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in another program. Hlfr|%P t«tfw a rew percent
are admissible, the propagation velocity can be ob-
tained from a simple explicit formula that can be
included without difficulty in just a few lines in any
other program.

II. THEORY

We begin with a heat balance for a unit length of
composite superconductor

(All symbols are defined in a list at the end of the
paper.) We look for a traveling wave solution of
Eq. (1), namely T = T(x + vt), which represents a wave
traveling from right to left when v is_ positive. Then
since 3T/3t = v(3T/3x) for the traveling wave, Eq. (1)
reduces to the ordinary differential equation
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ABSTRACT

rile propagation velocity of normal zones in
-^np^.sito aiiporconductors has been calculated analyti-
cally for che case or constant thermophysical ; T~er-
ties, including the effects of current sharing. The
solution is compared with that of a more elementary
cheery in which current sharing is neglected, i.e., in
which there is a sharp transition from the supercon-
ducting to the normal state. The solution is also
compared with experiment. This comparison demonstrates
the important influence of transient heat transfer on
cho propagation velocity.

I, INTRODUCTION

In order to calculate the time behavior of a
quenching magnet, we need tu know the velocity of
propagation o£ normal acmes in the conductor. From the
rate of growth of the normal iones, we can calculate
the variation with time of the resistance of the mag-
nut, a quantity that enters the circuit equation de-
scribing the decay of the magnet current.

In 1967, Keilin, Klimenko, Kremlev, and Samoilov1

described a theory of normal zone propagation in com-
posite superconductors. The formulation of their
theory included the effects of current sharing, but the
problem they actually solved was one in which current
sharing was neglected (i.e., in which the superconduct-
ing-normal transition occurred at a single temperature).
In 1973. Altov, Kremlev, Sytchev, and Zenkevitch"
remedied this by solving the differential equation of
".cilia et al. on a computer. Both works were carried
cut under the assumption of constant thermophysical
properties (i.e., constant specific heats, thermal
conductivities, and heat transfer coefficient).

In 1976, I developed a more complete theory of
propagation that included current sharing as well as
Lne temperature variation of all the thermophysical
properties.1 In order to secure agreement with experi-
ment, a further ad hoc correction for transient heat
transfer had to be made. Surprisingly, this correction
turned out to be in excellent agreement with correc-
tions directly measured by Iwasa and Apgar.u'10

My theory, like that of Altov et al., also re-
quires a computer for evaluation of the propagation
velocity. While this is easy enough when only a few
velocities are required, the computer program is too
cumbersome to be included as a subroutine in a program
like Wilson's QUENCH.3

In this paper, I shall show how to solve analyti-
cally the problem of Altov et al. (current sharing and
constant thermophvsical properties) and thus how to
avoid the necessity of numerically integrating the
differentia.! equation. The propagation velocity is
round as tht solution of a transcendental eauation.
'."Ule this step involves the intervention of a computer,
it is fast and well adapted to inclusion as a subroutine
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- V - 0 (2)

We reduce the order of this differential equation by
using the substitution of Maddock, James, and Norris,"
s = k(dT/dx):

(3)

If we introduce dimensionless variables, Eq, (3)
becomes

y - ^ - my + ai2 g(x) - T = 0

where g(x) is the function of Keilin et al.1 and
Haddock et al.°

(4)

g(T) (i + i -
1

1 - i
1 - i < T < 1 (5)

Use of this function is equivalent to assuming a linear
relation between temperature and critical current. In
the range of temperatures x < 1 - i, the conductor is
superconducting, the current sharing range is 1 - i <
T < 1 and for T > 1, the conductor is normal.

In the range x < 1 - i, the third term in Eq. (4)
is absent because g(x) = 0. The origin is a saddle
point crossed by two separatrices L + and L_. The
separatrices, which are also solutions of Eq. (4), are
straight lines. This can most easily be seen by noting
that when g = 0, Eq. (4) is homogeneous, i.e., invari-
ant to the one-parameter group of transformations y' =
jy, -' = ox, 0 < a < =•>. The separatrices must be
invariant curves of this group and r.he invariant curves
are straight lines. Substitution of y = ax in F.q. (4)
shows that the slopes of L and L are respectively,

a = (m ± vm-1 + 4)/2 (b)



Khen T = 0, y = 0 and when x > 0, y » 0. For,
when x = 0, we are far to the left of the thermal wave
(which if propagating from right to left). and thus y ^
dT/dx = 0. Furthermore, as we advance toward the wave
front by moving in the positive x direction, T in-
creases", so ttiit y "- dT/dx > 0. Thus the solution of
Eq. (,4) we seek when T < 1 - i is the separatrix with
the positive slope L+: y = a+x.

When T > 1, g(T) = 1. If we introduce T - ai-
as a new independent variable, we get the same differ-
ential equation as when g = 0. When T = ai-, i.e.,
far to the right of the propagating wave front, y ^
dT/dx = 0. This time, however, we approach the origin
from the negative side, i.e., T - ai- < 0. However,
since y is always > 0, we must approach x - ai4 c 0
along the separatrix with the negative slope L_: y =
:i_(- - si 2).

The two parts of the solution of Eq. (4) already
obtained show chat at Che two edges of the current
sharing region, Che solution of Eq. (4) obeys the
boundary conditions

those based on Eq. (8) will cross the value m = 0 at
the same i. This means the lines L+: y = O+x and L_:
y » (1_(T - ai2) must intersect at y = 1 - i/2. Some
simple algebra then shows that

(C - [ai2 - (i - i/2)]/(l - i/2) (9)

Comparison of Eq. (9) with the exact results in
Fig. 1 shows that Eq. (9) underestimates the velocity ra
by about 22% when a = 2, by about TL when a = 4, and by
smaller amounts for larger a. These errors apply over
most of the range of i, but near the limiting values
i = 1/vS" and 1 = 1 the errors are larger. We can
reduce the error in the estimate of Eq. (9) by applying
the empirical factor 1 + 0.561 a"1'1*3. After multipli-
cation by this factor, the estimates provided by Eq. (9)
agree with the values obtained from Eq. (8) to within
1" or better over most of the range 1/vS" < i < 1, with
substantial errors occurring only near the ends of the
range.

y = a + (1 - i) at - = 1 - i

y = a (.1 - ai~) at x = 1

(6a)

(6b)

In che current sharing region, Eq. (4) is more
difficult to solve. If we introduce che auxiliary
variables c = ai - 1, b = a(l - i)i, and w = ci - b,
we gee Che homogeneous equation

dv
cv -t— - mv + w
• dw

(7)

According to a theorem of Lie,3 because of the homo-
geneity of Eq. (7), [cy2 + w(w - my)]"1 is an integrat-
ing factor for Eq. (7). The integration is straight-
forward but tedious and gives

— In [cy1 + w(w - my)]

arctan (8)

where ? is a constant of integration. Equation (8) can
be verified by differentiation. The dimensionless
velocity m must be chosen so that the pairs of values
of y and x given in Eqs. (6a) and (6b) both give the
same value of a. Shown in Fig. 1 is the dimensionless
velocity m calculated using Eq. (8) as a function of i
with a as parameter.

III. APPROXIMATE RESULTS - SO CURRENT SHARING

Keilin et al.1 have already given a closed formula
for ra as a function of a and i. In their theory, the
sudden transition from the superconducting to the
normal state occurred at x = 1 - i, the current sharing
threshold. Keilin's formula then gives i = (-1 +
vl + 2a)/a as the value of i at which the velocity
m = 0 (minimum propagating current). On the other
hand, from the equal-area theorem of Maddock, James,
and Morris,1 we know that the velocity calculated from
Eq. (8) will be zero when i = (-1 + vi 4- 8a) /a. Owing
to the steepness of curves of m vs i (especially for
large a), a slight horizontal displacement of a curve
causes a large change in the value of m for fixed i and
i. Hence, approximate results for the case of no
current sharing should be calculated on the assumption
that the sudden transition occurs at the equal-area
point x = 1 - i/2. Then the approximate curves and

IV. COMPARISON WITH EXPERIMENT

Shown in Fig. 2 are propagation and recovery data
taken by Miller and Lue3 on a 3.3 x 1.7 mm2 composite
with a Cu/SC ratio of 10, a RRR oi' 145, and critical
currents of 1070, 870, and 700 A at 2, 3, and 4 T,
respectively. At 3 T, the measured minimum propagating
current is 670 A, corresponding to i = 0.77 and a =
(2 - i)/i2 = 2.1. At 2 T and 4 T, the minimum propa-
gating currents correspond to i = 0.71 and 0.85, and
a = 2.6 and 1.6, respectively. With these values of a,
we find h = 690, 820, and 970 W m"2 K"1 for 2, 3, and
4 T, respectively. Shown in Fig. 2 are fits to the
velocity data obtained using m as calculated from
Eq. (9) and corrected with the empirical factor. The
ratios v/m = VhkP/A/S were taken to be 1.0, 0.82, and
0.80 m/s for 2, 3, and 4 T, respectively. Then S =
19.7, 23.1, and 23.2 mJ cm"3 K~' for 2,'3, and 4 T,
respectively. (It is not possible to fit the recovery
data below 600 A since that is the full recovery cur-
rent corresponding to a = 2.1. When a more realistic
boiling curve is used instead of a constant heat trans-
fer coefficient, the full recovery current and the
minimum propagating current do not uniquely determine
each other.)

We have achieved a reasonably good fit of the data
by choosing h •*. 0.08 W cm"2 K"1 and S ^ .12 mJ cm"3 K"1.
This value of the heat transfer coefficient h is typical
of the film boiling region and is what we might expect.
The specific heat S, on the other hand, is too large.

The points in Fig. 2 correspond to thermal waves
in which the maximum conductor temperature behind the
wave front lies in the ranges 9.7-11.7 K, 8.9-9.3 K,
and 7.9-9.1 K for 2, 3, and 4 T, respectively, depending
on the current. The specific heat of a 10:1 composite
cannot exceed 15.3, 8.3, and 7.8 mJ cm"3 K"1, respec-
tively, in these three temperature ranges.

This paradox can be resolved in the following way.
Recently, Iwasa and Apgar1* suggested that in the film
boiling region, a term H(T) dT/dt proportional to the
time rate of change of temperature should be added to
the steady-state heat flux to account for transient
effects. In another place,10 I showed the equivalence
of Iwasa and Apgar's transient correction term with one
I used earlier in the analysis of normal zone propaga-
tion data. If this term were included in Eq. (1), it
could be combined with the left-hand side, so that S
would be replaced by S + Pa/A. The largest values that
S + Pa/A assumes in the three temperature ranges above
are now roughly 51.6, 27.5, and 26.1 mJ cm"3 K"1.
These are sufficiently large so that thete is no longer
any contradiction with the constant value of roughly
22 mJ cm"3 K"1 which is needed to fit the propagation
data.
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SYMBOLS

conductor cross sectional area (m2)
coefficient if Iwasa and Apgar (Ref. 4)
see Eq. (o)
ai(l - :•)
[ai2 - (1 - i/2)]/(l - i/2)
ai - 1
volume fraction of matrix in the conductor
function defined in Eq. (5)
heat transfer coefficient (Wm~2 K"1)
transport current (A)
cri t ical current (A)

I/Icr . , ,
thermal conductivity (WE l K"1)
(A/hkP)l/:;Sv
cooled perimeter (m)

; joule power density (Wm~3)
• k dT/dx
: conductor specific heat (Jm~3 K"1)
1 conductor temperature (K)
: helium bach temperature (K)
• critical temperature (K)
: time (sec)
1 propagation or recovery velocity (msec"1)
:
 CT - b

; distance along the conductor (m)
- (A/hkP)l/2 s/(Tc r - Tb)
• o IJr/fAPh(Tcr - T5) (Stekly's parameter)
• (T - Tb)/Tcr - Tb)
• matrix resistivity (ohm m)
: constant of integration in Eq. (S)
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Fig. 1. Dimensionless velocity as a function of
dimensionless current i with the Stekly number ct
as parameter.
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sponuired by Ihc Uniletl Slates Government. Neither the
Unneil States nor the United States Department of
Energy, nor any of their employees, lu any nf their
contractnrs. subcontractors, or llietr employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility fnr the accuracy, completeness
or usefulness or any information, apparalus, product or
process disclused, or represents dial its use would not
infringe privately owned rights.
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Fig. 2. Propagation and recovery data from Ref. 9.


