
15th International Conference (_'Q K; F -'T T5 U f j ol 1 - - » *•

on Low Temperature Physics BNL-24235

fy Grenoble, France
I August 23-29, 1978

ON THE INTERACTION BETWEEN ELECTRONS AND
TUNNELING LEVELS IN METALLIC GLASSES*

J.L. Black and B.L. Gyorffyt
Dept. of Physics, Brookhaven National Laboratory, Upton, New York 11973

ABSTRACT: We consider a simple model in which the conduction electrons of

a metallic glass experience a local time-dependent potential due to two-

level tunneling states. We show that the model exhibits interesting di-

vergent behavior which is, nevertheless, quite different from that pre-

dicted by the "s-d Kondo" model of a Cochrane et al. [9].

RESUME: Nous considerons un modele simple dans lequel les electrons d'un

verre metallique sont sounds a un potential local dependent du temps, du

a des double puits a deux niveaux. Nous montrons que ce modele possede

des divergences interessantes qui sont toutefois tres differentes des

predictions du niodele "s-d Kondo" de Cochrane et al. [9].

Recently there has been considerable experimental evidence for the

existence of tunneling levels in metallic glasses [1-5]. Such tunneling

states, presumably arising from local atomic rearrangements as proposed by

Anderson et al. [6] and Phillips [7], explain a variety of low-temperature

anomalies in insulating glasses [S], In the case of metallic glasses, an

interesting new question arises: Kow do they interact with the degenerate

Fermi system of the conduction electrons? Here we report on a preliminary

study of a simple model which treats the tunneling states as localized

scattering centers with an internal degree of freedom. We show that the

instability of the electron gas to such perturbations leads to interesting

behavior which nevertheless differs from that encountered in the Kondo and

x-ray problems.

Considering the same problem, Cochrane, et al. [9] have proposed a

model which is in one-to-one correspondnce with the s-d Kondo Hamiltonian [10]
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and have consequently predicted a logarithmic contribution to the

resistivity. However, this analogy relies upon the questionable assumption

that the current-carrying conduction electrons can be labeled by an index

which corresponds to the spin of the electron in the s-d model. As an

alternative we consider a model in which an electron undergoes ordinary

potential scattering dependent upon the state of the tunneling level but

not upon an internal electronic degree of freedom corresponding to the spin.

Describing the tunneling level by an s = h pseudospin, the Hamiltonian

where e, is the single-particle electron energy, A is the tunneling-level
K.

asymmetry [8,11], and A is the quantum-mechanical tunneling frequency [8,11].

The coupling constant K|. accounts for the change in potential seen by the

electrons when the tunneling system changes states. This Hamiltonian is

similar to a model for crystal-field-split levels considered by Fulde and

Peschel [12] and is essentially the same as one recently studied by

Kondo [13]. Clearly Eq. (1) neglects many important scattering mechanisms

as well as all k-dependence of K . Furthermore Eq. (1) may not accurately

reflect the situation when the electronic mean free path is smaller than

the extent of the tunneling system (which is not known). Nevertheless,

we feel that this model is useful for a qualitative understanding of the

electron-tunneling-level interactions.

Rotating the pseudospin basis states in Eq. (1) diagonalizes the non-

interacting part of the Hamiltonian:

V Z M \ ^ Z ^, , (2)
where (26 0)

2 = A2 + b\, V(| = KM(A/250) and V = - K,,(A0/250).
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Using Abrikosov's pseudofermion representation for S and S [14] and

finite-temperature perturbation theory, the electronic self-energy^ (E )

is given by

V a

where

-D
p is the density of states at E , and D is the bandwidth. The vertex part

Y_ , is given by a perturbation expansion in terms of the bare coupling

constant matrix

2V , = V (sgn6 )6 , + V (1-6 ,) . (4)
aa ii a aa' j aa'

The first corrections, ' JL i > to Eq. (4) are the particle-particle and

partile-hole bubble diagrams, which are separately logarithmically diver-

gent. As in the Kondo [14] and x-ray edge [15] problems, these divergences

arise from the instability of the electron gas to a sudden localized change

in the external potential. However, the algebra of the a summation results

in qualitatively different behavior of the vertex part.

For example, all logarithmic corrections cancel if the "magnetic field"

50 is zero [13]. Furthermore, even when <5 4= 0, there is no divergent

v y 3)
contribution toy (E = 0), as would be the case in the Kondo problem [10].

In fourth order, however, we find to leading logarithmic accuracy.

SC41 3 2 SlSo 2 2 2 Dw (0) = 47, pJ tanli -=- V,. vf In ~r . (5)

In order to gain further insight into the nature of this divergence

we have studied the lowest order "parquet" equations [14] for the vertex

part Y , within this approximation. We find that the diagonal component

Y is not renormalized but the off-diagonal part diverges as a power law
cxzi

at the energies £5 + E = ± i<50. Namely, for electron energies
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E < | 5 0 j a t T = 0

Y ( + i 6 0 J - i 6 0 ) ± i 6 0 + E ) = V i . f . ( 6 )

While reminiscent of both the Kondo and the x-ray edge singularity behavior,

the above result differs from both.

This conclusion is further supported by a separate analysis of Eq. (1)

in which we rely on the work of Schotte [16] and Blume et al. [17] and

use A0S as a perturbation. This procedure is entirely analogous to the

reformulation of the Kondo problem as a sequence of x-ray edge problems [15]

by Anderson, et al. [18]. In their language, our model differs from the

Kondo problem because "x-ray edge" is replaced by "x-ray photoemission" [19],

in which the creation of a deep core hole (i.e., spin flip) is not accom-

panied by the injection of an electron at the Fermi surface.

Thus the relationship between our model and the usual Kondo problem,

in terms of the respective free energies F and F is
£iG K

FMG = V S = 2" (pK||)2' J = V H = A) + constant. (7)

The Kondo free energy, F , is defined in the presence of a magnetic field,

H, and depends upon the usual coupling constants [18] pJ and pJ = •<£.

Thus the weak-coupling (PK « 1 ) version of the metallic glass free energy

corresponds to a particular anisotropic strong-coupling Kondo problem

(1 < pJ » p j ). This relationship does not, of course, imply that the

response functions in our model are simply related to those in the Kondo

problem. Nevertheless, it does suggest that the metallic glass divergences

can be studied by renormalization group methods [18], Work is in progress

on this approach and on the question of response functions.
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