbance that does not propagate. However, convective instabilities describing
growing disturbances that propagate can also be analyzed using the spatial master equations of
nonequilibrium statistical mechanics. In contrast to these causal or kinetic instabilities, which are
determined by the anti-Hermitian part K3 = (i)-1 [K - K*] of the system's dielectric tensor K,
one can also have hydrodvnamic instabilities which are determined only by the Hermitian part
Kp = (1/2) [K + K*] and tlle noncausal plasma dispersion relation

ux(uxE)+Ki,-E=0, (78)

where L = ck/® is the vector index of refraction of the system under study. These hydrodynamic
instabilities can be obtained by setting the secular determinant of Eq. (78) equal to zero. In the cold
plasma theory Kj, is the cold plasma dielectric tensor as found in Stix,24 for example. But in
general, Kj, is the Hermitian part of the hot plasma dielectric tensor which contains all the finite
Larmor radius effects. The Hermitian part Kj, and the anti-Hermitian part K, are, of course,
related by the well-known Kramers-Kronig relations so as to satisfy the laws of causality. In
solving the noncausal dispersion relation of the secular determinant equal to zero of Eq. (78), we
can either assume a real k and look for complex w or assume a real @ and solve for the complex k.
These solutions in general will give either growing or damped waves and such growing sclutions
are the ones that give rise to these hydrodynamic instabilities. These hydrodynamic instabilities
depend only on the Hermitian part, K}, while the causal or kinetic instabilities depend only on the
anti-Hermitian part, Kj, of the system's dielectric tensor K. That is, these instabilities can be
understood in terms of the hydrodynamic conservation law equations for the mass, momentum,
energy density, etc., which are obtained by taking the various velocity moments of the equations of
the kinetic theory, and are, hence, independent of the detailed nature such as the shapes and slopes
of the particle distribution functions. Here again, these hydrodynamic instabilities can, of course,
be either convective (i.e., a growing disturbance that propagates) or absolute (a growing
disturbance that does not propagate) in nature. The well-known example of the distinction between
the kinetic and hydrodynamic instability is in the nature of the familiar beam-plasma two stream
instability.35,36:45 If the beam is a “gentle bump,” then the instability is causal or kinetic and the
growth rate is determined by the conventional inverse Landau damping33 which is linear in the
ratio of the beam density to the plasma density (ny/ne). However, if the beam is monoenergetic
and is not a “gentle bump,” then the instability is hydrodynamic in nature9 and the growth rate is
proportional to (ny/ne)1/3 and is not determined by the familiar inverse Landau damping. It is
shown in Ref. 56 that the hydrodynamic instability resulting from the interaction of a plasma with a
monoenergetic beam in the course of time evolves into a kinetic or causal instability which then
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evolves towards the quasilinear uad/or the nonlinear steady state. That is, the feedback effect of
the unstable oscillations retards the beam and increases its temperature and thus the initially
monoenergetic beam evolves into a “gentle bump.” The initial evolution of the monoenergetic
beam-plasma system towards a gentle bump condition is given by a hydrodynamic description
while the final evolution from this gentle bump condition towards the quasilinear steady state is
given by the kinetic description. Thus the eventual steady state is the kinetic quasilinear and/or
nonlinear steady state regardless of whether the initial instability is “hydrodynamic” or “kinetic or
causal” in nature. Here we have only examined the causal or kinetic instabilities which are driven
by the inverse cyclotron damping in K,. In a subsequent paper we will try to examine the
consequences of the hvdrodynamic instabilities of Eq. (78) due to Kp, in the neighborhood of ion
cyclotron harmonics.

VII. SOME NUMERICAL ESTIMATES FOR TYPICAL TOKAMAK PARAMETERS

We now wish to make some approximate numerical estimates of the power emission both by
the fusion product protons and alpha particles, and by the background deuterium plasmas ions in
their ion cyclotron range of frequencies and at the proton spin-tlip rusonance frequency for typical
tokamak parameters such as those of TFIR and JET. In ali the experiments done on ‘(FIR, the
plasma was dominated by the DD fusion reactions of Eq. (1}. This is also truc for the clder JET
experiments. However, in the recent JET experiments, the plasina was dominated by the DT
fusion reactions of Eq. (2a), i.e., these discharges had a plasma composition ratio (Tto D + T
density) of about 11%. It is shown elsewhereS7 that for the present plasma conditions in TFTR
and JET, the burnup fraction of 1 MeV tritons is approximately 1%. This implies that in DD
fusion reaction dominated plasmas, the fusion product protons and tritons are of equal number
density (np = ny), and the alpha particle density ng ~ 10-2 np. Further, since the two primary
reactions of Eq. (1) occur with equal probability, in these DD reaction dominated plasmas therc
will be an equal number of 3He particles. We will see later that it is only the protons and alpha
particles that have velocities larger than the Alfven speed and, consequently, are capable of emitting
equally intense barmonics at their corresponding cyclotron frequencies. Hence, for these DD
fusion reaction dominated plasmas, the contribution to PjcE is mainly from the protons (at ncocp)
with a 1% contribution from the alpha particles (at mw¢q = mweq). Since the ratio of the cross-
sections>8 for the reaction DT to those of the reaction DD is approximately equal to 102, in DT
fusion reaction dominated plasmas the main contribution to PCE is from the alpha particles (at
Mg = MWeq) with about 1% contribution from the protons. That is, the ratio [PycE from alpha
particles / PcE from protons] is about 10-2 for DD fusion reaction dominated plasmas (TFTR and
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the older JET data) and is about 102 for the DT fusion reaction dominated plasmas (recent JET
results). Further, it is apparent that if the observed broader background continuum component of
the spectrum (of Fig. 1) is due to the proton spin-flip emission in the DD fusion reaction dominated
plasmas, then such emission should be down by a factor of about 104 in the corresponding DT
fusion reaction dominated plasmas. That is, the ratio [PBRCC/PICE] for the DT fusion reaction
dominated plasmas is about 10-4 x [PBBCC/PICE] of the corresponding DD fusion reaction
dominated plasmas, where PRBC( is the total integrated power in the broader background
continuum component of the emission spectrum. With this in mind, we will present our P[CE
estimates only for the fusion product protons since similar estimates apply equally well for the
alpha particles, and the correct combination can easily be worked out for the DD and the DT fusion
reactior dominated plasmas.

A. Chosen typical plasma parameters and relevant geometrical considerations

We take the following tokamak plasma parameter conditions: The background plasma is of
deuterium ions withng =nj=ng=5x 1013 cm3 and T ¢ » Tyye ~ T} j = Tjjj =T = 5 keV, the
direc :a energy of the newly born fusion protons Ep = (MpV§/2) = 3 MeV and the amount of
thermal spread Ty in the fusion proton directed energy Ep according to Brysk3? is
(2'.1'1,) ~ (Ti]?.p) 1/2 = 120 keV for the background deuterium ion temperature Tj = 5 keV, the
tokamak's major radius R ~ 2.65 m, the plasma major radius Rp = 2.45 m, the plasma minor
radius ap = 80 cm, the minor radius of the tokamak's vacuum vessel ag = 1.2 m, the major radius
of the resouant :yclotron layer is R = (Rp + ap) = 3.25 m, the confining magnetic field
B =~4.45T =4.45 x 174 Gauss at R = Rq, and the fraction of the newly bomn
proton population is | = (np/ni) = [np/(nd +np)l. The scrape-off plasma layer radius
ag; = (ap + 15) cm = 95 ¢m, i.c., the scrape-off layer is from ap 10 agc. At the plasma radius ap,
ne =~ rj=ng = 1.0x 1012 cm-3, and T, = Tj = 100 eV. In the scrape-off plasma the density and
temperature; profiles are exponential with an e-folding length of about 2.5 cm. In general, both in
TFTR and JET, the experimentally observed cyclotron resonance layer R is located in the scrape-
off layer plasma, i.e., (Rp +ap) S Rc < (Rp + a5c). We will also examine the situation of the
injection of a neutral beam of hydrogen of energy Ep, = 100 keV into this background deuterium
plasma.

Thus at the plasma center (Rp), the electron cyclotron frequency (wce/2) = 1.35 x 1011 He,
the proton cyclotron frequency (mcp/21t) = 73.34 MHz, the deuteron cyclotron frequency
(wed/2xr) = 36.67 MHz, the proton spin-flip resonant frequency (wgp/2m) = (gp@cp/2) =
5.59 % 36.67 MHz = 205 MHz. At the outer low-field side plama edge (R; = Rp + ap),
(Wee/2m) = 1.02 x 1011 Hg, (wcp/2r) = 55.29 MHz, (wcd/2r) = 27.64 MHz, and



43

(wsp/2m) = 154.5 MHz. The plasma dielectric coefficient for Alfven waves
C = Ky = p2 = (4nngMqc2/B2) = 815.7, i.c., the Alfven wave index of refraction p = 28.56
and hence the Alfven wave phase velocity VA = (w/k) = 1.05 x 109 cmysec. It should be noted
that the “dressing” factor19:20 C = p2 comes from the eigenmode Fourier analysis of the
electromagnetic (wave) field energy inside the whole tokamak plasma, i.c., the box of volume L3
under consideration in Egs. (3), (4), and (21). Hence, the Alfven wave index of refraction 4 and
the corresponding Alfven wave phase velocity V A are to be taken as average values for the entire
plasma column, regardless of the location of the resonant emitting layer. That is, even if the
resonant layer is in the scrape-off region of the plasma where the ion density nq is very very low,
we must use this average value of )L = 28.56, and not the locally evaluated value of W o< (né’z/B),
for our emission calculations everywhere. Here, we are using a particle-orbit analysis, and the
global features of the background medium enter via this “dressing” factor C. In the usual kinetic
dispersion theory analysis, the Alfven wave dispersion @ = k VA comes naturally as an average
global quantity for the eigenmodes of the plasma column. The velocity of the 3 MeV protons is
Vp =239 x 109 coy/sec, i.e., (Vp/VA) = 2.28, the velocity of the 3.6 MeV alpha particle is
Vo= 131 x 109 cmysec, i.e., (Vo/VA) = 1.25, the velocity of Tj = 5 keV deuterium plasma ions
is vq = 6.9 x 107 cmy/sec, i.e., (vg/VA) = 0.0656, the thermal spread speed of protons
vp = (2KTp/Mp)1/2 = 3.38 x 108 coy/sec for Tp = 60 keV, ie., (vp/VA) = 0.322. The electron
plasma frequency (@pe/2%) = 6.35 X 1010 Hz for ng ~ 5 x 1013 cm-3, the deuterium ion
plasma frequency (Wpg/2x) = 1.048 x 109 Hz, the proton ion plasma frequency (wpp/2x) = 1.482
x 109 x n1/2 Hz, and we will make use of the relations (Mg/2) = Mp = 1837.05 M, and
(Mec2) = 0.511 MeV. The velocity of the neutral hydrogen beam at energy Ep= 100 keV is Vp =
4.364 x 108 coysec, i.e., (Vi/Va) = 0.42.

If Aw is the full width at half maximum of the cyclotron emission lines, then the width in major
radius of this emitting resonant layer is AR = R¢ (Aw/®) since the cyclotron frequency
®Weje< Be R 1, The chordal vertical height of this resonant layer plasma
= 2[ad; - R¢ - Rp)211/2 = 2 [a% - af], and the total circular length of this resonant layer
= 2nR.. Hence the emitting plasma volume contained in this resonant layer
(AVol.) = 2nR¢) (ARg) (2(2kc - 3]1/2) = 4rR(2 [ad. - 3112 (Aw/w) ~ 6.80 x 107 x (Aw/w)
cm3. The internal surface area of the tokamak's vacuum vessel S = (2nRq) (2mag) = 1.26 x 106
cm?2, and we will take the collecting area (AS) of the receiving antenna as (AS) = 10 cm2. This
value of (AS) seems reasonable for the TFTR data which was taken with small radio-frequency
probes. However, the JET results yielding PicE in the range 10-12 S Pjcg < 10-3 W reported in
Refs. 3 and 4 was taken with the large ICRF heating antennas as the ICE receiving probes and
hence for these JET data (AS) is probably a factor of 103 or so higher, i.e.,(AS) = 104 cm2. If



P(m) is the emitted power per unit volume from this resonant layer in the m-th harmonic, then the
total power P (m) collected by the receiving antenna for @ = m@g; is PA(m) = P(m) (AVol.)
(AS/S) = P(m) x 5.40 x 102 x (Aw/w) for TFTR and PA(m) = P(m) x 5.40 x 105 (Aw/w) for
JET. This analysis applies only for the volume emission processes such as the spontaneous
emission when the optical depth T << 1. Further, since the free-space wave length of the radiation
is large compared to the plasma diameter, we have assumed that the emitted radiation will fall
evenly over the entire inner vacuum vessel surface.

If the optical depth T >> 1 and if the system is in thermodynamic equilibrium, it is no longer a
volume emission anc the system emits as a black-body from the front surface of the
resonant (black-body) layer Rc. Then the power received by the antenna4 is
PA(m) = [xT (@ =~ mwei)i(1 - p2] (Af) (AQ) (AS), where p is the voltage reflection coefficient
at the antenna-plasma interface and (Af), (AQQ), and (AS) are the receiver bandwidth, antenna solid
angle, and the antenna area, respectively. Here T(® = ma;) is the effective radiation temperature,
and as derived in Eq. (56) it is equal to T ) j at complete thermodynamic equilibrium. This effective
radiation temperature formula for PA (m) is also applicable to nonequilibrium systems as long as
the emission under study is a surface emission and the optical depth t remains very much larger
than unity. However, if the system under study behaves as a laser or a maser it is not clear how
the total power received by the antenna P A (m) is related to the total laser power Py (m) emitted by
the system. Of course, one can always say that PA (m) has to be less than or equal to Py (m).

B. Estimates of single dressed test particle spontaneous emission

Let us first examine the predictions of our calculations of spontaneous emission. We must, of
course, assume that T << 1 and this is a volume emission. According to our Eq. (10), for
example, we find that the spontaneous emission from the fusion protons
P(1)=n x 4.98 x 10-8 W cm-3 for the region near Rg = Rp + ap, or equivalently,
1.66 x 10-20 W per proton. Since the emission is proportional to <v2>, we note that the
equivalent alpha particle emission Py(m) can be obtained by multiplying the corresponding proton
emission Pp(m) by the factor [(3.6 MeV/3 MeV)(Mp/Ma)] =0.3. Here, 8 = 0, k = k)jiz,
® = kVa =k; VA, and the Doppler broadening (Aw) ~ 2 k||(2pr/Mp)1/2. That is,
(Aww) = 2 (2KTpMpV3)1/2 = 0.645. Hence PA(1) = 5.40 x 105 x 1 x 4.98 x 108 x 0.645 W
=1 x 1.73 x 10-2 W, and PA(m 2 2) = O for JET and is a factor of 103 lower for TFTR. Thus,
for example, when the fractional proton (and/or alpha particle) population 1 = 10-4, then
PA(1) = 1.73 x 106 W. This amount of power is in reasonable agreement with those
experimentally observed? in JET but the theoretically expected Doppler width (Aw/) is larger than
the experimentally observed line widths. Further,at® = 0, k; = 0, and, hence, we can only
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account for the emission at the fundamental proton (and/or alpha particle) cyclotron frequency.
There is no emission at higher harmonics without a finite value of k | . It should be noted that the
result of Eq. (10) is exactly the classical electrodynamics formula for the total emission from an
accelerated charge in a medium of index of refraction y as (u2q#a2/3c3), where for the circular
cyclotron motion the acceleration a = (vi/pL) = (v /p )P @ci) = (@¢iv ) ). For finite
k | =k sin 6, it is seen from Eq. (12) that

P(m+1)
P(m)

- s v
= (m+1)2 (m sin 6)? [< (V,;)z >} . (79)
~ where for 3 MeV protons [<(v | /VAY2>] = (Vp/VA)2 = (2.28)2 = 5.20. Thus from Eq. (79) we
see that the approximate angle 6y, at which P(m + 1) = P(m) is given by

sin O, = 5!!21'-;% . (80)

Thus for m = 1, 2, and 3, 6, takes the approximate values 61.30°, 41.15°, and 35.80°,
respectively. A more rigorous estimate of these angles can be obtained from the results found in
Egs. (16) and (17). For these angles the second, third, and the fourth harmonics, respectively, are
as intense as the fundamental. Indeed, it is seen from Eq. (79) that if [<(v | /V A)2>11/2 js larger
than {1 + (1/m)], there always exists a 8, between zero and n/2 for which the (m + 1)-th
harmonic will have the same emission intensity as that of the m-th harmonic. Thus we see that the
spontaneous emission from the fusion product protons can account for all the cyclotron harmonic
emission at frequencies ® = mW¢p, where 1 < m < mg such that mpWcp is less than the lower
hybrid frequency wy }j. These conclusions can be verified and substantiated by the explicit results
of Eqgs. (13) to (17) and the plots of Fig.2.

Let us now use Eqgs. (10) and (12) to estimate the spontaneous emission from the deuterium
ions of the background plasma. From Eq. (10) we obtain that P(1) = 3.46 x 10-10 W ¢m-3 and
(Aw/) = 2(vg/V 5) = 0.131 for the background deuterium ions. Hence the total power collected
by the receiving antenna at the fundamental deuterium cyclotron frequency @qq = ((ocp/2) is
PA(1) = 5.40 x 105 x 3.46 x 10-10 x 0.131 W = 2.45 x 10-5 W and P (m 2 2) = O for JET and
is a factor of 103 lower for TFTR. This amount of power is in reasonable agreement with that
experimentally observed4 in JET. However, for these deuterium ions of the background plasma
[<(v) /VAY2>]1/2 ~ 0.0656. Hence from Eq. (79), [P(m+1)/P(m)] = (m + 1)-2 (m sin 8)2
(0.0656)2 = [m sin 8/(m + 1)]2 x 4.30 x 10-3 < 4.30 x 10-3. Thus the intensity of successive
harmonics of the deterium cyclotron emission should decrease by at least a factor of hundred or
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more. These conclusions can be verified and substantiated by the explicit results of Egs. (12),
(14), (17), (36), and (37). Thus the experimentally observed emission at ® = W;q can be
accounted for by the direct spontaneous emission by the deuterium ions of the background plasma.
However, the emission at the second and higher harmonics of ¢4 cannot be accounted for by
such direct spontaneous emission by the deuterium ions.

We now wish to make an estimate of the direct spontaneous spin-flip emission from these
fusion product protons. For this purpose we will make use of Eq. (27), and since
<G> =~ (1/4) <(v]/VA)2> = (1/4) (2.28)2 = 1.30, we find from Eq. (27) that

[Pg(+1)/P(1)] = 4.37 x 10-24, That is, the direct spontaneous spin-flip emission by the fusion
protons is a factor of at least 10-23 lower than the corresponding direct spontaneous fundamental
cyclotron emission by these protons. Hence the direct spontaneous spin-flip emission from the
fusion product protons cannot account for the experimentally observed broader background
continuum component of the spectrum in TFTR, despite the fact that this continuum component
exists roughly over the frequency range for which the proton spin-flip resonance is within the
plasma, see Fig. 1.

C. Estimates of black-body emission

We will now turn our attention to numerical estimates of our theoretical formulae of Sec. IIl on
the linearized theory of the radiative steady state. At thermodynamic equilibrium, this radiative
steady state is the state of radiative equilibrium. That is, the radiation field inside the medium (i.e.,
the field oscillators) is in complete thermodynamic equilibrium with the radiating particles (i.e., the
particle oscillators). At this steady state the classical equipartition theorem should be valid, i.e., the
energy per degree of freedom should be equal to kXT/2. Since the emission and absorption of these
cyclotron harmonic waves is due to the finite size of the ion Larmor orbits, it is the perpendicular
motion of the ions that is in radiative equilibrium with its own radiation field. This perpendicular
ion motion has two degrees of freedom, one corresponding to motion along the x-axis and the
other to the motion along the y-axis. The energy of these two degrees of freedom is
2(xT)i/2) = xT ) ;. Hence according to the classical equipartition theorem the effective radiation
temperature T, must equal T | ; at this radiative equilibrium, i.c., the wave energy density € = kT,
is in equipartition with the ion perpendicular energy density xT ;. Similarly, at radiative
equilibrium for spin-flip emission and absorption, the effective radiation temperature T, should be
equal to its effective spin temperature Tg. These are the results found in our Egs. (56) and (59),
respectively. Also in Eqs. (49) and (52), we may write (Si O{[SyJi]2}/0Sm) =
0{[SmIiml2}/08%) = {(2/S2) [SmIm)?) and (Si A([(SpIml2/2)/0Sm) = ((2/S2) (SmIml?/2],
then the results of these Eqs. (49) and (52) both reduce to yield xT, = ( M;V?A/mz) (S%/2) =



47

(M:iVZ/m?) (m2V¥2V3) = (M;V?/2), i.e., the radiation field energy is in equipartition with the
particle kinetic energy.

If the system is in radiative equilibrium then the power it will emit into a receiving antenna with
a bandwidth Af is PA = [kT; Af] = [(xTrmo¢i/21) (Aw/m)] = [1.602 x 10-19 x (mawi/2x)
(Aw/w)] W per eV, where we have used the fact that @ = m@c;j, and m is the harmonic number.
Thus the black-body emission from the 3 MeV protons with (®¢i/2x) = 55.29 MHz is
PA = [2.66 x 105 m (Aw/w)] W. If we now take the experimental value of (Aw/@) = 0.05, then
Pa =[1.33 x 10-6 m] W. This emission increases linearly with the harmonic number m if
(Aw/w) is a constant. This is a huge amount of power compared to the early experimentally
observed values# from JET in the range 1012 < PICE S 102 W. But recent JET measurements
reported by Sadler? gives this new range as 10-1l1g PICE < 10-5 W. However, for these recent
measurements the total neutron source rate is also accordingly much higher. That is, 1012 < total
neutron source rate < 1018 sec-! for the recent JET measurements compared to their old range of
1010 < total neutron source rate < 1013 sec-l. Thus it appears that in the JET experiments the
emission from the fusion product protons and alpha particles is a volume emission due to the single
particle spontaneous emission which is proportional to the fusion product number density, and is
not a collective black-body surface emission from the antenna viewing face of the resonant layer
which gnly depends on the surface temperature and is totally independent of the fusion product
number density. We wish to point out that although the JET results show a remarkable linear
correlation between the measured second harmonic ICE peak power and the measured total neutron
flux over six orders in magnitude, the TFTR results do not show such a clear cut correlation
between the amplitude of the n = 2 ICE peak and the fusion product number density. However,
for black-body emission from the S keV deuterium ions of the background plasma we find that
Pa = [2.21 x 10-8 m (Aw/©0)] W with (@¢i/2R) = 27.64 MHz. Thus on making use of the
experimental value of (Aw/@) = 0.05, we get PA = [1.105 x 10-2 m] W, a value that is similar to
the experimental observations. Now in the case of fusion product proton spin-flip emission, the
spin temperature Ty is most likely to be equal to its translational temperature Ty. Only in solid state
physics Tg can differ significantly from Ty. In general, in any decay processes, the daughter
products has to inherit at least the thermal spread of their parent particles owing to the intrinsic
conservation laws of both the energy and momentum in the microscopic level. However, Brysk>9
has shown that the mean thermal spread KTp in the fusion proton directed energy Ep = 3 MeV is
given by (2Tp) = [4AMpT;Ep/(Mp + MT)11/2 = (TiEp)1/2 = 120 keV for the reaction of Eq. (1),
where Tj is the temperature of the background deuterium plasma ions and Mp and M = 3 M are
the masses of the proton and the triton, respectively. Hence, it follows from Egs. (1) and (2) that
the fusion product protons will carry the thermal spread Tp of about 60 keV (from the background
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deuterium plasma ions of T; = 5 keV) superimposed on their directed energy of 3 MeV. That is,
Tg=Ty= Tp =~ 60 keV. Thus the black-body proton spin-flip emission will be almost (60/5) = 12
times larger than the black-body cyclotron emission from the background deuterium plasma ions.
Here from Eq. (18), wsp = gpWcd, and experimentally one finds that for the background
continuum spectrum (Aw/®) = 1, we obtain the black-body spin-flip emission power as
PA = 1.48 x 106 W. By using a triangular approximation to the broader background continuum
component of the TFTR spectrum of Fig. 1, we find that the total integrated power ia this
continuum component is PRgcC = [(2 x 10-10 W) (600 MH2/2)}/(300 kHz) = 2 x 10-7 W,
where we have used the fact that the bandwidth Af of the TFTR receiver is 300 kHz. Thus we see
that the black-body spin-flip emission power is somewhat larger than what is observed
experimentally.

D. Estimates of optical depths

It is now of interest to us to carefully examine whether the systems studied above can indeed
reach the state of radiative equilibrium. In general, any system can reach a radiative steady state if
and only if the seif- absorption of these radiations by the system is almost totally complete. That
is, the optical depth 1 of the system for these radiation fields must be very much larger than unity.
Hence we now wish to make numerical estimates of T of Eqs. (48), (51), (55), and (58), i.e., we
need to know the values of 1 for cyclotron harmonic emission both from the background deuterium
ions and from the fusion product protons and also t for the proton spin-flip emission. Since T will
take its largest value near the plasma center, we will only examine this case of Rg = Rgp =Rp. On
making use of the parameter numbers presented earlier we find that Y =Y = (uRcw%i/Zuzmc{w/ A)
= [1.121 X 102] for the deuterium background plasma, and Yp, =Y = [1.121 x 102 x 1] for the
fusion product protons. For s << 1, Eq. (36) yield [<Gp>] = m21,( s3/2)[1 + (Vz/VA)2] =
m2(m20/m!)(1/20)(vg/V A)20(1 + (Vz/VA)2]. Thus the approximate form of Eq. (55) becomes
T = (Yg/m)/m2)(V AN2<Gr>] ~ { Y4[m(2m-1/m! 2(m-D][(vg/V .)Pm-D)[1 + (V5/V4)2]).
Hence assuming V; << VA form =1, T=~ Y4 = 1.121 x 102; for m = 2, T~ 2Y4 (0.0656)2 =~
0.965; and for m = 3, T = 3Yq4 (3/2)3 (vg/VA)* = 2.10 x 10-4. For the background deuterium
plasma s = (mvg/VA)2 =~ m2(0.0656)2 ~ 4.30 m2 x 10-3 << 1 for m << (0.0656)"1 = 15.24.
Thus the background deuterium plasma is totally black and opaque for the fundamental, is gray
for the second harmonic,16 and is optically thin for the third and all other higher
harmonics. In Eqgs. (48) and (51), for our rough estimates, we may write
(S ([SmIml2)/0S ) = (2 H[Smdml?V/3SZ) = [(2/S2) ((SmInl?}] =2 and
(Si O([SJm)22)/9S ) = 1, since the maximum values of I, and J, are of order
one. Then for fusion product protons, we obtain from these equations that
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T= (Yp/m) =MY/m) = [1.121 x 102 x n/m]. Thus for n < 10-2, T < 1. Hence in present
experiznents, the contribution from fusion product protons to the optical depth T can be neglected.
In Err, (58) the factor [(E/8) (Ak/MpV A)l = [(1212) (gp/2)3 (hedep/Mped)] = 2.165 x 1012,
where we have made use of Eq. (18) and the relation p =c/V 5. Thus we conclude from Eq. (58)
that the optical depth < for the proton spin-flip emission and absorption is always considerably less
than unity. Hence the spin-flip emission cannot build up to its black-body value.

E. Estimates of beam driven cyclotron overstability conditions

It is clear from Eq. (61) that if the total distribution function f(v,v ) can he decomposed as a
product f | (v} ) fji(v), then by doing an integration by parts over dv itis relatively easy to show
that the sign of the net result for ¥ is not at all sensitive to the sign of the slope [0f (v )/ov ]
anywhere in the range 0 Sv| < eo». The physical reason for this is that the particle-wave resonance
occurs only in the parallel velocity distribution function and not on the perpendicular velocity
distribution function. Thus the instability condition of Eq. (62) primarily comes from the familiar
cyclotron overstability terms 18:24 of the conventional hot plasma theory.24 Thus we need large
drift velocities along the parallel (and not the perpendicular) direction to produce overstability
conditions. For @ = m@¢j or mWsp, We need a large enough drift velocity Vz such that
(VZ/VA) > (Tyi/T 1) or (Ty/Ts) for the cyclotron and the spin-flip instabilities, respectively. For
example, with a tangential neutral 100 keV hydrogen beam injection we have
(VZ/VA) = (Vp/VA) = 0.42. Then for cyclotron instability we need to have a temperature
anisotropy such that (T}/T 1 ;) <0.42. Itis not clear whether such temperature anisotropies exist in
Ohmic and/or auxiliary heated tokamak plasmas. A somewhat similar temperature anisotropy was
previously observed in the Model C Stellarator plasmas.60

F. Estimates of spin-flip laser emission

In the case of spin-flip resonance, one can have the spin-flip overstability due to drifts as in Eq.
(66) or one can have an instability due to a direct inversion of the statistical population of the spin-
up and the spin-down states as in Eq. (63). Indeed at the quasilinear steady state Fg(m) = [fg(mg)
- fs(-mg)] = 0, i.e., the populations of the spin-up and the spin-down states are equal to each other,
and the spin-flip excitation energy density is enhanced above its black-body thermal equilibrium
value of KT by the factor B of Eq. (77). For the fusion product protons with the thermal spread in
energy Tp = 60 keV, we obtain f =1 x 1.96 x 103 if all these protons were initially statistically
inverted, i.e., FS = 1. Since the black-body thermal equilibrium value of KT is independent of 1, it
is apparent that this spin-flip laser emission of PxT is linear in the fusion product proton density.
This result is consistent with the TFTR experimental observation that the “broad continuum



50

component” of the spectrum of Fig. 1 does follow the time evolution
of the neutron flux over about 2.5 orders of magnitude. Further, we showed
earlier that for Tg = Ty = Tp = 60 keV and (Aw/w) = 1, the black-body spin-flip
emission power Pp = 1.48 x 10-6 W. Hence, the spin-flip laser emission power
Py~ PBPsA=nx 196 x 148x 1001 W= 029 n W. Forann of 106,
Pgp = 2.9 x 10-7 W. This is in good agreement with the integrated power in the “broader
background continuum component” of the TFTR spectrum of Fig. 1, i.e., we showed earlier that
for this Fig. 1, Pggcc = 2 X 1077 W.

It is apparent that there is zlso a broader background continuum component of the emission
spectrum in the older JE' data of Refs. 3 and 4 which were taken with DD fusion reaction
dominated plasmas. Let us now specifically concentrate on the data in Fig 1 of Cottrell, Lallia, ez.
al. of Ref. 4. For this JET data, B~ 2.6 T, nq = ne = 1.5 x 1013 cm3, Tj = 2 keV, and
n=2x 10-8; compared to the chosen values for the above TFIR estimate as: B= 4.8 T,
ng =ne = 5 X 1013 c¢m-3, Ti= S5 keV,and n = 10-6. It is reiatively easy to show from
Eq. (77) that the spin-flip laser enhancement factor B o< (nB/ndllz). Thus the theoretically
expected spin-flip laser power for this JET data is Pgp = (2.9 x 10-7 W) x (2 x 10-8/10-6)
(2.6T/4.81 T) (5/1.5)1/2 = 5.72 x 10-9 W. From the 2 keV black-body plot of their Fig. 1,
we find that 28 <2w.q < 65 MHz and the bandwidth Af of their receiver as
Af =~ (5 x 1012 W)/[(1.6 x 10-19) (2 x 103)/2] ~ 3.125 x 104 Hz, where we have used
their relation that the black-body power Pgg = (1/2) kT Af. Here the factor 1/2 comes from the
fact that their antenna receives only one polarization. Thus for their plasma conditions, the spin-
flip frequency wgp lies in the range 78 < (Qgp = 5.59 w¢q) < 182 MHz. Their data of Fig. 1
only goes up to 100 MHz. If we now extrapolate their data to 182 MHz and make a triangular
approximation to the broader background continuum component of the spectrum in the above
range, we find that the total integrated power PBpcc = (5 x 10° 12 w) x
[(182 - 78) MHZz/2]/(Af) = 8.32 x 10-9 W. Thus the theoretically expected spin-flip laser
power Pg;_is approximately the same as the extrapolation of their experimentally observed total
integrated power PR in the broader background continuum component of their spectrum for
the spin-flip frequency range of 78 < wgp < 182 MHz. It should be noted that the Alfven wave
index of refraction JL = c/V A o< (nq1/2/B) is approximately the same for both the TFTR and the
JET data. For this reason all our estimates apply equally well for both TFTR and JET results if we
properly take account of the linear scaling differences arising from: (a) the receiving antenna sizes
for single dressed test particle emission estimates, (b) the fractional proton and/or alpha particle
population 7 for single dressed test particle and proton spin-flip laser emission estimates, and
(c) the deuterium ion temperature Ty for black-body emission estimates.
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But in the recent JET data taken with DT fusion reaction dominated plasmas, as reported in
Fig. 1 by Cottrell, Bhatnagar, er. al. of Ref. 4, there appears to be no such broader background
continuum component up to about 6c4-E. Since the lowest value of the proton spin-flip
frequency wsp = 5.59 tcd-E, the proton spin-flip laser emission contribution to the background
continuum will occur only for frequencies above about 6m¢4-E. Here they state that the central
alpha particle density nq is about 104 of the electron density ne and PicE = 3.1 x 106 w,
Hence according to our earlier reasoning, the proton density np = 104 ng =~ 10-8 ne. That is, the
proton fraction np = 10-8. Note that this theoretical estimate is only a factor of two smaller than
the experimental value used above for the older JET data. Thus the theoretically expected proton
spin-flip laser power for this new JET data is Pg] = (5.72 x 10-9 W)/2 = 2.86 x 10-9 W.
Unfortunately, it is not possible to get an experimental value for Pgy, from their data of Fig. 1.
However, they do give the experimental value of PiCE as 3.1 uW. Hence using this theoretical
value, we find that the ratio [Pg;, due to protons/Picg due to alpha particles]
= [2.86 x 10-9 W/3.1 x 106 W] = 9.2 x 10-4. According to our earlier approximate reasoning
based on the ratio [DT cross-section / DD cross-section] as 102 and the burn up fraction of 1 MeV
tritons as 10-2, we expected this ratio [Pg]_ due to protons / PICE due to alpha particles] to be of
the order of 10~4 for DT fusion reaction dominated plasmas. This approximate agreement between
half theory and half experiment for this new JET data is comforting and illustrates the self-
consistency of our reasoning.

It may be noted from Eq. (23) that at thermodynamic equilibrium Fy(m) = [fi(my) - f(-mg)] =
[2 cosl'x(‘l’m)sp/21c'1's)]‘1 [exp(-msfxmsp/KTs) - exp(msﬁmspths)] = (1/2) (-st‘hcosp/KT s) =
(-mghargp/KTy) for fidgp << XTg. Thus when Tg — oo, Fg(m) — 0. It appears therefore at these
large kinetic temperatures where the thermal spread in energy is extremely large compared to the
spin-flip energy, the spin system under consideration can in principle flip-flop back and forth
between its thermodynamic equilibrium state with Fg(m) = (-mgfigp/kT;) and its quasilinear
radiative steady state with Fg(m) = 0. Because of the extremely low value of (‘hmsp/lch), such a
flip-flop of the spin system between these two states of minimum entropy production is not
unreasonable on the basis of the allowed energy fluctuations in a canonical ensemble and the
concentration fluctuations in a grand canonical ensemble of statistical mechanics.14 If these
fluctuation laws of statistical thermodynamics allow such a flip-flop of the spin system, then this
process can account for the observed broader background continuum component of the spectrum
covering the frequency range for which tlze proton spin-flip frequency Wsp is within the plasma.
For our case, the fusion product density np="mMx5x 1013 ¢cm-3 and the resonant layer
volume near the plasma center (AVol) = 2R, ARy 2ag = 41tR%asc(ACO/co)
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=7.17 x 107 x (Aw/w) cm3. For the TFTR data of Fig. 1, the experimental value of
(Aw/w) =1 for the background continuum spectrum. Thus the total number of fusion
product protons in this resonant volume is N= T x 3.585 x 1020,  Hence
N-1/2 = n1-1/2 x 5.281 x 10-9. The value of (hwg/kTp) = (figpWy2xTp) = 1.42 x 10-11
for B =4.813 T at Rp and kTp = 60 keV. Assuming that these fusion product protons behave as a
perfect classical gas, it is relatively easy to show14 that the canonical ensemble energy fluctuations
fe and the grand canonical ensemble concentration fluctuations fp are both given by
f=fe=fy =N-1/2, Since N << 1 we see that the statistical fluctuations f in energy and
concentration are both very much larger than the ratio (hwg/kTp). Hence it appears that the
fluctuations laws of statistical mechanics do indeed allow the possibility for the spin system under
consideration to flip-flop between its thermodynamic equilibrium state and its quasilinear steady
state. From a thermodynamic point of view, both these states are states of minimum entropy
production,

VIII. ACCESSIBILITY, MODE CONVERSION AND DECAY INSTABILITY

In this section we now wish to make a few qualitative and semiquantitative remarks on wave
accessibility, mode conversion, and parametric decay instabilities. The problem of interest to us
here is the emission, absorption, and propagation of cyclotron harmonic electromagnetic waves
with frequencies ® = m ; which are less than the lower hybrid frequency wyy. This wyy is
given by

)
(wﬁ{) {[(mémii)J “’cimce’} 81)

Further, since the emission of intense harmonics of almost equal intensity for all harmonic
numbers m < mgy where mg@c; = WLH can only occur if and only if (k;pi) = (k; <v;>/@c) is larger
than unity, we must primarily consider situations where k; > ki If k) = 0 exactly, then there is
only fundamental emission at ® = ®; and no emission at any harmonic with m 2 2. Indeed, we
are mainly interested in near perpendicular propagation. Thus for k; >ky and ® Sy, the
allowed electromagnetic waves are the fast Alfven waves with the dispersion relation @ =k Va,
Thus our interest is in the near perpendicular propagating cyclotron harmonic fast Alfven waves.
The first question one may ask is that, are these cyclotron harmonic fast Alfven waves accessible
for an outside receiving antenna? The r;-.ceiving antenna is located in a region of zero or low
plasma density. The plasma is an inhomogeneous plasma which is located in the inhomogeneous
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(1/R) toroidal tokamak B-field, and the cyclotron resonance layer of interest appears in a region of
relatively high density which is deep inside the plasma. We may then ask whether this cyclotron
harmonic wave emitted deep inside the plasma will in fact reach the outside antenna or whether the
wave will be reflected back into the plasma at some region of intermediate density and thus will
never reach the receiving antenna located outside the plasma. If no such intermediate reflection
occurs, we shall sz that the emitting cyclotron resonance layer is accessible to our receiving
antenna. Since our interest is for ® S OLY, we may make use of the lower hybrid accessibility
criterion given by Golant6! as

(cku o1+ @2e(cos2p + My/My) \
[@Becos? + wEa(cos’p + My/Mal| (82)

Here, @ is the angle between B and Vn; and it is assumed that cos2@ << 1. For cos2@ < Mg/M,
Eq. (82) reduces to

(C:" > 1 +(—flz) .

83)

while with cos2¢ > Me/Mq, the condition (ckw/@)? > 2 becomes sufficient. Stix,24 in his
Eq. (3-39), gives a more stringent condition (cki/®)? > 2(1 + we/w’) for cos2@ < Mg/My, which
according to Golant is not necessary.

For cyclotron harmonic fast Alfven waves ® = k V 5, then Eq. (83) becomes

(ku’z (_A (1+ ) (_A (J.)fomc,»m,,, (84)

For our plasma conditions, the refractive index of the background deuterium plasma is p = 28.56.
Hence, Eq. (83) yields cos 8 = kyk > 0.1871, i.e., @ < 79.2°. Thus it appears that we need a
large enough kijj to have the necessary accessibility while we need a large enough k, to have k| p;
larger than unity in order to generate almost equal intensity emissions at all harmonic numbers m,
where 1 <m <mp = WLK/@;. Itis interesting to note that (kjyk) > 0.1871 implies a Doppler line
broadening (Aw/w) = 2 ky2xT/Mp)'Z/kV») > 0.0851 for T = Tp = 60 keV. The experimentally
observed3 line width in JET is (Aa/®) = 0205 and in TFTR it is 0.005. Thus, it appears that the
observed emission may not have large enough kjj so as to satisfy the necessary condition for the
accessibility of the lower hybrid resonance if the thermal spread of the fusion product protons is
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the Brysk's value Tp = 60 keV. It may also be noted that for 3 MeV protons in a toroidal field
of B=3.628 T at R¢ = Rp + ap, the Larmor radius for TFIR is pp = 6.88 cm. For JET with
B=26T, pp=~9.6cm. Hence, the line width (Aw/w) due to the R-! tokamak B-field
inhomogeneity over the proton's Larmor orbit is (Aw/®) = (2pp/Rc) = 0.0423 since Rc =325 cm
for TFTR. For JET with R¢ = 3.9 m, (Aw/w) = 0.049. Thus the observed line width in JET may
also be due to this field inhomogeneity. However, in TFTR it is not clear how the observed line
width can be lower than that caused by the field inhomogeity over the Larmor orbit.

For our background deuterium plasma conditions, (@d®ce) >> (@% + @39, where we have
used the suffix d in place of the suffix i to denote the deuterium ions. Hence from Eq. (81),
WLy = (mﬁd + m%d)l/ 2. For the proton cyclotron harmonic emission at the frequency ® = mQcp, the
. emitting cyclotron resonance layer at R¢p will be accessible to the receiving antenna in vacuum at
RA if this Rep-resonance layer is located between the antenna and the lower hybrid resonance layer
Riyyq for the background deuterium plasma, i.c., for an antenna located in the outer midplane low-
field edge side, Rund S Rep <Ra. In general, for a cylindrical tokamak plasma (with B < R°1),
the emitting cyclotron resonance volume centered at the major and minor radius point (Re.fc) will
be accessible to the outside receiving antenna in vacuum if this resonance volume is located outside
the lower hybrid layer, i.c., if the point (Re,r) lie in between the lower hybrid layer and the
vacuum vessel. The major and minor radius point (Rc,rc) at which the ion density is such that the
deuterium lower hybrid resonance layer is equal to the proton cyclotron resonance layer must
satisfy the relation

[Oep(Reto)]? = [2 0cdReTe)]? = 0y (Reo) = [0%(Rare) + @fyRaTo)] - 85)

Hence for near perpendicular (i.e., € = ©/2) emission to be accessible to the outside receiving
antenna, most of the emission must come from the critical ion density layer nj(Rc.rc) of Eq. (85).
That is, this critical lower hybrid layer of the background plasma deuterium ions (Rc,rc) is such
that

3 [0ed(Reoto)])? = [0pa(Re )] (852)

Stated differently, the locus of this critical major and minor radius point (R¢,r¢) of Egs. (85) and
(85a) defines an “approximately” cylindrical “closed surface shell” at which
the background deuterium plasma dielectric coefficient for Alfven waves
Ka = u2 = [41ni(Re,T)Myc?/B2(R;)] = [mpd(Rc,rc)/mcd(Rc)]z = 3. This is illustrated in Fig. 3.
All the near perpendicular emission from regions within this "closed surface shell” wili not be
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accessible to the receiving antenna located in the outside vacuum, and only those near
perpendicular emissions from plasma regions outside this “closed surface shell” are accessible to
the receiving antenna. Thus it is quite possible that most of the observed emission comes from the
regions near this “critical resonance layer closed surface shell” defined by the locus of the point
(ReoTe) as a black-body emission for the fundamental and as single particle spontaneous emission
for harmonic numbers m 2 2. Since for deuterium ions Ka = p2 = 815.7 for n; = 5 x 1013 cm-3
and B = 4.183 T at Ry, u? = 3 implies that the outer midplane critical layer R, is at the very outer
edge of the plasma at which the ion density has fallen to about ny(Rc) = 1.05 x 10!! cm3. Here,
we have used the fact that p2 o [nj(Re,Tc)/BA(Rc)] > [ni(Re,rc)RZ]. For example, taking the
edge plasma density at Rp + ap as nj = 1.0 x 10'2 cm? and an e-folding distance of about 2.5 cm
for the scrape-off layer plasma, n;(R.) = 1.05 x 10!! ¢13 yield that the resonant layer is located
inside the scrape-off region at about 5.65 cm from the outer midplane plasma edge. Indeed, for the
TFTR data of Fig. 1, we find that the apparent emission location is about 4.8 cm on the low-field
side of the outer midplane plasma edge, in agreement with the accessibility predictions of Eq.
(85a). Of course, Eq. (85a) gives us the entire “critical resonance layer closed surface shell.” But
it does not tell us that the resonant layer should lie oply in the outer low-field side midplane plasma
edge.

We emphasize that according to Golant61 and Stix,24 all the radiations that are emitted by the
fusion products located inside this “critical lower hybrid resonance closed shell” with
kwk < 0.1871 (i.e., the near perpendicular radiations in the range of 79.2° < 8 < 90°) cannot come
out of this closed shell, and are trapped inside this approximately cylindrical lower hybrid closed
shell. They crisscross the main body of the enclosed plasma interior undergoing multiple
reflections at this shell boundary, and hence probably build up to the thermodynamic equilibrium
black-body value even if © < 1. However, they cannot escape out of this shell, and hence cannot
reach the antenna. But the wide angle radiations with k,/k > 0.1871 (i.e., 0 < 8 < 79.2°) will not
be trapped and pass easily through this lower hybrid shell and reach the receiving antenna. It is
well-known 16 that most of the cyclotron emission power or intensity is contained in the regions
near k, ~ 0, and indeed, most of the cyclotron harmonic emission occurs with k = k,. In essence,
these wide angle radiations are simply the wings of the Doppler broadened near perpendicular
emission lines. These escaping wide angle radiations will contribute to the “broader background
continuum” component of the spectrum. Since © < 1 for harmonic numbers m > 2, these
radiations are the wings of the single “dressed” test particle emission. Consequently, their
contribution to the “broad background continuum” will also be linear with the fusion product
density, in agreement with the experimental observations in TFTR. Any radiation that originates
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outside this lower hybrid resonance shell and propagates outward towards the vacuum plasma
boundary will not encounter any lower hybrid accessibility problem.

But the outstanding question concerns the observed localization of the ICE source only at the
outer midplane edge where the local fusion rate is negligible. It is shown elsewhere62 that the
radial birth profiles of the fusion products np(r) are centrally peaked, and may be approximated as

ng(e) = 1p0) (1 - £ exp[(R) (£F] (86)

Hence there are no fusion products born in the scrape-off layer where a5 S S a,c.  However,
according to Stringer,52 for typical tokamak parameter conditions, about half the fusion products
are formed with pitch angles in velocity space such that they are magnetically mirror trapped (i.e.,
with v, > vy €12, where € ~ AB/B = 1/R is the mirror ratio). The radial drift excursions of the
banana orbits of these trapped particles can exceed the width of the production profile by
considerable amounts. Using Stringer's theory, very recent calculations4 for JET by Cottrell,
Bhatnagar, er.al. reveal a class of centrally born fusion products (i.e., approximately 10%
centrally born within a narrow range of pitch angles just beyond the trapped-passing boundary)
which make large radial excursions, sufficient to reach the outer midplane edge where the velocity
distribution is anisotropic and nonmonotonic. These particles make drift excursions only to the
low-field side edge. Thus in Fig. 3, the trapped banana orbits of about 10% of the centraily born
fusion products pass through the outer midplane resonance volume (AVol),. The bottom volume
(AVol)p should see a small group of lost fusion products leaving the plasma, while the rest of the
plasma volume outside the lower hybrid layer which is accessible to the (outside) receiving antenna
in vacuum has no fusion products traversing them. That is, for example, the inner midplane
volume (AVol);, the top volume (AVol),, etc. of Fig. 3 all have no fusion products drifting through
them. Further, the volume of the background plasma contained in these regions are:
(AVol)o = 47(R,, + a,)2 (s - )"/ (AwVw); (AVoD); = 4x(R,, - a)2 (af. - 8§)'? (Awyw); and
(AVol); = (AVol), = 2R} (2, - &) (Awyw), respectively. For the tokamak parameters quoted
earlier, we find that (AVol), = 3.88 (AVol); = 12.02 (AVol), = 12.02 (AVol),. Thus the outer
low-field side midplane volume (AVol), of Fig. 3 is not only the largest accessible volume, but is
the only volume that has an appreciable portion (i.e., approximately 10%) of the centrally born
fusion products traversing it, while all the other accessible volumes contain no significant amount
of fusion products drifting through them. Thus, one can clearly understand the localized nature of
ICE in tokamaks to the outer midplane edge. Further, we have shown earlier that the theoretically
expected value of R, for the TFTR data of Fig. 1 is R. = (Rp +a, +5 .65) c¢m, while the
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experimentally measured value is R¢ = (Rp, + a, + 4.80) cm, yielding good agreement between
theory and experiment.

Based on such accessibility analysis of the lower hybrid resonance and the mode conversion
calculations of Stix,8 Onol0 has recently suggested that this ICE may be looked upon as an
inverse problem to the familiar ion Bernstein wave heating IBWH). His qualitative arguments are
as follows: The slow, short wavelength electrostatic ion Bernstein waves (IBW) are excited by the
hot ion population in the plasma interior which then propagate across the magnetic field toward the
low field region of decreasing density. The wave then encounters the critical lower hybrid
resonance layer at R at which it undergoes a mode conversion into the fast, long wavelength
electromagnetic ion cyclotron harmonic wave which then propagates towards the antenna.
Therefore, he suggests that the tokamak IBW accessibility physics is acting as a filter to connect
the externally measured electromagnetic signal to the IBW generated in the hot plasma interior.
Since the IBW is generated in the interior where the B-field is higher, we must speculate that the
received signal at the antenna at a given ion cyclotron harmonic frequency is actually generated in
the plasma interior one major harmonic below in order to have the right frequency matching at the
critical resonance layer R.. This mode conversion interpretation may be appealing to explain the
spatially localized nature of the observed emission. However, for ion Bernstein wave heating
(IBWH), Ono then states that if the antenna is placed significantly away from the midplane
(poloidal angle 2 30°), the launched parallel wave number increases as the wave propagates
towards the midplane (toward decreasing magnetic field). Ray-tracing calculations indicate that a
significant up-shift of the parallel wave number occurs in this situation causing the wave to be
absorbed via electron Landau damping not too far from the plasma edge. By Kirchhoff's law, it
would then appear that ICE should come from all around the plasma edge, and not necessarily
localized to the outer midplane plasma edge. In any case, in order to excite these IBW to large
amplitudes by the hot ion population in the plasma interior, we must satisfy the instability and/or
overstab.iity conditions of Eqs. (61) or (62) with the appropriate phase velocity of these IBW.
These conditions may not be so easy to satisfy. Further, it is extremely difficult even to estimate
the nonlinear saturated level of such unstable IBW. It is also not clear why such a mode-
conversion emission ICE power should vary linearly with the fusion product number density.
Further, in our view, when appreciable tunneling is needed the present calculations of mode
conversion efficiencies are not very reliable. In any case, more accurate mode conversion
efficiency modelling is needed before we can say anything more about this. We also wish to point
out that, if the fusion products excite the electrostatic IBW in the plasma interior, these electrostatic
waves could be detected by microwave or laser scattering experiments in the near future.63
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For the sake of completeness, we wish to mention that parametric decay instabilities can in
principle also account for some of the observed ICE spectrum. Parametric instabilities have been
observed in lower-hybrid,64 ICRF,65 and other66 experiments. In general, these instabilities
have a low power threshold and tend to occur in the plasma edge regions. In this decay instability
the pump wave of frequency wq and wave vector kg usually decays into two daughter waves of
frequencies @; and w, and wave vectors k; and kj, respectively, such that the energy and
momentum conservation relations

fiwg =hop +hay (87a)
and
fik = fik ] + fiky (87b)

are simultaneously satisfied. Usually, the electrostatic waves have shorter wave lengths, thus
larger k values, while the electromagnetic waves tend to have longer wave lengths, thus very small
k values. Indeed, one can take the k value of the electromagnetic wave in the decay process as
zero if the other two waves involved in the decay are electrostatic waves. Thus for example, a
parent (i.c., pump) electrostatic ion Bernstein wave (ESIBW) can in principle decay into another
daughter ESIBW with almost the same k and an electromagnetic ion cyclotron harmonic fast
Alfven wave with k = 0. Such a decay will be allowed by the conservation relations of Eq. (87) if
the power threshold conditions are satisfied. Thus some portion of the observed electromagnetic
ICE spectra may be a result of the decay of large amplitude ESIBW driven unstable by the hot ion
population or by the injected neutral beams. Hence an unstable large amplitude ESIBW can give
rise to the emission of an electromagnetic ion cyclotron harmonic wave either by the mode
conversion process or by the parametric decay process. Without any analytic calculations, which
are rather complex, it is not possible for us to say anything about the relative importance of these
two competing processes at the present time.

We wish to point out that since the dispersion relation of these cyclotron harmonic fast
Alfven waves is @ = k V , a parent wave at the proton cyclotron frequency ®cp can decay into two
daughter waves both at the deuteron cyclotron frequency Wed, i.€., Wep = Weg+ Wed. Such a decay
will satisfy the energy and momentum conservation relations of Egs. (87a) and (87b),
simultaneously. Similarly, the decays 2Wcp — 3Ud + Ucd; NWp — (20 - 1)Weq + Weq; etc. are all
allowed by Egs. (87a) and (87b). This type of parametric decay may account for the sequence of
peaks at frequencies (n + 1/2)@cp.E in TFTR ohmic ICE experiments. Thus from the parent
emission lines at nW¢p, one can obtain daughter emission lines not only at (n + 1/2)®¢p, but also at
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ntg by such cascading parametric decay processes. These decay processes are possible when the
fusion product protons are immersed in the background deuterium plasma.

In the literature, other authors63 have proposed various different physical mechanisms for the
generation of cyclotron subharmonic frequency waves. Fredricks has considered a secondary peak
in f(v) as a function of v,; that is a peak at v; = b >0, can provide a mechanism for wave
generation at ® = (n + 1/2)a. Gruber et.al. have shown that a bi-Maxwellian distribution having
T, >> T\ can drive the well-known Harris instability near ® = (n + 1/2)@.. However, their work
indicates that extremely large ratios (T,/T, 2 30) may be required. Porkolab has considered
nonlinear ion-cyclotron (Landau) damping to explain the ion-Bernstein wave heating in
magnetically confined fusion plasmas. Here, one of the beat waves is at the subharmonic of the
ion cyclotron frequency. Abe et.al. have invoked particle trapping as the physical mechanism for
resonant heating of plasmas due to cyclotron subharmonic frequency waves. According to
Kirchhoff's law, if the plasma can absorb energy at the cyclotron subharmonic frequency, it must
then be able to emit at these same frequencies.

IX. CONCLUSIONS AND SUMMARY

In summary, ve have presented a rather comprehensive analysis of the power emission by the
fusion product protons, alpha particles, and/or the background deuterium plasma ions not only in
their ion cyclotron range of frequencies (ICRF) but also at the proton spin-flip resonance frequency
for some specific model velocity-space distribution functions. We have presented a complete
theory of spontaneous emission (based on the Einstein A coefficient) from “dressed” test particles,
and then examined in sufficient detail the linearized theory of the radiative steady state and/or
radiative equilibrium. We have also derived the necessary and sufficient conditions for radiative
instability and/or overstability. These conditions apply both for the electromagnetic cyclotron
harmonic fast Alfven waves and for the slow electrostatic ion Bernstein waves. In the former case
the phase velocity (k) = V4 the Alfven velocity, while in the latter case the phase velocity
(k) = (meciky) = m(@cpik p) = mERRTYMD2(kp)! =~ m(2xTyM)'2, since k,p; is
of order unity for IBW of interest. Then we give the conventional and rather satisfactory
quasilinear and/or nonlinear theory of the radiative steady state. By conventional we mean the
system is shown to evolve in time by a coupled set of nonlinear master equations, one of which
describes the time evolution of the photon distribution function and the other of which describes
the time evolution of the particle distribution function via a Fokker-Planck type equation containing
the usual diffusion and the dynamical friction type terms. We make some general comments on the
types of instabilities, mainly relating to the distinctions between the “kinetic or causal instabilities”
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and the “hydrodynamic instabilities.” Indeed, our discussions of the necessary and sufficient
conditions for instability and/or overstability are totally restricted to the kinetic instabilities only.
We have also presented some numerical estimates for typical tokamak parameters. Here we show
that the predictions of our theory are in reasonable agreement with the experimental observations in
TFTR and JET. In all cases, we examine not only the ion cyclotron harmonic emission and
absorption but also the fusion product proton's spin-flip emission and absorption. Here, we have
made use of the well-known “master equation approach” of nonequilibrium quantum statistical
mechanics which is based on the knowledge of the fundamental Einstein A and B coefficients and
the principle of detailed balance. Finally, we have made some brief semiquantitative remarks on
wave accessibility, mode conversion, and parametric decay instability. Based on Stix-Golant
lower hybrid accessibility condition and Stringer's tokamak fusion products radial profile analysis,
we are able to show that the experimentally observed spatial localization of the emitting and/or the
mode conversion layer on the low B-field side plasma edge of the tokamak is also in reasonable
agreement with the theoretical expectations.

In essence, the bottom line is as follows: The fundamental (m =1) ICE is a black-body
emission since its optical depth ©> 1 for typical tokamak parameters, and the second (m = 2)
harmonic ICE is probably a “gray-body emission” since its € is of order one, while the higher
(m > 2) harmonics ICE should be single particle spontaneous emission since theirt < 1. Single
“dressed” test particle emission is of course proportional to the number of emitters while black-
body emission is independent of the number density. The experimentally observed linear
correlation between Picg and total neutron flux is consistent with the single “dressed” test particle
emission picture. For the higher harmonics to be of equal intensity one must have (k p;) > 1.
This is not true for the background plasma deuterium ions but is definitely satisfied for the fusion
product protons and alpha particles, and is marginally true for the neutral beam energy of about
100 keV. For the usual tokamak parameters and neutral beam energies, the ion cyclotron
harmonic instability and/or overstability conditions are only barely satisfied by the neutral beam
ions but are reasonably satisfied by the fusion product protons. Stix-Golant lower hybrid
accessibility condition yields that most of the ICE comes from regions where the local ion
cyclotron frequency is of the same order as the local ion plasma frequency for the background
deuterium plasma ions. For the usuval tokamak conditions this implies that ICE originates from
regions very near the plasma edge in agreement with the observations. Stringer's tokamak fusion
products radial profile analysis reveal a class of centrally born (marginally mirror trapped) fusion
products which make large radial excursions, sufficient to reach the outer midplane edge. Thus,
on making use of Stix-Golant lower hybrid accessibility theory in conjunction with Stringer's
tokamak radial profile analysis of the fusion products, one can clearly understand the localized
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nature of ICE in tokamaks to the outer low-field side midplane plasma edge. The experimentally
observed line width is smaller than that predicted by the Doppler broadening from the minimum
value of k)| needed for the accessibility of the lower hybrid resonance by the outside receiving
antenna for the proton thermal spread Tj, = 60 keV. The observed fine structure (i.e., being split
into doublets) of the ICE lines in JET is fully consistent with Trubnikov's emission theory of the
ordinary mode. But the bulk of the emission is in the extraordinary mode. Because of the
observed highly spatially localized nature of ICE, mode conversion and/or mode transformation
and the parametric decay instability are also viable causes for ICE. However we have not
presented any quantitative calculations of the power level to which the ESIBW can be excited by
the allowed instabilities, mode conversion efficiencies, the required parametric decay instability
thresholds, etc., to draw any detailed conclusions regarding the relative importance of these
processes for the observed ICE spectrum. Single particle proton spin-flip spontaneous emission
cannot account for the observed background continuum spectrum that exists roughly over the
frequency range for which the proton spin-flip resonance is within the plasma. However, because
of the high temperature of the spin system (T, = 60 keV) such that (iwgy/kTp) << N-1Z where N
is the total number of emitters, the thermodynamic fluctuation laws of statistical mechanics do
indeed allow this spin system to flip-flop back and forth between the two allowed states of
minimum entropy production (i.e., between the thermal equilibrium state and the quasilinear steady
state of a spin-flip laser system). This spin-flip laser emission power is in good agreement with
that observed in the broader background continuum spectrum of both the TFTR (Fig. 1) and the
older JET data. Hence such a flip-flop of the spin system between these two states of minimum
entropy production can, in principle at least, account for the observed background continuum
spectrum peaking around ®sp. This spin-flip laser emission is linear with the proton number
density, in agreement with the TFTR observations. Further, unlike the ion cyclotron harmonic
emission for which k; >> k, this thermally excited spin-flip laser emission is not a near
perpendicular emission (i.e., is a wide angle emission with ky >> k) and is hence fully accessible
to the outside receiving antenna. However, wide angle ICE escaping out of the lower hybrid layer
may also play a significant role for the observed background continuum spectrum. This wide
angle ICE power should also be linear with the fusion product number density.

Finally, we hope that the rather extensive and comprehensive analysis presented here will serve
as an essential and necessary first step towards an eventual full understanding of the observed ICE
and spin-flip emissions in tokamak plasmas, even though we recognize the fact that this ICE
problem has an extremely close similarity o the theoretically evasive, but not yet fully understood
grand old Landauer ECE problem.11-13
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XII. FIGURE CAPTIONS

Fig.1.

Fig.2.

Fig.3.

A typical TFTR spectrum showing the ICE lines riding on the top of the broader
background continuum emission spectrum. Here, 26.4 MW deuterium neutral beams
were injected into a deuterium background plasma. The other associated plasma
parameters were: B = 4.45 T at Rg = 265 cm, Ip = 1.78 MA, Rp = 245.2 cm, and
ap =80.1 cm. The vertical axis is the ICE power PjCE (in dbm) deduced from the
toroidal RF magnetic field 3B at the probe, and the analyzer bandwidth Af = 300 kHz.
The main sequence of harmonic peaks occur at multiples of 27.13 MHz, ana the deuteron
cyclotron frequency ay at the outer midplane plasma edge, i.e., at (Rp + ap), is
Wea = 27.54 MHz. The apparent emission location in the scrape-off plasma is 4.8 cm
on the midplane low-field side of the outer plasma edge.

A plot of <G> of Eq. (14) as a function of the harmonic number m for the
monoenergetic isotropic velocity space spherical shell distribution, i.e., with <v|>=Vj
and <v> = (2)"1/2 V;: Figs.2(a), 2(b), 2(c), 2(d), 2(e) and 2(f) are for (Vi/VA) = 0.5,
1.0, 1.5, 2.0, 2.5, and 3.0, respectively. Here, VA is the Alfven speed in the
background deuterium plasma.

A schematic plot of the plasma geometry showing the plasma region, the scrape-off layer
region, the accessibility lower hybrid resonance layer where u2 = 3, and four sample
emission volumes. Here, (AVol), is the outer low-field side midplane sample volume,
(AVol); is the inner high-field side midplane sample volume, (AVol) is the top sample
volume centered at Rp, and (AVol)p, is the bottom sample volume centered at Rp, all fora
fixed Aw/o so that AR = R Aw/.
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