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SUMMARY -

The matrix formalism developed in an earlier PEF Note1

is generalized here to the case of motion of any number of _

bunches in each of two counter-rotating

beams. The motion of the

bunches in both beams is coupled through the feedback memory which

arises from the finiteness of the feedback system bandwidth. The

damping rates and the frequency shifts of one-dimensional coherent

oscillations are calcwalted. Numerical

exanples are piven for the

particular case of bunches uniformly spaced around the orbit.

I. INTRODUCTION:

In an earlier workl. a matrix formalism was developed for

solving feedback problems with memory.
to the case of a feedback system having

We apply here this approach

memory and acting on one-

dimensional coherent oscillations of a system of many bunches in

two counter-rotating beams. For the limit of verv short memory,

one can neglect the coupling between different bunches since the

feedback signal is damped out by the next bunch passage. The results

for this case were obtained in Reference 2,

The schematic layout of the feedback system and the related

notation are presented in Fig. 1. The kicker and detector are

denoted by K amd D. H+ and F, are the transfer matrices for one

revolution and from the kicker to the detector for the two beams

respectively.
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If the kicker signal is damped only slowly, it will act net only

on the intended bunch but on the subsequent bunches (of both beams) as

well, The action depends on the displacement of the first (intended)

bunch thus establishing coupling between the motion of different bunches,

In the system of k bunches in each of two beams, there are 4K elgenmodes

of oscillation and correspondinglv 4K eigenvalues for the mormal medes

of coupled oscillation.

In Section 2 we derive the general formula for the macrix
which defines the eigenvalues of the motion. In Section 3 we applv

it te the PEP transverse feedback svstem.

TI. FULL TRANSFER MATRIN FOR ONE REVOLTUTON

We describe the motion of bunches by two, 2K column vectors
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The aigon of I:ILe kicker cam be described by the matrix

operators _ and éf?+ defined as follows:
ﬁ.. A - an & ~ A —m — mnﬁ N A.m
Lx-T5+8 B EHF0 "5+ $F G PHE n
m=1 m=1
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where the superscript caret denotes a matrix, and the svmbol.l.

stands for the 2k by 2k unit matrix.

Here we have introduced the "projection” operator of dimensien

Ik:
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The coefficients fmj and Eﬁjl describe the behavior of the kicker

1
signal. These coefficients are referred to in Eq. (2) and Eq. (3} as
macrix arguments of the projection operator. Their meaning can be
clearly seen if we write explicitly the action of the kicker on the

jth bunch on the nth passage:

A:';J(n) =0 (5)

k
o - 5 + (D4} 40 (D)
A Xy (n) lil E-l [gmji' X {(n-m)+ fmjixk (n-m) ] )



t

A ; (n) = 0 )

A \ '(n) = E ¥ f (D+} (n-m) + g 7P )(n-m) . (8}
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where the superscript (D's) specify that the X's have been measured
at the detectors.

The coefficients, fmj
mi 2 do the same for bunches of different beams. In the
general case they all can be diffeﬁgpr, but for uniformly distributed

A
f , and En™ &g The 2k x 2k

g bind bunches of the same beam together
while the g

equal number bunches in both beams ?
matrices F and f are quasi-diagonal w1th 2 X 2 sub-matrices F and M
respectively and zeros elsewhere.

Let us now introduce 4k column vector X (‘\). For that vector,

H

the full matrix of one revolution is

A A A = AR Aap /ﬁ A
M M
: T+ 8 ?(fm) PN T ORGE) EN M0
A& & Aoy o A A& Am .3 ~ ’ (%
Ly FHT 14 F P(%m) F M, c M,
rd
where a gtands for the zero 2k x 2k matrix.
After some algebra, one gets the following expression for
the matrix, T:
A B
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In these expressions, the new symbols we have used have the

following meanings:

3 s If ¥t

Rjﬂ BD/Bk (Ec” - zsjﬂ) . (1)
I . [ 8 zif
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¥ / r 1
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+ [+ g

Q¢ 2 B szg . (16)

where “ E and o are the values of the 8- function and half of its

slope (u =-B /2) at the positions of the monitors D and the kicker,

. + o o
respecnvely. The symbols, L o3t * Tsqn “ch and zsjl stand for the

following sums:
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is the phase advance of the betatron osciliation from the previous
kicker X to the detector B, The second expression in Eq. (21) contains
the more convenient quantity (ukﬂ—u;). i.e., the phase advance from
the detector to the following kicker. (The index k+l is put there

to gtress the difference.)

ITI. CALCULATION OF DECREMENTS AND TUNE SHIFTS FOR PEP.

Let us now apply the general formula Eq. (10) to our storage
ring. PEP has three equally spaced bunches in each beam. The feedback
system for each transverse oscillation has one kicker and one detector
positioned pragtically at the same place. where B' = 0. Hence, we have
k=3, u,,- u; =, o= 0, AYT= 0, and E; = %;=Sk. The system acts
on the bunches through a tuned radiofrequency amplifier driven at the 72-nd
harmonic of the orbital frequency. For this case the coefficients

F e + i 2 >
fmll' t and Bnig = 81 €30 be approximated by the following

mlg
expressions

R-1

£ =f g O(mld ) cos |im-1 + 222y Ad + & . (22

mll o k
£ -1 1

- ~a{m-1 + + 5 . PR R I 23
Bnie foe k 2k \.os[(ml-f- M +2k)6¢*6] D

In these formulae, X is the decrement of the tuned amplifier in one
orbital period, while both A¢and § are related to its detunimg, i.e.,
the difference between the resonant frequency of the amplifier’s tank
circuit and the feedback system's carrier frequency, the latter being
maintained always at the 72-nd harmonic of the orbital frequency, and the
former being subject to thermal drift, aging of components and deliberate
detuning. The tank circuit of the PEP feedback system includes as its
inductive component the kicker magner. When the resonant frequency of

the tank differs from the driving frequency (the 72-nd harmonic of the
orbital frequency), the phase of the kicker signal on a subsequent passape
cof the bunch consists of two terms. The initial phase § can be thought
of as being caused by the fact that the equilibrium phase of the kicker
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current relative to the 72-nd-harmonic driving current varies with

tank tuning. The feedback system is designed so that the kicker current
is at a peak of the driven 72-nd-harwmonic waveform when the bunch passcs
the kicker if the tank is tuned exactly to the driving frequency, 1f
the tank is detuned, the phase of the driven kicker current is shifted,
and the bunch passes off the peak. After the bunch passes, the drive
current is removed, and the resonant circuit rings down from this
phase-shifted state. The phase slippage of the kicker signal, A¢
arises, because the ringing frequency is determined solely by the

tank circuit and differs from the 72-nd~harmonic driving frequency

if the tank is detuned with the result that the ringing kicker-current
waveform migrates in phase relative to the time of successive bunch
passages. The formulae for 8§ and 4¢ in terms of the detuning of rhe

tank cireuit AF/FRES are

Ad = 27w To AF (24)

and

(0 a) - e /6 v 1+(Ad/a )zsin(A¢/6) (25)
1- e 0/ has/ 012 cos(ae/6)

tan & =

The other coefficients are obtained by cyclic permutation, as
follows. Equation (22) defines the first row fmll’ fmj2' . fmlk'
Any other row j (fmjl' fij’ v e fmjk) is produced by (j=1) cyelic
permutations of the first row, and the same procedure applies to the
g's. With these expressions in hand, we can perform the summacions

in Equation (17) through (20).
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Using these expressions, we calculate the eigenvalues Ai of the matrix
Eq (10) which, in this case, has dimensions 12x12 (1 = 1,2....12).

Let us introduce, instead of Ai’ the more helpful quantities 91
through the relation

194 (30)

The real part of Gi i1s the perturbed phase advance, and the imaginary

part of it gives the decrement (if it is positive) ovr increment (if 1ic
ie negative) of oscillations damped by the feedback system. Since the
matrix, T, is real, all ei fall into complex conjugate pairs. Hence,

in general, we have 6 different decrements and tunes.
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IV. DUSCUSSION AND CONCLUSIONS

We have calculated the eipenfrequencies 9:l for the PEP transverse
feedback system for four different values of the decrement & , and
the results are presented in Fig. 1 through Fig. 8 as pairs of graphs
giving the DECREMENT (imaginary part of Gi) produced in the coherent
beam motion by the feedback system and the corresponding FREQUENCY SHIFI
(real part of (Gi- uo)IZH) as functions of the detuning AF/FRES of the
tank circuit. The parameters listed at the bottom of each graph are
identified as follows:

P = £ 6, /2

ALPHA = [v3

DRU = Fractional part of UOJZ:
DPSI =

Fractional part of (uk+1- uD)IZr

The case which corresponds to the desipn of the PEP feedback system.
referred to in Reference 2, is the one presented in Figures 3 and 4, and
we address our attention to that case first. The parameter, P, has
been chosen according to the parameters given in Section 3 of Reference 2,
which include a beam energy of 4 GeV. The choices DNU = DPSI = 0.25
correspond to the location of the detector adjacent to the kicker and to a
betatron tune (fractionl part) of one quarter. The value chosen for
ALPHA corresponds to the specifications for the feedback amplifier given
in the PEP Technical Memo, PTM-191, viz. a bandwidth of 0.82 MHz or

aquivalently a Q of 12.3

Since there are six normal modes, there are six curves in each figure.
In Fig. 3, they fall into two groups of three which are scarcely distinguish-
able, The value of the DECREMENT for the ideally tuned system (DF/TRES=0)
agrees well with that predicted in Ref.2. The FREQUENCY SHIFTS shown in
Fig. 4 are completely negligible, as expected. As can be seen from Fig. 3,
tolerances on the amplifier tuning AF/FRES of the order of 10”2 are more
than adeguate for keeping the decrements of all modes within + 5% change.

Now, returning to the other figures, in each case the values of P
and ALPHA have choser to hold constant their product. P*ALPHA=constant, This
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procedure corresponds to holding the power avajlable fvom the

feedback amplifier comstant while varving its bandwidih or equivalentl:

its decay time. In Figures I and 2, the decay tiwe of the amplifier is
one~third that in the design case so that the bandwidtih s 2.5 MHz - - very
large compared to the bunch-passage {requency of 0.82 MHz. &s expected,
211 modes are equally damped, because the feedback system treats the
bunches virtually independently. The FREQUENCY SHIFTS are miniscule.

The magnitudes of the DECREMENTS are, however, about three times smaller

than those of the design case.

Figures 5 and 6 show a veryv interesting case in which the decay
time of the amplifier has been increased approximately to equal the interbunch
period. The corresponding bandwidth is 0.25 MHz, considerably smaller
than the bunch-pr2ssage frequency, and the corresponding @ is 40, With
DF/FRES=0, some modes arz damped at around three times the rate achieved
by the design case, while others are damped at lower rates but Iin no
case lower than the design case. Of special interest 1Is the fact that
by deliverately detuning the tank circul: to DF/FRES = % 0.005 we can
achieve DECREMENTS for all modes which are about equal and which are
approvimately twice those obtainable with the system as desigred, or,
alternatively, the same DECREMERTS can be achieved with half the power.

Finally, Figures 7 and 8 show whe: happens when the bandwidth is
made ten tiems smaller than in the design case, Strong damping can te
produced in the lowest frequency mode but only at intolerable sacrifices
in dampfrg for some of the highest frequency modes. This case corresponds
to a bandwiditn »f 82 KHz which is comfortably larger than the expected frequency
oi the lowest mode viz. DNL'!Io = 34 KHz but ¢maller than that of the next
mode which should appear abecut 136 Kliz higher at 170 KHz,

Our main conclusions are: first, that the PEP feedback system as
designed will produce Jdamping rates which differ somewhat from normal mode
to normal mpde because of the memory (finite bandwidth) of the system,
but the differ>mces are at the + S5-percent level and may not be measureable:
and, second, that substantially higher damping rates might be achieved
wit., the same amplifier power by reducing the bandwidth and detuning the
tank circuit.
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