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Sparse Matrix Algorithms on Distributed Memory Multiprocessors

Alex Pothen

We have been able to make significant progress in the creation of algorithms and soft-
ware for large-scale sparse matrix computations on advanced distributed-memory parallel
machines during the past year. Together with my students and colleagues, I am continuing
to pursue several research issues on these topics.

1. Large-scale linear systems. In this area, we focused on three problems: algo-
rithms for solving sparse triangular systems on highly parallel machines like the Connec-

tion Machine CM-2, the computation of spectral nested dissection orderings for solving
sparse systems of equations, und algorithms and software for factoring sparse matrices on
distributed-memory multiprocessors.

1.1. Highly parallel triangular solution. On massively parallel machines such as
the Connection Machine, a bottleneck in the parallel solution of linear systems is the trian-

gular solution part, since O(n 2) floating point operations are performed on O(n 2) elements.
In the situation when the system involves multiple right-hand side vectors, a product-form
inverse (PFI) approach can be used to significantly improve the parallelism by computing
the solution by means of a sequence of matrix-vector multiplications. By minimizing the
number of steps of matrix-vector multiplications, we obtain an algorithm for solving the
triangular system efficiently on massively parallel machines.

In [14], we had designed a fast linear-time algorithm to reduce the number of matrix-
vector multiplication steps when the input matrix is symmetric positive definite. This was
accomplished by minimizing the number of multiplication steps over ali symmetric permuta-
tions of the given triangular matrix such that the permuted matrix is also triangular. This
algorithm was faster by more than a hundred fold on a collection of problems over a pre-

vious algorithm designed for nonsymmetric or symmetric indefinite matrices [1]; it has an
even greater edge in terms of auxiliary storage. This program is now being used in a soft-

ware package called the Sparse Matrix Manipulation System (SMMS) created by Professor
Alvarado (Wisconsin).

With Barry Peyton (Oak Ridge National Labs) and a graduate student Xiaoqing Yuan
[11, 12], I was able to generalize the above problem to reduce the number of matrix-vector
multiplications even further. Given a Cholesky factor L of a symmetric positive-definite
matrix A, we were able to minimize the number of matrix-vector multiplication steps over
ali symmetric permutations such that the structure of the symmetric filled rnatriz L + L T
does not chad,ge under the permutation. The reordering corresponding to the permutation
has to be applied to the original matrix A before the Cholesky factorization. This work has
necessitated the study of chordless paths and the structure of the vertex separators in chordal
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• graphs. The paper [11] describes a high-level scheme to solve this problem together with a

simple linear-time algorithm that implements the scheme. A more efficient implementation

of the above scheme is possible by makip.g use of a compact data structure called the clique

tree; this will be described in [12].

An important numerical issue is the Jtability of the PFI approach to triangular solution.

We have identified a number which measures the growth of elements in the product-form

inverse such that when this 'growth factor' is small, the method is normwise both forward

and backward stable [8]. The growth factor is guaranteed to be small when the natrix is well-

conditioned, and can also be bounded independent of the condition in many circumstances.

We have surveyed this work in [2], as part of a publication that discusses the state of

the art in sparse matrix computations. I talked about this work at the 1992 annual meeting

of the International Linear Algebra Society (ILAS) at Lisbon (Portugal) in August, and will

also talk on this topic at the SIAM Parallel Processing Conference at Norfolk in March..

Barry Peyten will be presenting this work at the ILAS 1993 annual meeting at Pensacola:

FL in a session on sparse matrix algorithms that I have organized.

1.2. Spectral .rtested dissection orderings. We have developed an algebraic ap-

proach for ordering sparse matrices for parallel factorization called spectral nested dissection.

The ideas here can also be used for domain decomposition of irregular domains and for map-

ping the computations in a parallel algorithm onto processors. This is joint work with my

Ph.D. student Lie Wang and Horst Simon (NASA Ames)[3].

In this approach, we use the adjacency graph of the matrix to form a matrix called

the Laplacian matrix, and then use information about a particular eigenvector to compute

a separator in the graph. This approach is then recursively employed to compute spectral

nested dissection orderings. Our results on very large problems (with tens of thousands

of unknowns) show that this approach is very successful in computing orderings that have

better parallelism than the currently available methods such as minimum-degree and earlier

variants of nested dissection. Currently we are working on an efficient implementation of the

spectral nested dissection algorithm.

The challenge here is to compute the required eigenvector of the large, sparse matrices

fast. A new 'multi-level' approach is being developed in which we repeatedly form smaller

matrices from the given matrix, compute the eigenvector of the smallest matrix in the se-

quence by the Lanczos algorithm, and then use Rayleigh quotient iteration to compute the

eigenvector of the original matrix. Many important theoretical and practical issues need to

be resolved before a fast algorithm may be obtained to compute spectral orderings. Once

that is done, we will focus on the parallel computation of the orderings.

Professor Bojan Mohar of Ljubljana of Slovenia (formerly Yugoslavia) and I have used

the spectral approach to design and analyze the performance of an algorithm for reducing the

envelope size of a sparse matrix. This problem is important in several structural engineering

codes, where envelope methods are used to solve large systems of equations. We showed that

the Laplacian matrix could be used to greatly reduce the size of the envelope, and thereby

the storage and arithmetic work required for the solution. This work [1{_]is being written

up.

I talked about this work at the IMACS conference on partial differential equations at
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, Rutgers in May and also at Supercomputing '92 at Minneapolis in November. I also plan to

present this work at a Workshop on Algebraic Graph Theory organized by the International

Center for Mathematical Sciences at Edinburgh in July.

1.3. Parallel Multifrontal factorizat_ion. The multifrontal method is known to be

an emcient method for computing the Cholesky factorization of sparse matrices on vector and

parallel computational environments. My Ph.D. student Chunguang Sun (now a postdoc at

the Advanced Computing Research Institute, Cornell University) and I investigated several

issues in p_'oducing an efficient implementation of the multifrontal method on the iPSC/2

and iPSC/860 hypercubes [16]. We used a data structure called the clique tree (which we

had previously studied--see [9, 15]) to organize the computation using efficient dense matrix

kernels, and designed a proportional mapping algorithm to map computational subtasks to

the processors. We reported the first set of results on parallel execution times for irregular

sparse systems for the hypercube machines, and efficiencies were comparable to the results

obtained for the model regular grid problem. During tI.e past year, work was performed

on our code to make it high quality software for parallel multifrontal factorization on the

iPSC/860 hypercube [17]. This software is now available for public use and we have received

several requests for it.

2. Structure of orthogonal factors. A direct method for the solution of least-squares

problems requires the computation of the orthogonal factors of the given sparse matrix. To

do so efficiently, we require data structures t;hat store only the nonzeros in the factors before

the numerical factorization is computed. Last year Hare, Johnson, Olesky, and van den

Driessche [7] showed how the structures of the orthogonal factors could be predicted. They

proved that giver, the position of a nonzero in the predicted factor, there exists a matrix

whose factor has a nonzero in that position. In [13], I extended this work to show that the

structures predicted were the best possible,: the orthogonal factors of almost all matrices

have nonzeros in every nonzero position in the predicted data structures. Hence if a matrix

has elements that are reasonably 'random :', then the structures of its factors are exactly

equal to the predicted structures. We also developed algorithms for efficiently computing

the predicted data structures.

In current work, we are studying the problem of predicting the structure of the House-

holder matrix, an important data structure for representing the orthogonal factor. This is a

first step towards the design of efficient algorithms for orthogonal factorization with pivoting

for rank-deficient and ill-conditioned problems.

I described this work at a Workshop on computational and graph-theoretic aspects of

linear algebra at the University of Essen, Germany in July.

3. Sparse Bases for the Range Space and the Null Space. A central problem is

the solution of large-scale numerical optimi:r, ation problems is computing a sparse basis for

the null space of a large, sparse, underdeter'mined matrix. A theoretical study of the sparse

null space basis problem was made in [5], and then algorithms for computing null space

bases were designed and implemented in [6]. A fundamental open problem associated with

computing a sparse null space basis is identifying a condition on the zero-nonzero structure

which would guarantee the linear independe, nce of the computed null vectors.
3
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o With Professors Richard Brualdi (Wisconsin) and Shmuel Friedland (Illinois)[4], I have

been able to characterize the structure of sparsest bases of dense underdetermined matrices

irt terms of a condition on the zero-nonzero structure of the basis. This problem turned out

to be surprisingly difficult, and we had to employ techniques from multilinear algebra to

solve the problem. We are currently trying to extend these results to the sparse case using

some results from algebraic geometry. A solution to this problem will make it possible for

us to begin work on computing null space bases in parallel.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac:
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of _uthors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.






