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A B S T R A C T 

Fragility functions are cumulative distribution functions (cdfs) of 
strengths at failure. They a-e needed for reliability analyses of systems 
such as power generation and transmission systems. Subjective opinions 
supplement sparse test data for estimating fragility fun'.tions. Often the 
opinions are opinions on the percentiles of the fragility function. Sub
jective percentiles are likely to be less biased than opinions on parameters 
of cdfs. 

This paper provides solutions to several problems in the estimation 
of fragility functions given subjective percentiles and test data. How 
should subjective percentiles be used to estimate subjective fragility 
functions? How should subjective percentiles be combined with test data? 
How should fragility functions for several failure modes be conhined into a 
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composite fragility function? How should inherent randomness and uncertainty 
due to lack of knowledge be represented? 

We treat subjective percentiles as independent estimates of percentiles. 
We derive: 

1. least squares parameter estimators for normal and lognormal 
cdfs, based on subjective percentiles; the method is applicable 
to any invertible cdf, 

l. a composite fragility function for combining several failure mode-1;, 
3. estimators of variation within and between grouos of 

experts for nonidentically distributed subjective percentiles, 
4. weighted least squares estimators when subjective percentiles have 

higher variation at higher percents, and 
5. weighted least squares and Bayes parameter estimators based on 

combining subjective percentiles and test data. 

I. Introduction 
Risk analysis of nuclear power plants requi" 2S system reliability com

putation. The computation requires a failure model. The failure model in 
the Seismic Safety Margins Research Program (SSMRP) is a mechanical reliability 
model. Component failure occurs when a response random variable exceeds a 
strength random variable [1]. Component response and strength data are com
bined to compute system reliability [2]. The component strength data is 
summarized in estimates of the cumulative distribution functions (cdfs) of 
the strength random variables for all components. 

Unfortunately, there is little relevant component strength test data. 
Components may have been acceptance tested but have not been tested to 
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failure. Or they may have been tested to failure but not under earthquake 
loads. In order to compute system reliability given an earthquake, earthquake 
failure data is needed. There is little. Thus other sources of information 
about strength are needed. One source is expert opinion. Opinions come 
in many forms. The form t:sed in this paper is expert opinion of the fragility 
function percentiles. 

Questionnaires were sent to 253 experts to obtain strength percentile 
estimates of nuclear power plant components in an earthquake. Forty experts 
returned 120 questionnaires on 31 categories of components. The questionnaires 
gave the 10-th, 50-th and 90-th percentiles of the fragility functions for 
the three failure modes judged most likely by each expert. .The questionnaires 
also gave expert self credibility weights. 

This paper describes estimation of fragility functions from subjective 
percentiles and test data. The objective is to estimate a single fragility 
function for each of the 31 categories of components. Thi; requires esti
mation of fragility functions for each failure mode from the subjective per
centiles and test data. It also requires combining modal fragility function 
estimates. Because the estimated cdf comes from subjective percentiles 
and test data, the uncertainty due to lack of knowldege about the true strength 
must be quantified. 

2. Using Subjective Percentiles for Estimating Fragility Functions 
The questionnaire used for eliciting fragility information from experts 

asked for subjective percentiles of the fragility functions. The answers are 
treated as independent estimates of specified percentiles. They are used as 
inputs for estimating the parameters of a cdf based on the least squares 
criteria. The method can be used for any invertible cdf. It is apDlied to 
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normal, lognormal and exponential cdfs in this paper. The estimators are 

easily modified to accept weighted data. The weights may be credib i l i ty 

ratings given by the respondents or by the person analyzing the data. 

The model for subjective percentiles is the following. The subjective 

percentiles from each expert are uncorrelated and the percentiles from 

different experts are independent. Let X. denote the q-th subjective 

percentile given by the i-th expert. The assumed model for X- is 

V V E i q Q=.1..5, .9 
i = 1, 2,...,n 

where x is the q-th population percentile of the reference population, 
assumed to be the aggregation of subjective fragility functions for all ex-
perts; and E. is a random variable with E(E. ) = 0 and Var(E. ) = o E . 
Thus, for each percentile, the model assumes the i-th expert's opinion is 
randomly selected from the population of opinions of all experts. 

This is a simplification of reality. It is doubtful that an expert's 
opinion about the three percentiles are uncorrelated, nor can it necessarily 
be expected that experts are independent sources of information. Some alter
native models are discussed in Sections 5 and 6. 

The parameter estimators for a hypothesized cdf minimize the sum of 
squared differences between the sample percentiles and the percentiles of 
the hypothesized cdf. Let £ denote the vector of parameters of the cdf and 
let F" (q,_6) denote the inverse of the hypothesized cdf. The objective i; 
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to f ind the value of e that minimizes 

I I ( x i q - F ' V e))z. 
i=l q M 

It is not necessary to have the same set of q for all i. The cardinality of 
the set of q must be at least as large as that of e. 

First, assume the population fragility function can be approximated by 
the normal distribution. The parameters to be estimated are the mean and 
standard deviation, u and o. Notice the percentile x = u + oz , where z is the 

M M H 

percentile of the standard normal cdf. The objective function is 

n 2 
m i n .1,1 % -i! - y > • 
i.,a 1 = 1 q ' H 

The normal equations yield 

'v " (\l + *.5 + * . 9 ) / 3 ' 

where 1 is the average of the subjective percentiles, offered by the n 
M 

experts, and 

n 
0 = J ( Xi.9" Xi.l , / ( 2 n z.9 )-

I f the hypothesized cdf is lognormal with E(fnX) = •„ and Var ( M ) = 
2 

o , the objective function is 

n . 
min I J (£n X. - u - z c) . 

•i L iq q 
1=1 q M M 
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The estimators are 

w = [wi 1 + wi 5 + wi g)/3 

and 

n 
, = j (In X i g - In Xi })/(2n z _ g ) . 

In either case, under the assumed model, the estimators y and o are 
? ? z 

unbiased. Their variances are <-.. /3n and o.. / ( j n z g) respectively, assuming 
all experts r.ive 10-th, 50-th and 90-th percentiles. An estimate of the 

2 variation, n r , between experts is 

= E
2 = j i q[(X i q-i q) 2/(3(n-l)) 

where 

x = i + z P . 
q q 

I f the hypothesized cdf is exponential with parameter \, the objective 

function is 

min I I (X. +£n ( l - q ) A ) 2 . 
J i=l q q 
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The solution to the normal equation is 

n 2 

) = -
ILMU)T 
q 

Thus, the least squares estimator of the expected value, i = 1 / * , of the 

exponential distribution is 6 = 1A. 

Under the assumed model & is an unbiased estimator of s and the variance of 

fi is 

^E 2 / (n I [ f -n( l -q) ] 2 ) . 

3. Combining Fragility Functions for Several Failure Nodes 
If a component can fail in several modes, it is of interest to find a 

single variate fragility function which describes the component failure in 
the weakest mode. A graphical description of component failure, when a 
component can fail in two modes, is given in Fiqure 1. 



Failure in 
Mode 1 
F, (s) 

1.0 j-

Failure in 
Mode I 
F 2(s) 

0 s 

Figure 1. Component Failure Definition 

in this section we discuss some methods for determining the fragility function 
for component fai'.ure when the marginal fragility function for each mode 
is qiven. The description is in terms of two modes of failure; it is easily 
extended to several modes. 

If failure in either mode is caused by the same response variable, com
bining nodes is easy. This is shown first. 
Define 

V S2 strength or capability of component to resist failure 
in mode 1 and 2 respectively. The marginal cdfs of S. 
and S„ are F (s) and F ?(s). 

response seen by the component. It must have the same 
units as S, and $ ?. The cdf of R is F R(r). 
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The probability of component failure is 

P[Component Failure] = P[S1 < R U S ? <. R] 

= r P[S-, £ s U S 2 £ s|R = s]dFR(s) 

If S, and S 2 are independent, 

P[Component Failure] = / " { 1 - P ^ •• s'R = s]P[S, > S|R = S]'dFR(s) 

or, 

2 
P[Comp. Failure] = /. [1 - : (l-Fi(s))]dF (s) u i=i * 

Thus, the combined fragility function is 

F c(s) = 1 - v. [1 - Fi(s)] 
L i=l 

For example, suppose S, and $„ are independent normal random variables with 
means u, and v ? and standard deviations c, and -,,. The combined fragility 
function is 
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where *(• ) is the N(0,1) cdf. Suppose u, = 2, u„ = 1.5, a, 
.5 and o ? = .2, The combined fragility function is 

F c(s) = 1 - [l-*(2s-4)][l-«(5s-7.5)]. 

The values for Fp(s), for selected values of s, are in Table 1. The com
bined fragility function is not a normal cdf. 

Table 1. A Combined Fragility Function 

1 1.5 2 2.5 3 

F c(s) 3.17x10~3 .00135 .02887 .5793 .99696 1.0 1.0 

If S, and S ? are independent lognormal random variables the combined 
fragility function is 

F c(s) 
'lr\ s-u. fin s-p, 

where y. = E(£n S.) and 0. = Var (£n S.), i=l,2. 
The generalization for more than two failure modes is clear. 
In many cases responses causing the two 'ailure modes are not the 

same, but come from a commori response. For example, R, and R. 
may be maximum displacement and peak velocity, both of which are related 
to peak acceleration, R. Let g-(R) = R- i=l,2 be known functions relating 
the R.'s to the common response R, The probability of component 

failure is 
P[Comp. Failure] = P[5 ] <_ R ] U S 2 < R ?] 
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Again, if S, and S, are independent, the probability of component failure J l u " u J 2 

P[Comp. Failure] = / H- n [T-F,(a,(s))]}dF_(s) 
0 i=1 1 1 n 

or, the combined f rag i l i t y function is 

F,(s) - 1 - n [1 -F (g . ( s ) ) ] . 
1 i = ] ' } 

For example, suppose S, and S ? have the same cdfs as the previous example. 
Suppose 

q^R) - 0.5 + R 1/2 

and 

g 2(R) = -0.25 + 1.1R. 

Table 2 show*; values of the combined fragility function. 

Table 2. A Combined Fragility Function With 
Different Response Variables 

F c(s) 

0 2 

.00135 .15915 .99307 

2.5 

1.0 
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Of course, this is easily generalized for K "independent" modes of 
failure. 

4. Using Grouped and Weighted Subjective Percentiles for Estimating fragility 
Functions'and Quantifying Uncertainty Uie to Lack of Knowledge 
The least squares proceaure outlined in Section 2 assumed identically 

distributed errors for each of the subjective percentiles. Such estimates 
are not always icLr,ti;ally distributed. Experts could be estimating percentiles 
for different types of components for the same generic component (e.g. different 
sized valves). Similarly, experts could be grouped by their background ard 
experience. Consequently, subjective percentiles from experts in different 
groups may not be identically distributed. Also, opinions from the different 
experts could be weighted differently by the experts themselves (self or peer 
weighting) or by the person conducting the survey. 

This section contains an analysis of a model with group effects and 
weiqhted experts. The analysis estimates the fragility function parametr.s 
and the variation between experts within a group and between groups. The latter 
estimates can help to quantify "uncertainty" in the parameter estimators 
due to differences between experts. 

Assuming the normal distribution approximates the population fragility 
function, the model for the q-th percentile given by the j-th expert in the 
i-th group is 
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Xijq = " + V + ' i + Ei> 1"1.2.-.I 
i = i, 2,...,^ 
q = .1, .5 .9 

where T. is the deviation of the q-th percentile of the fragility function 
for the i-th group from the q-th percentile of the fragility function over 
all groups; and E,. is the random deviation in the estimate of the q-th ljq % 
percentile by the j-th expert in the i-th group. Further, assume T. and E.. 
are uncorrected random variables with E(T.) = E(E,. ) = 0, and Var(T.) = 
c / and Var(E i j q) = a £

2 . 
o The parameter a represents the perceived (by the experts) variation in 

p component strengths within a group of components. The parameter Cj represents 
the variation in the average strength between groups of components, Thus, the 

1 o sum ; + o T represents the "subjective" variance of strengths or components 
2 between the different groups. The parameter cv represents the variation 

between experts due to lack of knowledge about component strengths. 
Again, this model is only an approximation to reality. It only assumes 

a shift in the mean, y, between groups and assumes a to be the same for all 
groups. Models in which c also varies will be considered in the future. 

To allow for perceived (by the analyst) differences in the ability and/or 
knowledge of the experts, let w,-• be a weighting factor applied to the per
centiles given by the j-th expert in the i-th group. The weighted least squares 
estimator is based on the objective function 

I N_ 
nin I T I wii ( Xiia" l J" ZQ a ) 

u,a i=l M q 1 J l j q q 
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1 'h where J ; w.. : 1. The estimators a 
_• , • , i . l 

re 
1=1 j " l 

anci 

, = 1 I f / r w . . X.. 
3 1=1 j=l 5 1 J 1 J q 

^lUiw^ 
For any symmetric d i s t r i b u t i o n , 

; = (X _g - \^)/(2 Z_ 9 ) 

^ ^ q 3 ^ Jj*1JX1Jq-

2 2 
To estimate the variance components, i r and a,. , define 

SSE - 1 1 j ; wij<xuq - ; - v> 2> 

S S T - q q } ^ X 1 j q - 7 i . q ) Z ' 

and 

q i J J " M M 

N 1 
w h e r e X i q = I W i j X i j q / w . _ a n d w i _ = ^ w ^ . 
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Assume a symmetric distribution. Then the sums of squares have expectations 

E(SSE) = 3 o T
2 ( H W . 2 ) + 3 c F

2 ( 1 - f [ £ w 2 ) , 
I . i. t i i j U 

E(SST^ = 3 0^ Mg-
Iw..2 

T iJ 
1 Wi. 

and 

E(SSM) ̂ c / l l w . 2 

i J J 

Thus, Cr can be estimated using either SST or SSM, and SSE gives an 
estimate of c T . These estimators can be used to construct subjective 
"confidence" limits for individual percentiles or bands 
for the fragility functions. Alternatively, if it is necessary to have 
a sinqle fragility function which includes perceived variation within 
and between groups as well as variation between experts, an adjusted 
standard deviation 
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" , ' 2 ' 2 ' 2 , 1 / 2 
o„ - (n +a^ + 0j ) 

can be used for ,,. estimator of the variance of the fragility function. 

Using a„ instead of a biases the system failure probabilities upward. 

Since the model for the q-th percentile,-x = u + z-a, is a linear 
q M 

function of i . standard least squares methodology (assuming the distribution 
of the variations, T. and E.- can be approximated by a normal distribution) 
can be used to construct confidence bands for the percentiles as shown in 
Figure 2 

Xq 

3.1 3.5 3.9 z 

Figure 2. Confidence Bands for Percentiles, x Q. 

Alternatively, simultaneous confidence bands, called the Working-
Hotel ling [3] confidence bands are given by 

i + V ' ̂ (l-ahZ.v^^'V' 
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where v is the "degrees of freedom" for the estimated vsnance components, 
and the estimated standard deviation is 

?r , . 2 J 12 VT... 2X _l{0l vv ,., 2 \ l V 2 

•'»*V»'T1V'iVjj"«*«, fni i * L- ij 

q q 

In terms of the fragility function, the estimated fragility function and 
the associated confidence bands 3re shown in Figure 3 

F(x) 

1.0 F(* q) 

0 -

/ 
/ 

i 
/ 

/ 

\ 

Figure 3. Confidence Bands for Fragility Function 

Note that the confidence bands for the fragility function are not 
symmetric and not members of the family of fragility functions estimated 
by least squares. To alleviate this, one can consider using parallel 
confidence bounds for x based on the methods proposed by Graybill and 
Bowden [>]. 
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The use o~ the term confidence is not consistent with its use in 

classical statistics. Rather, the variation reflected by the confidence 

bands is (1) the variation in the av^age strength between groups of com-

oonents of the same generic type and (2) the variation between experts 

within a group. Thus, the confidence bands give some measure 

of the uncertainty associated with the estimated population fragi l i ty function, 

i.e. the average fragi l i ty function perceived by the population of experts. 

] f this function can be assumec to approximate the dctual f ragi l i ty function 

for the qiven component, then elicit ing opinions from a sample of experts 

provides input for a reasonable estimator of the component fragi l i ty function, 

5. Least Squares Estimation With Percentile Dependent Errors 

In the fragi l i ty questionnaires, subjective percentiles had greater variation 

at higher percentiles. This is because experts have less experience at high 

percentiles. Thus, the model for subjective percentiles should take this 

into account. Typical responses for various percentiles are shown in Figure 4. 

Points are numbered by respondent. 

q 

.0 

.9 2 1 

.5 

3 4 5 

1 3 4 5 

1 2 3 4 5 

Figure 4. Typical Spread in Estimates as Functions of Percentiles. 
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The model for subjective percentiles with heteroscedastic variation 
is the following. It is assumed that the subjective percentiles from 
each expert are uncorrelated estimates and independent as in Section 2. 

1 

The model assumes oR increases in q. In this section, we wi l l derive 

the least squares estimators of u and o, assuming a normal f rag i l i t y function, 

for the model 

X. = x + q£. 

2 2 2 
where Var(E. ) = ur , but Var (qE. ) = q o. . 

Assume that all respondents give opinions on the same percentiles. 
'ihe objective function is 

S.UV'*"'" 
Weighted least squares is used because the variation in X. , is not equal 
to the variation in X. r, etc. i . t> 

Define Y. = X. /q = x /q •:• F. . The variance in each Y. is the iq iq ̂  q M n ic, 
same for all q for each respondent. 

Since 

Y. = x /q + E. = — ^ - - + E. , lq q' M iq q iq 

the objective function is 

min I I 
v,o i=i q iq q 
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The solution for a is 

n q /q • (I yq 2 ) (H q

2 /q)/P/q z 

[ zq

2/q 2 - (I y q 2 ) / 1 i/q2 

n where all summations are over q and Y = [ Yjq/ n- T h e estimator of v 

is 
1 

u 
nv»-_v , / q 

I l/q I 

The estimator of the variance, =-, of the variation E. is basrd on 
averaging the squares of the residuals 

X. - x X. - [v + z o) 

over the respondents and the percentiles. This can then be used to estimate 
the variance of the estimators i and o. 

6. Using Subjective Percentiles and Test Data For Estimating Fragility 
Functions by Least Squares and Bayesian Methods 
This section describes a least squares and a Bayesian method for com

bining subjective percentiles and test data. The least squares method 
treats the test data as an empirical cdf with percentiles at each observed 
failure strength. These percentiles are put in the weighted sum of squared 
deviations just like subjective percentiles. The Bayesian method uses the 
subjective percentiles to estimate a prior cdf of the fragility function 
parameters. The test data is assumed to be a random sample from the fragility 
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function. The Bayes method gives the posterior cdf of the f rag i l i t y function 

parameters. Substituting the expected values (Bayes estimates) of the 

parameters into the f rag i l i t y function yields a posterior Bayes estimate 

of the f rag i l i t y function. 

The least squares method is as follows. The inputs consist of subjective 

percentiles and test d?ta. The measurement unit of the test data must be 

the same as that of the subjective percentiles. The objective is to estimate 

the parameters of the f rag i l i t y function. The parameter estimators minimize 

the weighted sum of squared deviations between the f rag i l i t y function and 

the percentiles of the empirical cdf (test data) or the subjective percentiles. 

For this method i t is assumed that the copulation f raq i l i t y function (over 

a l l experts) is an unbiased estimator of the actual f rag i l i t y function. 

The inputs are denoted as follows. The observed strengths at failures 

are X, < X, < . . .< X. . The oriqinal test sample size may have been larqer, 

in > k, and the survivors have strength greater than X,. The subjective 

percentiles are X. . 

The objective function for estimating the mean and variance of strength 

at fa i lure, assuming strength is normally distributed is 

. i n k ] ( X i - p - , z ) 2

 + W $ I [ ( X - , - o z ) 2 . 
u,o [ 1=1 i=k+l q ^ 

The weights \ and W Q must be specified by the user. 
For the following derivation, assume W = W- = 1 and the 10th, 50th, 

and 90th percentiles are given by each respondent. The objective function 
is 
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mn 
• J > C 

' J" B, -. -. *J * j t , I B,, •. - V l ! 

The normal equations arc 

.£ ! ( *i - - •',/.' - , | , I ( I „ " " " V " ° 

and 

.1 ^ i " i- " o z i /•''". • 4 , 1 V«. „ -' - v ' ' ° 
The solution requires solving 

: k 

and 

I 0(1.28) '+ ( V - ) . M i / m 

V z 2 - (1.28) 2 (n-k- l ) /n 
}=1 ^ 

A + ̂ .; J 7 
4 4 " i 1

 z i /m 

simultaneously for o and u. The variable Xn is the average of the observed 
k . . 

fai lure times, F X./k, and p and a are the least squares estimators of 
i=l 1 

u and c from Section 2. The solutions are 

4 4 i z 7m r 2 „ „ n l 2 
Ml .28 ) 2

+ V z i / 1_ 
^ z ; / B | - (1.28) '(n-k- l) /n 

1 + {l Zi///{1 zi/m " ( L 2 8 ) (n-K-l)/n> 
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and 

: 2a(1.28)2 + (X D- v) l z . , 
o .2 2 l i c - (l.Z8)Mn-k-l)/n 

To describe a Bayesian procedure, assume a lognormal fragility function 
with Darameters £ = E(£n x) = In M and s = Var(i'n X), where X is the strength 
at failure and M denotes the median of X. 

Assume the joint conjugate prior distribution for U,B), 

g(m,b; e ^ . v ) i fLT^r* 6 1 

b\ 2n \b/Vn" 
ve 

1/2 

r(Xl J 
vs 2 • M ) P - - 5 - ; b > 0 

« < m < « 

where 9, and 6* are the estimates of ?,6 derived from the exper*: opinions 
and v is the degrees QT freedom associated with 9 2, based on the n experts 

If Y. < Y, <...< Y, is the ordered test data, where Y. = <"n X., let 
k k 

Y = I Y./k and S 2 = \ (Y. - Y)2/(k-l). Assume the sample is not censored 
i=l n 1=1 1 

or truncated. Then the posterior distribution of (£,£) has the same form' as 
i i 

the prior distribution with parameters 9,, f^, n' based on the relationships 

n' = v + k + 1, 

n1 9j = kY + r^ , and 

( n ' - l ) e ^ + (n ' - l )e j = [ (k - l )S 2 + k Y 2] + [ v6 2

2 + fv+Dfi , 2 ] . 

The posterior marginal means and variances are 
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i 

n' > 3 ; and 

n' -• 4 . 

The Bayesian method involves using the subjective percentiles to determine 

in i t i a l values for B, and P., the parameters of the orior distr ibut ion, aid then 

usinq the test data to evaluate the posterior marqinal means for (5,6). These 

Bayes es t i i ^ccs are then used as estimators for the parameters o f the log-

normal f rag i l i t y function. 

Var(0 = ̂ 2 -X" '" 1 

Var 

2 n'(n'-2) ' 

E l B ' e ^ 2 I r [ ( n . _ 2 ) / 2 ] 
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