ENVIRONMENTAL SURVEILLANCE DATA REPORT FOR THE FOURTH QUARTER OF 1992

P. Y. Goldberg, Coordinator

- R. C. Cooper
- L. V. Hamilton
- J. F. Hughes

.,

- B. M. Horwedel
- R. S. Loffman
- M. C. Salmons
- M. M. Stevens
- C. K. Valentine

Date Published: February 1993

Prepared by the Environmental Surveillance and Protection Section Office of Environmental Compliance and Documentation Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400

CONTENTS

	Pag	_
LIS	I OF ACRONYMS AND ABBREVIATIONS	v
LIS	I OF FIGURES	v
LIS	FOF TABLES	i
1.	INTRODUCTION	1
2.	AIR	4
	2.1 AIRBORNE EMISSIONS	5
	2.2 AMBIENT AIR	7
	2.3 EXTERNAL GAMMA RADIATION	1
3.	VATER	5
	3.1 SURFACE WATER	-
	3.2 REFERENCE SURFACE WATER	
	3.3 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REQUIREMENTS 3.	
	3.4 MERCURY IN THE AQUATIC ENVIRONMENT	
	3.5 GROUNDWATER	
4.	BIOLOGICAL MONITORING	e
	4.1 MILK	5

n ...

цł.

. .

P 83

LIST OF ACRONYMS AND ABBREVIATIONS

BMP	best management practice
CAA	Clean Air Act
CFR	Code of Federal Regulations
CWA	Clean Water Act
CYRTF	Coal Yard Runoff Treatment Facility
DCG	derived concentration guide
DOE	U.S. Department of Energy
DWL	drinking water limit
DWS	drinking water standard
EPA	U.S. Environmental Protection Agency
EC	Environmental Compliance Section of OECD
ESP	Environmental Surveillance and Protection Section of OECD
ICP	inductively coupled plasma
LLW	low-level waste
MB	Melton Branch
MHD	Melton Hill Dam
N det	number of detected samples
N total	total number of samples
NESHAP	National Emission Standards for Hazardous Air Pollutants
NPDES	National Pollutant Discharge Elimination System
NRWTF	Nonradiological Wastewater Treatment Facility
NWT	Northwest Tributary
OECD	Office of Environmental Compliance and Documentation
ORNL	Oak Ridge National Laboratory
ORR	Oak Ridge Reservation
PAM	perimeter air monitoring
PCB	polychlorinated biphenyl
PWTP	Process Waste Treatment Plant
QA/QC	quality assurance/quality control
RCRA	Resource Conservation and Recovery Act
SAS	SAS Institute, Inc.
STP	Sewage Treatment Plant
SWMU	solid waste management unit
SWSA	solid waste storage area
TDEC	Tennessee Department of Environment and Conservation
Total rad Sr	total radioactive strontium (Sr-89 + Sr-90)
WAG	waste area grouping
WOC	White Oak Creek
WOD	White Oak Dam
WOL	White Oak Lake

iv

LIST OF FIGURES

Figure	<u>2</u>	<u>Page</u>
1	Locations of major stacks (emission points) at ORNL	6
2	ORNL perimeter air monitoring locations	8
3	ORR perimeter air monitoring locations	9
4	ORR remote air monitoring locations	10
5	ORNL surface water, NPDES, and reference sampling locations	16
6	Location map of Gallaher and Kingston sampling points	19
7	Water sampling locations for mercury monitoring in the ORNL main plant area	54
8	Sediment sampling locations for mercury monitoring in the ORNL environs	55
9	ORNL WAGs	59
10	Location map showing water quality wells at WAG 4	67
11	Location map showing water quality wells at WAG 5	89
12	Location map showing water quality wells at WAG 6	126
13	Map showing milk sampling locations	136

е р

. . .

• • 11 •

7.1

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Ambient air concentrations of I-131 at ORNL air monitoring stations, October-December 1992	12
2	Atmospheric tritium concentrations at ambient air stations, October-December 1992	13
3	External gamma radiation measurements at reservation perimeter air monitoring stations, October-December 1992	14
4	Summary of collection and analysis frequencies of surface and effluent water samples for radionuclide analysis	17
5	Summary of radionuclide concentrations in water off-site ORNL, October-December 1992	20
6	Radionuclide concentrations in surface waters around ORNL, October-December 1992	22
7	Radionuclide concentrations at ORNL NPDES locations, October-December 1992	25
8	Stream flows, October-December 1992	27
9	Radionuclide concentrations and releases at ORNL NPDES surface water stations, October 1992	28
10	Radionuclide concentrations and releases at ORNL NPDES surface water stations, November 1992	30
11	Radionuclide concentrations and releases at ORNL NPDES surface water stations, December 1992	32
12	Surface water analyses at reference locations, October-December 1992	. 35
13	NPDES discharge point X01, October-December 1992	39
14	NPDES discharge point XO2, October-December 1992	40
15	NPDES discharge point X12, October-December 1992	41
16	NPDES discharge point X13, October-December 1992	43
17	NPDES discharge point X14, October-December 1992	. 45
18	NPDES discharge point X15, October-December 1992	. 47

LIST OF TABLES (continued)

.

.

.

<u>Table</u>		l	Page
19	NPDES category II outfalls, October-December 1992		49
20	NPDES category III outfalls, October-December 1992		50
21	NPDES cooling towers, October-December 1992		51
22	NPDES permit limit noncompliances, October-December 1992		52
23	Mercury concentrations in water, December 1992		57
24	Mercury concentrations in sediment, December 1992		58
25	Analytes sought and applicable standards in groundwater at ORNL in WAGs 4, 5, and 6 during October-December 1992		61
26	Parameters measured in groundwater at ORNL WAGs 4 and 5 during fourth quarter 1992		68
27	ORNL WAG 4 groundwater summary statistics from October 26- November 23, 1992		69
28	ORNL WAG 4 groundwater constituents that exceed a reference value from sampling period October 26-November 23, 1992		74
29	ORNL WAG 5 groundwater summary statistics from September 23- October 21, 1992		91
30	ORNL WAG 5 groundwater constituents that exceed a reference value from sampling period September 23-October 21, 1992		97
31	ORNL WAG 6 groundwater summary statistics from November 30- December 16, 1992		128
32	ORNL WAG 6 groundwater constituents that exceed a reference value from sampling period November 30-December 16, 1992		129
33	ORNL off-site residential summary statistics from August 1992 sampling event		133
34	ORNL off-site residential groundwater summary statistics from local tap water, August 1992		134
35	Concentrations of total rad Sr in milk and calculated doses, October-December 1992		137

1.0 INTRODUCTION

The Environmental Surveillance and Protection Section within the Office of Environmental Compliance and Documentation at the Oak Ridge National Laboratory (ORNL) is responsible for the development and implementation of an environmental program to (1) ensure compliance with all federal, state, and Department of Energy (DOE) reporting requirements to quantitatively demonstrate prevention, control, and abatement of environmental pollution; (2) monitor the adequacy of containment and effluent controls; and (3) assess impacts of releases from ORNL facilities on the environment.

The current environmental program is designed primarily to meet regulatory requirements and DOE directives and to provide a continuity of data on environmental media at unregulated locations. The major legislation affecting the environmental programs that assess off-site impacts of the DOE facilities includes the Clean Water Act, the Clean Air Act, the Resource Conservation and Recovery Act, and the Superfund Amendments and Reauthorization Act. In November of 1988, DOE finalized Order 5400.1, "General Environmental Protection Program," that establishes the requirements, authorities, and responsibilities for DOE operations for ensuring compliance with applicable federal, state, and local environmental protection laws and regulations. This order sets forth the requirements for both radiological and nonradiological monitoring. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," specifies the guidelines for releases of radionuclides to various media. Definitive radiological monitoring requirements have been established and additional guidance on recommended procedures and activities is provided in the "Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (the Regulatory Guide)" DOE/EH-0173T.

Environmental monitoring, as defined by the Regulatory Guide, consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is the collection and analysis of samples or measurements of liquid and gaseous effluents. Environmental surveillance is the collection and analysis of samples, or direct measurements of air, water, soil, foodstuff, biota, and other media from DOE sites and their environs.

Monthly or quarterly summaries are presented in this report for each medium sampled. All data are rounded to two significant digits. The summary tables generally give the number of samples collected during the period and the maximum, minimum, average, and standard error of the mean (SE) values of parameters for which determinations were made. The SE is based upon multiple samples collected throughout the period. It includes the random uncertainty over time and space associated with sampling, analysis, and the intrinsic variability of the media. The random uncertainty is a statement of precision (or imprecision), a measure of the reproducibility or scatter in a set of successive measurements, and an indication of the stability of the average value for the parameter. When differences in the magnitudes of the observations are small, the SE is small, and the precision is said to be high; when the differences are large, the SE is large, and the precision is low.

1.0.111

Average values have been compared where possible to applicable guidelines, criteria, or standards as a means of evaluating the impact of effluent releases on environmental concentrations. In some of the tables, radionuclide concentrations are compared with derived concentration guides (DCGs) as published in DOE Order 5400.5. These concentration guides were established for drinking water and inhaled air and are guidelines for the protection of the public. DOE Order 5400.5 defines a DCG as the concentration of a radionuclide in air or water for which, under conditions of continuous exposure by one exposure pathway (i.e., drinking water, inhaling air, submersion) for one year, a "reference man" would receive the most restrictive of (1) an effective dose equivalent of 100 mrem or (2) a dose equivalent of 5 rem to any tissue, including skin and lens of the eye. A "reference man" is a hypothetical human who is assumed to inhale 8400 m^3 of air in a year and to drink 730 L of water in a year. When there are multiple DCGs for a given isotope, the most restrictive value is used for comparisons. When the DCG is less than 0.01%, the percent is reported as "<0.01." When total radioactive strontium is measured, it is compared to the DCG for Sr-90, which is the most restrictive value.

Radioactivity measurements are reported as the net activity, or the difference between the gross activity and instrument background activity. Because of the intrinsic uncertainties associated with making radiation measurements, it is possible to subtract a background value from a sample result and get a negative number. Results that include the negative values can be evaluated statistically without incurring the difficulties associated with performing calculations on "less than" (<) values. Radiation measurements are reported in units of becquerel (Bq). A Bq is a Systeme Internationale (SI) unit equivalent to one disintegration per second.

Single measurement values and multiple value summaries are tested for their difference from zero using the standard normal distribution (z value) or the t distribution (t value) and a one-tailed test with 95% confidence level. Occasionally, the result will be declared as different from zero by the statistical test when in fact it is not. The frequency of this error is directly related to the confidence level of the test. With a specified 95% confidence level there is a 5% error rate, wrongly declaring a result greater than zero 5% of the time. This is a commonly used confidence level that represents a compromise between incorrectly declaring that a value is greater than zero and incorrectly declaring that a value is equal to zero.

The lower confidence limit for a single radioactivity measurement is computed by multiplying the counting standard deviation by 1.645 (z value for a onetailed test at a 95% confidence level) and subtracting that from the sample result. If that difference is equal to or greater than zero, the result is said to be significantly greater than zero. Otherwise it is said to be not significantly greater than zero.

Multiple value summaries are of two types: averages and sums. An average is tested for difference from zero using the standard error of the mean and the appropriate t value with n-1 degrees of freedom. All sources of variation, counting uncertainty in the case of radionuclide measurements, laboratory preparation, sampling variance and population variation, are inherently estimated by the calculated standard error used in this test. As a result, inference is on the whole process that generated the measurements. Sums of radioactivity measurements are tested for differences from zero using only the propagated counting uncertainties. The 95% lower bound on the sum is the calculated sum minus 1.645 times the square root of the summed counting variances. Estimates of the sampling and population variability are not available in this situation. As a result, inference is on the observed sum, not on an underlying population from which the observations were taken.

Presentations of data throughout the report follow the convention of flagging data that are statistically significant with an * (asterisk). Data that are not significantly different from zero are presented without a flag.

Some nonradionuclide results are returned from the laboratory with prefixes associated with the values. "<" (less than) or "U" (undetected) indicates the value was below the analytical detection limit; "J" indicates the value was estimated by the laboratory; "B" indicates the value was found in the laboratory blank; "E" indicates the value exceeded the calibration range; "Y" indicates the value exceeded the calibration range and was diluted and reanalyzed, and was not detected or quantified at that level, respectively.

In statistical summaries, when at least one of the results contributing to the average is less than the detection limit, the average value is identified with the ~ (tilde) prefix.

Results obtained in the laboratory are often reported as "less than" or "below detection." In these situations the detection limit is reported along with the "less than" designation. The sample mean and standard error of the mean are affected by these values; they become "biased"--biased high for the mean and low for the standard error of the mean. That is, the sample standard error of the mean is estimating something smaller than the true standard error.

A further consequence of the bias is an increased likelihood that a population mean will be declared greater than zero in a statistical test using the biased sample mean and standard error. A statistically significant result may be a consequence of the number of values below the detection limit. If, however, there were a number of values above the detection limit, the conclusion that the true mean is greater than zero may be valid even though the estimate of true mean is biased.

100 C 100 C 100

2.0 AIR

The Department of Energy (DOE) Oak Ridge facilities are subject to regulations issued by the Tennessee Department of Environment and Conservation (TDEC) Air Pollution Control Board and the Environmental Protection Agency (EPA) as well as DOE orders. Nonradioactive emission sources are regulated by TDEC, and radioactive emission sources are regulated by EPA under the National Emission Standards for Hazardous Air Pollutants (NESHAP). The authority for these regulations is derived from the Tennessee Air Quality Control Act (TAQC) and the Clean Air Act (CAA).

The TDEC air pollution control rules regulate pollution sources to protect the public health and welfare and the environment. These rules include regulations for maximum allowable ambient air concentrations of certain pollutants, open burning, pollution sources such as coal-fired boilers and processes, fugitive emission sources, performance standards for new sources, and hazardous air pollutants. State-issued permits are required for air pollution sources with the exception of certain very small emission sources that are specifically exempt from permit requirements.

The EPA regulations for radioactive emission sources limit the amount of exposure to radioactivity to the nearest or the most affected member of the public. The EPA sets the limit on exposure to radioactivity by first determining (1) a safe exposure level and (2) then adding a margin of safety. The dose, to the most affected member of the public, is determined by EPAapproved radioactive emissions dose modeling. The NESHAP regulations were reissued in December 1989. The ORR is currently not in compliance with the stack sampling criteria. A Federal Facility Compliance Agreement (FFCA) was signed in May 1992 by the DOE field office manager and is being implemented to achieve full compliance by December 1992.

DOE regulations governing airborne emissions are established in DOE orders 5400.1 and 5400.5 and DOE/ESH-0173T. Using the criteria in NESHAP regulations and DOE orders, major effluent sources are defined as emission points with the potential to discharge radionuclides in quantities that could cause an annual effective dose equivalent of 0.1 mrem/year or greater to a member of the public. Potential emissions are calculated for a source by assuming the loss of pollution control equipment while the source is otherwise operating normally.

ORNL has a comprehensive air pollution control and monitoring program to ensure that airborne discharges meet regulatory requirements and do not adversely affect ambient air quality. Air pollution controls include exhaust gas scrubbers, baghouses, and exhaust filtration systems designed to remove airborne pollution from the exhaust gases before their release to the atmosphere. Process modifications and material substitutions are also made in an effort to minimize air emissions. In addition, administrative controls play a role in regulating emissions. ORNL has developed an emissions inventory program that includes stack sampling to determine the amounts of pollutants that are not removed by the air pollution control equipment.

11.00

and the second second second second

(Ambient air monitoring is also conducted around the facilities and at three locations within surrounding East Tennessee communities to assess the impacts of ORR operations on the ambient air quality of the region.)

2.1 AIRBORNE EMISSIONS Laurice V. Hamilton and Joan F. Hughes

2.1.1 Program Description

The major gaseous emission point sources for ORNL consist of the following four stacks located in Bethel and Melton Valleys:

Building	Description
2026	High Radiation Level Analytical Laboratory
3020	Radiochemical Processing Plant
3039	3500 and 4500 areas cell ventilation system Central off-gas and scrubber system Isotope solid state ventilation system 3025 and 3026 areas cell ventilation system
7911	Melton Valley complex (High Flux Isotope Reactor, Radiochemical Engineering Development Center)

Fig. 1 shows the locations of the four main stacks whose emissions are routinely quantified.

Discharges from each stack are unique because of the wide variety of research activities performed at ORNL. Radiological emissions from ORNL typically consist of particulates, adsorbable gases (e.g., iodine), tritium, and nonabsorbable gases (e.g., xenon).

Gaseous effluents at ORNL originate from ventilation air from contaminated or potentially contaminated areas, vents from tanks and processes, and ventilation for reactor facilities. Some sources are permitted by the TDEC Air Pollution Control Board. Most gaseous emissions are treated and filtered before discharge to the atmosphere. Typically, contaminated and potentially contaminated gaseous wastes are treated, then filtered with HEPA and/or charcoal filters before discharge to ensure that any radioactivity released is within acceptable levels.

2.1.2 Procedures and Results

Sampling systems were upgraded to meet the criteria in NESHAP regulations and DOE orders. In general the present sampling systems consist of in-stack sampling probes, sample transport lines, a particulate filter, an activated charcoal canister, a silica-gel tritium trap, flow measurement and totalizing instruments, a sampling pump, and a sample return line to the stack. The present sampling system at stack 3020 does not have a tritium trap. All

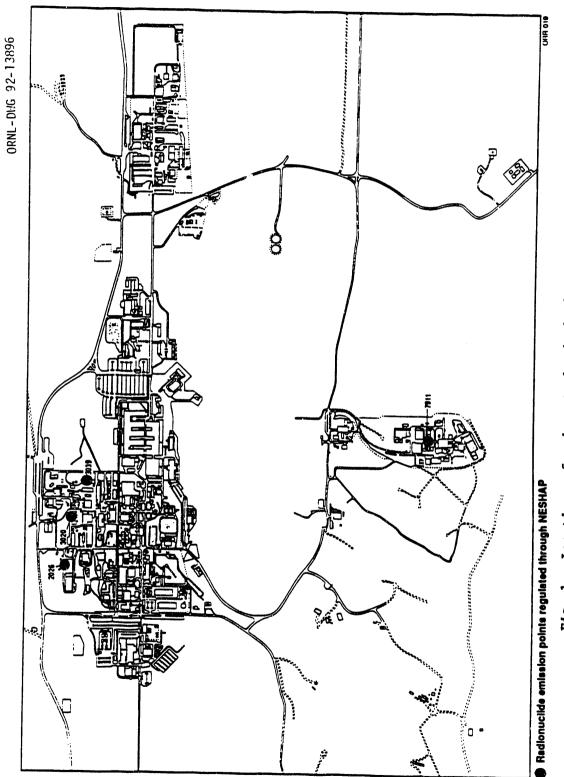
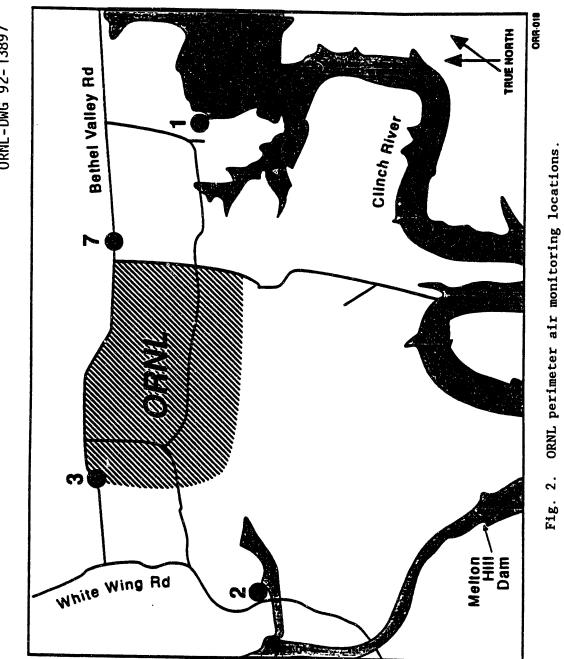


Fig. 1. Locations of major stacks (emission points) at ORNL.

6

sampling has been completed for the year. Results have not yet been received from the ORNL Analytical Chemistry Division. The data for the stack program will be reported as an addendum to this report as soon as the data is completed.

2.2 AMBIENT AIR Laurice V. Hamilton and Joan F. Hughes


2.2.1 Program Description

The objectives for the ambient program are (1) to sample at locations that are most likely to show impacts of airborne emissions from the operation of ORNL, (2) to maintain surveillance of airborne radionuclides at the ORR perimeter, and (3) to collect reference data from remote locations. Figs. 2-4 show the stations that are in the ORNL Ambient Air Program. The specific stations ausociated with each of these objectives are as follows:

- Fig. 2. The ORNL Perimeter Air Monitoring (PAM) network includes stations 1, 2, 3, and 7.
- Fig. 3. The DOE ORR PAM network includes stations 35, 37, 38, 39, 40, 42, 46, and 48.
- Fig. 4. The Remote Air Monitoring (RAM) network consists of stations 51 and 52.

Annual composites of particulate air filters from each station are analyzed for specific radionuclides. Annual compositing of the particulate air filters for analysis of long-lived isotopes has been adopted because the data from previous years showed very low concentrations of these radionuclides. Stations 3, 37, 38, 39, 40, 42, 46, 48, 51, and 52 are equipped with tritium collection systems. Airborne radioactive particulates are sampled biweekly by pumping a continuous flow of air through a 47 mm (1.88 in.) diameter paper filter. Airborne adsorbable gases are collected biweekly at ORNL PAM stations using a canister containing activated charcoal that is downstream of the particulate filter. The charcoal canister is analyzed within 24 hours after collection. The initial and final dates, time on and off, and flow rates are recorded when a sample is mounted or removed. The total volume of air that flowed through the sampler is obtained from a flow totalizer. The concentration of radionuclides in air is calculated by dividing the total activity per sample by the total volume of air sampled.

The sampling system is currently being upgraded. In addition, hi-volume air samplers will be used at all ORR locations. These new samplers will provide a more concentrated particulate sample which will allow for better quantification of each isotope with more frequent analysis.

ORNL-DWG 92-13897

الالماسيكين المستعملين المستعملين والمستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل المستعمل الم

OPNL-DWG 92-13895

.

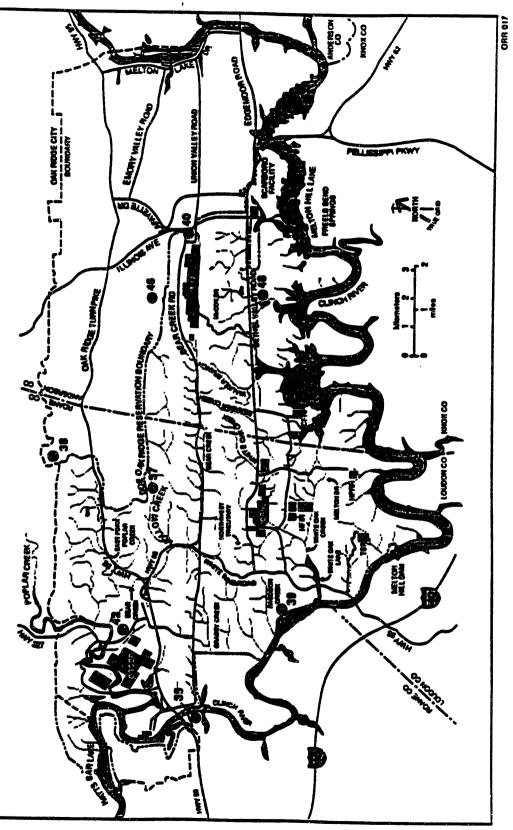
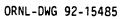
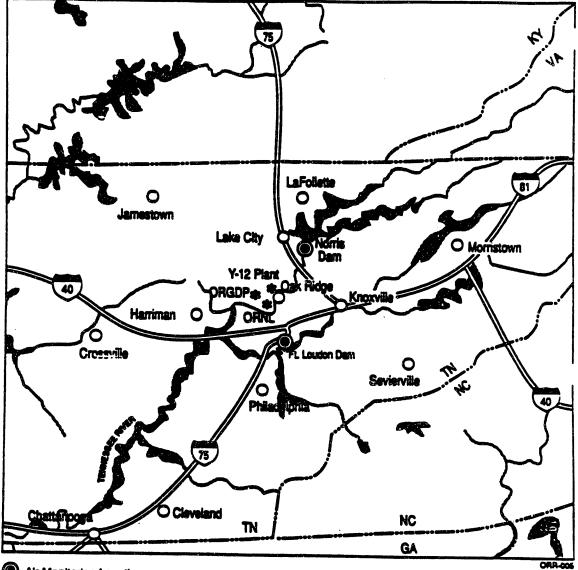




Fig. 3. ORR perimeter air monitoring locations.

Air Monitoring Location

Fig. 4. ORR remote air monitoring locations.

2.2.2 Procedures and Results

In the fourth quarter, 32 out of 32 adsorbable gas samples were collected yielding a 100% collection rate (Table 1). Out of the 32 samples, there was one value for I-131 that was distinguishable from zero.

All ambient tritium samples were collected yielding a 100% collection rate. The results are summarized in Table 2.

In 1992, composites of particulate filters were prepared at the end of the fourth quarter. Results have not yet been received from the ORNL Analytical Chemistry Division. The data for the annual composites will be reported as an addendum to this report as soon as the data is completed.

2.3 EXTERNAL GAMMA RADIATION Laurice Hamilton and Betsy Horwedel

2.3.1 Program Description

At ORNL and the reservation perimeter air monitoring stations, external gamma radiation measurements (exposure rates) were recorded on a near real-time data acquisition system until February 1992. The locations of these PAMs are shown in Fig. 2. The readings were averaged at 10-minute intervals and stored in a database on the host computer. From these data, hourly averages were computed and also stored in a database. Readings were marked as invalid by the system if less than 75% of the data were available for the computation of the average as well as if the data are out of a predefined range. If a station had been marked off poll, which means that the host computer was not collecting data from the station, no readings were returned to the data acquisition system for inclusion in the databases.

In mid February, the station locations were changed to coincide with the new ambient air locations. External gamma measurements are recorded at stations 39, 40, 42, 46, and 48, which are five of the ten ambient air stations. In addition, external gamma measurements were still collected at the DOE museum (station 41). After the relocation, the external gamma measurements were recorded weekly in the field. The readings for the quarter are entered into SAS data sets and a statistical evaluation completed. The equivalent dose rate is calculated using the average reading for each station during the quarter.

2.3.2 Procedures and Results

Typical values for cities in the United States are usually between 1.5 and 4.2 nC/kg/h (nanocoulomb per kilogram per hour) according to recent issues of <u>EPA</u> <u>Environmental Radiation Data</u>. The median value for cities in the contiguous United States for the first three quarters of 1989 was 2.4 nC/kg/h. The last value given for Knoxville (July-September 1989) was 2.4 nC/kg/h. All of the values given in Table 2 are within the above range of background values. Table 3 summarizes the weekly measurements from October-December 1992.

an an a

Station	Number Collected	Number Possible	Number Detected
1	8	8	0
2	8	8	0
3	8	8	0
7	8	8	1
Overall			
Summary	32	32	1

Table 1.	Ambient air concentrations of I-131 at ORNL air monitoring	3
	stations, ^a October-December 1992	-

^aSee Fig. 2.

	Concentration (10 ⁻⁴ Bq/L)							
Station ^a	N det/ N total	•		Min	Av ^b	Standard error ^C	Percent of DCG ^d	
3	3/3	5.0	1.7	3.3*	0.95	<0.01		
37	3/3	31	3,9	14	8.7	e		
38	3/3	10	4.7	6.7*	1.7	0.018		
39	3/3	240	18	100	70	e		
40	2/3	4.8	0.80	2.2	1.3	e		
42	3/3	18	6.7	11*	3.7	0.030		
46	3/3	19	1.2	8.0	5.3	e		
48	2/3	10	1.1	4.9	2.8	e		
51	2/3	3.4	0.50	1.8	0.83	e		
52	2/3	72	1.3	25	23	e		
Overall								
Summary	26/30	240	0.50	18*	8.2	0.048		

Table 2. Atmospheric tritium concentrations at ambient air stations,October-December 1992

11.2 11.2

^aStation locations are shown in Fig. 2. ^bAverage concentrations significantly greater than zero are identified

by an *. ^CStandard error of the mean. ^dPercent of DCG = Average/DCG x 100. The DCG for tritium is 3.7 Bq/L.

Exposure			rate (nC/kg			
Number of Readings	Max				Equivalent Dose (µSv/h)	
13	2.8	2.6	27	0.018	0.090	
13					0.071	
13					0.041	
4					0.041	
13	2.3				0.076	
13	2.2	1.8	1.9	0.032	0.065	
69	2.8	1.2	2.0	0.056	0.069	
	Readings 13 13 13 4 13 13 13 13	Readings Max 13 2.8 13 2.2 13 1.2 4 1.9 13 2.3 13 2.2	Number of Readings Max Min 13 2.8 2.6 13 2.2 2.1 13 1.2 1.2 4 1.9 1.9 13 2.3 2.2 13 2.2 1.8	Number of Readings Max Min Av 13 2.8 2.6 2.7 13 2.2 2.1 2.1 13 1.2 1.2 1.2 13 2.3 2.2 2.2 13 2.3 2.2 2.2 13 2.3 2.2 2.2 13 2.2 1.8 1.9	ReadingsMaxMinAv $error^{C}$ 132.82.62.70.018132.22.12.10.010131.21.21.20.002441.91.91.90.0079132.32.22.20.011132.21.81.90.032	

Table 3.	External gamma radiation measurements at reservation perimeter
	air monitoring stations, ^a October-December 1992

^aSee Fig. 2. ^bNanocoulomb per kilogram per hour. ^CStandard error of the mean.

3.0 WATER

The Oak Ridge National Laboratory (ORNL) site is located in the 17 km^2 White Oak Creek (WOC) watershed, with the exception of two small effluent points in the 7600 area that discharge directly into Melton Hill Lake. A sketch of the watershed and sampling station locations is shown in Fig. 5. The major tributary to WOC is Melton Branch (MB). Upper WOC drains Bethel Valley in the vicinity of ORNL, receiving inputs from Fifth Creek, First Creek, and Northwest Tributary (NWT) prior to crossing the gap in Haw Ridge and flowing southwest to White Oak Lake (WOL). Melton Branch drains Melton Valley and joins WOC less than a mile from WOL. The final point of control for the watershed is at White Oak Dam (WOD), which is the structure that forms WOL. The lake is about two-thirds of a mile long and less than a tenth of mile wide. The receiving water for the watershed is the Clinch River embayment of Watts Bar Lake.

Water quality in these streams is affected primarily by effluent discharges, surface runoff, subsurface storm flow, and groundwater transport of contaminants from historically disposed wastes. The average flow for the watershed is 14 CFS (9 MGD), of which 1 CFS (0.67 MGD) is attributed to the major National Pollutant Discharge Elimination System (NPDES) effluent points, and 3 CFS (2 MGD) is attributed to cooling towers and blowdown. The base flow during drought is estimated at 1.75 CFS (1.14 MGD).

Surveillance of the water environment consists of the collection of surface water, effluent and sediment samples required under the NPDES Permit, and groundwater from Waste Area Groupings 1-9, 11 and 17. Of the WAGs, WAGs 4, 5, and Solid Waste Storage Area (SWSA) 6 within WAG 6 were sampled during this quarter. Samples are analyzed for radionuclides and nonradioactive chemicals.

> 3.1 SURFACE WATER Melinda C. Salmons

3.1.1 Program Description

Water samples are collected for radiological analyses at off-site and on-site locations, at background or reference locations, in streams on the ORNL site, and from all process discharge point sources. A summary of locations, analyses that are conducted, and frequencies of sample collection and analysis for all radiological samples is provided in Table 4.

3.1.2 Procedure and Results

Treated water samples are collected weekly at the Kingston and Gallaher potable water treatments plants (Fig. 6) and are analyzed quarterly. Table 5 contains the concentrations measured at these stations during this quarter. At Gallaher, gross beta, tritium, and total rad Sr were significantly greater than zero but at levels no greater than 9.7% of the Environmental Protection Agency (EPA) primary drinking water standards (40 CFR 141, as amended). Cs-137 and Pu-238 at Gallaher were significantly greater than zero; drinking water standards for Cs-137 and Pu-238 have not been established. At Kingston,

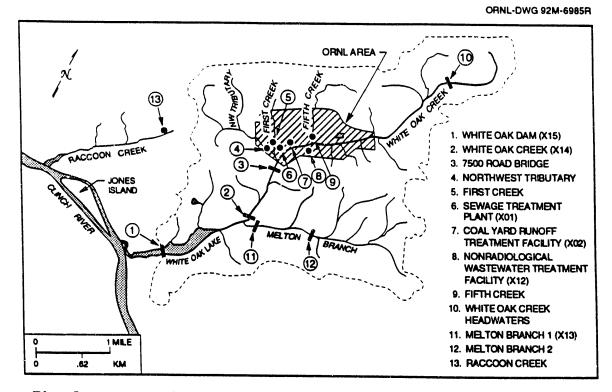


Fig. 5. ORNL surface water, NPDES, and reference sampling locations.

=

• gr

٠÷ .

Station	Analysis	Collection Frequency	Sample Type	Analysis Frequency
STP	Gamma scan, Gross beta, Total rad Sr	Weekly	Flow proportional composite	Monthly
7500 Road Bridge, MB1, MB2, WOC	Gamma scan, H-3, Total rad Sr	Weekly	Flow proportional composite	Monthly
First Creek, Fifth Creek, Raccoon Creek	Gamma scan, Total rad Sr	Weekly	Grab	Monthly
Gallaher	Gamma scan, Gross alpha, Gross beta, H-3, Pu-238, Pu-239, Total rad Sr, Total U	Weekly	Time proportiona' composite	Quarterly
Kingston	Gamma scan, Gross alpha, Gross beta, H-3, Pu-238, Pu-239, Total rad Sr, Total U	Weekly	Grab	Quarterly
MHD	Gamma scan, Gross alpha ^a , Gross beta ^b	Weekly	Flow proportional composite	Monthly
NRWTF	Gamma scan, Gross alpha, Gross beta, H-3, Total rad Sr	Weekly	Flow proportional composite	Monthly
NWT	Gamma scan, Total rad Sr	Weekly	Flow proportional composite	Monthly
WOC Headwaters	Gamma scan, Gross alpha ^a , Gross beta ^D	Weekly	Flow proportional composite	Monthly
WOD	Gamma scan, Gross alpha ^a , Gross beta ^D	Weekly	Flow proportional composite	Weekly

Table 4. Summary of collection and analysis frequencies of surface and effluent water samples for radionuclide analysis

•

-

.

Table 4. (continued)

Station	Analysis	Collection Frequency	Sample Type	Analysis Frequency
WOD	H-3, Total rad Sr	Weekly	Flow proportional composite	Monthly
Category I Outfalls	Gross beta ^b	Annually	Grab	Annually
Category II Outfalls	Gross beta ^b	Quarterly	Grab	Quarterly
Category III Outfalls	Gamma scan, Gross beta ^b	Quarterly	Grab	Quarterly

^aIf gross .lpha >1 Bq/L, analyze for Am-241, Cm-244, Pu-238, Pu-239, Th-228, Th-230, Th-233, U-234, U-235, and U-238. ^bIf gross beta >30 Bq/L, analyze for total rad Sr.

. .

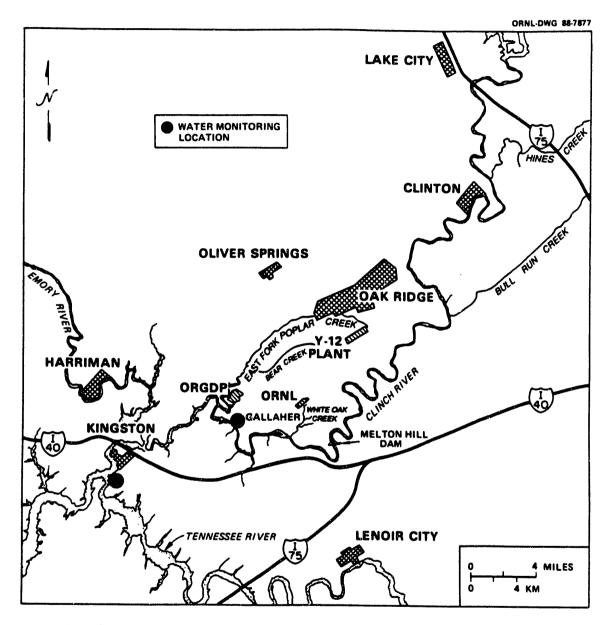


Fig. 6. Location map of Gallaher and Kingston sampling points.

Radionuclide	Concentration ^a (Bq/L)	Drinking Water Standard ^b (DWS) (Bq/L)	Percent DWS ^C
	Gallah	ner ^d	
Co-60	0.022	е	е
Cs-137	0.040*	е	е
Gross alpha	0.0080	0.555	е
Gross beta	0.18*	1.85	9.7
Pu-238	0.0026*	е	е
Pu-239	0.00010	е	е
Total rad Sr	0.020*	0.296	6.8
Total $U_{f_{a}}^{f}(mg/L)$	0.00025	е	е
Total U ^{fg}	0.0061	е	е
H-3	37*	740	5.0
	Kingst	con ^d	
Co-60	0.011	e	е
Cs-137	0.019*	е	е
Gross alpha	0.033*	0.555	5.9
Gross beta	0.12*	1.85	6.5
Pu-238	-0.00015	e	е
Pu-239	0.00018	е	е
Total rad Sr	0.0046*	0.296	1.6
Total U ^f (mg/L)	0.00010	е	е
Total U ^{fg}	0.0025	e	е
H-3	19	740	е

Table 5. Summary of radionuclide concentrations in water off-site ORNL,October-December 1992

^aConcentrations significantly greater than zero are identified by an *. ^bNational Primary Drinking Water Standard. From 40 CFR 141, as amended. The value for total rad Sr is based upon the Sr-90 limit. The value for gross beta is a regulatory guide for assessing compliance without further analysis.

Concentration as a percentage of the DWS.

j.

^dSee Fig. 6.

^eNot applicable.

 f_{No} test for significance is possible.

gActivity derived from mass assuming natural abundance of U-234, U-235 and U-238.

gross beta, gross alpha, and total rad Sr were significantly greater than zero but at levels no greater than 6.5% of the Environmental Protection Agency (EPA) drinking water standards. Cs-137 at Kingston was significantly greater than zero; drinking water standards for Cs-137 have not been established. No test of significance was possible for the total uranium measurement at each site, but the concentrations at Gallaher and Kingston are less than 1.1% of the gross alpha standard. The total uranium measurement is converted to an activity by assuming natural abundance of uranium isotopes U-234, U-235, and U-238.

Derived concentration guides (LCGs) are estimates of the rate of exposure to a given radioisotope via one exposure pathway that would result in an effective dose equivalent of 100 mrem (1 mSv) per year to "reference man," as defined by the International Commission of Radiation Protection Publication 23. These values have been published in DOE Order 5400.5 and are used here as a means of standardized comparison for effluent points with different isotope signatures. The calculation of percent of the DCG does not imply that effluent points or ambient water sampling stations at ORNL are sources of drinking water.

The sum of DCG percentages for each of the effluent points and ambient water stations is less than 100%. In the event that a sum ever exceeds 100%, an analysis of the best available technology to reduce the signature would be conducted as specified in DOE Order 5400.5.

Melton Hill Dam and WOC headwaters, two locations above ORNL discharge points, serve as references for other water sampling locations at the ORNL site. Water samples are collected from the reference sites and from six streams on-site: White Oak Creek, Melton Branch, First Creek, Fifth Creek, Northwest Tributary, and Raccoon Creek (Fig. 5). Sampling for radiological analyses is conducted at six ambient stations around ORNL and at five NPDES locations. The six ambient stations are

- 7500 Road Bridge
- First Creek
- Fifth Creek
- Melton Branch 2
- Northwest Tributary
- Raccoon Creek

The five NPDES stations are

- Sewage Treatment Plant (X01)
- Nonradiological Wastewater Treatment Facility (X12)
- Nelton Branch 1 (X13)
- White Oak Creek (X14)
- White Oak Dam (X15)

Summary statistics for each radionuclide at each surface water sampling location are given in Table 6. The average concentration is expressed as a percentage of the DCG (when one exists) in the last column of this table. As

			Concentration (Bq/L)				
Radionuclide	N det/ N total	Max ^b	Min ^b	Av ^c	Standard error ^d	DCG ^e	Percent DCG ^f
			Melton Hi	11 Dam			
Co-60	0/3	0.40	-0.10	0.14	0.14	185	g
Cs-137	0/3	0.50	-0.28	0.21	0.25	111	g
Gross alpha	2/3	0.080*	-0.0050	0.046	0.026	8	g
Gross beta	2/3	0.25*	0.040	0.15	0.061	g	g
		White	0ak Creek	Headwater	S		
Co-60	0/3	0.50	-0.11	0.26	0.19	185	g
Cs-137	0/3	0.20	-0.10	0.087	0.094	111	g
Gross alpha	1/3	0.088*	-0.010	0.031	0.029	g	g
(coss beta	3/3	0.54*	0.16*	0.32	0.11	g	g
			7500 Road	Bridge			
Co~69	0/3	0.40	0.040	0.28	0.12	185	£
Cs-137	3/3	5.4*	2.6*	3.6*	0.92	111	ຮ 3.2
Total rad Sr	3/3	2.9*	2.5*	2.6*	0.13	37	7.1
H-3	3/3	690*	220*	420*	140	74,000	0.57
			First C	reek			
Co-60	0/3	0.50	-0.40	0.070	0.26	185	g
Cs-137	0/3	0.40	-0.17	0.14	0.17	111	g
Total rad Sr	3/3	18*	7.8*	11*	3.3	37	31
			Fifth C	reek			
Co-60	0/3	0.70	0.12	0.47	0.18	185	g
Cs-137	1/3	0.58*	-0.20	0.26	0.24	111	g
Total rad Sr	3/3	1.5*	1.0*	1.2*	0.15	37	3.2
			Melton Br	anch 2			
Co-60	1/3	0.25*	-0.50	-0.050	0.23	185	g
Cs-137	0/3	0.60	0.20	0.37*	0.12	111	0.34
Total rad Sr	3/3	0.13*	0.062*	0.088*	0.021	37	0.24
H-3	3/3	800*	420*	670*	120	74,000	0.90

Table 6. Radionuclide concentrations in surface waters around ORNL,^aOctober-December 1992

Table 6. (continued)

			Concentration (Bq/L)				
Radionuclide	N det/ N total	Max ^b	Min ^b	Av ^c	Standard error ^d	DCG ^e	Percent DCG ^f
		N	orthwest I	ributary			
Co-60 Cs-137 Total rad Sr	0/3 0/3 3/3	0.040 0.40 2.5*	-0.30 0.050 1.6*	-0.12 0.18 2.1*	0.099 0.11 0.26	185 111 37	g 5.6
			Raccoon	Creek			
Co-60 Cs-137 Total rad Sr	0/3 0/3 3/3	0.40 0.10 1.4*	-0.10 -0.10 0.30*	0.14 -0.0067 0.74	0.14 0.058 0.33	185 111 37	g g

^aLocations are shown in Fig. 5. ^bIndividual concentrations significantly greater than zero are identified by an *.

^CAverage concentrations significantly greater than zero are identified by an *. dStandard error of the mean.

^eDerived concentration guide for ingestion of water. From DOE Order

5400.5. fAverage concentration as a percentage of the DCG, calculated only when a DCG exists and the average concentration is significantly greater than zero.

10.0

. .

shown in Table 6, no radionuclide measurements at Melton Hill Dam nor WOC headwaters were significantly greater than zero. Only three ambient stations showed average radionuclide concentrations greater than 5% of the appropriate DCG with no average radionuclide concentration exceeding 31% of its DCG. Total rad Sr was the only radionuclide concentration greater than 5% of DCG at the three ambient stations.

Locations that are sampled for nonradioactive chemicals under the requirements of the NPDES Permit (see Section 3.3) are also sampled for radionuclides (Fig. 5). Radiological analysis and the frequency of analysis are given in Table 4. Table 7 contains a summary of the concentrations for each of these locations during this quarter. Average radionuclide concentrations that are significantly greater than zero and greater than 5% of DCG are: total rad Sr at the Sewage Treatment Plant, Melton Branch 1, White Oak Creek, and White Oak Dam; tritium at Melton Branch 1, Nonradiological Wastewater Treatment Facility and White Oak Dam; and Cs-137 at the Nonradiological Wastewater Treatment Facility. No radionuclide average concentration at the NPDES points exceeded 33% of its DCG.

The discharge of radioactive contaminants from ORNL is affected by the stream flows. Monthly flows in Melton Branch (as measured at station Melton Branch 1), White Oak Creek (as measured above its confluence with Melton Branch and at White Oak Dam), and the Clinch River (as measured at Melton Hill Dam) are given in Table 8. Clinch River flows are regulated by a series of Tennessee Valley Authority dams, one of which is Melton Hill Dam. The flow in Melton Branch is usually less than one-third of that in White Oak Creek. The monthly ratio of flow in White Oak Creek (measured at White Oak Dam) to flow in the Clinch River (measured at Melton Hill Dam) is reported in the last column of the table. The ratios given were calculated daily and averaged for the month. If complete mixing is assumed, this ratio gives an indication of the dilution factor that may be expected for potential contaminants entering the Clinch River from White Oak Creek. In this quarter, the ratio values ranged from 0.005 to 0.01.

Amounts of radioactivity in White Oak Creek at the Sewage Treatment Plant, Nonradiological Wastewater Treatment Facility, White Oak Creek, Melton Branch 1, and White Oak Dam stations are calculated from concentration and flow and reported in Tables 9-11. A single flow-proportional sample was obtained weekly at each station. From the weekly samples, a flow-weighted composite is made and analyzed monthly. The discharge for the period is calculated as the product of the flow-weighted concentration and the total flow for the sampling period. In addition, at weekly intervals, flow-proportional samples are obtained at WOD and analyzed for radionuclides other than H-3 and total rad Sr. The average concentration during the calendar month was calculated as a weighted sum of all concentrations obtained for sampling periods overlapping the calendar month. The weights were proportional to the calendar period total flow attributable to the sampling periods. This average concentration was multiplied by the calendar month total flow to arrive at the discharge. Each average flow-weighted concentration was compared with an existing DCG. As shown in Tables 9-11, average radionuclide concentrations that are significantly greater than zero and greater than 5% of DCG are: total rad Sr at Melton Branch 1,

Concentration (Bq/L)									
Radionuclide	N det/ N total	Max ^b	Min ^b	Av ^C	Standard error ^d	DCG ^e	Percent DCG ^f		
		Sewa	ge Treatment	Plant (X01)					
Co-60	1/3	1.1	0.33*	0.61	0.25	185	g		
Cs-137	0/3	0.50	-0.40	0.0067	0.26	111	g		
Gross beta	3/3	21*	17*	19*	1.2	g	g		
Total rad Sr	3/3	9.5*	7.3*	8.5*	0.64	37	23		
	Nonra	adiological	Wastewater	Treatment Fac	cility (X1	2)			
Co-60	0/3	0.60	-0.50	0.11	0.32	1.85	σ		
Cs-137	3/3	42*	2.8*	37*	4.5	111	д 33		
Gross alpha	3/3	0.26*	0.17*	0.22*	0.027	g	g		
Gross beta	3/3	29*	14*	23*	4.5	g	g		
Total rad Sr	3/3	3.5*	0.48*	1.5	0,98	37	g		
H-3	3/3	5,200*	3,400*	4,100*	550	74,000	5.6		
			Melton Branc	ch 1 (X13)					
Co-60	1/3	0.32*	-0.20	0.073	0.15	185	g		
Cs-137	0/3	0.20	0.020	0.11	0.052	111	g		
Total rad Sr	3/3	16*	9.5*	12*	2.1	37	32		
H-3	3/3	25,000*	23,000*	24,000*	580	74,000	32		
		I	White Oak Cr	eek (X14)					
Co-60	0/3	0.60	-0.15	0.32	0.24	185	g		
Cs-137	2/3	3.5*	0.50	1.9	0.88	111	g		
Total rad Sr	3/3	5.5*	3.1*	4.3*	0.69	37	12		
H-3	3/3	3,400*	2,000*	2,700*	410	74,000	3.6		

.

•

Table 7. Radionuclide concentrations at ORNL NPDES locations,^a October-December 1992

•

••

1r

...

di Li

Table 7. (continued)

Concentration (Bq/L)								
Radionuclide	N det/ N total	Max ^b	Min ^b	Av ^c	Standard error ^d	DCG ^e	Percent DCG ^f	
			White Oak Da	um (X15)				
Co-60	2/13	0.26	-0.070	0.083*	0.029	185	0.045	
Cs-137	13/13	5.1*	0.73*	2.2*	0.38	111	2.0	
Gross alpha	13/13	0.46*	0.050*	0.22*	0.031	g	g	
Gross beta	13/13	21*	7.3*	14*	1.0	ģ	g	
Total rad Sr	3/3	7.6*	6.0*	6.6*	0.52	37	18	
H-3	3/3	6,600*	5,600*	6,100*	290	74,000	8.3	

^aLocations are shown in Fig. 5. ^bIndividual concentrations significantly greater than zero are identified by an *.

 $^{\rm C}{\rm Average}$ concentrations significantly greater than zero are identified by an *. $^{\rm d}{\rm Standard}$ error of the mean.

^eDerived concentration guide for ingestion of water. From DOE Order 5400.5.

fAverage concentration as a percentage of the DCG, calculated only when a DCG exists and the average concentration is significantly greater than zero.

gNot applicable.

Flow $(10^9 L)$							
Month	Melton Branch 1	White Oak Creek ^b	White Oak Dam ^C	Clinch River ^d	Average Ratio ^e		
October	0.076	0.35	0.45	210	0.0050		
November	0.35	0.70	0.92	290	0.010		
December	0.51	1.1	1.6	470	0.0040		

.

^aSee Fig. 5. ^bWhite Oak Creek above its confluence with Melton Branch. ^cWhite Oak Creek at White Oak Dam. ^dClinch River at Melton Hill Dam.

^eFlow ratios White Oak Creek:Clinch River at White Oak Dam are calculated daily and averaged for the month.

Radionuclide	Flow (10 ⁶ L)	Discharge ^b (10 ¹⁰ Bq)	Concentration ^C (Bq/L)	DCG ^d (Bq/L)	Percent DCG ^e
	4	lelton Branch 1	(09/30-10/28)	<u></u>	
Co-60	62	0.0020	0,32*	185	0.17
Cs-137	62	f	0.020	111	f
Total rad Sr	62	0.10	16*	37	43
H-3	62	160	25,000*	74,000	34
Nonra	diological	Wastewater Tre	atment Facility (0	9/30-10/28)	
Co-60	44	f	0.22	185	f
Cs-137	44	0.19	42*	111	38
Gross alpha	44	0.0011	0.24*	f	f
Gross beta	44	0.062	14*	f	f
Total rad Sr	44	0.0029	0.66*	37	1.8
н-3	44	23	5,200*	74,000	7.0
	Sewag	ge Treatment Pl	ant (09/30-10/29)		
Co-60	22	0.00072	0.33*	185	0.18
Cs-137	22	f	-0.080	111	f
Gross beta	22	0.037	17*	f	f
Total rad Sr	22	0.019	8.7*	37	24
	ĥ	Nhite Oak Creek	(09/30-10/28)		
Co-60	300	f	-0.15	185	f
Cs-137	300	0.049	1.6*	111	1.4
Total rad Sr	300	0.094	3.1*	37	8.4
H-3	300	61	2,000*	74,000	2.7
		White Oak Dam	(09/30-10/28)		
Total rad Sr	380	0.23	6.0*	37	16
H-3	380	220	5,600*	74,000	7.6

Table 9.	Radionuclide concentrations and releases at ORNL N	PDES
	surface water stations, ^a October 1992	

Table 9. (continued)

Radionuclide	Flow	Discharge ^b	Concentration ^C	DCG ^d	Percent
	(10 ⁶ L)	(10 ¹⁰ Bq)	(Bq/L)	(Bq/L)	DCG ^e
	W	hite Oak Dam ^g	(10/01-11/01)		
Co-60	450	f	0.056	185	f
Cs-137	450	0.072	1.6*	111	1.5
Gross alpha	450	0.0080	0.18*	f	f
Gross beta	450	0.57	13*	f	f

^aLocations are shown in Fig. 5.

^bDischarges are calculated from flow and concentration and are listed when concentrations are significantly greater than zero.

^cConcentrations significantly greater than zero are identified by an *. ^dDerived concentration guide for ingestion of water. From DOE Order 5400.5.

 $e_{Average}$ concentration as a percentage of the DCG, calculated only when a DCG exists and the average concentration is significantly greater than zero.

^fNot applicable.

^gConcentration is a flow-weighted average of the weekly samples. Discharge is the total for the month.

Radionuclide	Flow (10 ⁶ L)	Discharge ^b (10 ¹⁰ Bq)	Concentration ^C (Bq/L)	DCG ^d (Bq/L)	Percent DCG ^e
	M	lelton Branch 1	(10/28-11/24)	**************************************	
Co-60	270	f	-0,20	185	f
Cs-137	270	f	0.10	111	f
Total rad Sr	270	0.27	10*	37	27
H-3	270	620	23,000*	74,000	31
Nonra	diological	Wastewater Tre	eatment Facility (10	0/28-11/24)	
Co-60	47	f	-0,50	185	f
Cs-137	47	0.19	41*	111	37
Gross alpha	47	0.0012	0.26*	f	f
Gross beta	47	0.14	29*	f	f
Total rad Sr	47	0.0023	0.48*	37	1.3
H-3	47	16	3,400*	74,000	4.6
	Sewag	e Treatment Pl	ant (10/29-11/24)		
Co-60	25	f	0.40	185	f
Cs-137	25	f	-0,40	105	f
Gross beta	25	0.049	20*	f	f
Total rad Sr	25	0.018	7.3*	37	20
	W	hite Oak Creek	(10/28-11/24)		
Co-60	590	f	0.50	185	f
Cs-137	590	0.21	3.5*	111	3.2
Total rad Sr	590	0.26	4.3*	37	12
H-3	590	200	3,400*	74,000	4.6
		White Oak Dam	(10/28-11/24)		
Total rad Sr	760	0.47	6.1*	37	16
H-3	760	500	6,600*	74,000	8.9

.

.

 $H \in \mathbb{R}$

1.1.1.1.1

į

11.1

Table 10. Radionuclide concentrations and releases at ORNL NPDES surface water stations,^a November 1992

Table 10. (continued)

Radionuclide	Flow Discharge ^b		Concentration ^C	DCG ^d	Percent
	(10 ⁶ L) (10 ¹⁰ Bq)		(Bq/L)	(Bq/L)	DCG ^e
	W	hite Oak Dam ^g	(11/01-12/01)		
Co-60	920	f	0.060	185	f
Cs-137	920	0.23	2.5*	111	2.2
Gross alpha	920	0.018	0.20*	f	f
Gross beta	920	1.3	14*	f	f

^aLocations are shown in Fig. 5.

^bDischarges are calculated from flow and concentration and are listed when concentrations are significantly greater than zero. ^CConcentrations significantly greater than zero are identified by an *.

^dDerived concentration guide for ingestion of water. From DOE Order 5400.5.

^eAverage concentration as a percentage of the DCG, calculated only when a DCG exists and the average concentration is significantly greater than zero. ^fNot applicable.

 $\mathcal{B}_{\text{Concentration is a flow-weighted average of the weekly samples.}$ Discharge is the total for the month.

Radionuclide	Flow (10 ⁶ L)	Discharge ^b (10 ¹⁰ Bq)	Concentration ^C (Bq/L)	DCG ^d (Bq/L)	Percent DCG ^e
	M	lelton Branch 1	(11/24-12/30)		
Co-60	590	f	0.10	185	f
Cs-137	590	f	0.20	111	- f
Total rad Sr	590	0.56	9.5*	37	26
H-3	590	1,400	24,000*	74,000	32
Nonra	diological	Wastewater Tre	eatment Facility (1.	1/24-12/30)	
Co-60	65	f	0.60	185	f
Cs-137	65	0.18	28*	111	25
Gross alpha	65	0.0011	0.17*	 f	f
Gross beta	65	0.16	25*	f	f
Total rad Sr	65	0.023	3,5*	37	9.5
H-3	65	25	3,800*	74,000	5.1
	Sewag	ge Treatment Pl	ant (11/24-12/30)		
Co-60	31	f	1.1	185	f
Cs-137	31	f	0.50	111	f
Gross beta	31	0.065	21*	f	f
Total rad Sr	31	0.029	9.5*	37	26
	W	hite Oak Creek	: (11/24-12/30)		
Co-60	1,200	f	0,60	185	f
Cs-137	1,200	f	0.50	111	f
Total rad Sr	1,200	0.67	5.5*	37	15
H-3	1,200	310	2,600*	74,000	3.5
		White Oak Dam	(11/24-12/30)		
Total rad Sr	1,800	1.3	7.6*	37	21
н-3	1,800	1,100	6,200*	74,000	8.4

Table 11.	Radionuclide concentrations and releases at ORNL NPDES
	surface water stations, ^a December 1992

Table 11. (continued)

Radionuclide	Flow (10 ⁶ L)	Discharge ^b (10 ¹⁰ Bq)	Concentration ^C (Bq/L)	DCG ^d (Bq/L)	Percent DCG ^e
	ĥ	hite Oak Dam ^g	(12/01-01/01)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Co-60 Cs-137	1,600	0.032	0.20*	185	0.11
Gross alpha	1,600 1,600	0.51 0.058	3.1* 0.36*	111 f	2.8 f
Gross beta	1,600	2.6	16*	f	f

^aLocations are shown in Fig. 5.

^bDischarges are calculated from flow and concentration and are listed when concentrations are significantly greater than zero.

^cConcentrations significantly greater than zero are identified by an *. ^dDerived concentration guide for ingestion of water. From DOE Order 5400.5.

^eAverage concentration as a percentage of the DCG, calculated only when a DCG exists and the average concentration is significantly greater than zero.

^fNot applicable.

 \mathcal{B} Concentration is a flow-weighted average of the weekly samples. Discharge is the total for the month.

Nonradiological Wastewater Treatment Facility, Sewage Treatment Plant, White Oak Creek, and White Oak Dam; tritium at Melton Branch 1, Nonradiological Wastewater Treatment Facility, and White Oak Dam; and Cs-137 at Nonradiological Wastewater Treatment Facility and White Oak Creek.

3.2 REFERENCE SURFACE WATER Melinda C. Salmons

3.2.1 Program Description

Natural surface waters are sampled at locations upstream of the various facilities on the ORR. Data from these samples can be used to assess water quality prior to the impacts of the ORR. The term "reference" is used instead of "background" because the latter typically implies an environmental medium that is pristine, or unaffected by human activities. The Clinch River is the major surface water system that is affected by the ORR. This river integrates many human activities upstream of the reservation. The net impact of the ORR can be evaluated by comparing the reference data to information from samples collected at two sampling locations for the purpose of determining contamination levels before the influence of ORNL. One sampling location is Melton Hill Dam above ORNL's discharge point into the Clinch River (Fig. 5). The other sampling location is WOC headwaters above the point where ORNL discharges to White Oak Creek (Fig. 5).

Analyses were performed to detect classical, inorganic, and organic pollutants in the water. Classical pollutants are indicated by conductivity, temperature, turbidity, pH, total dissolved solids, total suspended solids, and oil and grease (O&G). Inorganic parameters are indicated by metal and anion analyses. The presence of organic pollutants is indicated by results from total organic carbon (TOC) analysis. If the TOC result is greater than 5 mg/L, analyses for volatile and semivolatile organic compounds will be conducted. Water samples analyzed for inorganics and total suspended solids were collected flow-proportionally at each location. All other samples are grab samples taken once per month.

In addition, samples are collected and analyzed for radionuclides. Results are reported in Section 3.1.

3.2.2 Results

The results for the inorganic, organic, and classical pollutants are found in Table 12. There were no high levels of organic compounds detected by the TOC analysis at either location, as indicated by the average value of 1.9 mg/L at Melton Hill Dam and by the average value of 2.4 mg/L at WOC headwaters.

Inorganic analytical results can show a wide range of detection limits. This results from a dilution that must be made to some of the water samples. When a given sample contains an element in a concentration that is higher than the inductively coupled plasma (ICP) equipment can accurately measure, this compound can cause a spectral interference with other elements. The sample

		Concentration (mg/L)					
Analyte	N det/ N total	Max	Min	Av ^a	Standard error ^b		
	Mel	ton Hill Da	m ^c				
Anions							
Fluoride	0/3	< 0.10	< 0.10	~ 0.10	0		
Nitrate (as N)	0/3	< 1.0	< 1.0	~ 1.0	0		
Sulfate (as SO ₄)	3/3	34	22	27*	3.7		
Field Measurements							
Conductivity (mS/cm)	3/3	2.4	0.90	1.7*	0.44		
Dissolved oxygen (ppm)	3/3	9.7	7.8	8.5*	0.62		
Temperature (°C)	3/3	18	9.8	14*	2.3		
Turbidity (NTU)	3/3	38	15	30*	7.7		
pH (SU)	3/3	7.8	7.4	7.6*	0.12		
fetals							
Aluminum, total	3/3	0.36	0.051	0.17	0.096		
Antimony, total	0/3	< 0.050	< 0.050	~ 0.050	0		
Arsenic, total	0/3	< 0.010	< 0.010	~ 0.010	0		
Barium, total	3/3	0.037	0.031	0.034*	0.001		
Beryllium, total	0/3	< 0.0010	< 0.0010	~ 0.0010	0		
Boron, total	0/3	< 0.080	< 0.080	~ 0.080	0		
Cadmium, total	0/3	< 0.0050	< 0.0050	~ 0,0050	0		
Calcium, total	3/3	40	36	38*	1.2		
Chromium, total	1/3	0.0097	< 0.0040	~ 0.0059*	0.001		
Cobalt, total	0/3	< 0.0040	< 0.0040	~ 0.0040	0		
Copper, total	0/3	< 0.0070	< 0.0070	~ 0.0070	0		
Iron, total	3/3	0.38	0.061	0.18	0.099		
Lead, total	0/3	< 0.050	< 0.050	~ 0.050	0		
Lithium, total ^d	2/3	< 15	0.0031	~ 5.0	5.0		
Magnesium, total	3/3	10	9.3	9.7*	0.21		
Manganese, total	3/3	0.13	0.010	0.083	0.037		
Molybdenum, total	0/3	< 0.040	< 0.040	~ 0.040	0		
Nickel, total	0/3	< 0.010	< 0.010	~ 0.010	0		
Phosphorus, total	0/3	< 0.30	< 0.30	~ 0.30	0		
Selenium, total	0/3	< 0.0050	< 0.0050	~ 0.0050	Ō		
Silicon, total	3/3	2.5	2.3	2.4*	0.067		
Silver, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0		
Sodium, total ^e	2/3	5.4	4.5	~ 5,0*	0.26		
Strontium, total	3/3	0.10	0.091	0.094*	0.003		

Table 12.Surface water analyses at reference locations,October-December 1992

u u

ġ

ų dini.

ų,

. v

۴.

•

•

ألمتناز بطرا الأربق

.

-

Table 12. (continued)

			Concentration (mg/L)				
Analyte	N det/ N total	Max	Min	Av ^a	Standard error ^b		
Tin, total	0/3	< 0.050	< 0.050	~ 0.050	0		
Titanium, total	0/3	< 0.020	< 0.020	~ 0.020	õ		
Vanadium, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0		
Zinc, total	3/3	0.11	0.012	0.074	0.031		
Zirconium, total	0/3	< 0.020	< 0.020	~ 0.020	0.051		
Others							
Oil and grease	1/3	2.0	< 2.0	~ 2.0	0		
Total dissolved solids	3/3	200	150	170*	17		
Total organic carbon	3/3	2.0	1.9	1.9*	0.033		
Total suspended solids	1/3	27	< 5.0	~ 12	7.3		
	White Oa	k Creek Hea	dwaters ^C				
Anions							
Fluoride	0/3	< 0.10	< 0.10	~ 0.10	0		
Nitrate (as N)	0/3	< 1.0	< 1.0	~ 1.0	0		
Sulfate (as SO ₄)	3/3	4.1	2.8	3.3*	0.42		
Field Measurements							
Conductivity (mS/cm)	3/3	2.1	0.80	1.3*	0.39		
Dissolved oxygen (ppm)	3/3	10	8.5	9.4*	0.59		
Temperature (°C)	3/3	14	8.9	12*	1.6		
Turbidity (NTU)	3/3	63	11	35			
pH (SU)	3/3	8.2	7.2	7.7*	15 0.29		
Metals							
Aluminum, total	3/3	0.33	0.12	0.21*	0.062		
Antimony, total	0/3	< 0.050	< 0.050	~ 0.050	0.002		
Arsenic, total	0/3	< 0.010	< 0.010	~ 0.010	0		
Barium, total	3/3	0.093	0.061	0.082*			
Beryllium, total	0/3	< 0.0010	< 0.0010	~ 0.0010	0.011		
Boron, total	0/3	< 0.080	< 0.080	~ 0.080	0 0		
Cadmium, total	0/3	< 0.0050	< 0.0050	~ 0.0050			
Calcium, total	3/3	28	22	~ 0.0050 26*	0		
Chromium, total	1/3	0.0093	< 0.0040	~ 0.0058*	1.9		
Cobalt, total	0/3	< 0.0040	< 0.0040		0.0018		
Copper, total	0/3	< 0.0040	< 0.0040	~ 0.0040	0		
Iron, total	3/3	0.30	0.17	~ 0.0070 0.22*	0		
Lead, total	5,5	0.00	0.1/	V.ZZ*	0.042		

×

			Concentration (mg/L)					
Analyte	N det/ N total	Max	Min	Av ^a	Standard error ^b			
Lithium, total ^d	1/3	< 15	< 0.0010	~ 5.0	5.0			
Magnesium, total	3/3	13	9.4	11*	1.1			
Manganese, total	3/3	0.020	0.010	0.013*	0.0033			
Molybdenum, total	0/3	< 0.040	< 0.040	~ 0.040	0			
Nickel, total	0/3	< 0.010	< 0.010	- 0.010	0			
Phosphorus, total	0/3	< 0.30	< 0.30	~ 0.30	0			
Selenium, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0			
Silicon, total	3/3	4.4	3.3	3.8*	0.33			
Silver, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0			
Sodium, total ^e	2/3	< 5.0	0.47	~ 2.0	1.5			
Strontium, total	3/3	0.036	0.023	0.031*	0.0042			
Tin, total	0/3	< 0.050	< 0.050	~ 0.050	0			
Titanium, total	0/3	< 0.020	< 0.020	- 0.020	0			
Vanadium, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0			
Zinc, total	3/3	0.090	0.012	0.03°	0.026			
Zirconium, total	0/3	< 0.020	< 0.020	~ 0.020	0			
Others								
Oil and grease	0/3	< 2.0	< 2.0	~ 2.0	0			
Total dissolved solids	3/3	140	110	130*	8.8			
Total organic carbon	3/3	4.7	1.2	2.4	1.2			
Total suspended solids	2/3	10	< 5.0	- 7.0*	1.5			

^aAverage concentrations significantly greater than zero are identified by an *.

^bStandard error of the mean.

^CSee Fig. 5.

 $d_{\text{Note that the analytical detection limit for lithium for October and November was 0.001 mg/L. For December, the detection limit was 15 mg/L.$

^eNote that the analytical detection limit for sodium for October and November was 0.05 mg/L. For December, the detection limit was 5 mg/L. must then be diluted to bring the interfering element into a range that the equipment can accurately measure. The resulting analytical values from the ICP process must be adjusted by the dilution factor. This dilution factor must also be applied to the detection limit value for each element.

3.3 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM REQUIREMENTS Pamela Y. Goldberg and Charles K. Valentine, Jr.

3.3.1 Program Description and Results

ORNL's current NPDES permit requires that point-source outfalls be sampled prior to their discharge into receiving waters or before mixing with any other wastewater stream (Fig. 5). There are ambient sampling points that are located in the streams as reference points or for additional information.

Quarterly summary statistics for the quarter of 1992 are given for each sampling location in Tables 13 through 21.

Data collected for the NPDES permit are also summarized monthly for reporting to DOE and the state of Tennessee. These summaries are submitted to DOE in the Monthly Discharge Monitoring Report and are available upon request. Noncompliances are provided in Table 22.

3.3.2 Noncompliances

3.3.2.1 October 1992

3.3.2.1.1 Inappropriate and/or Unpermitted Discharges

On October 13, 1992, a truck was rinsed in the vicinity of a storm drain catch basin associated with outfall 302 in which approximately 20 gallons of rinse water entered the catch basin. No detrimental effects were noted in White Oak Creek (the receiving stream) and personnel were counseled on BMP controls.

3.3.2.1.2 Exceedences of NPDES Permit Limits

The TSS exceedences that occurred at the Category II outfalls 230 and 234 were attributed to residual dust and dirt being conveyed through these outfalls by storm water runoff.

3.3.2.2 November 1992

3.3.2.2.1 Inappropriate and/or Unpermitted Discharges

On November 19, 1992, a small quantity of oil (estimated at a tablespoon) flowed from a utility sump located near the 4510 Cooling Tower through a sump drain pipe into White Oak Creek. The release resulted in an oil sheen on the surface along one side of the creek. The sump was cleaned out and an oil boom will be installed in the sump at the drain pipe outlet, to preclude further release of any oil in the sump.

		Concentration (mg/L)				
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^c	
Field Measurements						
Chlorine, total residual	40/40	0.43	0.10	0.21*	0.013	
Dissolved oxygen (ppm)	62/62	12	6.6	9.2*	0.14	
Downstream pH (SU)	13/13	8.2	7.1	d	d.14	
Flow (Mgd)	62/62	0.36	0.12	0.22*	0.0053	
pH (SU)	13/13	7.9	7.4	d	d	
Temperature (°C)	75/75	23	11	17*	0.36	
Metals						
Copper, total	2/3	0.010	< 0.0070	~ 0.0084*	0.00088	
Mercury, total	0/3	< 0.000050	< 0.000050	~ 0.000050	0.00088	
Silver, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0	
Zinc, total	3/3	0.071	0.055	0.062*	0.0047	
Others						
Ammonia (as N)	40/40	0.63	0.030	0.11*	0.020	
Biochemical oxygen demand	0/40	< 5.0	< 5.0	~ 5.0	0.020	
Cyanide, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0	
Fecal Coliform (col/100 mL) ^e	27/40	95	< 1.0	~ 2.7*	1.2	
Oil and grease	13/40	9.0	< 2.0	~ 2.7*	0.24	
Phenolics, total recoverable	0/3	< 0.0010	< 0.0010	~ 0.0010	0	
Total suspended solids	3/40	9.0	< 5.0	~ 5.1*	0.10	
Volatile Organics						
Bromodichloromethane	0/3	U 0.0050	U 0.0050	~ 0.0050	0	
Trichloroethene	0/3	U 0.0050	U 0.0050	~ 0.0050	0	

Table 13. NPDES discharge point X01,² October-December 1992

1.1.1.1.1.1.1

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^CStandard error of the mean. ^dNot applicable. ^eThe geometric mean is computed rather than the average.

.....

. ..

Analyte		Concentration (mg/L)					
	N det/ N total	Max	Min	Avb	Standard error ^C		
Anions		· · · · · · · · · · · · · · · · · · ·					
Sulfate (as SO ₄)	3/3	2,100	1,500	1,800*	170		
Field Measurements							
Downstream pH (SU)	60/60	8.3	7.0	d	Ŀ		
Flow (Mgd)	62/62	0.083	0	0.014*	d O OOOF		
pH (SU)	60/60	8.2	6.4	d.014*	0.0025		
Temperature (°C)	60/60	19	5.3	12*	d 0.55		
Metals							
Arsenic, total	0/10	< 0.050	< 0.050	~ 0.050	0		
Cadmium, total	0/10	< 0.0050	< 0.0050	~ 0.0050	0		
Chromium, total	2/10	0.011	< 0.0040	~ 0.0050	0		
Copper, total	2/10	0.012	< 0.0040		0.00082		
Iron, total	10/10	0.34	0.083	~ 0.0077*	0.00052		
Lead, total	0/10	< 0.050	< 0.085	0.17* ~ 0.050	0.025		
Manganese, total	10/10	0.065	0.0048		0		
Nickel, total	1/10	0.015	< 0.010	0.026* ~ 0.011*	0.0067		
Selenium, total	10/10	0.10	0.010		0.00050		
Silver, total	1/10	0.015	< 0.014	0.053*	0.0078		
Zinc, total	9/10	0.075	< 0.0050	~ 0.0060* ~ 0.024*	0.0010 0.0065		
Others							
Oil and grease	4/10	3.0	< 2.0	0 1.4			
Total suspended solids	7/10	10	< 2.0 < 5.0	~ 2.1* ~ 6.3*	0.10 0.60		

Table 14. NPDES discharge point X02,^a October-December 1992

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

		Concentration (mg/L)				
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^c	
Anions						
Fluoride	13/13	2.4	1.2	1.8*	0 11	
Nitrate (as N)	11/13	16	< 1.0	~ 3.3*	0.11 1.1	
Sulfate (as SO ₄)	13/13	350	68	~ 3.3* 250*	1.1	
Field Measurements						
Downstream pH (SU)	62/62	8.4	7.3	d		
Flow (Mgd)	62/62	0.54	0.35	0.46*	d 0.0000	
pH (SU)	e	7.8	7.1	d.46×	0.0060	
Temperature (°C)	62/62	23	12	16*	d 0.36	
Metals						
Arsenic, total	0/13	< 0.050	< 0.050	~ 0.050	0	
Cadmium, total	0/13	< 0.0050	< 0.0050	~ 0.0050	0	
Chromium, total	3/13	0.0099	< 0.0040	~ 0.0053*	-	
Copper, total	1/13	0.023	< 0.0070	~ 0.0082*	0.00069	
Iron, total	1/13	2.0	< 0.050	~ 0.20	0.0012	
Lead, total	0/13	< 0.050	< 0.050	~ 0.050	0.15	
Mercury, total	0/13	< 0.000050	< 0.000050	~ 0.000050	0	
Nickel, total	2/13	0.013	< 0.010	~ 0.010*	0.00023	
Phosphorus, total	5/13	0.40	< 0.20	~ 0.22*	0.00023	
Selenium, total	0/13	< 0.050	< 0.050	~ 0.050	0.015	
Silver, total	1/13	0.019	< 0.0050	~ 0.0061*	0.0011	
Zinc, total	13/13	1.3	0.017	0.14	0.0011	
Others						
Biochemical oxygen demand	0/13	< 5.0	< 5.0	~ 5.0	0	
Cyanide, total	0/13	< 0.0020	< 0.0020	~ 0.0020	0 0	
Oil and grease	4/13	11	< 2.0	~ 0.0020 ~ 3.5*	-	
Phenolics, total recoverable	0/13	< 0.0010	< 0.0010	~ 0.0010	0.80	
Total suspended solids	0/13	< 5.0	< 5.0	~ 5.0	0	
Total toxic organics	0/13	< 0.010	< 0.010	~ 0.010	0 0	

11 0.00 0

THE COL

Table 15. NPDES discharge point X12,^a October-December 1992

-

.....

0.91

and an erect

տոր

1.62

n

5

.

Table 15. (continued)

Analyte		Concentration (mg/L)					
	N det/ N total	Max	Min	Av ^b	Standard error ^c		
Volatile Organics							
1,1-Dichloroethane	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Benzene	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Bromodichloromethane	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Chlorobenzene	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Chloroform	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Methylene chloride	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Tetrachloroethene	0/13	U 0.0050	U 0.0050	~ 0.0050	0		
Trichloroethene	0/13	U 0.0050	U 0.0050	~ 0.0050	0		

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable. ^epH monitoring is continuous.

4

		Concentration (mg/L)				
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^C	
Anions						
Fluoride	3/3	3.1	0.70	1.8	0.70	
Nitrate (as N)	1/3	1.4	< 1.0	~ 1.1*	0.13	
Sulfate (as SO ₄)	3/3	320	75	190	70	
Field Measurements						
Chlorine, total residual	0/13	< 0.010	< 0.010	~ 0.010	0	
Conductivity (mS/cm)	3/3	2.3	1.3	1.7*	0.30	
Dissolved oxygen (ppm)	13/13	12	7.7	9.7*	0.34	
Flow (Mgd)	62/62	18	0.31	2.5*	0.38	
pH (SU)	3/3	8.0	7.0	d	d	
Temperature (°C)	16/16	18	6.2	11*	0.85	
Turbidity (NTU)	3/3	15	7.0	10*	2.4	
Metals						
Aluminum, total	3/3	2.9	0.22	1.2	0.87	
Arsenic, total	0/3	< 0.050	< 0.050	~ 0.050	0	
Cadmium, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0	
Chromium, total	2/3	0.015	< 0.0040	~ 0.0083	0.0034	
Copper, total	3/3	0.025	0.012	0.016*	0.0043	
Iron, total	3/3	2.6	0.34	1.1	0.73	
Lead, total	0/3	< 0.0040	< 0.0040	~ 0.0040	0	
Mercury, total	0/3	< 0.000050	< 0.000050	~ 0.000050	Õ	
Manganese, total	3/3	0.44	0.19	0.31*	0.072	
Nickel, total	1/3	0.011	< 0.010	~ 0.010*	0.00033	
Phosphorus, total	3/3	1.2	0.40	0.79*	0.22	
Silver, total	0/3	< 0.0050	< 0.0050	~ 0,0050	0.22	
Zinc, total	3/3	0.11	0.080	0.097*	0.0088	
Others						
Ammonia (as N)	3/3	0.070	0.040	0.053*	0.0088	
Biochemical oxygen demand	0/3	< 5.0	< 5.0	~ 5.0	0	
Oil and grease	5/13	6.0	< 2.0	~ 2.8*	0.41	
Phenolics, total recoverable		< 0.0010	< 0.0010	~ 0.0010	0.41	
Total dissolved solids	3/3	640	300	440*	99	
Total organic carbon	3/3	7.6	3.2	5.0*	1.3	
Total suspended solids	3/3	81	6.0	32	25	

Table 16. NPDES discharge point X13,^a October-December 1992

з

and the second second

Table 16. (continued)

Analyte		Concentration (mg/L)						
	N det/ N total	Max	Min	Avb	Standard error ^C			
PCBs PCB, total	0/3	U 0.0020	U 0.0020	~ 0.0020	0			
Volatile Organics Chloroform Trichloroethene	0/3 1/3	U 0.0050 U 0.0050	U 0.0050 J 0.0020	~ 0.0050 ~ 0.0040*	0 0.0010			

 a See Fig. 5. ${}^{b}_{Average}$ concentrations significantly greater than zero are identified by an *. c Standard error of the mean. d Not applicable.

.

• • • • • • • •

1 1

11.17

1.1.1.1

		Concentration (mg/L)					
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^C		
Anions							
Fluoride	3/3	0.90	0.60	0.74*	0.087		
Nitrate (as N)	3/3	2.0	1.0	1.3*	0.33		
Sulfate (as SO ₄)	3/3	62	51	56*	3.3		
Field Measurements							
Chlorine, total residual	0/13	< 0.010	< 0.010	~ 0.010	0		
Conductivity (mS/cm)	3/3	2.0	1.3	- 0.010 1.7*	0.20		
Dissolved oxygen (ppm)	13/13	11	8.7	10*	0.20		
Flow (Mgd)	62/62	28	2.1	5.7*	0.23		
pH (SU)	3/3	7.6	7.6	d	d.05		
Temperature (°C)	16/16	18	9.5	13*	0.70		
Turbidity (NTU)	3/3	8.0	8.0	8.0	0.70		
Metals							
Aluminum, total	3/3	0.28	0.058	0.19	0.066		
Arsenic, total	0/3	< 0.050	< 0.050	~ 0.050	0.000		
Cadmium, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0		
Chromium, total	1/3	0.0099	< 0.0040	~ 0.0060*	0.0020		
Copper, total	1/3	0.0070	< 0.0070	~ 0.0070	0.0020		
Iron, total	2/3	0.25	< 0.050	~ 0.15	0.058		
Lead, total	0/3	< 0.0040	< 0.0040	~ 0.0040	0.050		
Mercury, total	0/3	< 0.000050	< 0.000050	~ 0.000050	0		
Manganese, total	3/3	0.038	0.023	0.032*	0.0046		
Nickel, total	0/3	< 0.010	< 0.010	~ 0.010	0.0040		
Phosphorus, total	3/3	0.38	0.20	0.29*	0.052		
Silver, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0.052		
Zinc, total	3/3	0.065	0.029	0.044*	0.011		
Others							
Ammonia (as N)	3/3	0.080	0.040	0.063*	0 012		
Biochemical oxygen demand	0/3	< 5.0	< 5.0	~ 5.0	0.012 0		
Oil and grease	4/13	6.0	< 2.0	~ 2.6*			
Phenolics, total recoverable	0/3	< 0.0010	< 0.0010	~ 0.0010	0.33 0		
Total dissolved solids	3/3	250	240	250*	0 4.9		
Total organic carbon	3/3	3.3	1.7	2.5*			
Total suspended solids	1/3	6.0	< 5.0	~ 5.3*	0.46 0.33		

וואד ירי

a in a management of a second se

Table 17. NPDES discharge point X14,^a October-December 1992

.....

Table 17. (continued)

Analyte		Concentration (mg/L)						
	N det/ N total	Max	Min	Avb	Standard error ^C			
PCBs PCB, total	0/3	U 0.0020	U 0.0020	~ 0.0020	0			
Volatile Organics Chloroform Trichloroethene	3/3 0/3	J 0.0020 U 0.0050	J 0.0010 U 0.0050	~ 0.0017* ~ 0.0050	0.00033 0			

0.11

^{*a*}See Fig. 5. ^{*b*}Average concentrations significantly greater than zero are identified by an *. ^{*c*}Standard error of the mean. ^{*d*}Not applicable.

		Concentration (mg/L)						
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^C			
Anions								
Fluoride	3/3	0.96	0.60	0.79*	0.10			
Nitrate (as N)	0/3	< 1.0	< 1.0	~ 1.0	0.10			
Sulfate (as SO ₄)	3/3	59	53	55*	2.0			
Field Measurements				•				
Chlorine, total residual	0/13	< 0.010	< 0.010	~ 0,010	0			
Conductivity (mS/cm)	3/3	2.8	1.4	~ 0.010 1.9*	0			
Dissolved oxygen (ppm)	13/13	12	7.8	9.8*	0.45			
Flow (Mgd)	62/62	46	2.7	7.9*	0.40			
pH (SU)	3/3	7.7	7.1	d	0.96			
Temperature (°C)	16/16	18	5.6	12*	d			
Turbidity (NTU)	3/3	30	12	18*	1.0 6.0			
Metals								
Aluminum, total	3/3	0.99	0.35	0.58	0.20			
Arsenic, total	0/3	< 0.010	< 0.010	~ 0.010	0.20			
Cadmium, total	0/3	< 0.0020	< 0.0020	~ 0.0020	0			
Chromium, total	3/3	0.014	0.0048	0.0099*	0.0027			
Copper, total	1/3	0.0076	< 0.0070	~ 0.0072*	0.00027			
Iron, total	3/3	0.90	0.46	0.69*	0.13			
Lead, total	0/3	< 0.0040	< 0.0040	~ 0.0040	0.15			
Mercury, total	2/3	0.000060	0.000010	~ 0.000040	0.000015			
Manganese, total	3/3	0.20	0.099	0.14*	0.031			
Nickel, total	0/3	< 0.010	< 0.010	~ 0.010	0			
Phosphorus, total	3/3	0.30	0.20	0.27*	0.033			
Silver, total	0/3	< 0.0050	< 0.0050	~ 0.0050	0			
Zinc, total	3/3	0.034	0.015	0.024*	0.0055			
Others								
Ammonia (as N)	3/3	0.28	0.12	0.18*	0.049			
Biochemical oxygen demand	0/3	< 5.0	< 5.0	~ 5.0	0.049			
Oil and grease	4/13	6.0	< 2.0	~ 2.8*	0.42			
Total dissolved solids	3/3	290	140	220*	45			
Total organic carbon	3/3	5.8	2.5	3.9*	0.98			
Total suspended solids	3/3	17	10	14*	2.2			

.

Table 18. NPDES discharge point X15,^a October-December 1992

.

			Concentration (mg/L)						
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^C				
PCBs PCB, total	0/3	U 0.0020	U 0.0020	~ 0.0020	0				
Volatile Organics Chloroform Trichloroethene	0/3 0/3	U 0.0050 U 0.0050	U 0.0050 U 0.0050	~ 0.0050 ~ 0.0050	0 0				

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

a

		Concentration (mg/L)						
Analyte	N det/ N total	Max	Min	Av ^b	Standard error ^C			
Field Measurements								
Downstream pH (SU)	41/41	8.3	7.3	d	L			
Downstream Temperature (°C)	10/10	24	9.3	16*	d 1.5			
Flow (Mgd)	41/41	0.13	0.00029	0.030*				
pH (SU)	41/41	8.6	7.1	d.030^	0.0054			
Temperature (°C)	41/41	55	7.8	18*	d 1.4			
Others								
Oil and grease	19/41	14	< 2.0	~3.8*	0 52			
Total suspended solids	17/41	330	< 5.0	~19*	0.53			
•	_,,+_	550	< 5.0	~19*	8.1			
Radionuclides (Bq/L)								
Gross beta	41/41	65	-0.040	2.8*	1.0			
Total rad Sr	1/1	54	54	54	1.6 d			

Table 19. NPDES category II outfalls,^a October-December 1992

1

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

Analyte		Concentration (mg/L)						
	N det/ N total	Max	Min	Avb	Standard error ^C			
Field Measurements								
Flow (Mgd)	16/16	0.14	0.00022	0.020*	0.0095			
pH (SU)	16/16	9.0	7.0	d	d.0095			
Temperature (°C)	16/16	23	12	16*	0.78			
Radionuclides (Bq/L)								
Co-60	5/5	0.46	-0.030	0.23*	0.099			
Cs-137	5/5	16	0.010	3.5	3.1			
Gross beta	5/5	280	0.53	100	48			
Total rad Sr	4/4	160	29	71	48 31			

Table 20. NPDES category III outfalls,^a October-December 1992

Ξ

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

Analyte					
	N det/ N total	Max	Min	Av ^b	Standard error ^C
Field Measurements					
Chlorine, total residual	7/10	0.15	< 0.010	~ 0.078*	0.017
Downstream pH (SU)	10/10	8.5	8.0	d	d
Flow (Mgd)	10/10	0.19	0.0026	0.043	0.024
pH (SU)	10/10	8.8	7.8	d	d
Temperature (°C)	10/10	33	20	26*	1.3
Metals					
Chromium, total	2/10	0.027	< 0.0040	~ 0.0078*	0.0026
Copper, total	8/10	0.22	< 0.0070	~ 0.077*	0.024
Zinc, total	10/10	0.29	0.0022	0.12*	0.032

Table 21. NPDES cooling towers,^a October-December 1992

^aSee Fig. 5. ^bAverage concentrations significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

91

			mg	;/L
Location	Limit Violated	Date	Permit Limit	Value
Category II				
Outfall 230	Total suspended solids	300CT92	50	53
Outfall 234	Total suspended solids	300CT92	50	55
Outfall 216	Total suspended solids	02NOV92	50	89
Outfall 250	Total suspended solids	24NOV92	50	327

1100

Table 22. NPDES permit limit noncompliances, October-December 1992

ļ

3.3.2.2.2 Exceedences of NPDES Permit Limits

The TSS exceedences that occurred at the Category II outfalls 216 and 250 were attributed to residual dust and dirt being conveyed through these outfalls by storm water runoff.

3.3.2.3 December 1992

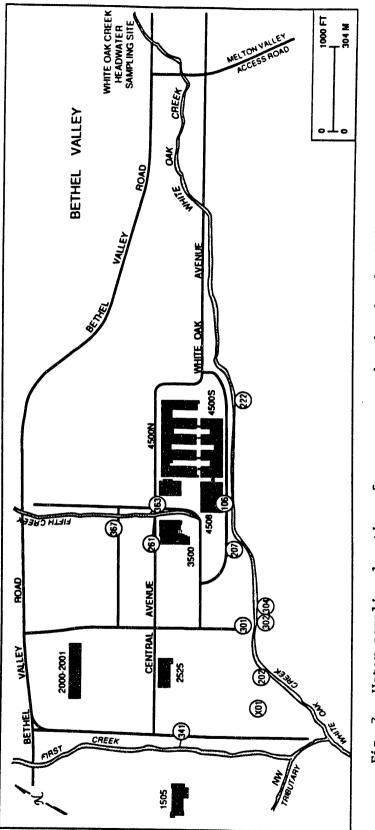
3.3.2.3.1 Inappropriate and/or Unpermitted Discharges

On December 29, 1992, an ORNL potable water pipe broke in the 3000 Area of the ORNL main complex in Bethel Valley, which discharges into Fifth Creek at outall 267. The break caused a release of approximately 50 gallons per minute for approximately 3 hours. The broken pipe was valved off as soon as it was discovered and repaired.

3.3.2.3.2 Exceedences of NPDES Permit Limits

No exceedences

3.4 MERCURY IN THE AQUATIC ENVIRONMENT Betsy M. Horwedel and Martha M. Stevens

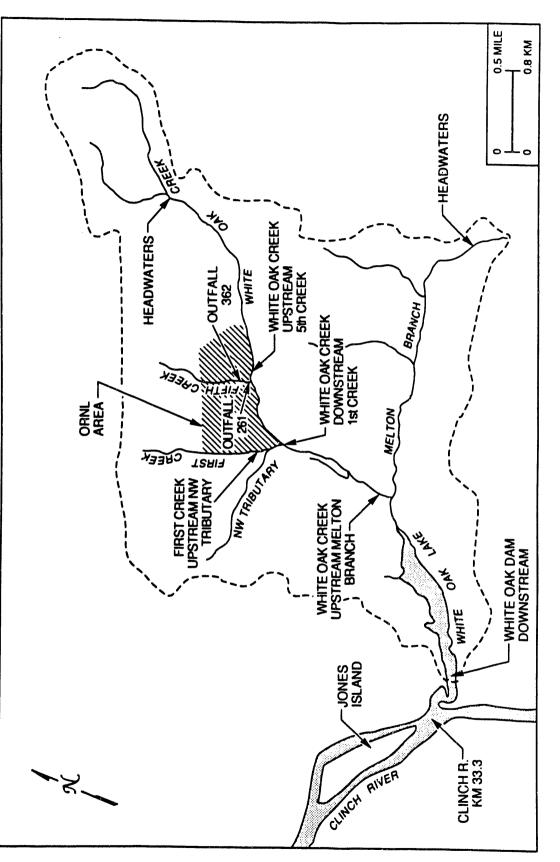

3.4.1 Program Description

In the mercury monitoring program at ORNL, samples of surface water and stream sediment in the Bethel and Melton valleys are collected semiannually and analyzed for mercury content. This monitoring is conducted to comply with the CWA and ORNL'S NPDES permit. The primary purpose of this effort is to identify, locate, and minimize all mercury contamination in ORNL discharge to the aquatic environment.

In earlier years, before stringent regulations came into effect, some contaminants reached various streams primarily as the results of accidental spills or leakages. The majority of the mercury spills occurred from 1954 through 1963, during a period when ORNL was involved with OREX and METALLEX separation processes. Most of this activity occurred in around buildings 4501, 4505, and 3592. These processes are no longer in operation at ORNL. During the time of operation, an unknown number of mercury spills took place. The spills were cleaned up; however, some quantities of mercury escaped and reached the surrounding environment. The sampling locations have been placed in areas surrounding known mercury spills. Sampling locations have also been placed near outfalls from building areas with a past history of mercury concern and outfalls from storage areas, spill areas, road, and parking lot drains. Additional sampling locations have been placed downstream from the outfalls and drains to determine the extent to which any mercury is being transported in the surface water and sediment. The surface water sampling locations are shown on Fig. 7. The sediment sampling locations are shown on Fig. 8. A total of 39 surface water samples and 27 sediment samples were taken from 13 surface water locations and 9 sediment locations. The surface

10 n - 1

ORNL-DWG 92M-13528



111

n p -

54

ORNL-DWG 92M-13531

Sediment sampling locations for mercury monitoring in the ORNL environs. **∞** Fig.

55

water samples were collected by the manual grab method and placed in 1-L polyethylene bottles with polyethylene caps. The sediment samples were also collected by the manual grab method and placed in glass containers. In the laboratory, the samples were analyzed for total mercury content by manual cold vapor atomic absorption.

3.4.2 Results

Table 23 shows the maximum, minimum, and average concentrations of mercury in surface water sampled in December 1992. The standard error of the mean is also included. The Tennessee Water Quality (TWQ) Standard for the protection of fish and aquatic life is 2.4 μ g/L (ppb) for the acute criteria. The percentage TWQ column shows the reported maximum concentration as a percentage of this limit for each sampling location. Mercury was not detected at 6 out of the 13 sampling locations. The highest value reported was 0.22 μ g/L at outfall 106 on WOC. The average concentrations at all other sampling locations were less than 0.16 μ g/L.

Table 24 shows the maximum, minimum, and average concentrations of mercury in sediment sampled in December 1992. The standard error of the mean is also included. There is no established state or EPA standard for mercury in sediment. The highest concentrations of mercury were measured in the samples from Fifth Creek, with averages of 88 μ g/g and 37 μ g/g at the two locations. Two sites on White Oak Creek had average concentrations of 2.8 μ g/g and 1.2 μ g/g. Average concentrations of mercury at all other sampling locations were much lower; they ranged from 0.026 μ g/g to 0.31 μ g/g.

3.5 GROUNDWATER Regis S. Loffman

Groundwater at ORNL is monitored to comply with 3004(U) of RCRA and DOE Orders 5400.1 and 5400.5. The monitoring also provides data needed for remediation activities. Because of the large number of Solid Waste Management Unit (SWMU) sites at ORNL located close to one another and the proven hydrologic interconnections between many of these units, individual monitoring and assessment was shown to be impractical. Therefore, the concept of waste area groupings (WAGs) has been developed to evaluate potential sources of releases to the environment. A WAG is a group of multiple sites that are geographically contiguous and/or hydrologically defined areas, and each WAG contains small, distinct drainage areas within which similar contaminants may have been introduced. The location of the WAGs is shown in Fig. 9.

Groundwater quality monitoring wells at ORNL are designated as up-gradient perimeter or down-gradient perimeter depending on their location relative to the general direction of groundwater flow. Up-gradient wells are located to provide groundwater samples that are not expected to be affected by possible leakage from the site. Down-gradient wells are positioned along the site perimeter to detect possible site groundwater contaminant migration.

				Concentration ($\mu g/L$)				
Stream ^a	Site	N det/ N total	Max	Min	Av ^b	Standard error ^c	Percent of TWQ standard ^d	
lst Creek	341	0/3	< 0.050	< 0.050	~ 0.050	0	< 2.1	
5th Creek	261 363 367	0/3 0/3 0/3	< 0.050 < 0.050 < 0.050	< 0.050 < 0.050 < 0.050	~ 0.050 ~ 0.050 ~ 0.050	0 0 0	< 2.1 < 2.1 < 2.1	
WOC	106 202 207 222 301 302 304 HDW ^e X01	3/3 3/3 0/3 3/3 3/3 3/3 3/3 0/3 3/3	0.22 0.12 0.17 < 0.050 0.14 0.14 0.15 < 0.050 0.070	0.20 0.11 0.16 < 0.050 0.12 0.13 0.14 < 0.050 0.070	0.21* 0.11* 0.16* ~ 0.050 0.13* 0.13* 0.14* ~ 0.050 0.070	0.0058 0.0033 0.0033 0 0.0067 0.0033 0.0033 0 0	9.2 5.0 7.1 < 2.1 5.8 5.8 6.3 < 2.1 2.9	

Table 23. Mercury concentrations in water, December 1992

^aSee Fig. 7.

Ē

 $b_{Average}$ concentrations significantly greater than zero are identified

by an *. ^CStandard error of the mean. ^dMaximum concentration as a percentage of TWQ Standard, 2.4 μ g/L, for the protection of fish and aquatic life. ^eHeadwaters site.

1.11.1

18.6

			Concentration $(\mu g/g)$					
Stream	Site ^a	N det/ N total	Max	Min	Av ^b	Standard error ^C		
lst Creek	Upstream NWT	3/3	0.048	0.039	0.044*	0.0026		
5th Creek	Outfall 261 Outfall 362	3/3 3/3	211 61	6.6 23	88 37*	63 12		
MB	Headwaters	3/3	0.015	0.012	0.014*	0.00088		
WOC	Upstream 5th Creek Downstream 1st Creek Headwaters Upstream MB Downstream WOD	3/3 3/3 3/3 3/3 3/3 3/3	1.3 3.1 0.79 0.038 0.067	1.1 2.3 0.069 0.017 0.032	1.2* 2.8* 0.31 0.026* 0.045*	0.052 0.27 0.24 0.0063 0.011		

Table 24. Mercury concentrations in sediment, December 1992

^aSee Fig. 8. ^bAverage concentrations significantly greater than zero are identified by an *. ^CStandard error of the mean.

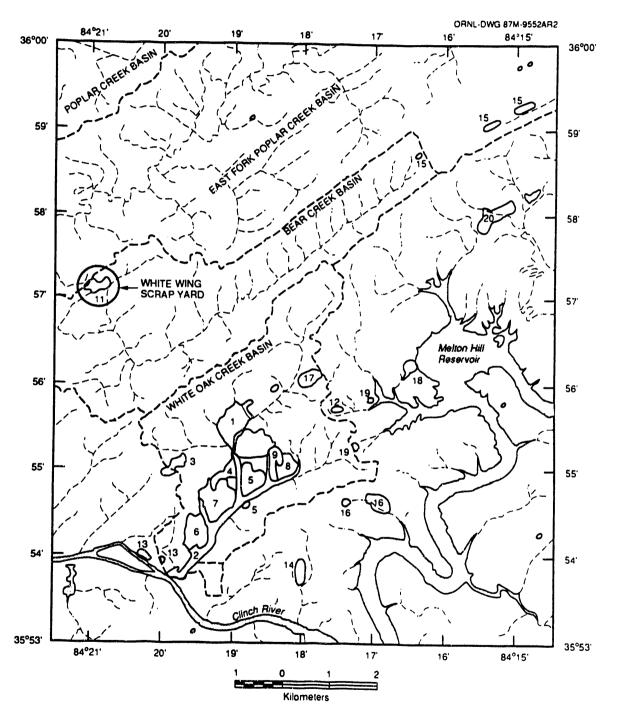


Fig. 9. ORNL WAGs.

u qe

1.111

59

Table 25 contains a listing of all of the analytes sought in groundwater at ORNL during quarter 1992 and the regulatory limits associated with each. Not all substances shown in Table 25 were analyzed for in each sample. Table 25, used in conjunction with the sampling plan synopsis provided for each WAG, can be used to determine the respective specific analyte lists. Groundwater and its related quality are not regulated like other environmental media (e.g., surface water by NPDES, air by CAA). Consequently, there are no mandated groundwater quality criteria. In an effort to provide a basis for evaluation of analytical results and for assessing groundwater quality at ORNL WAGs, drinking water limits and DOE DCGs have been used for comparisons. It should be emphasized that use of drinking water limits for comparison does not imply that members of the public drink groundwater from ORNL WAGs.

Duplicate, field blank, and trip blank samples are also collected with each WAG as part of the groundwater QA/QC program.

Two types of tables are presented which depict the monitoring parameters' values for each WAG sampled during the quarter. The first table is a summary table presented by well type (i.e., down-gradient and up-gradient). The table contains the number of detected values and the total number of samples; the maximum, minimum, and average of all values; and the standard error of the mean. Various prefixes with different meanings precede the maxima and minima: "U" (analyte was undetected and the instrument was calibrated at the associated value), "<" (the analyte was not able to be quantified below the associated value), "J" (below quantification, estimated), "B" (found in the associated laboratory blank), "JB" (estimated and found in the associated laboratory blank), "E" (value exceeded instrument calibration range, estimated), and "Y" (value from reanalysis after dilution when the calibration range was exceeded).

The second table contains WAG-specific values that exceed a reference value. This reference value may be a regulatory limit, or, for organic analytes which do not have regulatory limits, five times the laboratory detection limit was used as a rough rule for assessing the presence of contaminants (or ten times in the case of common organic laboratory contaminants). Tentatively identified compounds (TICs) are also presented in this table of exceedences.

All radionuclide values are corrected for background. A radionuclide value is determined to be significantly greater than zero when the value exceeds 1.645 times its estimated standard error (see Section 1.0 for discussion).

With respect to the volatile organic results, a number of the wells show vinyl chloride results of "U 10 μ g/L" which appear to exceed the primary drinking water standard of 2 μ g/L. A better way to interpret these results is that vinyl chloride was undetected and the instrument used in the analysis was able to accurately detect vinyl chloride at 10 μ g/L or above. It is unlikely but not guaranteed that vinyl chloride was present in the sample; an estimated value (i.e., a value less than 10, accompanied by a "J" prefix) would have been returned by the laboratory if the instrument detected vinyl chloride. (A similar explanation can be applied to pentachlorophenol results.)

Analyte	National Primary Drinking Water	National Secondary Drinking Water	Tennessee Primary Drinking Water	of DCG ^a
Anions (mg/L)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Bromide				
Chloride		250		
Fluoride	4.0	2.0		
Nitrate	10			
Phosphate				
Sulfate (as SO ₄)		250		
Base/Neutral/Acid Extractable				
Organics ^D (µg/L)				
1,2,4-Trichlorobenzene				
1,2-Dichlorobenzene	600			
1,3-Dichlorobenzene				
1,4-Dichlorobenzene	75	5.0	75	
2,4,5-Trichlorophenol				
2,4,6-Trichlorophenol				
2,4-Dichlorophenol				
2,4-Dimethylphenol				
2,4-Dinitrophenol				
2,4-Dinitrotoluene				
2,6-Dinitrotoluene				
2-Chloronaphthalene				
2-Chlorophenol				
2-Methylnaphthalene				
2-Methylphenol 2-Nitroaniline				
2-Nitrophenol				
3,3'-Dichlorobenzidine				
3-Nitroaniline				
4,6-Dinitro-2-methylphenol				
4-Bromophenylphenyl ether				
4-Chloro-3-methylphenol				
4-Chloroaniline				
4-Chlorophenylphenyl ether				
4-Methylphenol				
4-Nitroaniline				
4-Nitrophenol				
Acenaphthene				
Acenaphthylene				

Table 25. Analytes sought and applicable standards in groundwater at ORNL in WAGs 4, 5, and 6 during October-December 1992

Analyte	National Primary Drinking Water	National Secondary Drinking Water	Tennessee Primary Drinking Water	4% of DOE DCG ^a
	water	water	water	DOE DCG ^a

Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate Chrysene Di-n-butylphthalate Di-n-octylphthalate Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene

Field Measurements Conductivity (mS/cm) Dissolved oxygen (ppm) Redox (mV)

• III

1.0

1.10

Analyte	National Primary Drinking Water	National Secondary Drinking Water	Tennessee Primary Drinking Water	4% of DOE DCG ⁴
Temperature (°C)			30.5	
Turbidity (JTU) pH (SU)	1.0	(6.5, 8.5)		
Metals (mg/L)				
Aluminum		0.20		
Antimony		0.2.0		
Arsenic	0.050		0.050	
Barium	2.0		0.030	
Beryllium	2.0			
Boron				
Cadmium	0.0050		0.010	
Calcium	0.0050		0.010	
Chromium	0.10		0.050	
Cobalt	0.10		0.050	
Copper		1.0		
Iron		0.30		
Lead	0.05	0.50	0.050	
Lithium	0.05		0.050	
Magnesium				
Manganese		0.050		
Mercury	0.0020	0.050	0.0020	
Molybdenum	0.0020		0.0020	
Nickel				
Phosphorus				
Potassium				
Selenium	0.050		0.010	
Silicon	0.000		0.010	
Silver		0.10	0.050	
S_dium		0.10	0.050	
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc		5.0		
Zirconium		5.0		
Others				
Alkalinity (mg/L)				

Phenolics, total recoverable (mg/L)

÷.

Table 25. (continued)

Primary Drinking Water	National Secondary Drinking Water	Tennessee Primary Drinking Water	4% of DOE DCG ²
	500	500	
			7.4
0 555			4.44
			2 060
0.296			2,960 1.48
200		200	
200		200	
7.0		7.0	
5.0			
70			
5.0			
5.0		5.0	
100 ^e			
		5.0	
100e			
1006			
/00			
100			
	Water 0.555 1.85 ^d 740 0.296 200 7.0 5.0 70 5.0 5.0	Water Water 500 0.555 1.85 ^d 740 0.296 200 7.0 5.0 70 5.0 100 ^e 100 ^e	Water Water Water Water 500 500 0.555 1.85 ^d 740 0.296 200 200 7.0 5.0 5.0 7.0 5.0 7.0 5.0 7.0 5.0 5.0 100 ^e 5.0

101 1

I. U. Jane

Table 25. (continued)

Analyte	National Primary Drinking Water	National Secondary Drinking Water	Tennessee Primary Drinking Water	4% of DOE DCG ²
Toluene	1,000			
Trichloroethene Vinyl acetate	5.0		5.0	
Vinyl chloride Xylene, total cis-1,3-Dichloropropene trans-1,3-Dichloropropene	2.0 10,000		2.0	

²4% of the DOE DCG to represent the DOE criterion of 4 mrem effective dose equivalent from ingestion of drinking water. See discussion in Section 1.0. ^bDivide μg/L by 1000 to convert to mg/L. ^cDivide Bq/L by 0.037 to convert to pCi/L. ^dRegulatory guide for assessing compliance without further analysis. ^eLimit for total trihalomethanes (bromodichloromethane + bromoform + chloroform

+ dibromochloromethane).

J

3.5.1 WAG 4

3.5.1.1 Program Description

The sites at Waste Area Grouping (WAG) 4 are currently remedial investigation sites regulated under RCRA 3004(u). ORNL has sampled WAG 4 since 1991 and has plans to continue sampling every year.

WAG 4 is located in Melton Valley approximately 0.8 km (0.5 mile) southwest of the main ORNL plant site (Fig. 10). It is comprised of the SWSA 4 waste disposal area, liquid low-level waste (LLW) transfer lines and the experimental Pilot Pit Area (Area 7811).

SWSA 4 was opened for routine burial of solid radioactive contaminated wastes in 1951. From 1955 to 1963, Oak Ridge was designated by the Atomic Energy Commission as the Southern Regional Burial Ground; as such, SWSA 4 received a wide variety of poorly characterized wastes (including radioactive waste) from approximately 50 agencies. These solid wastes consisted of paper, clothing, equipment, filters, animal carcasses, and related laboratory wastes. Approximately 50% of the waste was received from sources outside of Oak Ridge facilities. Wastes were placed in trenches, shallow auger holes, and in piles on the ground, for covering at a later date.

Liquid LLW was transported from storage tanks at the main ORNL complex to waste pits and trenches in Melton Valley (WAG 7), and later to the hydrofracture site, through underground transfer lines from 1954 to 1975. The Pilot Pit Area (Area 7811) was constructed for use in pilot-scale radioactive waste disposal studies from 1955 to 1959; three large concrete cylinders containing experimental equipment remain embedded in the ground. A control building and asphalt pad have been used for storage through the years.

Fifteen wells comprise the groundwater perimeter well network at WAG 4 (wells 948-962); the up-gradient wells for WAG 4 are 950-953.

Table 26 shows the parameters measured at WAG 4.

3.5.1.2 Results

Perimeter wells at WAG 4 were sampled October 26-November 23, 1992. A summary of the analytical results by well type (i.e., up-gradient and down-gradient) is presented in Table 27; Table 28 presents the data that exceed some reference criteria.

Tritium was the most significant radiological contaminant detected in the down-gradient wells at WAG 4. It was detected at levels of most concern at wells 960, 954, 956, 955, 957, and 958 at values ranging from 2,700 to 290,000 Bq/L. Gross beta activity was detected highest at well 956 at 51 Bq/L; the associated total rad Sr at the well was 32 Bq/L. Gross alpha activity was detected at a number of the wells and well 956 had the highest level, 6.1 Bq/L.

41.000

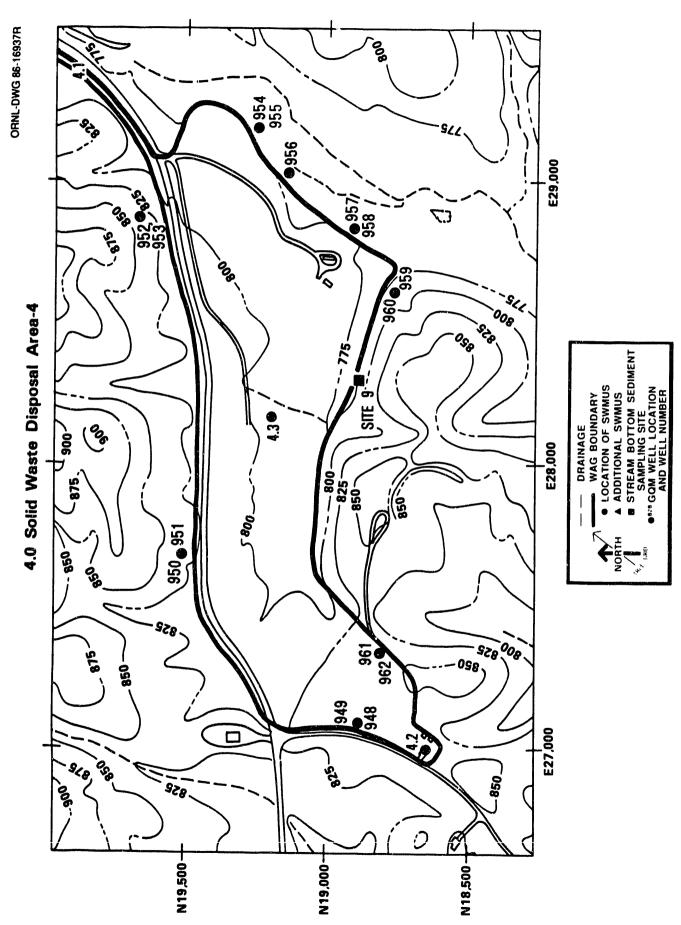


Fig. 10. Location map showing water quality wells at WAG 4.

Table 26. Parameters measured in groundwater at ORNL WAGs 4 and 5 during quarter 1992

Inorganic Compounds Alkalinity Anions bromide chloride fluoride nitrate phosphate	Field Measurements Dissolved oxygen pH Redox Specific conductance Temperature Turbidity
sulfate Metals by ICP Metals by atomic absorption antimony arsenic	Organic Compounds Total organic carbon Total organic halides Total compound list
lead mercury selenium silver thallium Total dissolved solids Total suspended solids	Radionuclides Gamma emitting isotopes Co-60 Cs-137 Gross alpha Gross beta H-3 Total rad Sr

111

...

11

2.1

 .,*.

от II

··· · · •

		Concentration			
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^C
	Down-gr	adient Well	Туре		
Anions (mg/L) Unfiltered	L				
Bromide	3/11	1.9	< 1.0	~ 1.1*	0.084
Chloride	11/11	270	3.2	65*	25
Fluoride	2/11	6.2	< 0.10	~ 0,92	0.56
Nitrate	1/11	27	< 0.10	~ 3.2	2.4
Phosphate	1/11	< 3.0	< 0.30	~ 1.3*	0.27
Sulfate (as SO ₄)	9/11	310	< 1.0	~ 74*	28
Field Measurements Unfil	tered				
Conductivity (mS/cm)	11/11	1.4	0.34	0.76*	0.11
Dissolved oxygen (ppm)	11/11	9.5	6.2	7.3*	0.29
Redox (mV)	11/11	600	290	410*	26
Temperature (°C)	11/11	17	13	15*	0.33
Turbidity (JTU)	11/11	340	6.3	50	29
pH (SU)	11/11	9.2	6.8	7.8*	0.26
Metals (mg/L) Filtered					
Aluminum	3/11	0.14	< 0.050	~ 0.060*	0.0077
Antimony	1/11	0.0065	< 0.0050	~ 0.0051*	0.0001
Barium	11/11	0.58	0.017	0.16*	0.059
Boron	6/11	0.65	< 0.080	~ 0.23*	0.063
Calcium	11/11	130	1.5	63*	14
Iron	8/11	23	< 0.050	~ 2.8	2.1
Magnesium	11/11	30	0.22	14*	2.9
Manganese	11/11	3.5	0.0027	0.51	0.31
Nickel	4/11	0.14	< 0.010	~ 0.044*	0.016
Potassium	11/11	4.6	1.7	2.9*	0.37
Selenium	2/11	0.0078	< 0.0050	~ 0.0054*	0.0002
Silicon	11/11	16	4.1	8.7*	1.3
Sodium	11/11	380	9.4	110*	39
Vanadium	2/11	0.0037		~ 0.0023*	0.0002
Zinc	2/11	0.012	< 0.0050	- 0.0062*	0.0007

ĸ

Table 27. ORNL WAG 4 groundwater summary statistics from October 26-November 23, 1992

æ

.

.

.

Table 27. (continued)

		Concentration				
	N det/ N total	Max ^a	Min ^a	Av ^b	Standard error ^C	
	Down-	gradient Well	Туре			
Metals (mg/L) Unfiltered						
Aluminum	5/11	0.55	< 0.050	~ 0.10*	0.044	
Barium	11/11	0.56	0.019	0.15*	0.057	
Boron	6/11	0.60	< 0.080	~ 0.22*	0.059	
Calcium	11/11	130	1.5	61*	14	
Chromium	2/11	0.0083	< 0.0040			
Iron	11/11	23	0.13	2.9	2.1	
Magnesium	11/11	29	0.26	13*	2.8	
Manganese	11/11	3.4	0.0037		0.30	
Nickel	5/11	0.14	< 0.010	~ 0.043*	0.015	
Potassium	11/11	4.7	1.4	2.8*	0.34	
Silicon	11/11	14	4.0	8.2*	1.1	
Sodium	11/11	380	8.9	110*	39	
Vanadium	1/11	0.0041				
Zinc	10/11	0.057	< 0.0050		• 0.0043	
Others Filtered						
Alkalinity (mg/L)	11/11	510	120	330*	39	
Total dissolved solids (mg/L)	11/11	970	240	520*	65	
Others Unfiltered						
Alkalinity (mg/L)	11/11	500	120	340*	38	
Total organic carbon (mg/L)	10/11	11	< 0.50	~ 2.0*	0.95	
Total organic halides $(\mu g/L)$	3/11	1,100	< 5.0	~ 140	100	
Total suspended solids (mg/L)	3/11	36	< 5.0	~ 8.6*	2.8	
Radionuclides (Bq/L) Filtered	d					
Co-60	1/11	0.11*	-0.070	0.015	0.017	
Cs-137	1/11	0.096*	-0.010	0.031*	0.011	
Gross alpha	11/11				0.35	
Gross beta	11/11		0.20*	4.4	3.5	
H-3		280,000*		48,000	30,000	
Total rad Sr	2/11	28*	-0.044	2.6	2.5	
Radionuclides (Bq/L) Unfilter	red					
Co-60	1/11	0.20*	-0.020	0.053*	0.020	
Cs-137	1/11		-0.060	0.041	0.043	
Gross alpha	11/11	6.1*	0.11*	0.84	0.53	

			Co	oncentration	
Analyte	N det/ N total	Max ^a	Min ^a	Av ^b	Standard error ^C
	Down-	gradient Wel.	l Type		
Radionuclides (Bq/L) Unf	iltered				
Gross beta	10/11	51*	0.22*	5.3	4.6
H-3	10/11		-16	49,000	31,000
Total rad Sr	4/11	32*	-0.039	3.1	2.9
Volatile Organics (µg/L)	Unfiltered				
1,1,1-Trichloroethane		U 5.0	J 2.0	~ 4.7*	0.27
1,1-Dichloroethene	2/11	10	U 5.0	~ 4./^	
1,2-Dichloroethane	1/11	7.0	U 5.0	~ 5.2*	0.55
1,2-Dichloroethene	2/11	Y 930	U 5.0 U 5.0	~ 160	0.18
Acetone	1/11	B 17	U 10		110
Carbon disulfide	2/11			~ 11*	0.64
Trichloroethene				~ 4.6*	0.28
Vinyl chloride	2/11		U 5.0	~ 22	13
vinyi chioride	2/11	Y 1,000	U 10	~ 120	90
	Up-gi	radient Well	Туре		
Anions (mg/L) Unfiltered					
Chloride	4/4	2.9	2.0	2.5*	0.19
Sulfate (as SO ₄)	4/4	55	16	27*	9.3
Base/Neutral/Acid Extractab	le Organics	$(\mu g/L) Un$	filtered		
Di-n-butylphthalate	1/4	U 10	B 2.0	~ 8.0*	2.0
N-Nitrosodiphenylamine	1/4	U 10		~ 8.5*	1.5
Field Measurements Unfil	tered				
Conductivity (mS/cm)	4/4	0.46	0.060	0.24*	0.097
Dissolved oxygen (ppm)	4/4	9.4	6.8	8.1*	
Redox (mV)	4/4	520	430	460*	0.53
Temperature (°C)	4/4	15	15	15*	19
Turbidity (JTU)	4/4	120	6.3		0.064
pH (SU)	4/4	7.6	6.9	45	26
	4/4	/.0	0.7	7.2*	0.17
fetals (mg/L) Filtered					
Barium	4/4	0.22	0.038	0.15*	0.039
Calcium	4/4	61	14	38*	13
Iron	3/4	8.8	< 0.050	~ 4.2	2.4
Magnesium	4/4	12	7.4	10*	1.1

...

*

٠

.

.

Table 27. (continued)

		Concentration				
Analyte	N det/ N total	Max ^a	Min ^a	Av ^b	Standard error ^C	
	Up-gra	dient Well T	ype			
Metals (mg/L) Filtered						
Manganese	4/4	3.2	0.51	1.7*	0.68	
Potassium	4/4	4.3	1.4	2.8*	0.78	
Silicon	4/4	19	14	16*	1.0	
Scdium	4/4	21	7.3	12*	3.1	
Vanadium	1/4	0.0021		~ 0.0020*	0.000025	
Zinc	1/4	0.016	< 0.0050	~ 0.0078*	0.0028	
Metals (mg/L) Unfiltered						
Aluminum	2/4	0.39	< 0.050	~ 0.15	0.080	
Barium	4/4	0.22	0.044	0.15*	0.037	
Calcium	4/4	60	14	36*	12	
Iron	4/4	8.5	0.16	4.3	2.2	
Magnesium	4/4	12	6.1	9.2*	1.2	
Manganese	4/4	2.7	0.48	1.5*	0.57	
Potassium	4/4	4.2	0.90	2.6*	0,83	
Silicon	4/4	17	12	14*	0.94	
Sodium	4/4	21	6.2	11*	3.2	
Zinc	4/4	0.044	0.012	0.023*	0.0074	
Others Filtered						
Alkalinity (mg/L)	4/4	210	80	140*	34	
Total dissolved solids (mg/L)	4/4	270	150	210*	31	
Others Unfiltered						
Alkalinity (mg/L)	4/4	200	83	140*	33	
Total organic carbon (mg/L)	2/4	0.55	< 0.50	~ 0.51*	0.013	
Total suspended solids (mg/L)	2/4	34	< 5.0	~ 12	7.3	
Radionuclides (Bq/L) Filtered	1					
Co-60	1/4	0.14*	-0.010	0.043	0.034	
Gross beta	2/4	0.28*	0.040	0.13*	0.053	
н-3	2/4	27*	-5.0	12	7.8	

Table 27. (continued)

			Conc	entration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^C
		dient Well Ty	ype		
Dodionuslides (D. /T)					
	Unfiltered	0.0701	o 01-	• • • • • •	
Gross alpha	1/4	0.070*	0.015	0.036*	0.012
Gross alpha Gross beta	1/4 4/4	0.18*	0.12*	0.17*	0.012 0.015
Gross alpha	1/4		-		

^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the laboratory blank, exceeded the calibration range, exceeded the calibration range and was diluted and reanalyzed, was not detected at that level, or was not quantified at that level, respectively. Radionuclide values that are significantly greater than zero are identified by an *.

 b Average concentrations significantly greater than zero are identified by an *. c Standard error of the mean. d Not applicable.

Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
		ng Date 05NOV92 ., Water Elevation	808.71	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	36	с	1.0	D
Base/Neutral/Acid Extractable Org Unknown-7.53	ganics-TICs (µ J 5.0	4g/L) Unfiltere c	d c	Т
Base/Neutral/Acid Extractable Org Pentachlorophenol	ganics (µg/L) U 50	Unfiltered c	1	2
Metals (mg/L) Filtered				
Iron	0.53	С	0.3	3
Manganese	0.043	С	0.0010	D
Sodium	9,4	С	5.0	D
Metals (mg/L) Unfiltered				
Iron	0.79	с	0.3	3
Manganese	0.037	с	0.0010	D
Sodium	8.9	с	5.0	D
Zinc	0.020	с	0.0050	D
Others Unfiltered				
Total organic carbon (mg/L)	0.73	c	0.50	D
Radionuclides (Bq/L) Filtered				
Gross beta	2.8*	0.30	1.85	2
Volatile Organics (µg/L) Unfil Vinyl chloride	ltered U 10	с	2	1
	0 10	C	Ζ.	1
		ng Date 05NOV92 t, Water Elevation	816.34	
Anions (mg/L) Unfiltered				
Sulfate (as SO ₄)	25	с	1.0	D

<u>но</u>.

in pro-

н н т

ι h

Table 28. ORNL WAG 4 groundwater constituents that exceed a reference value fromsampling period October 26-November 23, 1992

Table 28. (continued)

×

Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Base/Neutral/Acid Extractable O	rganics (ug/L)	Unfiltered		
Pentachlorophenol	υ 50	c	1	2
Metals (mg/L) Filtered				
Iron	0.13	с	0.050	D
Manganese	0.23	c	0.05	3
Sodium	14	c	5.0	D
Metals (mg/L) Unfiltered				
Aluminum	0.054	с	0.050	D
Iron	0.28	c	0.050	D
Manganese	0.23	c	0.05	3
Sodium	14	c	5.0	D
Zinc	0.018	c	0.0050	D
Others Unfiltered				
Total organic carbon (mg/L)	1.8	с	0,50	D
Volatile Organics (µg/L) Unf	iltorod			
1,2-Dichloroethane	7.0	•	5	1
		С	5 2	1
Vinyl chloride	U 10	С	2	1
	ell 950, Samplin			
Ground Elev	ation 830.99 It	, Water Elevatio	DN 821.71	
Anions (mg/L) Unfiltered				
Sulfate (as SO4)	19	с	1.0	D
Base/Neutral/Acid Extractable C	rganics (µg/L)	Unfiltered		
Pentachlorophenol	U 50	с	1	2
Metals (mg/L) Filtered				
Iron	8.8	с	0.3	3
	2.5	c	0.05	3 3
	£., J		5.0	D
Manganese	٥ ٨			
Manganese Sodium	9.0	c		
Manganese	9.0 0.0021	c	0.0020	D
Manganese Sodium				D
Manganese Sodium Vanadium				

.*

0

. . .

R

1.11

....

.

Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered				
Sodium	8.4	с	5.0	D
Zinc	0.012	c	0.0050	D D
Volatile Organics (µg/L) Unfil Vinyl chloride			0	
vinyi entoride	U 10	С	2	1
Wel Ground Elevat	1 951, Samplin ion 836.00 ft	ng Date 290CT92 , Water Elevatic	on 821.82	
Anions (mg/L) Unfiltered				
Sulfate (as SO ₄)	16	C	1.0	D
Base/Neutral/Acid Extractable Org	ganics (µg/L)	Unfiltered		
Pentachlorophenol	U 50	С	1	2
Metals (mg/L) Filtered				
Iron	0.086	с	0.050	D
Manganese	0.51	с	0.05	3
Sodium	11	с	5.0	D
Zinc	0.016	с	0.0050	D
Metals (mg/L) Unfiltered				
Iron	0.16	с	0.050	D
Manganese	0.48	c	0.05	3
Sodium	11	c	5.0	D
Zinc	0.022	c	0.0050	D
Others Unfiltered				
Total organic carbon (mg/L)	0.55	с	0.50	D
Volatile Organics (µg/L) Unfil	torod			
Vinyl chloride	U 10	с	2	1
Wel. Ground Elevat	1 952, Samplin ion 817.55 ft	ng Date 280CT92 , Water Elevatio	n 808.43	
Anions (mg/L) Unfiltered				

.

. .

1.1

i.

and the second second

Table 28. (continued)

		Concentration			
Analyte	Value ²	Uncertainty	Reference value	Reference source ^b	
Base/Neutral/Acid Extractable	Organics-TICs (u	g/L) Unfiltered			
Unknown-30.84	J 4.0	c	с	Т	
Base/Neutral/Acid Extractable	Organics (µg/L)	Unfiltered			
Pentachlorophenol	U 50	с	1	2	
Metals (mg/L) Filtered Iron					
	8.1	С	0.3	3	
Manganese	3.2	С	0.05	3	
Sodium	7.3	С	5.0	D	
Metals (mg/L) Unfiltered					
Aluminum	0.13	с	0.050		
Iron	7.5			D	
Manganese	2.7	С	0.3	3	
Sodium	6.2	с	0.05	3	
Zinc	0.044	с с	5.0 0.0050	D D	
		-	0.0000	U	
Volatile Organics (μ g/L) Un					
Vinyl chloride	U 10	с	2	1	
k Ground Ele	Vell 953, Samplin Vation 816 89 ft	ng Date 03NOV92 , Water Elevation (
	Vacion DIU.07 IL	, mater Lievalion	808.38		
		, water Erevation	808.38		
Anions (mg/L) Jnfiltered Sulfate (as SO4)	55	c	1.0	D	
Anions (mg/L) Jnfiltered Sulfate (as SO4)	55	с		D	
Anions (mg/L) Unfiltered Sulfate (as SO4) Base/Neutral/Acid Extractable (55 Organics (µg/L)	с	1.0	_	
Anions (mg/L) Jnfiltered Sulfate (as SO4)	55	с		D 2	
Anions (mg/L) Jnfiltered Sulfate (as SO4) Base/Neutral/Acid Extractable (Pentachlorophenol	55 Organics (µg/L)	c Unfiltered	1.0	_	
Anions (mg/L) Jnfiltered Sulfate (as SO4) Base/Neutral/Acid Extractable (Pentachlorophenol Metals (mg/L) Filtered	55 Organics (µg/L) U 50	c Unfiltered c	1.0 1	2	
Anions (mg/L) Jnfiltered Sulfate (as SO4) Base/Neutral/Acid Extractable (Pentachlorophenol	55 Organics (µg/L)	c Unfiltered	1.0	_	
Anions (mg/L) Unfiltered Sulfate (as SO ₄) Base/Neutral/Acid Extractable Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium	55 Organics (µg/L) U 50 0.62	c Unfiltered c c	1.0 1 0.05	2 3	
Anions (mg/L) Unfiltered Sulfate (as SO ₄) Base/Neutral/Acid Extractable Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium Metals (mg/L) Unfiltered	55 Organics (µg/L) U 50 0.62 21	c Unfiltered c c c	1.0 1 0.05 5.0	2 3 D	
Anions (mg/L) Unfiltered Sulfate (as SO ₄) Base/Neutral/Acid Extractable Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium Metals (mg/L) Unfiltered Aluminum	55 Organics (µg/L) U 50 0.62 21 0.39	c Unfiltered c c c	1.0 1 0.05 5.0 0.2	2 3 D 3	
Anions (mg/L) Unfiltered Sulfate (as SO ₄) Base/Neutral/Acid Extractable (Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium Metals (mg/L) Unfiltered Aluminum Iron	55 Organics (μg/L) U 50 0.62 21 0.39 1.0	c Unfiltered c c c c	1.0 1 0.05 5.0 0.2 0.3	2 3 D 3 3	
Anions (mg/L) Unfiltered Sulfate (as SO ₄) Base/Neutral/Acid Extractable (Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium Metals (mg/L) Unfiltered Aluminum Iron Manganese	55 Organics (μg/L) U 50 0.62 21 0.39 1.0 0.65	c Unfiltered c c c	1.0 1 0.05 5.0 0.2 0.3 0.05	2 3 D 3 3 3 3	
Anions (mg/L) Unfiltered Sulfate (as SO4) Base/Neutral/Acid Extractable (Pentachlorophenol Metals (mg/L) Filtered Manganese Sodium Metals (mg/L) Unfiltered Aluminum Iron	55 Organics (μg/L) U 50 0.62 21 0.39 1.0	c Unfiltered c c c c	1.0 1 0.05 5.0 0.2 0.3	2 3 D 3 3	

1.12

.

чю нь

a P

• 1418 - 14 **- 141**

e ur

1 10 10 1 88

1

•

91 (M)

No. 1

Table 28. (continued)

·

		Concentration	L	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total suspended solids (mg/L)	34	с	5.0	D
Volatile Organics (μ g/L) Unfil	tered			
Vinyl chloride	U 10	с	2	1
Wel Ground Elevat	1 954, Samplin ion 768.70 ft	g Date 10NOV92 , Water Elevati	on 765.16	
Anions (mg/L) Unfiltered				
Fluoride	6.2	с	4	2
Sulfate (as SO4)	180	с	1.0	D
Base/Neutral/Acid Extractable Org	anics (µg/L)	Unfiltered		
Pentachlorophenol	υ 50	c	1	2
Field Measurements Unfiltered				
pH (SU)	8.8	с	(6.5, 8.5)	3
Metals (mg/L) Filtered				
Aluminum	0.067	с	0.050	D
Boron	0.50	c	Û.080	D
Manganese	0.0069	с	0.0010	D
Nickel	0.035	c	0.010	D
Sodium	380	C	5.0	D
Zinc	0.012	C	0.0050	D
Metals (mg/L) Unfiltered				
Aluminum	0.078	С	0.050	D
Boron	0.46	c	0.080	D
Iron	0.13	c	0.050	D
Manganese	0.0037	c	0.0010	D
Nickel	0.041	c	0.0010	D
Sodium	380	c	5.0	D
Zinc	0.022	c	0.0050	D
Others Filtered				
Total dissolved solids (mg/L)	970	с	500	1

Table 28. (continued)

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered				
Total organic carbon (mg/L) Total organic halides (µg/L)	1.3 290	c c	0.50 5.0	D D
Radionuclides (Bq/L) Filtered H-3				
н-э	3,200*	100	740	2
Radionuclides (Bq/L) Unfilter	ed			
Gross alpha	0.99*	0.54	0.555	2
H-3	3,300*	100	740	2
Volatile Organics (µg/L) Unfi	ltorod			
1,1-Dichloroethene	9.0		-7	
1,2-Dichloroethene	Y 830	c c	7 70	1
Trichloroethene	52	c		2
Vinyl chloride	¥ 220	c	5 2	1 1
Wel Ground Eleva	11 955, Samplir tion 768.72 ft	ng Date 09NOV92 , Water Elevatio	n 761.60	
Anions (mg/L) Unfiltered				
Phosphate	1.2	-	0.00	_
Sulfate (as SO4)	68	с с	0.30	D
		-	1.0	D
Buse/Neutral/Acid Extractable Org	ganics-TICs (µ	g/L) Unfilter	ed	
Unknown-7.53	J 4.0	С	с	Т
Base/Neutral/Acid Extractable Org	$panics (\mu \sigma/L)$	- Unfilterod		
Pentachlorophenol	U 50	C	1	2
Metals (mg/L) Filtered				_
Boron	0 11			
Iron	0.11 1.1	С	0.080	D
Manganese	0.40	c	0.3	3
Nickel	0.40	c	0.05	3
Sodium	72	C	0.010	D
Zinc	0.011	c	5.0	D
	0.011	С	0.0050	D

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
fetals (mg/L) Unfiltered				
Boron	0.11	С	0.080	D
Iron	1.1	с	0.3	3
Manganese	0.37	С	0.05	3
Nickel	0.14	С	0.010	D
Sodium	71	с	5.0	D
Zinc	0.012	с	0.0050	D
Others Filtered				
Total dissolved solids (mg/L)	570	с	500	1
Others Unfiltered				
Total organic carbon (mg/L)	1.5	С	0.50	D
Radionuclides (Bq/L) Filtered				
Gross alpha	0.63*	0.20	0.555	2
Gross beta	3.5*	0.40	1.85	2
H-3	17,000*	1,000	740	2
Total rad Sr	0.72*	0.12	0.296	2
Radionuclides (Bq/L) Unfilter				
H-3	17,000*	1,000	740	2
Total rad Sr	1.5*	0.10	0.296	2
Volatile Organics (µg/L) Unfi	ltered			
Vinyl chloride	U 10	С	2	1
		ng Date 13NOV92 , Water Elevatio	770 45	
Base/Neutral/Acid Extractable Or Unknown-17.1	ganics-TICs (μ J 43	g/L) Unfilter c	ced c	Т
Unknown-18.68	J 6.0	c	c	Ť
Unknown-19.86	J 270	c	c	Ť
Unknown-21.88	J 7.0	c	c	'T
ase/Neutral/Acid Extractable Or	ganics (µg/L)	Unfiltered		
, ,				

in the rest

1

Table 28. (continued)

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Filtered				
Antimony	0.0065	с	0.0050	D
Boron	0.13	c	0.080	D
Iron	23	c	0.3	3
Manganese	3.5	c	0.05	3
Nickel	0.10			
Sodium	27	с с	0.010 5.0	D D
Metals (mg/L) Unfiltered				
Boron	0.12		0 000	-
Iron	23	С	0.080	D
Manganese		С	0.3	3
Nickel	3.4	С	0.05	3
Sodium	0.085	С	0.010	D
Zinc	27	С	5.0	D
21110	0.013	с	0.0050	D
Others Filtered				
Total dissolved solids (mg/L)	510	с	500	1
Others Unfiltered				
Total organic carbon (mg/L)	11	с	0.50	n
Total suspended solids (mg/L)	36	c	5.0	D D
Radionuclides (Bq/L) Filtered				
Gross alpha	4.1*	1 /	0 555	•
Gross beta	39*	1.4	0.555	2
н-3		4.0	1.85	2
Total rad Sr	5,200*	100	740	2 2
	28*	1.0	0.296	2
Radionuclides (Bq/L) Unfiltere	ed			
Gross alpha	6.1*	1.7	0.555	2
Gross beta	51*	4.0	1.85	2
н-3	5,300*	100	740	2
Total rad Sr	32*	1.0	0.296	2 2 2 2
Volatile Organics (μ g/L) Unfil	tered			
Vinyl chloride	U 10	С	2	1
		č	۷	T
Volatile Organics-TICs $(\mu g/L)$				
Ethane,1,1'-oxybis6.7	J 8.0	С	С	Т

.

Ш

		Concentration	n	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Wel Ground Fleve	1 957, Samplin	ng Date 20NOV92		
	LION 787.00 FC	, Water Elevat:	ion 765.04	
Anions (mg/L) Unfiltered Bromide	1 0			
Chloride	1.3	С	0.10	D
Fluoride	270	С	250	3
Sulfate (as SO4)	2.1	с	0.010	D
	48	с	1.0	D
Base/Neutral/Acid Extractable Org	anics (ug/I)			
Pentachlorophenol	U 50		1	
-	0 00	с	1	2
Field Measurements Unfiltered				
pH (SU)	9.2	с	(6.5, 8.5)	2
		U	(0.5, 0.5)	3
Metals (mg/L) Filtered				
Aluminum	0.057	с	0.050	D
Boron	0.41	C	0.080	D
Manganese	0.0047	c	0.0010	D
Selenium	0.0078	C	0.0050	D
Sodium	280	C	5.0	ם מ
Vanadium	0.0037	c	0.0020	D
Actola (ma/I) II. Sil.				2
Metals (mg/L) Unfiltered Aluminum	• • • • •			
Boron	0.090	С	0.050	D
Chromium	0.41	с	0.080	D
Iron	0.0078	с	0.0040	D
Manganese	0.28	с	0.050	° D
Nickel	0.0082	с	0.0010	D
Sodium	0.020	с	0.010	D
Zinc	290	с	5.0	D
21110	0.0087	с	0.0050	D
thers Filtered				
Total dissolved solids (mg/L)	71.0			
Local dissolved solids (mg/L)	710	с	500	1
thers Unfiltered				
Total organic carbon (mg/L)	0.00			
Total organic halides $(\mu g/L)$	0.98	с	0.50	D
	96	с	5.0	D

	Concentration		
Value ^a	Uncertainty	Reference value	Reference source ^b
ed			
220,000*	10,000	740	2
ered			
220,000*	10,000	740	2
filtered			
U 10	с	2	1
ell 958, Samplin	ng Date 23NOV92		
vation 767.03 ft	, Water Elevatio	on 762.06	
1.3	c	0 10	D
17	c	1.0	D
)rganice (ug/I)	- Unfiltowed		
U 50	c	1	2
0.37	•	0 090	-
			D
			3
			3
			D
			D D
	C	5.0	U
	с	0.080	D
	с	0.3	3
	с	0.05	3
	с	0.010	D
150	С	5.0	D
640	с	500	1
1 Ω	-	0 50	_
			D
1,100	С	5.0	D
	ed 220,000* ered 220,000* filtered U 10 Vell 958, Samplin vation 767.03 ft 1.3 17 Organics (µg/L) U 50 0.37 0.41 0.21 0.14 0.0069 150 0.35 0.43 0.20 0.13 150	Value ^a Uncertainty ed 220,000* 10,000 ered 220,000* 10,000 filtered 0.000 c Value ^a Uncertainty 10,000 filtered 0.000* 10,000 filtered 0.000 c Value ^a 0.000 c Value ^a 0.000 c Value ^a 0.000 c 1.3 c c Value ^a 0.009 c 0.37 c 0.41 0.21 c 0.14 0.0069 c 150 0.35 c 0.43 0.20 c 0.13 150 c 640 1.8 c 1.8	Value ⁴ Uncertainty Reference value ed 220,000* 10,000 740 ered 220,000* 10,000 740 filtered U 10 c 2 Value 0.000* 10,000 762.06 1.3 C 0.10 17 c 0.10 17 c 0.00 0.37 c 0.080 0.41 c 0.31 0.21 c 0.050 150 c 0.080 0.43 c 0.33 0.20 c 0.05 0.13 c 0.010 150 c 5.0 640 c

=

.....

Table 28. (continued)

		Concentratior	1	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Radionuclides (Bq/L) Fi	ltered			
H-3	280,000*	10,000	740	2
Radionuclides (Bq/L) Un	filtered			
Н-3	290,000*	10,000	740	2
Volatile Organics (μ g/L) -	- Unfiltered			
1,1-Dichloroethene	10	с	7	1
1,2-Dichloroethene	Y 930			1
Trichloroethene	140	c	70	2
Vinyl chloride	Y 1,000	c c	5 2	1
	1,000	C	Z	1
	Well 959, Samplin Elevation 770.75 ft	ng Date 11NOV92 , Water Elevati	on 764.78	
Anions (mg/L) Unfiltere Bromide				
Nitrate	1.9	С	0.10	D
	27	С	10	2
Sulfate (as SO ₄)	310	С	250	3
Base/Neutral/Acid Extracta	ble Organics (ug/I)	Unfiltorod		
Pentachlorophenol	ore oreanics (he/L)	ontituered		
rencachiorophenoi	U 50	С	1	2
-		с	1	2
Field Measurements Unfil pH (SU)	ltered			
Field Measurements Unfi		c c	1 (6.5, 8.5)	2 3
Field Measurements Unfi pH (SU)	ltered			
Field Measurements Unfi pH (SU)	ltered 9.1	с	(6.5, 8.5)	3
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered	ltered 9.1 0.14	c c	(6.5, 8.5) 0.050	3 D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum	ltered 9.1 0.14 0.65	c c c	(6.5, 8.5) 0.050 0.080	3 D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron	ltered 9.1 0.14 0.65 0.060	c c c c	(6.5, 8.5) 0.050 0.080 0.050	3 D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese	ltered 9.1 0.14 0.65 0.060 0.0027	с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010	3 D D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium	ltered 9.1 0.14 0.65 0.060 0.0027 230	с с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0	3 D D D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese	ltered 9.1 0.14 0.65 0.060 0.0027	с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010	3 D D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium Vanadium	ltered 9.1 0.14 0.65 0.060 0.0027 230 0.0037	с с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0	3 D D D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium Vanadium Metals (mg/L) Unfiltered	ltered 9.1 0.14 0.65 0.060 0.0027 230 0.0037	C C C C C C C C	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0 0.0020	3 D D D D D D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium Vanadium Metals (mg/L) Unfiltered Aluminum	ltered 9.1 0.14 0.65 0.060 0.0027 230 0.0037 1 0.55	с с с с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0 0.0020 0.2	3 D D D D D 3
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium Vanadium Metals (mg/L) Unfiltered Aluminum Boron	ltered 9.1 0.14 0.65 0.060 0.0027 230 0.0037 d 0.55 0.60	C C C C C C C C C C C C C C C C C C C	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0 0.0020 0.2 0.2 0.080	3 D D D D D D D 3 D
Field Measurements Unfi pH (SU) Metals (mg/L) Filtered Aluminum Boron Iron Manganese Sodium Vanadium Metals (mg/L) Unfiltered Aluminum	ltered 9.1 0.14 0.65 0.060 0.0027 230 0.0037 1 0.55	с с с с с с с с	(6.5, 8.5) 0.050 0.080 0.050 0.0010 5.0 0.0020 0.2	3 D D D D D 3

Table 28. (continued)

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered				
Soaium	220	с	5.0	D
Vanadium	0.0041	c	0.0020	D
Zinc	0.013	c	0.0050	D
Others Filtered				
Total dissolved solids (mg/L)	610	с	500	1
Others Unfiltered				
Total organic carbon (mg/L)	1.0	с	0.50	D
Total suspended solids (mg/L)	10	c	5.0	D
Radionuclides (Bq/L) Filtered				
Gross alpha	0.87*	0.48	0.555	2
Radionuclides (Bq/L) Unfiltere	d			
Gross alpha	0.72*	0.43	0.555	2
Volatile Organics (µg/L) Unfil	tered			
Vinyl chloride	U 10	с	2	1
Wel. Ground Elevat	l 960, Samplin ion 770.94 ft	ng Date 12NOV92 , Water Elevatic	on 763.03	
Base/Neutral/Acid Extractable Org	anics (µg/L)	Unfiltered		
Pentachlorophenol	U 50	c	1	2
Metals (mg/L) Filtered				
Iron	0.23	с	0.050	D
Manganese	0.10	c	0.05	3
Sodium	18	c	5.0	D
<pre>fetals (mg/L) Unfiltered</pre>				
Iron	0.29	с	0.050	D
Manganese	0.097	C	0.05	3
Sodium	17	с	5.0	D
Zinc	0.012	с	0.0050	D
Radionuclides (Bq/L) Filtered H-3	2,600*	100		

Table 28. (continued)

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Radionuclides (Bq/L) Unfilter	red			
H-3	2,700*	100	740	2
Volatile Organics (μ g/L) Unf:	lltered			
Vinyl chloride	U 10	с	2	1
We Ground Eleva	11 961, Samplin ation 837.66 ft	ng Date 06NOV92 , Water Elevatio	on 814.91	
Anions (mg/L) Unfiltered				
Sulfate (as SO4)	39	с	1.0	D
Base/Neutral/Acid Extractable O	conies (us/I)	11		
Base/Neutral/Acid Extractable On Pentachlorophenol	U 50	Unilitered C	1	n
-		C	T	2
Metals (mg/L) Filtered				
Manganese Sodium	0.061	С	0.05	3
Soutum	22	с	5.0	D
Metals (mg/L) Unfiltered				
Aluminum	0.075	с	0.050	D
Chromium	0.0083	c	0.0040	D
Iron	0.26	c	0.050	D
Manganese	0.060	c	0.05	3
Sodium	21	c	5.0	D
Zinc	0.057	c	0.0050	D
Others Unfiltered				
Total organic carbon (mg/L)	0.60	•	0 50	
		c	0.50	D
Volatile Organics (μ g/L) Unfi	ltered			
Vinyl chloride	U 10	с	2	1
We. Ground Eleva	ll 962, Samplin tion 835.77 ft	eg Date 09NOV92 , Water Elevatio	on 822.28	
Anions (mg/L) Unfiltered				
Sulfate (as SO ₄)	92	С	1.0	D

Table 28. (continued)

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Base/Neutral/Acid Extractable Or	ganics (ug/L)	Unfiltered		
Pentachlorophenol	U 50	C	1	2
Metals (mg/L) Filtered				
Iron	5.1	•	0.1	•
Manganese	1.1	c c	0.3 0.05	3
Sodium	13	c	5.0	3 D
Metals (mg/L) Unfiltered				-
Iron	5 0			
Manganese	5.2	С	0.3	3
Sodium	0.99	С	0.05	3
Zinc	12	С	5.0	D
	0.010	С	0.0050	D
Others Unfiltered				
Total organic carbon (mg/L)	0.58		0.50	_
Total suspended solids (mg/L)	9.0	С	0.50	D
		c	5.0	D
Volatile Organics (μ g/L) Unfil	ltered	1		
Vinyl chloride	U 10	с	2	1

^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the laboratory blank, exceeded the calibration range, exceeded the calibration range and was diluted and reanalyzed, was not detected at that level, or was not quantified at that level, respectively. Radionuclide values that are significantly greater than zero are identified by an *.

 b If a reference limit exists, the source is coded as:

1 Rules of Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Chapter 1200-4-3, General Water Quality Criteria, as amended. 2 40CFR Part 141--National Primary Drinking Water Regulations, Subparts B and G, as

amended. 3 40CFR Part 143--National Secondary Drinking Water Regulations, as amended.

4 DOE Order 5400.5, Chapter III, Derived Concentration Guides for Air and Water, as amended.

D The value exceeds the laboratory detection limit.

T A tentatively identified compound (TIC). ^CNot applicable.

Volatile organic compounds were detected in a few of the down-gradient wells. The most significant VOCs were 1,2-dichloroethene, trichloroethene, and vinyl chloride. They were detected at levels well above drinking water standards for these compounds at wells 954 and 958. The concentration of 1,2 dichloroethene was 830 and 930 μ g/L; trichloroethene was 52 and 140 μ g/L; and vinyl chloride was 220 and 1,000 μ g/L; at wells 954 and 958 respectively.

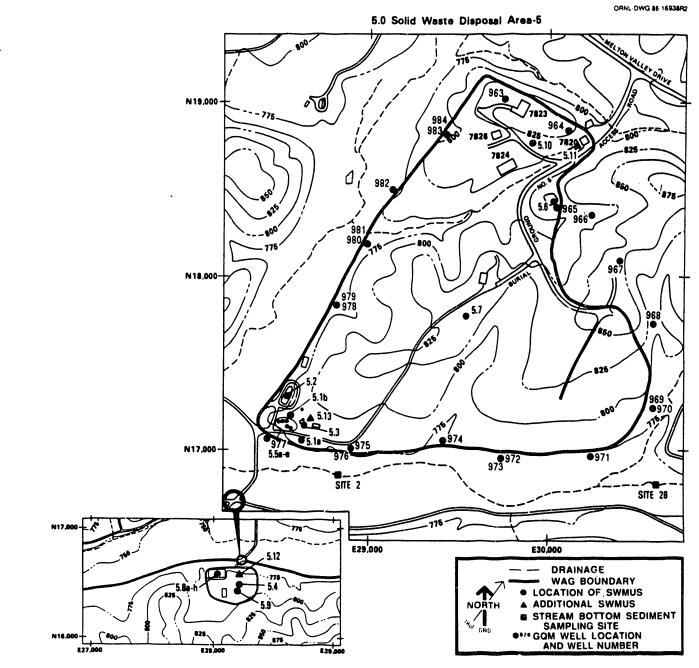
The up-gradient wells showed little evidence of radiological or organic contamination.

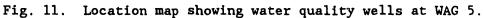
Nitrate was detected at well 959 and fluoride at well 954 at levels which exceeded drinking water standards.

3.5.2 WAG 5

3.5.2.1 Program Description

The sites at Waste Area Grouping (WAG) 5 are currently remedial investigation sites regulated under RCRA 3004(u). ORNL has sampled WAG 5 since 1990 and has plans to continue sampling every year.


WAG 5 is located directly south of the main ORNL plant in Melton Valley (Fig. 11). WAG 5 is within the White Oak Mountain thrust block and is underlain by strata of the Middle to Late Cambrian Conasauga Group. This WAG contains 28 sites, 13 of which are tanks that were used to store liquid LLW prior to disposal by the hydrofracture process. WAG 5 also includes the surface facilities constructed in support of both the old and new hydrofracture facilities. The largest land areas in WAG 5 are devoted to SWSA 5 and the Transuranic (TRU) Waste Storage Area. The remaining sites are support facilities for ORNL's hydrofracture operations, two LLW pipeline leak/spill sites, and an impoundment in SWSA 5 used to dewater sludge from the original Process Waste Treatment Plant (PWTP). At present, LLW tanks at the new hydrofracture facility are being used to store evaporator concentrates pending a decision regarding ultimate disposal of these wastes.


SWSA 5 was used to dispose of solid LLW generated at ORNL from 1959 to 1973. From 1959 to 1963 the burial ground served as the Southeastern Regional Burial Ground for the AEC. At the time SWSA 6 burial operations were initiated, a portion of the site, approximately 10 acres, was set aside for the retrievable storage of TRU wastes.

The WAG 5 boundary includes the old and new hydrofracture installations. Because Melton Branch flows between the old and new hydrofracture facilities, the new hydrofracture facility has a separate boundary.

Twenty-two wells comprise the groundwater perimeter well network at WAG 5 (wells 963-984); the up-gradient wells for WAG 5 are wells 966 and 967.

Table 26 shows the parameters measured at WAG 5.

. . .

Щ

3.5.2.2 Results

Perimeter wells at WAG 5 were sampled September 23-October 21, 1992. Wells 964, 970, and 976 each took several days to sample because the wells took a long time to recover. A summary of the analytical results by well type (i.e., up-gradient and down-gradient) is presented in Table 29; Table 30 presents the data which exceed some reference criteria.

The results at WAG 5 were very similar to those at WAG 4. Tritium was the most significant radiological contaminant detected in the down-gradient wells at WAG 5. It was detected at levels of most concern at wells 979, 981, 978, 968, 971, 970, 976, 977, 975, 969, 974, and 973 at values ranging from 840 to 9,000,000 Bq/L. Gross beta activity was detected at wells 971, 973, 975, and 969 at values ranging from 4.9 to 61 Bq/L; the associated total rad Sr values at those wells ranged from 2.5 to 33 Bq/L.

Volatile organic compounds were detected in a few of the down-gradient wells. The most significant VOCs were 1,2-dichloroethene, trichloroethene, and vinyl chloride. Concentration levels of 1,2-dichloroethene ranged from 68 to 5,200 μ g/L; trichloroethene ranged from 9.0 to 26 μ g/L; and vinyl chloride ranged from 10 to 6,400 μ g/L; at wells 973, 969, 975, and 978. Well 973 did not have trichloroethene detected above drinking water standards and well 978 had 33 μ g/L of benzene detected.

The up-gradient wells showed little evidence of radiological or organic contamination.

3.5.3 WAG 6

3.5.3.1 Program Description

Groundwater in Solid Waste Storage Area (SWSA) 6 is monitored to comply with Tennessee's Hazardous Waste Management Rule 1200-1-11-.05 (6) (a) 4. (iv). SWSA 6 is one of three SWMUs that make up WAG 6. WAG 6 is located about 1.5 km southwest of the ORNL main site. Besides SWSA 6, WAG 6 is made up of the Emergency Waste Basin and the Explosives Detonation Trench. SWSA 6 was opened for limited disposal in 1969, began full-scale operation in 1973, and it still receives radioactive wastes. In the course of its operation, SWSA 6 has received a broad spectrum of LLW materials. The basin has not been used since its construction was completed in 1962. The Explosives Detonation Trench is used for explosive and shock-sensitive chemicals requiring disposal.

The wells at SWSA 6 are divided into three types: up-gradient perimeter, downgradient perimeter, and internal site-characterization wells which provide information about conditions within the site. The SWSA 6 data reported here pertains only to the up- and down-gradient perimeter wells. SWSA 6 is currently being monitored as part of RCRA assessment monitoring. Fig. 12 shows the groundwater monitoring well network. (The figure does not show wells 1242 and 1243; 1242 is located between wells 844 and 841; 1243 is located between wells 840 and 841.) The up-gradient wells for SWSA 6 are wells 831, 832, 846, 855, 856, 857, 858. Eight of the wells at SWSA 6 (wells 840-844, 847, 1242, 1243) are monitored quarterly for ten volatile organic

			Con	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	٩٨b	Standard error ^c
~	Dow	Down-gradient Well Type	l Type		
Anions (mg/L) Unfiltered Chloride Sulfate (as SO ₄)	20/20 19/20	37 320	1.5 < 2.0	13* ~ 48*	2.4 19
Base/Neutral/Acid Extractable Organics Bis(2-chloroethyl) ether	cs (μg/L) 1/20	Unfiltered U 10	J 2.0	~ 9.6*	0.40
Field Measurements Unfiltered	•				
(E)	20/20	0 74	0 16	797 O	
Dissolved oxygen (ppm)	20/20	10	5.1	0.40%	0.039
Redox (mV)	20/20	640	370	480*	10
Temperature (°C)	20/20	19	12	15*	L) 35
Turbidity (JTU)	20/20	710	8.4	240*	رد.0 64
ри (эс)	20/20	8.4	6.0	7.1*	0.15
Metals (mg/L) Filtered					
Barium	20/20	1.0	0.018	0.28*	0 063
boron Coloite	9/20	1.5	< 0.080	~ 0.21*	0.074
	20/20	190	1.8	100*	12
Lron .	12/20	2.5	< 0.050	~ 0.44*	 0 14
Mangneslum	20/20	41	0.71	18*	2.2
naligaliese Ni abal	19/20	1.5	< 0.0010	~ 0.30*	0.093
ntcket Potsesfiim	4/20	0.030		~ 0.012*	0.0011
st 1 from	20/20	8.7	1.2	2.4*	0.38
	20/20	14	2.4	9.0*	0.63

c Ŭ ų Table 29. ORNL WAG 5 groundwater summary statistics

k J

í: ·

> > -

ŧ

(continued)
29.
Table

			Conce	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^c
Metals (mg/L) Filtered					
Sodium	20/20	140	4.5	23*	6.8
Vanadium	4/20	0.0023	< 0.0020	~ 0.0020*	0.000018
211C	4/20	0.012	< 0.0050	~ 0.0055*	0.00037
Metals (mg/L) Unfiltered					
Aluminum	8/20	1.2	< 0.050	- 0.22*	0.077
Barium	20/20	0.91	0.017	0.28*	0.062
Boron	9/20	1.4	< 0.080	~ 0.20*	0.069
Calcium	20/20	170	2.1	95*	10
Chromium	1/20	0.0065	۷	~ 0.0041*	0.00013
Cobalt	1/20	0.0068	V	~ 0.0041*	0.00014
Iron	20/20	2.5		0.78*	0.14
Magnesium	20/20	38		17*	2.0
Manganese	20/20	1.5		0.31*	0.092
Nickel	8/20	0.035	< 0.010	~ 0.014*	0.0015
Potassium	20/20	8.2	1.4	2.4*	0.36
Silicon	20/20	14	2.4	8.7*	0.58
Sodium	20/20	140	5.0	22*	6.9
Vanadium	4/20	0.0027	< 0.0020	~ 0.0021*	0.000050
Zinc	20/20	0.028	0.0086	0.016*	0.0013
Others Filtered					
Alkalinity (mg/L)	20/20	550	5.5	310*	29
Total dissolved solids (mg/L)	20/20		190	400*	35

₹,

1

-

1

111

ь.

11

			COI	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^c
Others Unfiltered Alkalinity (mg/L)	20/20	550	5.7		29
Phenolics, total recoverable (mg/L)	1/20	0.016	< 0.0010		
Total organic carbon (mg/L)	20/20	8.7		2.1*	0.42
10Tal organic nalldes (μg/L) Total suspended solids (mg/L)	4/20	680 77	< 5.0	- 49 - 13*	34 4.6
Radionuclides (Bq/L) Filtered					
	3/20	1.1*	-0.10	0.081	0.060
Cs-137	2/20	0.22*	-0.080	0.027*	0.014
Gross alpha	12/20	.094*	-0.041	0.13*	0.050
Gross beta	16/20	61*	0.040	5.9	3.4
H-3	17/20	8,900,000*	0.6	670,000	460,000
Total rad Sr	8/20	33*	-0.046	2.9	1.8
Radionuclides (Bq/L) Unfiltered					
	5/20	1.3*	-0.040		0.066
Cs-137	3/20	.49*	-0.080	0.055*	0.026
Gross alpha	10/20	1.0*	-0.0050		0.052
Gross beta	16/20	51*	-0.030	5.9*	3.2
H-3	17/20	9,000,000*	1.4	670,000	460,000
Total rad Sr	9/20	22*	-0.047	2.6*	1.4
Volatile Organics (μ g/L) Unfiltered					
1,1-Dichloroethane	4/20	5.0	J 1.0	- 4.7*	0.22
1,1-Dichloroethene	1/20	5.0	0.5 0	~ 5.0 F 0+	0
I,2-Dichloroethane	1/20	0.0	J 4.U	×0.C ~	0.00

. . .

.

i. 1.5

93

ĮI.

. .

ı

			Co	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^c
Volatile Organics (µg/L) Unfiltered	red				
	6/20	Y 5,200		~ 280	260
Acetone	1/20	U 10	JB 6.0	~ 9.8*	0.20
benzene	2/20	33		~ 6.2*	1 4
Chlorott	2/20	9.0	J 3.0	~ 5.1*	0.23
	1/20	U 10	J 2.0	~ 9.6*	0 40
lecrachioroethene mainean	1/20	U 5.0	J 2.0	- 4.9*	0.15
Ioluene	1/20	U 5.0	J 1.0	~ 4 8*	0.00
Irichloroethene	5/20	26	J 3.0	~ 7 0*	0. FO
Vinyl chloride	5/20	Y 6,400	J 8.0	~ 330	320
Xylene, total	1/20	U 5.0	J 2.0	~ 4.9*	0.15
	Лр	Up-gradient Well	Type		
Anions (mg/L) Unfiltered					
Chloride	2/2	3.2	1.7	2 4	77 0
Nitrate	1/2	< 1.0	0.47	~ 0.74	0.77
rhosphate	1/2	< 1.0	0.77	~ 0.89*	0 12
Sulfate (as SO_4)	2/2	20	7.3	14	6.3
Field Measurements Unfiltered					
	2/2	0.33	0.23	0 28	0 051
Dissolved oxygen (ppm)	2/2	8.5	8.4	8 5*	0.050
Redox (mV)	2/2	650	550	600*	50.0JU
Temperature (°C)	2/2	15	15	15*	17 U
lurbidity (JTU)	2/2	19	8.4	14	2 3 2
pH (SU)	2/2	7.5	7.2	7.4*	0.15

-
\sim
-
a)
5
-
-
- 1.1
5
COI
×.
U
\sim
9.
29.
29.
Ð
Le
Le
Le
Ð

			Conce	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^c
Metals (mg/L) Filtered					
Barium	2/2	0.14	0.13	0.13*	0.0075
Calcium	2/2	62	76	77*	1.1
Magnesium	2/2	11	3.3	7.1	3.8
Manganese	2/2	0.024	0.0084	0.016	0.0080
Potassium	2/2	1.3	0.52	0.89	0.36
Silicon	2/2	12	7.8	10	2.3
Sodium	2/2	7.2	6.0	6.6*	0.64
Metals (mg/L) Unfiltered					
Aluminum	1/2	0.17	< 0.050	~ 0.11	0.059
Barium	2/2	0.14	0.14	0.14*	0.0015
Calcíum	2/2	72	70	71*	1.1
Iron	2/2	0.26	0.070	0.17	0.096
Magnesium	2/2	10	3.2	6.7	3.6
Manganese	2/2	0.060	0.0070	0.033	0.026
Potassium	2/2	1.4	0.79	1.1	0.29
Silicon	2/2	12	7.6	9.6	2.0
Sodium	2/2	7.2	6.0	6.6*	0.58
Zinc	2/2	0.046	0.017	0.031	0.015
Others Filtered					1
Alkalinity (mg/L) Total dissolved solids (mg/L)	2/2	230 260	220 230	220 * 250*	7.5 13

U.

~
(continued)
29.
Table

			Conc	Concentration	
Analyte	N det/ N total	Max ^a	Min ^a	Avb	Standard error ^c
Others Unfiltered Alkalinity (mg/L)	2/2	230	210	220*	14
Total organic carbon (mg/L) Total suspended solids (mg/L)	2/2 1/2	1.2 43	0.93 < 5.0	1.0* ~ 24	0.11 19
Radionuclides (Bq/L) Filtered Gross alpha	1 /2	0 055*	0 013	0 036	
Gross beta	1/2	0.11*	0.020	0.065	0.045
Total rad Sr	1/2	0.52*	0.022	0.27	0.25
Radionuclides (Bq/L) Unfiltered					
Gross beta	1/2	0.14*	0.050	0.095	0.045
H-3	1/2	30*	15	23	7.5
Total rad Sr	1/2	0.092*	-0.0020	0.045	0.047

and reanalyzed, was not detected at that level, or was not quantified at that level, respectively. laboratory blank, exceeded the calibration range, exceeded the calibration range and was diluted ^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the Radionuclide values that are significantly greater than zero are identified by an *.

bAverage concentrations significantly greater than zero are identified by an \star . cStandard error of the mean.

dNot applicable.

Table 30. ORNL WAG 5 groundwater constituents that exceed a reference value from sampling period September 23-October 21, 1992

.

1.114

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Wel Ground Eleva	1 963, Sampli tion 838.15 ft	Well 963, Sampling Date 28SEP92 Ground Elevation 838.15 ft, Water Elevation 795.68	on 795.68	
Anions (mg/L) Unfiltered Sulfate (as SO4)	140	υ	1.0	۵
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilt U 50	ered c	1	2
Metals (mg/L) Filtered Iron	55 U	c	۲ د	ç
Manganese	0.21	ט נ	0.05	n m
Nickel	0.020	U	0.010	D
Sodium	21	U	5.0	Q
Vanadium	0.0022	U	0.0020	Q
Metals (mg/L) Unfiltered				
Iron	250.0 0.71	υ υ	0.050	<u>م</u> س
Manganese	0.20	υ υ	0.05	n w
Nickel	0.022	U	0.010	D
Sodium	21	ບ	5.0	D
Zinc	0.014	υ	0.0050	Q
Others Unfiltered Total organic carbon (mg/L)	1.1	υ	0.50	Q

Ę

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Volatile Organics (µg/L) Unfiltered Vinvl chloride				
antiotic there.	U 10	U	2	1
	Well 964, Sampling Date 29SEP92 evation 831.51 ft, Water Eleveri	Well 964, Sampling Date 29SEP92 Ground Elevation 831.51 ft, Water Elevation 807 or	r0 200 r	
Anions (mg/L) Unfiltered			<i>10.100 11</i>	
$outrate (as SO_4)$	230	c	с г	
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol	Jg/L) Unfilt₀ T =0		О.Т	Q
Metals (mg/L) Filtered		υ	1	2
Arsenic Iron	< 0.10	Ċ		
Manganese	1.2) U	د0.0 د 0	-1 c
Sodium	1.3 15	υ o	0.05	n m
Metals (mg/L) Unfiltered Iron		ر	0.0	Q
Manganese	1.2	U	0.3	ſŗ
Sodium	14. 14	υ	0.05) m
	0.017	υυ	5.0 0.0050	<u>,</u> 0 (
Others Filtered Total dissolved solids (mg/L)				2
	017/	υ	500	1

98

5

-

-

t tulka ak ^{ja}la tulkata a

.

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L)	1.5	U	0.50	Ω
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
Wei Ground Eleva	Well 965, Sampling Date 24SEP92 Ground Elevation 812.20 ft, Water Elevation 795.26	g Date 24SEP92 Water Elevati	on 795.26	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	18	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilte U 50	red c	1	2
Metals (mg/L) Filtered Manganese Zinc	0.0084 0.0056	ບບ	0.0010	Q Q
Metals (mg/L) Unfiltered Aluminum Iron Manganese Sodium Vanadium Zinc	1.2 1.5 0.053 5.0 0.027 0.028	ပပပပ ပ	0.2 0.3 0.05 5.0 0.0020	~~~ <u>~</u> ~

- 1--

1.1

я с ц

1.1

11

. .

. .

. ...

1610 10 10

111 M 1 11

1011

	-	Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	1.2 11	υυ	0.50 5.0	<u> </u>
Volatile Organics (µg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
We Ground Eleva	Well 966, Sampling Date 24SEP92 Ground Elevation 809.70 ft, Water Elevati	Date 24SEP92 Water Elevation 807.84	1 807.84	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	20	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilter U 50	ed c	1	2
Metals (mg/L) Filtered Manganese Sodium	0.024 7.2	υυ	0.0010 5.0	9
Metals (mg/L) Unfiltered Aluminum Iron Manganese Sodium Zinc	0.17 0.26 0.060 7.2 0.017	υυυυ	0.050 0.050 0.05 5.0 0.0050	0 0 M 0 0

R.

-

ст. н. – н.

11

.

	Reference source ^b	60	1		000	2	00	
	Reference value	0.50 5.0	2	on 826.88	0.10 0.30 1.0	1	0.0010 5.0	0.050 0.0010 5.0 0.0050
Concentration	Uncertainty	ა ა	U	r Date 23SEP92 Water Elevati	ບບບ	c	υυ	υυυυ
	Value ^a	0.93 43	U 10	Well 967, Sampling Date 23SEP92 Ground Elevation 852.20 ft, Water Elevation	0.47 0.77 7.3	s/L) Unfilte U 50	0.0084 6.0	0.070 0.0070 6.0 0.046
	Analyte	Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	Volatile Organics (μg/L) Unfiltered Vinyl chloride	Wel Ground Eleva	Anions (mg/L) Unfiltered Nitrate Phosphate Sulfate (as SO ₄)	Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	Metals (mg/L) Filtered Manganese Sodium	Metals (mg/L) Unfiltered Iron Manganese Sodium Zinc

...

н

9 F

. ц. . . .

.....

=

	CC	Concentration		
Analyte	Value ^a Un	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L)	1.2	υ	0.50	Q
Radionuclides (Bq/L) Filtered Total rad Sr	0.52*	0.13	0.296	2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1
We Ground Eleva	Well 968, Sampling Date 020CT92 Ground Elevation 809.26 ft, Water Elevati	ling Date 020CT92 ft, Water Elevation 799.89	n 799.89	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	31	U	1.0	D
<pre>Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50</pre>	g/L) Unfiltere U 50	с P	1	2
Metals (mg/L) Filtered Manganese Sodium	0.041 6.1	υυ	0.0010 5.0	00
Metals (mg/L) Unfiltered Aluminum Iron Manganese Sodium Zinc	0.23 0.51 0.077 6.1 0.016	υυυυυ	0.2 0.3 0.05 0.050	m m m D D

·清朝))

?

÷

. . .

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L)	1.2	υ	0.50	Q
Radionuclides (Bq/L) Filtered H-3	16,000*	1,000	740	2
Radionuclides (Bq/L) Unfiltered H-3	5,400*	100	072	5
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1
We. Ground Eleva	Well 969, Sampling Date 060CT92 Ground Elevation 785.75 ft, Water Elevation 779.38	Date 060CTº2 Water Elevati	on 779.38	
Anions (mg/L) Unfiltered Sulfate (as SO4)	16	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilter U 50	с с	1	7
Field Measurements Unfiltered pH (SU)	6.2	υ	(6.5, 8.5)	ę
Metals (mg/L) Filtered Boron Manganese Nickel	1.5 0.47 0.019	ບ ບບ	0.080 0.05 0.010	Q m Q

103

i ...

. .

. . .

.

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Filtered Sodium Zinc	13 0.0060	υυ	5.0 0.0050	60
Metals (mg/L) Unfiltered Aluminum Boron	0.94 1.4	ں ں	0.2 0.080	۳ D C
Cobalt Iron Manganese Nickel Sodium Vanadium	0.0068 1.6 0.59 0.019 13 0.0026 0.027	υυυυυυ	0.0040 0.3 0.05 5.0 0.0020 0.0020	9 m m 9 9 9 5
Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	2.6 66) ပ ပ	0.50	a 60
Radionuclides (Bq/L) Filtered Gross beta H-3 Total rad Sr	630,000* 33*	2.0 10,000 1.0	1.85 740 0.296	000
Radionuclides (Bq/L) Unfiltered Gross beta H-3 Total rad Sr	51* 610,000* 22*	2.0 10,000 1.0	1.85 740 0.296	55 5

..

ı

	o	Concentration		
Analyte	Value ^a U	Uncertainty	Reference value	Reference source ^b
Volatile Organics (μg/L) Unfiltered 1,2-Dichloroethene Trichloroethene Vinyl chloride Well 970, Sampling Date 060CT92 Ground Elevation 784.60 ft, Water Elevation 780.64	96 c 21 c 21 c 10 c Well 970, Sampling Date 060CT92 evation 784.60 ft, Water Elevati	c c c Date 060CT92 later Elevation	70 5 2 1 780.64	1 1 2
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	17	U	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	L) Unfilter U 50	U D	1	2
Metals (mg/L) Filtered Boron Iron Manganese Sodium Zinc	0.22 0.12 0.011 45 0.0064	υυυυυ	0.080 0.050 0.0010 5.0 0.0050	
Metals (mg/L) Unfiltered Boron Iron Manganese Sodium Zinc	0.23 0.21 0.011 46 0.014	υυυυυ	0.080 0.050 0.0010 5.0 0.0050	8 8 8 9 9 9 8

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L)	1.2	U	0.50	Q
Radionuclides (Bq/L) Filtered H-3	44,000*	1,000	740	2
Radionuclides (Bq/L) Unfiltered H-3	45,000*	1,690	740	2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	υ	2	Ч
Wel Ground Eleva	Well 971, Sampling Date 070CT92 evation 775.89 ft, Water Elevati	Well 971, Sampling Date 070CT92 Ground Elevation 775.89 ft, Water Elevation 769.07	169.07	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	3.4	υ	1.0	Q
Base/Neutral/Acid Extractable Organics ($\mu g/L$) Unfiltered Pentachlorophenol U 50	g/L) Unfilte U 50	c	1	2
Metals (mg/L) Filtered Iron Manganese Sodium	2.5 1.5 6.4	υυυ	0.3 0.05 5.0	т т Д

1.112 .

í

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered				
Iron	2.5	U	0.3	m
Manganese	1.5	U	0.05	ŝ
Nîckel	0.018	U	0.010	D
Sodium	6.4	U	5.0	D
Zinc	0.019	υ	0.0050	D
Others Unfiltered	c			4
Total utganite carbon (mg/L)	0.0	U	0c.0 2	a 1
	70	U	0.0	D
Total suspended solids (mg/L)	7.0	υ	5.0	D
Radionuclides (Bq/L) Filtered				
	3.5*	0.30	1.85	2
H-3	41,000*	1,000	740	5
Total rad Sr	1.7*	0.20	0.296	2
Radionuclides (Bq/L) Unfiltered				
Gross beta	4.9*	0.40	1.85	2
H-3	41,000*	1,000	740	2
Total rad Sr	2.5*	0.20	0.296	2
Volatile Organics (µg/L) Unfiltered				
Viny! chloride	U 10	υ	2	-1
Volatile Organics-TICs (µg/L) Unfiltered	red TeA	¢		E
1, 1- J104alle - 10, 1	0.0	U	ບ	4

	ö	Concentration		
Analyte	Value ^a Ur	Uncertainty	Reference value	Reference source ^b
W Ground Elev	Well 972, Sampling Date 080CT92 Ground Elevation 774.55 ft, Water Elevation 771.34	Date 080CT92 ater Elevati	on 771.34	
Anions (mg/L) Unfiltered Sulfate (as SO4)	7.2	U	1.0	۵
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	μg/L) Unfiltere U 50	ი ი ი	1	2
Metals (mg/L) Filtered Boron Manganese Sodium	0.11 0.0074 16	υυυ	0.080 0.0010 5.0	666
Metals (mg/L) Unfiltered Boron Iron Manganese Sodium Zinc	0.11 0.097 0.0066 16 0.018	υυυυυ	0.080 0.050 0.0010 5.0 0.0050	
Others Unfiltered Total organic carbon (mg/L)	0.93	U	0.50	Q
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1

......

. .

108

...

		Concentration	c	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Wel. Ground Elevat	l 973, Sampli ion 774.34 fu	Well 973, Sampling Date 070CT92 Ground Elevation 774.34 ft, Water Elevation 767.56	2 tion 767.56	
Anions (mg/L) Unfiltered Sulfate (as SO4)	6.8	υ	1.0	Q
Base/Neutral/Acid Extractable Organics-TICs (μg/L) Phenolderivative-22.92 Unknown-19.89 J 10	s (μg/L) l J 12 J 10	Unfiltered c c	υυ	чн
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	/L) Unfilt U 50	ered c	1	5
Field Measurements Unfiltered pH (SU)	6.4	ບ	(6.5, 8.5)	m
Metals (mg/L) Filtered Boron Iron Manganese Nickel	0.46 1.2 0.26 0.030	ပပ ပ	0.080 0.3 0.05 0.010	Q m m Q
Sodium Metals (mg/L) Unfiltered Boron Iron Manganese	58 0.43 1.2 0.25	ου υυυ	5.0 0.080 0.3 0.05	90 0 0 0

. . .

i p

=

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered Nickel Sodium Zinc	0.035 57 0.015	υ υ υ	0.010 5.0 0.0050	000
Others Filtered Total dissolved solids (mg/L)	560	ن	500	1
Others Unfiltered Phenolics, total recoverable (mg/L) Total organic carbon (mg/L) Total organic halides (μg/L)	0.016 8.7 120	υ υ υ	0.0010 0.50 5.0	999
Radionuclides (Bq/L) Filtered Gross beta H-3 Total rad Sr	12* 8,900,000* 5.1*	1.0 100,000 0.30	1.85 740 0.296	8 8 8
Radionuclides (Bq/L) Unfiltered Gross beta H-3 Total rad Sr	12* 9,000,000* 5.2*	1.0 100,000 0.30	1.85 740 0.296	000
Volatile Organics (μg/L) Unfiltered 1,2-Dichloroethene Vinyl chloride	85 34	ს ს	70 2	1

eq.e

		Concentration		
Analyte	Value ^a l	Uncertainty	Reference value	Reference source ^b
Volatile Organics-TICs (μg/L) Unfiltered 1,1,2-Trifluoroethane,1,1-ox Ethane,1,2-dichloro,-6.85 Methane,dichlorofluoro6.4	J 10 J 41 J 19	υυυ	υυυ	ннн
Welî 974, Sampling Date Ground Elevation 770.81 ft, Water	974, Sampling n 770.81 ft,	Well 974, Sampling Date 090CT92 evation 770.81 ft, Water Elevatic	090CT92 Elevation 762.17	
Anions (mg/L) Unfiltered Sulfate (as SO4)	9.7	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μ g/L) Pentachlorophenol	.) Unfiltered U 50	• pə	1	2
Metals (mg/L) Filtered Boron Iron Manganese Sodium Zinc	0.082 0.45 0.39 15 0.012	၂ ၂ ၂ ၂ ၂	0.080 0.3 5.0 0.050	0 m m D D
Metals (mg/L) Unfiltered Aluminum Boron Iron Manganese Nickel	0.16 0.087 0.92 0.42 0.019	υυυυυ	0.050 0.080 0.3 0.05 0.010	Q Q M M Q

111

•17

- N - 10

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered Sodium Zinc	13 0.026	υυ	5.0 0.0050	<u> </u>
Others Unfiltered Total organíc carbon (mg/L) Total suspended solids (mg/L)	2.8 7.0	υυ	0.50 5.0	9 9
Radionuclides (Bq/L) Filtered H-3 Total rad Sr	3,000,000* 0.84*	100,000 0.16	740 0.296	5 7
Radionuclides (Bq/L) Unfiltered H-3 Total rad Sr	3,000,000* 0.81*	100,000 0.15	740 0.296	5 2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
Ground El	Well 975, Sampling Date 090CT92 Ground Elevation 783.14 ft, Water Elevation 767.75	ng Date 090CT92 t, Water Elevati	on 767.75	
Anions (mg/L) Unfiltered Sulfate (as SO4)	5.7	U	1.0	Q
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	(μg/L) Unfil U 50	tered c	1	2

. .

ωų

		Concentration	r	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Field Measurements Unfiltered pH (SU)	6.4	U	(6.5, 8.5)	3
Metals (mg/L) Filtered Boron	0 22	c	0 080	¢
Iron	0.14) U	0.050	n D
Manganese Nfckel	0.12 0.016	υ	0.05	۳ ۲
Sodium	16	υυ	5.0	20
Metals (mg/L) Unfiltered				
Boron	0.21	ບ	0.080	Q
Lron	0.36	υ ·	0.3	n c
manganese Nickel	0.020	υυ	0.010 0.010	m Q
Sodium	15	U	5.0	Q
Vanadium	0.0025	υ	0.0020	D
Zinc	0.023	υ	0.0050	Q
Others Filtered Total dissolved solids (mg/L)	560	υ	500	1
Others Unfiltered Total organic carbon (mg/L) Total organic halides (μg/L)	4.0 78	υυ	0.50 5.0	9 9

.

91

11) **1**1

.

2 **1** 2 1

ų.

:

	ŏ	Concentration		
Analyte	Value ^a Ui	Uncertainty	Reference value	Reference source ^b
Radionuclides (Bq/L) Filtered				1
	36*	2.0	1.85	2
		10,000	740	2
Total rad Sr	17*	1.0	0.296	2
Radionuclides (Bq/L) Unfiltered				
Gross beta		2.0	1.85	2
H-3	290,000*	10,000	740	2
Total rad Sr	20*	1.0	0.296	2
Volatile Organics ($\mu g/L$) Unfiltered				
1,2-Dichloroethene	68	U	5.0	D
Trichloroethene	9.0	U	Ŝ	1
Vinyl chloride	50	υ	2	7
Wei Ground Eleva	Well 976, Sampling Date 130CT92 Ground Elevation 783.96 ft, Water Elevation 764.36	Date 130CT92 ater Elevatio	n 764.36	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	8.0	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μ g/L) Unfiltered Pentachlorophenol U 50	g/L) Unfiltere U 50	U T	1	2
Metals (mg/L) Filtered Iron Manganese Sodium	0.086 0.010 8.2	υυυ	0.050 0.0010 5.0	999

ı r

• • •

.

-11

114

free and a second

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered Iron Manganese Sodium Zinc	0.14 0.0094 8.1 0.015	υυυυ	0.050 0.0010 5.0 0.0050	
Others Unfiltered Total organic carbon (mg/L)	0.80	υ	0.50	٩
Radionuclides (Bq/L) Filtered H-3	190,000*	10,000	740	2
Radionuclides (Bq/L) Unfiltered H-3	180,000*	10,000	740	5
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
We Ground Elev	Well 977, Sampling Date 29SEP92 Ground Elevation 764.73 ft, Water Elevati	g Date 29SEP92 , Water Elevati	295EP92 Elevation 755.76	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	25	υ	1.0	D
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	ug/L) Unfilt U 50	ered c	1	2

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Field Measurements Unfiltered pH (SU)	6.0	υ	(6.5, 8.5)	ę
Metals (mg/L) Filtered Boron Manganese Sodium	0.12 0.32 13	ပပ ပ	0.080 0.05 5.0	Q M Q
Metals (mg/L) Unfiltered Boron Iron Manganese Nickel Sodium Zinc	0.12 0.088 0.31 0.011 13 0.0086	υυυυυ	0.080 0.050 0.05 0.010 5.0 0.0050	00m000
Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	2.5 6.0	ບບ	0.50 5.0	<u>م</u> م
Radionuclides (Bq/L) Filtered H-3	260,000*	10,000	740	2
Radionuclides (Bq/L) Unfiltered H-3	270,000*	10,000	740	2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1

116

.

		Concentration	ſ	
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Wel Ground Eieva	Well 978, Sampling Date 130CT92 Ground Elevation 764.84 ft, Water Elevation 761.12	Ng Date 130CT9, , Water Elevat	2 ion 761.12	
Base/Meutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilt U 50	ered c	1	2
Field Measurements ^{Un} £iltered pH (SU)	6.4	U	(6.5, 8.5)	m
Metals (mg/L) Filtered Iron Manganese Sodium Vanadium	0.82 0.70 8.8 0.0023	ပပပ	0.3 0.05 5.0 0.0020	~ ~ A A A
Metals (mg/L) Unfiltered Iron Manganese Sodium Vanadium Zinc	1.1 0.68 7.9 0.0022 0.015	υυυυ	0.3 0.05 5.0 0.0020 0.0050	~~QQQ
Others Filtered Total dissolved solids (mg/L) Others Unfiltered Total organic carbon (mg/L)	580 3.2	ი ი	500	-1 - 6
Total organic halides (µg/L)	680) U	5.0	20

		Concentration		:
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Radionuclides (Bq/L) Filtered H-3	2,400*	100	740	2
Radionuclides (Bq/L) Unfiltered H-3	2,400*	100	740	2
Volatile Organics (μg/L) Unfiltered 1,2-Dichloroethene Benzene Trichloroethene Vinyl chloride	Y 5,200 33 26 Y 6,400	υυυυ	7 5 5 5	0 T T T
We Ground Elev	ll 979, Samplii ation 764.88 ft	Well 979, Sampling Date 010CT92 Ground Elevation 764.88 ft, Water Elevation	on 758.49	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	9.2	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	ug/L) Unfilt U 50	ered c	1	2
Metals (mg/L) Filtered Iron Nanganese Sodium	0.20 0.018 11	υυυ	0.050 0.0010 5.0	

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Unfiltered				
Chromium	0.0065	U	0.0040	<u>م</u>
Iron	0.40	U	0.3	ო
Manganese	0.019	υ	0.0010	D
Sodium	11	υ	5.0	D
Zinc	0.0087	U	0.0050	Q
Others Unfiltered Total organic carbon (mg/L)	1.8	υ	0.50	Q
Radionuclides (Bq/L) Filtered H-3	*078	50	740	5
Radionuclides (Bq/L) Unfiltered H-3	800*	50	740	2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
Wel Ground Elevat	1 980, Samplin ion 762.19 ft,	Well 980, Sampling Date 190CT92 Ground Elevation 762.19 ft, Water Elevation 758.56	on 758.56	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	24	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	/L) Unfilte U 50	ired c	1	2

	0	Concentration		
Analyte	Value ^a U	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Filtered Boron Sodium Vanadium	0.44 140 0.0020	000	0.080 5.0 0.0020	999
Metals (mg/L) Unfiltered Aluminum Boron Iron	0.27 0.41 0.30	υυυ υ	0.2 0.080 0.050	m Q Q
Manganese Sodium Zinc	0.0061 140 0.017	υυυ	0.0010 5.0 0.0050	
Others Unfiltered Total organic carbon (mg/L)	06.0	Q	0.50	D
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1
We. Ground Eleva	Well 981, Sampling Date 150CT92 Ground Elevation 761.53 ft, Water Elevati	Date 150CT92 ater Elevatic	150CT92 Elevation 757.37	
Anions (mg/L) Unfiltered Sulfate (as SO4)	32	U	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfiltere U 50	с р	1	2

120

-

-

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Metals (mg/L) Filtered				
Iron	0.61	U	0.3	en
Manganese	0.40	U	0.05) m
Sodium	16	U	5.0	Q
Vanadium	0.0021	υ	0.0020	Ð
Metals (mg/L) Unfiltered				
Iron	0.82	U	0.3	m
Manganese	0.39	U	0.05	m
Sodium	14	IJ	5.0	D
Zinc	0.011	υ	0.0050	D
Others Unfiltered Total organic carbon (mg/L)	0.98	υ	0.50	Q
Radionuclides (Bq/L) Filtered H-3	2,000*	100	740	2
Radionuclides (Bq/L) Unfiltered H-3	2,000*	100	740	2
Volatile Organics (μg/L) Unfiltered Vinyl chloride	J 8.0	U	2	1

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
We Ground Eleva	11 982, Sampl. tion 774.81 f	Well 982, Sampling Date 210CT92 Ground Elevation 774.81 ft, Water Elevation 767.70	on 767.70	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	24	υ	1.0	Q
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfil U 50	tered c	1	2
Metals (mg/L) Filtered Manganese Sodium	0.015 9.0	υυ	0.0010 5.0	<u> </u>
Metals (mg/L) Unfiltered Aluminum Iron Manganese	0.91 1.2 0.041	υ υ υ	0.2 0.3 0.0010	m m C
Nickel Sodium Zinc	0.012 8.1 0.018	0000	0.010 5.0 0.0050	
Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	0.80 77	υυ	0.50 5.0	9 9
Radionuclides (Bq/L) Filtered Gross alpha	.00	0.22	0.555	2

18

п

η

 .

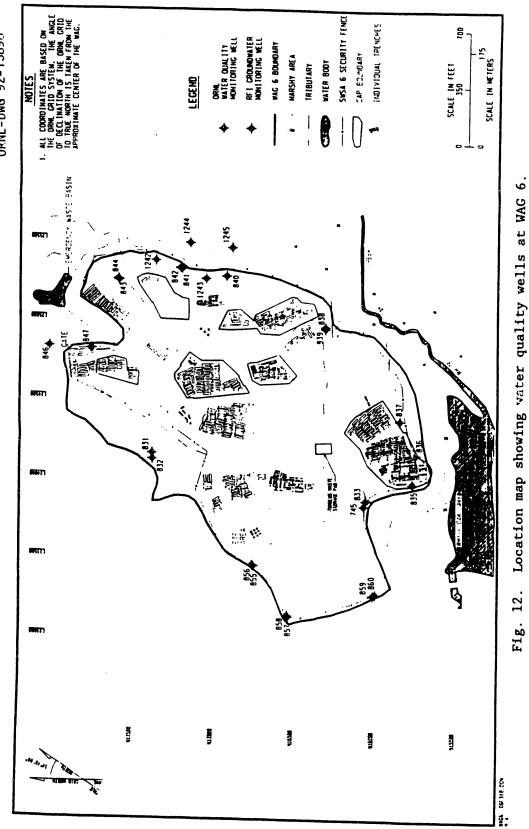
e na sta e se

		Concentration		
Analyte	Value ^a I	Uncertainty	Reference value	Reference source ^b
Radionuclides (Bq/L) Unfiltered Gross alpha	1.0*	0.20	0.555	2
Volatile Organics (µg/L) Unfiltered Vinyl chloride	U 10	υ	2	1
We. Ground Eleva	Well 983, Sampling Date 160CT92 Ground Elevation 788.44 ft, Water Elevation 781.87	Date 160CT92 Water Elevati	on 781.87	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	27	U	1.0	۵
Base/Neutral/Acid Extractable Organics (μg/L) Unfiltered Pentachlorophenol U 50	g/L) Unfilter U 50	c	1	2
Metals (mg/L) Filtered Manganese Sodium	0.016 6.6	υυ	0.0010 5.0	00
Metals (mg/L) Unfiltered Aluminum Iron Manganese Sodium Zinc	0.10 0.15 0.015 5.6 0.011	υυυυυ	0.050 0.050 0.0010 5.0 0.0050	<u></u>

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Unfiltered Total organic carbon (mg/L) Total suspended solids (mg/L)	0.80 17	υ υ	0.50 5.0	90
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1
We Ground Elev	Well 984, Sampling Date 200CT92 evation 788.77 ft, Water Elevati	Well 984, Sampling Date 200CT92 Ground Elevation 788.77 ft, Water Elevation 779.17	n 779.17	
Anions (mg/L) Unfiltered Sulfate (as SO ₄)	320	υ	250	ſ
Base/Neutral/Acid Extractable Organics (μ g/L) Pentachlorophenol	<pre>ug/L) Unfiltered U 50</pre>	ered c	1	7
Metals (mg/L) Filtered Boron Iron	0.092 0.61	υ υ	0.080 0.3	Q m
Manganese Sodiu m	0.27 29	υυ	0.05 5.0	ε
Metals (mg/L) Unfiltered Boron Iron Manganese Sodium Zinc	0.093 0.68 0.26 27 0.010	υυυυυ	0.080 0.3 0.05 5.0 0.0050	Q M M Q Q

		Concentration		
Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b
Others Filtered Total dissolved solids (mg/L)	710	υ	500	1
Others Unfiltered Total organic carbon (mg/L)	0.75	U	0.50	Q
Volatile Organics (μg/L) Unfiltered Vinyl chloride	U 10	U	2	1
Volatile Organics-TICs (μg/L) Unfiltered Unknown-25.33	0.9 L	U	ບ	Ч

^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the diluted and reanalyzed, was not detected at that level, or was not quantified at that level, respectively. Radionuclide values that are significantly greater than zero are identified laboratory blank, exceeded the calibration range, exceeded the calibration range and was by an *. ^bIf a reference limit exists, the source is coded as:


1 Rules of Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Chapter 1200-4-3, General Water Quality Criteria, as amended. 2

40CFR Part 141--National Primary Drinking Water Regulations, Subparts B and G, as amended. 40CFR Part 143--National Secondary Drinking Water Regulations, as amended. m

4 DOE Order 5400.5, Chapter III, Derived Concentration Guides for Air and Water, as amended. D The value exceeds the laboratory detection limit.

A tentatively identified compound (TIC). н

^cNot applicable.

ORNL-DWG 92-13898

compounds, alkalinity, gross-alpha, total rad Sr, Co-60, Cs-137, tritium, alkalinity, and field parameters as part of this program. Wells 1244 and 1245 used to be monitored quarterly as part of the SWSA 6 network. They were determined early in 1992 to not reflect groundwater conditions at SWSA 6, as recorded in "Groundwater Quality Assessment Report For The Solid Waste Storage Area 6 At The Oak Ridge National Laboratory, 1991", February 1992. They are now monitored as part of the WAG 2 network. The remaining 16 wells are monitored semiannually. During quarter 1992 only the eight "quarterly" wells were monitored.

3.5.3.2 Results

The eight "quarterly" perimeter assessment wells at SWSA 6 were sampled November 30-December 16, 1992. A summary of the analytical results for the assessment wells is presented in Table 31; Table 32 presents the data that exceed some reference criteria for all of the assessment wells.

Well 842 continues to exhibit the highest level of volatile organic contamination. It was the only SWSA 6 well which had significant volatile organic contaminant results for the quarter, including carbon tetrachloride, chloroform, 1,2-dichloroethane, and trichloroethene. Tritium levels were highest at wells 842, 844, 841, 847, 1242, 843, and 1243 with levels ranging from 2,100 to 57,000 Bq/L.

3.5.4 Off-Site

3.5.4.1 Program Description

Under the direction of the Energy Systems Environmental and Safety Activities (E&SA) Organization, ORNL implemented a long-term, off-site, residential drinking water quality monitoring program in 1989. The objective of the program is to document water quality from groundwater sources in areas adjacent to the ORR and to monitor potential impact of DOE-OR operations on the quality of these groundwater sources.

Twenty-one wells were selected on the basis of their proximity to the ORR and a representative distribution of sources from the different geologic formations of the area. The wells are sampled semiannually, most recently in August 1992. Two USGS wells located in Union Valley were dropped from this program in 1991; they are now included in the Y-12 perimeter groundwater program. Two of the remaining nineteen wells were not sampled during this sampling round; one was not functioning and the other was not sampled because of a scheduling difficulty with the homeowner.

In the August 1992 event, samples of tap water were collected to represent quality of tap water from two major local sources of public utility-supplied drinking water. Duplicate and field blank samples are also collected as part of the off-site residential groundwater QA/QC program.

			Co	ncentration	
Analyte	N det/ N total		Min ^a	Avb	Standard error ^C
Field Measurements Ur	filtere	ed			
Conductivity (mS/cm)	8/8	0.89	0.34	0.59*	0.057
Dissolved oxygen (ppm)	8/8	7.0	6.0	6.4*	0.11
Redox (mV)	8/8	690	460	610*	31
Temperature (°C)	8/8	14	13	14*	0.24
Turbidity (JTU)	8/8	300	6.3	79*	38
pH (SU)	8/8	7.6	6.9	7.2*	0.090
Others Unfiltered					
Alkalinity (mg/L)	8/8	450	190	330*	29
Radionuclides (Bq/L)	Filtere	ed			
Co-60	3/8		0.080	1.7	1.5
Cs-137	3/8	0.23*		0.090*	
Gross alpha	5/8				
H-3	8/8		240*	16,000*	8,200
Total rad Sr	2/8	•	-0.047	0.023	
Volatile Organics (µg/L)	Unf	filtered			
1,2-Dichloroethane	1/8	7.0	U 5.0	~ 5.3*	0.25
1,2-Dichloroethene	2/8	5.0	J 4.0	~ 4.9*	0.13
Bromodichloromethane	1/8	υ 5.0	J 2.0	~ 4.6*	0.38
Carbon tetrachloride	1/8	38	U 5.0	~ 9.1*	4.1
Chloroform	2/8	36	J 3.0	~ 8.6*	3.9
Trichloroethene	2/8	190	J 4.0	~ 28	23

Table 31. ORNL WAG 6 groundwater summary statistics from November 30-December 16, 1992

^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the laboratory blank, exceeded the calibration range, exceeded the calibration range and was diluted and reanalyzed, was not detected at that level, or was not quantified at that level, respectively. Radionuclide values that are significantly greater than zero are identified by an *.

^bAverage concentrations significantly greater than zero are identified by an *.

^cStandard error of the mean. ^dNot applicable.

1.107

1 1 1 1 1

Analyte	Value ^a	Uncertainty	Reference value	Reference source ^b	
Well 84 Ground Elevation		Date 11DEC92 Nater Elevation	n 748.03		
Volatile Organics (µg/L) Unf: Vinyl chloride	iltered U 10	с	2	1	
Well 84 Ground Elevation		Date 10DEC92 Vater Elevation	n 755.05		
Radionuclides (Bq/L) Filtered H-3	1 3,500*	100	740	2	
Volatile Organics (µg/L) Unf: Vinyl chloride	iltered U 10	с	2	1	
Ground Elevation Radionuclides (Bq/L) Filtered	767.25 ft, 1 1				
Ground Elevation	767.25 ft, 1		n 758.56 740	2	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf:	767.25 ft, 1 1 2,100* iltered	Vater Elevation	740	2	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane	767.25 ft, 1 1 2,100* iltered 7.0	Vater Elevation	740 5	1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane Carbon tetrachloride	767.25 ft, 1 1 2,100* iltered 7.0 38	Vater Elevation 100	740 5 5	1 1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf 1,2-Dichloroethane Carbon tetrachloride Chloroform	767.25 ft, 1 d 2,100* iltered 7.0 38 36	Vater Elevation 100 c c c	740 5 5 5.0	1 1 D	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane Carbon tetrachloride	767.25 ft, 1 1 2,100* iltered 7.0 38	Vater Elevation 100 c c	740 5 5	1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf 1,2-Dichloroethane Carbon tetrachloride Chloroform Trichloroethene Vinyl chloride	767.25 ft, 1 2,100* iltered 7.0 38 36 190 U 10	Vater Elevation 100 c c c c c	740 5 5 5.0 5	1 1 D 1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane Carbon tetrachloride Chloroform Trichloroethene	767.25 ft, 1 2,100* iltered 7.0 38 36 190 U 10 - Unfiltered	Vater Elevation 100 c c c c c	740 5 5 5.0 5	1 1 D 1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane Carbon tetrachloride Chloroform Trichloroethene Vinyl chloride Volatile Organics-TICs (µg/L)	767.25 ft, 1 2,100* iltered 7.0 38 36 190 U 10 - Unfiltered	Vater Elevation 100 c c c c c c	740 5 5.0 5 2	1 1 1 1	
Ground Elevation Radionuclides (Bq/L) Filtered H-3 Volatile Organics (µg/L) Unf: 1,2-Dichloroethane Carbon tetrachloride Chloroform Trichloroethene Vinyl chloride Volatile Organics-TICs (µg/L) 1,2,2-Trifluoroethane,1,1,2-tr Methane,trichlorofluoro6.17	767.25 ft, 1 2,100* iltered 7.0 38 36 190 U 10 U 10 Unfiltered J 12 J 7.0 33, Sampling	Vater Elevation 100 c c c c c Date 01DEC92	740 5 5.0 5 2 c	1 1 1 1 1	

Table 32. ORNL WAG 6 groundwater constituents that exceed a reference value from sampling period November 30-December 16, 1992

۰

٢

•

¥

Analyte	Value ²	Uncertainty	Reference value	Reference source ^b	
Volatile Organics (µg/L) Unfil Vinyl chloride	tered U 10	с	2	1	
Well 844 Ground Elevation 7	, Sampling 780.95 ft,	Date 30NOV92 Water Elevation	769.69		
Radionuclides (Bq/L) Filtered H-3	2,500*	100	740	2	
Volatile Organics (µg/L) Unfil Vinyl chloride	tered U 10	с	2	1	
Well 847 Ground Elevation &	, Sampling 339.62 ft,	Date 04DEC92 Water Elevation	807.68		
Radionuclides (Bq/L) Filtered H-3	3,600*	100	740	2	
Volatile Organics (µg/L) Unfil Vinyl chloride	tered U 10	с	2	1	
Volatile Organics-TICs (µg/L) Sulfurdioxide(dot)-4.33	Unfiltered J 33	с	с	Т	
Well 1242 Ground Elevation 7	?, Sampling 75.11 ft,	Date 16DEC92 Water Elevation	760.83		
Radionuclides (Bq/L) Filtered H-3	13,000*	1,000	740	2	
Volatile Organics (µg/L) Unfil Vinyl chloride	tered U 10	с	2	1	
Well 1243 Ground Elevation 7	, Sampling 78.66 ft,	Date 16DEC92 Water Elevation	760.65		
Radionuclides (Bq/L) Filtered Co-60	12*	1.0	7.4	4	
H-3	57,000*	1,000	740	2	

~

Analyte	Value [#]	Uncertainty	Reference value	Reference source ^b
Volatile Organics (µg/L) Unf	filtered			
Vinul ablantia	U 10	с	2	1
Vinyl chloride	0 10	C	2	T
Volatile Organics-TICs (µg/L) -		C	L	I

^aPrefixes containing J, B, E, Y, U or < mean that the value was estimated, found in the laboratory blank, exceeded the calibration range, exceeded the calibration range and was diluted and reanalyzed, was not detected at that level, or was not quantified at that lovel, respectively. Radionuclide values that are significantly greater than zero are identified by an *.

^bIf a reference limit exists, the source is coded as:

1 Rules of Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Chapter 1200-4-3, General Water Quality Criteria, as amended.

- 2 40CFR Part 141--National Primary Drinking Water Pegulations, Subparts B and G, as amended.
- 3 40CFR Part 143--National Secondary Drinking Water Regulations, as amended.
- 4 DOE Order 5400.5, Chapter III, Derived Concentration Guides for Air and Water, as amended.
- D The value exceeds the laboratory detection limit.
- T À tentatively identified compound (TIC).

^CNot applicable.

d1,2,3-Trifluoroethane,1,1,2-trichloro--7.

The samples are analyzed for volatile organics; selected atomic absorption metals (As, Hg, Pb, Se); inductively coupled argon plasma metals; and anions (fluoride, chloride, sulfate, nitrate, and nitrite). Radiological analyzes include gross alpha, gross beta, total rad Sr, Tc-99, H-3, and radionuclides observed in a gamma scan. In the August 1992 event, total hardness analysis was performed for one well.

Five times the laboratory detection limit was used as a rough rule for assessing the presence of contaminants (or ten times in the case of common organic laboratory contaminants). All radionuclide values are corrected for background. A radionuclide value is determined to be significantly greater than zero when the value exceeds 1.645 times its estimated standard error. See section 1.0 for discussion.

A summary of the results from all wells is presented in Table 33. The table contains the number of detected values and the total number of samples; the maximum, minimum, and average of all detected values; and the standard error of the mean. Results from analysis of the public drinking water samples is presented in Table 34.

3.5.4.2 Results

In the August 1992 sampling event, one well exceeded the drinking water standard for fluoride; this well, located deep in the Conasauga formation, has consistently shown high levels of fluoride.

Four of the locations were resampled in September to investigate results which indicated presence of volatile organic compounds in the water. Using this additional set of data, an examination of historical data, and consultation with the organic analysis laboratory, it was determined that the first set of results was affected by the sampling and analysis process itself. There was no volatile contamination at these four sites.

Neither of the tap water samples produced results exceeding any regulatory standards.

		Concentration						
Analyte	N det/ N total	Max ^a	Min ^a	Av ^b	Standard error ^C			
Anions (mg/L)								
Chloride	17/17	79	1.2	8.1*	4.5			
Fluoride	1/17	7.2	7.2	7.2	4.5 d			
Nitrate	10/17	3.5	1.6	2.7*	0.20			
Sulfate (as SO ₄)	17/17	62	1.8	14*	4.1			
Field Measurements								
Conductivity (mS/cm)	17/17	1.9	0.10	0.70*	0.15			
Temperature (deg C)	17/17	24	15	18*	0.15			
pH (standard units)	17/17	7.9	7.0	7.4*	0.067			
Metals (mg/L)								
Barium	17/17	0.14	0.0036	0.079*	0.011			
Calcium	17/17	98	1.7	46*	6.7			
Copper	13/17	0.064	0.0035	0.015*	0.0044			
Iron	7/17	0.80	0.055	0.22*	0.10			
Lead	1/17	0.0077	0.0077	0.0077	d.10			
Magnesium	17/17	36	0.71	15*	2.3			
Manganese	11/17	0.32	0.00060	0.043	0.030			
Mercury	1/17	0.000060						
Sodium	17/17	120	0.53	17*	8.2			
Uranium	8/17	0.0014	0.00018	0.00063*				
Vanadium	3/17	0.0014	0.0012	0.0013*	0.000058			
Zinc	17/17	0.81	0.0077	0.13*	0.058			
Others								
Total hardness (mg/L)	1/1	300	300	300	d			
Radionuclides (Bq/L)								
Gross alpha	10/17	0.21*	0.054*	0.086*	0.015			
Gross beta	10/17	0.36*	0.11*	0.23*	0.015			
Tc-99	4/17	0.12*	0.078*	0.098*	0.027			
Total rad Sr	5/17	0.16*	0.077*	0.11*	0.014			

Table 33. ORNL off-site residential groundwater summary statistics from August 1992 sampling event

4

~

^aRadionuclide values that are significantly greater than zero are identified by an *. ^bAverage concentrations significantly greater than zero are identified

by an *.

..

^CStandard error of the mean. ^dNot applicable.

			Concentration						
Analyte	N det/ N total	Max ^a	Min ^a	Av ^b	Standard error ^C				
Anions (mg/L)									
Chloride	2/2	11	7.8	9.3*	1.5				
Fluoride	1/2	1.1	1.1	1.1	d				
Nitrate	2/2	2.4	2.4	2.4	õ				
Sulfate (as SO ₄)	2/2	24	23	24*	0.45				
Metals (mg/L)									
Barium	2/2	0.028	0.028	0.028	0				
Calcium	2/2	35	35	35	õ				
Copper	1/2	0.026	0.026	0.026	ď				
Magnesium	2/2	9.0	8.7	8.9*	0.15				
Manganese	2/2	0.0017	0.00080	0.0013	0.00045				
Sodium	2/2	5.1	4.2	4.7*	0.45				
Uranium	1/2	0.00015	0.00015	0.00015	d				
Zinc	2/2	0.16	0.013	0.087	0.074				
Radionuclides (Bq/L)									
Gross alpha	1/2	0.089*	0.089*	0.089	d				

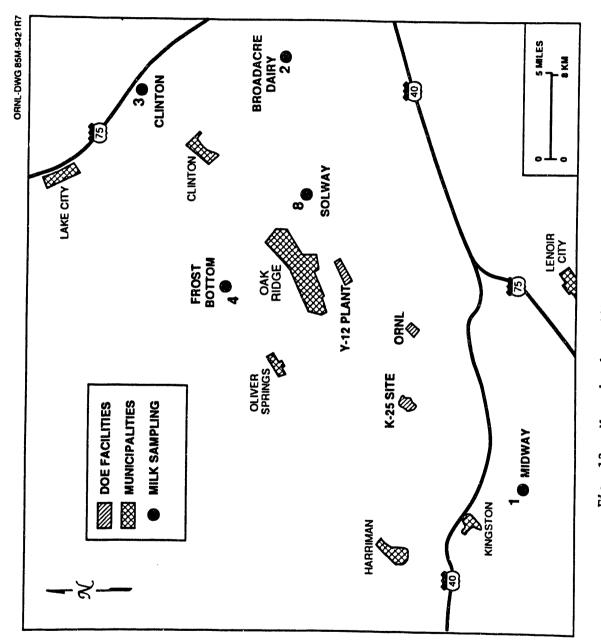
Table 34.	URNL off-site residential groundwater summary statistics from
	local tap water, August 1992

^aRadionuclide values that are significantly greater than zero are

identified by an *. ^bAverage concentrations that are significantly greater than zero are identified by an *. ^cStandard error of the mean. ^dNot applicable.

 $t p \neq 0$

4.1 MILK Joan F. Hughes


4.1.1 Program Description

Raw milk from three locations, including one dairy, within a radius of 80 km of Oak Ridge, is monitored for I-131 and total rad Sr. Samples are collected each month from the stations located near the Oak Ridge area (Fig. 13). Samples are analyzed for I-131 by gamma spectroscopy and for total rad Sr by chemical separation and low-level beta counting. Instrument background values are subtracted from the measured values of I-131 and total rad Sr in milk samples, and net activity concentrations are summarized.

4.1.2 Procedure and Results

None of the samples collected during the quarter contained statistically significant concentrations of I-131. The average concentrations of total rad Sr were significantly greater than zero at two of the three locations, and a summary of this data is presented in Table 35.

The 50-y committed effective dose equivalent (EDE) was calculated for a station when the average value obtained was statistically greater than zero. The significant measured average concentrations of total rad Sr (assuming 100% Sr-90) in milk were used to calculate the potential 50-y committed effective dose equivalents. This calculation is based on the assumption that 1 L/day of milk is ingested at these concentrations for 310 days. Doses resulting from ingestion of milk were less than 1% of DOE's guideline of 1000 μ Sv.

an e

. .

Fig. 13. Map showing milk sampling locations.

*

)				
Station	Number of Samples	Max	Min	Av ^a	Standard error ^b	Dose (µSv) ^c
2	2	0.130	0.120	0.125*	0.005	1.36
3	3	0.240	0.020	0.116	0.064	
4	3	0.210	0.160	0.190*	0.015	2.07

Table 35. Concentrations of total radioactive Sr in milk and calculated doses, October-December 1992

^aAverage concentrations significantly greater than zero are identified by an *. ^bStandard error of the mean.

. .

1.18

с н. н

1

0.1.1

^CPotential 50-year committed effective dose equivalents from drinking 310L of milk per year containing average radionuclide concentrations at each location. Dose is estimated for stations whose average value is statistically greater than zero.

ORNL/M-1760

INTERNAL DISTRIBUTION

1. F. D. Adams 2. G. E. Anderson 3. F. P. Baxter 4. T. J. Blasing 5-7. T. B. Allen J. Owsley E. Leming 8. T. M. Bonine 9. D. M. Borders 10. H. L. Boston 11. R. C. Cooper 12. D. R. Cunningham 13. S. B. Garland 14-16. P. Y. Goldberg 17. M. G. Guhy 18. L. V. Hamilton 19. B. M. Horwedel 20. D. D. Huff 21. J. F. Hughes 22. E. J. Jackson 23. F. C. Kornegay 24. J. M. Loar 25. R. S. Loffman 26. L. W. Long 27. L. W. M^CMahon 28. W. D. Malis 29. M. E. Mitchell 30. J. B. Murphy

×

.

. . .

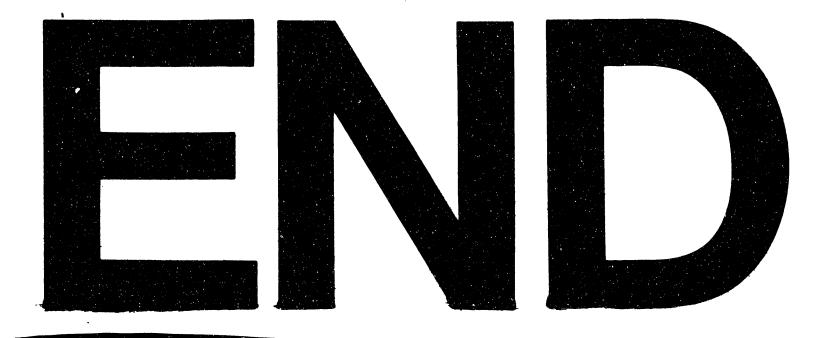
a second the second second

31. C. E. Nix 32. F. R. O'Donnell 33. S. M. Robinson 34. J. G. Rogers 35. T. H. Row 36. L. B. Ryon 37. M. C. Salmons 38. T. F. Scanlan 39. P. A. Scofield 40. C. B. Scott 41. R. D. Sharp 42. L. R. Simmons 43. M. M. Stevens 44. J. R. Stokely 45. J. H. Swanks 46. M. F. Tardiff 47. N. A. Teasley, Jr. 48. C. K. Valentine 49. T. H. Walker 50. I. A. Walker 51. J. B. Watson 52. D. A. Wolf 53. J. M. Wolfe 54. Document Reference Section 55. Laboratory Records - RC 56. ORNL Laboratory Records 57. ORNL Patent Office

EXTERNAL DISTRIBUTION

58.	Rick	Collier,	Department	of	Energy,	0ak	Ridge,	TN	37831	-6269)
-----	------	----------	------------	----	---------	-----	--------	----	-------	-------	---

- 59. W. M. Belvin, Department of Energy, Oak Ridge, TN 37831-6269
- 60. Joel Case, DOE Idaho Field Office, 785 DOE Place, Idaho Falls, Idaho, 83402-1118
- 61. H. W. Hibbitts, Environmental Protection Division, Environment, Safety, and Health, Department of Energy, Oak Ridge
- 62. T. W. Joseph, Environmental Protection Division, Environment, Safety, and Health, Department of Energy, Oak Ridge
- 63. R. O. Hultgren, Deputy Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge, TN 37831-6269


64-65. Office of Scientific and Technical Information, Oak Ridge, TN 37831

. . . .

. . .

....

appears and the second second

DATE FILMED 6-130 193

and the second second