‘ ORNL/TM-11496
Engineering Physics and Mathematics Division

Mathematical Sciences Section

‘ A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

'C. Ashcraft t

S. C. Eisenstat | o o
J.W. H. Liu ! | - ORNL/TM--11496

B. W. Peyton §

A. H. Sherman t DE91 000531

t Department of Computer Science
Yale University.
New Haven, CT 06520

1 Department of Computer Science
York University :
North York, Ontario, Canada M3J 1P3

§ Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: August, 1990

This research was supported by the Office of Naval Research under contracts N00014-
86-K-0310 and N0G0O14-89-J-1906, the National Science Foundation under grants DCR-
85-21451 and ASC-86-11454, the Natural Sciences and Engineering Research Council of
Canada under grant A5509, and the Applied Mathematical Sciences Research Program
of the Office of Energy Research.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
o operated by
Martin ‘Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R 21400 ‘ {,/b

tii

Contents

1

S

Introduction
The Fan-in Distributed Factorization Scheme

..................

Implementation of a Compute-ahead Fan-in Scheme e e e

3.1 Types of Compute-Ahead Updates
3.2 The Detailed Algorithm

.....................

...........................

Experimental Results e e e e e ‘

Concluding Remarks

References

................................

.......................................

- i -

A COMPUTE-AHEAD IMPLEMENTATION
OF THE FAN-IN SPARSE DISTRIBUTED FACTORIZATION SCHEME

C. Ashcraft
S. C. Eisenstal
J. W. H. Lju
B. W. Peyton
A. H. Sherman

Abstract

In this report, we consider a compute-ahead computational technique in the
distributed factorization of large sparse matrices using the fan-in parallel scheme.
Experimental results on an Intel iPSC/2 hypercube are provided to demonstrate
the relevance and effectiveness of this technique. Fortran source code is also in-
cluded in an appendix. ‘

oy

1, Introduction

A fan-in algorithm for distributed sparse numerical factorization of large symmetric
positive definite matrices has been proposed in [1]. This report describes an imple-
mentation of this fan-in scheme that uses a “compute-ahead” technique to improve
performance. We assume familiarity with the research area of parallel sparse matr)x

factorization and refer the reader to [6] for background material,

The basic idea behind the compute-ahead technique is simple, yet effective. In
essence, when a processor is waiting for external information required by the current
column on hand, it suspends this column task and proceeds with useful work on future
columns of the matrix. The task of computlng the original column is 1esumed as new
external data for the column arrives.

An outline of the paper is as follows. Section 2 contains a high-level description
of the basic fan-in sparse factorization scheme. Section 3 discusses how to incorporate
compute-ahead updating into the basic fan-in scheme, and it deals with some of the
issues that arise in implementing the resulting compute-ahead fan-in algorithm. Sec-
tion 4 provides performance data for our Fortran implementation on an Intel iPSC/2
hypercube. It also compares the performance of our code with that of the fan-out code
used in [6]. Section 5 contains a few closing remarks, and an appendix contains the
source listing of our Fortran code.

2. The Fan-in Distributed Factorization Scheme

The fan-in distributed sparse factorization scheme is proposed in [1]. The scheme is
best described by using the notion of aggregate update columns. For a column j, its
complete update column is defined to be

. ‘ £k
T
2. ik
k<J| ZJ‘C#O» an

An aggregate update column for column j is

gjk

> i E ,

keK gnk

where K is any subset of {k < j | €;; # 0}, i.e. any subset of the nonzero oﬁ" diagonal
locations in row j of L.

Assume that we are given a mapping of columns to processors, and let map[j]
denote the processor assigned to column j. For a given processor p and a column j, we
define the set

K[p,j] == {k<j|&x #0 and maplk] = p},

which is simply the set of columns owned by processor p that update column j. The
internal update column for column j from processor p is defined to be the aggregate

for column j := 1 to n do
compute the internal update column v for column j ;
if map[j] # p then ‘
if K[p,j] # 0 then send v to processor ma[j] ;
else
while v is not the complete update column for column j do
recejve an external update column for column j and add it to v ;
end while ' ‘
Form L.; from A.; and v ;
end if ‘
end for

Figure 1: Fan-in distributed sparse Cholesky factorization on processor p.

update column where K = K[p,j]. If processor p owns column J, then each ezternal
update column for column j is an aggregate update column for column 7 that is internal
to another processor g # p, and for which K[g, j] # 0.

- Using the notation and terminology introduced above, the fan-in algorithm for
distributed sparse Cholesky factorization is stated in its simplest form in Figure 1.
The fan-in scheme is driven by the columns, which are processed in ircreasing order.
When processor p is computing a column j that it owns and the update column v is not
yet complete, then it is forced to wait for external update column(s) for column j to
arrive from other processor(s) before it can proceed with useful work on later columns
of L. The next section presents an implementation of a compute-ahead strategy whose
sole purpose is to help alleviate this problem. o

3. Implementation of a Compute-ahead Fan-in Scheme

A processor need not remain idle while waiting for external data required by column 7,
as processor p does in Figure 1. Instead, the processor can perform so-called “compute-
ahead” work on later columns 7 > j of the matrix. The term “compute-ahead” has been
used by Heath and Romine [8] (Page 564) in studying efficient distributed algorithms -
for triangular solution of dense linear systems. The algorithm in Figure 2 is a high-level
description of how we incorporate the strategy into fan-in sparse Cholesky factorization.

As long as there are external update columns for column j that have not yet arrived,
the modified algorithm alternates between processing available external update columns
for column j and performing compute-ahead work on some column > 7 of the matrix.
To ensure that the message buffer is checked regularly for incoming data required by
column j, the algorithm works on only one column i > J before again checking for
incoming data required by column j. This permits prompt completion of the factor

column L.; once the last of its external update columns has arrived.

for column j := 1 to n do o
complete the internal update column v for column j ;
if map(j] # p then
if K[p,7] # @ then send v to processor maplj] ;
else ‘
‘add to v all available external update columns for column j ;
while v is not the complete update column for column j do
perform compute-ahead updating for some column ¢ > j ;
add to v all newly-available external update columns for column j ;
end while '
Form L. from A,; and v ;
end if
end for

Figure 2: Compute-ahead fan-in sparse Cholesky factorization on processor p.

Compute-ahead work can be performed on any column 7 > j. Naturally, columns
required earlier in the factorization should be given priority over those required later.
Performing compute-ahead work on columns j + 1,5 4+ 2,...,n in ascending order by
column number is a reasonable choice.

3.1. Types of Compute-Ahead Updates

When waiting for external data required to complete column j, processor p will perform
-one of two distin¢t “tasks” as a unit of compute-ahead work before resuming efforts to
complete column j.

¢ [Compute-ahead external update.] Reccive and subtract an external update
column from some column ¢ > 7.

s [Compute-ahead internal updates.] Choose some ¢ > j whose internal up-
date column has at least one indexed SAXPY operation pending, and do the
following: For every k € K{[p,i] such that a) L., has been computed, and b)
L. has not yet been applied to the internal update column for column ¢, add
the appropriate multiple of L, to the internal update column for column ¢ (an
indexed SAXPY operation). ‘

Note that the compute-ahead internal updating task is “greedy” in the sense that it
performs every needed indexed SAXPY on column 's internal update column that
it possibly can with the columns of L that are currently computed. Implementing
a compute-ahead external update turns out to be simple and straightforward, as we
shall see later in this section. But implemention issues connected with compute-ahead
internal updates require more extended discussion. ‘

-4 -

One of the key issues is management of the work storage required to accumulate
internal update columns. While the basic fan-in algorithm requires that each processor
allocate only a single column of work storage to accumulate successive internal up-
date columns (see Figure 1), the compute-ahead fan-in algorithm requires more work
storage for this purpose. The compute-ahead internal-updating task cannot complete
an internal update column that must be modified with a multiple of column 5. As a
result, the compute-ahead feature requires each processor to allocate a block of storage
that can contain incomplete internal update columns for more than one column 7 > j..
Thus, we must choose a mechanism to limit and marage work storage, while retaining
sufficient access to compute-ahead work. ‘ ‘

‘Our implementation does not permit the computation of all “available” compute-
ahead updates. Compute-ahead internal updates are restricted to target columns
within the currently active supernode; primarily to preserve a simple but effective over-
~all implementation. A supernodeis a block of contiguous columns in the Cholesky factor
whose diagonal block is full triangular and whose off-block-diagonal column structure
is the same for every column. Supernodes have been used in [3] to devise efficient
vectorized sparse factorization schemes, They are also used in the domain-separator
model [2] to study distributed sparse factorization schemes.

In our implementation, when a processor p begins work on the columns of supernode
S, it has on hand work space sufficient to hold an internal update column for each
column in §. For columns of S not owned by a processor p, the allocated work space
is indispensible; for columns of S owned by processor p, the space is not required, but
is merely a programming convenience. Also, because of the shared sparsity structure
of columns within §, only a single indexing vector is required to map each entry of
a column k € K[p,i] to the corresponding entry of column i for any column i € S.
Once computation on the columns of § has begun, compute-ahead internal updates for
columns in § are simple and natural to perform because the required initialized work
space and indexing information are already available.

We now discuss more explicitly the role of supernodes in identifying the types of
compute-ahead updates actually available in our implementation. As before, let p be
the processor that owns column j and assume that it is currently working on column j.
Let 5 be the supernode containing column j and consider the situation where processor
p is awaiting the arrival of some external update columns for column j. Relative to p
and $, we can identify the following possible compute-ahead updates:

e internal updates for columns ¢ > j, 7 € 5.
e external updates for columns ¢ > j,1 € 5.
o external updates for columns i > j, 1 ¢ S.
e internal updates for columns i > 5,1 ¢ 5.

Compute-ahead external updates for any column ¢ > j, whether inside or outside
the current supernode §, will be included in our implementation. This has the desirable
effect of clearing the message buffer, and moreover since we follow [1] in giving each

external update column the same sparsity structure as its target column, our imple-
mentation can incorporate external update columns directly into factor column storage.
Consequently, compute-ahead external updates require no additional ovérhead storage
or computation to provide structural information, nor do they required additional work
storage for their accumulation. ‘

Compute-ahead internal updates for columns within supernode § are also included
in our implementation. After initializing to zero the block of work storage large enough
to ~ontain all the columns in S, our implementation computes internal update columns
for each column in § in the provided storage. All work, compute-ahead or otherwise,
on the internal update column for a column ¢ € § is applied to the corresponding vector
in work storage. Computed just before the first column of S is processed, the single -
subscript indexing vector required by S is used to apply these internal updates to the
appropriate column in working storage. . |

As noted before, the algorithm may have to toggle quite often between probing the
message queue for external update columns for the current column j, and processing
compute-ahead updates (internal or external) for a column i > j. It is therefore im-
portant to alternate between these tasks in a smooth and efficient manner. Compute-
ahead external updates satisfy this requirement because no indexing information or
additional work storage is required to apply an external update to its target column.
Compute-ahead internal updates for columns within the current supernode S satisfy
this requirement because the initialized work space and the necessary indexing infor-
mation are already available. However, compute-ahead internal updates to columns
outside S do not have these advantages; they require an extra block of intialized work
storage and a new indexing vector before other useful computation can be resumed.
Thus, we have excluded such internal compute-ahead updates from our implementation,
and consequently, processors will generally become idle more often when processing the
last few columns of a supernode. Indeed, when the last column of a supernode is being
‘processed, no compute-ahead internal updates are possible.

To explore the effects of limiting compute-ahead internal updates to columns in
the currently active supernoi'e, we developed a second code that allows compute-ahead
internal updating to cross at most one supernode boundary. Such a code has access
to more compute-ahead internal updates, but at the expense of an increase in 1) the
complexity of the program, 2) the work storage requirement, and 3) the bookkeeping
overhead required to manage work stdmge. Preliminary results with that code revealed
very little difference in performance between it and a much simpler code based on the
algorithm given in the next subsection.

3.2. The Detailed Algorithm

We assume that the given sparse matrix has been properly ordered for parallel elimina-
tion and that the supernode blocks of the ordering have been determined. The detailed
compute-ahead algorithm is given in Figure 3.

The compute-ahead section of the algorithm can be interpreted more informally in
the following way: As long as there are external update columns for the current column
J that have not yet been processed, obtain a task of highest priority and perform it,

for each supernode block S do
let s, 8+ 1,...,8+k~—1be the columns of the current supernode S ;
initialize to zero work space for internal update columns Usy Vst 1ye s s Vgph=1 }
compute the subscript indexing vector for S ;
for j i=stos+k-1do
assume that initially L,; = A.; ;
complete the internal update column v; for column j ;
if map(j] # p then
if I([p, 1] # 0 then send v; to processor map(j] ;
else
subtract from L,; every available external update for column j ;
while external update columns for column j remain to be processed do
~if internal indexed SAXPY’s are pending for some column ¢ € S then
perform all pending internal indexed SAXPY’s for the first such
column 7 € S, 4> 7, accumulatmg the result in v; ;
else
receive any available external undate column and subtract
it from the target column LM, i > .
end if
subtract from L,; every newly-a,vmlable external update column
for column j
end while
subtract v, from L.; and scale the resulting vector to obtain column J uf L.
end if !
end for
free the work space for future use ;
end for

Figure 3: Detailed version of compute-ahead fan-in sparse Cholesky facton/,dtxon on
processor p.

-7 -

wht‘“e the tasks to be done are ranked in descending order of “urgency” as follows:

1. Receive and apply directly to column Jj every available external update columu for
column j (whenever at least one such update column is avallable in the message
queue),

2. [Compute-ahead internal updates.] Perform all column updates, i.e. indexed
SAXPY’s, waiting to be incorporated into the internal update column for the first
column ¢ € §, ¢ > 7 that has any such updates pending.

3. [Compute-ahead external update.] Receive and apply any available external
update column to its target column ¢ > j.

Thus, external data for column j is processed as long as such data are available in the
message queue. When column j remains imcomplete and the message queue contains
no external data for column j, the algorithm performs compute-ahead internal updates.
When there are neither external update columns for.column j nor internal updates for
columns i € §, ¢ > 74, then, and only then, does the algorithm process any available
external updates, Note that after all pending internal indexed SAXPY’s for columns
in § are exhausted, only external updates for column i > j are available, until fma,lly,
column j is completed. :

‘While processing an external update column requires little work, the Compute ahead
internal-updating task may sometimes perform quite a few indexed SAXPY’s before the
message queue is again checked for data required by column 5. The decision to allow the
compute-ahead internal-updating task to perform all indexed SAXPY’s pending for a
single column ¢ > j merits further comment. While this appears to be a natural choice,
we were concerned that it might not permit the program to check the message queue
often enough for data required by column j. To investigate this question, we introduced
into our program a parameter KTROL that limits the number of indexed SAXPY’S that
may constitute a single compute-ahcad internal-update task. We tried several widely-
varying values of KTROL and never observed more than 2% difference in factorization
time between the best and the worst case, The worst results were obtained with
KTROL=1, which restricts the compute-ahead internal-update task to a single indexed
SAXPY. This setting for KTROL evidently caused the code to waste a small amount of
time on an excessive number of subroutine calls to perform the compute-ahead internal
updates and on an excessive number of probes for for incoming external update columns
for the current column j. We observed less than 1% variability Ip factorization time as
long as KTROL was chosen to allow at least a few indexed SAXPY’s. We consistently
obtained our best timing results (by an extremely small margin) when KTROL was chosen
large enough to allow the compute-ahead internal-updating task to compute all pending
indexed SAXPY’s for the target internal update column. Thus we incorporated into
our algorithm a compute-ahead internal-update task that is as “complete” as possible,
because it is marginally more efficient, appears to be the natural choice from the start,
and helps preserve the simplicity of the algorithm.

vl f o [' W v oy [T | [T o . e T

v compute-
grid np | basic | basic ahead
problem fan-out | fan-in. | fan-in

50x50 1] 22470 | 13.911 13.910

2 12.545 7.201 7.240

4 7.509 4,000 3.747

8| 5197 2.460 2.273

16 3.619 1.564 1.364 |
32 2.639 0.972 0.872
64 2.020 0.684 0.659

75x75 1| 80.447 | 48.388 48.419
2 42278 | 24.388 24.360
41 23291 13.118 12.380

8 14.643 7.935 7.307

16 9.733 4.815 4.222

32 6.860 2.887 2.490

64 4,976 1.748 1.561

100x100 | 1 — 115.341 115.350

2 |{ 105989 | 58.488 58.439
4| 57.639 | 31.660 30.064
81 34324 | 18.586 17.090

16 | 21.042 | 11.191 | = 9.484
32 13.860 6.459 5.380
64 9.529 | . 3.781 - 3.198

Table 1: Parallel factorization time (in seconds) on an Intel iPSC/2.

4. Experimental Results

The compute-ahead fun-in algorithm for sparse Cholesky factorization was implemented
in Fortran and run on an Intel iPSC/2 hypercube. The test problems were nine-point
finite-difference operators on square grids. We used the nested dissection ordering [5]
since it gives optimal-order fill and well-balanced elimination trees for these problems.
We used the subtree-to-subcube mapping [7] to assign processors to columns since it
gives good load balance and reduces communication. Qur code is written so that when
the parameter KTROL, discussed in. the previous section, is set to zero, it becomes an
implementation of the basic fan-in algorithm shown earlier in Figure 1, When KTROL is
set to a sufficiently high value, our code becomes an implementation of the compute-
ahead fan-in algorithm shown in Figure 3 in the previous section. Until recently, the
best-known algorithm for distributed sparse Cholesky factorization was a basic fan-
out algorithm reported in [6]. We include it in our numerical results. We refer to
this version of the fan-out algorithm as basic fan-out in order to distinguish it {rom
the more recent domain fan-out algorithm introduced independently in [2] and in [9].
Table 1 contains timing results for the three algorithms: basic fan-out, basic fan-in,
and compute-ahead fan-in.

The factorization times reported in Table 1 demonstrate the large advantage of the
fan-in scheme over the fan-out scheme, thus confirming results reported in [2]. But the
primary objective . these tests is to confirm whether or not the compute-ahead tech-
nique significantly improves the efficiency of the basic fan-in algorithm. The usefulness
of the technique is adequately demonstrated by these timing results, particularly by
the factorization times obtained for the largest problem on 16, 32 and 64 processors.
On the 100x100 grid, basic fan-in is respectively 18.0%, 20.1% and 18.2% slower than
compute-ahead fan-in on 16, 32, and 64 processors.

We would like to point out that the problem set used in Table 1 includes the
problems used by Zmijewski in [9] to compare the domain fan-out algorithm with the
basic fan-out algorithm. Though he also made his runs on an iPSC/2, his timings
and ours cannot be compared directly because his machine differs from ours and/or he
selected different options when compiling his Fortran code. Because he nsed the same
basic fan-out code that we used, one can, with caution, make a rough comparison of
our results with his by normalizing all times against those obtained for the common
basic fan-out runs.

5. Concluding Remarké

We have described an implementation of the fan-in distributed sparse factorization
scheme that uses a compute-ahead technique to improve performance over the basic
fan-in scheme. We have detailed how to use supernodes to limit the amount of addi-
tional work storage required by the compute-ahead fan-in algorithm, and to organize
the computation in a way that enables clean and efficient access to the compute-ahead
internal updates. We have indicated how providing access to compute-ahead internal
updates across supernode boundaries increases the amount of work storage required
and makes the code more complex and difficult to write. While the improvement in
the factorization times of either fan-in scheme over the basic fan-out scheme is by far
the most sigrificant demonstrated in our testing, we have shown that incorporating
compute-ahead updates into the basic fan-in algorithm significantly improves its per-
formance, at least under the ideal circumstances used in our tests. The source code is
included in the appendix to show our implementation.

6. References

[1] C. Ashcraft, S. Eisenstat, and J. Liu. A fan-in algorithm for distributed sparse
numerical factorization. Technical Report CS-89-03, Department of Computer Sci-
ence, York University, 1989. (to appear in SIAM J. Sci. Statist. Comput.).

[2] C. Ashcraft, S. Eisenstat, J. Liu, and A. Sherman. The comparison of three column-
based distributed sparse factorization schemes. Technical Report, Department of
Computer Science, York University, 1990. (in preparation).

[3] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse
matrix methods for large linear systems on vector supercomputers. Intern. J. Su-
percomputer Applic., 1(4):10-29, 1987,

-10 -

(4] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A machine-independent
communication library. In John L. Gustafson, editor, Hypercube Concurrent Com-
puters and Applications 1989, 1990. (to appear).

(5] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345-363, 1973.

(6] J. A. Géorge, M. Heath, J. W. H. Liu, and E. Ng. Sparse Cholesky factorization on
a local-memory multiprocessor. SIAM J. Sci. Statist. Comput., 9:327-340, 1988.

[7] J. A. George, J. W. H. Liu, and E. Ng. Communication results for parallel sparse
Cholesky factorization on a hypercube. Parallel Computing, 10:287-298, 1989,

(8 M. T. Heath and C. H. Rofnine. Parallel solution of triangular systems on
distributed-memory multiprocessors. SIAM J. Sci. Statist. Comput., 9:558-588,
1988. ' o

9] E. Zmijewski. Limiting communication in parallel sparse Cholesky factorization.
Technical Report TRCS89-18, Department of Computer Science, University of Cal-
ifornia at Santa Barbara, California, 1989. ' ‘

Appendix: Fortran Source Listi‘ng

Our routines call four routines from the Portable Instrumented Communication Li-
brary (4] (PICL), which is designed to provide a portable syntax for the message- passing
routines used on typical distributed-memory MIMD machines. A brief description of
these four routines is given below.

subroutine send0 (buf, bytes, type, node)
character*(*) buf
integer bytes, type, node

The subroutine send0 sends a message of length bytes stored in buf to processor
node. The variable type is used by the receiving processor to distinguish one “type”
of message from another. The contents of buf need not be character data; buf can

contain data of any valid Fortran data type. This applies to buf in subroutine recv0
bel-w, also.

subroutine recv0 (buf, bytes, type)
character*(*) buf
integer bytes, type

The subroutine recvo receives a message with type field type into a buffer buf. The
variable bytes contains the length of the buffer (in bytes). When type is —1, any
incoming message will satisfy the request. This applies to type in probe0 below, also.

integer function probe0 (type)
integer type

- 11 -

The integer function pro"beovreturns the value i if th‘e' processor has received a message
of the specified type; otherwise it returns the value 0.

subroutine recvinfo0 (bytes, type, node)
integer bytes, type, node

The subroutine recvinfoO returns information about the most recently received or
“probed for” message: bytes contains the length of the message (in bytes), type
contains the integer “type” of the message, and node contains the processor ID number
of the processor that sent the message.

-12.

C##tt‘ttttttnt‘t‘t#t#t*..OttttQtt‘ttt#ttttt.t.ttttttmﬁott.tt‘itt*tt##ttt
C###tt#tttttt“t“t.t}tttott‘.tt“t#.‘ttt#‘##tttt‘tt‘##t#wt#t?t#m#t‘t#t‘
Chenns FANIN PARALLEL SPARSE FAN-IN FACTORIZATION T
[T T T I T P T T P T T L T Y P L LY L)
[of T T T T Y L T L Lt Lty
. ‘ .
PURPOSE:)

THIS SUBROUTINE PERFORMS A SPARSE FAN-IN DISTRIBUTED

CHOLESKY DECOMPOSITION, WITH AN OPTIONAL COMPUTE-AHEAD

TECHNIQUE TO IMPROVE PERFORMANCE. »

IRPUT PARAMETERS: .
~ KTROL - CONTROLS NUMBER OF COMPUTE-AHEAD UPDATES:
< 1, PERFORM NO COMPUTE-AHEAD UPDATES.
>= 1, PERFORM NO HORE THAN KTROL UNINTERUPTED
COMPUTE-AHEAD INTERNAL UPDATES,

ME ~ NODE NUMBER OF THIS NODE PROCESSOR.

BEQES ' . - NUMBER OF EQUATIONS. .

MiP = HAPS EACE COLUMN TO THE PROCESSOR THAT OWENS IT.

XBLK - SUPERNODE PARTITION. XBLK(I) POIETS TO THE
FIRST COLUME OF THE I-TH SUPERNODE.

NBLKS - NUMBER OF SUPERNODES.

HSGCHNT - MSGCNT(J) CONTAINS THE EUMBER OF EXTERNAL
MESSAGE UPDATES REQUIRED BY COLUMN J.'

ILNZ = SPARSPAK’S LNZ POINTER ARRAY; USED TO

OBTAIN COLUMN LENGTHS.

XNZSU3,NZSUB - ROW SUBSCRIPT ARRAY; SAME AS SPARSPAK,

MAXWS - MAXIMUM SIZE OF WS.

MYET - LOCAL ELIMINATION TREE. MYET(I) IS 1 (TRUE)
IF BODE I HAS A DESCENDANT WHICH BELOEGS T0
THIS PROCESSOR. OTHERWYSE, MYET(I) IS O
(FALSE)

OUTPUT PARAMETERS :
ERROR - - ERROR CODE. (ERROR = 180 IF MATRIX IS NOT
POSITIVE DEFINITE.)

UPDATED PARAMETERS:
IMYLAZ ,MYLNZ - ON INPUT, MY COLUMNS OF A,
OF OUTPUT, MY COLUMES OF L.

WORKING PARAMETERS:

WS - WORK SPACE FOR COLUMNS 0OF A SUPERNODE.

LINK - AT STEP J, CONTAINS LINKED LIST OF MY
COLUMNS THAT VILL UPDATE COLUMN J.

FIRST - FIRST(I) POINTS TO THE TOP OF THE ‘ACTIVE®
PORTION OF COLUMN I.

UPDINX - UPDATE INDEX VECTOR.

MSGUPD - BUFFER INTO WHICH EXTERNAL UPDATES ARE
RECEIVED.

PROGRAM SUBROUTINES:
SENDO, IETUPD, EXTUPD,

[sNeoNsNoNsRsNsNrEoNeNeoNeNoNesNoNsNeNoNoNosNoNsNeNoNosNoNeoNoNsNeoNesNe NN NN NeoNoNos Mo NoNeoNo e NeNe e Nl

C*“"#t"#*‘t“!“‘#‘*.t“..“‘t“0“0“‘l‘t!.tt'#t.‘.“*“““‘#““!‘
C

SUBROUTIRE FANIE (KTROL , ME , NEQENS , MAP , XBLK ,
& NBLKS , HMSGCNT, IMYLNZ, MYLKZ , XLKZ ,
4 INZSUB, BZSUB , MAXWS , WS , LINK ,
[3 FIRST , MYET , UPDINX, MSGUPD, ERROR)

C
CHINRBUREAERRTAURBRIP RO AR R RL R E R SR SR NI R IR ER SRR N EE SR ISR E R R R AR bbb b

it

- 13 -

C PARAHETERS.V

£ emmemcmenee .
INTEGER ERROR , KTROL , MAXWS , XE - , NEQES ,
: ¥BLKS ,
INTEGER FIRST(s) , LINK(e) , MAP(*) , MSGCNT(s),
k ‘ . MYET(*) , NZSUB(«) , UPDINX(#), XBLK(*) ,
X ‘ XLNZ(s) , XMYLNZ(¢), XNZSUB(%) :
REAL v MSGUPD(s), MYLEZ(#) , WS(#)
c .
c ________ -
C LOCAL VARIABLES.
c ----------------
- INTEGER BLKSZE, FSTLEK, I , IT , ISTOP ,
& : ISTRT , ISUB , J , JSIZE , JSTOP ,
Y JSTRT , JXNS , K , KBLK , KSTOP ,
: KSTRT , XSUB , WSSIZE, NEQNS4
REAL - DIAGI ‘
c ‘

CHEURRBREA R MU R AR R SRR IR AR RSER A AR SRR RSB RS RS RN BRI N R RS EA RS R R R
¢ . .
NEQNS4 = NEQENS =+ 4
DO 100 J =1, NEQNS
LINK(J) = 0
100 CONTINUE

Q
-
=
=
[
o
Q
=
7]
g
[
=
o
=]
]
o]
=
o
>

JSTOP = XBLK(KBLK+1) - 1
IF (MYET(JSTOP) .ME. O) THEN
. THAT INTERSECTS MY ELIMINATION TREE, FIND
THE FIRST COLUME IK MY ELIMINATION TREE.
JSTRT = XBLK(KBLK)
+ 200 IF (MYET(JSTRT) .EQ. O) THEN
JSTRT = JSTRT + 1
GOTO - 200
ENDIF
INITIALIZE WORK SPACE FOR CURRENT SUPERNODE XBLK.
#+JOTEs* EACHE COLUMN IN WS INCLUDES THE DIAGONAL.
JSIZE = XLNZ(JSTRT+1) - XLNZ(JSTRT) + 1
BLKSZE = JSTOP ~ JSTRT + 1
WSSIZE = JSIZE#BLKSZE - BLKSZE+(BLKSZE-1)/2
DO 300 II = 1, WSSIZE
Ws(II) = 0.0
300 CONTINUE
SET UP THE UPDATE INDEX VECTOR FOR XBLK.
*+«K0TE+«+ NZSUB DOES NOT INCLUDE THE DIAGONAL.
XSTRT = XNZSUB(JSTRT)
KSTOP = KSTRT + JSIZE - 2
UPDINX(JSTRT) = 1
ISUB = 1
b0 400 K = KSTRT, KSTOP
KSUB = NZSUB(K)
ISUB = ISUB + 1
UPDINX(KSUB) = ISUB
400 CONTINUVE

0

aaagaa aaaQ

aO0aQ

o

(o]

FOR EACH COLUMN J IN CURRENT SUPEREODE, DO ...

Q

Qaaoaaa

aaQaaQaQ

aaQ

aacaaa

aQaaaaoaa

JXWS = 1

FSTL
IF

IF J
T0 0

IF

 ELSE

§K = LINK(J)
(FSTLEK .GT. O) THEN

CALL INTUPD (J, JSIZE, WS(JXWS), UPDIRX, LINK,
FIRST, XNZSUB, NZSUB, XMYLNZ, MYLNZ, J)

IS NOT MINE, SEND NON-ZERO INTERNAL UPDATE
WEER OF J. '

(MAP(J) .HE. ME) THEN

IF (FSTLEK .GT. O) THEN

CALL SENDO (WS(JXWS), 4«JSIZE, J, MAP(J))

EEDIF

IF J IS MINE AND ITS UPDATE IS INCOMPLETE,
RECEIVE AND APPLY EXTERNAL UPDATES ...
IF (MSGCNT(J) .GT. O') THEN

IF (KTROL .GT. 0) THER

. WITH COMPUTE-AHEAD UPDATING.

___________ e o 9 O e o o o O

CALL EXUPCA (KTROL, NEQNS4, J,
JSIZE, JIWS, WS, JSTOP, MSGCHNT,

UPDINX, LINK, FIRST, XNZSUB, NZSUB,

XMYLNZ, MYLNZ, MSGUPD)

. WITH NO COMPUTE-AHEAD UPDATING.
(PURE FAN-IN)
CALL EXTUPD (WEQWNS4, J, JSIZE,
MSGCET(J), MYLENZ(XMYLEZ(J)),
MSGUPD) ’
ENDIF
ENDIF
APPLY INTERNAL UPDATES ACCUMULATED IN WS TO
COLUMN L(*,J). MODIFY LINK(#) AND FIRST(%).
ISTRT = XMYLNZ(J) -
ISTOP = XMYLNZ(J+1) - 1
DIAGY = MYLNZ(ISTRT) - WS(JXNS)
IF (DIAGJ .LE. 0.0) GOTOD 800
DIAGJ = SQRT(DIAGJ)
MYLNZ(ISTRT) = DIAGJ
IF (JSIZE .GT. 1) THEE
ISTRT = ISTRT + 1
FIRST(J) = ISTRT
1 = XNZSUB(J)
ISUB = NZSUB(I)
LINK(J) = LINK(ISUB)
LIEK(ISUB) =]
ISUB = JXWS
PO 6500 II = ISTRT, ISTOP
ISUB = ISUB + 1

MYLRZ(II) = (MYLBZ(II)-WS(ISUB))/DIAGJ

a

QG

aQQ

500

600

700

800

- 15 -

 CONTINUE
ENDIF
ENDIF

* PROCEED WITH NEXT COLUMN IN SUPEREODE KBLK.
JIWS = JXWS + JSIZE
JSIZE = JSIZE - 1
CONTINUE
. ENDIF

CONTINUE
RETURN

o -

ERROR EXIT.
ERROR = 180
RETURN

END

- 16 -

Cttttt#t#%t‘ttttttt#"tl*titt“tmtwt*t“t‘#t#t.t‘tttttt#ttt*‘*‘V
(LI R ET IR LT LT e T e T T T P R R Ty T T Y]
Chentns INTUPD ...,. FAN-IN: INTERNAL COLUMN UPDATES ##%h#e
[T T L L T T Y Lty
(o LT T T T R Ty T T T T T TP P YT YY)
o]
PURPOSE ;
TEIS ROUTINE PERFORMS A CONTROLLED NUMBER OF INTERNAL
UPDATES ON A GIVEN COLUMN.

INPUT PARAMETERS:

J . = COLUMN TO WHICH INTERNAL UPDATES ARE

. TO BE APPLIED.
JSIZE ‘ ~ NUMBER OF WONZEROS IN COLUMN J: L(*,J).
UPDINX ~ UPDATE INDEX VECTOR FOR COLUME J.

INZSUB,NZSUB - ROW SUBSCRIPT. ARRAY; SAME AS SPARS?AK.
IMYLNZ,MYLEZ - MY COLUMNS OF L.

KTROL ~ CONTIOLS THE MAXIMUM EUMBER OF COLUMN
' UPDATES. (>=J) PERFORMS ALL UPDATES 0N
caL 1)

UPDATED PARAMETERS:

U ~ STORAGE FOR UPDATE VECTUR (F 1J.

LINK -~ CONTAINS LINKED LIST OF MY COLUMNS
THAT WILL UPDATE COLUMN J.

FIRST - FIRST(I) POINTS TO THE TOP OF THE

‘ACTIVE’ PORTION OF COLUMN I.

(AR L EL LEA LR AL R R L L R R A e IR TR R R e R L L

acaooaoaaoaoacaaoaaaoacaaoacaaaaaoaaagan

SUBROUTINE TINTUPD (J , JSIZE , U , UPDINX, LINK ,
x FIRST , XNZSUB, KZSUB , XMYLEZ, MYLEZ ,
& CKTROL)

C
(L RS R R I R L Ry R T Y L
C .

c ___________
C PARAMETERS .
C -----------
IETEGER - J , JSIZE , KTROL
INTEGER FIRST(*) , LINK(#) , HZSUB(s) , UPDINX(%),
1 XMYLNZ(#), XNZSUB(#)
REAL U(s) , MYLNZ (%)
c .
C —————————————————
c LOCAL VARIABLES.
C ————————————————
INTEGER I , II , ISTOP , ISTRT , ISUB ,
& K , IMOD , OFFSET
REAL LIK
c

[T T T T LT Y L IR L Ll L T I
Cc

WMOD = 1

OFFSET = UPDINX(J) - 1
C e o 0 o e e ot T e e o " . 14 - o an e w1 " .
C FOR EACH COLUMN X I¥ THE LIRK, APPLY CMOD(J,K)
G e i e e o 4 e e e o 0 e -

100 K = LINK(J)
IF (K .4T. O .AND. NMOD .LE. KTROL) THEN
LINK(J) = LINK(K)
NMOD = NMOD + 1

ISTRT = FIRST(K)

aacaaQ

aaaaQ

a

- 17 -

ISTOP = XMYLNZ(K+1) - 1
LJK = MYLNZ(ISTRT)
I = XNZSUB(K) + ISTRT ~ XMYLNZ(K)
UPDATE FIRST/LINK FOR FUTURE MODIFICATION STEPS.
[#«NOTE«* XMYLNZ POINTS TO DIAG ENTRY
INZSUB POINTS TO SUB-DIAG ENTRY]
IF (ISTOP .GT. ISTRT) THEN
FIRST(K) .= ISTRT + 1
ISUB = EZSUB(I)
LINK(K) = LINK(ISUB)
LINK(ISUB) = K
ENDIF

aaaaaaa

IF THE UPDATING AND UPDATED COLUMN EAVE THE
SAME NUMBER OF NOWZERO ENTRIES ...
IF (ISTOP-ISTRT+1 (LT. JSIZE) THEN
e o o .
PERFORM SPARSE (INDIRECT) COLUMN UPDATE.
[¢sNOTE#» I=I-1 TO INCLUDE DIAG UPDATE.]
I=1-1
D0 200 II = ISTRT, ISTOP
ISUB = NZSUB(I)
ISUB = UPDINX(ISUB) - OFFSET ,
U(ISUB) = U(ISUB) + MYLNZ(II)*LJK
I1=1+1
200 CONTINUE
ELSE
OTHERVISE, PERFORM DENSE (DIRECT) COLUMN UPDATE.
ISUB = 1
DD 300 II = ISTRT, ISTOP
U(ISUB) = U(ISUB) + MYLEZ(II)*LIK
ISUB = ISUB + 1
300 CONTINUE
ENDIF
GOTO 100
ENDIF

RETURN
END

- 18 -

CHEARERR AR AR RSO R R RS R R R R SRR
[e T L L LRl Ll LI
Chedrrk EXUPCA FAN-INt EXTERNAL UPDATES ¥/Ci AL I L
(LR R T I L T T T P LT e
T T T e P T P P LT P

PURPOSE :
THIS ROUTIBE PERFURMS EXTERNAL UPDATES O A GIVEN
COLUMN. A CONTROLLED AMOUNT OF COMPUTE-AHEAD UPDATING
WILL BE PERFORMED WHEN THE PROCESSOR.IS WAITING FOR
EXTERNAL UPDATE COLUMNS.

INPUT PARAMETERS:
" KTROL - CONTROLS THE MAXIMUM WUMBER OF
i UNINTERRUPTED INTERNAL COLUMN UPDATES.

oooaoaaoaoaaoaocaaaaoaaoaoaoaaaaaaa

NEQNS4 - NUMBER OF EQUATIONS TIMES <

J - COLUMN TO WHICH EXTERNAL UPPATES ARE
TO BE APPLIED.

JSIZE ~ N0 OF NONZEROS IN COLUMN J: L(¢,J)

JXWS - INDEX TO WS, POINTS TO THE START OF
UPDATE FOR J

" LASTJ ~ LAST COLUME IN THE SUPERNODE WITH

COLUME J,

UPDINX - UPDATE, INDEX VECTOR FOR CURRENT
SUPEREUDE

XNZSUB,NZSUB

ROW SUBSCRIPT ARRAY; SAME AS SPARSPAK.

UPDATED PARAMETERS:
¥s - WORKSPACE FOR COLUMNS OF J’S SUPERNODE.
MSGCNT MSGCET(I) CONTAINS NUMBER OF EXTERNAL

UPDATES REMATHING FOR COLUME I. IT IS

DECREMENTED - TO REFLECT ANY AFPLIED

EXTERNAL UPDATES.

CONTAINS LIKKED LIST OF ‘MY’ COLUMES

THAT WILL UPDATE COLUMN J.

FIRST(I) POINTS TO THE TOP OF THE

‘ACTIVE’ PORTION DF COLUME I.

XMYLEZ ,MYLNZ - MY COLUMNS OF L.

LINK

!

FIRST

WORK PARAMETERS:
MSQUPD

STORAGE FOR INCOMING EXTERNAL UPDATE
COLUMES FOR J.

PROGRAM SUBROUTINES:
PROBEO, RECVO, RECVINFOO

(e HeoNoNeoNeoNoloNoNoNeoNoNoNoNeoNoNoNeoNeoNeoNoNeoNeo el

R AL R LA LR L I R L LY R I R R T L R Y e DT S T T

C .
SUBROUTINE EXUPCA (KTROL , NEQNS4, J , JSIZE , JXWS
& ¥s , LAST] , MSGCNT, UPDIEX, LINK
& FIRST , XNZSUB, WZSUB , XMYLNZ, MYLNZ)
| MSGUPD)
c
(L LI I R R T Ly T P T Y
o]
C | memmemamae Vomr
c PARANMETERS .
C -----------
INTEGER 1 , JSIZE , JXWS , LASTJ , KTROL , NEQKS4
INTEGER FIRST(#) , LINK(#) , MSGCNT(e), NZSUB(#) ,
3 UPDINX(#), XMYLEZ(+), XNZSUB(#)
REAL MSGUPD(#), MYLNZ(*) , WS(#)

aaQ

aoa

aa

c

LI IR E IR L R S A R R LR LS DRI DRI RN E S LA LI L ET L]

C

aaaa

aacaaoa

aacaaa

100

200

400

- 19 -

LOCAL VARIABLES.

INTEGER BYTES , 1 , IT , ISIZE , ISUB
K , KSIZE , KXWS , HODE

EXTERNAL FUNCTIOHS.

---------- e o o o o

INTEGER PROBEO, RECVINFOO

K=J3+1

KXWS = JXWS + JSIZE
FOIZE = JSIZE - 1
JSUB = XMYLNZ(J)

ot o e e 1t B o ot o 4 B om0

'WHILE THERE IS MESSAGE FOR COLUME I,

RECEIVE IT AND APPLY EXTERNAL UPDATE TO L(e,l).
IF (PROBEO(J) .GT. 0) .THEN
CALL RECVO (MSQUPD, NEQWS4, J)
ISUB = JSUB
DO 200 II = 1, JSIZE
MYLNZ(ISUB) = MYLNZ(ISUB) - MSGUPD(II)
JSUB = 1=ud + 1
CONTINUE
MSGCHT(J) = MSGCNT(J) - 1
IF (MSGCNT(J) .LE. 0) RETURN
GO TO 100
ENDIF
PERFORM COMPUTE-AHEAD INTERBAL URDATES ON
REMAINING COLUMES OF THE OURRENT SUPERNODE.
IF (K .LE. LASTJ) THEN
IF (LIFPR(K) .GT. O) THEN

CALL INTUPD (K, KSIZE, WS(KXWS), UPDINX, LINK,

, JsuB

FIRSY, XEZSUB, NZSUB, XMYLNZ,
MYLNZ, KTROL)
ELSE
K=K+1
KXWS = KXWS + KSIZE
KSIZE = KSIZE ~ 1
GD TO 300
ENDIF
GO TO '100
ENDIF

PERFORM COMPUTE-AHEAD EXTERFAL UPDATES WITH
IECOMING MESSAGES, GIVING PRIORITY TO UPDATES
FOR COLUMN],
CONTIEUE
IF (PROBEO(J) .EQ. 1) THEN
CALL RECVC (MSGUPD, NEQNS4, 1)
I=)
ELSE
CALL RECVO (MSGUPD, NEQNS4, -1)
CALL RECVIKFNO (BYTES, I, NODE)
ENDIF
ISUB = XMYLNZ(I)
ISIZE = XMYLNZ(I+1) - ISUB
DO 600 II = 1, ISIZE

L

.20 -

MYLNZ(ISUB) = MYLNZ(ISUB) - MSGUPD(II)
'ISUB = ISUB + 1
500 CONTINUE
MSGONT (1) = MSGCET(I) - 1
IF (MSGONT(J) .LE. 0) RETURN
G0 TO 400

E¥D

-21-

R Y T T Y YR R P P R LY R L T YRR DY LA UR DAL AL L LR AL LR LY L]
L Y T Y TR Y TR PRI LT TRV LR LR DDA LT E LI R I DL L)

LETTLIT EXTUPD ..., FAN-IE: EXTERNAL COLUME UPDATES ##&é&«
[L L L T T P T R TR TP e L L T
T L T T T PR T YN T T T

PURPOSE!
THIS ROUTINE PERFORMS EXTERNAL UPDATES ON A GIVEN
COLUME WITH NO CUMPUTE-AHEAD UFDATING,

INPUT PARAMETERS

NEQNS4 - BUMBER OF EQUATIONS TIMES 4.
J - OOLUMN TO WHICH EXTERNAL UPDATES ARE
TO BE APPLIED.
JSILE - NUMBER OF WOXZEROS IN COLUMN J: L(¢,l).
UPDATED PARAMETERS:
MSGCET ~ KSQONT CONTAINS HUMBER OF EXTERNAL
' UPDATES REMAINING FOR COLUMN J.
JNZ - 0N OUTPUT, ALL UPDATES HAVE BEEN

APPLIED TO COLUMN J OF L.
WURK PARAMETERS ¢
NSqueD ~ 8TORAGE FOR IRCOMING EXTERNAL UPDATE
COLUMN OF J.

PROGRAM SUBROUTINES:
RECVO ~ RECEIVE A MESSAGE.

IR Y R TR S YR T DY Y PR AR D Y PR LSS AL AR SRR L YL]

acaacacaoaoaaoaaoaaoaaaacaaocaaaoaaoaaoaaaacaaaaaQ

SUBROUTINE EXTUPD (NEQWS4, J , JSIZE , KSGCHT,
[JINL , MSGUPD) .

c Yy
[P EXTIT LTRSS R LR TS LRI DRI E LR NE LIS E I AL LAY
c
0 eeeccadcoa-
C PARAMETERS .
0 2 seecancceas

INTEGER J , JSIZE , WEQES4, MSGONT

REAL MSQUPD(*), JNZ(%)
c
C | emmmemesmmesemne-
c LOCAL VARIABLES.
¢ mecccwesmmeeceeae

INTEGER 1I
c .
L L Y R I R LR R L AT AL LD L LA AT E R LY DR DL L L
¢

------------------------------------- -t

RECEIVE AND APPLY EXTERNAL UPDATES TO L(e,J),
UNTIL ALL SUCH UPDATES HAVE BEEN APPLIED.
100 CONTINUE
CALL RECVO (MSQUPD, NEQHS4, J)
DO 200 II = 1, JSIZE
JNZ(II) = JWZ(II) - MSQUPD(II)
200 CONTINUE
MSGCHT = WSGCHNT - 1
IF (MSGCET LE. 0) RETURN
G0 TO 100
END

aaoaaQ

e i ey

—

Sad

