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ABSTRACT 

A two-phase-flow t u r b i n e  w i t h  two stages o f  a x i a l - f l o w  impulse r o t o r s  
was t e s t e d  w i t h  t h r e e  d i f f e r e n t  work ing - f l u id  mix tu res  a t  a s h a f t  power o f  30 
kW. The t u r b i n e  e f f i c i e n c y  was 0.55 w i t h  nitrogen-and-water o f  0.02 q u a l i t y  
and 94 m/s v e l o c i t y ,  0.57 w i t h  Ref r igeran t  22 o f  0.27 q u a l i t y  and 123 m/s 
v e l o c i t y ,  and 0.30 w i t h  steam-and-water of 0.27 q u a l i t y  and 457 m/s ve loc i t y .  
The e f f i c i e n c i e s  w i t h  nitrogen-and-water and Re f r i ge ran t  22 were 86 percent o f  
t h e o r e t i c a l  . A t  t h a t  f r a c t i o n  o f  t h e o r e t i c a l ,  t h e  e f f i c i e n c i e s  o f  opt imized 
two-phase t u r b i n e s  would be i n  t h e  low 60 percent  range w i t h  organic working 
f l u i d s  and i n  t h e  mid 50 percent range w i t h  steam-and-water. The recommended 
t u r b i n e  design i s  a two-stage a x i a l - f l o w  impulse t u r b i n e  fo l l owed  by a r o t a r y  
separator  f o r  discharge o f  separate l i q u i d  and gas streams and recovery o f  
1 i q u i d  pressure. 
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I. I NTRODUCT I ON 

Turbines t h a t  can operate w i t f i  two-phase f lows having l a r g e  l i q u i d  
f r a c t i o n s  would be use fu l  i n  geothermal power, waste-heat conversion and o t h e r  
a p p l i c a t i o n s  discussed i n  t h e  mid-term r e p o r t  (Ref. 1). 
work discussed here and i n  Ref. 1 was t o  i n v e s t i g a t e  t h e  most e f f i c i e n t  r o t o r  
designs f o r  two-phase turbines. 

The purpose o f  t h e  

It seemed c l e a r  a t  t h e  ou tse t  t h a t  an impulse t u r b i n e  must be used, w i t h  
a l l  o f  t h e  pressure drop taken across nozzles and t h e  r o t o r  f l o w  t a k i n g  p lace 
a t  constant pressure. 
t h e  l i q u i d  and gas i n  two-phase expansion, and long, s t r a i g h t  nozzles are  
r e q u i r e d  f o r  e f f i c i e n t  a c c e l e r a t i o n  o f  t h e  l i q u i d  (Ref. 2). I n  add i t ion ,  f o r  
maximum e f f i c i e n c y  t h e  nozzles must have i iqu id -gas  mixers a t  t h e  i n l e t s  t o  
assure uni form f l o w  d i s t r i b u t i o n  a t  t h e  s t a r t  o f  expansion. 

The two phase t u r b i n e  problem thus reduces t o  one o f  s lowing down 
two-phase j e t s  a t  constant pressure i n  some k i n d  o f  r o t o r  assembly. 
d e s i r a b l e  c h a r a c t e r i s t i c s  o f  t h e  r o t o r s  a re  e f f i c i e n c y ,  e ros ion  resistance, 
and low cost. Erosion res is tance depends main ly  on t h e  r o t o r  m a t e r i a l s  and 
l i q u i d  v e l o c i t y ,  independent o f  r o t o r  geometry. 
components, no mat te r  how complex, i s  small  compared w i th  d ther  costs  o f  a 
power system. Therefore, t h e  bas is  f o r  s e l e c t i n g  r o t o r  designs i s  c h i e f l y  
maximum e f f i c i e n c y .  

This i s  because t h e r e  i s  on ly  weak coupl ing between 

The 

The cos t  o f  r o t a t i n g  

One approach t o  e f f i c i e n t  two-phase r o t o r  design i s  t o  separate t h e  f l o w  
l e a v i n g  t h e  nozzles i n t o  l i q u i d  and gas streams and prov ide d i f f e r e n t  r o t o r  
f l o w  paths opt imized f o r  each phase (Ref. 3) .  
separat ion a t  t h e  nozz le -ex i t  f l o w  speed, by any method proposed so far ,  has 
losses t h a t  are as h i g h  or h igher  than merely sending t h e  unseparated 
two-phase f l o w  through a convent ional  t u r b i n e  wheel. 

The d i f f i c u l t y  i s  t h a t  f l o w  

Based on preseqt in format ion,  i t  appears t h a t  t h e  most e f f i c i e n t  
two-phase t u r b i n e  design i s  an a x i a l - f l o w  impulse t u r b j n e  w i t h  t h e  l i q u  
impinging on t h e  blades and forming a t h i n  f i l m  b u t  otherwise f o l l o w i n g  
Same path as t h e  gas. A separator *can be added a t  t h e  e x i t  i f  desired. 
Wi th in  t h i s  bas ic  framework,,much cat? be done through o p t i m i z a t i o n  o f  b 
shapes and stage speeds t o  b b t a i n  good e f f i c i e n c y .  

d 
t h e  

ade 

The c h i e f  l o s s  i s  fronl t h e  l a r g e  f r i c t i o n  o f  t h e  l i q u i d  f i l m s  on t h e  
blades. 
stage i s  operated a t  a blade speed t h a t  i s  a l a r g e  f r a c t i o n  o f  j e t  speed, 
r a t h e r  than a t  h a l f  t h e  j e t  speed or less,  as i n  convent ional  impulse 
turb ines.  
o f  two-phase j e t s  i s  low. 
incoming l i q u i d  i s  lower than i t  would be a t  convent ional  r o t o r  speeds, and 
f r i c t i o n  l o s s  i s  reduced. 

To reduce t h i s  l o s s  a specia l  s t a g i n g  method can be used. The f i r s t  

Th is  i s  poss ib le .w i thout  excessive r o t o r  s t r e s s  because t h e  speed 
A t  t h e  h i g h  r o t o r  speed t h e  r e l a t i v e  speed o f  t h e  

The f low l e a v i n g  t h e  f i r s t - s t a g e  r o t o r  has considerable forward v e l o c i t y ,  
and a second stage i s  used t o  recover t h e  l e a v i n g  k i n e t i c  energy. The second 
stage r o t a t e s  i n  the same d i r e c t i o n  as t h e  f i r s t  stage a t  a lower speed. 
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There are no i n te rven in9  s t a t i o n a r y  nozzles o r  blades. 
can be used, a l l o w i n g  s t i l l  lower r e l a t i v e  v e l o c i t i e s  i n  each stage, w i t h  
f u r t h e r  reduc t i on  i n  l i q u i d  f r i c t i o n  losses. 

More than two stages 

A two-stage t u r b i n e  was b u i l t  t o  t e s t  t h i s  method o f  staging. I n i t i a l l y ,  
t h e  t u r b i n e  had a s i n g l e  nozzle. 
t h e  t u r b i n e  e f f i c i e n c y  ( s h a f t  power d i v i d e d  by i s e n t r o p i c  power) was 0.51, 
which was on ly  an 8 percent ga in over t h e  e f f i c i e n c y  o f  0.47 achieved w i t h  a 
s ing le-s tage r o t o r .  
windage l o s s  ( t h e  power requ i red  t o  d r i v e  t h e  r o t o r s  i n  a i r )  w i t h  t h e  two- 
stage turb ine.  
an e f f i c i e n c y  o f  0.49 and t h e  two-stage t u r b i n e  had an e f f i c i e n c y  o f  0.55, a 
12 percent gain. 

Theore t i ca l l y ,  t h e  two-stage t u r b i n e  should have had a 20 percent ga in  i n  
e f f i c i e n c y  over t h e  s ingle-stage tu rb ine ,  w i thou t  windage loss.  
f o r  t h e  smal ler  ga in  i n  p r a c t i c e  appeared t o  be t h a t  about a t h i r d  o f  t h e  
l i q u i d  became delayed i n  t h e  f i r s t  stage r o t o r ,  c l i n g i n g  t o  t h e  blades and t i p  
shroud as a s low ly  moving layer .  This l i q u i d  even tua l l y  dra ined from t h e  
f i r s t  stage r o t o r  and entered t h e  second stage r o t o r ,  bu t  t h e  f i r s t - s t a g e  
torque was reduced by t h e  delayed f l o w  e f f e c t .  

I n  t e s t s  w i t h  water and n i t r o g e n  (Ref. 1) 

The l i m i t e d  gain was p a r t l y  expla ined by increased 

Subtract ing ou t  t h e  windage loss,  t h e  s ing le-s tage t u r b i n e  had 

The reason 

It was hoped t h a t  t h e  amount o f  delayed l i q u i d  cou ld  be reduced, r e l a t i v e  
t o  t h e  t o t a l  f low, by adding more nozzles so t h a t  t h e  blades o f  t h e  f i r s t -  
stage r o t o r  would always en te r  a new j e t  be fo re  t h e  f l o w  from t h e  previous j e t  
was ab le  t o  slow down. 
I n i t i a l l y ,  o n l y  two a d d i t i o n a l  l i qu id -gas  mixers were made so t h a t  t h e  ga in  
w i t h  two a d d i t i o n a l  nozzles could be measured. The t e s t s  w i t h  th ree  nozzles 
showed o n l y  a 2 percent ga in  i n  e f f i c i e n c y  a t t r i b u t a b l e  t o  reduc t i on  o f  t h e  
delayed f l o w  e f f e c t .  Therefore, a d d i t i o n a l  mixers were no t  b u i l t ,  and t h e  
remaining t e s t s  were completed w i t h  t h r e e  nozzles. 
three-nozzle,  two-stage t u r b i n e  was 0.55 w i t h  water-and-nitrogen. 

A new nozzle assembly w i t h  s i x  nozzles was b u i l t .  

The e f f i c i e n c y  o f  t h e  

The t u r b i n e  was then t e s t e d  w i t h  Re f r i ge ran t  22 (CHClFZ) and i t  achieved 

The measured e f f i c i e n c y  
an e f f i c i e n c y  o f  0.57. 
a t  Biphase Energy Systems, Santa Monica, C a l i f o r n i a .  
was o n l y  0.30, due, i n  pa r t ,  t o  l i m i t a t i o n s  o f  t h e  p a r t i c u l a r  t e s t  condi t ions.  

F i n a l l y ,  t h e  t u r b i n e  was t e s t e d  w i t h  steam-and-water 
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11. TURBINE CONSTRUCTION 

F igure  1 i s  a photograph o f  t h e  nozzle assembly used i n  t h e  water-  
and-ni t rogen and Re f r i ge ran t  22 tes ts .  
20 degree angle from t h e  plane o f  t h e  r o t o r s  w i t h  as small a c i r c u m f e r e n t i a l  
spacing between nozzles as cou ld  be fabr icated.  
w a l l s  o f  t h e  nozzles were formed by cas t i ng  epoxy r e s i n  around a mandrel t h a t  
was s p l i t  a t  t h e  t h r o a t  f o r  removal from each end. Three o f  t h e  nozzles had 
l i qu id -gas  mixers i n s t a l l e d ;  t h e  o ther  t h r e e  nozzles were n o t  used. The 
purpose o f  t he  mixers was t o  i n j e c t  low-speed two-phase streams o f  equal 
l i q u i d / g a s  r a t i o s  a t  6 1  u n i f o r m l y - d i s t r i b u t e d  p o i n t s  t o  p roper l y  s t a r t  t h e  
nozz le  expansion. 
shown i n  Figs. 10 and 11 o f  Ref. 1. The t h r o a t  diameter o f  each nozz le was 13 
mm, t h e  e x i t  d iameter ( a t  t h e  upstream end o f  t he  e x i t  e l l i p s e )  was 28 mm, and 
t h e  l e n g t h  was 350 mm. 

I n  t h e  steam-and-water tes ts ,  two nozzles b u i l t  by Biphase were used. 
They had t h r o a t  diameters o f  5.6 mm, e x i t  diameters o f  30 mm, and lengths  o f  
275 mm. 

i n  Fig. 3. 
designated as Rotors 2 and 1, respec t ive ly ,  i n  Ref. 1; design d e t a i l s  a re  
g iven there. 

S ix  c i r c u l a r  nozzles were mounted a t  a 

The converg ing-d iverg ing 

The nozz le contour  and mixer  cons t ruc t i on  were t h e  same as 

The f i r s t - s t a g e  r o t o r  i s  shown added i n  F ig .  2 and t h e  second-stage r o t o r  
The f i r s t - s t a g e  and second-stage r o t o r s  were t h e  same ones 
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Figure  3. Turbine w i t h  f i r s t  and second stages 
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The method o f  load,nq 

111. TEST PROCEDURES 

he r o t o r s  and measuring s h a f t  power i n  t h e  t e s t s  
a t  JPL i s  shown i n  Figs. and 5. The f i r s t - s t a g e  r o t o r  was connected t o  a 50 
kW e l e c t r i c  motor through a var iable-speed b e l t  d r i ve ,  a step-up gear box, and 
a r o t a t i n g  torque transducer. The s-econd-stage r o t o r  drove a water brake 
which was p i vo ted  f o r  torque measurement. 

generator,  and speed was c o n t r o l l e d  by a d j u s t i n g  t h e  var iable-speed b e l t  
d r ive .  
by a d j u s t i n g  t h e  water f l o w  rate.  
as t h e  product o f  t ransducer to rque and f i r s t - s t a g e  r o t o r  speed. 
stage power output  was measured as t h e  product o f  water-brake to rque and 
second-stage r o t o r  speed. 

Dur ing operat ion,  t h e  f i r s t - s t a g e  r o t o r  drove t h e  e l e c t r i c  motor as a 

The second-stage r o t o r  drove t h e  water brake, and speed was c o n t r o l l e d  
The f i r s t - s t a g e  power output  was measured 

The second- 

The feed system f o r  Re f r i ge ran t  22 t e s t s  i s  shown i n  Fig. 5. L i q u i d  
Re f r i ge ran t  22 a t  room temperature was fed  from a n i t rogen-pressur ized tank 
through a hand-operated t h r o t t l i n g  va lve  t o  t h e  l i q u i d  i n l e t s  o f  t h e  t h r e e  
mixers. 
f e d  by i t s  own pressure from a Re f r i ge ran t  22 c y l i n d e r  i n  a hot-water bath t o  
t h e  gas i n l e t s  o f  t h e  mixers. 
by t u r b i n e  meters. 
t h e  l i q u i d  f l o w )  t o  p rov ide  a vapor volume f l ow  equal ing t h e  volume f l o w  o f  
t h e  61  l i q u i d  streams en te r ing  

I n  the  nitrogen-and-water t e s t s ,  water was fed  t o  t h e  l i q u i d  i n l e t s  f rom 
pumps, and n i t rogen  was fed  t o  the  gas i n l e t s  from a b o t t l e  bank. 

F igu re  6 shows t h e  two r o t o r s  i n s t a l l e d  a t  Biphase Energy Systems f o r  
steam-and-water tes ts .  
p rov ide  a f l o w  o f  3 percent q u a l i t y  i n  t h e  feed l i n e s  t o  t h e  nozzles. 
t o  assure un i fo rm d i s t r i b u t i o n  were no t  used, b u t  t h e  nozz le e x i t  v e l o c i t y  
measured by Biphase never the less agreed wi th  t h e  Reference 2 t h e o r e t i c a l  
v e l o c i t y .  

A small amount o f  superheated Re f r i ge ran t  22 vapor a t  about 50 O C  was 

The vapor f l o w  r a t e  was on ly  se t  h igh  enough ( 2  percent of 
The l i q u i d  and vapor f l o w  ra tes  were measured 

Saturated ho t  water was t h r o t t l e d  through a va lve  t o  
Mixers 
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Figure 4 .  Rotor assembly and loading arrangement 
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Figure  6. Rotors i n s t a l l e d  for steam-and-water t e s t i n g  a t  Biphase 



I V .  NOZZLE PERFORMANCE 

F igure  7 i s  a photograph o f  t h e  nozzles i n  a t i o n  w i t h  n i t rogen-  
and-water. The nozz le opera t ing  cond i t fons  are  g iven i n  Table 1, together  
w i t h  t h e  opera t ing  cond i t i ons  t h a t  were used f o r  t h e  Re f r i ge ran t  22 and 
steam-and-water tes ts .  The Re f r i ge ran t  22 cond i t i ons  are  representa t ive  o f  
cond i t i ons  i n  c losed-cyc le two-phase tu rb ines  f o r  waste-heat recovery; working 
f l u i d s  such as Ref r igeran t  113 o r  to luene would be'used a t  e levated 
temperatures, bu t  t h e  v e l o c i t i e s  and q u a l i t i e s  would be s i m i l a r  t o  those o f  
Re f r i ge ran t  22. 
geothermal o r  hot-water energy-storage app l ica t ions .  The nitrogen-and-water 
cond i t i ons  a re  on ly  o f  i n t e r e s t  f o r  research purposes, p e r m i t t i n g  low-cost 
t e s t i n g  a t  low speeds. 

The water-and-steam cond i t i ons  a re  representa t ive  o f  

The measured e x i t  v e l o c i t y  v i s  t h e  weighted average o f  t he  l i q u i d  and 
gas v e l o c i t i e s  measured as t h e  r a t i o  o f  nozz le t h r u s t  t o  f l o w  rate.  Using t h e  
gas / l  i q u i  d ve l  o c i  t y  r a t i o s  cat c u l  a ted  by t h e  two-phase nozz le computer program 
(Ref. 2), t h e  i n d i v i d u a l  l i q u i d  and gas 
j e t  power ca lcu lated.  

v e l o c i t i e s  can be e s t  mated and t h e  

11 



Figure  7. Nozzle f l o w  w i t h  nitrogen-and-water 
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Tab1 e 1. Nozzle performance 

~ ~ ~ ~ ~ ~ ~ ~ _ ~ _ ~ ~ ~ ~ ~ ~ ~ ~ ~  

Working f l u i d  

Ni t rogen Steam 

Water Water 
I tem and R-22 and 

F1 ow ra te ,  . kg/s 

I n l e t  pressure, kPa 

I n l e t  temperature, "C 

I n l e t  q u a l i t y ,  percent  

E x i t  pressure, kPa 

I sent r o p i  c ve l  o c i  t y  , m/s 

I s e n t r o p i c  power, P i ,  kW 

E x i t  qual i ty, percent 

Measured e x i t  v e l o c i t y  8,  m/s 

Gas/l i qhi  d v e l o c i t y  r a t  i o  

L i q u i d  v e l o c i t y ,  m/s 

Gas v e l o c i t y ,  m/s 

J e t  power, Pn, kW 

E f f i c i e n c y  Pn/Pi 

10.82 

2000 

1.45 

98 

107 

61.9 

1.48 

94.3 

1.46 

137.0 

48.3 

0.78 

4.81 

840 

17 

2.0 

98 

131 

41.3 

26.7 

123 

1.16 

118 

137 

36.7 

0.89 

0.78 

2930 

230 

3.0 

46 

517 

8104 

26.5 

457 

1.57 

397 

622 

85.2 

0.82 
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V. TURBINE PERFORMANCE 

A. N i  trogen-and-Water 

The purpose o f  t h e  nitrogen-and-water t e s t s  was t o  study t h e  behavior o f  
The n i t r o g e n  f l o w  r a t e  was on ly  1.5 t h e  l i q u i d  phase i n  a two-phase tu rb ine .  

percent o f  t he  water f l o w  ra te ;  thus almost a l l  o f  t h e  to rque and power was 
due t o  the  water. Th is  permi t ted  comparison w i t h  a computer model (Ref. 1) 
t h a t  ca l cu la tes  t h e  i d e a l  behavior o f  l i q u i d  passing through t u r b i n e  ro to rs .  

The water leaves t h e  second-stage r o t o r  a t  a 
F igure  8 i s  a photograph o f  t h e  t u r b i n e  opera t ing  w i th  nitrogen-and-water 

a t  peak-e f f i c iency  condi t ions.  
p o s i t i o n  d isp laced about 25 degrees past  t h e  nozzles and a t  about a 45 degree 
forward angle. 
f i r s t - s t a g e  r o t o r  and ( v i s i b l e  near the  bottom) between t h e  f i r s t - a n d  second- 
stage rotors .  

Smaller amounts o f  water escape between t h e  nozz le and t h e  

Theore t ica l  e f f i c i e n c y  curves f o r  nitrogen-and-water ca l cu la ted  by t h e  
computer model f o r  t h e  Table 1 nozz le f l o w  cond i t i ons  are  p l o t t e d  i n  Fig. 9. 
Measured windage torques are  used i n  t h e  t h e o r e t i c a l  curves. The t u r b i n e  
e f f i c i e n c y  i s  t h e o r e t i c a l l y  h ighest  w i t h  f i r s t - s t a g e  r o t o r  speeds between 2000 
and 2400 rpm and a second-stage r o t o r  speed o f  about 750 rpm. The h ighes t  
t h e o r e t i c a l  e f f i c i e n c y  i s  0.65. The t h e o r e t i c a l  curves end a t  second-stage 
speeds o f  750 rpm o r  less,  because t h e  l i q u i d  impinges on t h e  backs o f  t h e  
second-stage r o t o r  blades a t  h igher  speeds, and t h e  model does no t  handle t h a t  
case. 

The measurements were made a t  a f i r s t - s t a g e  r o t o r  speed o f  2200 rpm. The 
lowest  second-stage speed t h a t  cou ld  be h e l d  w i th  t h e  water brake was 740 rpm. 
However, t he  second stage cou ld  be locked t o  ob ta in  a zero-speed po in t .  
h ighes t  measured e f f i c i ency .was  0.55 a t  a second-stage speed o f  740 rprn. 
E f f i c i e n c y  decreased a t  h igher  and lower  second-stage speeds, as shown i n  
Fig. 9. 

The 

A few t e s t s  made a t  h igher  and lower  f i r s t - s t a g e  speeds v e r i f i e d  t h a t  t h e  
h ighes t  e f f i c i e n c i e s  occur a t  2200 rpm. 

Table 2 compares t h e  t h e o r e t i c a l  and exper imental  e f f i c i e n c i e s  a t  a 
f i r s t - s t a g e  speed o f  2200 rpm and second-stage speed o f  740 rprn. The measured 
e f f i c i e n c y  i s  86 percent o f  t he  t h e o r e t i c a l  e f f i c i e n c y .  The d i f f e r e n c e  
between t h e  measured e f f i c i e n c y  o f  0.55 and t h e  t h e o r e t i c a l  e f f i c i e n c y  o f  0.64 
represents  t h e  ga in  t h a t  might  be poss ib le  though improvements i n  l i q u i d  f l o w  
pa th  i n  t h e  t u r b i n e  ro to rs ;  t h i s  should be an area o f  f u t u r e  research. 

B. Ref r igeran t  22 

The purpose o f  t h e  Re f r i ge ran t  22 experiments was t o  demonstrate t h e  
h ighes t  poss ib le  e f f i c i e n c y  w i t h  a two-phase t u r b i n e  and a l s o  t o  i n v e s t i g a t e  
opera t ion  a t  p r a c t i c a l  f l o w  cond i t i ons  where t h e  gas phase i s  a s i g n i f i c a n t  
f r a c t i o n .  The ve l  oc i  t y  and qual i t y  ob ta i  ned w i t h  Re f r i ge ran t  22 expanding 
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Figure  8. Turb ne operat ing w i t h  nitrogen-and-water (Table 2 condi t ions)  
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Table 2. Turbine performance w J  t h  n i  trogen-and-water 

E xpe r i  menta 1 Theoret ical  

I tem F i r s t  Second Total F i r s t  Second 
stage stage stage stage 

Speed, rpm 

Torque, N-m 

Shaft  power, P, kW 

2200 740 

118 88 

2200 740 

154 57 

Rotor e f f i c i e n c y  , P/Pn 

27.2 6.8 34.0 35.5 

0.70 

4.4 39.9 

0.83 
Turbine e f f i c i e n c y ,  P / P i  0.55 0.64 

P 



from sa tu ra t i on  pressure a t  room temperature t o  atmospheric pressure (a ten-  
to-one pressure r a t i o )  a re  s i m i l a r  t o  those obtained wi th  heated organ ic  
working f l u i d s  i n  waste-heat and bot toming cycles. 
molecular weight o f  organic  f l u i d s  t h e  e f f i c i e n c y  o f  two-phase nozzles i s  
r e l a t i v e l y  high, as shown i n  Table 1, lead ing  t o  h igh  t u r b i n e  e f f i c i e n c i e s .  
Theore t i ca l l y ,  t h e  h ighes t  e f f i c i e n c y  of t h e  t u r b i n e  w i t h  Re f r i ge ran t  22 i s  
0.66 a t  a f i r s t - s t a g e  speed o f  3000 rpm and a second-stage speed o f  1100 rpm, 
as shown i n  Fig. 10. 

The Ref r igeran t  22 feed tank pe rm i t ted  o n l y  about a 20-second r u n  
durat ion,  dur ing  which I had t o  se t  t h e  l i q u i d  t h r o t t l i n g  va lve f o r  a nozz le 
i n l e t  pressure c lose  t o  sa tura t ion ,  s e t  t h e  vapor f l ow  va lve f o r  a f l o w  r a t e  
near 2 percent, se t  t h e  water-brake f l o w  va lve  f o r  a second-stage speed near 
1100 rpm, and do t h i s  q u i c k l y  enough t o  leave a few seconds f o r  record ing  a 
steady data po in t .  On t h e  f o u r t h  run  i t  was poss ib le  t o  achieve steady 
opera t ion  near t h e  des i red  condi t ions.  
t u r b i n e  operat ing a t  t h a t  time. The forward angle o f  the  f l ow  leav ing  t h e  
second-stage r o t o r  i s  steeper than i n  t h e  ni t rogen-and-water tes ts ,  and t h e  
l i q u i d  escaping between t h e  f i r s t -  and second-stage r o t o r s  i s  v i s i b l e .  

The measured t u r b i n e  e f f i c i e n c y  w i t h  Re f r i ge ran t  22 was 0.57. This  i s  
t h e  h ighes t  e f f i c i e n c y  achieved so f a r  w i th  a two-phase tu rb ine .  

Because o f  t he  h igh  

F igu re  11 i s  a photograph o f  t h e  

Table 3 compares t h e  t h e o r e t i c a l  and exper imental  e f f i c ienc ies .  The 
t h e o r e t i c a l  e f f i c i e n c y  conta ins  an a r b i t r a r y  assumption of 0.70 e f f i c i e n c y  for 
t h e  gas phase; on l y  t h e  l i q u i d  behavior i s  c a l c u l a t e d  by the  computer model. 
The measured e f f i c i e n c y  i s  86 percent o f  t h e  t h e o r e t i c a l  e f f i c i e n c y .  

C. Steam-and-Water 

The e f f i c i e n c y  o f  two-phase tu rb ines  w i t h  steam and water i s  severe ly  
t h e  low molecular weight o f  steam i n  t h e  nozzles, l i m i t e d  by two e f f e c t s :  

which l i m i t s  nozz le e f f i c i e n c y ;  and the  l a r g e  volume o f  steam a t  t y p i c a l  
condensing pressures which fo rces  t h e  t u r b i n e  blades t o  have a l a r g e  area and 
t h e  l i q u i d  t o  form very t h i n  f i l m s  w i t h  l a r g e  v e l o c i t y  loss.  

The t h e o r e t i c a l  e f f i c i e n c y  of t he  t u r b i n e  a t  t h e  Biphase nozz le 
cond i t i ons  i s  p l o t t e d  i n  F igu re  12, and the  data p o i n t s  a re  shown. The 
maximum t h e o r e t i c a l  e f f i c i e n c y  i s  0.43 a t  a f i r s t - s t a g e  speed o f  7500 rpm and 
a second-stage speed o f  3500 rpm. 
e f f i c i e n c y  f o r  t h e  steam and uses windage losses scaled from measurements i n  
a i r  a t  3000-rpm f i r s t - s t a g e  speed. 

This  c a l c u l a t i o n  assumes 70 percent 

The e f f i c i e n c y  i s  l i m i t e d  by t h e  l a r g e  windage loss, equal t o  about 30 

I f  nozz les were mounted a l l  t he  way around t h e  t u r b i n e  
percent  o f  t he  output  power, a t  t h e  smal l  power a v a i l a b l e  from t h e  two nozzles 
used f o r  t he  tes ts .  
t h e  t h e o r e t i c a l  e f f i c i e n c y  would be 0.52. 

The h ighes t  measured e f f i c i e n c y  was 0.30, on ly  70 percent o f  t he  
t h e o r e t i c a l  e f f i c i e n c y .  Table 4 compares t h e  t h e o r e t i c a l  and experimental 
performance a t  t he  cond i t i ons  o f  h ighes t  measured e f f i c iency .  
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Figure  11. Turbine operat ing w i t h  Ref r igerant  22 (Table 3 condi t ions)  
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Table 3. Turbine performance w i t h  R e f r i g e r a n t  22 

Expe r i men t a1 Theoret i  tal 

F i r s t  Second Total F i r s t  Second Total 
stage stage 

Speed, rpm 
Torque, k-m 53.3 68.6 68.8 57.0 

Shaf t  power, P, kW 23.6 21.4 5.8 27.2 

Rotor e f  f i cf ency , 0.6 0.74 

Turbi  ne e f  f i c i  ency , P / P i  0.57 0.66 
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Table 4. Turbine performance w i t h  steam-and-water 

Expe r i  menta 1 Theoret ica l  

I tem F i r s t  Second Total F i r s t  Second Total 
stage stage stage stage 

7500 3520 7500 3520 Speed, rpm 

Torque, N-m 

Shaf t  power, P, kW 

Rotor e f f i c i e n c y  , P/Pn 

34.5 10 45.4 24.5 

27.1 3.7 30.8 35.7 

0.36 

9.0 44.7 

0.52 

Turb i  ne e f f i c i e n c y  , P / P i  0.30 0.43 
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The t e s t  schedule d i d  not  permit  i n v e s t i g a t i n g  t h e  reasons f o r  t h e  l a r g e  
E i t h e r  t h e  d i f f e r e n c e  between t h e  t h e o r e t i c a l  and experimental  e f f i c i e n c i e s .  

r o t o r s  performed poor ly  w i t h  steam-and water ,  o r  there  may have been t e s t  
problems such as splash-back o f  water  i n t o  t h e  r o t o r  ins ide  the  closed 
hous i ng . 
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V I .  RECOMMENDED TURBINE DESIGN 

I n  most app l i ca t i ons  i t  would be des i rab le  f o r  t h e  f l ow  t o  leave the  
t u r b i n e  as separate l i q u i d  and gas streams. 
enc los ing  t h e  r o t o r s  i n  a r o t a r y  separator, w i th  the  e x i t  f l o w  from t h e  
second-stage r o t o r  impinging i n s i d e  the  separator  drum. 
separator  has been used by Biphase Energy Systems i n  t h e i r  two-phase t u r b i n e  
designs where t h e  nozz le f l o w  impinges i n s i d e  a r o t a r y  separator. 

Th is  cou ld  be accomplished by 

This  type o f  

The recommended two-phase t u r b i n e  design i s  shown i n  F igure  13. 
r o t a r y  separator c o l l e c t s  the  l i q u i d  l eav ing  t h e  second-stage r o t o r  and a l s o  
c o l l e c t s  t h e  l i q u i d  escaping between the  nozzles and f i r s t - s t a g e  r o t o r  and 
between the  f i r s t -  and second-stage rotors .  The l i q u i d  forms a l i q u i d  l a y e r  
i n s i d e  t h e  sp inn ing  separator drum. A scoop removes the  l i q u i d  and d e l i v e r s  
i t  t o  t h e  l i q u i d  o u t l e t  o f  t he  turb ine.  

The 

The scoop cou ld  incorpora te  a d i f f u s e r  t o  recover  l i q u i d  pressure. 
t a k i n g  less power f rom t h e  r o t o r s  the  d i f f u s e r  e x i t  pressure cou ld  be i n -  
creased t o  t h e  p o i n t  where the  l i q u i d  cou ld  be re tu rned t o  t h e  nozzle i n l e t s ,  
p e r m i t t i n g  c losed- loop operat ion w i thout  a l i q u i d  pump a f t e r  s ta r t i ng .  

By 

25 



! 

1 

, 

SEPARATOR 7 f -  DRUM LlQU ID OUTLET 

J 

GAS OUTLET 

/ \  ROTARY SEPARATOR 

FIRST-STAGE ROTOR SECOND-STAGE ROTOR 

Figure  13. Recommended two-phase t u r b i n e  design 

26 



VII. CONCLUSION 

The r e s u l t s  o f  t he  two-stage, two-phase t u r b i n e  t e s t s  showed t h a t  
e f f i c i e n c i e s  can be achieved t h a t  a re  about 86 percent  of t h e o r e t i c a l  w i t h  
nitrogen-and-water mixtures and w i t h  organic work ing f l u i d s .  
probably  a l s o  t r u e  o f  steam-and-water al though t h i s  was no t  achieved i n  t h e  
tes ts .  Based on t h e o r e t i c a l  e f f i c i e n c i e s  c a l c u l a t e d  f o r  opt imized tu rb ines ,  
(Ref. 1, Fig. 44) ,  t h e  a t t a i n a b l e  e f f i c i e n c i e s  o f  two-stage two-phase t u r b i n e s  
would be i n  t h e  low 60 percent range f o r  organic  f l u i d s  and i n  t h e  mid 50 
percent range f o r  steam-and-water. With improvements i n  t h e  l i q u i d  f l o w  path, 
t h e  e f f i c i e n c y  o f  two phase tu rb ines  could reach t h e  mid 60 percent range w i t h  
organic  f l u i d s  and t h e  h igh  50 percent range w i t h  steam-and-water. 

The same i s  
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