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ABSTRACT

Fragility functions are cumulative distribution functions {cdfs) of
strengths at failure. They a~e needed for retiability analyses of Systems
Subjec ;ive opinions

such as pawer generation and transmission sys*ems.
Often the

supplement sparse test data for estimating fragility fun.tions.
opinions are opinions on the percentiles of the fragiliiy function. Sub-

jective percentiles are Tikely to be less biased than opinions on parameters

of cdfs.

This paper provides solutions to scveral problems in the estimation
of fragility functions given subjective percentiles and test data. How
should subjective percentiles be used to estimate subjective fragility
functians? How should subjective percsntiles be combined with test data?

How should fragility functions for several failure modes be comhined into a

*
This work was supported by the U.S. Nurlear Regulatory Lommission under a
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composite fragility function? How should inherent randomness and uncertainty
due to lack of knowledge be represented?
We treat subjective percentiles as independent estimates of percentiles.
We derive:
1. Tleast squares parameter estimators for normal and lognormal
cdfs, based on subjective percentiles; the method is applicable
to any invertible cdf,
Z. a composite fragility function for combining several failure modes,
3. estimators of variation within and between groups of
experts for nonidentically distributed subjective percentiles,
4. weighted least squares estimators when subjective percentiles have
higner variation at higher percents, and
5. weighted least squares and Bayes parameter estimators based on

combining subjective percentiles and test data.

1. Introduction
Risk analysis of nuclear power plants requir2s system reliability com-
putation. The computation requires a failure model. The failure model in
the Seismic Safety Margins Research Program (SSMRP) is a mechanical reliability
model. Componant failure occurs when a response random variahle exceeds a
strength random variable 1]. Component response and strength data are com-
bined to compute system reliability [2]. The component strength data is
sumidrized in estimates of the cumulative distribution functions (cdfs) of

the sirength random variables for all components.

Unfortunately, there is 1ittla relevant component strength test data.

Components may have been acceptance tested but have not been tested to
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faiture, Or they may have been tested to failure but not under earthquake
loaus. In order to compute system reliability given an earthquake, earthquake
failure data is needed. There is little. Thus other sources of information
about strength are needed. {Qne source is expert opinion. Opinions come

in many forms. The form :sed in this paper i expert opinion of the fragility
function percentiles.

Questionnaires were sent to 253 experts to obtain strength percentile
estimates of nuclear power plant components in an earthquake. Forty experts
returned 120 questionnaires on 31 categories of components. The questionnaires
gave the 10-th, 50-th and 90-th percentiles of the fragility functions for
the three failure modes judged most 1ikely by each expert. The questionnaires
also gave expert self credibility weights.

This paper describes estimation of fragility functions from subjective
percentiles and test data. The objective is to estimate a single fragility
function for each of the 31 categories of components. This requires esti-
mation of fragility functions for each failure mode from the subjective per-
centiles and test data. It also requires combining modal fragility function
estimates. Because the estimated cdf comes from subjective percentiles
and test data, the uncertainty due to lack of knowldege about the true strength

must be quantifiad.

2. Using Subjective Percentiles for Estimating Fragility Functions

The questionnaire used for eliciting fragility information from experts
asked for subjective percentiles of the fragility functions. The answers are
treated as independent estimates of specified percentiles. They are used as
inputs for estimating the parameters of a cdf based on the least squares

criteria. The method can be used for any invertible cdf. It is apolied to



P

normal, Tognormal and exporential cdfs in this paper. The estimators are
easily modified to accept weighted data. The weights may be credibility
ratings given by the respondents or by the person analyzing the data.

The model for subjective percentiles is the following. The subjentive
percentiles from each expert are uncorrelated and the percentiles from
different experts are independent. Let Xiq denote the g-th subjective

percentile given by the i-th expert. The assumed model for Xiq is

where xG is the g-th population percentile of the reference pooulation,

assumed to be the aggregation of subjective fragility functions for all ex-
2

) = o

perts; and E, 15 a random varfable with E(Eiq) = 0 and Var(E;

9 q
Thus, for each percentile, the model assumes the -th expert's opinion is
randomly selected from the population of apinions of all experts.
This is a simplification of reality. It is doubtful that an expert's
opinion about the three percentiles are uncorrelated, nor can it necessarily
be expected that experts are independent sources of information. Some alter-
native models are discussed in Sections 5 and 6.
The parameter estimators for a hypothesized cdf minimize the sum of
squared differences between the sample percentiles and the percentiles of .

the hypothesized cdf. Let 8 denote the vector of parameters of the cdf and

Tet F'] (q,8) denote the inverse of the hyputhesized cdf. The objectiva i3

BRn  marim
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to find the value of g that minimizes

It is not necessary to have the same set of g for al1 i. The cardinality of
the set of q must be at least as large as that of s.
First, assume the population fragility function can be approximated by
the normal distribution. The parameters to be estimated are the mean and
standard deviation, u and ¢. Notice the percentile xq =y o+ ozq, where zq is the

percentile of the standard normal cdf. The objective function is

n
min ]
L

o 1

2
V(X - w -
é ( Tl zqs) )

The normal equations yield

where X is the average of the subjective percentiles, offered by the n

experts, and

(8.

n~1=

, gy (202 ).

.'l
If the hypothesized cdf is lognormal with E({nX} = ; and Var (fnX) =

oz, the objective function is
min

i
W0

q

W~ =

_—

2
g {fn Xf -u - ch) .
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The estimators are
u s (IE‘Y’] +fn X 5t onX 9)/3
and

2 {fn X g - £n Xi_])/(Zn 2'9) .

In either case, under the assumed model, the estimators i and ; are
unbiased. Their variances are cE2/3n and oEZ/(En z2 9) respectively. assuming

all experts rive 10-th, 50-th and 90-th percentiles. An estimate of the

o Z .
variation, or , between experts is

2 0 2
ocs = L x )5/ (3(n-1))
By g e 0

i=1

where

If the hypothesized cdf is exponential with parameter 1, the objective

function is ,

. 2
min .

n
r
R
o=

(X, +£n (1-q)/2)
10



The solution to the normal equation is

Thus, the least squares estimator of the expected value, 8 = 1/3, of the

exponentiai distribution is & = 1/,

Under the assumed model & is an unbiased estimator of & and the variance of

418
el ()L tn(1-) ).

3. Combining Fragility Functions for Several Failure Modes

If a component can fatl in several modes, it is of interest to find a
single variate fregility function which describes the component failure in
the weakest mode. A graphica) description of component failure, when a

component can fail in two modes, 1s given in Figure 1.
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Component Failure Defini:ion

{n this section we discuss some methods for determining the tragility function

for component fai:ure when the marginal fragility function for each mide

is qiven., The description is in terms of two modes of failure; it is easily

extended to several modes.

If failure in either mode is caused by the same response variable, com-

bining modes is easy. This is shown first

Define

R

= strength or capability of component to resist failure
in mode 1 and 2 respectively. The marginal cdfs of S]

and S, are F_(s) and FZ(S).

2 1

= response seen by the comporent. It must have the same

units as S and S,. The cdf of R is FR(rL
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The probability of component failure is

P[Component Failure] P[S] <RU Sp € R]

-3
¢

Iy P[S; < s US,

I~

s|R = s]dFR(s)

If 37 and 52 are independent,

P[Component Failure] = IOW a-p[s, » s'R = sJP[S, > SIR = S]?dFR(S)

or,

" 2
P[Comp. Failure] = jO N " (1-F;{s)}]dFpls)
]:

Thus, the combined fragility function is

for example, suppose S] and 52 are independent normal random variables with
means U, and ) and standard deviations o and T The combined fragility

function is
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where (. ) is the N(0,1) cdf. Suppuse uy = 2, Ly = 1.5, o =

.5 and 0y = .2, The combined fragility function is

F(s) =1 - [1-0(25-4)101-0({5s-7.5)].

C

The values for Fc(s), for selected values of s, are in Table 1. The com-

bined fragility function is not a normal cdf.

Table 1. A Combined Fragility Function

s |0 5 1 1.5 2 25 3

Fels) 3.07x10°° 00135 .N2887 L5793  .99696 1.0 1.0

i ——

If S] and 52 are independent lognormal random variables the combined

fragility function is

&n $-1) {n $-1s
oo (252 (252

where p, = E(en Si) and Oi? = Var {{n Si)’ i=1,2.

The gzneralization for more than two failure modes is clear.

In manry cases responses causing the two “ailure modes are not the
same, but come from a common response. For example, R1 and R2
may be maximum displacement and peak velocity, both of which are related
to peak acceleration, K. Let gi(R) = Ri i=1,2 be known functions relating

the Ri's to the common response R, The probab!lity of component

failure is

P[Comp. Failure] = P[S] <R u 5, < R2] .
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Again, if S] and 52 are independent, the probability of component failure

is

o 2
PlComp. Failurel = [ {1- H][T'Fi(gi(s))}}dFR(s)
0 i=

or, the combined fragility function is

— Ny

Fols)=1- ;
(e ;

[1-F, (g, [sD)].

1

For example, suppose S] and S2 have the same cdfs as the previous example.

Suppose
9 (R) = 0.5 + R/
and

gp(R) = -0.25 + T.1R.

Table 2 shows values of the combined fragility function.

Tahle 2. A Combined Fragility Function With
Different Response Varizples

Fols) , .00135 15915 99307 1.0
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0f course, this is easily generalized for K "independent" modes of

failure.

4. Using Brouped and Weighted Subjective Percentiles for £stimating firagility
Functions and Quantifying Uncertainty bue to Lack of Knowledge

The least squares proceaure outlined in Section 2 assumed identically
distributed errors for each of the subjective percentiles. Such estimates
are not always ic.ntisally distributed. Experts could be estimating percentiles
for different types of components for the same generic component (e.g. different
sized valves). Similarly, experts could be grouped by their background ard
experience. Consequently, subjective percentiles from experts in different
groups may not be identically distributed. Also, opinions from the different
experts could be wéiéﬁted differently by the experts themselves (self or peer
weighting) or by the person conducting the survey.

This section contains an analysis of a mode) with group effects and
weighted experts. The analysis estimates the fragility function parametr.s
and the variation between experts within a group and between groups. The latter
estimates can help to quantify "uncertainty” in the parameter estimators
due to differences betwear experts.

Assuming the normal distribution approximates the population fragi)ity
function, the mode! for the g-th percentile given by the j-th expert in the

i-th group is
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Xijq =yt qu Tt Eiﬁq =1, 2,00.,]
J=152a- ,N'I
qg=.1,.5 .9

where Ti is the deviation of the g-th percentile of the fragility function
for the i-th group from the g-th percentile of the fragility function over
211 groups; and Eijq is the random deviation in the estimg}e of the g-th
percentile by the j-th expert in the i-th group. Ffurther, assume Ti and Eijq
are uncorrelated random variables with E(Ti) = E(Eijq) = 0, and Var(Ti) =
CT2 and Var(Equ) =0
The parameter 52 represents the perceived (by the experts) variation in
component stranaths within a group of components. The parameter CT? represents
the variation in the average strength between groups of components. Thus, the
sum :2 + OTZ represents the "subjective” variance of strengths or comporents
between the different groups. The parameter GE2 represents the variation
between experts due to lack of knowledge about component strengths.
Again, this mode] is only an approximation to reality. It only assumes
a shift in the mean, u, between groups and assumes ¢ to be the same for all

groups. Models in which ¢ also varias will be considered in the future.

To allow for perceived (by the analyst) differences in the ability and/or
knowledge of the experts, let Wij be a weighting factor applied to the per-
centiles given by the j-th expert in the i-th group. The weighted least squares
estimator is based on the objective function

I N

rmn[ Z[w uzo}
,o 1=1 j=1 g q

2
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where 7} Wis 1. The estimators are

i=1 j=1
I N
] «© T ¢
I R R NN
3 i:1 321 q 1 19
and
I N,
0 2

5 oF Was X.. ..4
g % 1&] jé} N X1]q/1 “

For any symmetric distribution,

N,
here X = Mo, Koo
e e Tl ikt

To estimate the variance componenis, 7E2 and oTZ, define

oW, .
SSE = g ]'Z'l J'Z" wij(x.}jq -y o- ZqO) )

and
ssM=T T Jw X -u-z0
713 1] q q
N
where Xi.q = % Wi Xijq/w1. and w; = JZ] Wi
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Assume & Symmetric distribution. Then the sums of squares have expectations

B(SSE) = 30.2 (1-Tw, ) + 302 (1- 27 w2,
T ; E 3_'\] ij
Tyt
N 2 I T
ESSTY = 3 0" [1- ] Ao |,
1 1.
and
20 ?
E(SSM) = o ; é wij .

Thus, CEE can be estimatrd using either SST or SSM, and SSE gives an
estimate of UTZ. These estimators can be used to construct subjective
"confidence" 1imits for individual percentiles or bands

for the fragility functions. d&itarnatively, if it is necessary to have
a sinqle fragility function which includes perceived variation within

and between groups as well as variation between experts, an adjusted

standard deviation
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" ;-2 A
Gy = (n + oE

n

2, 21/2
+0T)
«~ estimator of the variance of the fragility function.

can be used for

Using 9 instead of o biases the system failure probabilities upward.

Since the model for the g-th percenti]e,'xq =t g0, is a linear
function of z_, standard Teast squares methodology {assuming the distribution
of the variations, Ti and Eijq can be approximated by a normai distribution)

can be used to construct confidence bands for the percentiles as shown in

Figure 2
X / : ) ;
9, R A S
| A
/ //
/ -
~ 7
— Ve
7 e
| / 7
|
i /
! /
! I
7
: [ 1
T T T
3.1 3.5 3.9 zq

Figure 2. Confidence Bands for Percentiles, Xg-

Alter~atively, Simultaneous confidence bands, called the Working-

Haotelling [3] confidence bands are yiven by

a ~ ) ]/2 A A ~
u o+ Zqo \ZF(l-a),Z,v) ol + Zqo)

e e, L
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where v is the "degrees of freedom" for the estimated variance components |

and the estimated standard daviation is

>

Z

2, . 2(% 4

L4 W, .

w'lJ Zq (ZZZgg 1
q q

a
+
N
a
~—
1
—n
a »
—
~a
~
=
—
~
+
ol —
1
™
—r——1
Cse™~"q

In terms of the fragility function, the estimated fragility function and

the associated confidence bands are shown in Figure 3

F{x)
1.0 - - f(xq}
] / —
| g
0.5 y ’
: //' Y
[ /
I ) y
/
\/ /
0 .= = -
X
q

Figure 3. Confidence Bands for Fregility Function

Note thet the confidence bands for the fragility function are not
symmetric and not members of the family of fragility functions estimated
by least squares. To aileviate this, one can consider using parallel
confidence bounds for xq based on the methods proposed by Graybill and

Bowden [4].

] 1/2
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The use o the term confidence s not consistent with its use in
classical statistics. Rather. the variation reflected by the confidence
bands is (1) the variation in the average strength between groups of com-
nonents of the same generic type and (Z) the variation between experts
within a grounp. Thus, the confidence bands give some measure
of the uncertainty associated with the estimated population fragility function,
i.e. the average fragility function perceived by the population of experts.
1f this function can be assumec to approximate the actua) fragility function
far the given component, then eliciting opinions from a sample of experts

provides input for a veasonable estimator of the component fragility furction,

5. Least Squares Estimation With Percentile Dependent Errors

In the fragility questionnaires, subjective percentiles had greater variation
at higher percentiles. This 15 because experts have less experience at high
percentiles. Thus, the model for subjective percentiles should take this
into account, Typical responses for various percentiles dare shown in Figure 4.

Points are numbered by respondent.

q
1.0

9 | 2 1 34 5

5 2 13 4 5
N 12345

0 X

Figure 4, Typical Spread in Estimates as Functions of Percentiles.

Pt e
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The model for subjective percentiles with heteroscedastic variation
is the following. It is assumed that the subjective percentiles from
each expert are uncorrelated estimates and independent as in Section 2.
The model assumes 0E2 increases in q. In this section, we will derive
the least squares estimators of u and o, assuming a normal fragility function,

for the model

Kig = % * %4

2 .22
where Var(Eiq) =o', but Var (quq) g "

Assume that all respondents give opinions on the same oercentiles.

he objective function is

; (45 2,)1°
min ) Z[X - (a4 2 )]0
vrisl g 8 8

Weighted jeast squares is used because the variation in ks : is not equal

to the variation in xi 5 etc.

. . . . . . .
Define Yiq Xiq/q xq/q i The variance in each qu is the

same for all g for each respondent.
Since

{vtz <)

= :,__.__q___
xq/q tE +E

Yiq q 9 iq

the objective function is
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The solution for ; is

IV,/6 - (] 2/9%) (17,5 a] /e
I ZqZ/q2 - (1 zq/qz)/ T 1

g =

where all summations are over g and Yﬁ = 1‘g]'qu/n. The estimator of v
i
TV q- 2z, 0)/q?
g 9
AT

-

The estimator of the variance, sé, of the variation E1.q is based on

averaging the squares of the residuals

X, - % X - (; +z.0)
=19 9.1 9 i=1,2,...n

Eiq q q
05;[0,]]
over the respondents and the percentiles. This can then be used to estimate
the variance of the estimators L and &.

6. Using Subjective Percentiles and Test Data For Estimating Fragility
Functions by Least Squares and Bayesian Methods

This section describes a least squares and a Bayesian method for com-
bining subjective percentiles and test data. The Teast squares method
treats the test data as an empirical cdf with percentiles at each observed
failure strength. These percentiles are put in the weighted sum of squared
deviations just like subjective percentiles. The Bayesian method uses the
subjective percentiles to estimate a prior c¢df of the fragility function

parameters. The test data is assumed to be a random sample from the fragiiity
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function. The Bayes method gives the posterior cdf of the fraqility function
parameters. Substituting the expected values (Bayes estimates) of the
parameters into the fragility function yields a posterior Bayes estinate

of the fragility function.

The Teast squares method is as follows. The inputs consist of subjective
percentiles énd test data, The measurement unit of the test data must be
the same as that of the subjective percentiles. The objective is to estimate
the parameters of the fragility function. The parameter estimators minimize
the weighted sum of squared ¢2viations between the fragility function and
the percentiles of the empirical cdf (test data) or the subjective percentiles.
For this method it is assumed that the population fragility functiin (over
all experts) is an unbiased estimator of the actual fragility function.

The inputs are denoted as follows. The observed strengths at failures
are X, < <2 Ko The oriqinal test sample size may have been larger,
m > k, and the suryivors have strength greater than Xk' The subjective
percentiles are Xiq‘
The objective function for estimating the mean and variance of strength

at failure, assuming strength is normally distributed is

[ k
m1n[WD_Z
1Yo 1=
The weights ws and wD must be specified by the user.
For the following derivation, assume NS = ND = 1 and the 10th, 50th,
and 90th percentiles are given by each respondent. The objective function

is
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k n
2 2
min [X, ~y-02z,, ]+ X, -v-2z0]"1|.
i 121 L f/m 1=E+1 § q q
The normal equations are
) I
IS T & 28 ) (X -w-22)=0
i1 i i/m i=k# g iq
and
K n
}%]Zui""GZUm)ZUm' 1$+]ngXm -y - %a):O

The solution requires solving

) , Tk
2o(1.28)° + (L) T 2

] D7y T/
%
g - .28 (k)
and
W | Sk
D, 3
Ve tyE-e .g Zi/m

simultaneously for o and ;. The variable YO is the average of the abserved

failure times, ] X./k, and v and o are the least squares estimators of
i=1
v and - from Section 2. The solutions are

- . - -
X—D+§£'ZZ 25(1.28) +XDZz1./rrl
i3 imy 2 7

) Zim - (1.28)(n-k-1)/n
1oL 20 ] 2, - (1.28) (n-ke1)/m)

b=
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and

A
A

28(1.23)2 (B - Dayy |
) 21/ (1, 28)2 (nek=1)/n

g =

To describe a Bayesian procedure, assume a lognormal fragility function
with parameters £ = E(fn x) = &n M and 8 = Var(in X}, where X is the strength
at failure and M denotes the median of X.

Assume the joint conjugate prior distribution for (£,8),

1/2

? 2 Ve
: i} 4
_ STER (A T Y 2 T N P U I SR
g{m,b; v]aeza‘)) b\l[;‘l'e—_—(b/r ) [2< z ) r(g)]b e sz

2 Mo

where 8, and 62 are the estimates of £,8 derived from the expert opinions

and v is the degrees ¢F freedom associated with Bss based on the n experts.

AR RIS
Y= 7 Y./kand ¢ - po - 7)2/(k—1). Assume the sample is not censored
i=] i=]
or truncated. Then the posterior distribution of (£,F) has the same form as

is the ordered test data, where Yi = {n Xi’ Jet

the prior distribution with parameters 8], fos n' based on the relationships

13

n'=vtk+d,

n 6]

(01187 + (=106 = [k-1)s% + k 71+ g, + (os1}ay ]
2 2 1

kY + r.31, and

The posterior marginal means and variances are
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HI) = 8y
_m? 's1) .
Var(i) = e2 nin'-2) °

_ o (n-111/2 rl(n'-3)/2] Vo oa
8, (T) ——M——r[(nl_z)m] s n' >3, and

m
—
w
~=
1
~e

-
=
=3
o
i
n
o
~
——
3|3
Ol s
L ——
~——
1
r———
m
—
=
—_—
[ S )
™~
-
=
N

The Bayesian method involves using the subjective percentiles to determine
initial values far 8 and 92, the parameters of the orior distribution, and then
using the test data to evaluate the posterior marginal means for (£,5). These
Bayes estinacors are then used as estimators for the parametees of the log-

normal fragility function.
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