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CHEMICAL DURABILITY OF ZINC BOROSILICATE NUCLEAR WASTE GLASS 

J. H. Westsik, J r .  
J.  E. Mendel 

Chemical d u r a b i l i t y  i s  o f  p r imary  concern when e v a l u a t i n g  the  s a f e t y  o f  

waste g lass .  For  t h i s  reason, t e s t i n g  t h e  l e a c h a b i l i t y  o f  t he  waste d s s e s  

i s  a  fundamental p a r t  o f  t h e i r  development and c h a r a c t e r i z a t i o n .  The leach-  

a b i l i t y  must be understood i n  terms o f  t h e  p o t e n t i a l  thermal and r a d i a t i o n  

h i s t o r y  of t h e  waste g lass ,  and the  c o n d i t i o n s  o f  p o s s i b l e  c o n t a c t  w i t h  water .  

L e a c h a b i l i t y  i s  a l s o  ve ry  much a  f u n c t i o n  o f  g lass  composi t ion as p r e v i o u s l y  

discussed by Wayne Ross. Today, I w i l l  l i m i t  most of my d i scuss ion  t o  one 

r e p r e s e n t a t i v e  waste g lass  composit ion, a  h i g h - z i n c  b o r o s i l i c a t e  f o rmu la t i on  

which has been s t u d i e d  i n  d e t a i l  a t  B a t t e l l e  P a c i f i c  Northwest Labo ra to r i es .  - 
WASTE GLASS COMPOSITION 

The composi t ion o f  t h e  h igh -z inc  waste g lass  i s  shown i n  Table 1. I n  

processing,  t h e  g lass  i s  fo rmula ted  by combining a  g lass  frit, shown i n  t h e  

r i g h t  hand column, w i t h  t h e  waste which has been conver ted t o  a  f i n e  ox ide  
. 

powder i n  a c a l c i n e r .  For  t h e  h igh -z inc  g lass ,  t h e  frit i s  nomina l l y  fed a t  

a  g r a v i m e t r i c  feed  r a t e  2.8 t imes t h a t  o f  t he  c a l c i n e ,  i . e . ,  t h e  g lass  i s  2.8 

p a r t s  fri t and 1  p a r t  c a l c i n e .  I n  t h i s  case, t h e  c a l c i n e  i s  assumed t o  come 

f rom a  "c lean"  waste so t h e  f i s s i o n  p roduc t  l o a d i n g  i n  t he  g lass  i s  q u i t e  h igh,  

23%. 

Since i n  t he  eng inee r ing  equipment, t h e  g lass  i s  fo rmula ted  by combining 

two streams, i t  i s  impor tan t  t h a t  f l e x i b i l i t y  e x i s t s ,  i .e., t h a t  f l u c t u a t i o n s  

i n  t h e  f l o w  r a t e s  o f  t h e  two streams can be accommodated w i t h o u t  adverse ly  

a f f e c t i n g  t h e  q u a l i t y  o f  t h e  g lass .  The l e a c h a b i q i t y  o f  waste g lasses prepared 

f rom a  range o f  f r i t - t o - c a l c i n e  r a t i o s  i s  shown i n  F igure  1. The nominal g lass  

composi t ion conta ins  about  26.5 w t %  c a l c i n e .  I t  i s  apparent t h a t  wide d e v i a t i o n s  

f rom t h i s  r a t i o  can occur  w i t h o u t  changing t h e  l e a c h a b i l i t y  of t h e  p roduc t  g lass  

s i g n i f i c a n t l y .  



CONDITIONS OF POSSIBLE CONTACT WITH WATER 

The data  i n  F igure 1  were ob ta ined by means o f  t he  Soxh le t  t e s t .  I n  t h i s  

t e s t ,  -45 +60 mesh granules o f  t he  g lass  are  exposed t o  con t i nuous l y  rep len ished 

d i s t i l l e d  water  a t  approximate ly  999C. The apparatus i s  shown i n  F igure  2. 

This  t e s t  uses h i g h  temperature t o  g e t  data r a p i d l y .  I t  i s  used main ly  as an 

acce lera ted  t e s t  f o r  scou t i ng  o r  screening purposes. 

But  what a re  the  cond i t i ons  t h a t  might  r e a l l y  e x i s t  i n  the u n l i k e l y  event  

t h a t  the waste g lass  i s  exposed t o  water,  and how w e l l  do e x i s t i n g  t e s t s  o b t a i n  

data concerning these c o n d i t i o n s ?  Three d i f f e r e n t  s i t u a t i o n s  can be env is ioned 

i n  which water  cou ld  con tac t  the  g lass.  The f i r s t  i s  d u r i n g  water  bas in  s to rage 

o f  waste g lass c a n i s t e r s .  This  e s s e n t i a l l y  i s  an i n - p l a n t  process problem; i t  

would n o t  r e s u l t  i n  re lease o f  a c t i v i t y  t o  t he  biosphere. The water  would be 

very pure a t  a  temperature o f  50-60°C. The second case i s  a  cataclysm-ic t rans -  

p o r t a t i o n  acc iden t  near a  stream o r  lake .  There the  water  composi t ion would be 

dependent on the  l o c a t i o n  and the  temperature would be ambient. The f i n a l  case 

i s  t h a t  o f  geo log i c  d isposa l .  Here the water  composi t ion i s  a l s o  dependent on 

the geo log ic  l o c a t i o n  se lec ted .  The geo log ic  d isposa l  s i t e s  w i l l  be c a r e f u l l y  

se lec ted  t o  assure l ong  term s t a b i l i t y .  Leaching which cou ld  r e s u l t  i n  re lease 

t o  the  b iosphere should o n l y  occur i n  t he  remote f u t u r e ,  l ong  a f t e r  se l f -hea t i ng  

i s  no l onger  a  f a c t o r .  Thus the temperature should aga in  be 50 t o  60°C. 

Review o f  t he  above s i t u a t i o n s  show t h a t  low temperatures predominate. For 

t h i s  reason, the  standard leach t e s t  proposed by the  I n t e r n a t i o n a l  Atomic Energy 

Agency (IAEA) i s  c a r r i e d  o u t  a t  room temperature. . A t  PNL t h e  t e s t  i s  conducted 

us ing  the  apparatus shown i n  F igure  3. I t  i s  a  long- term t e s t  c a r r i e d  o u t  over  

a  p e r i o d  o f  many weeks. The leach water  can be e i t h e r  de ion ized water  t o  o b t a i n  

base l i ne  data, o r  water  designed t o  s imu la te  a  s p e c i f i c  l o c a t i o n .  The leach 

water  i s  changed p e r i o d i c a l l y  t o  maximize the  leach r a t e .  F igure  4 i l l u s t r a t e s  

t h i s  e f f e c t .  The dynamic system i n  which the leachant  i s  changed has a  h ighe r  

cumulat ive p e n e t r a t i o n  than the s t a t i c  system where the  g lass  remains i n  con tac t  

w i t h  the  same s o l u t i o n  throughout  the  t e s t .  

Much o f  the  da ta  i n  t h i s  paper were ob ta ined us ing  the  IAEA procedure o r  

s l  i g h t  m o d i f i c a t i o n s  the reo f .  



RADIATION EFFECTS 

The unique features  of waste glass are the high radiation bombardment the 
glass will receive and the self-heating thermal -effects ,  a lso due to  the con- 

tained radioact ivi ty .  I will discuss the radiation bombardment and thermal 
e f fec ts  separately.  

The waste glass will receive high doses of beta, gamma, neutron and alpha 
radiation. Calculations show tha t  the l a t t e r ,  par t icular ly the alpha recoi 1 

atom associated with each alpha event, has the greatest  potential to  cause 
deleterious e f fec ts  in the waste glass .  Because of the unique importance of 

alpha radiation and the very long half l ives  of many of the alpha-emitting iso- 

topes in waste glass ,  special accelerated t e s t s  a re  being made using curium-244. 

Curium-244 has a ha l f - l i f e  of only 18 years,  thus by using higher concentrations 
o f  curium-244 in the g lass ,  i t  I s  possible to  compress many years alpha dose 

into only a few months. We have already simulated several thousand years of 

waste glass alpha radiation and found no s igni f icant  radiation damage. 

Leach rates  of high-zinc borosi l icate  glass containing 1 w t %  curium-244 

are shown in Figure 5.  A t  the end of t h i s  t e s t ,  the glass had received an 
alpha dose ra te  equivalent to about 320 years storage a t  25OC. Twenty-five 

degrees i s  the most severe condition f o r  radiation damage since elevated tem- 

peratures tend to  anneal most forms of radiation damage. The leach r a t e  of the 

glass consti tuents leached a t  the same ra te  as d i d  curium. This i s  not t rue.  

There i s  actual ly  preferential  leaching of some waste glass consti tuents as 

shown in Figure 6 .  

The data in Figure 6 show tha t ,  as i s  we1 1 known, the a1 kal i s  and a1 kal ine 
ear ths ,  leach more readily than higher valence species. Curium behaves as a 

rare  ear th and i t s  leach ra te  i s  s imilar  to  tha t  obtained f o r  rare ear ths  i n  

other t e s t s .  The leach ra te  of plutonium i s  intermediate between tha t  of 

cesium and strontium and tha t  of curium. 

The data in Figure 6 were obtained by leaching fu l ly  radioactive waste 

glass.  This glass  was prepared a t  PNL by dissolving U02 power reactor fuel 

pe l le t s  which had an exposure of over 54,000 MWDIMTU. The uranium and plutonium 

were removed from the dissolved fuel by counter current solvent extract ion,  as 
in an actual reprocessing, t o  form high-level waste solution. The high-level 



waste s o l u t i o n  was batch c a l c i n e d  and combined w i t h  h igh -z inc  b o r o s i l i c a t e  

fri t t o  make f u l l - l e v e l  r a d i o a c t i v e  waste g lass.  

The g lass  was batch mel ted  i n  a  h o t - c e l l  furnace and a l lowed t o  cool  i n  

the  furnace.  M i c r o s t r u c t u r a l  ana1ys.e~ i n d i c a t e  t h a t  the  g lass  p a r t i a l  l y  de- 

v i t r i f i e d  d u r i n g  the furnace cool-down. 

THERMAL EFFECTS 

I n  a d d i t i o n  t o  the  d i r e c t  e f fec ts  o f  r a d i a t i o n  on the  d u r a b i l i t y  of z i n c  

bo ros i  1  i c a t e  waste glasses, t he  s e l  f - h e a t i  ng generated by t h e  r a d i o a c t i v e  decay 

may cause changes i n  the  g lass  s t r u c t u r e  r e s u l t i n g  i n  changes i n  t he  chemical 

durabi  1  i ty o f  t he  g lass.  Given s u f f i c i e n t  t ime and temperature, devi  t r i f i c a -  

t i o n  and phase separa t i on  may occur  i n  t he  g lass .  For  z i n c  b o r o s i l i c a t e  waste 

glass, these thermal e f f e c t s  can cause l each  r a t e s  t o  increase by up t o  a  f a c t o r '  

of ten. F igure  7 i l l u s t r a t e s  t h i s  e f f e c t  f o r  g lass  s t o r e d  two months a t  tempera- 

t u res  rang ing  f rom 300 t o  900°C. Leach r a t e s  were determined us ing  the  Soxh le t  

t e s t .  The sample s t o r e d  a t  700°C showed the  h ighes t  l each  r a t e  a t  6 x  10- 5  

2 grams/cm day. In .  compariion, t he  un t rea ted  g lass  had a  leach r a t e  o f  9 x 
n 

grams/cmL day. S i m i l a r  curves have been observed f o r  g lass s o r t e d  f o r  one week 

and one year .  

I 
To determine why devi  t r i f i  c a t i o n  increases the  g lass  l e a c h a b i l i t y ,  samples 

leached i n  the  Soxh le t  apparatus have been examined m i c r o s c o p i c a l l y .  F igu re  8 

I 
shows before  and a f t e r  photomicrographs of the  v i t r e o u s  g lass  mel ted two hours 

a t  1000°C. Before leach ing ,  t he  g lass conta ins  some und isso lved prec ious  metals  

and i r o n  and cerium oxides i n  an otherwise g lassy  m a t e r i a l .  A f t e r  l each ing  

72 hours i n  the  Soxh le t  apparatus, a  t h i n  s i l  i c a - r i c h  f i l m  was observed over  the  

g lass.  The presence o f  t h e  f i l m  suggests t h a t  t he  g lass  i s  be ing  leached by a  

I d i f f us ion  mechanism. F i t t i n g  long- te rm leach data t o  the  equat ion  

CUMULATIVE PENETRATION = AX(TIME)~ 

lends suppor t  t o  the  idea o f  d i f f us ion  as t h e  p r i n c i p l e  means o f  l each ing  the  
I v i t r e o u s  z i n c  b o r o s i i  i c a t e  waste g lass .  The exponent o f  t ime was determined 
I 

t o  be approximate ly  one-hal f .  For t h i s  equat ion,  an exponent o f  0.5 i n d i c a t e s  

d i f f u s i o n  w h i l e  an exponent o f  1.0 i n d i c a t e s  co r ros ion  of  t he  g lass.  Exponents 

between these extremes i n d i c a t e  a  combinat ion o f  the two mechanisms. 



The res-ul t s  o f  l each ing  a  d e v i t r i f i e d  p iece o f  g lass a r e  shown i n  F igure  9. 

Devi t r i f i c a t i o n  was induced by s t o r i n g  the  g lass two months a t  700°C. As John 

Wald descr ibed t h i s  morning,(') thermal t rea tment  o f  z i n c  b o r o s i l  i c a t e  g lass re -  

s u l t s  i n  mic rocrack ing  and i n  the  fo rmat ion  o f  ZnZSi04, SrMoO,, and r a r e  e a r t h  s i l i -  

ca te  phases i n  the g lassy  m a t r i x .  Leaching appears t o  remove the molybdate phase 

as w e l l  as the  g lass m a t r i x  i t s e l f .  The phases remain ing have been i d e n t i f i e d  

as z i n c  o r t h o s i l i c a t e ,  the  r a r e  e a r t h  s i l i c a t e  and the  prec ious  metals .  Since 

the  g lass  i t s e l f  has been removed, a  c o r r o s i o n  mechanism appears app rop r ia te  f o r  

the  d e v i t r i f i e d  g lass.  Again, long- te rm leach data lends support  t o  t h i s  idea.  

LONG-TERM LEACH -TESTS 

To ga in  some understanding o f  t he  long- term leach ing  behavior  o f  waste 

glasses, t he  IAEA' leach procedure i s  used. F igure  10 shows leach r a t e s  through 

more than a  yea r  o f  t e s t i n g .  As mentioned e a r l i e r ,  t he  de ion ized water  leachant  

i s  changed d a i l y  du r ing  the  f i r s t  week o f  t he  t e s t ,  weekly f o r  an a d d i t i o n a l  

e i g h t  weeks, then once a  month f o r  s i x  months and f i n a l l y  semiannual ly.  Leach 

ra tes  a r e  determined by the  concen t ra t i on  o f  i n d i v i d u a l  elements i n  the  leach 

s o l u t i o n .  The graph shows the  leach r a t e s  f o r  cesium, s t r o n t i u m  and uranium. 

Glass leach r a t e s  based on cesium and s t r o n t i u m  are  cons tant  a t  approximate ly  

grams/cm2 day. Leach r a t e s  based on uranium a re  an o rde r  o f  magni tude 

lower.  S i m i l a r  t o  the  r e s u l t s  observed f rom the  Soxh le t  leach t e s t ,  long- term 

leach ra tes  increase a  f a c t o r  o f  t e n  w i t h  d e v S t r i f i c a t i o n .  

To make long  range est imates of  the  amount of m a t e r i a l  leached f rom z i n c  

b o r o s i l . i c a t e  waste glass, data f rom the  long- term t e s t  a re  expressed as cumula- 

t i v e  p e n e t r a t i o n  i n  cent imeters.  F igure  11 shows a  l o g - l o g  p l o t  o f  cumulat ive 

pene t ra t i on  as a  f u n c t i o n  of t he  t o t a l  t ime leached. The curves are  based on 

the cesium behavior  f o r  t he  v i t r e o u s  g lass  and f o r  g lass  d e v i t r i f i e d  two months 

a t  700°C. Since the  curves a re  l i n e a r  they  may be e x t r a p o l a t e d  t o  l onge r  t ime 

per iods  t o  g e t  an i n d i c a t i o n  o f  the amounts o f  m a t e r i a l s  leached. 

Based on cesium behavior ,  d e v i t r i f i e d  g lass would be penet ra ted  one m i l l  i -  

meter i n  1000 years.  The v i t r e o u s  g lass  would be penet ra ted  ;01 m i  ll imete r  i-n 

1000 years  and one m i l l i m e t e r  i n  100,000 years .  I f  s t r o n t i u m  leach data are  



~ 
I used t o  make the ex t rapo la t ion ,  the d e v i t r i f i e d  g lass  would be penetrated 
I half  a mi l l imeter  i n  1000 years o r  a centimeter  i n  100,000 years .  The v i t reous  

g lass  would be leached .O1 m i  11 imeter i n  1000 years o r  a m i  11 imeter in  100,000 - 
years .  In making these ex t rapo la t ions ,  i t  i s  assumed t h a t  the  g lass  wi l l  be 

i n  continuous contact  w i t h  the leachant f o r  the  e n t i r e  time of the  ext rapola t ion 

and t h a t  the  leachant wi l l  be flowing pas t  the g lass .  The amount of material  

re leased would be l e s s  than predicted i f  the assumptions do not  hold. 

I 

I SUMMARY 

A z inc  bo ros i l i c a t e  g lass  has been developed f o r  the s o l i d i f i c a t i o n  of 

high-level radioact ive  wastes. The g lass  can accommodate wide ranges in  waste 

loading without s i gn i f i c an t l y  influencing i t s  leachabi 1 i t y .  Large rad ia t ion  

doses do not  a f f e c t  o ther  g lass  durabi 1 i t y .  Devi t r i f i c a t i o n  increases  leach 

r a t e s  u p  t o  a f a c t o r  of ten .  This increase i s  due t o  changes in  the g lass  

composition resu l t ing  i n  a change from a di f fus ion t o  a corrosion mechanism 

f o r  leaching of the  g l a s s .  Even w i t h  d e v i t r i f i c a t i o n  long range es t imates  indi-  

ca te  t h a t  only small r e leases  of material  occur with the leaching of z inc  boro- 

s i l i c a t e  waste g lasses .  As new waste compositions a r e  introduced, new g lass  

formulations a r e  developed f o r  the  s o l i d i f i c a t i o n  of the wastes. 
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TABLE 1 

COMPOS OH OF Z HC BBROSIL CATE WASTE GLASS 

GLASS COMPOSITION FRIT  COMPOSITION 

ZnO 

CaO, MgO, SrO, BaO 

F I SS I ON PRODUCT 0x1 DES 

ACT1 N l DES 

REPROCESS I NG CHEM I CALS 



FIGURE 1. 

LEACH RATE VS CALC NE CONTENT 

20 30 

VdT% CALC I NE 



FIGURE 2 .  
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FIGURE 3 .  

IAEA LEACH TEST APPARATUS 
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FIGURE 4. 

FLOW EFFECTS 
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FIGURE 5. 

WASTE GLASS 
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FIGURE 6 .  

RADIOACTIVE WASTE GLASS LEACH RATES 
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FIGURE 7.  

DEVITRIFICATION EFFECTS 
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FIGURE 8. 

LEACHING REACTIONS' - VITREOUS WASTE GLASS 
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FIGURE 9. 

LEACHING REACTIONS - DEVITRIFIED WASTE GLASS 
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FIGURE 10. 

LONG TERM LEACH RATE 
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FIGURE 11. 

CUMULATIVE PENETRATION \IS TIME 
BASED ON CESIUM BEHAVIOR 
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