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Abstract

We study the saturatedstate of an untapered freeelectronlaserin the

Compton regime, ar_sing after exponential amplification of an initial low level

of radiation by an imtiaUy monoenergetic, unbunched electron beam. The sat-

" urated state of the FEL is described by oscillations ,_bout an equililbrium state.
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Using the two inva.,-iantsof the motion, and certain assumptions motivated by

computer simulations, we provide approximate analytic descriptions of the radi-
ation field and electron distribution in the saturation regime. We first consider

a one-dimensional approximation, and later extend our approach to treat an
electron beam of finite radial extent. Of note is a result on the radiated power

in the case of an electron beam with small radius.
a,

1 Introduction

In this paper we study the saturated state of an untapered free electron laser in the

Compton regime. Guided by the results of simulations starting with a monoenergetic

unbunched electron beam and a low initial level of radiation, we make assumptions

which prove to give an accurate picture of what happens in the saturation regime.

The solutions in the saturated regime are related to the initial conditions by using the

two invariants of the motion. We first consider a one-dimensional approximation, and

later extend our approach to treat an electron beam of finite radial extent, including

the effects of the diffraction of the radiation and the radiation focusing properties of

the electron beam bunched by the FEL interaction.

The starting point of the analysis is the scaled equations for the evolution of the

one dimensional electron distribution and for the monochromatic radiation field. The

notation is that of Bonifacio ct. al. t and the equations are

(t.1)---- --pi,dr

dp_..2.j= _Aeio, _ A.e-io_, (1.2)
dr

d__AA=< e__,, > +lA,5, (1.3)
dr

where crj and Pi are the phase of the jth electron relative to the radiation and its

(scaled) momentum deviation, A is the (seal.cd) amplitude of the radiation at the

(scaled) longitudinal position r = 2pk_z, where 2r/k_, is the wiggler period and p is

the Pierce parameter, 6 is the detuning of the t_er, and <> is an average over the

electron distribution.

It is easy to show from Eqs. (1.1)-(1.3) that

< pj > +IAI:: = Ct (t.4)
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and
<p_>

+ 2Im[A < ei'i >]- 61Al - C2 (1.5)2

are constants of the motion. For an initially monoenergetic unbunched electron beam

and a low initial le,, :l of radiation, the constants C1 and 6'2 are approximated by zero.

In Fig. 1.1 we show a typical evolution of the radiation with r. The field builds

up exponentially as the electrons bunch. After the bunched electrons are captured in

buckets, the radiation oscillates with modest amplitude about an equilibrium distri-

" bution. In Fig. 1.2 we show the phase of the radiation as a function of r. It appears

that this phase is very nearly linear with r. We shall take advantage of this behavior

and recast our equations by writing

A = (P + iQ)e i'(_'-_), (1.6)

where v and ro are chosen to correspond to the average slope and intercept in Fig.

1.2. In fact we will later predict (Section 3.2) the value of u, and it will agree closely

with the value appropriate to Fig. 1.2.

The saturated state of the FEL is described by oscillations about an equilibrium

state. 2-s This equilibrium state corresponds to a steady state solution of Eqs. (1.1)-

(1.3). The proper choice of the equilibrium solution is significantly restricted 2 by

the two invariants of Eqs. (1.4) and (1.5), relating properties of the saturated state

back to the initial conditions at the start-up of the FEL. In Section 3, we study the

properties of the equilibrium solution. The equilibrium radiation field has the form

A = Poei'(_-r°), (1.7)

where Po is constant. We introduce the displaced electron phase ¢j(7") in the equilib-

rium state
7r

CJ -- aj + u(-r - "ro)+ _, (1.8)

and require g to be chosen such that

< ¢} >= 0. (1.9)

" In the case of zero detuning, _ = 0, we find

< sin Cj >= 0, (1.10)
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< >= (1.11)

< _2 >= 3Po4, (1.12)

v=p2. (1.13)

The equilibrium electron distribution has the form

f(¢, ¢') = F(H), (1.14)

where

H = ¢r2/2 - 2Po cos ¢. (1.15)

We consider three quite different choices for F(H):

1. FKv(H) = N16(H- Ho) (KV-distribution)

2. F_I/2(H) = N2(Ho - H) -1/2

3. Fs(H)--- N3exp(-aH) (Boltzmann distribution)

Suprisingly, we find that in all three cases, Po ."_0.81, in good agreement with Fig.

1.1. Moreover, from computer simulation results, it appears that the actual electron

distribution arising after the saturation of the initial exponential growth is similar to

the Boltzmann distribution.

A simplified model of oscillations about the equilibrium state is presented in Sec-

tion 4, based on an ansatz retaining only a single harmonic:

P(r) -- Po + P1 cos f2r,

Q(r) = Q1 sin f/r,
?r

/3j(r) -- ai(r) + v(r - ro) + _- = Cj(r) + asin ftr.

A more exact treatment is giveu in Section 5, using the Vlasov equation. The coherent

frequency fl is determined and shown to agree with computer simulation.

The work presented in this paper carries forward that of Lane and Davidson 2 ,

who used the invariants to constrain the equilibr:.um solutions, relating them to the

initial conditions at start-up. The equations we use are equivalent to those employed

by Sharp and Yu 4, 5 in their study of the sideband _.nstability; however, in our case
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we consider a radiation field depending on axial coordinate z, but independent of

time t. Sharp and Yu do not use the invariants to restrict the equilibrium solutions.

In this paper we provide explicit numerical comparisons between our analytical work

and computer simulations, finding good agreement.

The paper is organized as follows: In Section 2 we review the derivation of the

- growth rate of the radiation in the exponential regime, h_ Section 3 we obtain the

differential equations for P and Q as functions of r, and discuss the formulation of

the equilibrium distribution in the saturation regime. In Section 4 we solve these

equations for P and Q as functions of r by assuming that the oscillations about equi-
librium are dominated by a first harmonic. In Section 5 we use the Vlasov equation

to explore the coherent frequency of small oscillations about equilibrium, and discuss

the stability of these oscillations. In Section 6 we utilize numerical simulations to

further study the stability of these oscillations. Theory and simulation both show

that for the case of interest, the small amplitude oscillations are unstable. The mod-

erate amplitude oscillations observed in the saturated state presumably correspond

to saturation of this instability at large enough amplitude. In Section 7 we examine

the effects of detuning and energy spread. In Section 8 we explore the consequences

of using an electron beam with a finite radial extent. Section 9 is then a summary of

the main conclusions of this paper.

2 Exponential Growth Regime 6

We start with a low level of radiation (]AI << 1) and an approximately uniform

distribution in electron phase, nj. Taking two derivatives of Eq. (1.3) leads to

d3A . d2A (d2 °'J i (d°'J_2) e-ia, (2.1)dr 3 Z_-d-_2 = -i < dr 2 \ dr ] >"

Since we are here interested only in terms linear in pj and A, we drop the quadratic

term involving (daj/dr) 2 and use Eqs. (1.1) and (1.2) to obtain

• d3A . _A e-2ia, (9 9)
dr a _6-_r2 - iA = lA" < > • ""

. Since the right side of Eq. (2.2) is quadratic in A if we start with a distribution in

electron phase which is approximately uniform, we obtain the linear equation for A:
dnA . d2A

dr a z6-_r2 - iA = 0. (2.3)
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The general solution of Eq. (2.3) is

A = ei_, (2.4)

where

_3 _ 5_2+ 1= 0. (2.5)

The exponential growth solution corresponds to the complex root for # with a negative

imaginary part. For zero detuning (5 = 0) this is

1 .v_
= _ -, _--{- (2.6) "

corresponding to the exponential growth

A __Aoe{_+_ )_. (2.7)

For small non-zero detuning (5 < l), the growth in the radiation amplitude is

approximately

A_Aoe_(1-¢)"+i(½ _ 62+_+_)_. (2.8)

Equation (2.7) (or its generalization in Eq. (2.8) for 5 # 0) is expected to govern the

evolution of Eqs. (1.1)-(1.3)until [A(r)I becomes of order 1, when our assumptions

are no longer appropriate and some form of saturation will take place.

3 Saturation Regime

3.1 Behavior of the Radiation Phase

Numerical simulations7 of Eqs. (1.1)-(1.3) starting with a monoenergetic uniform

electron phase distribution and a low radiation level indicate that the phase of the

complex radiation amplitude A is very nearly linear with r. A typical result is shown

in Fig. 1.2 for the phase of the radiation as a function of r for a starting radiation level

corresponding to lA I = .01. In Fig. 1.1 we show the corresponding field amplitude

IAI as a function of r which clearly exhibits the early exponential growth as well as

the transition to saturation when IAI is of order 1. And in Fig. 3.1 we show the phase

space distribution of the electrons, which initially were monoenergetic with a uniform

phase distribution, in the saturation regime at r _ 9.
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lt is clear that the electrons have been bunched during tbe buildup of the radiation,

and are now oscillating with fairly large amplitudes. The oscillation of the radiation

shown in Fig. 1.1 is also of large amplitude (+50%). But there is a clear indication

that some sort of steady state has been reached in the saturation regime. In fact,

simulations show that the steady state configuration is essentially independent of the

• initial electron and radiation configuration, provided we start with an approximately

monoenergetic unbunched electron beam, and a low level of radiation.

" We now rewrite Eqs. (1.1)-(1.5) in terms of P(r), Q(r) and the electron phase _j

given by

,Gj= aj + v(r - ro) + _r/2. (3.1)

In Fig. 3.2 we show P(r) and Q(r) from the simulation, and in Fig. 3.3 show

the phase space distribution in the _,/3j space at r = 10,15,20,25,30,35, where

Zl ,-- aj + Y"- pj . Y. Here the prime stands for d/dr. It is clear that the electrons
have formed a bunch which rotates and oscillates as r increases. In Fig. 3.3, we plot

only those electrons which appear to have been captured in the bucket. Also P(r)

appears to oscillate sinusoidally about an equilibrium value Po, and Q(r) oscillates

about zero (when ro is chosen appropriately).

8
Equations (1.1), (1.2) and (1.3) can now be written as

(3.2)

_ = -2P sin _j - 2Q cos _j, (3.3)

Q' + (v- 5)P =< cos_j >, (3.4)

P' - - 6)Q=< >, (3.5)

and the two invariants in Eqs. (1.4) and (1.5) become

</3_ > +p2 + Q2 _ u = Cl, (3.6)

2 _' < _ > +T-2P < cos3 i > +2Q < sinai > -5(P 2 +Q2) = C2. (3.7)

Even though we have plotted only those electrons trapped in the bucket in Fig. 3.3,

we note that all averages must be taken over all electrons, including those not trapped.



3.2 Equilibrium Distribution 2-5

As a first approximation, we will assume that the amplitude of oscillation is small, and

we will derive the properties of the equilibrium distribution, assuming C1 = C2 = 0.

Identifying Cj as the equilibrium electron phase distribution, and writing P = Po

(constant) and Q = 0, we have

(v - 6)Po =< cos Cj >, (3.8)

< sin ¢i >= 0, (3.9) "

and from Eqs. (3.6) and (3.7), together with < ¢_ >= 0, we find

v = ,_, < ¢_ >= 4Po < cos Cj > +25P 2 - v2 = 3Po4 - 26Po2. (3.10)

For P = Po, Q = 0, we see from Eq. (3.3) that any function of

H(¢3, ¢}) = ¢_/2 - 2Pocos ¢_ (3.11)

will be a stationary distribution. For the appropriately normalized KV distribution

fKv(¢j, ¢_) = ga(2Po cos Cj - ¢_/2 - 2Po cos 0o) (3.12)

corresponding to pendula oscillations with the same maximum angle 0o but different

phases, we find

2E(m) < ¢_ > = 4Po (E(m) )[KV] < cosCj >= If(m) 1 , 2 K(m) 1 +m , (3.13)

where m = sin2(8o/2) and where K(m) and E(m) are the complete elliptic integrals

of the first and second kind. For the phase space distribution

f_½(¢_, ¢_) = N(2Po cos Cj - ¢_/2 - 2Po cos 8o)-'/2 (3.14)

we find

sinSo <¢;> (sin_.0o )[(Ho-H) -'12] < c°s¢1 >= 8o ' 2 = P"\ 8o cosSo_, (3.15)

and for the Boltzmann distribution

fs(¢j,¢}) = g exp(-c_¢]/2 + 2aPo cos Cj) (3.16)
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we find

/_(2aPo) < ¢_ > 1 (3.17)
[Boltzmann] < cos Cj >- Io(2aPo) ' 2 = 2-"_"

Combining Eqs. (3.8), (3.10) we have the requirements

< cos¢_ >= Po(P2-_), (3.18)

< >= - 2P3. (3.19)
Thus the combination of Eqs. (3.lD), (3.19) and either (3.I3), (3.15) or (3.17) deter-

mine the value of Po and 00 (or c_) for each distribution.

Let us now consider the case 5 = 0, in which case we can write

< ¢_ >= 3Po < cos Cj >. (3.20)

For the KV beam, this requires

2E(m)=5- sm, (3.21)
K(m)

which leads to

[KV] m = .433, 0o = 82.3 °, Po = .813, < H >= -0.218. (3.22)

For the (Ho - H) -1/_ distribution we find tan 00 = -200, which leads to

[(Ho - H) -1/2] 00 = 105.2°, Po = .807, < g >= -0.212. (3.23)

For the Boltzmann distribution we require

[Boltzmann] 2c_P0= 1.257, Po = .809, < H >= -0.214. (3.24)

Note, we have used < H >=< ¢_ >/2 - 2Po < cos Cj >= -P_/2.

Remarkably, the value of Po is insensitive to the nature of the distribution. Fur-

thermore, the simulation in Fig. 1.1 corresponds to an actual value Po = .8, in

" excellent agreement with the prediction of the three distributions we have explored.

Moreover, from Eq. (3.10), we find v = Po2 _ 0.66, in good agreement with the result

" v = 0.70 given in Fig. 1.2 obtained from the simulation.

We can explore the electron distribution by comparing the results of simulations

starting with a low radiation level with the three explicit distributions analyzed above.
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In Fig. 3.4 we show the three distributions as a function of H defined in Eq. (3.11).

in Fig. 3.5 we show the electron distributions obtained from the simulation for

r = 10, 20, 30, 40. The background from the electrons which are not trapped is seen

to be more or less independent of H, and the distributions of the trapped electrons
seems to most resemble the Boltzmann distribution.

.

4 Single Harmonic Model

4.1 First Order Treatment of Radiation Oscillations

We now explore the oscillations about the equilibrium by assuming that only a single

harmonic of relatively small amplitude is present. Thus we write

P(r) = Po + P, cos fir, (4.1)

Q(r) = Q1 sin F/r, (4.2)

flj(r) = ej(r) + asin _'/r, (4.3)

where we have assumed a coherent dipole oscillation of the electron phase space

distribution. Expanding < sin flj > to first order in a and using Eq. (3.9), we find

< sin_j(r) >= _asin ftr, (4.4)

where

-< coses > • (4.5)

The first harmonic terms in Eqs. (3.4) and (3.5) now lead to

_Q_+(_,- 6)P_= o, (4.6)

(v - 6)Q1 + tiP1 = -_a, (4.7)

from which we find
b

"6(v - 6)a "_a (4.8)
Q_= n_-(_-6)_'P_= n_-(_-6)_

We also average Eq. (3.3) over j and obtain from the first harmonic

(ft2 _ 2P0_)a = 2_Q1. (4.9)
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Combining Eqs. (4.8) and (4.9), we obtain

(_2 _ 2P0_)(f12 _ (v - 5)2) "--_2(v - 5) = 2_(g - 5)2Po, (4.10)

where the last form results from using Eq. (3.8). We then obtain a prediction for ft,

the frequency of the oscillations about the equilibrium in the saturation regime

- g/2 = 2P0_ + (u - 6)_ -- (Po2 - 6)(3P02- 6), (4.11)

where we have used Eq. (3.18) for _ __< cos¢i >. For 6 = 0, this corresponds to

= V_P02 _ 1.14[Boltzmann]. (4.12)

This prediction is somewhat smaller than the value _ = 1.25 obtained from the

simulation in Fig. 1.1. A more accurate determination of the coherent frequency F/

is given in Section 5.

Finally, we can also use the first harmonic components of the two invariants. Not

surprisingly, they each reproduce Eq. (4.11).

To summarize, we consider equilibrium solutions, and utilize the two invariants for

an initial monoenergetic unbunched electron beam and a low initial level of radiation

to determine the radiation parameters u, Po and the electron phase space averages

< cos ¢i > and < ¢_ >. We then consider a first harmonic oscillation of the radiation

and a coherent dipole oscillation of the electron distribution, from which we determine

the oscillation frequency 12, as well as the relative oscillations amplitudes Pl, QI, a.

The remaining question is to predict the magnitude of the amplitude of oscillation

which, in fact, is not small.

4.2 Transition Model

An approximate model for the transition to the saturation regime is suggested by the

plot of P'(r) vs. P(r) in Fig. 4.1. It appears that the linear variation, corresponding

to the exponential growth regime, is approximately tangent to the elliptical trajecto-

ries which correspond to the oscillations in the saturation regime. Quantitatively this

requires that the log_rithmic growth rate in the linear regime, given approximately

by Eq. (2.7) for _ = 0, or its equivalent

1 dR,..,_ v'_ (4.13)
Pdr 2 '
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is equal in the saturation regime to that of the oscillatory behavior of Eq. (4.1). This
leads to the relation

_P' vg P,
_)-= 2-5= v/p2_p_ (4.14)

which suggests a value P1 _ 0.49, about 20% larger than that seen in the simulation.

Also we have from Eq. (4.8), ]Q,] = (v/fl)lP_ I -_ 0.28, about 30% larger than

that seen in the simulation. However, the transition region is undoubtedly more

complicated than the simple sudden change from one behavior to another, and the

agreement is therefore reasonable.

Thus, we confirm the validity of our general picture of the way in which saturation

sets in, although our small oscillation assumption is only approximately valid. In the

next section, we explore the solutions of Eqs. (1.1)-(1.3) in the saturation region more

rigorously.

5 Small Oscillations About the Stationary Distri-

butions

5.1 Action-Angle Variables

We take the stationary state Hamiltonian to be

Ilo = _'Z _ 2Po cos 5 (5.1)
2

and introduce the radiation field variable P(r), given by

P(_.)=p(_-)- Po. (5.2)

Equations (3.2) and (3.3) then become

Z" + 2Po sin B = -2[/5 sin Z + Q cos 8]. (5.3)

For _ = 0, Eqs. (3.4) and (3.5) lead to

Q'+_P=<¢o_13> -_P0 (5.4)

and

/5 _ vQ =< sin/_ >, (5.5)
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analogoustoEqs.(3.3)-(3.5).The HaznihoniancorrespondingtoEq. (3.3)is

H =Ho+V (5.6)

wheretheperturbationV isgivenby

V(r) - 2[jb(r)cos _ - Q(r) sin /9]. (5.7)

The unperturbed stationary system corresponds to the action angle variable_

1 /d_'($,Ho)= 8vtZ°lE(m)-(1 -m)g(m)], (5.8)- z -----2-; -'-V-

H' = w(I) = di = 2K(m) ' Ho = gPom- 2Po, (5.9)

where m = sin2(0/2), with 0 being the maximum pendulum angle corresponding to a

given value of I. Here Po is considered as a constant, and the stationary phase space

distributionintheI,H spaceistakentobe

f.,_,,o,,_,_(_,_')= fo(Z). (5.10)

The solutions of the pendulum system can be written in terms of the Jacobi elliptic

functions as

= 2sin-* _ sn[(_K(m)H] , (5.11)
9

_'= $__om cn[(_)K(rn)Hl. (,5.12)

Using the expansion of the periodic functions sn, cn into Fourier series 9 .

sn(K(m)H) = v_ K = 1 _q_..l sin(2n + 1)¢, (5.13)

2 27r _o q"+_ cos(2n+l)H, (5.14)cn(K(m)H) = v/-_K = 1 + q2"+'
where

--7rI%'(1 -- r/l) r/2 [ 7Tr 21/712 1q=exp( K(m) ) =_ 1+_+ 6--'-_+"" ' (5.15)

we can write for the harmonic decomposition of the pendulum motion

cos_= _ A,(I)cos2nH, (5.16)
rt=O

oo

sine= _ B_(I)sin(2n + 1)H, (5.17)
.--0

where A,(I) and B,(I) are related to the coefficients in Eqs. (5.13) and (5.14).

13
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5.2 Perturbation Treatment and Dispersion Relation

The behavior of the perturbed system is governed by the Vlasov equation

af OHai OHa/
Or OIo a¢OI=°" (5.18)

In Appendix A we explore oscillations about the equilibrium solution by treating

f- fo, P(r) and Q(r) as small quantities. This linearized system has osciUat._.

modes with frequency ft given by the dispersion relation
oo oo

Iv - _ S,,(£)][v - _ r,(£)] = £2 (5.19)
n---1 n----O

where

S,,(fl) : 21rf dIfo(I)J7[ (2n)2("A_(2n)2w2 _ _2]' (5.20)

f d (2n + t)2wB_T,,(£) = 2r dIfo(I) [(2n + l.)2w2 - ft2]" (5.21)

Since A, and B,, defined in Eqs. (5.16) and (5.17), are real, stability requires that

all solutions for £ in Eq. (5.19) be real.

For the normalized delta function (KV) d,'3tribution

lo(I) = 6(I-1o) (5.22)

corresponding to Eq. (3.12), we have

d (2n)2wA_

S,(£) = w_--_o[(2n)2w2 _ £2] (5.23)

d (2n + 1)2wB,2

T,(£) = W_o[(2n + t)_w 2 _ £2] (5.24)

where I = Io is giveu in Eq. (5.8) and where the relation between Io, Ho and m is

given in Eq. (5.9), with Po taken as a constant. Thus d/dHo = (14Po)d/dm, and

the derivatives in Eqs. (5.22) and (5.23) act on w,A_,(I),B,(I), where w and I are

expressed in terms of m in Eqs. (5.8), (5.9).

The exact solutions to Eq. (5.19), with S,(fl),T,(fl) given by Eqs. (5.23), (5.24)

can only be obtained numerically. Moreover, the discussion in Section 3 and the

corresponding simulations show that the electron bunch will be relatively large, cor-

responding to a relatively large value of 0o, the maximum pendulum angle. Never-

theless we can obtain a guide to the location and stability of the oscillation modes,

14
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as well as a useful starting value for the numerical search for these modes, by explor-

ing approximate analytic solutions corresponding to the KV distribution for small

m = sin2(0o/2).

We start by expanding A. and B. in powers of m. Specifically we find

16nm"
A. = G2,, -_ , n >_.I, (5.25)• 42-

B. =-G2.+1 _ 8(2n + 1)42,+x mn+}, n>O. (5.26)

The dispersionequationcan thenbe writtenmore compactlyas

(_-_ H_)(_-E _)= _ (5.27)
p-- 2 pm 1

even odd

with

Ep = 41:'odm p_ ---h 2]' p ->I (5.28)
where

w(m) = 2K(m)" (5.29)

Since c,_"2._ mp, the dominant term for small m is the one for p = 1. In this

approximation, Eq. (5.27) becomes

v(v - Hl) _- f_2 (5.30)

with w2 dG_ ,._ w2
H_ _ (531)---- .

4Po(w2 - fl2) dm Po(w2 - l"l2)
and

_(0) = 2V/_o. (5.32)

According to Eq. (5.4), vPo _ 1 for an equilibrium distribution with small 0o. As a

result Eqs. (5.30)-(5.32) lead to

f12[f12_ (2/'o + v_)] = 0, (5.33)

predictingrootsat

ni~ 2.Po+ v2 2~• = , 11o= 0. (5.34)

The root fld corresponds to a dipole-like oscillation of both the phase space density

and the radiation. In fact, this is the small angle limit of the dipole root in _::c1. (4.11)
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obtained without a self consistent calculation. A more accurate calculation of the root

12orequires additional terms in the expan3ion near m = 0. Both roots turn out to be

real for small 8o implying stability of the equilibrium distribution for these modes.

The singular behavior of Hp implies the existence of additional roots of Eq. (5.27)

near 12_ = p2w2 _- 2p2Po. Inclusion of appropriate terms for small 8o leads to the
conclusion that the root 121 is real but that the roots f/p, p >_2, each have a small

imaginary part proportional to 8_. These roots appear to be associated with a phase

space distribution where there are p wiggles along the boundary of the distribution.

The growth rate for these modes is expected to be slow for small 8o. These predictions

appear to be consistent with the exact numerical solutions of Eq. (5.27) as well as

with several numerical simulations illustrating the modes. This numerical work is

described in the next section.

6 Numerical Results

In Figs. 6.1, 6.2, we show the result of a simulation to check the equilibrium solution

for a small pendulum angle Oo= 3°. Figure 6.1 shows the corresponding stationary

phase space distribution and Fig. 6.2 shows the equilibrium value of P(r) = Po =

1.00.

In Fig. 6.3 we e,_plore the oscillation of IA(r)l which occurs when we start with the

phase space distribution in Fig. 6.1, but with P(O)/Po = 0.99. The dipole oscillation

with frequency (2Po + v2) 1/2 = 1.73 shows clearly, and appears to be stable. A similar

result is shown in Fig. 6.4 for 00 = 30° with P(O)/Po = 0.99. But the simulations for

8o = 55°, and 80°, shown in Fig. 6.5 and 6.6 show an unstable dipole oscillation.

We then obtained the numerical solution of the dispersion equation, Eq. (5.19),

and this is displayed in Fig. 6.7, where we have only included the dipole term To.

,I Clearly an instability is predicted for 0o > 50°:. consistent with our observations in

( Figs. 6.3-6.6. We then included several additional terms in Eq. (5.19) and the results

are shown in Fig. 6.8. The additional modes, near _ _ 2p2Po for small 0o, show up

clearly for p = 2 arid p = 3, but it appears that these modes are unstable at all values

of 0o. But our starting phase space distribution does not contain the "border ripples"

corresponding to these modes and therefore they are not seen in the simulations. Note

also the stable mode with small frequency in Fig. 6.7, as predicted in Eq. (5.34).
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It is interesting to note that the unstable modes in Figs. 6.5 and 6.6 saturate.

This is in fact reassuring since the dipole mode obtained in Section 4 does not exhibit

unstable behavior. Thus it appears that the instabilities associated with the roots of

Eq. (5.19) are not in conflict with the observation of saturation of the FEL radiation

with a significant dipole oscillation. From Fig. 6.6, we see that the Refi = 1.25, in

. agreement with the start-up simulation of Fig. 1.1. The dispersion r_l_tion results

presented in Fig. 6.7 predict that for 00 = 81°, Re_ = 1.22, in good agreement with

the computer simulation.

Finally, we include the prediction of Eqs. (3.8), (3.10), (3.13) and (4.11) for 6 = 0
to obtain

2E(m)

f_2 = 3P_, < cos ¢.i >= P_ = g(m) 1 (6.1)

$2_ = 3 [ K(m) 1 . (6.2)

The curve correspoz_ding to Eq. (6.2) is included as a dashed line in Fig. 6.7. The

result is quite close to the exact solution for smaP 0o, and is a suprisingly good

approximation for all 80.

7 Effect of Detuning, Energy Spread

We return to the treatment in Section 4 to explore the effect of an initial detuning.

and energy spread of the electron beam. The main change is to include the constant

C_ = e2/2 in Eqs. (1.5) and (3.7), where

2
e2 "< Pj > [r--o (7.1)

is the initial mean square (scaled) energy spread. Thus, for the Boltzmann distribu-

tion we find from Eqs. (3.7), (3.8), (3.10) and (3.17)

1
. < >= - = - 26P0+ (7.2)(2

I,(2aPo)= Po(P_- 6) (7.3)
< cos Cj >= /0(2c_Po)

The solution of Eq. (7.2) and (7.3) for Po as a function of 6, for e2 = 0, is shown

as the solid curve in Fig. 7.1. In addition we show results for simulations with
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e2 = 0, which agree reasonably well with the predictions. At this point we should

point out that Eqs. (7.2) and (7.3) have been derived under the assumptions that all

electrons have been captured by the bunch. In fact, only about 80% of the electrons

are captured for e2 = 0. If we assume that the 20% which have not been captured

are uniformly distributed in Cj and have values of pj which remain small, we estimate

th,_t Po would be reduced from the value predicted by Eqs. (7.2) and (7.3) by about

6% for 6 = 0, which may be the reason the simulations for _2 = 0 are mostly below

the curve.

The situation is somewhat more ambiguous for e2 = 0.5, where only about 70% of

the electrons are captured, and for e2 = 1.0 where only about 50% of the electrons are

captured. We see clearly from the simulations that Po decreases as e2 increases. Any

analytic treatment would require some way of predicting the fraction of the electrons

which are captured as a function of 6 and e2, as well as the way in which Eqs. (7.2)

and (7.3) should be modified to take into account the untrapped electrons. This is a

,.:ubject for future study.

8 Electron Beam with Finite Radial Extent

We shall now extend the single harmonic model introduced in Sections 3 and 4 for

the one-dimensional FEL dynamics to the two-dimensional case of an electron beam

with finite radial extent. We ignore betatron oscillations, assuming the electron beam"

has no angular spread, but include the diffraction of the radiation and the radiation

fbcusing properties of the electron beam bunched by the FEL interaction.

8.1 Equations of Motion and Invariants

We consider a fixed electron beam density profile, u(r). The equations for the electron

motion are

,crj = pf,

!pj = -Ae'"_ - A" e-'"_ (8.2)

where the scaled amplitude of the radiation A(r, r) depends on both the scaled lon-

gitudinal position 7"= 2pk_,z and the scaled transverse coordinates _"= _Fd,
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where k, is the resonant radiation wave number and r'd is the unscaled transverse

coordinate vector. The wave equation in the case of zero detuning is

A'-iV2A = _(_)< _-_, >, (8.3)

where V 2 = 02/ar_ + aS/ar_ is the two-dimensional Laplacian in the scaled transverse

- coordinates _' = (rl, rs), and r = er_ + r_ is the magnitude of the vector g.

Eqs. (8.1)-(8.3) have two invariants of the motion. We can use Eqs. (8.2) and

(8.3) to obtain

u(r) < pi' >= -_r0 (AA') - iV. (AVA" - A'VA). (8.4)

Integrating over d2r then leads to the vanishing of the divergence term, and the first
invariant

L _ rdr[< p3 > u(r)+ IAI2]- Cx. (8.5)

A similar analysis leads to the second invariant

L °° rdf[< pi2> u(r) - 2i(dA" - A'A')- 21_'AI 2] = Cs. (8.6)

Comparing these results with the one-dimensional invariants of Eqs. (1.4) and (1.5),

we see there is a new term in the second invariant, i_'Ai s, and the electron averages

are weighted by the transverse electron beam density. Each invariant is ex-pressed as

an integral over the electron beam and radiation radial densities.

As in the one-dimensional treatment of saturation, we extract a phase factor and"

write.

A(r, r) = IF(r, r) + iQ(r, r)le '_('-_°), (8.7)

and introduce the electron phase flj given by

_j =_ + _(_- _0)+_/2. (8.s)

We asume v is independent of r; hence using Eq. (8.3) we can write s

" Q' + vR- VsP = u(r) < cos _j >, (8.9)

- P' + vQ - V2Q = -u(r) < sin _j >. (8.10)4

The equation for the electron phase becomes

_: = -2P sin _j - 2Q cos _j, (8.11)
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and averaging over the electron longitudinal phase space distribution at each radius,
we obtain

< fl_' >= -2P < sin flj > -2Q < cos flj >. (8.12)

The first and second invariants are written as

fo= rdr[<fl_> u + p2 + Q2 _ vu]= Cx (8o13)

and

lo°° rdr[ < Z7 > u - v2u - 2v(P 2 + Q2) _ 2(Vp)2 _ 2(VQ)2 -4(PQ'-QP')] = C2.
(8.14)

The constants C1 and C2 are taken as zero corresponding to an initial electron distri-

bution with the correct energy and no energy spread and a very low initial radiation

amplitude.

8.2 Equilibrium Solutions

We now consider the description of the equilibrium state. Let Cj denote an equilibrium

electron phase distribution, and take P = Po(r) and Q = 0. From Eqs. (8.9) and

(8.10) we find

_Po(r) - VZPo = u(r) < cos Cj > (8.15)

< sin Cj >= 0. (8.16).

Utilizing < ¢; >= 0 and the first and second invariants of Eqs. (8.13) and (8.14)

with C1 = C2 = 0, we obtain

oordrP 2 = u rdru, (8.17)

Zo /o_d_<¢] >_ = _d_[._+ 2.N +2(VPo)_]. (8.18)
It follows from Eq. (8.11) that for any given r, any function of

H(¢j, ¢_;r) = ¢7/2 - 2Po(r)cos¢j (8.19)

will be a stationary distribution. For example, one could consider the KV distribution

fKv(¢j, ¢_;r) = Y(r)5(2Po(r) cos Cj - ¢_2/2 - 2Po(r)cosOo(r)). (8.20)
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In this case
2E(m) 9o(r)

_(r) -< cosCj >= K(m) 1 , m = sin_--_, (8.21)

< ¢_ >= 4Po(r)(_(r) -co(r)) , co(r) = coseo(r) = 1 - 2m. (8.22)

In the discussion which follows, we shall explore the consequences of the simplify-

. ing assumption that Oo is independent of r, which of course also implies m, c and Co

are r-independent. In this case Eq. (8.15) becomes

_Po(r) - V2Po = u(r)'_, (8.23)

and the invariants can be expressed in the form

u = f_o rdrP2o (8.24)
f_o rdru '

and

,2 = 2(e - 2co) f2 ° rdruPo
f_o rdru (8.25)

where we have used Eq. (8.23) in Eq. (8.18) to derive Eq. (8.25).

We now consider the electron beam density to be given by

u(r) = . (8.26)
O, r>R

In this case the solution of gq. (8.23) is

Po(r)={ ('c/_)[1-xKl(x)l°(v/'_r)] ' r_<R} (8.27)>_R

where x = v_R. The two invariants of Eqs. (8.24) and (8.25) can be expressed as

b,3

.d---_ = 2xKI(z)I2(z), (8.28)

V a

= 2xlQ(x)I2(x)+ 2zI_(z)Ko(z). (8.29)
_(_- 2Co)

From Eqs. (8.28), (8.29), we obtain

= I+ 12(x)IQ(x) (8.30)
. 2co I_(x)Ko(x)

The one-dimensional results of Section 3 are recovered in the limit x = vf_'R _ c_.

From Eq. (8.27) it is seen that Po(r) _ _/L, __Po (independent of r) inside the electron
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beam, and Po(r) = 0 outside the electron beam, except in a region Ar ... v-l/2 near

the edge r = R. In the x ---, oo limit, Eq. (8.28) becomes v3 = _2. Hence, using

- vPo we find v - P_ and _ - Po3, the one-dimensional results. Also, when x --, ¢x_,

Eq. (8.30) implies _ = 4c0 which is the one-dimensional result of Eq. (3.21), so one

obtains the one-dimensional values m = 0.433, 8o = 82.3 ° and Po = 0.813 given in

Eq. (3.22) for the KV distribution.

8.3 Single Harmonic Model

As in the one-dimensional case discussed in Section 4, we assume that the radiation

amplitude oscillates with a single harmonic _2c,,t the equilibrium value, but in this

case the equilibrium value as well as the oscillation amplitude depend on radius. We

assume, however, that _.he oscillation frequency is independent of radius. Thus we

write

P(r,r) = Po(r) + 5(r)ein*+ C(r)e -_n'*, (8.31)

Q(r,-r) = rl(r)e in_ + rl'(r)e -'_'_, (8.32)

where f_ may have a positive imaginary part describing the damping of the oscillations

resulting from the radiation of energy out of the region occupied by the electron beam.

The spirit of Eqs. (8.31) and (8.32) is that _(r) and rl(r) are first-order, and we neglect

second-order terms. Moreover, we ignore second and higher harmonics.

We make a similar assumption about the electron phase/3/, writing

/3i = Cj + a(r)e if_ + a'(r)e -'n'_', (8.33)

where Cj is the equilibrium phase discussed in Section 8.2, and a(r) is the first-order

amplitude of the coherent dipole oscillation mode of the electron beam in longitudinal

phase space. We also employ the approximations

< cos/31 >=< cos Cs >= _, (8.34)

< sin/3j >= "d[a(r)e'n_ + a'(r)e-i"'_], (8.35)

Using expansions of Eqs. (8.31)-(8.35) in the wave Eqs. (8.9) and (8.10), we find

(V 2 - u)_(r) = i12y(r), (8.36)
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(V 2 - v)_(r) = -i_(r) + _u(r)a(r). (8.37)

Similarly, utilizing the expansions of Eqs. (8.31)-(8.35) in the pendulum Eq. (8.12),

we obtain

[£_ - 2_P0(r)]a(r) = -2_(r). (8.38)

Now eliminating a(r) in Eq. (8.37) by using Eq. (8.38), we derive

[V2 - v - 2A(r)lr/(r) = -i_(r), (8.39)

= -
The coherent oscillation frequency fl and the oscillation amplitudes _(r) and rl(r ) are

determined from solving the eigenvalue problem specified by Eqs. (8.36) and (8.39).

8.4 Large Electron Beam Radius

In order to proceed further, we must now obtain the eigenvalue 12from the solution

of Eqs. (8.36) and (8.39). Since A(r) in Eq. (8.40) depends on r, even under the

assumption that c is independent of r, solution of the eigenvalue problem is difficult.

However, results can be obtained in a straightforward manner in the limit R _ oo.

We shall examine this limit to see if physically sensible results are obtained.

When x = x/GR in Eq. (8.27) is much larger than unity, we find that Po(r) =

_/z/ = Po (independent of r) inside the electron beam and Po(r) = 0 outside the
electron beam, except for a region Ar ,,- v-1/2 near the edge r = R. Hence, for x >> 1

we can make the approximation

{ _, r<R } (8.41)
=

O, r>R

where _2 (8.42),k=
. ft2 _ 2_Po"

Furthermore, for large x, Eqs. (8.28) and (8.29) lead to the one-dimensional results

= Po2, e = Poa with

[KV] m = 0.433, 0o = 82.3 °, Po = 0.813 (8.43)
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as given in Eq. (3.22).

We now must solve Eqs. (8.36) and (8.39) for constant A in order to obtain an

equation for the frequency ft. Outside the electron, beam we have from Eqs. (8.36)

and (8.39)with A(.v)= 0,

v_(_+ i_)= +(n + _)(_+ i_), _> R, (8.44)

so that

2_ = AKo(pr/R) + BH(2)(qr/R) , r > R, (8.45)

2? = AKo(pr/R)- BH(2)(qr/R) , r > R, (8.46)

where .

p = ,/n . _R, q= _/n- _R, (8.47)

and where H(2) has been chosen to correspond to an outgoing wave. Note that there

is both a guided and propagating component in Eqs. (8.45) and (8.46).

Inside the electron beam, we also have two Bessel function solutions, which depend

in this case on A given in Eq. (8.42). We write

= CIo(_r/R) + DJo(flr/n) (8.48)

irl,1 = (a2/R 2 - v)CIo(ar/R) -(fl2/R 2 + v)DJo(flr/R) (8.49)

where

n?/R 2 = _/f12 + A2 + v + £, (8.50)

_/n 2= jn_ + _ -_-,_. (s.51)

Continuity of _, y, d_/dr, dy/dr at r = R leads after considerable algebra to

(,_ + q_)(_+ p_) (j - k)(i - _)= (8.s2)
(c? - p2)(q2 _ ft2) (? - ,[<)(H - J)'

where

f< _ pK_(p) [_[ qH(2)'(q) (8.53)
Ko(p) H(oa)(q) '

i = _I_(_) d _J_(_) (8.54)
Io(c_) J0(fl) '

24



Ira the limit R _ oo, it turns out that p, q, a each approach c_, but/3 remains

finite. To confirm this, we use the limiting values

[_--,-p, Z:/--,-iq, i--. _ ,as R--. oo (8.55)

and neglect B compared with p, q, cz in all terms except 3. In this way we find

" /.._.p -(,_ - iq)p2= (s.5_)
,] + iq (__ p)q2 '

or

i Jo(_) 1 1 i-_= _ = - --+-. (8.57)
J /3Jo'(/3) a p q

Since_-Ip-lq-1 approachzeroproportionallytoR -I,we seethatB -+ arn,the

zeros of Jo(s). In fact, setting/3 = sl + 6, where al = 2.405, we find

B-_sl( l+l-c_-p-l+_)" (8.58)

Using the one-dimensional values v = Po2,: = pa, f_ = v/_Po2, we findA = Po2

[Eq. (8.42)1, a = = 4P2oR2 [Eq. (8.50)1, p2 = (v/_ + 1)PgR 2 [Eq. (8.47)1, and q= =

(_/'3- 1)P2oR2 [Eq. (8.47)]. The terms in a -1 and p-' are small compared to unity

and can therefore be ignored in Eq. (8.58). However, the term in q-1 introduces

damping arising from electromagnetic energy propagating out of the region occupied

by the electron beam. The net frequency shift due to the finite, but large, electron

beam radius is obtained from Eqs. (8.50) and (8.51), writing

( 2vc2 ) (8.59)_2a2 =/_ fZ_- v2- f_2_ 2_P0 "

Using Eq. (8.58) together with _ = P3o,V = P2o,Eq. (8.59) can be rewritten as

9/2 - 2P_ (ft2 _ 3P04),,, R a 1 + . (8.60)

Finally we obtain

-81

corresponding to a frequency shift proportional to R -2 and a damping rate propor-
tional to R -3.

25



8.5 Small Electron Beam Radius

Let us now consider the limit z = v/'_R _ 0. The small argument approximations to

the Bessel functions are:
z 1 zL

I,(x),__ , gx(x) ,_ x 2

,T2

I2(z) _ T ' Ko(x) _ 4[ln(2/z)- _/E],,

where _,s = 0.577 is the Euler constant and
1

L = £n(2/x) + _ - _.

When x = v/'vR is much smaller than unity, we seen from Eq. (8.27) that Po is

approximately constant within the electron beam. Specifically, it has the limiting

form "cR2L (8.62)
p0_-- ---.2

Using Eq. (8.28), we der;_ve
tR (8.63)

and from Eq. (8.30), neglecting L -1 compared to unity,

_ 2c0. (8.64)

Now employing Eqs. (8.21) and (8.22) one obtains

0o=71 _, co=0.32, _=0.64. (8.65)

We recall 1 that the scaled electric field A is related to the actual electric field E

by
iEi2 _ 47rpnoWlAi2, (8.66)

where no is the peak density of the electron beam and W = _frnc_ is the average

electron energy, with c being the velocity of light. The power in the guided radiation

is fo _ c 12 (8.67) "Prad = 2rrddrd'_-_ lE ,

where the dimensioned radial coordinate rx is related to the scaled radial coordinate

7" via
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Using Eqs. (8.66) and (8.68) in Eq. (8.67) leads to

P,.,,d c'noW J/2rrdrPo 2. (8.69)= 4k_k,

From Eq. (8.24),we observe

oo fo,O tR. 2_rfo rdrP_° = 2rv rdru _ _-(_rR2) (8.70)

whereEq. (8.63)hasbeenused.ltnow followsthat

" p, (8.7t)

where P_ is the electron beam power,

P, = IoW/e, (8.72)

Iois theelectroncurrent,
Io = enoc_R_, (8.73)

P_ is the dimensioned electron beam radius related to the scaled radius by 10, lt

R2 -- 4pksku,R_, (8.74)

and (inksunits)

_" D = 2pR = I 2eZ° K 2. Io]t/2_-mc21 +K2_J ' (8.75)

i is the scaled current defined in ref. 10. Note that D is independent of the electron
beam radius, and hence so is P,,d in Eq. (8.71) for the limit R << 1. From Eqs. (8.71)

and (8.76) it follows that for small electron beam radius,

P,.,,d oc I_/2. (8.76)

The average energy lost by an electron from start-up to saturation is determined

from 1

" < a_ >= (-_) = -v. (8.77)

Using Eq_. (8.63) and (8.77) we find

A.Li ) c (8.78)= -,,p=
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consistent with Eq. (8.71). The energy spread at saturation is determined from

<_'7>=(-(%--) )=_Po, (8._9)

where the second equality follows from Eqs. (8.22) and (8.64). Now using Eqs. (8.62)

and (8.76) we obtain for R << 1,

The size of the radiation mode is seen from Eq. (8.27) to be given by

1

Introducing the actual size (rd)EM in dimensioned units, we observe that

1 2
,'_M=4pk,k_,(,-_)_M=-_-- (8.82)u _R'

where we used Eq. (8.63). Hence,

1

(td)fM ._, v_Dk_,k:" (8.83)

Note that the size of the radiation beam given in Eq. (8.83) is independent of the
electron beam radius in the small electron beam size limit.

Let us conclude this discussion of the small electron beam radius limit with a brief

consideration of the dipole oscillation mode described by Eqs. (8.44)-(8.54). In the

limit R ---, 0, we observe that p, q, a each approach zero, but _ may remain finite.

This is true because it turns out that A, as defined in Eq. (8.42) is negative and

approaches zero slowly, as the reciprocal of a logarithm. We find

a2 _. vR 2, _2 _ 21AIR2, a2 + q2 _ f_R2, a_ _ p_ _. _fir 2,

,)

lt follows that in the limit R -+ 0, the dispersion relation of Eq, (8,52) becomes

I I 2

If H _'
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yielding
t.(pql4) + + i rl2= J0(_) (8.84)

Since the left hand side of Eq. (8.84) diverges as R _ 0, one solution corresponds to

/3=/31= 3,83,thefirstzeroofJt(/3).Inthiscase

2"d//2 = (3.83)2 (8.85)
• _2 = 2 lAlR2 = 2_Po - ft_ "

Using Eq. (8.62) for Po, we find

" fl2 = -_2R2(L _ 2/_ 2) = -_2R2(L -0.14), (8.86)

where the logarithmic factor L was defined pieceding Eq. (8.62).

Let us now solve Eq. (8.84) more accurately by expanding about/3 = _t. We find

+ ,

where L1 = _n(pq/4) + 27_. As a consequence it is seen from Eq. (8.86) that fl has

a positive imaginary part of order R/(enR) 5/2.

There are other solutions of the dispersion relation, Eq. (8.52), but we shall not

consider them here. To understand the coherent dipole mode oscillation better, it

seems necessary to compare the analytic results with simulations.

9 Summary

Starting with the equations of Bonifacio et al.1 we explore the behavior of an un-

bunched electron beam interacting with a low amplitude of radiation. The level of

radiation grows exponentially causing the electrons to bunch. When the bunching

saturates, the radiation amplitude starts to perform what appears to be oscillations in

the saturation region. By making an assumption regarding the phase of the radiation

which is suggested by the simulations, we predict the general features of the electron

• bunching, average radiation amplitude and the frequency and magnitude of the os-

cillations of the radiation amplitude which are in good agreement with the results of

. detailed simulations of the starting equations.

We consider three quite different equilibrium electron phase space distributions,

and find the surprising result that the equilibrium radiation amplitude Po _ 0.81,

29

1
|
i



independent of the distribution. In addition, from simulations of start-up from an

initially unbunched electron beam and a small radiation amplitude, we find that

the saturated state is described by oscillations about a distribution similar to the

Boltzmann distribution. This observation might provide the starting point for a

future investigation.

In the case of the KV-distribution, we use the Vlasov equation to study the sta-
Q

bility of the oscillations about the equilibrium state. For a small bunch (0o small) the

oscillations are stable. However, for a large bunch (00 = 81°) required by the invari-

ants in the case of start-up from an unbunched electron beam and a low radiation

amplitude, the coherent dipole oscillation mode is found to be unstable. We believe

that the moderate amplitude oscillations, observed in the simulation from start-up

with an unbunched electron beam and a low radiation amplitude, corrrespond to the

stabilization of the dipole mode at large oscillation amplitude. The real part of the

coherent dipole mode frequency is in good agreement with the oscillation frequency

observed in the saturated state. There are some instabilities in the higher-order co-

herent oscillation modes, but these are not seen in the simulations since they are not

stimulated by our starting conditions.

Finally, we extend the analysis to the two-dimensional case of an electron beam

with finite radial extent. We find an equilibrium guided solution and oscillations

about it. There are two types of oscillation modes, one guided and one corresponding

to radiation propagating to r = oo. The escape of radiation from the electron beam

leads to a damping of the oscillations. Explicit results are obtained in the limits of

large and small electron beam radius.

In saturation, the output power has contributions from the equilibrium (z-independent)

mode and the coherent dipole oscillation (z-dependent) mode. In the case of start-up

from an unbunched electron beam and a low initial radiation level, the saturated

power P,_d in the equilibrium mode is given by [Eq. (8.71)]:

P,._d/P, = rp, (9.1)

where P, is the power in the electron beam. In general v can be determined by solving

Eqs. (8.21), (8.22), (8.28) and (8.30). In the limits of large and small electron beam

radius:

v = 0.70, P,._,a/P, = 0.35D/R, (R >> 1) (9.2)
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and

v = 0.32R, P,.,,_t/Pe-- 0.16D, (R << X) (9.3)

where D [Eq. (8.75)] depends on the electron beam current, but is independent of the

radius, and the scaled electron beam radius R is related to the dimensioned radius

Rd by Eq. (8.74).

R 2 = 4pk_k,R_. (9.4)

In the limit of small radius, we find that the equilibrium mode power P,._dincreases

- with current I0 according to

P,._d/P, _xI3o/2, (9.5)

a current dependence intermediate between the incoherent (I o) and fully coherent

(I02)limits.

Comparison of the two-dimensional analysis with computer simulations is an in-

teresting subject for future investigation.
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A Dispersion Relation for Small Oscillations

The behavior of small oscillations about the equilibrium solution is governed by the

Vlasov equation
OH i)f OH Ofof

0"_ + OI Og, Og, OI = 0 (A.1)

Using the Hamiltonian in Eqs. (5.6) and (5.7) and linearizing the distribution function

in the form

f(¢, I;r) = lo(I) + £(_k, I;r), (A.2)

we find in the linear approximation

oq£ + O]'x OV Ofo (A.3)0¢at
Using Eqs. (5.7), (5.15), (5.16), we find

OO

Of_ + 0£ -2Pof'o(I)__,[2nQA_,sin2n¢+(2n+l)RB,.,cos(2n+l)g,] (A.4)---- n'-0

whose solution is

fx(_b, I; r) = -2Pof[_(I) _-]_[C, cos 2n¢ + D, sin 2n¢ + E,, cos(2n + 1)_b
r_=O

|

+ f, sin(2n + 1)¢], (A.5)

where Eq. (A.4) requires that

C: + 2no.,D,, = O, D',, - 2nwC,, = 2aPA,.,, (A.6)

E',,+(2n+I)wF,_=(2n+I)QB, , F_,-(2n+l)wE,=O. (A.7)

We now assume an oscillation mode for [_, Q, C,,D,, E,,, F, of the form exp(-iftr)
_n_ (A.8)

and find :-_D_ = C, = (2n)2w/SA"(2n)%o2 - _22'

-(2n + 1)w E, = F, = (2n + 1)_wQB,_ (A.9)
i_ (2n + 1)2w_ - _2"

We must now relate/5 and Q to the perturbed distribution by using Eqs. (5.4)

and (5.5). After performing the integration over _, and integrating by parts over I,
we obtain

-iflQ + v - _ S.(n) /5= 0, (A.10)
n--O
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if_#+ [v_ _=oT,(n)]Q=O, (A.II)

where [(2n)'wA_ ] (A.12)

T_(f_)= 2=/ dIfo(I)_7[(2n+ l)=w=- n'J"

Finally, Eqs. (A.IO) and (A.11) yield the dispersion relation for the oscillation modes:

[ ][ ° ]. oo n 2 (A.14)- s.(fl) - T.(fl)= ,
.= 1 n=O

whose solution determines the modes of oscillation. Since A,, and B,, defined in Eqs.

(5.16) and (5.17), are real, stability requires that all solutions for fl in Eq. (5.19) be
real.

References

1. R. Bonifacio, F. Casagrande and L. DeSalvo Souza, Phys. Rev. A33, 2836 (1986).

2. B. Lane and R.C. Davidson, Phys. Rev. A2.7, 2008 (1983).

3. R.C. Davidson and J.S. Wurtele, Phys. Fluids 30, 557 (1987).

4. W.M. Sharp and S.S. Yu, Nucl. Instrum. Meth. A7_%72_-,397 (1988).

5. W.M. Sharp and S.S. Yu, Phys. Fluids B2, 581 (1990).

6. See e.g.R. Bonifacio, C. Pellegrini and L.M. Narducci, Opt. Commun. 50, 373

( 9s4).

7. For a review of FEL theory and simulations, see e.g.J.B. Murphy and C. Pelle-

grini in Laser Handbook, Vol. 6, eds. W.B. Colson, C. Pellegrini and A. Renieri,

North-Holland Pub. Co., Amsterdam, 1990, p. 9.

8. These equations are equivalent to those considered in ref. 5, in the case when the

radiation field depends on the axial coordinate z, but is independent of time t.

9. See, for example Abramowitz and Stegun, Handbook of Mathematical Functions,

Dover Publications, NY, 1965.

33



10. L.H. Yu, S. Krinsky, and R.L. Gluckstern, Phys. Rev. Lett. 64, 3011 (1990).

11. The scaled electron beam radius R is denoted _ in ref. 10 and in S. Krinsky and

L.H. Yu, Phys. Rev. A35, 3406 (1987). R2 is proportional to the ratio of the

Rayleigh range to the one-dimensional gain length.

34



FIGURE CAPTIONS

Fig. 1.1. Evolution of radiation field amplitude ]A I with r.

Fig. 1.2. Phase of the radiation field as function of r.

Fig. 3.1. Phase space distribution of the electrons, which were initially monoener-

. getic with uniform phase distribution, in the saturation regime r _ 9.

Fig. 3.2. Evolution of P and Q with r.

Fig. 3.3. Phase space distribution in the/_,/3j space at r = 10,15,20,25,30,35.

Fig. 3.4. The three distributions, KV, (Ho- H) 1/2 and Boltzmann plotted as

functions of H defined in Eq. (3.11).

Fig. 3.5. Electron distributions obtained from simulation for r = 10, 20, 30, 40

plotted as functions of H.

Fig. 4.1. Plot of P'(r) vs P(r).

Fig. 6.1. Electron phase space distribution corresponding to KV equilibrium solution

for small pendulum angle 0o = 3°.

Fig. 6.2. Equilibrium value of P(r) = Po for KV equilibrium solution with 0o = 3°.

Fig. 6.3. Oscillation of ]A(r)l about KV equilibrium solution with 00 = 3°, when

simulation started with P(O)/Po = 0.99.

Fig. 6.4. Oscillation of ]A(r)l about KV equilibrium solution with 00 = 30°, when

simulation started with P(O)/Po = 0.99.

Fig. 6.5. Oscillation of lA(r)[ about KV equilibrium solution with 0o = 55°, when

simulation started with P(O)/Po = 0.99. Oscillation unstable in this case.

Fig. 6.6. Oscillation of [A(r)l about KV equilibrium solution with 00 = 80°, when

simulation started with P(O)/Po = 0.99. Oscillation unstable in this case.

Fig. 6.7. Coherent frequency 9/obtained from numerical solution of the dispersion

. relation of Eq. (5.19), where only dipole term To has been included. Instability

predicted for 0o > 50°, consistent with results of Figs. 6.3-6.6. The dashed curve

. represents the coherent frequency found in the single harmonic model of Section 4.

Fig. 6.8. Coherent frequency fl obtained from numerical solution of the dispersion

relation of Eq. (5.19), including several additional terms.
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Fig. 7.1. Solution of Eqs. (7.2) and (7.3) for Po as a function of 5, for _2 = 0, is

plotted as solid curve. In addition, results from simulation are also shown.
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