ION IMPLANTATION OF KRYPTON IN SPUTTER-DEPOSITED METAL MATRICES

MASTER

Garth L. Tingey E. D. McClanahan John F. Nesbitt is book was prepared as an account of work sponsored by an agency of the United States Government, tither the United States Government nor any agency thereof, nor any of their employees, makes any propleteness, or usefulness of any information, apparatus, product, or process disclosed, or seems that its use would not infringe privately owned rights. Reference herein to any specific mercial product, process, or service by trade arme, trademark, manufacture.

June 1980

To be presented at a Krypton-85 Review Meeting, June 17-19, 1980, La Jolla, California

Work Supported by the U.S. Department of Energy under Contract DE-ACO6-76RLO 1830

Pacific Northwest Laboratory Richland, Washington

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

#### **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

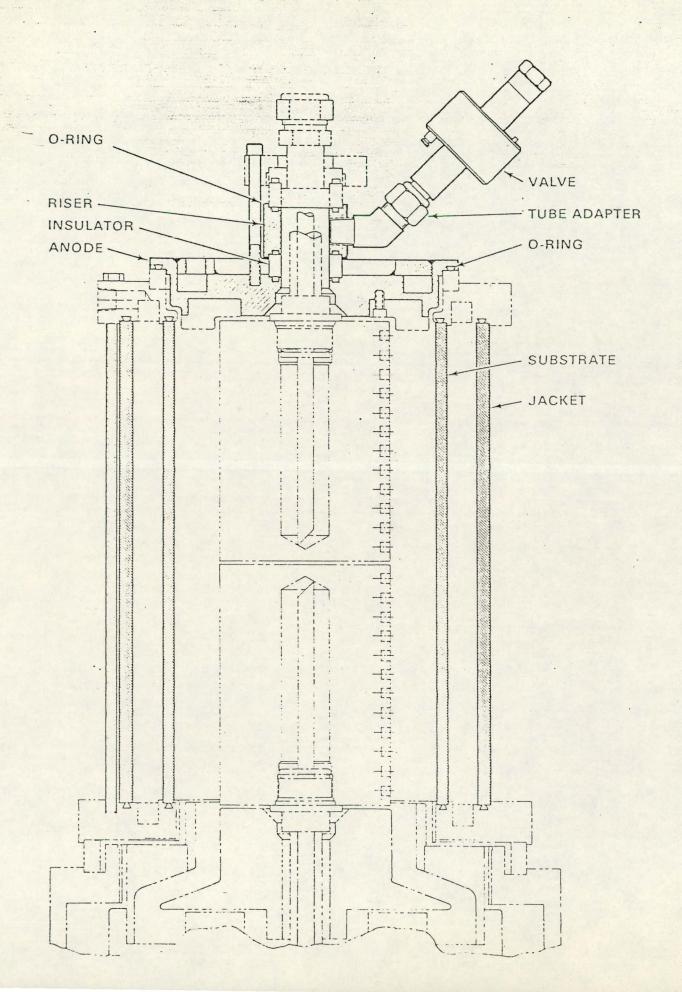
### **DISCLAIMER**

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

### ION IMPLANTATION OF KRYPTON IN SPUTTER DEPOSITED METAL MATRICES\*

Garth L. Tingey, E. D. McClanahan, and John F. Nesbitt

Krypton has been successfully trapped in an amorphous metal matrix by accelerating positively charged krypton ions toward a surface where the metal is being deposited. Studies have shown that krypton concentrations approaching 200 cm<sup>3</sup> of Kr(STP)/cm<sup>3</sup> of deposit can be achieved in amorphous metal deposits under readily attainable sputtering conditions. Furthermore, the gas is incorporated in the matrix such that release of the krypton is largely limited to high temperatures. For the iron and zirconium-based materials, release of krypton occurs at temperatures of from 700 to 1000°C. A very low release rate is observed at lower temperatures but long-term, highly sensitive measurements have shown that the total krypton released at 300°C would be less than 2% of that present during the first 10 years.


The effect of the Kr-85 decay product, Rb-85, on the deposit properties is currently under investigation and preliminary data reveal no significant effect on krypton release when the Rb concentration is limited to about 0.1 atom% of the solid.

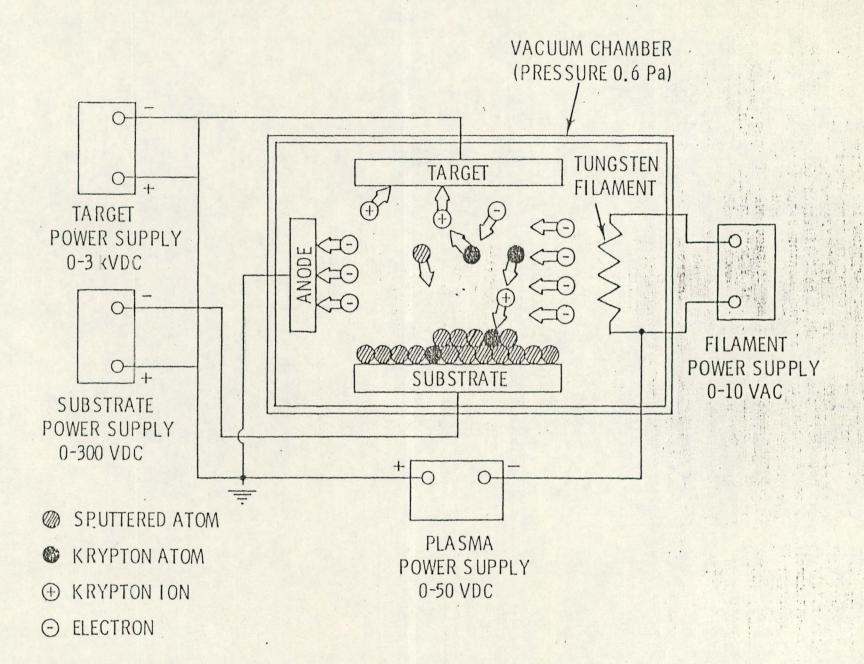
A preconceptional design of the facility and the sputtering apparatus will be presented along with cost estimates for this design. Much of the data to be presented is included in the following documents which have been cleared for release earlier:

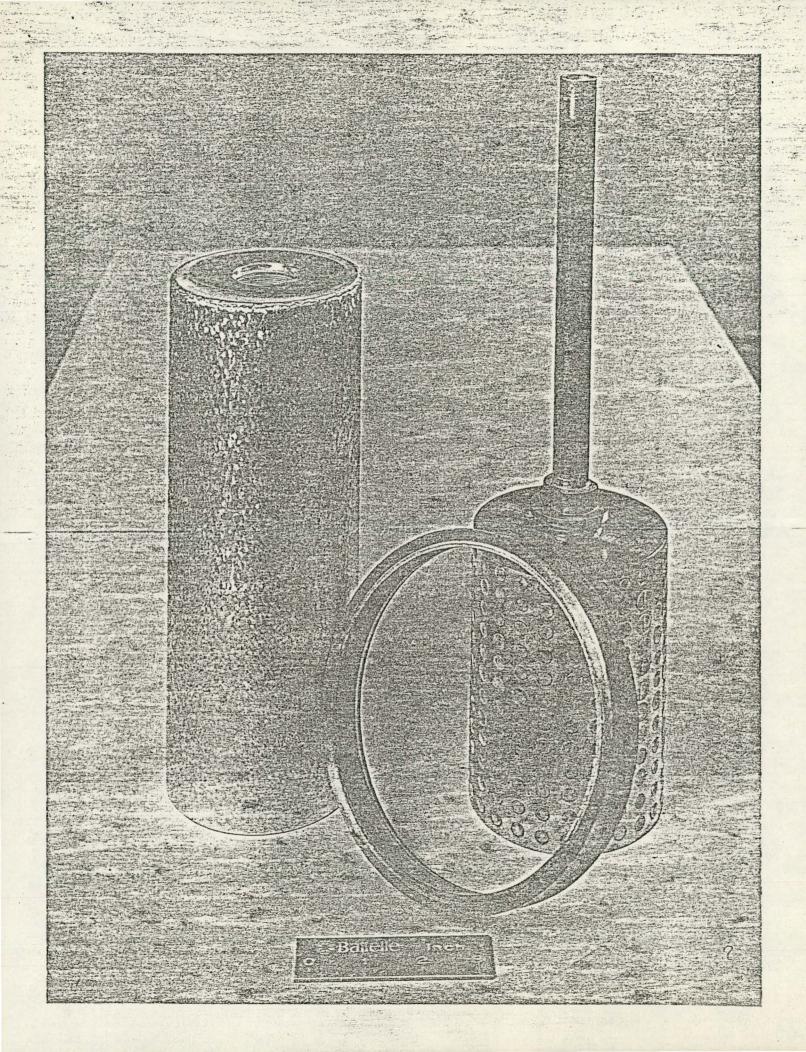
Work supported by the Department of Energy under Contract DE-AEO6-76RLO 1830.

- 1. G. L. Tingey, E. D. McClanahan, M. A. Bayne, and R. W. Moss, Entrapment of Krypton in Sputter Deposited Metals--A Storage Medium for Rdioactive Gases, PNL-2879, Pacific Northwest Laboratory, Richland, Washington, April 1979.
- 2. G. L. Tingey, E. D. McClanahan, M. A. Bayne, W. J. Gray, and C. A. Hinman, "Krypton-85 Storage in Solid Matrices," PNL-SA-7752, Pacific Northwest Laboratory, Richland, Washington, October 1979, Presented at the Materials Research Society Meeting, Boston, Massachusetts, November 26-29, 1979.
- 3. G. L. Tingey, E. D. McClanahan, M. A. Bayne, and W. J. Gray, "Solid State Containment of Noble Gases in Sputter-Deposited Metals and Low-Density Glasses," PNL-SA-1940, Pacific Northwest Laboratory, Richland, Washington, January 1980, Presented at the International Symposium on Management of Gaseous Wastes from Nuclear Facilities, Vienna, Austria, February 18-22, 1980.

Copies of anticipated visual aids are attached.







FIG. 1. Thermionically Supported Plasma Sputtering/Ion Implantation System.

## SPUTTERING CHAMBER TARGET COOLING (H2O) GAS INLET VALVE -MAIN ANODE -INSULATOR TARGET-COOLING (H2O) SUBSTRATE SHIELDS INSULATOR . FILAMENT .

TABLE 1. Krypton Loadings in Sputter-Deposited Metals

|                           |                                                                                                             | Krypton Content Pressure |                                                          |                  | Substrate           | Deposition       |
|---------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|------------------|---------------------|------------------|
| Target<br><u>Naterial</u> | Sputtered* Product                                                                                          | of Kr(STP)               | cm <sup>3</sup> of Kr(STP)<br>cm <sup>3</sup> of Deposit | Equivalent (MPa) | Bias Voltage(Volts) | Rate<br>(nm/sec) |
| N1-200                    | Nin.95Krn. E<br>Crystalline                                                                                 | 16.9                     | 135                                                      | 13.8             | -1500<br>Pulsed     | 6.05             |
| ۸۱                        | Alo.96Kro.14<br>Crystalline                                                                                 | 30.1                     | 75                                                       | 7.8              | -1300<br>Pulsed     | 5.0              |
| A-108 Steel               | Feo.95Kro.05<br>Crystalline                                                                                 | 19.8                     | 140                                                      | 13.8             | -2500<br>Pulsed     | 2.7              |
| 11                        | Tio.96Kro.64<br>Crystalline                                                                                 | 17.0                     | 70                                                       | 6.9              | -2300<br>Pulsed     | 4.1              |
| 31688                     | Feo 69 <sup>C</sup> ro.22 <sup>Ni</sup> 0.09 <sup>K</sup> ro.02                                             | 0                        | 60 ·                                                     | 6.0              | -2500<br>Pulsed     | 7.8              |
| Steel/Y Plugs             | Fe <sub>0.79</sub> Y <sub>0.12</sub> Kr <sub>0.09</sub><br>Glassy                                           | 30                       | 189                                                      | 19.3             | -225<br>Continuous  | 8.0              |
| Steel/Zr Plugs            | Fe0.76 <sup>Z</sup> rn.19 <sup>K</sup> rn.05<br>Mixed                                                       | 17                       | 120                                                      | 12.1             | -240<br>Continuous  | 15.0             |
| Zircaloy IV/Fe<br>Plugs   | Zro.68 <sup>Fe</sup> o.24 <sup>Kr</sup> o.08                                                                | 22                       | 143                                                      | 14.5             | -160<br>Continuous  | 11.0             |
| Steel/Zr/Ta               | Fe <sub>0.70</sub> Zr <sub>0.20</sub> Ta <sub>0.05</sub> Kr <sub>0.05</sub> Glassy                          | 16                       | 110                                                      | 11.0             | -220<br>Continuous  | 11.0             |
| 316SS/Y Plugs             | Fe <sub>0.60</sub> Cr <sub>0.20</sub> Ni <sub>0.06</sub> Y <sub>0.10</sub> -<br>Kr <sub>0.04</sub><br>Mixed | 15                       | 100                                                      | 9.7              | -250<br>Continuous  | 12               |
| Hi-200/Y<br>Plugs         | Ni <sub>0.76</sub> Y <sub>0.17</sub> Kr <sub>0.07</sub>                                                     | 23                       | 160.                                                     | 16.5             | -250<br>Continuous  | .10              |

<sup>\*</sup>Composition not specifically determined; previous experimental results show that metal deposit composition is approximately the same as the target. Glassy--no crystals greater than 30 Å; mixed--glassy with crystalline phases.



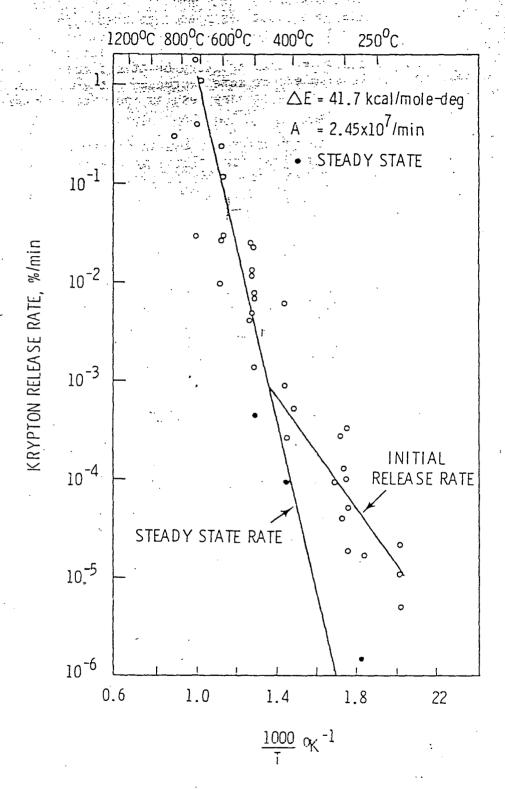
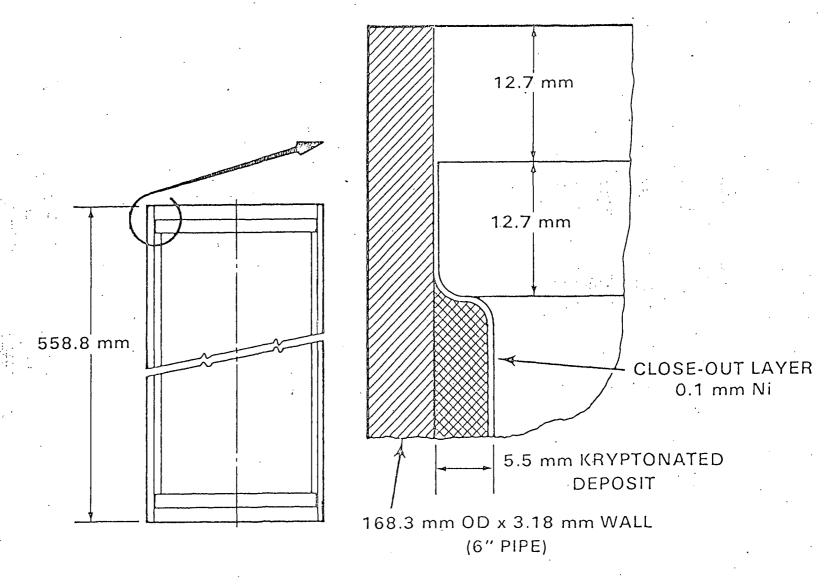
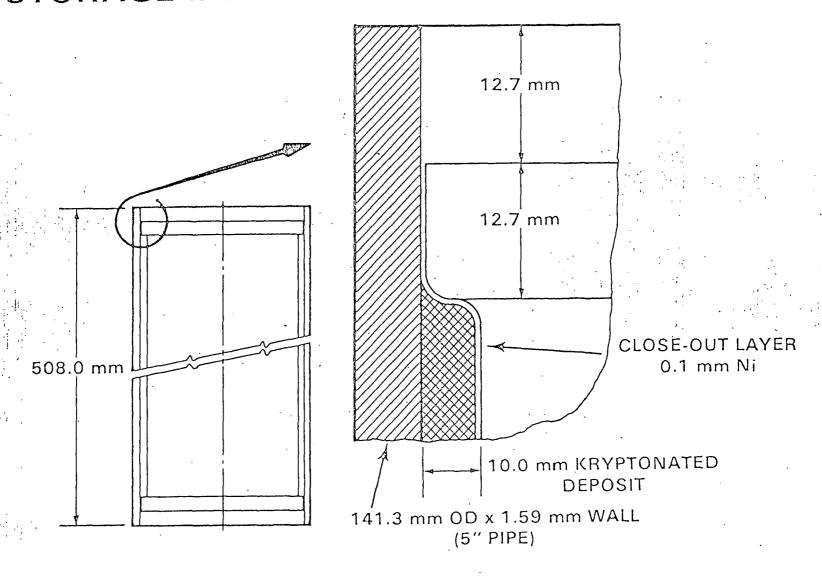


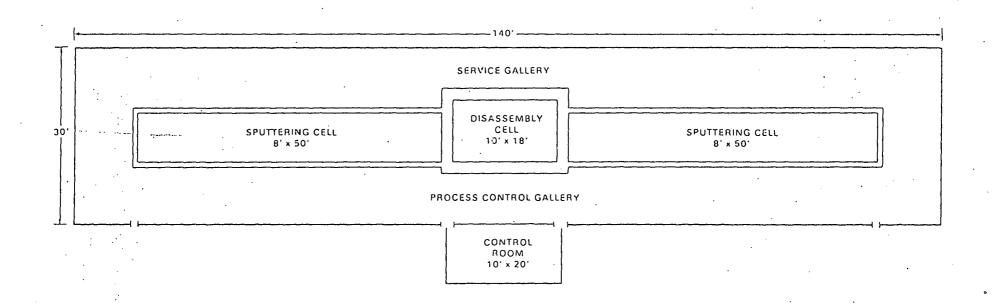

FIG. 2. Krypton Release Rate From Amorphous  $Fe_{0.79}^{Y}_{0.12}^{Kr}_{0.09}$ .


### CRITERIA

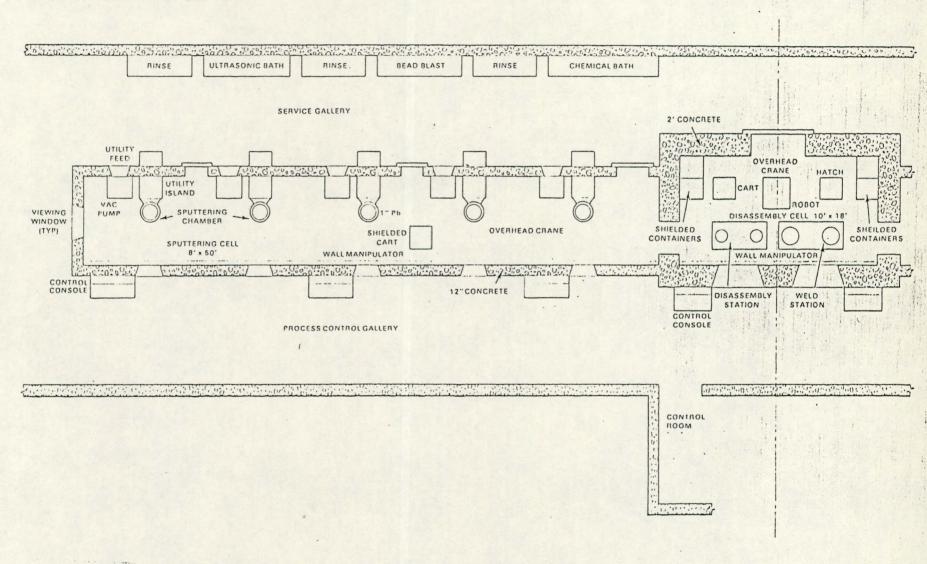
- DESIGN, CONSTRUCTION AND OPERATION CONFORM TO APPLICABLE FEDERAL, STATE AND LOCAL REGULATIONS AND STANDARDS
- SITING PORTION OF NUCLEAR FUEL REPROCESSING PLANT
- RADIATION PROTECTION (ALARA)
- PLANT 30 YEARS, EQUIPMENT 15 YEARS USEFUL LIFE


## PROCESS BASES

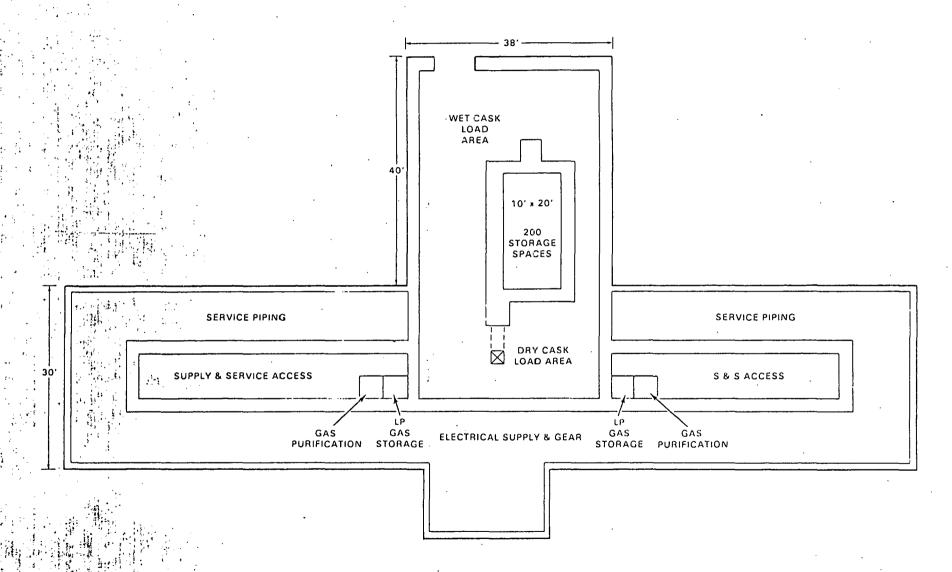
- OPERATE 24 HR/DAY AND 300 DAYS/YEAR
- SERVICES PROVIDED FROM REPROCESSING PLANT
- REMOTELY OPERATED PROCESS
- LIMITED ACCESS TO CELLS


# BASE CASE SPUTTERED DEPOSIT FOR KRYPTON STORAGE OUTER SLEEVE




## CASE 1-A TYPICAL SPUTTERED DEPOSIT FOR KRYPTON STORAGE INNER SLEEVE




## 85Kr ENCAPSULATION FACILITY GENERAL ARRANGEMENT UPPER LEVEL



#### 85Kr ENCAPSULATION FACILITY-PROCESS CELL GENERAL ARRANGEMENT



## 85Kr ENCAPSULATION FACILITY CASE 1-A GENERAL ARRANGEMENT LOWER LEVEL



## COST BASES

- 1980 DOLLARS
- FACTORS ADDED FOR NUCLEAR TYPE CONSTRUCTION
- CONSTRUCTION COSTS INCLUDE CONTINGENCY & INTEREST
- NO ANNUAL CAPITAL RECOVERY FACTORS WERE INCLUDED

## COST SUMMARY (\$K)

|                   | ION IMP              | 500 psi BOTTLES                            |               |                       |
|-------------------|----------------------|--------------------------------------------|---------------|-----------------------|
|                   | SPUTTERING-BASE CELL | 50 YR<br>STORAGE-UNDERWATER                | ENCAPSULATION | 50 YR<br>AIR STORAGE  |
| FACILITY          | 4,500                |                                            | 900           |                       |
| EQUIPMENT         |                      |                                            |               |                       |
| PROCUREMENT       | 3,660                |                                            | 240           |                       |
| INSTALLATION      | 1,350                |                                            | 115           |                       |
| TOTAL FIELD COSTS | 9,510                | 17,100 <sup>(1)</sup> 9,700 <sup>(2)</sup> | 1,255         | 73,000 <sup>(3)</sup> |
| OPERATING COSTS   | 2,375                | 450                                        | 630           | 900(4)                |

- (1) BASE CASE
- (2) CASE 1-A
- (3) FORD BACON & DAVIS \$1979
- (4) FORD-BACON & DAVIS \$1976

## ANNUAL OPERATING COST

|                                      | COST        |             |  |  |
|--------------------------------------|-------------|-------------|--|--|
| TEM                                  | BASE CASE   | CASE 1-A    |  |  |
| LABOR                                | \$1,060,000 | \$940,000   |  |  |
| MISCELLANEOUS SERVICE AND MATERIALS* | 110,000     | 95,000      |  |  |
| PROCESS MATERIALS                    | 940,000     | 540,000     |  |  |
| ELECTRICITY                          | 265,000     | 300,000     |  |  |
| TOTALS                               | \$2,375,000 | \$1,875,000 |  |  |

\*10% OF LABOR COSTS