
ORNL/TM-11496
A

Engineering Physics and Mathematics Division
L

Mathematical Sciences Section

A COMPUTE-AHEAD IMPLEMENTATION

OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraff l
' S: C. Eisenstat t

J. W. H. Liu _t • ORNL/TM--II496

B. W. Peyton §
A. H. Sherman t DE91 000531

t Department of Computer Science
Yale University
New Haven, CT 06.520

:_ Department of Computer Science
York University
North York, Ontario, Canada M3J lP3

• § Mathematical Sciences Section

Oak Ridge National Laboratory

P,O. Box 2009, Bldg. 9207-A
- Oak Ridge, TN 37831-8083

Date Published: August, 1990

This research was supported by the Office of Naval Research under contracts N00014'

86-K-0310 and N00014-89-J-1906, the National Science Foundation under grants DCR-

85-21451 and ASC-86-11454, the Natural Sciences and Engineering Research Council of
Canada under grant A5509, and the Applied Mathematical Sciences Research Program

of the Office of Energy Research.

Prepared by the

Oak Ridge NationM La,boratory
Oak Ridge, q_nnessee 37831

operated by
Martin M_r_l_t _ Lnergy Systems, _ '._.. __,_

,¢}>,,,>for the ,.,,.:_,;__.',''
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC-05-84OR21400 n

Contents

1 Introduction , 1
2 The Fan-in Distributed Factorization Scheme 1

3 Implementation of a Compute-ahead Fan-in Scheme 2

3.1 Types of Compute-Ahead Updates , 3
3.2 The Detailed Algori'I,hm 5

4 Experimental Results . 8

5 Concluding Remarks 9
6 References 9

111 -

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft

S. C. Eisenstat

J. W. Ii. Liu

B. W. Peyton
A. II. Sherman

Abstract

In this report, we consider a compute-ahead computational technique in the
distributed factorization of large sparse matrices using the fan-,in parallel scheme.
Experimental results on an Intel iPSC/2 hypercube are provided to demonstrate
the relevance and effectiveness of this technique. Fortran source code is also in-
cluded in an appendix,

V -

1. Introductioni

. A fan-in algorithm for distributed sparse numerical factorization of large symmetric
positive definite matrices has been proposed in [1]. This report describes au1 imple-
mentation of this fan-in scheme that uses a "compute-ahead" technique to improve

performanc e. We assume familiarity with tile research area of parallel sparse matrix

factorization and refer the reader to [6] for background materiM.
The basic idea behind the compute-ahead technique is simple, yet effective. In

essence, when a processor is Waiting for external information required by the currenttl

_" column on hand, it suspends this column task and proceeds with useful work on future

columns of the matrix. The task of computing the original column is resumed as new

externM data for the column arrives.
An outline of the paper is as follows. Section 2 contains a high-level description

of the basic fan-in sparse factorization scheme. Section 3 discusses how to incorporate

compute-ahead upda.ting into the basic fan-in scheme, and it deals with some of the

issues that arise in implementing the resulting compute-ahead fan-in algorithm. Sec-
tion 4 provides performance data for our Fortran implementation on an Intel iPSC/2

hypercube, it also compares the performance of our code with that of the fan-out code
used in [6]. Section 5 contains a few closing remarks, and an appendix contains the

source listing of our Fortran code.

2. The Fan-in Distributed Factorization Scheme

The fan-in distributed sparse factorization scheme is proposed in [1]. The scheme is

best described by using the notion of aggregate update columns. For a column j, its '
complete update column is defined to be

_k ' .
k<j, _jk#o enk

An aggregate update column for column j is

ejk ' ,
kEK _'nk

where K is any subset of {k < j lejk¢ 0},i.e. any subset of the nonzero off-diagonal
locations in row j of L.

Assume that we are given a mapping of columns to processors, and let 'map[j]

denote the processor a.ssigned to column j. For a given processorp and a column j, we
define the set:

. Kip, j] := {k<jtfjk #0 and map[k]=p},

• ¢'3 (_which is simpl_' the set of columns owned by processor p that update (:olumn j. I h :,

internalupdate column for column j from processor p is delined to be the a,ggreg_te

_

for column j := I to n do
, o

compute the internal update column v for column j ;
if map[ii _ p then

if K[p,j]_fi _ then send v to processor ma_,[j] ;
else

while v is not the complete update column for column j do

receive an external updatecolumn for column j and addit to v ;
end while

Form L,j from A.j and v ;
end if

end ,for

Figure 1: Fan-in distributed sparse Cholesky factorization on processor p.
i i I ii

update column where Ii'= g[p,j]. If processor p owns column j, then each external

update column for column j is an aggregate update column for column j that is internal
to another processor q _ p, and for which g[q,j] t_ 0.

Using the notation and terminology introduced above, the fan-in algorithm for

distributed sparse Cholesky factorization is stated in its simplest form in Figure 1.

The fan-in scheme is driven by the columns, which are processed in increasing order.
When processor p is computing a column j that it owns and the update column v is not

yet complete, then it is forced to wait for external update column(s)for column j to
arrive from other processor(s) before it can proceed with useful work on later columns

of L. The next section presents an implementation of a compute-ahead strategy whose
sole purpose is to help alleviate this problem.

3. Implementation of a Compute-ahead Fan-in Scheme

A processor need not remain idle while waiting for external data required by column j,

as processor p does in Figure 1. Instead, the processor can perform so-cadled "compute-
ahead" work on later columns i > j of the matrix. The term "compute-ahead" has been

used by Heath and Romine [8] (Page 564) in studying efficient distributed algorithms
for triangular solution of dense linear systems. The algorithm in Figure 2 is a high-level

description of how we incorporate the strategy into fan-in sp_rse Cholesky factorization.

As long as there _re external update columns for column j that have not yet arrived,

the modified algorithm alternates between processing available externM update columns
for column j and performing compute-ahead work on some column i > j of the m_trix.

To ensure that the message buffer is clmcked regula,rly for incoming datarequired by

column j, the algorithm works on only one coluTln i > j before again checking for
incoming data required by column j. This permits prompt completion of the factor
column L,j once the last of its external update columns has arrived.

for coluinn j := 1 to n do
complete the internM update column v for column j ;

if map[j] # p then
if Kip, j] # 0 then send v to processor map[j];

else

add to v all available external update columns for column j;

while v is not the complete update column for column j do
perform compute-ahead updating for some column i > j ;

add to v a_l newl.y-available external update columns for column j ;
end while

Form L,j from A,j and v ;
end if

end for

Figure 2: Compute-a]lead fan-in ,sparse Cholesky factorization on processor p.
i i

Compute-ahead work can be performed on any column i > j. NaturMly, columns
required earlier in the factorization should be given priority over those required later.

Performing compute-ahead work on columns j + 1,j + 2,...,n in ascending order by
column number is a reasonable choice.

3.1. Types of Compute.-Ahead Updates

When wmting for external data required to complete column j, processor p will perform
one of two distinct "tasks" ms a unit of compute-ahead work before resuming efforts to

complete column j.

• [Compute-ahead external update.] Receive and subtract an extern_fl update
column from some column i > j.

• [Compute-ahead internal updates.] Choose some i > j whose interntfl up-
date column has _t least one indexed SAXPY operation pending, and do the

following: For every k rf. Kip, i] such that a) L,k has been computed, and b)

L,k has Ji,)t yet been applied to the internM update coluInn for column i, add

the appropriate multiple of L,a to the internM update column for column i (an
indexe(! SAXPY operation).

Note tha,t the comI)ute:altcad internal ulxlating task is "greedy" in the sense that it
performs every needed indexed SAXPY on column i's internal update column th;_t

it possibly can with the columns of L tha, t are currently conlputed, lmI)lelnenting

a compute-ahead external update turns out to be siInple _nd stra, ightforw_I'd, as we
shall see later in this section. But implemeiition issues connected with compu, te-ah,cad

internal ulxtate,s' require more extended discussion.

4-

One. of the key issues is management of tlle work storage required to accumulate

internal Update columns. While the basic fan-in algorithm requires that each processor

allocate only a single column of work storage to accumulate successive internal up-

date columns (see Figure 1), the compute-ahead fan-in algorithm requires more work
storage for this purpose. The compute-ahead internal-updating task cannot complete
an internal update column that must be modified with a multiple of column j. As a

result, the compute-ahead feature requires each processor to allocate a block of storage
that can contain incomplete internal update columns for more than one column i > j.

Thus, we must choose a mechanism to limit aad ma.nage work storage, while retaining
sufficient access to compute-ahead work.

Our implementation does not permit the _ _ 'comp;l_,atmn of ali "available" compute-

ahead updates. Compute-almad internal updates are restricted to target columns
within the currently active supernode, primarily to preserve a simple but effective over-

all implementation. A supernodeis a block of contiguous columns in tile Cholesky factor

whose diagonal block is full triangular and whose off-block, diagonal column structure

is the same for every colulnn. Supernodes have been used in [3] to devise efficient
vect0rized sparse factorization schemes. They are also used in the domain-separator
model [2] to study distributed sparse factorization schemes.

In our implementation, when a processor p begins work on the columns of supernode
S, it has on hand work space sufficient to hold an internal update column for e_ch

column in S. For columns of S not owned by a processor p, the allocated work space
is indispensible; for columns of S owned by processor p, the space is not required, but .-

is merely a programming convenience. Also, because of the shared sparsity structure
of columns within S, only a single indexing vector is required to map each entry of

a column k E I([p,i] to the corresponding entry of column i for arty column i E S.
Once computation on the columns of S has begun, compute-atmad internal updates for

columns in S are simple and natural to perform because the required initialized work
space and 'indexing information are already available.

We now discuss more explicitly the role of supernodes in identifying the types of
compute-ahead updates actually available in our implementation. As before, let p be

the processor that owns column j and assume that it is currently working on column j.

Let 5' be the supernode containing column j and consider the situation where processor
p is awaiting the arrival of some external update columns for column j. Relative to p

and S, we can identify the following, possible compute-ahead updates:

• internal updates for columns i > j, i E S.

. external updates for columns i > j, i E S.

. external updates for columns i > j, i¢ S.

• internal updates for columns i > j, i ¢ 5',

Compute-ahead external updates for any column i > j, whether inside or outside
tile current supernode S, will be included in our implementation. This has the desirabln

effect of clearing the message buffe.r, and moreover since we follow [1] in giving each

5 "

external update column the same sp_rsity structure as its target column, our imple-
, men_ation can incorporate external upda.te columns directly into factor column storage.

Consequently, compute-ahead external updates require no addition,,d overhead storage

or computation to provide structural information, nor dothey required additional work,,

storage for their accumulation.

Compute-ahead internM updates for columns within supernode S are Mso included
in our implementation. After initi'Mizing to zero the block of work storage large enough
to "ontMn M1the columns iii S, our implementation computes internal update col unuts
for each column in S in the provided storage. All work, compute-ahead or otherwise,
on the internal update column for a column i E S is applied to the corresponding vector

inwork storage. Computed just before the first column of Sis processed, the single
subscript indexing vector required by S is used to apply these internal updates to the

appropriate column in working storage.

As noted before, the algorithm may have to toggle quite Often between probing the
message queue for externM update columns for the current column j, and processing

Compute-ahead updates (internal or extort, al) for a column i > j. It is therefore im-
portant to alternate between these tasks iii a smooth and efficient manner. Compute-

_head external updates satisfy this requirement because no indexing information or

additional work storage is required to apply an externa,1 update to its target column.
Compute-ahead internal updates for columns within the current supernode S satisfy

this requirement because tlm initialized work space and the necessary indexing infor-

• motion are already available, ttowever, compute-almad internal updates to columns
outside S do not have these advantages; they require an extra block of intialized work

storage and a new indexing vector before other useful computation can be resumed.
Thus, we have excluded such internal compute-ahead updates from our implementation,

and consequently, processors will generally become idle more often when processing the

last few columns of a supernode. Indeed, when the last column of a supernode is being
processed, no compute-ahead internal updates are possible.

To explore the effects of limiting compute-ahead internal updates to columns in
the curren, tly active superno,'e, we developed a second code that allows compute-ahead

internM updating to cross at, most one supernode boundary. Such a code has access

to more compute-ahead internal updates, bu* at the expense of an increase in 1) the
complexity of the program, 2) the work storage requirement, and 3) the bookkeeping

overhead required to manage work storage. Preliminary results with that code reveMed
very little difference in performance between it and a much simpler code ba.sed on the

algorithm given in the next subsection.

3.2. The Detailed Algorithm

We assume that the given sparse matrix has been properly ordered for parallel elimina-

tion and that the supernode blocks of the ordering have been determined. The detailed

compute-ahead algorithm is given in Figure 3.

The compute-ahead section of the algorithm can be interpreted more informa,lly in

the following way' As long as there are external update columns for the current column
j that have not yet been processed, obtain a task of highest priority and perfor_n it,

' ' ' _1i1 , iii rl ,i

for each supe..'node block S do

let s,s + 1,... ,s + k - 1 be the columns of the current supernode S ;

initialize to zero work space for internal update columns va, v.,+l ,... ; v,+k-1 ',
compute the subscript indexing vector for S ;
forj := stos+k-1 do

assume that initially L,j = A.j ;
complete the internal update column va' for column j;
if map[j] # p then

if KiP,ii # _ then send vj to processor map[j];
else

subtract from L,j every available external .update for column j ;

while external update columns for column j remain to beprocessed do
if internal indexed SAXPY's are pending for some column i E S then

perform ali pending internal indexed SAXPY's for the first such
column i f: S, i > j, accumulating the result in vi ;

else

receive at_y available external update column and subtr_wt
it from the target column L,i, i 2 j.

end if

subtract from L.j every newly-a, vailable external update column
for column j;

end while

subtract vj from L,j and scale the resulting vector to obtain column j _.r L.
end if

end for

free the work space for future use
end for

Figure 3' Detailed version of compute-ahead fan-in sparse Cholesky factorization on
processor p.

wh,':e the tasks to be done are ranked in descending order of "urgency" as follows:

1. Receive and apply directly to column j every available externM updat e column for

column j (whenever at least one such update column is available in the message
queue).

2. [Compute-ahead internalupdates.]Performa_1column updates,i,e.indexed
SAXPY's, w_itingtobe incorporatedintotheinternalupdatecolumn forthefirst

column i E S, i> j thathas any suchupdatespending.

3, [Compute, ahead externalupdate.] Receiveand applyany availableexternal
updatecolumn toitstargetcolumn i> j,

Thus,externaldataforcolumnj isprocessedaslongassuchdataareav_lablein the

messagequeue.When column j remainsimcompleteand themessage queuecontains

no externaldataforcolumnj,thealgorithmperformscompute-aheadinternalupdates.
When thereareneitherexternalupdatecolumnsforcolumn j nor internalupdatesfor

Columns i E S, i > j,then,and onlythen,doesthe algorithmprocessany available

externalupdates.Note thatafterallpendinginternalindexedSAXPY's forcolumns
in S are exhausted, only externaJ updates for column i >. j are ,_vailable, until finally

column j is completed.

While processing aaaexternal update column requires little work, the compute-ahead

internal-updating task m_y sometimes perform quite a few indexed SAXPY's before the
• message queue is again checked for data required by column j. The decision to allow the

compute-ahead internal-updating task to perform ali indexed SAXPY's pending for a

single column i > j merits further col,ament. While this appearsto be _ n_turM choice,
we were concer_md that it might not permit the program to check the message queue

often enough for data required by column j. To investigate this question, we introduced
into our program a parameter KTROLthat limits the number of indexed SAXPY'S that

mary constitute _ single compute-ahead internal-update task. We tried severa.1 widely-
w_rying values of KTROLand never observed more than 2% difference in factorization
time between the best and the worst case, The worst results were obtt_ined with

KTROL=I, which restricts the compute-ahead internal-update task to _ single iudexed

3AXPY. This setting for KTROLevidently caused the code to waste a small amount of
time on an excessive number of subroutine calls to perform the compute-ahead internal

updates and on an excessive number of probes for for incoming external update columns

for the current column j. We observed less than 1% variability 1i_ factorization time as

long as KTROLwas chosen to allow at least a few indexed SAXPY's. We consistently

obl.ained our best timing results (by an extremely small margin) when KTROLwas chosen
large enough to allow the compute-at|ead internal-updating task to compute all pending

indexed SAXPY's for the target internal Update column. Thus we incorporated into
our algorithm a compute-_head internal-update task that is as "complete" as possible,

because it is marginally more efficient, appears to be the natural choice from the start,

and helps preserve the simplicity of the algorithm.

i'l l] ' ' Plq

'. 8.

compute-
grid np basic basic ahead

problem fan-out fan-in fan-in

50x50 1 22,470 i 13.911 13,910

2 1.2,545 7.201 7,240

4 7,509 4,000 3,747
8 5,197 2,460 2,273

16 3,619 1,564 1..364
32 2,639 0.972 0,872
64 2.020 0,684 0,659

75x75 1 80,447 48,388 48,419

2 42,278 24,388 24,360

4 23,291 13.118 12.380

8 14,643 7.935 7,307
16 9,733 4.815 4,222

32 6,860 2,887 2,490
64 4,976 1.748 1.561 _

100x100 1 -- 115,341 115,350'

2 !05,989 58,488 58.439
4 57,539 31,660 30.064

8 34,324 18,586 1.7.090

16 21.042 11,191 9.484 .
32 13,860 6,459 5,380

64 9,529 : 3.781 3,198

Table 1: Parallel factorization time (in seconds) oil an Intel iPSC/2.

4. Experimental Results

The compute.ahead fan-in algorithm for sparse Cholesky factorization was implemented
in Fortran and run on an Intel iPSC/2 hypercube. The test problems were nine-point

finite-difference operators on square grids. We used the nested dissection ordering [5]
since it gives optima,l-order fill a,nd well-balanced elimination trees for these problems,
We used the subtree-to-subcube mapping [7] to assign processors Lo columns since it
gives good load balance and reduces communication, Our code is written so that when

the parameter t(TI_0L, discussed in the previous section, is set to zero, it becomes an

implementation of the basic fan-in Mgorithm shown earlier in Figure 1, When KTROLis

set to a sufficiently high value, our code becomes an iraplementation of the compute-

ahead fan-in ",algorithm shown in Figure 3 in the previous section, Until recently, the

best-known algorithm for distributed sparse Cholesky factorization was a basic fan-
out algorithm reported in [6]. We include it in our numeric_l results. We refer to

this version of the fan-out algorithm as basic fan-out in order to distiaguish it from

the more recent domain fan.out algorithm introduced independently in [2] and in [9],
rr_ t)t

za Je 1 contains timing results for the three algorithms: basic fan-out, basic fan,in,
and COml)uteiahead fan-in.

,,

Tile factorization times reported in Table 1 demonstrate the large advantage of the

- fan-in scheme over the fan..out scheme, thus confirming results reported in [2]. But the
primary objective wf these tests is to confirm whether or not the compute-ahead tech-

nique significantly improves the efficiency of tile basic fan-in algorithnl. The usefulness
of the technique is adequately demonstrated by these timing results, particularly by

tlm factorization times obtained ibr the largest problem on i6, 32 and 64 processors.
Onthe 100xl00 grid, basic fan-in is respectively 18.0%, 20.1% and 18.2% slower than

compute-ahead fan-in on 16i 32, and 64 processors.

We would like to point out that the proble m set used in Table 1 includes the

problems used by Zmijewski in [9] to compare the domain fan-out aigorit!lm with the
basic fan-out algorithm. Though he also made his runs on an iPSC/2, his timings

and ours cannot be compared directly because his machine diffo,rs from ours and/or he
selected different options when compiling his Fortran code. Because he used tile same

basic fan-out code that we used, one can, with caution, make a rough comparison of
our results with his by normalizing all times against those obtained for the common
basic fan-out runs.

5. Concluding Remarks

We have described an implementation of the i'an.in distributed sparse factorization
scheme that uses a compute-ahead technique to improve performance over thebasic

, fan-in scheme. We have detailed how to use supernodes to limit the a_munt of addi-

tion_J work storage required by the compute-ahead fan-in algorithm, and to organize
the computation in a way that enables clean and efficient access to the compute-ahead

internal updates. We have indicated how providing access to compute-ahead internal

updates across supernode boundaries increases the amount of work storage required
and makes the code more complex and difficult to write. While the improvement in
the factorization times of either fan-in scheme over the basic fan-out scheme is by far

the most significant demonstrated in our testing, we have shown that incorporating

Compute-ahead updates into the basic fan-in algorithm significantly improves its per-

formance, at least under the ideal circumstar_ces used in our tests. The source code is

included in the appendix to show our implementation.

6. References

[1] C. Ashcraft, S: Eisenstat, and J. Liu. A fan-in algorithm for distributed sparse

numerical factorization. Technical Report CS-89-03, Department of Computer Sci-

ence, York University, 1989. (to appear in SIAM J. Sci. Statist. Comput.).

[2] C. Ashcraft, S. Eisenstat, J. Liu, and A. Sherman. The comparison of th_'c column-

based distributed sparse factorization schemes. Technicai Report, Dei)artmcnt of

" Computer Science, York University, 1990. (in preparation).

[3] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse

ma,trix methods for large linear systems on vector supercomputers, lnterTt. J. Su-

percomputcr Applic., 1(4):10--29, 1987.

10-

[4] GI A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A machine-independent
communication library. In John L. Gustafson, editor, Hypercube Concurrent Com-
puters and Applications 1989, 1990. (to appear).

[5] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345'363, 1973.

[6] J. A. George, M. Heath, J. W. H. Liu, and E. Ng. Sparse Cholesky factorization on

alocal-.memory multiprocessor. SIAM J. Sci. Statist. Comput., 9:327-340, 1988.

[7] J. A. George, J. W. H. Liu, and E. Ng. Communication results for parallel sparse

Cholesky factorization on a hypercube. Parallel Computing, 10:287-298, 1989.

[8] M. T. Heath and C. H. Romine. Parallel solution of triangular systems on

distributed,memory multiprocessors. SIAM J. Sci. Statist. Comput., 9:558-588,
1988.

[9] E. Zmijewski. Limiting communication in parallel sparse Cholesky factorization.

Technical Report TRCS89-18, Department of Computer Science, University of Cal-
ifornia at Santa Barbara, California, 1989.

Appendix: Fortran Source Listing

Our routines call fbur routines from the Portable Instrumented Communication Li.

brary [4] (PICL), which is designed to provide a portable syntax for the message-passing
routines used on typical distributed-memory MIMD machines. A brief description of
these four routines is given below.

subroutine sendO (bur, bytes, type, node)
character,(,) bur

integer bytes, type, node

Tile subroutine sendO sends a message of length bytes stored in bur to processor

node. The variable "type is used by the receiving processor to distinguish one "type"
of message from another. The contents of bur need not be character data; bur can
co_,tain data of any valid Fortran data type. This applies to bur in subroutine recv0
bel. ,w, also.

subroutine recv0 (bur, bytes, "cype)
character. (.) buf

integer bytes, type

The subroutine recv0 receives a message with type field type into a buffer bur. The

variable bytes contains the length of the buffer (in bytes). When type is -1, any
incoming message will satisfy the request. This applies to type in probe0 below, also.

integer function probeO (type)
integer type

-11-

The integer function probeO returns the value i if the processor has received a message
" of the specified type; otherwise it returns thc value O.

_ subroutine recvinfoO (bytes, type, node)
integer bytes, type, node

The subroutine recvinfoO returns information about the most recently received or

"probed for" message: bytes contains the length of the message (in bytes), type
contains the integer "type" of the message, and node contains the processor ID number
of the processor that sent the message.

- 12-

C***** FA|I! PARALLELSPARSE FA|-I| FACTORIZATIOi _*******

C

C PURPOSE:
C THIS SUBROtrrIIE PERFORMS A SPARSE FA|-I| DISTRIBUTED

C CHOLESKYDECONPOSITI01, WITH AT 0PTIOIAL COMPUTE-AHEAD
C TECHIlQUE T0 IMPROVE PERFORMAWCE,
C

C IIPUT PARAMETERS:
C KTPd]L - COITROLS I_BER OF COMPtrrE-A_AD UPDATES:
C < 1, PERFORMTO COKPUTE-AHFADUPDATES.
C >,, 1, PERFORMTO MORETHA_ KTROL UiIITERUPTED
C COMPUTE-AHEAD IITERIAL UPDATES.
C RE - IODE lUMBER OF THIS NODE PROCESSOR.

C lEqlS - |U_ER OF EQUATIONS.
C MAP - MAPS EACH COLUIa TO THE PROCESSOR THAT OWIS IT.

C XBLK - SUPERIODE PARTITIO|. ZBLK(I) POIITS TO THE
C FIRST COLUM| OF THE I-TH SUPERIODE.

C IBLKS - lUMBER OF SUPER]IODES.
C MSGCIT - MSGClT(3) CONTAINS THE II/_BEROF EITERIAL

C MESSAGE UPDATES REQUIRE2)BY COLUN| J.

c XLNZ - SPARSPAK_S LNZ P01'ITER ARRAY; USED TO
C OBTAIg COLUMNLEIGTHS.

C XNZSU_,IZSI]B - R0N SUBSCRIPT ARRAY; SAMEAS SPARSPAK.
C MA%gS - MAXIMUM SIZE OF NS.

C MYET - LOCAL ELIMINATION TREE. MYET(I) IS 1 (TRUE)

C IF NODE I HAS A DESCENDANT WHICH BELONGS TO

C THIS PROCESSOR, 0THERNISE, I_ET(I) IS 0 ,
C (FALSE),
c
C OUTPUTPARAMETERS:

t

C ERROR - ERROR CODE. (ERROR = 180 IF MATRIX IS IOT
C POSITIVE DEFINITE.)
C

C UPDATED PARAMETERS :

C XMYLIZ,NYL_IZ - ON INPUT, MY COLUMIS OF A.
C OI OUTPUT, MY COLUMNSOF L.
C

C WOP_KIIG PAP_METERS :

C WS - WORK SPACE FOR COLUMNS OF A SUPERIIODE,

C LINK - AT STEP J, CONTAINS LINKED LIST OF MY
C COLUMNS THAT WILL UPDATE COLUMN J.

C FIRST - FIRST(I) POINTS TO THE TOP OF THE <ACTIVE'
C PORTION OF COLUNNI.

C UPDINI - UPDATE INDEX VECTOR.
C MSGUPD - BUFFER INTO WHICHEXTERNALUPDATES ARE
C RECEIVED.
C
C PROGRAMSUBROUTINES:

C SENDO, IBTUPD, EXTUPD,
C

c

SUBROUTINE FAIIB (KTROL , ME , IEQ|S , MAP , XBLK ,
IBLKS , MSGCNT, IMYLIZo RYLIZ , %LIZ ,

l INZSUB, IZSUB , NAILS , WS , LIIK "
FIRST , MYET , UPDIII, NSGUPD, ERROR)

C

c
C

- 13-

C PARAI4ETERS,
C

u

INTEGER ERROR , KTROL , NAIWS , ME ,' , lEqlS ,
A IBLWS

IHTEOER FIRST(*) , LI|I(*) , _P(*) , MSOC_T(*),
" k MYET(*) , IZSUB(*) , UPDINI(*),'][BL[(*) ,

A IlaZ(*) , II_LIZ(,), INZSUB(,)
REAL MSGUPD(*), NYLIZ(,) , WS(*)

C
C,
C LOCAL VAP_ABLES
C

IITEGER BLI[SZE, FSTLNK, I , II , ISTOP ,
A ISTRT , ISUB , J , JSIZE , JSTOP ,

A JSTRT , JXWS , K , [BI_ , KSTOP ,
A KSTRT , gSUB , WSSIZE, IEqIS4

REAL DIAGJ
C

c

NEqNS4 = IE,QIS * 4
DO 100 J = I, ,NEqNS

LIIK(J) = 0
100 CONTINUE

C
C FOR EACHSUPER.MODEKBLK ...

C
'DO 7CK) KBLK = I, NBLKS

JSTOP = XBLK(KBLK+I) - 1

IF (MYET(JSTOP) ,IE. 0) THEN

C
C ... THAT I|TERSECTS MY ELINI|ATIOI TREE, FIND
C THE FIRST COLI/MH IN I_ k'LINI|ATIONTREE.
C

" JSTRT = XBLK(KBLK)

200 IF (MYET(JSTRT) .E[_.0) THE|
JSTRT = JSTRT + I
GOTO 200

E|DIF

C

C INITIALIZE MOP_ SPACE FOR CURRE|T SUPERIODE XBLI[.

C **|0TE** EA6_ICOI,UI_II WS INCLUDES THE DIAGONAL.
C

JSIZE = 'Y_L|Z(JSTRT+I)- XLNZ(JSTRT) + I
BLKSZE = JSTOP - JS_T + I

WSSIZE = JSIZE*BLKSZE - BLWSZE*(BLKSZE-I)/2
DO 300 II = I, WSSIZE

WS(II) = 0,0

300 CO|TII[UE
C

C SET UP THE UPDATE INDEX VECTOR FOR XBLK.
C **|OTE** |ZSUB DOES NOT I|CLUDE THE DIAGOIAL.

C '...... _........ ---

_STRT = I|ZSUB(JSTRT)
KSTOP = KSTRT + JSIZE - 2

UPDI|X(JSTRT) - 1
ISUB = 1

DO 400 K = KSTRT, KSTOP
•' KSUB = IZSUB(K)

ISUB = ISUB + 1
UPDIIX(KSUB) = ISUB

40O COITIIUE
C ---- - -

C FOR EACH COLUMI J I| CURRENT SUPER_ODE, DO ...

14-

C

JXWS = 1

DO 600 J'= JSTRT, JSTOP
C

C FORM INTER|AL UPDATE FOR COLL.| J,

C

FSTLNK = LINK(J) '

IF (FSTL|K .GT. 0) THEI

CALL I|TUPD (,J, JSIZE, MS(JXWS),,UPDI|X, LINK,

t FIRST, XNZSUB, NZSUB, XMYL|Z, MYL|Z, J)

E|DIF

C

C IF J IS NOT MINE, SEND ION-ZERO INTEP_AL UPDATE
+ ,

C ,TO OWIER OF J,

C

IF (MAp(J) ,ME, ME) THEN

IF (FSTLNK ,GT, 0) THEN

CALL SENDO (WS(JXWS), 4*JSIZE, J, MAP(J))
EIOIF

ELSE

C

C IF J IS NINE AND ITS UPDATE IS INCOMPLETE,

C RECEIVE AND APPLY EXTEP_AL UPDATES ...

IF (MSGCNT(J) .OT. 0') THEN

IF (KTROL .GT. 0) THEN

C

C ... WITH COMPUTE-AHEAD UPDATING.

CALL EXUPCA (KTKOL, NEQNS4, J,
& JSIZE, JXWS, WS, JSTOP, MSGCNT, 0

I UPDINX, LINK, FIRST_ XNZSUB, IZSUB,

XMYL|Z, MYL|Z, MSGUPD)
ELSE

w
C _

C .,. WITH NO COMPUTE-AHEAD UPDATING,

C (PURE FAN-II)

C

CALL EXTUPD (|EQIS4, J, JSIZE,

I MSGCNT(J), MYLNZ(XMYLNZ(J)),

& MSGUPD)

ENDIF

ENDIF

C "--+" --................

C APPLY INTERNAL UPDATES ACCUMULATED IN WS TO

C COLUMN L(*,J). MODIFY LINK(*) AND FIRST(*),

C - ----

ISTRT = _IYLNZ(J) +

ISTDP = XNYL|Z(J+I) - 1

DIAGJ = MYL|Z(ISTRT) - WS(JXWS)

IF (DIAOJ .LE. 0,0) ÙOTO 800

DIAGJ = SQRT(DIAGJ)

MYL|Z(ISTRT) = DIAGJ

IF (JSIZE .GT. 1) THEN

ISTRT = ISTRT + 1

FIRST(J) = ISTRT

I = lJZSUB(J)

ISU8 = NZSUB(I)

LINK(J) = LI|K(ISUB)

LINK(ISUB) = J

ISUB = JXWS

DO 500 II = ISTRT, ISTOP

ISUB = ISUB + I

MYLNZ(II) = (MYL|Z(II)-WS(ISUB))/DIAGJ

5OO corrIBUE
EIDIF

E|DIF '
C
C PROCEED WITH NEXT COLUH| Im SUPER|ODE KBLK,

C
JIWS,z JXWS + JSIZE

JSIZE = JSIZE - 1
600 CO|TI|UE

E|DIF
C
C PROCEED WITH |EXT SUPERJODE,

C " N

700 C0|TI|UE
RETUR|

C
C ERROR EXIT,

C
800 ERROR "_ i80

RETURB
ElfD

-16-

**
**

Ce***** I|TUPD FAN-Ii: I|TERJAL COLUD UPDATES ******
**

**
C

C PURPOSE :

C THIS ROUTI|E PERFORMS A CO|TROLLED |UMBER OF I|TER|AL
C UPDATES OJ A GIVE| COLUMN,
C

C I|PUT PARAMETERS:
C J - COLUIq TO WHICH I|TE_AL UPDATES ARE
C TO BE APPLIED,

C ,, JSIZE - |UMBER OF,NO|ZEROS I| COLUN| J: L(*,J),
C UPDI|X - UPDATE I|DEX VECTOR FOR COLUM] J,

C X|ZSUB,|ZSUB - ROW SUBSCRIPTrARRAY_ SANE AS SPARSPAK,
C IUYL|Z,MYLIZ - MY COLUM|S OF L.

C KTROL - CO|ThOLS THE MAXIMUM IUMBFA OF COLUM|
C UPDATES. (>=J PERFORMS ALL UPDATES OI
C COL J)
C

C UPDATED PARAMETERS:

C U - STORAGE FDR UPDATE VECTOR OF J,

C LIIK - COITAIJS LIIKED LIST OF MY COLUMIS
C THAT WILL UPDATE COLUMI J,

C FIRST L FIRST(I)POIITS TO THE TOP OF THE

C _ACTIVE' PORTIO| OF COLUMI I,
C

c

SUBROUTI|E IITUPD (J , JSIZE , U , UPDIN%, LIIK ,
& FIRST , XIZSUB, IZSUB , XMYL|Z, MYLIZ ,
& .KTROL)

C

c

C

C PARAMETERS,
C

IITEfiER J , JSIZE , KTROL

IITEGER FIRST(*) , LIIK(*) , IZSUB(*) , UPDIIX(*),
t IMYLIZ(,), ZIZSUB(,)

REM, U(*) , MYLIZ (*)
C

C -

C LOCAL VARIABLES.
C

IITEGER I , II , ISTOP o ISTRT , ISUB ,

& X ,][MOD , OFFSET
REAL LJK

C

C

IMOD= 1

OFFSET = UPDIIX(J) - I
C -'...................... --- -----.-

C FOR EACH COLUMN K I| THE LI|K, APPLY CMOD(J,K)
C ---- _ - _---

100 K = LIJK(J)

IF (K .OT. 0 ,AID. NMOD ,LE, KTROL) THEN
LIIK(J) = LIIZ(K)
NMOD = NMOD + I

C

ISTRT = FIRST(K)

17-

1STOP= XMYLIIZ('K+I) - 1
LJK, = _L|Z(TSTRT)

I " %|ZSUB(K) + ISTRT - INYL|Z(K)
0

0 UPDATE FIRST/LIIK FOR FUTURE MODIFICATIOI STEPS.

C [e*_OTE** XMYL|Z POINTS TO DIAG E|TRY
C X|ZSUB POIITS TO SUB-DIAG EITRY]
C

IF (ISTOP ,CT, IflTRT)_ THEI
FIRST(K),= ISTRT + 1
ISUB = |ZSUB(I)

LINK(K) = LI|K(ISUB)
LI|K(ISUB) = K

E|DIF

C

C IF THE UPDATI|G AIIDUPDATED COLUNIIHAVE THE
C SADIENUMBER OF |ONZERO E|TRIES ,..
C -----

IF (ISTOP-ISTRT+I ,LT, JSIZE) THEII
C 4--

C PERFORM SPARSE (INDIRECT) COLUM| UPDATE,
C [**|0TE** I=I-1 TO I|CLUDE DIAG UPDATE,]
C

I =I- 1

DO 200 II = ISTRT, ISTOP
ISUB = MZSUB(I)

ISUB = UPDI|X(ISUB) - OFFSET

U(ISUB) = U(ISUB) + MYL|Z(II)*LJK
I= I +1

200 C0|TI|UE
ELSE

C _ OTHERWISE, PERFORM DE|SE (DIRECT) COLUM| UPDATE,
C

• ISUB = 1

DU 300 II = ISTRT, ISTOP
U(ISUB) = U(ISUB) + NYL|Z(II)$LJK
ISUB = ISUB + I

300 CO|TINUE
E|DIF

GOTO 100
ENDIF

C

RETUR|
E|D

C****** EIUPOA FAN-I|_ EXTERNAL UPDATES M/CA ******
**
**
C

C PURPOSE:
C THIS ROUTINE PERFORMS EXTERNAL UPDATES ON A GIVE_

C COLUN|. A CO|TROLLED ANOUIT OF COMPUTE-AHEAD UPDATING .
C MILL BE PERFORMED WHEN THE PROCESSOR.IS WAITING FOR
C EXTER|AL UPDATE COLUMNS.
C

C INPUT PARAMETERS:

C K'rROL - CONTROLS THE MAXIMUM NUMBER OF
C , UNIITERRUPTED INTERNAL COLUMN UPDATES.

C NEO|S4 - NUMBEROF EQUATIONS TINES 4
C J - COLUNI TO WHICH EXTERWAL UPDATES ARE

C TO BE APPLIED.

C JSIZK - NO OF NO|ZEROS iN COLUIqIJ: L(*,J) ,,

C JXWS - INDEX TO MS, POI|TS TO THE START OF
C UPDATE FOR J

C LASTJ - LAST COLUP_IIN THE SUPER|ODE WITH

C' COLUNI J,
C UPDI|I - UPDATE INDEX VECTOR FOR CURRENT
C SUPERI|ODE

C XMZSUBIMZSUB - ROW SUBSCRIPT ARRAY; SANE AS SPARSPAK.
C

C UPDATED PARAMETERS:

C WS - MORKSPACE FOR COLUMNS OF J'S SUPER|ODE,

C HSOCNT - MSGC|T(I) CONTAINS NUMBEROF EXTERJIAL
C UPDATES REMAI|ING FOR COLUMN I, IT IS
C DECREMEITEDTO REFLECT ANY APPLIED

C EXTEN31ALUPDATES.
C LINK - CDNTAI|S LINKED LIST OF _MY' COLUMNS
C THAT MILL UPDATE COLUMN J.

C FIRST - FIRST(I) POINTS TO THE TOP OF THE
C _ACTIVE' PORTION OF COLUMN I. '

C XMYLNZ,MYL|Z - MY COLUMIS OF L,
C

C WORK PARAMETERS :

C MSOUPD - STORAGE FOR INCOMING EXTERJIALUPDATE
C COLUMIS FOR J.
C

C PROGRAM SUBROUTINES:

C PROBEO, RECVO, RECVI|FO0
C

**
C

SUBROUTIIE EXUPCA (XTROL , NEQ|S4, J , JSIZE , JXWS ,
& MS , LASTJ , MSGCNT, UPDI|X, LINK ,

FIRST ,_XNZSUB, NZSUB , XMYIJZ, N_,NZ ,
& MSGUPD)

C

C
C ,--

C PARAMETERS,
C

INTEGER J , JSIZE , JXWS , LASTJ , KTROL , NEQNS4
INTEGER FIRST(*) , LINK(*) , MSOCNT(*), NZSUB(*) ,

& UPDINX(*), XMYL|Z(*), X|ZSUB(*)
REAL HSGUPD(*), MYI,NZ(*) , WS(*)

C
C

i

-]9-

C LOCAL VARIABLES,

I|TEGER BYTES , ,I , II , ISIZE , ISUB j JSUB ,
K , KSIZE , KXWS , |ODE

C

C EXTER|AL FUICTIONS,
C

IITEOER PROBEO, RECVI|FO0
C

C

K=J+I

KXWS= JXWS + JSIZE
K_IZE = JSIZE - I'

JSUB = XMYL|Z(J)
C,

C WHILE THERE IS MESSAGE FOR COLI]M|J,
C RECEIVE IT A|D APPLY EXTERIAL UPDATE TO L(e,J),
C

I00 IF (PROBEO(J) ,OT,' 0) ,THEI

CALL RECVO (MSGUPD, IEq|S4, J)
ISUB = JSUB

DO 200 II = I, JSIZE , ,

MYLNZ(ISUB) = MYLIZ(ISUB) - MSGUPD(II)
ISUB = A_J + 1

200 COITIIUE

MSGCmT(J) = MSGC|T(J) - 1
IF (MSGC|T(J) .LE. 0) RETUR|
GO TO I00

EIDIF
C
C PERFORMCOMPUTE-AHEAD INTERIAL U_DATES OI
C REMAI|I|G COLUMNS OF THE CURRERT SUPERNODE.

300 IF (K .LE. LASTJ) THE|

IF (LI|K(K) .CT. 0) THER

CALL IMTUPD (K, KSIZE, WS(KXWS), UPDI|X, LI|K,

FIRST, XNZSUB, |ZSUB, XHYL|Z,
& MYL|Z, KTROL)

ELSE
K=_+I
KXWS = KXWS + KSIZE
KSIZE = KSIZE - I

GO TO 300
ENDIF
GO TO'lO0

E|DIF
C -----

C PERFORM COMPUTE-AHEAD EXTERWAL UPDATES WITH
C I|COMI|G MESSAGES, GIVIIG PRIORITY TO UPDATES
C FOR COLUMJ J,

400 CD|TI|UE

IF (PROBEO(J) ,E'Q, I) T_Em

CALL P,ECVO (MSOUPD, mEqms4, a)
l_j

ELSE

CALL RECVO (MSGUPD, |E_NS4, -1)
CALL RECVI|FO0 (BYTES, I, |ODE)

ENDIF

. ISUB = XMYLNZ(1)

ISIZE = XMYLNZ(I+I) - ISUB

DO 500 II = I, ISIZE

20-

MYL|Z(ISUB) - _¥LIZ(ISUB) - MSGUPD(I!_
ISUB u ISUB + 1

500 COITI|UE

MSGOIT(I) m MSGCIT(I) - 1_

IF (MSGOIT(J) ,LE, O) RETUI_I
O0 TO 400 .,

C

EID

/

.21-

**

Co*#*** EITUPD FAN-INI EXTERNAL COLUMI UPDATES ******
**

**
O

C PURPOSE I
C THIS ROUTI|E PERFOP_8 EITEMAL UPDATES O| A GIVEN

C COLUM_ VITH WO OONPUTE-AHEAD UPDATI|O,
C
C I|PUT PARAMETERSI

O |Eq|S4 - |UMBER OF E_UATIO|S TIMES 4,
0 J - COLUHI TO WHICH EITER|AL UPDATES ARE
C TO BE APPLIED,

C JSIZE - |UMBER OF |O_ZEROS I| COLUM| J l L(*,J),
C

C UPDATED PARAMETERS 1
C MSOC|T - MSGC|T CO|TAI|S IUMBER OF EXTE_AL

C UPDATES REMAI|IIG FOR COLUM| J,

C J|Z " 'O| OUTPUT_ ALL UPDATES HAVE BEE_
C APPLIED TO COLUM| J OF L,
C

C NORK PARAMETERS
C NSGUPD - STORAGE FOR I|CONI|O EITE_AL UPDATE

C OOLma OF J,
C
C PROGRAMSUBROUTI|ES :

C RECVO - RECEIVE A HESSAGE,
O

C$$*o_*$******O***$_$$$****e*O*$**$$e$$OOO***oe*_*$**e$*o*$**$o*

C

SUBROUTINE EXTUPD (|E_|S4, J , JSIZE , MSGO|T,

& J_Z _ HSGUPD),
C

c

C

C PARAMETERS,
C

INTEGER J , JSIZE , |E_|S4, NSGO_T
REAL HSOUPD(,), JIZ(,)

C
C - "--"

C LOCAL VARIABLES,

I|TEGER II
C

C*****$$*****$***$*$0,**$$05#$$o_*********$$*$*$$$$'$$$O$*_$$$$_$

C RECEIVE A|D APPLY EITER|AL UPDATES TO L(*,J),
C UNTIL ALL SUCH UPDATES HAVE BEEN APPLIED,

C "-'-- " " "--" ----

100 CONTINUE

CALL RECVO (MSGUPD, |E_S4, J)

DC 200 II - I, JSIZE
J|Z(II) - J_Z(II) - MSGUPD(II)

200 CO|TI|UE
MSGC|T = NSGC|T - 1

IF (MSGC_T ,LE, 0) RETUR|
GO TO I00

, E|D

