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1 Introduction.

From Jene through December of 1986 physicists at the Magnet Test Facility
(MTF) at Fermilab measured the fields of forty-eight Main Ring dipoles.
Twenty-six of these were “B1” style magnets, whose physical apertures are
rectangles with rounded corners, roughly 1.4 inches tall by 4.5 inches wide.
A harmonic probe sampled the magnetic field of these magnets at three Joca-
tions separated by one inch; the probe’s radius was 0.6 inch. {See Figure 1.)
As the probe rotates, “bucking coils® sybtract the contribution from the

Figure 1: Geometry of the magnetic field measurements.

magnet’s dipole ficld from the signal. Foarier transforming the “residual®
or “error” field filters out its harmonic content, the multipoles. Twenty-
nine normal and skew multipoles were quoted at each of the three locations.
Statistical errors associated with these data were estimated by taking one
hundred measarements at one location of one magnet. Perhaps ~ 40 of the
174 multipoles recorded for each magnet, were sufficiently above the noise
to be meaningful.

We address here the problem of combining the information from these
three sets of data.

Before beginning, it is worthwhile to review the fundamental assumption
which supports the entire discussion: that the magnetic field is well repre-
sented by a complex analytic function. Within a source-free region, hori-
sontal and vertical components of a static magnetic field, B(Z), must satisfy
homogeneous Maxwell equations:
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Were it not for the Iast term in Eq.(1) these would look identical to Cauchy-
Riemann equations for a one-parameter family of analytic functions

G(2) = Ba(z) + iB(2)

of the complex argument z = £; + iz3; the (real) variable zs (suppressed)
would only label the individun! members of this family. One way Lo justify
ignoring the unwanted term is to assume longitudinal symmetry, so that
@By /3zs = 0 identically. This sounds almost ncceptable near the center of
the magnet, but becomes less s0 when one end of the probe extends beyond
the edge of the magnet. However, we can weaken this local condition to the
global ABy = 0, where A5 is the difference in By between the endpoints of
the probe, by integrating the field over the length of the probe. Since By s 0
at both ends, this justifies representing at least the integrated transverse
companents with an analytic function. Arguing that the probe—and, more
importantly, the particle bearn—is actually sensitive only to inlegrated fields
completes this line of reasoning.

2 Methods.

We shall describe three methods for combining multipole data which may
be useful under posaibly different assumptions: (1} multipole feeddown, (2)
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expansion in orthogonal functions, and (3) fictitious sources. Al three are
phenomenological—thai is, they employ only the observed data—and are
exceedingly simple, yet to do something more exact weould require a Full
computer model of the magnet.

2.1 Method of Multipole Feeddown.

The “obvious” approach to this problem employs the feeddown effect For
multipoles, by which translating a quadrupole induces a dipole field, trans-
lating a sextupole induces quadrupole and dipole fields, and so forth. Begin
by defining complex multipoles c.{z,), evalunted at z,, as the coefficients of
s Taylor expansion of G about z,.

G(s) = B.(x)Y calso){z—2)" 2)
a=0
en = b, +ta,

We have allowed for the possibility that the reference dipole Beld, B,, may
depend on z,; 4, and &, are the uvsual normalized *normal” and *skew”
components of the multipole. There is a linear relationship between the
maultipoles at the origin and those at any other point of reference.

B (0) 3" (0)2* = B,(0) 3 ca(0)(z - 2o + 2,)*
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Equating this to the expansion in Eq.(2) provides the connection, which is
written compactly using matrix notation:

elzo) = M(z)ef0),
1] k<n
Mea(2e) = { @ i0/B. (e (£ )b k2

The full dats set is expressed by adjoining the matrices M (+1) and M(—1}.
e(+1)  _ [ M({+1)
(£ - () <o
Deta reduction would then consist of truncating this aystem and applying

linear regression, weighted by the estimated statistical ercors, to fix the co-
cfficients, €(0).

2.2 Method of Orthogonal Expansion.

The power series of Eq.(2) is the natural way to expand functions analytic on
a circular aperture: in particular, the basis functions (2~ z,)" are orthogonal
over circles centered at z,. To make this more precise, let [ represent
the unit disk in the complex plane and let f and g be two complex-valued
functions defined on ). We define the scalar product between f and g in an
obvious way:

(halo = [ jo dA(n)f ()olz)

where dA(z) = {i/2)dz" A dr is the natural area measure over D. It is ensy
to verify that {,)p induces & metric and that

x
(" ™0 = o b

Thus, the analytic functions wn{z) = +/[n + 1)/7 2" form an orthonormal
family over D.

Far more important than orthogonality — which, after all, can be forced by
& Gram-Schmidt procedure — is the property of completeness: the functions
©n form & complete basis for expanding Functions analytic over the unit disk,
but not over a rectangle. {In order to simplify the geometry, we shall ignore
the rounded corners and treat the aperture as a simple rectangle.)
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Figure 2: Vertical residual field calculaied using the Method of Sources.

The problem of finding & corresponding set of basis functions, say ¥, (z),
which are both orthogonal and complete over a rectangular domain, R, can
be solved by constructing a conformal tranaformation, u(z), which maps the
interior of R onto the unit disk, D. If we have such a mapping, we can take

valz) = enlulzn 222 )
for then .
(ot = [ L dA(:) | dulz)/ds ? o (u(s)) pm(u(2))
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That the set of functions {¥,} is complete over R follows immediately from
the observation that they sre conformally related, via Eq.{4), to the set
{®n}, which is complete over D.

We construct the transformation u(z) in two steps. First, the Weierstranss
elliptic function

w(z) = P{z | wy,wa)

mapa & rectangle of dimension 2w, x 2wg in the s-plane into the half-plane,
Im|w] < 0. Second, the Mdbius mapping

w+ i€
°u =

—, € real, positive
w— i
takes the half-plane into the unit disk. Combining the two gives us the
desired conformal transformation:
Plz | w1, wa) + e
u(s} = Plzr|wi,wa) —ve ~ (5)

The parameters w; and w3 are fixed by the dimensions of the rectangle; the
vajue of € determines the point that maps into the origin. Riemann’s famous
Mapping Theorem nssures us that no simpler conformal transformation ex-
ists which takes rectangles inte circles.

The procedure now would be as follows. Expand G(z) over the rectangular
aperture according to

-]
G(Z) = Z ’n¢'n(z) '
n=0
with ¢, given by Equations {4} and (5). By Taylor expanding G, equivalently
¥, about 2, = —1,0, 41 we develop linear equations relating the coefficients,
#n, to the data, c,(2.). These are truncated, and the g, obtained, as before,
by linear regression.

2.3 Method of Sources.»

Beczuse GG is an analytic function, it can be represented by a Canchy integral,

e = L f Gl

L u-z '

around the aperture’s boundary. This we approximate with a Riemann sum.

GG} = 1 zG(ug)Au;,

£ 4] g~ 2
2 . &

1 1
Dl (®

i

"

I TG {ug) Ay

eyl TRl

& (109

2 ) 1 H
Heclzental displecement (inches)

Figure 3: Vertical residual field at scan height 0.4 inches.

The complex numbers I, can be thought of as fictitious sources placed on
the edges of the physical aperture. If we write an individual term as
1

¢ = x—u

then it is obvious that Re|J,| is inlerpreted as an eleciric current, and Lm|fi]
as a line density of magnetic monopoles located at u,. (To see this cor-
respondence, simply apply Stokea’s theorem to Maxwell’s equations in the
usual way.)

Measuring field multipoles at & point, z,, amounts to Taylor expanding G
about that point.

1 1

£—u {';’u)_{uk“‘o)
o2 (2s) e

We identify the coefficient of (z — 2,)™ with the n** complex magnetic mul-

tipole. { See Eq.(2). )
() =

The fictitions sources [y are obtsined by weighted linear regression on the
data, afier which the ficld can be evaluated using Eq.{8). As an additional
constraint, we set the dipole component exactly to sero at the origin.

GO} =~ 3" Afur =0
h

Be{20)en{za) = —%
&

Thia refiects the dipole aubtraction from the data and focusses the numerical
procedure on the residual field.

3 Calculations.

The history of applying these ideas to MTF data was this: Emphasis was
placed first on implementing the most obvious approach, the method of
Multipole Feeddown. The one ingredient most essential to its applicability
is rapid convergence of the summation that sppears inside the square bracket
in Eq.(3). In particular, 5, must be small encugh so that the factor X "e, (0)
offeets the divergence of the binomial coefficient. Unfortunately, this was not
the case: offsets of +1 inch were far too large to make feeddown a viable
spproach. Experimentation with a fading memory Kalman filter, done in
the hope of developing an asymptatic procedure, proved unable to surmount
this problem.

The Method of Sources was tried next, and it worked well almost im-
mediately. After this muccess, the ongoing development of the Method of
Orthogonal Expansion was stopped; no calculations were carried out using
this third approach.

Figure 2 illustrates one of the calculations carried out on data from a Main
Ring dipole (ADM285) using the Method of Sources. The solid line shows



s midplane scan {rz = 0) of the vertical component of the interpolating
residual field, as calcnlated from Eq.(6}, normalized to 10~* of the dipole
field; the three dashed lines show the results of summing the three multipole
series at 2, = —1,0, and + 1 inches. {Dipole feld offsets at +1 were set
by the interpolating field; the ~ 10~* variation in B, (2,) was ignored.) The
interpolating feld matches each series out to about half an inch from its
center, where the series expansion abruptly fails. Tt also does an exceltent
job of smoothly splicing the three data sets together. The interpolating field
icaelf is good only to about £1.5 inches; it cannot be used for extrapolation,

We can see from this picture why, apart from the convergence problem,
Feeddown was doomed to failure. The two regions of overlap between the
series-expanded fields are exiremely small, and in one of them the expansions
do not agree. It wounld have been imposaible for the method to work under
such conditions.

In Figure 3 the horisontal scan is done at a vertical height of 0.4 inches
from the magnet’s midplane. The solution continues io interpolate smoothly
through the data even though there is now no overlap between the three se-
ries. A number of other scans of both horisontal and vertical fields produced
similarly encouraging resufts.

Figure 4: Comparison between five sets of Bctitious sources for interpolating
the residual field.

The interpolating field of Figure 2 was calculated using 28 sources, 10
associated with each horizontal edge and 3 with each vertical edge, while that
of Figure 3 used a configuration of @ (horisontal) and 4 {vertical). The results
are almost independent of these numbers. To demonstrate this insensitivity
further, five different arrangements of sources. are compared in Figure 4.
The actual source values for the “9 and 4” case, normalized by B, (0}, are
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Figure 5: Values of the sources obtained using the *8 and 4° configuration.

illustrated in Figure 5. Almost all the significant sources driving the error
field fell on the left and right edges of the aperture; the information contained
in the original data has effectively been encoded into twenty (real) numbers.
No attempt was made to optimise the placement or number of sources. My
objective here wan only to demonatrate that at least one of these methods
could be made to work on actual data taken at MTF.
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