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A standard technique for mapping 8 chromosome is to randomly select
pieces (with replaceient), to use restriction enszymes to cut these picces inta
(sequence specific) fragments, and then to use the fragiments for estimating the
probabhility of overlap of these pieces. (Overlapping picces are likely to “share”
fragments).

Typically, the order of the fragments within a piece is not determined,
and the observed fragment data from each pair of picces must he permuted
N1! x N2! ways to evaluate the probability of overlap. N1 and N2 being
the observed number of fragnients in the two selected pieces. We will describe
computational approaches used to substantially reduce the computational com-
plezity of the calculation of orcrlap probability (rom fragment data. Presently,
about 10™* CPU seconds on on- processor of an 1BM 3080 is required for
calculation of overlap probability fi.«n the fragment. data of two randomly se-
lected pieces, with an average of ten fragments per piece. A parallel version
has been written using IBM clustered FORTRAN. Parallel measurements for
1. 6, and 12 processors will be presented.

This approach has proven promising in the mappi:g of chromosome 16 at
Los Alamos Nutionsl Laboratory. We will also deseribe other computational

challenges presented by physical mapping,.
Introduction
One begins physical mapping by fingerprinting with a library of cloned picees

from the target, the region to be mapped. Eacli cloned picee ie then “fingerprinted”
cut into fragment s (using restriction enzymes) and the repetitive sequences present
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in each fragment can be determined!. In some fingerprinting strategies the termi-
nal scquence of a restriction fragment is determined?. This paper addresses how
fingerprint data can be used to find overlapping cloned pieces. Clearly, the more ap-
parently identical restriction fragments are shared by two cloned pieces, the greater
the chance of overlap. More shared fragments will be required if, as is typical, the
order of the fragments within the cloned piece is not determined (than if the order
were known).

In this article we describe computer algorithms developed to determine the
prcbability of overlap of two cloned pieces given fingerprint data, when the order
of the restriction fragments is not determined. Before describing these algorithms,
we will sumnmarize the formulas that are evaluated.

Clone Overlap Probabilities

These statistical considerations are described more generally elsewhere®,

Overlap probabilities would be optinally determined by the likelihood of the
fing-rprint data of two clones and overlap, and the likelihood of the fingerprint data
and nonoverlap - using a reasonable statistical model and Baves” formla,

P(overlaplS) = p(S and overlap)/p(S) .
p(S) = p(S and overlap) + p( S and nonoverlap) . (1)

Equation 1 is true regardless of what the variable S represents, but the optimal
discrimination of overlap follows if one identifies the fingerprint data with S.

If there is more than oune restriction digestion in the fingerprint data, and if
the separate digest fingerprints are not independent, it would be possible to derive
Eq. 1 with § equal the fingerprint data only if that data aflords a restriction map
or a small set of possible restricuon maps. The Los Alamos fingerprint protocol?
currently uses three complete digestions: two digestions with one enzyme and a
double digestion with the same two enzymes. Thus these three digests are man-
ifestly not independent. Furthermore, even if the digests were all generated with
different enzymes, there fingerprints would still be dependent beecaune the repeti-
tive sequences present in the clone manifest themselves on fragments in all digests.
In wny case, noise in the fingerprint data makes it unlikely that one ean reliably
construct restriction maps separately for each clone.

Since it is apparently not practical to identify the Los Alamos fingerprint data
with § in Eq. 1, the {ollowing approach was developed. We et

S={Se,Su,Sen} ., (2)

be an overlap statistic with three componeats, the latter being the likelihood ratio
of the fingerprint data of one digest in two clenes and overlap to that data and
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nonoverlap, using an appropriate statistical model; Sg is derived from the EcoR1
digests; Sy is derived from the Hind3 digests; and Sgy is derived from the double
digests with the same enzymes. We will proceed to write formulae for the compo-
nents Sof S.

The main assumptions of the statistical model are that the restriction sites
and hybridizing repetitive sequences are randomly (uniformly) and independently
placed - reasonable assumptions based on the Los Alamos fingerprint data.

An indication of this is seen in Fig. 1, showing the fragment size distribution
in the three digests of 2,200 clones. Except for fragments smaller than 1 kilobase
in size, the fragment size distributions are exponential, consistent with random
(uniform) placement of restriction sites, with no obvious contributions from any
fingerprint fragmeats (due to repetitive DNA sequences) repeated throughout the
target. Another important assumption concerns the noise in the data. We assume
the fragment sizes are measured with & Normally distributed component of noise,
proportional to the fragment size.

Figure 2 shows this assumnption is consistent with the data, based on approx-
unately 30,000 pairs of measurements of fragments likely to be the same fragment
in overlapping clones. A least-squares fit gives the standard deviation of the noise
equal 0.005 multiplied by the fraginent size. Since noise in the hybridization data
is at a low level. it is ignored to . first approximation; but this can readily b
included? in S.

To compute S. one begins with a natrix C with matrix elemeuts:

Hir - Hps -6 exp{(G, + G, ’/‘2_{'_} cexp - {(4 =1y )2/2'?(.(}.' 40

€, = - S e

£ /27(0, + (3

(4)

In Eq. 4. &), is the length of restriction frugment from the first clone, €3, is
the length of restriction fragmen! j from the second clone, ¢+ is the average length
between restriction sites, and e timnes the length of a fregment is the standard
deviation of length measurement reproducibility; ¢ equals 0.5%. Also, Hgr and
Hps are factors reflecting results of hvbridization to GT repetitive sequence and
Repetitive Sequence {Cotl) probes. These H are a function of A, the ratio of the
average length of compared fragments to the average distance between occurrences
of the corresponding hybridization site. If both fragments hybridize, H is exp (A);
if ucither fragment hybridizes, H is [1 — exp(A)]~!; othervise H is 0. Naturally,
most c,, are negligible.

S is derived from C as follows:

min( N, ,Njy)
|

S= Y o (5)

k=1
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where

N,

Ny k
Ny~ Y (N = k)! .
Tk = L ]\"1!3\722! T Z ' Z , ] l Cagje s N1, N2 2k

11,12, =1 Jidzaga=1 =1

N; and N, are the number of fragments of the two cloned pieces. The primes on
the summation signs in Eq. 6 indicate that no two summands are equal.

The computational challenge is to effectively evaluate Eq. 5, and some prelim-
inary algorithms are described in the next section.

Computer Algorithms

To compute the matrix C, one begins by sorting the fingerprint data according
to ascending fragment size. This facilitates computing only those C); that are
above a threshold. (Since €y, is dominated by the Gaussian, only fragments with
sizes within a “window™” need be compared with a given fragment; and uncomputed
matrix elements are taken equal zero).

At the next stage ir the calculation. Eqs. 4 and 5. the sum of all possible
products of n matrix elements (with no more than one «lement from any row or
columr of the matrix in any product) must be computed. The matrix is now reduced
by extracting all nonzero elerients for ali other clements in its column and row  and
then deleting the column and row. The matrix is further reduced by extracting the
sum of all nonzero elements in a column (row) with zero for all the other elements in
the nonuzero elements’ rows (colunmins)  and :hien deleting the column (row) and rows
(columns). The reason for this reduction is that these extracted elements and sums
of elesnents can be used in products independently of one another. To calculate the
sum of products of n elements, in Eq. 3, one cun take n' from the extracted elements
and sums of cletnents, and n — n’ fromn zero to n. Usiug recursion, it is possible to
compute the sum of products of extracted elemenis taken one at a time through n
at a time in a number of operations proportional to n?, For the residual matrix,
with elements that cannot be chosen independently, algebraic manipulations were
performed to greatly reduce the complexity. For example, consider

M.N
T,= Y, C,Cry (6)

vy =1

where the prime on the summation indicates thet 7 cannot equal i’ and j cannot
equal J'; M being the upper limit for ¢ and N being the upper limit for j. This can
be rewritteo:

M, M, N MN M, N

T,= 3 CCop- 3 CyCy Y00+ 30 (7)

tga'yy! 1,2,) =1 11, 1)



TORNEY, Computational Methods..., July 5, 1990 page 5

Each of these four terms can be evaluated with the number of operations propor-
tional to A x N. The ccmplexities of T3 and T, evaluated in analogy with Eqs. 6
and 7, are M x N and M2 x N (or M x N?), respectively. In preliminary versions of
our programs, we do not take sums of products of more than four elements from the
reduced matrix. Although this truncation has no effect on the accuracy of overlap
detection for fingerprint data generated at Los Alamos, we are exploring techniques
for efficient evaluation of the reduced matrix so that the algorithm would be use-
ful for fingerprints with many similar restriction fragments in a typical clone. In
this situation, one must address how well the experimental technique reveals the
multiplicity of near-identical fragments.

Simulations

The probabilities appearing on the right of Eq. 1 are evaluated by Moute Carlo
simulaticm of nonoverlapping or overlapping pairs of clones in FORTRAN programs
FALSE and TRUE run on an IBM 3090 computer. The parameters of the simulation
were chosen so that selected features of simulated clones were very similar to those
observed in the data. Normal “noise™ with standard deviation € x 1 is added to
a restriction fragment of length 1, modeling the reproducibility of apparent length
measurement in our experiments. This noise car: be decomposed into noise that is
correlated for all fragments in a clone fingerprint, and noise that is nncorrelated
with the latter dominant. To model GT nucleation, GT hybridization sites were
rimdomly placed with the given average spacing and clones randomly selected, not
containing at least one G I site, are rejected. To model the nondetection of small
GT negative fragments less than 1.2kb in length. these were discarded if less than
500 bases; otherwise they were kept with a probability equal to: (length-500)/(1200-
300).

The integer part of the logarithms of the three statistics is used to construct
(three-dimensional) histograms of the outcomes of the sitnulations of nonoverlapping
and overlapping pairs. Cubic interpolation from the 64 nearest “bin” coordinates
is used to evaluate Eq. 1 for arbitrary S. Typically, 5 x 107 simulated pairs of
overlapping clones and 10° sirmulated pairs of nonoverlapping clones are more than
adequate for subsequent data analysis. It takes approximately 3 x 1074 cpu sec-
onds on one processor of the IBM 3090E to evaluate Eq. 1 for a randoinly selected
pair of clone fingerprints. The formulas discussed in this manuscript and the com-
puter program used to evaluate them can be generalized to encompass fingerprint
strategies based on fragments whose order is not known. Siuilar formulac apply
if restriction maps are known for the clones, but the commputational complexity of
overlap detection would be substantially smaller.
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Parallelszation

Results were announced at the conference on parallelizing a version of the FOR-
TRAN program FALSE using clustere] FORTRAN hardware and software installed
on a pair of ES/3090 600Js with 12 Vector Facilities. These results are summarized
in Table 1; more detail is presented elsewhere?. The substantial parallelization
achieved with this program could easily be achieved in current and planned ver-

sions of FALSE and in programs used to analyze data.

Table 1

First-to-Last User Complete Application

Number Instruction
of Clones Processors Speed-up Speed-up
1 1.00 1.00
2000 6 2.71 5.03
12 100,93 6.08
1 1.00 1.00
4000 6 5.77 5.60
12 11.44 09.45
1 1.00 1.00
8000 6 5.81 5.77
12 11.78 11.13

Results and New Directions

Some results from the Los Alamos clone mapping protocol and the analysis
described above are illustrated in Figs. 3 and 4. Figure 3 depicts a histogram of the
number of clone pairs determined to have overlap probabilities between 0.1 and 1.0
when approximately 2,200 (mostly) GT nucleated cosmid clones from chromosome
16 were fingerprinted. The expected number of (the?) clone pairs with overlap
probability > 0.01 is 2,935; whereas, 2,750 is predicted from the GT nucleated prior
probability. This slight excess can be explained on the basis of centromeric repeat
fingerprint motifs present in about 55 nonoverlapping clones.

Figure 4 contrasts the efficacy of overlap detection for some variations in the
fingerprint protocol. Fingerprint data was simulated using our statistical model
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with parameters from the Los Alamos experiments. The plot shows the proportion
of overlaps detected (essentially the detection probability) against the proportion of
the clones that is shared. Here, we define overlap to be detected when the posterior
overlap probability exceeds 0.5. From the plot, we see that half the overlaps are
detected when the shared proportion is 0.4 using the most informative fingerprint,
with three digests and three hybridization probes. An overlap fraction of 0.55 is
required for 50% detection for the three digests and no hybridization fingerprint.

Clone overlap detection is necessary but not sufficient for completion of physi-
cal maps. Statistical methods are under development to determine the robustness
of contigs, overlapping sets of clones, ard to reduce these into maximally likely
spanning sets that would serve as starting materials for sequencing.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Fragment length distribution for double digest and two single digests
(Los Alamos clone mapping protocol). Length in base pairs.

EcoR1 single digest (solid)

HindlIII single digest (dash)

EcoR1 and HindIII double digest (doubly-dashed)

Fragment discrepancy histogram. Discrepancy is defined to be (r —
v)/(z? + y?), z and y »eing two length measurements. Fragment nairs
likely to be the same fragment were identified in clone pairs witl in-
serts overlapping with probability > 0.9, using approximately 2,200
fingerprinted GT nucleated clones. The standard deviation of the dis-
crepancies is found by doing a least-squares best fit of a Gaussian curve
plus a baseline to the histogram; the standard deviation is found to be

.005.

Posterior overlap probabilities < 0.1 after 2,200 clones had been fin
gerprinted. Overlap probabilities calculated according to method de-
scribed in Section 4 with data from three restriction digests and two
hybridization probes. Most clones were selected on the basis of GT
nucleation.

Companson of the information available from different fingerprints: two
single digests only with two or three hybridization probes and three
digests (two single: one double) with zero, two and three hybridization
probes. Noise is add~d to the simulated data to make it resemble rea
data. (Fragments are not detected and Normally distributed length
measurement errors are added with a standard deviation of .008.)
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