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ABSTRACT
propagation velocity of normal zones in
superconductors has been calculated analvei-
the case of constant thermophysical ;—7ier-
f{ects of current sharing. The

The

Lompesite
cally for
:ies.
solution is compared with that of a more elamentary

including the et

heory in which current sharing is neglected, i.e., in
which there is a sharp transition from the supercon-
ducting te the normal state, he solution is also
comparad with experiment. This comparison demonstrates
important influence of transient heat transfer on
the propagation velocity.
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I, INTRODUCTION
In vrder to calculate the time behavior of a
guenching magnet, we need to know the velocity of

oropagation of normal zones in the conductor. From the
rate of growth of the normual zones, we can calculate
the variation with time of the resistance of the mag-
net, a guantity that enters the circuit equation de-
scribing the decay of the magnet current.

In 1967, Keilin, Klimenko, Kremlev, and Samoilov!
scribed a theory of normal zone propagation in com-
osite superconductors. The formulation of their
weory included the effects of current sharing, but the

oblem thev actually solved was one in which current
haring was neglected (i.e., in which the superconduct-
ing-normal transition occurrad at a single temperature)
Tn 1973, alcov, Kremlev, Svtchev, and Zenkevitcn?
enedied this by solving the differential equation of
Heilin et al, on a computer. Both works were carried
out under the assumption of constant thermophysical
propercies (i.e., constant specific heats, thermal
congduetivities, and heatr transfer coefficient).
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in 1976, I developed a more complete theory of
propagation that included current sharing as well as
the tem sperature variation of all the thermophysical
projerties.”

Ia order to secure agreement with experi-
ment, a further ad noc correction for transient heat
ransfer had to be made. Surprisingly, this correction
urnad out to be In excellent agreement with correc-
ions direccly measured by Iwasa and Apgar.“‘10

Mw theory, like that of Altov et al., also re-
quires a computer for evaluation of the propagation
velocity. While this is easy enough when only a few
velocities are required, the computer program is too
cumbersome to be included as a subroutine in a program
lize Wilson's QUENCH.?

In this paper, I shall show how to solve analyti-
cally the problem of Altov et al. (current sharing and
constant thermophvsical properties) and thus how to
avoid the necessity of numerically integrating the
differential equation. The propagation velocitw is
d as the solution of a transcendental equation.
this step involves the interventioun 3f a computer,
Jast and well adapted to inclusion as a subroutine
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are admissible, the propagation velocity can be ob-
tained from a simple explicit formula that can be
included without difficulcy in just a few lines in anv
other program.

II. THEORY

We begin with a heat balance for a unit length of
composite superconductor

3T _ 3 (k aT hP ()

5t "3 3T - (T

(All symbols are defined in a list at the end of the
paper.) We look for a traveling wave solution of
Eq. (1), namely T = T(x + vt), which represents a wave

traveling from right to left when v is positive. Then
since 3T/3t = v(3T/3x) for the traveling wave, Eq. (1)
reduces to the ordinary differential equation
d dT dT .
— [k =) = — —_ - Z
= (k = vS oo+ Qg (T - T (2)

We reduce the order of this differential equation by _
using the substitution of Maddock, James, and Norris,®
k(dT/dx):

s i hP Y
. - 3 -— - 3
sgp - VSs *k|Q - (T Tb)! (3) 7
If we introduce dimensionless variables, Eq. (3)
becomes
y 9L - my +aif g(0) - T =0 4)
where g(t) is the function of Xeilin et al.! and E
Maddock et al.®
0 1 ~-1i>r1
g(t) = (r+i-1)/i 1 -i<t=<l (3
1 T>1

Use of this function is equivalent to assuming a linear
relation between temperature and critical current. 1In
the range of temperatures t < 1 - i, the conductor is
superconducting, the current sharing range is 1 - i <
T < 1 and for T > 1, the conductor is normal.

In the range T < 1 - i, the third term in Eg.
is absent because g(t) = 0. The origin is a saddle
point crossed by two separatrices L and L.. The
separatrices, which are also solutions of Eq. (4), are
straighe lines. This can most easily be seen bv noting
that when g = 0, Eq. (4) is homogeneous, i.e., invari-
ant to the one-parameter group of transformations y' =
ot, 0 < g <« », The separatrices must be
invariant curves of_this group and rhe invariant curves
are straight lines.” Substitution of v = ar in Eq. (&)

4)

Tv, 7' =

shows that the slopes of L+ and L_ are respectively,
a_ = (m = vm® + 4)/2 (b)




When 1 = 0, v = 0 and when T > 0, ¥ > 0. For,
when 1 = 0, we ave far to the left of the thermal wave
(which 15 propagating from right to lefr), and thus y v
dT/dx = Furthermore, as we advance toward the wave
fronk bv moving in the positive x direction, T in-
creases, SO thit ¥y dT/dx > 0. Thus the solution of
£g. (4) we seek when 1 < 1 - i is the separatrix with
the positive slope Lyi v = duT.

When t > 1, g{(t) = l 1f we introduce T - i~
as a new independent variable, we get the same differ-
antial aquation as when g = 0. When t = %i“, i.e.,
far to the right of the propagating wave tront, ¥
dT/dx = 0. This time, however, we approach the origin
trom the negative side, i.e., T = ai- < 0. Hoyever,
since y is always > 0, we must approach T - ai® < 0
along tha separatrix with the negative slope L_: ¥ =
ao(T - aif).

The two parts of the solution of Eq. (4) already
gbtained show that at the two edges of the current
sharing region, the solution of Eq. (4) obeys the
boundary conditions

‘<
I}

a (1-1)acz=1- i (6a)

v=a_(l-ai’) at T =1 (6b)

In the current sharing region, Eq.
difficult to solve.

(4) is more
If we introduce the auxiliary

variables ¢ = ai - 1, b = a(l - i)i, and w = ¢1 - b,
we get the homogeneous eguation
cy dv _ my +w =20 (€]
P dw B

According to a theorem of Lie,® because of the homo-
geneity of Eq. (7), [ev? + w(w - my)]~! is an integrat-
ing factor for Eq. (7). The integration is straight-
forward but tedious and gives

o]

an {eyd + w(w - mv)]

m 2ev/w - m
+ ————— arctan |“—<t——— (8)
Vhe - m* (VAC - m? )

where 9 is a constant of integration. Equation (8) can
be verified by differentiation. The dimensionless
velocity m must be chosen so that the pairs of values
of y and t given in Eqs. (6a) and (6b) both give the
same value of $. Shown in Fig. 1 is the dimensionless
velocity m calculated using Eq. (8) as a function of i
with a as parameter.

III. APPROXIMATE RESULTS — NO CURRENT SHARING

Keilin et al.! have already given a closed formula
for m as a function of a and i. In their theory, the
sudden tramnsition from the superconducting to the
normal state occurred at T = 1 - i, the current sharing
thresnold. Keilin's formula then gives i = (-1 +
vl + 2a)/a as the value of i at which the velocity

= 0 {minimum propagating current). On the other
tnand, from the equal-area theorem of Maddock, James,
and Norris.E we know that the velocity calculated from
Zq. (8) will be zero when i = (-1 + V1 + 8z)/3. Owing
to the steepness of curvaes of m vs i (especially for
large u2), a slight horizontal displacement of a curve
causes a large change in the value of m for fixed i and
1. Hence, approximate results for the case of no
current sharing should be calculated on the assumption
that the sudden transition occurs at the aqual-area
point T = 1 - i/2. Then the approximate curves and

[§%]

those based on Eq. (8) will cross the value m = 0 at
the same i. This means the lines I4: v = @47 and L_:
y = @a.(1 - ai®) must intersect at v = 1 - 1/2. Some

simple algebra then shows that

ma (C-LAC, €= [ai® = (I -1/ - 1/2) (9

Comparison of Eq. (9) with the exact results in
Fig. 1 shows that Eq. (9) underestimates the velocity m
by about 22% when a = 2, by about 7% when 2 = 4, and by
smaller amounts for larger a. These errors apply over
most of the range of i, but near the limiting values

= 1/va and 1 = 1 the errors ara larger. We can
reduce the error in the estimate of Eq. (9) by applying
the empirical factor 1 + 0.361 a~1+*3, After multipli-
cation by this factor, the estimates provided by Eq. (9)
agree with the values obtained from Eq. (8) to within
1% or better over most of the range 1/V& < 1 < 1, with
substantial errors occurring only near the ends of the
range.

TV. COMPARISON WITH EXPERIMENT

Shown in Fig. 2 are propagation and recovery data
taken by Miller and Lue? on a 3.3 x 1.7 mm® composite
with a Cu/SC ratio of 10, a RRR of 143, and critical
currents of 1070, 870, and 700 A at 2, 3, and 4 T,
respectively. At 3 T, the measured minimum propagating
current is 670 A, corresponding to i = 0.77 and a =
(2 - 4)/i2 = 2.1. At 2 T and 4 T, the minimum propa-
gating currents correspond to i = 0.71 and 0.85, and
@ = 2.6 and 1.6, respectively. With these values of g,
we find h = 690, 820, and 970 W m~2 K~} for 2, 3, and
4 T, respectively. Shown in Fig. 2 are fits to the
velocity data obtained using m as calculated from
Eq. (9) aund corrected with the empirical factor.
ratios v/m =

The
kP/A/S were taken to be 1,0, 0.82, and
0.80 m/s for 2, 3, and 4 T, res?ectlvelv. Then § =
19.7, 23.1, and 23.2 mJ cm™ 3 K™! for 2, 3, and 4 T,
respectively, (It is not possible to fit the recovery
data below 600 A since that is the full recovery cur-
rent corresponding to a = 2,1. When a more realistic
boiling curve is used instead of a constant heat trans-
fer coefficient, the full recovery current and the
minimum propagating current do not uniquely determine
each other.)

We have achieved a reasonably good fit of the data
by choosing h ~ 0,08 W em™2 K™! and § ~ 22 mJ cm™3 K™},
This value of the heat transfer coefficient h is tvpical
of the f£ilm boiling region and 1s what we might expect.
The specific heat §, on the other hand, is too large.

The points in Fig. 2 correspond to thermal waves
in which the maximum conductor temperature behind the
wave front lies in the ranges 9.7-11.7 K, 8.9-9.3 K,
and 7.9-9.1 K for 2, 3, and 4 T, respectivelyv, depending
on the current, The specific heat of a 10:1 composite
canoot exceed 15.3, 8.3, and 7.3 mJ cm™3 K~!, respec-
tively, in these three temperature ranges.

This paradox can be resolved in the following way.
Recently, Iwasa and Apgar’ suggested that in the film
boiling region, a term a(T) dT/dt proportional to the
time rate of change of temperature should be added to
the steady-state heat flux to account for transient
effects. In another place,10 I showed the equivalence
of Iwasa and Apgar's transient correction term with one
1 used earlier in the analysis of normal zone propaga-
tion dara. If this term were included in Eg. (1), it
could be combined with the left-hand side, so that S
would be replaced by § + Pa/A. The largest values that
S + Pa/A assumes in the three temperature ranges above
are now roughly 51.6, 27,3, and 26.1 mJ em™3 k™1,

These are sufficiently large so that there is no longer
any contradiction with the constant value of roughly

22 mJ em 3 K”! which is needed to fit the propagation
data.
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SYMBOLS
= conductor cross sectional area (m?)
= coefficient ¢f Iwasa and Apgar (Ref. 4)
= see Eq. (3)
= ai(} - %)
= [ai* - (L - 1/2)]}/(1 - i/2)
=af -1
= volume fraction of matrix in the conductor
= function defined in Eq. (3)
= heat transfer coefficient (¥m™2 K~!)
= transport current (&)
= critical current (A)
= I/Icy
= thermal conductivity (W™t KD
= (a/hkp) /sy
= cooled perimeter (m)
= joule power density (Wm™3)
= k dT/dx
= conductor specific heat (Jm™3 K~!)
conductor temperature (K)

helium bath temperature (K)

critical temperacure (K)

time (sec)

propagation or recovery velocity (msec™!)
cT - b

= distance along the conductor (m)

(A/RR) L2 5 /(Toy = Tp)

= o IZ,./EAPR(Top - Tp) (Stekly's parameter)
(T = Tp) [Tep - Ty)

= matrix resistivity (ohm m)

= constant of integration in Egq. (8)
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