
ORNL/TM--12203

DE93 012508

i

Engineering Physics and Mathematics Division

AN INTRODUCTION TO CHORDAL GRAPHS

AND CLIQUE TREES

JeanR. S.Blairt

BarryW. Peyton

t Department of Computer Science
University of Tennessee
Knoxville, TN 37996-1301

_:Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Date Published:November 1992

Researchwas supportedby the AppliedMathematicalSci-

encesResearchProgram of the Officeof Energy Research,
U.S.DepartmentofEnergy.

J

Preparedby the

Oak RidgeNationalLaboratory
Oak Ridge,Tennessee37831

b managed by

Martin Marietta Energy Systems, Inc.

. for the M_S TER
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400

.DiSFRIiJU'FIONOFTHISgOCUMEHTfS UNLIMITEO

,,"

- Contents

1 Introduction 1

2 Chordal graphs 1

2.1 Graph terminology 2
2.2 Minimal vertex separators 3
2.3 Perfect elimination orderings 4
2.4 Maximum cardinality search 6

3 Characterizations of clique trees 8
3.1 Definition using the clique-intersection property 9
3.2 The induced-subtree property 12
3.3 The running intersection property 13
3.4 The maximum-weight spanning tree property 14
3.5 Summary 16

4 Clique trees, separators, and MCS revisited 17

4.1 Clique tree edges and minimal vertex separators 17
4.2 MCS and Prim's algorithm 19

4.2.1 Detecting the cliques 21

4.2.2 M CS as a block algorithm 23
5 Applications 27

" 5.1 Terminology 27
5.2 Elimination trees 27

, 5.3 Equivalent orderings 28
5.4 Clique trees and the multifrontal method 30
5.5 Future progress on the "ordering" problem 30

6 References 30

0oo

- III-

a

AN INTRODUCTION TO CHORDAL GRAPHS

. AND CLIQUE TREES

Jean R. S. Blair

Barry W. Peyton

Abstract

Clique trees and chordal graphs have carved out a niche for themselves in recent
work on sparse matrix algorithms, due primarily to research questions associated
with advanced computer architectures. This paper is a unified and elementary
introduction to the standard character;zations of chordal graphs and clique trees.
The pace is leisurely, as detailed proofs of ali results are includcd. We also briefly
discuss applications of chordal graphs and clique trees in sparse matrix computa-
tions.

- V°

1. Introduction
dt

It is well known that chordal graphs model the sparsity structure of the Cholesky

, factor of a sparse positive definite matrix [39]. Of the many ways to represent a
chordal graph, a particularly useful and compact representation is provided by clique

trees [24,45]. _ Until recently, explicit use of the properties of chordal graphs or clique

trees in sparse matrix computations was rarely needed. For example, chordal graphs

are mentioned in a single exercise in George and Liu [16]. However, chordal graphs

and clique trees have found a niche in more recent work in this area, primarily due

to various research questions associated with advanced computer architectures. For

instance, the multifrontal method [8], which was developed to obtain good performance

on vector supercomputers, can be expressed very succinctly in terms of a clique tree

representation of the underlying chordal graph [34,3?].

This paper is intended as an update to the graph theoretical results presented and

proved in Rose [39], which predated the introduction of clique trees. Our goal is to

provide a unified introduction to chordal graphs and clique trees for those interested

in sparse matrix computations, though we hope it will be of use to those in other

application areas in which these graphs play a major role. We have striven to write

a primer, not a survey article: we present a limited number of well known results of

fundamental importance, and prove all the results in the paper. The pacing is intended

to be leisurely, and the organization is intended to enable the reader to read selected
. topics of interest in detail.

The paper is organized as follows. Section 2 contains the standard well known char-

. acterizations of chordal graphs and presents the maximum cardinality search algorithm
for computing a perfect elimination ordering. Section 3 presents several characteriza-

tions of the clique trees of a chordal graph, including a maximum spanning tree property

that is probably not as widely known as the others are. Section 4 ties together certain
concepts and results from the previous two sections: it identifies the minimal vertex,

separators in a chordal graph with edges in any one of its clique trees, and it also shows

that the maximum cardinality search algorithm is just Prim's algorithm in disguise.

Finally, Section 5 briefly discusses recent applications of chordal graphs and clique trees

to specific questions arising in sparse matrix computations.

2. Chordal graphs

An undirected graph is chordol (triangulated, rigid circuit) if every cycle of length

greater than three has a chord: namely, an edge connecting two nonconsecutive ver-

" tices on the cycle..After introducing graph notation and terminology in Section 2.1,

we present two standard characterizations of chordal graphs in Sections 2.2 and 2.3.

1Ali technical terms used in this section are defined later in the paper.

o

The latter of these two sections shows that chordal graphs are characterized by posses-

sion of a perfect elimination ordering of the vertices. The maximum cardinality search *

algorithm is a linear-time procedure for generating a perfect elimination ordering. Sec-

tion 2.4 describes this algorithm and proves it correct. The necessary definitions and

references for each of these results are given in the appropriate subsection.

2.1. Graph terminology

We assume familiarity with elementary concepts and definitions from graph theory, such

as tree, edge, undirected graph, connected component_ etc. Golumbic [20] provides

a good review of this material. Here we introduce some of the graph notation and

terminology that will be used throughout the paper. Other concepts from graph theory

will be introduced as needed in later sections of the paper.

We let G = (V, E) denote an undirected graph with vertex set V and edge set E.

The number of vertices is denoted by n = IVI and the number of edges by e = [El. For

any vertex set 5' C_V, consider the edge set E(S) C_E given by

E(S) := {(u,v) E BI u,v E S}.

We let G(S) denote the subgraph of G induced by S, namely the subgraph (S, E(S)). At

times it will be convenient to consider the induced subgraph of G obtained by removing

a set of vertices S C_V from the graph; hence we define G \ S by

a \ s :=a(v- s).
m

Two vertices u, v E V are said to be adjacent if (u, v) E E. Also, the edge (u, v) E E

is said to be incident with both vertices u and v. The set of vertices adjacent to v in G

is denoted by adja(v). Similarly, the set of vertices adjacent to 5' C_V in G is given by

aja(s) := {, _ vi, ¢ s and (u, v) E E for some vertex u E 5'}.

(The subscript G often will be suppressed when the graph is known by context.) An

induced subgraph G(S) is complete if the vertices in S are pairwise adjacent in G. In

this case we also say that S is complete in G.

We let [v0, vl,...,vk] denote a simple path of length k from v0 to vk in G, i.e.,

vi # vj for i # j and (vi, vi+l) E E for 0 _< i _< k- 1. Similarly, [Vo,Vl,...,vk, vo]

denotes a simple cycle of length k + 1 in G. Finally, a chord of a path (cycle) is any

edge joining two nonconsecutive vertices of the path (cycle).
r_

Definition 1. An undirected graph G = (II, E) is chordal (triangulated, rigid circuit)

if every cycle of length greater than three has a chord.

Clearly, any induced subgraph of a chordal graph is also chordal, a fact that is

.

useful in several of the proofs that follow.

2.2. Minimal vertex separators

" A subset S C V is a separator of G if two vertices in the same connected component

of G are in two distinct connected components of G \ S. If a and b are two vertices

separated by S then S is said to be an ab-separator. The set S is a minimal separator

of G if S is a separator and no proper subset of S separates the graph; likewise S is a

minimal ab.separator if S is an ab-separator and no proper subset of S separates a and b

into distinct connected components. When the pair of vertices remains unspecified, we
refer to S as a minimal vertex, separator. It does not necessarily follow that a minimal

vertex separator is also a minimal separator of the graph. For instance, in Figure 2.1

the set S - {b, e} is a minimal dc-separator; nevertheless, S is not a minimal separator

of G since (e} C S is also a separator of G. Minimal vertex separators are used to

" Figure 2.1: Minimal dc-separator {b, e} is not a minimal separator of G.

characterize chordal graphs in Theorem 2.1, which is due to Dirac [6]. The proof is

taken from Peyton [34], which, in turn, closely follows the proof given by Golumbic [20].

Theorem 2.1 (Dirac [6]). A graph G is chordal i£ and only if every minimal vertex
separator of G is complete in G.

Proof: Assume ev._ry minimal vertex separator of G is complete in G, and let p =

[ro,..., vk, v0] be an_ cycle oflength greater than three in G (i.e., k _>3). If (v0, v2) E E,

then p has a chord. If not, then there exists a v0v2-separator S (e.g., S = V- {v0, v2));
furthermore, any such separator must contain vi and vi for some i, 3 _<i _<k. Choose

S to be a minimal vov2-separator so that S, by assumption, is complete in G. It follows

that (vi, vi) is a chord of p, which proves the "if" part of the result.

Now assume G is chordal and let S be a minimal ab-separator of G. Let G(A)

and G(B) be the connected components of G \ S containing a and b, respectively. It

suffices to show that for any two distinct vertices in S, say z and y, we have (x, y) E E.
Since S is minimal, each vertex v E S is adjacent to some vertex in A and some

- vertex in B; otherwise, S - {v} would be an ab-separator contrary to the min'_mality

of S. Thus, there exist paths # = [z, al,...,ar, y] and v = [y, bl,...,bt, z] where each
ai q. A and each bi E B (see Figure 2.2). Further, choose # and v so that they are

-4-

G(B) ..._N .

Figure 2.2: Cycle in proof of Theorem 2.1 that induces chord (x, y).

of the smallest possible length greater than one, and combine them to form the cycle

cr = [z,al,...,ar, y, bl,...,bt, z]. Since G is chordal and a is a cycle of length greater
than three, ¢r must have a chord. Any chord of a incident with ai, 1 <_ i <_ r, would

either join ai to another vertex in # contrary to the minimality of r, or would join ai to

a vertex in B, which is impossible because S separates A from B in G. Consequently,
t

no chord of a is incident with a vertex ai, 1 <_ i <_ r, and by the same argument no

chord of the cycle is incident with a vertex bi, 1 <_ j <_ t.. It follows that the only
possible chord is (x, y). |

Remark In reality, r = t = 1, otherwise [x, al,...,ar,y,x] or [y, bl,...,bt, x,y]

is a chordless cycle of length greater than three.

2.3. Perfect elimination orderings

We need the following terminology before we can state and prove the main result in

this section. An ordering a of G is a bijection a • V _ {1, 2,..., n}. Often it will be

convenient to denote an ordering by using it to index the vertex set, so that a(vi) = i

for 1 <_ i _< n where i will be referred to as the label of vi. Let Vl,V2,...,Vn be an

ordering of V. For 1 _<i _ n, we define Li to be the set of vertices with labels greater
than i- 1:

£i :={vi,vi+l,..., v,}.

The monotone adjacency set of vi, denoted madja(vi), is given by

madjG(vi) := {vi E adj(vi) I J > i} = adjG(vi) ffl/Zi+I.

-5-

Again, the subscript G often will be suppressed where the graph is known by context.

* A vertex v is simplicial if adj(v) induces a complete subgraph of G. The ordering a

is a perfect elimination ordering (PEO) if for 1 < i < n, the vertex vi is simplicial

- in the graph G(£i). As shown below in Lemma 1, every nontrivial chordal graph has

a simplicial vertex (actually, at least two). Theorem 2.2, which states that chordal

graphs are characterized by the possession of a PEO, follows easily from Lemma 1.

The proofs are again taken from Peyton [34], which, in turn, closely follow arguments

found in Golumbic [20].

Lemma 1 (Dirac [6]). Every chordal graph G has a simplicial vertex. If G is not

complete, then it has two nonadjacent simplicial vertices.

Proof: The lemma is trivial if G is complete. For the case where G is not complete

we proceed by induction on the number of vertices n. Let G be a chordal graph with

n >_2 vertices, including two nonadjacent vertices a and b. If n = 2, both vertices of the

graph are simplicial since both are isolated (i.e., adj(a) = adj(b) = 0). Suppose n > 2

and assume that the lemma holds for all such graphs with fewer than n vertices. Since a

and b are nonadjacent, there exists an ab-separator (e.g., the set V- {a, b}). Suppose S

is a minimal ab-separator of G, and let G(A) and G(B) be the connected components

of G \ S containing a and b, respectively. The induced subgraph G(A U S) is a chordal

graph having fewer vertices than G; hence, by the induction hypothesis one of the

following must hold: Either G(A U S) is complete and every vertex of A is a simplicial

" vertex of G(A U S), or G(A U S) has two nonadjacent simplicial vertices, one of which

must be in A since, by Theorem 2.1, S is complete in G. Because adja(A) C_A tj S,

- every simpUcial vertex of G(A U S) in A is also a simplicial vertex of G. By the same

argument, B also contains a simplicial vertex of G, thereby completing the proof. |

Theorem 2.2 (Fulkerson and Gross [10]). A graph G is chordal if and only if G

has a perfect elimination ordering.

Proof." Suppose G is chordal. We proceed by induction on the number of vertices n

to show the existence of a PEO of G. The case n = 1 is trivial. Suppose n > 1 and

every chordal graph with fewer vertices has a PEO. By Lemma 1, G has a simplicial

vertex, say v. Now G \ {v) is a chordal graph with fewer vertices than G; hence, by

induction it has a PEO, say ft. If a orders the vertex v tirst, followed by the remaining

vertices of G in the order determined by/3, then a is a PEO of G.

Conversely, suppose G haz a PEO, say a, given by vi, v2,..., vn. We seek a chord of

an arbitrary cycle # in G of length greater than three. Let vi be the vertex on # whose

label i is smaller than that of any other vertex on # Since a is a PEO, madj(vi) is

complete; whence # has at leas*_one chord: namely, the edge joining the two neighboring

" vertices of vi in #. |

-6-

2.4. Maximum cardinality search
J

Rose, Tarjan, and Lueker [40] introduced the first linear-time algorithm for producing
a PEO, known as the lezicographic breadth first search algorithm. In a set of unpub- m

lisbed lecture notes, Tarjan [43]introduced a simpler algorithm known as the mazimum
cardinality search (MCS) algorithm. Tarjan and Yannakakis [45] later described MCS
algorithms for both chordal graphs and acyclic hypergraphs. The MCS algorithm for
chordal graphs orders the vertices in reverse order beginning with an arbitrary ver-
tex v E V for which it sets a(v) = n. At each step the algorithm selects as the next
vertex to label an unlabeled vertex adjacent to the largest number of labeled vertices,
with ties broken arbitrarily. A high-level description of the algorithm is given in Fig-
ure 2.3. We refer the reader to Tarjan and Yannaka.kis [45] for details on how to
implement the algorithm to run in O(n + e) time.

£r,+1 _ 0;
for i *--n to 1 step -1 do

Choose a vertex v E V - £i+1 for which
ladj(v)n £i+11 is maximum;

a(v) ,-- i; [v becomes vi]
£i ,-- £_+1 tj {vi};

end for
a

Figure 2.3: Maximum cardinality search (MCS).

The following lemma and theorem prove that the MCS algorithm produces a PEO.
The lemma provides a useful characterization of the orderings of a chordal graph that

are not perfect elimination orderings. Edelman, Jamison, and Shier [9,42] prove sim-
ilar results while studying the notion of convexity in chordal graphs. Theorem 2.3 is
then proved by showing that every ordering that is not a PEO is also not an MCS

ordering. The proof is taken from Peyton [34]. Later in Section 4.2, we will provide
a more intuitive view of how the MCS algorithm works: it can be viewed as a special
implementation of Prim's algorithm applied to the weighted clique intersection graph
of G (defined in Section 3.4).

Lemma 2. An ordering a of the vertices in a graph G is not a perfect elimination
ordering if and only if for some vertex v, there exists a chordless path of length greater "

than one from v = a-l(i) to some vertex in £i+1 through vertices in V - £i.

Proof: Suppose a is not a PEO. There exists then by Lemma 1 a vertex u E V for

which madj(u) is not complete in G; hence, there exist two vertices v, w E madj(u)

joined by no edge in E. Without loss of generality assume that i = a(v) < a(w).

-7-

Then Iv, u, w] is a chordless path of length two from v = a-l(i) to w E /_i+1 through
" uE V-£i.

Conversely, suppose there exists a chordless path # = Iu0, ul,. •., ur] of length r > 2
. from no = a-l(i) to ur E £i+1 through vertices nj E V -/;i, 1 < j < r- 1. Let uk,

where 1 < k < r- 1, be the internal vertex in/z whose label a(uk) is smaller than that
of any other internal vertex in/_. Then madj(uk) includes two nonadjacent vertices:
namely, the two neighboring vertices of uk in/_. It follows that a is not a PEO. |

Theorem 2.3 (Tarjan [43], Tarjan and Yannakakis [45]). Every maximum car-
dinality search ordering of a chordal graph G is a perfect _elimination ordering.

Proof: Let a be any ordering of a chordal graph G that is not a PEO. We will show
that the ordering a cannot be generated by the MCS algorithm.

By Lemma 2, for some vertex u0 there exists a chordless path/J = [u0, ni,. •., ur-1, ur]
of length r > 2 from no = a-l(i) to ur E /_i+1 through vertices nj E V-/_i,
1 < j < r- 1. (See Figure 2.4.) Choose no so that the label i = a(uo) is maxi-
mum among ali the vertices of G for which such a chordless path exists.

To show that a is not an MCS ordering it suffices to show that there exists some
vertex w £ V -/;i+1 for which ladj(w)n/;i+11 exceeds ladj(uo)n £i+11. We willshow
that the vertex n_-i E # is indeed such a vertex. Note that adj(uo)N£i+l and madj(uo)
are by definition identical, and thus it suffices to show that

• madj(uo) C adj(ur_a) f'l£i+x. (2.1)

. For the trivial case madj(uo) = 0, the theorem holds since ur-1 is adjacent to

ur E £i+a. Assume instead that madj(uo) _ 0, and choose a vertex zfi madj(no). To
see that z is also adjacent to n,-l, consider the path 7 = Ix, u0,..., u__a, ur] pictured
in Figure 2.4. The maximality of i implies that every path of length greater than one
having the following two properties will have a chord: a) the endpoints of the path are

both numbered greater than i, and b) the interior vertices are numbered less than the
minimum of the endpoints. The path 7 satisfies these two properties and hence has a

chord. Moreover, since p = Iu0, ul,..., ur] has no chords, every chord of 7 is incident
with x. Let nk be the vertex in 7 adjacent to x which has the largest subscript. If

k ¢ r then [z, nk,..., nrl is a chordless path, again contrary to the maximality of i;
hence (z, ur) £ E.

It follows that a = Ix, no,..., ur-1, ur,z] is a cycle of length greater than three in G
(recall that r _>2). Since G is chordal, a must have a chord, and, as argued above, any
such chord must be incident with z. Let ut be the vertex in a with the highest subscript
other than r, for which (z, ut) _. E. If t _ r-l, then [z, ut,..., ur,z] is a chordless cycle
of length greater than 3, contrary to the chordality of G. In consequence, (z, ur-1) £ EQ,

for all x £ madj(uo). But ur-a is also adjacent to Ur £ £i+x - madj(uo), whence (2.1)
holds, completing the proof. |

-8-

----------"V-Li+a

Figure 2.4: Illustration for the proof of Theorem 2.3. The dark solid edges exist by
hypothesis; existence of the lighter broken edges is argued in the proof and the remark
that follows it.

Remark In the preceding proof the argument leading to the inclusion of (x, ur-1)

in E can be repeated for every edge (x, uj), 1 _<j _< r - 2. In consequence we have

madj(uo) C adj(uj)f'l f-,i+l for 1 _<j _<r- 2. (2.2)

Statement (2.1) implies that if the MCS algorithm "tried" to generate a, then as the

vertex to be labeled with i is chosen, the priority of ur-1 would be greater than that

of uo. Similarly, (2.2) implies that the priority of each vertex uj (1 _<j _<r - 2) would
be at least as great as that of Uo.

3. Characterizations of clique trees

Let G - (V, E) be any graph. A clique of G is any maximal set of vertices that is

complete in G, and thus a clique is properly contained in no other clique. We will

refer to a "submaximal clique" as complete in G, as we did in the previous section.

Henceforth K;G -- {K1, Ks,..., K,n} denotes the set containing the cliques of G, and ra
will be the number of cliques.

The reader may verify that the graph in Figure 3.1 is a chordal graph with four
cliques, each of size three. The graph in Figure 3.1 will be used throughout this section
to illustrate results and key points. For convenience we shall refer to the vertices of

this graph as vi,v2,..., v_; e.g., the vertex labeled "6" will be referred to as re. Note
that the labeling of the vertices is a PEO of the graph.

For any chordal graph G there exists a subset of the set of trees on K;G known as

clique trees. Any one of these clique trees can be used to represent the graph, often in
a very compact and efficient manner [24,46], as we shah see in Section 4. This section

contains a unified and elementary presentation of several key properties of clique trees,

each of which has been shown, somewhere in the literature, to characterize the set of

-9-

Figure 3.1: Chordal graph with seven vertices and four cliques.

cliquetreesassociatedwitha chordalgraph.

The notionofcliquetreeswas introducedindependentlybyBuneman [5],Gavril[12],

and Walter[46].The propertywe usetointroduceand definecliquetreesinSection3.1

isa simplevariantofone ofthe key propertiesintroducedintheirwork. We usethis

variantbecause,in our experience,itismore readilyapprehendedby thosewho are

studyingthismaterialforthefirsttime.Section3.2presentstheshortargumentneeded

to show thatthemore recentvariantisequivalenttotheoriginal.

Cliquetreeshave found applicationin relationaldatabases,where they can be

viewedasa subclassofacyclichypergraphs,which areheavilyusedinthatarea.Open

problemsinrelationaldatabasetheorymotivatedthepioneeringwork ofBernsteinand

• Goodman [2], Beeri, Fagin, Maier, and Yannakakis [1], and Tarjan and Yannakakis [45].
Our two final characterizations of clique trees, presented in Sections 3.3 and 3.4, are

- based on results from these papers. Section 3.5 summarizes these results, and also

illustrates these results in negative form using the example in Figure 3.1.

Throughout this section it will be convenient to assume that G is connected. Ali

the results can nevertheless be applied to a disconnected graph by applying them

successively to each connected component: ._us no loss of generality is incurred by

the restriction. Note also that Sections 3.2, 3.3, and 3.4 can be read independently

of one another, but any of these three subsections should be read only after reading

Section 3.1. As in the previous section, needed definitions and specific references to

the literature are given in the appropriate subsections.

3.1. Definition using the cllque-lntersectlon property

Assume that G is a connected graph (not necessarily chordal), and consider its set of
maximal cliques K;G. In this section we consider the set of trees on K;G that satisfy the

following clique-intersection property:

. For every pair of distinct cliques K, K _ E/Ca, the set K Iq K _is contained

in every clique on the path connecting K and K _in the tree.

- 10-

As an example of a tree that satisfies the clique-intersection property, consider the tree

shown in Figure 3.2, whose vertices are the cliques of the chordal graph in Figure 3.1. "

The reader may verify D_t this tree indeed satisfies the clique-intersection property:
lr' ,a

Figure 3.2: A tree on the cliques of the chordal graph in Figure 3.1, which satisfies the
clique-intersection property.

for example, the set K40 K2 = _vT} is contained in K1, which is the only clique on the

path from K4 to K2 in the tree. The reader may also verify that the only other tree

on {KI, K2_ K3, K4} that satisfies the clique-intersection property is obtained from the

tree in Figure 3.2 by replacing the edge (K3, K2) with (Ka, K1).

Wc will show in Theorem 3.1 below that G is chordal if and only if there exists a tree

on K:a that satisfies the clique-intersection property. For any given chord;al graph G,

we shall let 2r_t denote the nonempty set of trees T = (lCr, £T) that sati_i_y the clique

intersection property, and we shall refer to any member of T_ t as a clique tree of the

underlying chordal graph G. In Section 3.2, we prove the original version oi' this result,

which was introduced independently by Buneman [5], Gavril [12], and Walter [46].

To prove the main result of this subsection, we require two more definitions and a

simple lemma. A vertex K in a tree T is a Iea] if it has precisely one neighbor in T

(i.e., ladjT(K)l = 1). We let 1CG(v) C_1CG denote the set of cliques containing the

vertex v. The following simple characterization of simplicial vertices has been useful in

various applications. This result has been used widely in the literature [7,19,23,24,45],

and has been formally stated and proven in at least two places [23,24].

Lemma 3. A vertex is simplicial if and only if it belongs to precisely one clique.

Proof: Suppose a vertex v belongs to two cliques K, K t E /Ca. Maximality of the

cliques implies the existence of two distinct nonadjacent vertices u E K - K _ and

u_E K' - K. Since both u and u' are adjacent to v, it foUows that v is not simplicial.

Assume now that the vertex v be_,.ags to one and only one clique K E K:G. Note

that v is adjacent to a vertcx u _ v if and only if there exists a clique of G to which

both u and v belong. Consequently adj(v) = K- {v}, whence v is simplicial. |

- 11-

The first part of the following proof closely resembles the argument given by Gavril [12]
" to prove a result that shall be presented in the next section. The second half was im-

provised for this paper, and resembles the first half in many of its features.
,!

Theorem 3.1. A connected graph G is chordal if and only if there exists a tree T =

(/CG, gT) for which the clique-intersection property holds.

Proof: We proceed by induction on the number of vertices n to show the "only if"

part. The base step n = 1 is obvious. For the induction step, let G be a chordal

graph with n >_ 2 vertices and assume the result is true for all chordal graphs having
fewer than n vertices. By Lemma 1, G has a simplicial vertex, say v. Let K be the

single clique of G that contains v (see Lemma 3), and consider the induced subgraph

G_ = G\ {v}. Since G _"s a chordal graph with n- 1 vertices, by the induction hypothesis

there exists a tree T *= (/ca,, £T') that satisfies the clique-intersection property.

To complete the proof of the "only if" part, there are two cases to consider. First,

suppose K' = K - (v} remains maximal in G I (i.e., I(I E/CG,). It is trivial to show

that/CG, -/ga O (K _} - {K}, and we leave it for the reader to verify this. It follows

that the only difference between the cliques of G and G I is the presence in G of the

simplicial vertex v in K and the absence of v from the corresponding clique 1(t of G I. In

consequence, the intersection of any pair of cliques in G is identical to the intersection

of the corresponding pair in G _. Let T be the tree on/CG obtained from T I by replacing
K I with K. Since T I has the clique-intersection property, it follows that T has this

• property as well, thereby completing the argument for the first case.

Now, suppose S I = K - (v} is not a maximal clique in G I (i.e., S I _/Ca,). Since

. n _) 2 and G is connected, v is not an isolated vertex, and we have

S 1= Ii"- {v} = adj(v) # 0.

Since S I is complete in G _, there exists a clique P E /Ca, = /Ca - {K} for which

5'1 C P. (As before, we leave it for the reader to verify that/Ca, =/Ca - {K}.) Let

T be the tree on/Ca obtained by adding the clique K and the edge (K, P) to T _. We

now verify that T satisfies the clique-intersection property. Because T I satisfies the

clique-intersection property, the set K1 N K2 is contained in every clique on the path
from K1 to K2 in T whenever neither K1 nor K2 is K. Consider now the set K N K"

where K II E /Ca-{K} = /Ca,. Since K-{v} C P and v belongs to no clique i_

/CG - {K}, it follows that K _ I"1K C P. Because T I satisfies the clique-intersectioh

property, the set K N K _1= P N K II is contained in every clique on the path from K to

K II in T, and T therefore satisfies the clique-intersection property as well.

" To prove the "if" part, let G = (V, E) be a graph and suppose there exists a tree

T = (Ca, ,gr) that satisfies the clique-intersection property. Again we proceed by

induction on n to show that G is chordal. The base step n = 1 is obvious. For the

induction step, let G be a graph with n >_ 2 vertices and assume the result is true for

ali graphs having fewer than n vertices.

- 12-

Let K and P be respectively a leaf of T and its sole neighbor (i.e., "parent") in T.

By maximality of the cliques there exists a vertex v E K - P. The vertex v moreover "

cannot belong to any clique K _E K.a-_K,P}, for were it otherwise the clique P, which

is on the path from K to K _ in T, would not contain the set K N K _. Consequently v

belongs to no other clique but K, whence by Lemma 3 it is a simplicial vertex of G.

Consider the reduced graph G' = G\{v} and let K' = K-{v}. If K' _ P,

then the "reduced" tree T' for G_ is obtained simply by replacing K with K' in T; if

K _ C P, then T _ is obtained by removing from T the vertex K and the single edge

(K,P) incident with it in T. As before, in the first case, K.a, = K.GO {K'} - {K}; in

the second case,/Ca, = K:G - {K}. In either case, it is trivial to verify that the tree

T _ satisfies the clique-intersection property. From the induction hypothesis it follows

that G' is chordal. Let _ be any PEO of G'. A PEO of G can then be obtained by

ordering v first, followed by the remaining vertices of G in the order determined by f_.

Thus by Theorem 2.2_ G is also chordal, giving us the result. [

3.2. The induced-subtree property

In this section we are concerned with the set of all trees on K:G that satisfy the induced-
subtree property:

For every vertex v E V, the set/Ca(v) induces a subtree of T.

We shall let 'T_st denote the set of ali trees on K:G that satisfy the induced-subtree
property.

Consider again the clique tree in Figure 3.2. Observe that each of the sets K_G(V3) -

{K3} and K.a(v6) = {K1,K2, K3} induces a subtree of this tree. The reader may verify

that this tree satisfies the induced-subtree property. It is trivial to prove that the clique-

intersection and induced-subtree properties are indeed equivalent.

Theorem 3.2. For any connected graph G, we have T_ st = T_ t.

Proof: To see that T_ t C_2r'_st,let Tct E 7"_t and consider the set of cliques 1CG(v)

for some vertex v E V. Choose two cliques K,K I E 1CG(v). Since the set Ii" N K _

lies in every clique on the path joining K and Ii"_ in Tct, it follows that the vertex

v E K N K _ also lies in each clique along this path. In consequence, the induced

subgraph Tct(_G(V)) is connected and hence a subtree of G. It follows that Tct E T_st,
whence 2r'_t C_2r'_t, as desired.

To see that 2r_st C_T_ t, let T_.t E 2r_st. Choose two cliques K, K _ E K:G, and

consider the set K N K'. For each vertex v E K N K", the set 1CG(v) induces a subtree

of _st (i.e., a connected subgraph of Tist); and thus the vertex v lies in each clique

along the path joining K and K' in Tist. lt follows that 7].t E _r'_t, whence T_ st C_,_r'_t,
as desired. |

We thus have the following well known result from the literature.

13-

Theorem 3.3 (Buneman [5], Gavril [12], Walter [46]). A connected graph G is

" chordal if and only if there exists a tree T = (1CG,£T) for which the induced-subtree

property holds.

- Proof: The result follows immediately from Theorems 3.1 and 3.2. |

3.3. The running intersection property

A total ordering of the cliques in K:G, say K1, K2,..., Km, has the running intersection

property (RIP) if for each clique Kj, 2 _<j _<m, there exists a clique Ki, 1 <_i <_j - 1,
such that

ICi N (K10 I(2 O ...U Kj_I) C ICi. (3.1)

For any RIP ordering of the cliques, we construct a tree Trip on K_ G by making each

clique Kj adjacent to a "parent" clique Ki identified by (3.1). (Since more than one

clique Ki, 1 _<i _<j- 1, may satisfy (3.1), the parent may not be uniquely determined.)
We let _r'riP*a be the set containing every tree on 1Ca that can be constructed from an

RIP ordering in this manner. We define a reverse topological ordering of any rooted

tree as an ordering that numbers each parent before any of its children. Finally, note

that any RIP ordering is a reverse topological ordering of a rooted tree constructed

from the ordering in the manner specified above.

The ordering 1(1,1(2, Ka, K4 of the cliques shown in Figure 3.1 is an RIP ordering;
. a corresponding RIP-induced parent function is displayed in Figure 3.3. Note that the

parent function specifies precisely the edges of the clique tree in Figure 3.2. Indeed, we

can show that for any connected graph G, we have _t'_ ip = _t.

V

Figure 3.3: Clique tree in Figure 3.2 is an RIP tree. Arrows point from child to parent.
,,q

" Theorem 3.4 (Beeri, Fagin, Maier, Yannakakis [1]). For any connected graph G,

we have "l'rip _'_t_t,G "-" ,

- 14-

Proof:_ We firstshow thatTc_t C T_ip.Let TctE T_t;chooseR E /Ca;and root

Tct at R. Consider any reverse topological ordering R = K1, K2,..., Km of the rooted

tree Tct. For any clique Kj, 2 _<j _<m, let Kp be its parent clique in the rooted tree

(whence 1 _<p _<j - 1). Now, for 1 _<:i _<j - 1, the clique Ii'i cannot be a descendant

of Kj, hence Kp is on the path in Tct connecting Kj and IQ. The clique-intersection

property implies that If jNK_ C_Kp. This implies that KjN(IQ UK2U...UKj_I) C_Kp;

furthermore, Kp cannot be a subset of K_ by maximality, so the containment is proper.
Thus, Tct E -a , and we have C_

To see that 7_fiPG C_T.crG,consider a tree T = (K:G,_) _ _r'_t. We will show that

T _ T_ p. Since T _ T._t, there exists then a pair of distinct cliques K, K _E K:G such
that the set K Nlt"_is not contained in at least one clique on the path connecting K and

K _ in the tree. Choose two such cliques I(, I/"_ E K:G that minimize the length of the

path from K to K _ in T. The key observation on which our argument depends is that

the set K NK _belongs to no clique on the path connecting K and I(_ in the tree, except

K and K _. Let K1, K2,..., Km be any reverse topological ordering of T for arbitrary

root K1 E K:G. It suffices to show that (3.1) does not hold for some parent-child pair
in T.

Consider the path # = [K = Kio,l(il,...,Ki, = K _]in T. Let Kit be the clique
with lowest index among the cliques in/_, and without loss of generality assume that

io > i,. Since under 'the given reverse topological ordering Ki0 is a proper descendant
of Kit E p, the clique Kil is necessarily the parent of Kio in the rooted tree, and hence

io > il. Our choice of K (= Kio) and K _ (= Iii,) implies that (a) s > 2, and (b)

KiD N Ki, _ Ki,. for each r, 1 _< r _<s - 1. In consequence, we have Kio N Ki° _ Kil,

whence (3.1) does not hold for the parent-child pair Kia and Kio, which completes the
proof. |

Remark In the preceding proof, the argument that T_ t C_ T_ |p verifies that any

reverse topological ordering of a clique tree Tct E T_ t is an RIP ordering of the cliques.

3.4. The maximum-weight spanning tree property

Associated with each chordal graph G is a weighted clique intersection graph, WG,

defined as follows. The vertex set of WG is the set of cliques K:a. Two distinct cliques

I(, K _ E K:a are connected by an edge if and only if their intersection is nonempty;

moreover, each such edge (K, K _) is assigned a positive weight given by]I(N K_I. We

let _r'_astbe the set containing every maximum.weight spanning tree (MST) of WG.

Figure 3.4 shows Wt, for the chordal graph in Figure 3.1, and highlights the edges

of the clique tree in Figure 3.2. Observe that the highlighted clique tree is a maximum-

weight spanning tree of IVa, with edge weights that sum to five. Bernstein and Good-

man [2] first showed that for any chordal graph G, we have T_ nst= T_ t. Our proof of
this result is similar to that given by Gavril [13].

15-

i

, {5, 7}_ {6,7}
{7}

Figure 3.4: Weighted clique intersection graph for graph in Figure 3.1. Bold edges
belong to the clique tree in Figure 3.2. Also shown are the intersection sets upon which
the weights are based.

Our argument requires two ideas commonly used in the study of maximum-weight

(minimum-weight) spanning tree algorithms. First, let T = (/Ca,£T) be a spanning

tree of WG. It is well known that T is a maximum-weight spanning tree if and only if for

every pair of cliques K,K _E K;G for which (K,K _) _ £T, the weight of every edge on

" the path joining K and K' in T is no smaller than [l(Oh"l (see, for example, Tarjan [44,

pp. 71-72]). Second, given an edge (K, I(_) in a tree, we define the fundamental cut set

. (see Gibbons [18, p. 58]) associated with the edge as follows. The removal of (K,K')

from the tree partitions the vertices of T into precisely two sets, say/C1 and K;2. The

fundamental cut set associated with (K, K _) consists of every edge with one vertex in

K;1 and the other in K;2, including (h', K _) itself.

Theorem 3.5 (Bernstein and Goodman [2]). For any connected chordalgraph G,

=
Proof: We first show that T_ t C_T_ net. Let Tct E _r'_tand choose two cliques K and

K _ that are not connected by an edge in Tct. Consider the cycle formed by adding the

edge {Ii', K _} to Tct. By Theorem 3.1 every edge along this cycle has weight no smaller

than IK N K_I, whence Tct is a maximum-weight spanning tree of WG.

To see that _TGm't C_2"_t, choose Tm.t E T_ nst. By Theorem 3.1, T_ t _ 0. Choose

Tct E _T_t that has a maximum number of edges in common with Tm,t. Assume for

. the purpose of contradiction that there is an edge (IQ, I(_) of Trust that is not an edge

of Tct. Consider the fundamental cut set (in WG) associated with the edge (K1,K2)

. of Tm,t and also the cycle (in Tct) obtained by adding the edge (K1,K2) to Tct. Any

' cycle containing one edge from the cut set must contain another edge from the cut set

as well. Select from the cycle in Tct one of the edges (K3, K4) _ (K1, K2) that belongs

16-

to the cut set.

Note that the edge (K3, K4) is an edge of Tct, but it is not an edge of Tm, t. Since

Tct is • clique tree, it follows from Theorem 3.1 that K1 N K2 C K3 N K4. However, if

K1 NK2 were a proper subset of I(3N 1(4, then replacing (K1, K2) in Tm, t with (Ks, K4)

would result in a spanning tree of greater weight, contrary to the maximality of Tm,t's

weight. Hence, Kl N Ks = K3 N 1(4. Consider the tree obtained by replacing (K3, K4)

in Tct with the edge (K1,K2). The reader can easily verify that the resulting tree is

a clique tree. The new clique tree moreover has one more edge in common with Tm,t

than originally possessed by Tct, giving us the contradiction we seek. Consequently,

Tm, t = Tct, and the result holds. |

3.5. Summary

The following corollary summarizes the results presented in this section.

Corollary 1. For every connected graph G, we have

T_t=rla't=Z_P.

Furthermore, G is chordal if and only if this set is nonempty, in which case we have

m

Based on Corollary 1, we henceforth drop the superscripts from our notation and

shall use TG to denote the set of clique trees of G. Finally, Figure 3.5 illustrates

Corollary 1 in negative form. We now verify that the tree displayed in this figure

{71

Figure 3.5: Not a clique tree of the graph in Figure 3.1.

indeed satisfies none of the characterizations of a clique tree:

17-

[CT] The set K1 N K2 is not contained in I(4.

[IST] K:a(r6) does not induce a subtree.

- [RIP] The reverse topological ordering Ks, K2, K4, K1 is not an RIP ordering: K1 n

(/(40 K2U K3) = K1, which is, of course, contained in no other clique. It follows
then from the remark after Theorem 5 that the tree is not an RIP tree.

[MST] The weight of the tree, which is four, is submaximal by one.

4. Clique trees, separators, and M CS revisited

This section ties together some of the re.,mlts and concepts presented separately in Sec-

tions 2 and 3. Section 4.1 presents results that link the edges in a clique tree with

the minimal vertex separators of the underlying chordal graph. Section 4.2 presents an

efficient algorithm for computing a clique tree. This algorithm, which is a simple exten-

sion of the MCS algorithm, is shown to be an implementation of Prim's algorithm for

finding a maximum-weight spanning tree of the weighted clique intersection graph Wa.

New definitions and notation will be introduced as needed, and appropriate references
to the literature will be given in each subsection. As in the previous section, we assume

without loss of generality that G is connected.

4.1. Clique tree edges and minimal vertex separators

Choose a clique tree T E To and let S = Ki N Kj for some edge (Ki, Kj) E CT. Let
- Ti "- (_i,£i) and Tj = (K;j,ej) denote the two subtrees obtained by removing the

edge (Ki, Kj) from T, with Ki E ICi and Kj E K;j. We also define vertex sets 1_ C V

and Vj C V by

K E1Ci

and

KEK;j

We first prove two technical lemmas, the second of which shows that the set S =

Ki N Kj separates 1_ from Vj in G. These two results are then used in the proof of

Theorem 4.1 to show that for any clique tree T E Tct the set S _ C V is a minimal

vertex separator if and only if S _ = K N K _ for some edge (K, K _) E £:T. The results

in this section have appeared in both Ho and Lee [21] and Lundquist [33]. The proofs

of Lemma 5 and Theorem 4.1 are similar to arguments given by Lundquist [33].
t,

Lemma 4. The sets _, Vi, and S form a partition of V.

18-

Proof: Let T, S, Ki, Kj, tci,tcj,P_,and I_ be asdefinedas inthe firstparagraph

of the subsection. Clearly, V = 1_ U I_ U S, and S is disjoint from both I_ and 1_. °
Hence it suffices to show that 1_ n I_ = 0. By way of contradiction assume the there
exists a vertex v E 1_ N 1_. It follows that v belongs to some clique K E tci and also

belongs to some clique If "_E tcj. Since T E Ta, the vertex v belongs to every clique

along the path joining If"and If"_ in T, which necessarily includes both If"i and Kj. In
consequence, v E S = Ki N If.j, which is impossible since both I_ and Vj are disjoint
from S, whence the result follows. 1

Lemma 5. IfS = Ki N Kj and (Ki,Kj) E f'rforsome T E g'G,then S isa vw.

separator for every pair of vertices v E I_ and w E 1_.

Proof: Again let T, S, Ki, If"j, tcl, tcj, _, and I_ be as defined in the first paragraph

of the subsection. To prove the result it suffices to show that there exists no edge
(v, w) E Ea with v E I_ and w E 1_. Now, if (v, w) E Ea, then there exists a clique

K E tca for which v, w E K. If K E tci then clearly v, w E S U I_. Moreover since by

Lemma 4, l_, I_, and S form a partition of V, it follows that neither v nor w belongs
to Vi. Likewise, if K E tcj then v, w E S U 1_, and neither v nor w belongs to 1_. In

consequence, no edge in Ea joins two vertices v E 1_ and w E Vi, which concludes the
proof. 1

Theorem 4.1. Let T E Ta. The set S C V is a minimal vertex separator of G if and

only if S = K N K' for some edge (K, K') E f.r.

Proof: For the "if" part let T E Ta, and let S = K N K', for some edge (K, K') E £T.

Consider two vertices v E K - S and w E K' - S. By Lemma 5, S is a vw-separator.
Moreover, since both v and w are adjacent to every vertex in S, it follows that S is a
minimal vw-separator, as desired.

To prove the "only if" part, choose T E Ta and let S be a minimal vw-separator

of G. Since (v,w) _ E, the sets tca(v) and tca(w) induce disjoint subtrees of T.
Choose K E tCa(v) and K' E tca(w) to minimize the distance in T between If" and

K'. Consider the path p = [K = Ko, KI,...,Kr-I,Kr - K'] in T, where r > 1. Define

Si :- Ki N Ki+l for 0 < i _<r - 1, and let ,q := {S0, S1,...,Sr-l}. We will show that
S E ,.q, which suffices to prove the result.

First, to see that Si C_S for at least one set Si E ,.q, suppose (for the purpose of
contradiction) that Si _=S for every Si E ,.q, and choose xi E Si- S for each member of

8. Since xi E l(iNI(i+l (0 <_i< r- 1), we have a path [V, Xo, Zl,...,xr_l,w] joining
v and w in G \ S, contrary to our assumption that S is a vw-separator. It follows that
Si C_S for at least one set Si E _q.

Now select Si E ,q for which Si C_S, and consider the two subtrees obtained by

removing the edge (li'i, Ki+I) from T. Let T_ be the subtree containing K0 3 v, and

let T,o be the subtree containing Kr 3 w. Since Si is contained in the vw-separator

S, we clearly have v,w _ Si. Hence, by Lemma 5, Si is a vw-separator. Since S is

19-

moreover a minimal vw-separator, we have S = Si = KINKI+1 where (Ki, Ki+I) E ET,
• as required. |

For a clique tree T = (/CG,£T) E Ta, consider the set containing every distinct set
" K fl K' where (K, I(') E £T. It follows immediately from Theorem 4.1 that this set is

the saJme for every clique tree T E Ta. In light of Theorem 4.1, we shall refer to the

members of this invariant set as separators. For any clique tree T = (/Ca, ET) E Ta
consider the multiset of separators defined by

Atr := {KnK'I(K,K') _ Zr).

ThatthismultisetisthesameforallcliquetreesT E Ta isanimmediateconsequence

ofaresultbyHo andLee[21];theresultwasalsoprovenbyLundquist[33].The proof
istakendirectlyfromBlairand Peyton[4].

Theorem 4.2 (Ho and Lee [21], Lundquist [33]). The multiset of separators is
the same for every clique tree T E TG.

Proof: For the purpose of contradiction, suppose there exist two distinct clique trees
T,T' q Ta for which .A4T # A/IT,. From among the clique trees T' q TQ for which

•_4T, # .AdT, choose T' so that it shares as many edges as possible with T. (Note
that T and T' cannot share the same edge set, for then they also would share the same
multiset of separators.)

" Let (K1,K2) be an edge of T that does not belong to T'. As in the proof of Theo-

rem 3.5, consider the fundamental cut set (in Wa) associated with the edge (K1,K2)
. of T and also the cycle (in T') obtained by adding the edge (K1,K2) to T'. Recall

that any cycle containing one edge from the cut set must contain another edge from

the cut set as weil. Select from the cycle in T' one of the edges (K3,K4) # (K1,K2)
that belongs to the cut set. Note that the edge (1(3, K4) is an edge of T' but not an
edge of T.

Since T E Tct, it follows by Theorem 3.1 that I_3 N K4 C_K1 t3 K2; similarly, since
T' E Tct, it follows by Theorem 3.1 that K1NK_ C_I(3NK4; hence I(3NK4 = K1 nK2.

By Theorem 3.5, the replacement of (K3, K4) in T' with (K1,K2) results in a clique
tree, which, moreover, clearly has the same multiset of separators that T' has. Contrary
to our assumption about T', the modified tree shares one more edge with T, and thus
result follows. II

4.2. MCS and Prim's algorithm
q

Prim's algorithm [38]is an efficient method forcomputing a maximum-weight (minimum-

. weight) spanning tree of a weighted graph. Thus, by Theorem 3.5, Prim's algorithm
applied to the weighted clique intersection graph WG computes a clique tree T E Ta.

At any point the algorithm has constructed a subtree of the eventual maximum-weight

- 20-

spanning tree T, and at each step it adds one more clique and edge to this subtree.
Let_ C K:abethecliquesinthesubtreeconstructedthusfar.As thenextedgetobe "

added,thealgorithmchoosestheheaviestedgethatjoinsK_toK_a- K_.Fora proof

thatPrim'salgorithmcorrectlycomputesa maximum-weightspanningtree,we refer

thereadertoTarjan[44,pp.73-75]orGibbons[18,pp.40-42].A versionofPrim's

algorithmformulatedspecificallyforourproblemisgiveninFigure4.1.

Choose K E K;a;

.- {K};
forr_2tomdo

ChoosecliquesK E _ and IfIE tCG-
forwhich[IfN I(°[ismaximum;

ZT 4--_'Z (-J{(lt",](0};

{Ic'};
end for

Figure 4.1: Prim's algorithm for finding a maximum-weight spanning tree of the
weighted clique intersection graph Wt.

In this section we will show that the MCS algorithm applied to a chordal graph G
can be viewed as an implementation of Prim's algorithm applied to Wa. In Section 4.2.1
we show that since the MCS algorithm generates a PEO, it can easily detect the cliques
in K:a during the course of the computation. Section 4.2.2 shows that 1) the MCS
algorithm can be viewed a.s a block algorithm that "searches" the cliques in KIGone
after the other, and 2) tile order in which the cliques are searched is precisely the order
in which the cliques are searched by Prim's algorithm in Figure 4.1. Using the results
in Sections 4.2.1 and 4.2.2, we also show how to supplement the MCS algorithm with

a few additional statements so that it detects the cliques and a set of clique tree edges
as it generates a PEO. A detailed statement of this algorithm appears at the end of
Section 4.2.2.

The close connection between the MCS algorithni and Prim's algorithm was, to
our knowledge, first presented by Blair, England, and Thomason [3]. Several of the
proofs in this section are similar to arguments given by Lewis et al. [24]. Though the
techniques discussed in this section can be implemented to run quite efficiently, there
are more efficient ways to compute a clique tree when certain data structures that arise

in sparse matrix computations are available. The reader should consult Lewis et al. [24]
for details on how to compute a clique tree in the course of solving a sparse positive
definite linear system.

-21-

4.2.1. Detecting the cliques
I

In this subsection we show that the MCS algorithm can easily and efficiently detect
the cliques in K;G. To do so we exploit the fact that MCS computes a PEO. We shall

use the following result from Fulkersonand Gross [10].

Lemma 6 (Fulkerson and Gross [10]). Let vl,v2,_..,vn be a perfect elimination
ordering of G. The set of maximal cliques _G conta/ns precisely the sets {vi} Umadj(vi)
for which there exists no vertex vi, j < i, such that

{vi) tj madj(vi) C {nj) tj madj(nj). (4.1)

Proof: Choose K E /ga and let vi E K be the vertex whose label i assigned
by the PE0 is lowest among the labels assigned to a vertex of K. Consider the
vertex set {hl)U madj(vi). Since K consists of vi and neighbors of vi with labels

i larger than i, clearly K C_{vi} U madj(vl). Because the ordering is a PEO, the set
{vi} U madj(vi) must be complete in G. Thus by maximality of the clique K we have
K = {vi} U madj(vi), and moreover it follows that (4.1) holds for no vertex vi, j < i.

Now, let K = {vi} U madj(vi) and suppose that (4.1) holds for no vertex vi, j < i.
Since the ordering is a PEO, clearly K is complete in G. If K is submaxiraal, then there

exists a vertex vj E V - K that is adjacent to every vertex of K. But the existence of

such a vertex vj is impossible: if j > i then vj E madj(vl), contrary to W E V - K;
if j < i then (4.1) holds for vi, contrary to our assumption. In consequence, no such

" vertex vj exists, and the result follows. |

Throughout the remainder of the paper we let vi,v2,...,vn be a PEO obtained
" by applying the MCS algorithm to a connected chordal graph G. We shall call vir

the representative vertex of Kr whenever Kr = {vir} U madj(vir); that is, we let
vi1,via,..., vim be the representative vertices of the cliques lr1, I(2,...,/fm, respec-
tively, where il > i2 > ... > lm. Thus the ordering K1, K2,..., Km specifies the order
in which the cliques are searched by the MCS algorithm.

As the MCS algorithm generates a PEO it can easily detect the representative
vertices and hence can easily collect the cliques in K;G. Condition 2 in the next lemma

provides a test for determining when a vertex in an MCS ordering is not a representative
vertex. Lemma 8 then provides a simple test for detecting the representative vertices.

Lemma 7. Let vi, v2,..., vn be a perfect elimination ordering obtained by applying
the maximum cardiaality search algorithm to a connected chordal graph G. r', ,ach
vertex label i, 1 <_i <_n - 1, the following are equivalent:

1. {vi+l } U madj(vi+l) li.K,¢,.

" 2. Jadj(vi) N£i+11 = Jadj(vi+_) N £i+_l + 1.

3. {vi} Umadj(vi) = {vi, Vi+l} U madj(vi+l).

- 22 -

Proof: First we state two inequalities that prove useful here and in later proofs. Note

that the maximum cardina!Jty selection criterion ensures that the following inequality °

holds truc when vi+l (1 _<i _< n- 1) is selected to be labeled:

ladj(vi) N £i+2l -_]adj(vi+l) N £i+2]. (4.2)

Equation (4.2) along with the fact that £i+1 - £i+2 LI{vi+l}, gives us

ladj(vi) N £i+1[_< ladj(vi+l) 0 £i+21 + 1. (4.3)

Assume that the first condition in the statement of the lemma holda for vi+l, and
consider the vertex vi selected by the MCS algorithm at the next step. When the

algorithm selects vi there exists (by Lemma 6) a vertex u E V - Li+l that is adjacent

to every vertex in {vi+l } tj madj(vi+l). In light of (4.3), the existence of such a vertex

u ensures that the vertex vi chosen by the MCS algorithm (perhaps vi = u) satisfies
the second condition.

Assume now that tile second condition in the statement of the lemma holds for the

two vertices vi and vi+l. It immediately follows that

Imad/(vi)l= I{vi+l } tj madj(vi+x)[.

Consequently, to prove that the third condition holds true it suffices to show that

madj(vi) C_{vi+l) U madj(vi+l). Now ifit were the case that vi+l fLadj(vi), then from
(4.2) and the fact that £i+1 = £i+2 tj {vi+l} we would have

ladj(vi) n £/+11 < ladj(vi+l) n £/+2[,

contrary to our assumption that condition 2 holds true. It follows then that vi+l is

adjacent to vi in G. Now choose Vk E madj(vi)- {vi+l}. Clearly k _>i -t-2; moreover,

since {vi} tj madj(vi) is complete in G, Vk is necessarily adjacent to vi+l E madj(vi);
whence Vk E madj(vi+l), giving us condition 3.

Finally, by Lemma 6 the first condition follows immediately from the third, which
completes the proof. II

Further extending the result in Lemma 7, we obtain the following technique for

detecting the representative vertices of K_Gwhile generating the MCS ordering.

Lemma 8. Let vi, v2,...,vn be a perfect elimination ordering obtained by applying

the maximum cardinality search algorithm to a connected chordal graph G. Then

1CG contains precisely the following sets: {vi} tj madj(vl) and {vi+l} tj madj(vi+l),
1 _<i _< n- 1, for which

I

ladj(vi) N/:/+li -< ladj(vi+l) n £i+2l. (4.4)

- 23 -

Proof: From Lemma 6 itfollowsthat{vl}U madj(vl)E ff,a. Considertheset

" {vi+l}Umadj(vi+l) where 1 < i < n- 1. It follows from (4.3)and tile equivalence
of conditions 1 and 2 in Lemma 7 that {vi+l} Umadj(vi+l) is a member of/CG if and

. only if (4.4) holds. This concludes the proof. I

4.2.2. MCS as a block algorithm

Clearly, the MCS algorithm can detect the cliques in/Ca by determining at each step

whether or not (4.4) holds. With the next lemma we show that the MCS algorithm
can be viewed as a block algorithm that searches the cliques of K:G one after the other.

Lemma 9. Let vi, v2,..., vn be a perfect elimination ordering obtained by applying

the maximum cardinality search algorithm to a connected chordal graph G, and let
vll , vi2,..., vi, be the representative vertices of the cliques IQ , K2, . . . , It',n, respec-
tively, where il > i2 > ... > lm. Then

r

z,, = LIK, (4.5)
$----1

for each r, 1 < r < m.

Proof: Choose r, 1 < r < m, and assume vj _ £i,, i.e., j < iT. Since clearly
vj _ {vi,} U madj(vi,) for each s, 1 < s _<r, it follows by Lemma 6 that vj _ U,r=IKs.

" Now assume vj E £i, and for convenience of notation define io := n + 1. Choose s,

1 < s < r, for which i, < j < i,-1. If j - is, then clearly vj E K, = {vi} U madj(vj).
- If is < j, then by repeated application of condition 3 of Lemma 7, we have

Ks = {vi, } U madj(vi,),

= {vi,, vi,+1 } U madj(vi,+l),

= {vi,, vi,+1,..., vi} U madj(vj).

Consequently, vj E K,, and the result follows. I

It follows from Lemma 9 that the MCS algorithm labels the vertices contiguously
in blocks as follows:

{Vi I , Vii+l,. •., Vn -- rio-1 } ---- gl

-- {vi_ ,1)i_+l,...,vil_l} - K2- g 1
2

{Via, Via+l, . . ., Via-1} -- I¢3-- U Ksm
,--1

- 24 -

m-1

{vi = Vi,,,Vim+l,...,Vi,,_a-1} = Km - U Ks. •
s-'l

For convenience we define the function clique : V _ {1,...,m} by clique(vi) := r

where i0 := n-t- 1 and vj E {Vi,,Vir+l,...,Vir__-l} (i.e., ir _< j < i,.-1). Clearly

clique(v) is the lowest index of _"clique that contains v; that is,

clique(v) = min {r I :' 6 Kr }.

The following lemma is needed to provide a means of detecting the edges of a clique

tree, and it is also critical in the proof of the main result in this subsection.

Lemma 10. Let vi, v2,..., v,_ be a perfect elimination ordering obtained by applying

the maximum cardin_.lity search algorithm to a connected chordal graph G, snd let

vi_, vi_,..., vi,, be the representative vertices of the cliques K1, K2, ,Km, respec-

tively, where il > i2 > ... > iT,. For any integer r, 1 < r < rn- 1, tLtere exists an

integer p, 1 < p < r, such that

Kr+l fl £i_ = Kr+I N Kp. (4.6)

Moreover, Equation (4.6) is sat_s_ed when p = clique(vi), where vj is the vertex in

K,+I N £i_ with smallest label j.

Proof: Let 1 < r < m - 1. From Lemm.a 9 it follows that for 1 < p < r we have

K_+I n Kp C_K_+_ N £i_.

To pro,,e the result it suffices to show that Kr+l CI/:i_ C: Kp. Now co_Lsider the set

K_+I N £i_, and choose vj 6 Kt+, CI£;,. with smallest label j. Clearly J[f_+, Cl£i, is

ccmplete in G and moreover

gr+l CI _ir C_ {vi} 13 madj(vj). (4.7)

Choose p, 1 < p < r, for which ip < j < ip-1. (Note that p = clique(vj).) By the same

argument used in the proof of Lemma 9, we have

{vi} Umadj(vj) C_K n. (4.8)

C_mbining (4.7) and (4.8), we obtain she result. II

From Lemmas 9 and 113it tbUows that any MCS clique ordering is also an RIP

ordering. Furthermore, Lemma 10 shows specifically how to use the clique function to

obtain the edges of a clique tree in an efficient manner. (This technique fox'determining

a clique tree parent function was introduced by Tarjan and Yannakakis [45] and _dso

- 25-

appears in Lewis et al. [24].) It follows that the MCS algorithm can generate a clique

" tree by 1) detecting the cliques via representative vertices (Lemma 8) and 2) choosing

as the parent of Kr+l the clique Ep for which p - clique(vi) where j is the smallest

- label in Kr+l n £i_. The following result shows that any clique tree generated in this

fashion could also be generated by Prim's algorithm applied to WG.

Theorem 4.3. Any order in which the cliques are searched by the maximum cardi.

na/ity search algorithm is also an order in which the cliques are searched by Prim's

algorithm applied to WG.

Proof: Let K1, K2,..., Km be an ordering of K:G generated by the MCS algorithm.

Choose r, 1 < r _< m - 1. To show that this clique ordering is also a search order for

Prim's algorithm applied to WG (see Figure 4.1), it suffices to show that there exists p

(1 _<p < r) for which

]Kr+IAKv] = max [Kt ni(,]. (4.9)l<s<r
r+l'<r<m

To prove that (4.9) holds, choose any s and t for which I _<s _<r < t _< m. Consider the

vertex vj E Kr+l nf-,i, for which j is minimum, and let p = clique(vi). By Lemma 10,
we can write

lfr+l n K;, = l(r+l n £i_. (4.10)

Lemma 9 and the discussion following that result imply that vi_-i is the vertex from

- Kr+l - £i_ whose label is maximum. By repeated application of condition 3 of Lemma 7

(as needed) we obtain the following:

= }u madj(vi +,),
= {vi_+a,vi_+,+l} Umadj(vi_+l+l),

= {vi,.+l,...,vir_2,vir_l}Umadj(vi,._l).

In consequence we have

K,.+I ngl, = adj(vi,._l)n £ir. (4.11)

Now, if

Igt n £i,.I > ladj(vi,._l) n £i,.I,

then for u E Kt- £i,. _ 0, we have
I,

n < ladj(u)nZ. l,

- 26 -

contrary to the maximum cardinality search criterion by which the vertices were labeled.
ltfollowsthenthat

ladj(vi,.-1)n £i,.I>_Ih'tn £i,.I. (4.12)

Finally, Lemma 9 implies that

lit', n Z:i,I _ lit', n go I. (4.13)

Combining (4.10), (4.11), (4.12), and (4.13) shows that (4.9) holds, giving us the result.

|

From the results in this subsection, we obtain an expanded version of the MCS

algorithm, which computes a clique tree in addition to a PEO. The MCS algorithm is

shown in Figure 2.3, and the expanded algorithm is shown in Figure 4.2. We emphasize

prev_card _ O;

£.+1 _ 0;
s_-O;

ZT _" 0;

fori_-nto lstep-ldo

Choose a vertex v E V - £i+1 for which
ladj(v) n £i+,l is maximum;

a(v) _ i; [v becomes vi]

new_card_ ladj(vi)O£i+11;
if new_card < prev_card then [begin new clique]

s_s+l;

K8 _ adj(vi) O£i+l; [= madj(v)]

if new_card _ 0 then [get edge to parent]

k ,-- min{jlvj _. lt',};
p _ clique(vk);

ZT _" ZT U { g.ls, Kp} ;
end if

end if

clique(vi) _ s;

K, .- K. u {vi};
£i ,--£i+_u {vi};
prev_card _ new_card;

end for

Figure 4.2: An expanded version of MCS, which implements Prim's algorithm in Fig-
ure 4.1.

that the primary purpose of this section is to establish the connection between the MCS

- 27-

algorithm and Prim's algorithm (applied to Wa), and Theorem 4.3 demonstrates that

" the detailed algorithm in Figure 4.2 can be viewed as a special implementation of Prim's

algorithm shown in Figure 4.1. Some of the details necessary to represent a chordal

- graph as a clique tree have been discussed here; for a complete discussion of this topic

the reader should consult the papers [24,45]. It is worth noting that a clique tree is

often a much more compact and more computationally efficient data structure than

the adjacency lists usually used to represent G.

5. Applications

In this section we briefly review a few recent applications of chordal graphs and clique

trees in sparse matrix computations.

5.1. Terminology

Let Ax = b be a sparse symmetric positive definite system of linear equations, whose

Cholesky factorization is denoted by A = LL T. Direct methods for solving such linear

systems store and compute only the nonzero entries of the Cholesky factor L. This

factorization generally introduces fill (or fill-in) into the matrix; that is, some of the
zero entries in A become nonzero entries in L.

Assume the coefficient matrix A is n x n. We associate a graph GA = (V, EA) with

the matrix A in the usual way: the vertex set is given by V - (vi, v2,..., vn}, with two

vertices vi and vj joined by an edge in EA if and only if aij _ 0. We define the filled

graph GF - (V, EF) in precisely the same way, where F := L Jr L T. Note that GF is

a chordal supergraph of GA (EA C_EF) [39], and the order in which the unknowns are

eliminated is a PEO for the corresponding filled graph GF.

5.2. Elimination trees

More commonly used than the clique tree, the elimination tree associated with the

ordered graph GA has proven very useful in sparse matrix computations. The elimina-

tion tree TA = (V, ET) for an irreducible graph GA is a rooted tree defined by a parent

function as follows: for each vertex vi, 1 _<j <_n - 1, the parent of vj is vi, where the

first off-diagonal nonzero entry in column j of L occurs in row i > j. If GA is reducible,

one obtains a forest rather than a tree. A topological ordering of TA is any ordering of

the vertices that numbers each parent with a label larger than that of any of its chil-

dren. The order in which the unknowns are _!iminated, for example, is a topological
ordering of the tree TA, and, in fact, any topological ordering of the tree is a PEO of

GR. Elimination trees evidently were introduced by Schreiber [41], though they had

. earlier been used implicitly in a number of algorithms and applications. Liu [31] has

provided a survey of the many uses of elimination trees in sparse matrix computations.

- 28 -

Liu has also discovered an interesting connection between clique trees and elimi-
nation trees. To facilitate our discussion of this connection we need to introduce the

following concepts and results. If _" is a finite family of nonempty sets, then the

intersection graph of _ is obtained by representing each set in _ by a vertex and con- °

netting two vertices by an edge if and only if the intersection of the corresponding sets

is nonempty. A subtree graph is an intersection graph where _ is a family of subtrees

of a specific tree. Buneman [5], Gavril [12], and Walter [46] independently discovered

that the set of chordal graphs coincides with the set of subtree graphs in a result that
further extends Theorem 3.3.

Theorem 3.2 provides an obvious way to represent a chordal graph G := GF as a

subtree graph. Choose any clique tree Tct E Ta, and consider the family of subtrees of

Tct given by

= (lCG()Iv e v}.

Since two vertices are adjacent to one another in G if and only if there exists a clique

K E K:a to which both vertices belong, it follows that for each pair of vertices u, v E V,

we have (u, v) E E if and only if the subtree induced by K:a(u) intersects the subtree

induced by K:a(v). In consequence, G is a subtree graph for the family of subtrees

in any clique tree Tct E Tc.

Liu has shown how elimination trees provide another way to view chordal graphs

as subtree graphs. Let the row vertex set, denoted Struct(Li,.), be defined by

Struct(Li,.) := {vi l eij _ 0}.

Liu [27] has shown that each row vertex set Struct(Li,.) induces a subtree of TA rooted

at vi. In consequence, GF is a subtree graph for the family of subtrees induced by the

row vertex sets of L. For a full discussion of this result, consult Liu [31].

5.3. Equivalent orderings

The fill added to GA contains precisely the edges needed to make the order in which

the unknowns of the linear system are eliminated a PEO of the filled graph GF [39].

Usually, the primary objective in reordering the linear system is to reduce the storage
(i.e., fill) and work required by the factorization. Every PEO of GF results in precisely

the same factorization storage and work requirement [29]. It is common practice in

this setting to define all perfect elimination orderings of GF as equivalent orderings.

Before advanced machine architectures entered the marketplace, there was little

reason to consider choosing one PEO of GF over another. Generally, whatever ordering

was produced by the fill-reducing ordering algorithm (e.g., nested dissection [14,15] or

minimum degree [17,26]) was accepted without modification. But this situation has

changed to some extent with the advent of vector supercomputers, powerful RISC-based

workstations, and a wide variety of parallel architectures. Algorithms designed for such

- 29 -

machines may benefit by choosing one PEO of GF over the others in order to optimize

" some secondary objective function. (There is still the underlying assumption that a

good fill-reducing ordering is desired, though this assumption is subject to question

. more than it once was and deserves further study.) The following summarizes a few

algorithms designed to produce an equivalent ordering that optimizes some secondary

objective function.

Reordering for stack storage reduction One of the first algorithms of this type

was a simple algorithm due to Liu [28] for finding, among ali topological orderings of

the elimination tree, an ordering that minimizes the auxiliary storage required by the

multifrontal factorization algorithm. In addition, Liu [29] gives a heuristic for finding an

equivalent ordering that further reduces auxiliary storage for multifrontal factorization.

Finding an optimal equivalent ordering for this problem is still an open question.

Jess and Kees reordering Short elimination trees can be useful when the factor-

ization is to be performed in parallel. Jess and Kees [22] introduced a simple greedy

heuristic for finding an equivalent ordering that reduces elimination tree height. Liu [30]

has shown that the Jess and Kees ordering scheme minimizes elimination tree height

among all equivalent orderings. Liu and Mirzaian [25] introduced an O(n + IEFI) imple-

mentation of the Jess and Kees scheme. Lewis, Peyton, and Pothen [24] used a clique

tree of GF to obtain an O(n + q)-time implementation of the Jess and Kees algorithm

" where q = _=1]Ki], which in practice is substantially smaller than]EF]. Because a

PEO of GF is known a priori, a clique tree of GF can be obtained in O(n) time using

- output fi'om the symbolic factorization step of the solution process [24].

A block Jess and Kees reordering Blair and Peyton [4] have studied a block form

of the Jess and Kees algorithm that generates a clique tree T E TG of minimum diame-

ter. The primary motivation for this algorithm is to minimize the number of expensive

communication calls to the general router on a fine-grained parallel machine [19]. The

time complexity of their algorithm is also O(n + q) in the sparse matrix setting, where

a PEO is known a priori. A similar algorithm motivated by the same application was

given by Gilbert and Schreiber [19].

Partitioning (and reordering) for parallel triangular solution A related prob-
lem is the following: Find a partition of the columns in the factor L with as few members

as possible, such that for ,_ach partition member, the elementary elimination matrices

- associated with that member can be multiplied together without increasing the storage
requirement for the factor. Such a partition and its associated PEO is desirable for

implementing sparse triangular solution on a fine-grained massively parallel machine.

Pothen and Alvarado [37] have solved this problem when the ordering is restricted

to topological orderings of the elimination tree. Peyton, Pothen, and Yuan [36] have

30-

developed an O(n + IErl) algorithm that solves the problem for the larger set of all

equivalent orderings; they are also working on an O(n + q) clique-tree-based algorithm

for solving the problem [35].
Q.

5.4. Clique trees and the multifrontal method

Block algorithms have become increasingly important on advanced machine architec-

tures, both in dense and sparse matrix computations [11]. The multifrontal factoriza-

tion algorithm [8,32] is perhaps the canonical example in sparse matrix computation.

That clique trees, which represent chordal graphs in block form, might be a useful tool

in explaining the multifrontal method is not at all surprising.

Clique trees provide the framework for presenting the multifrontal algorithm in Pey-

ton, Pothen, and Sun [34,38]. The clique tree is rooted and ordered by a postordering

of the tree, and each clique K has associated with it a frontal matrix F(K). Let K

and P be respectively a clique and its parent in the clique tree. The columns of F(K)

are partitioned into two sets: the factor columns of F(K) correspond to the vertices

in K \ P, and the update columns of F(K) correspond to the vertices in K N P. For

further details consult the two references given above.

Due to its simplicity, the supernodal elimination tree is more commonly used in

descriptions of the multifrontal algorithm. Liu's survey article [32], for example, uses

the supernodal elimination tree to describe the block version of the algorithm.

5.5. Future progress on the "ordering" problem

Finally, we anticipate that a solid understanding of chordal graphs and clique trees will

play a role in future progress in the difficult area of analyzing and understanding order-

ing heuristics. The problem of finding a fill-minimizing ordering of an arbitrary graph

is NP-hard [48]. Consequently, progress in understanding the "ordering" problem will

probably require a better understanding of the broad but nontheless highly restricted

classes of graphs GA that arise in various application areas. If there is some progress

in that area, then we further speculate that creating and/or analyzing ordering algo-

rithms for these classes of graphs will involve many interesting properties and features

of chordal graphs and clique trees. Some will be the results presented in this paper;

perhaps others will be new, or at least a fresh look at familiar concepts.

6. References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic

database systems. J. Assoc. Comput. Mach., 30:479-513, 1983.

[2] P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM J. Comput.,
10:751-771, 1981.

- 31 -

[3] J.R.S. Blair, R.E. England, and M.G. Thomason. Cliques and their separators

" in triangulated graphs. Technical Report CS-78-88, Department of Computer

Science, The University of Tennessee, Knoxville, Tennessee, 1988.
o

[4] J.R.S. Blair and B.W. Peyton. On finding minimum-diameter clique trees. Tech-

nical Report ORNL/TM-11850, Oak Ridge National Laboratory, Oak Ridge, TN,
1991.

[5] P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205-212,
1974.

[6] (3. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71-76,
1961.

[7] I. S. Duff and J. K. Reid. A note on the work involved in no-fill sparse matrix

factorization. IMA J. Numer. Anal., 3:37-40, 1983.

[8] I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. A CM Trans. Math. Software, 9:302-325, 1983.

[9] P. Edelman and R.E. Jamison. The theory of convex geometries. Geometriae

Dedicata, 19:247-270, 1985.

[10] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
" J. Math., 15:835-855, 1965.

. [11] K.A. Gallivan, M.T. Heath, E. Ng, J.M. Ortega, B.W. Peyton, R.J. Plemmons,

C.H. Romine, A.H. Sameh, and R.G. Voigt. Parallel Algorithms for Matrix. Com-

putations. SIAM, Philadelphia, 1990.

[12] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal

graphs. J. Combin. Theory Ser. B, 16:47-56, 1974.

[13] F. Gavril. Generating the maximum spanning trees of a weighted graph. J.
Algorithms, 8:592-597, 1987.

[14] A. George. Nested dissection of a regular finite element mesh. SlAM J. Numer.

Anal., 10:345-363, 1973.

[15] A. George and J.W-H. Liu. An automatic nested dissection algorithm for irregular

finite element problems. SlAM J. Numer. Anal., 15:1053-1069, 1978.

[16] A. George and J.W-H. Liu. Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[17] A. George and J.W-H. Liu. The evolution of the minimum degree ordering algo-

rithm. SlAM Review, 31:1-19, 1989.

- 32-

[18] A.M. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cam-

bridge, 1985.

[19] J.R. Gilbert and R. Schreiber. Highly parallel sparse Cholesky factorization. m,

SIAM J. Sci. Star. Comput., 13:1151-1172, 1992.

[20] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

[21] C-W. Ho and R,. C. T. Lee. Counting clique trees and computing perfect elimina-

tion schemes in parallel. Inform. Process. Lett., 31:61-68, 1989.

[22] J.A.G. Jess and H.G.M. Kees. A data structure for parallel L/U decomposition.

IEEE Trans. Comput., C-31:231-239, 1982.

[23] E.S. Kirsch. Practical parallel algorithms for chordal graphs. Master's thesis,

Dept. of Computer Science, The University of Tennessee, 1989.

[24] J.G. Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse

matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10:1156-1173,
1989.

[25] J. W-II. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting

of chordal graphs. SIAM J. Disc. Math., 2:100-107, 1989.

[26] J.W-H. Liu. Modification of the minimum degree algorithm by multiple elimina-

tion. ACM Trans. Math. Software, 11:141-153, 1985.

[27] J.W-II. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. Math. Software, 12:127-148, 1986.

[28] J.W-H. Liu. On the storage requirement in the out-of-core multifrontal method

for sparse factorization. ACM Trans. Math. Software, 12:249-264, 1986.

[29] J.W-H. Liu. Equivalent sparse matrix reordering by elimination tree rotations.

SIAM J. Sci. Stat. Comput., 9:424-444, 1988.

[30] J.W-H. Liu. Reordering sparse matrices for parallel elimination. Parallel Com-

puting, 11:73-91, 1989.

[31] J.W-H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix,
Anal. Appl., 11:134-172, 1990.

[32] J.W-H. Liu. The multifrontal method for sparse matrix solution: theory and

practice. SIAM Review, 34:82-109, 1992.
,,t

[33] M.E. Lundquist. Zero patterns, chordal graphs and matrix completions. PhD

thesis, Dept. of Mathematical Sciences, Clemson University, 1990.

- 33 -

[34] B.W. Peyton. Some applications of clique trees to the solution of sparse linear

- systems. PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.

[35] B.W. Peyton, A. Pothen, and X. Yuan. A clique tree algorithm for partitioning
chordal graphs for parallel sparse triangular solution. In preparation.

[36] B.W. Peyton, A. Pothen, and X. Yuan. Partitioning a chordal graph into transitive

subgraphs for parallel sparse triangular solution. In preparation.

[37] A. Pothen and F.L. Alvarado. A fast reordering algorithm for parallel sparse

triangular solution. SIAM J. Sci. Star. Comput., 13:645-653, 1992.

[38] A. Pothen and C. Sun. A distributed multifrontal algorithm using clique trees.

Technical Report CS-91-24, Department of Computer Science, The Pennsylvania

State University, University Park, PA, 1991.

[39] tt.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, pages 1389-1401, 1957.

[40] D.J. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In It. C. Read, editor, Graph Theory and

Computing, pages 183-217. Academic Press, 1972.

[41] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination
- on graphs. SIAM J. Comput., 5:266-283, 1976.

. [42] It. Schreiber. A new implementation of sparse Gaussian elimination. A CM Trans.

Math. Software, 8:256-276, 1982.

[43] D.It. Shier. Some aspects of perfect elimination orderings in chordal graphs. Discr.
Appl. Math., 7:325-331, 1984.

[44] R.E. Tarjan. Maximum cardinality search and chordal graphs. Unpublished Lec-
ture Notes CS 259, 1976.

[45] tt.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, 1983.

[46] tt.E. Tarjan and M. Yannakakis. Simple llnear-time algorithms to test chordality of

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566-579, 1984.

. [47] J.R. Walter. Representations of rigid cy_ie graphs. PhD thesis, Wayne State
University, 1972.

- [48] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.

Disc. Meth., 2:77-79, 1981.

35-

ORNL/TM-12203

INTERNAL DISTRIBUTION

I. B.R. Appleton 21. C.H. Romine
2-3. T.S. Darland 22. T.H. Rowan

4. E.F. D'Azevedo 23-27. R.F. Sincovec
5. J.M. Donato 28-32_ R.C. Ward
6. J.J. Dongarra 33. P.H. Worley
7. G.A. Geist 34. Central Research Library
8. M.R. Leuze 35. ORNL PatentOfllce

9. E.G.Ng 36. K-25ApplTechLibrary
10.C.E.Oliver 37. Y-12TechnicalLibrary

11-15.B.W. Peyton 38. Lab RecordsDept- RC
16-20. S.A. Raby 39-40. Laboratory Records Dept

EXTERNAL DISTRIBUTION

41. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

42. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E.,Minneapolis,MN 55455

43. RobertG. Babb,OregonGraduateInstitute,CSE Department,19600N.W. von
Neumann Drive,Beaverton,OR 97006-1999

" 44. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

45. LawrenceJ.Baker,Exxon ProductionResearchCompany,P.O.Box 2189,Hous-
ton,TX 77252-2189

46. JesseL.Barlow,DepartmentofComputerScience,PennsylvaniaStateUniversity,
UniversityPark,PA 16802

47. Edward H. Barsis,ComputerScienceand Mathematics,P.O.Box 5800,Sandia
NationalLaboratories,Albuquerque,NM 87185

48. ChrisBischof,Mathematicsand ComputerScienceDivision,ArgonneNational
Laboratory,9700SouthCassAvenue,Argonne,IL 60439

49. Ake Bjorck,DepartmentofMathematics,LinkopingUniversity,S-58183 Linkop-
ing,Sweden

50-54.Jean R. S.Blair,DepartmentofComputerScience,AyresHall,Universityof
" Tennessee,Knoxville,TN 37996-1301

55. HeatherBooth,DepartmentofComputerScience,107AyresHall,Universityof
. Tennessee,Knoxville,TN 37996-1301

56. RogerW. Brockett,Wang ProfessorofElectricalEngineeringand ComputerSci-
ence,DivisionofAppliedSciences,HarvardUniversity,Cambridge,MA 02138

- 36-

57. James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

58. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

59. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

60. John Cavallini, Deputy Director, Scientific Computing Staff, Applied Mathemati.
cal Sciences, Office of Energy Research, U.S. Department of Energy, Washington,
DC 20585

61. Ian Carets, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

62. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

63. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

64. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada NIG 2Wf

65. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

66. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

67. Paul Concus, Mathematics and Computing, LawrenceBerkeley Laboratory, Berke-
ley, CA 94720

68. Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

69. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

70. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

71. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

72. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

73. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 32611-2024

74. John J. Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

75. Iain Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OXll
0QX, England

76. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

- 37-

77. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
-" 2158 Yale Station, New Haven, CT 06520

78. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
• Sweden

79. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

80. Robert E. England, Mathematics and Computer Science Department, Northern
Kentucky University, Highland Heights, KY 41076-1448

81. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, ETA Division, P.O. Box 24346, MS-TL-20 Seattle, WA 98124-0346

82. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

83. Paul Frederickson,Los Alamos National Laboratory, Center for Research on Par-
allel Computing, MS B287, Los Alamos, NM 87545

84. Fred N. Fritsch, L-316, Computing and Mathematics Research Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, GA 94550

85. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

86. K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

87. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
- ton, IN 47405

88. Feng Gao, DeI_,_rtmentof Computer Science, University of British Columbia, Van-
. couver, British Columbia V6T 1WS, Canada

89. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, _I 07974

90. C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
O8540

91. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A 0R8

92. J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

93. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

94. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

• 95. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

- 96. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

97. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

- 38 -

98. RichardHanson,IMSL Inc.,2500 Park West Tower One, 2500 CityWest Blvd.,

Houston, TX 77042-3020

99. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL
61801-2300

I00. Stephen T. Hedetniemi, Department of Computer Science, Clemson University,
Clemson, SC 29634

101. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

102. Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, MI3 9PL, England

103. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

104. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O, Box 808, Livermore, CA 94550

105. llse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

106. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

107. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

108. Harry ,lord.an, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

109. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

110. Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

111. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

112. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

113. Robert J. Kee, Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

114. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

115. Eric S. Kirsch, Department of Computer Science, 107 Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

116. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

117. Michael A. Langston, Department of Computer Science, 107 Ayres Hall, University
of Tennessee, Knoxville, TN 37996-1301

118. Richard Lau, Office of Naval Research, Code lllMA, 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

- 39 -

119. Alan J. Laub, Department of Electrical and Computer Engineering, University of
_- California, Santa Barbara, CA 93106

120. Robert L. ,auner, Army Research Office, P.O. Box 12211, Research Triangle Park,
. NC 27709

121. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

122. Peter D. L__x, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

123. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

124. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

125. Jing Li, _MSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 770A.'_-3020

126. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E1 4NS, England

127. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich,
Switzerland

123. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

129. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
- MD 20715-4300

130. Franklin Luk, Department of Computer Science, Amos Eaton Building - #131,
. Rensselaer Polytechnic Institute, Troy, l_Y 12180-3590

131. Brian A. Malloy, Department of Computer Science, Clemson University, Clemson,
SC 29634

132. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

133. Consuelo Maulino, Universidad Central de Venezuela, Escuela de Computacion,
Facultad de Ciencias, Apartado 47002, Caracas 1041-A, Venezuela

134. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 8!_8,
Livermore, CA 94550

135. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd., Pasadena, CA 91125

136. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

137. Neville Moray, Department of Mechanical and Industrial Engineering, University
- ofIllinois,1206West Green Street,Urbana,IL 61801

138. DianneP.O'Leary,Computer ScienceDepartment,Universityof Maryland,Col-
.. legePark, MD 20742

139. James M. Ortega,DepartmentofAppliedMathematics,Thornton Hall,University
ofVirginia,Charlottesville,VA 22901

- 40 -

140. Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

141. Chris Paige, McGill University, School of Computer Science, McConnell Engineer-
ing Building, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

142. Roy P. Patgas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

143. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

144. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

145. Dan Pierce,BoeingComputer Services,P.O.Box 24346,M/S 7L-21Seattle,WA
98124-0346

146. Robert J.Plemmons, Departmentsof Mathematicsand Computer Science,Box

7311,Wake ForestUniversity,Winston-Salem,NC 27109

147. JessePoore,Department of Computer Science,Ayres Hall,Universityof Ten-
nessee,Knoxville,TN 37996-1301

148. Alex Pothen,Computer ScienceDepartment,UniversityofWaterloo,Waterloo,
Ontario,Canada N2L 3GI

149. Yuanchang Qi,IBM European PetroleumApplicationCenter,P.O. Box 585,N-
4040 Hafrsfjord,Norway

150. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

151. S. S. ttavi, Department of Computer Science, LI67A, 1400 Washington Avenue,
Albany, NY 12222

.a

152. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OXll 0QX, England

153. Werner C. Rheinboidt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

154. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

155. Garry ttodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

156. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

157. Edward Rothberg, Department of Computer Science, Stanfo.,d University, Stan-
ford, CA 94305

158. Axe! Ruhe, Dept. of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

!59. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

160. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbar, a, IL 61801

-41 -

161. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, StanfordUniversity,Stanford,CA 94305

162. RobertSchreiber,RIACS, MailStop 230-5,NASA Ames ResearchCenter,Moffet

, Field,CA 94035

163. MartinH. Schultz,Department ofComputer Science,YaleUniversity,P.O. Box

2158 YaleStation,New Haven,CT 06520

164. DavidS.Scott,IntelScientificComputers,15201N.W. GreenbrierParkway,Beaver-
ton,OR 97006

165. LawrenceF.Shampine,MathematicsDepartment,SouthernMethodistUniversity,

Dallas,TX 75275

166. Andy Sherman,DepartmentofComputer Science,YaleUniversity,P.O.Box 2158

YaleStation,New Haven,CT 06520

167. Kermit Sigmon, Department ofMathematics,Universityof Florida,Gainesville,
FL 32611

168. HorstSimon,MailStopT045-1,NASA Ames ResearchCenter,MoffettField,CA
94035

169. Anthony Skjellum,LawrenceLivermoreNationalLaboratory,7000 EastAve.,L-

316,P.O.Box 808 Livermore,CA 94551

170. Danny C. Sorensen,Department ofMathematicalSciences,RiceUniversity,P.O.

Box 1892,Houston,TX 77251

171. G. W. Stewart,Computer ScienceDepartment,UniversityofMaryland,College
- Park,MD 20742

172. PaulN.Swartztrauber,NationalCenterforAtmosphericResearch,P.O.Box 3000,

. Boulder,CO 80307

173. MichaelG. Thomason, DepartmentofComputer Science,107 Ayres Hall,Univer-
sityofTennessee,Knoxville,TN 37996-1301

174. PhilippeToint,Dept. ofMathematics,Universityof Namur, FUNOP, 61 ruede

Bruxelles, B-Namur, Belgium

175. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

176. Henk van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

177. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

178. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

- 179. Udaya B. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

_. 180. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

181. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, TX 77084

- 42 -

182. Daniel D. Warner, Department of Mathematical Sciences, O-104 Martin Hall,
Clemson Un}versity, Clemson, SC 29631 _,

183. Robert P. Weaver, 1555 Rockmont Circle, Boulder, CO 80303

184. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. *
Box 1892, Houston, TX 77251

185. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-265, Los Alamos, NM 87545

186. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

187. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

188. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

189. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

190-199. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

L
f

