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1, Introduction

Traditionally ray optics expanded in a Taylor series of linear and
higher order terms about a central trajectory has been used in the de-
sign of single pass charged particle optical systems such as spectro-
mpters, spectrographs and beam analyzing systems [1,2]. Phase ollipse
optics, on the other hand, has been used primarily for systems thst can
be described adequately by linear theory and where knowledge of the phase
shift {s paramount to an understanding of the system performance, such as
in circular particle acczlerators {3]. Both methods may be used to de-
sign single pass beam transport systems, but there are applicatioos for
which the conceptual understanding and/or the mathematical descr.ption
favors one of the two approaches. By combining the best features of each
technique further simplificacions result which make many problems easler
to solve and understand, It is the purpose of this report to develop the
theory and to present some specific examples of these methods.

The basic mathematical iormalism for linear ray optics and linear
phase ellipse optics s summarized below for monoenergetic trajectories
in one transverse plane. The notation used for the ray optics is that of
the TRANSPORT program [2). And t'. .cation for the phase ellipse optics
follows thatr * the traditlonal circular machine theory introduced by
Cot.uat, Snyder, Twiss, and others [3,4].

Linear ray optics may be described by a transfer matrix R expres-
sing the amplitude and angle of an arbitrary trajectory at position 2 as
a linear function of the amplitude and angle at positio. 1, where the

amplitudes and angles are measured relative Lo the optical axis of the




system. In TRANSPORT notation this hecomes

vhere for static magnetic fields [R| = I.

In linear phasc ellipse optics an ensemble of parcicles enclosed by
an arbitrary ellipse at position 1 in a beam guidance svstem will be en-
closed by another ellipse of the same area at position 2. The Twiss pa~
rameters a,B,y and the beam emittance ¢ specify the beam ellipse at each
position. This 1is illustrated in fig. L. The area of the ellipse is
A = fe. The maximum spatial extent of the ellipse (the beam euvelope) is
xmx = /Bt and the maximum angular divergence of the beam within the

phase ellipse 1s anx = /775' The parameters a or r. define the orien—

21

tation of the ellipse relative to the x and 8 axes.

Given a matrix

g -u R
T= [ ] with || = (Bv-az) =1 , (2)
- Y

"

an ellipse of area A = me ia generated by the matrix equatlon

XTT_;X = ¢ where xX= ( :)

or in algebraic form, the equation of che ellipse is

b=

vx2 + 2axt + §6% = € )

The transformation of the Twiss parameters defining an ellipse at
position | to those those defining an ellipse at position 2 is given by
the matrix equation

T, = RT,RT (%)

2

as derived in ref. [2]. This result may alsc be written in the fomiliar

form [4]

2 2
) R ~2R4Ry, Ri2 8y
@ b= | RuRar | RuRaa R | Rk [ ™ &
7 7
VT2 LY ~2Ry 1Ry Ry "

In eq. (5), the transformation of the Twiss parameters is expressed

as a function of the ray optics matrix elements Ri It 1s equally use-

5
ful to expreas the matrix R describing the transformation of the ray up-
tics from position 1 to position 2 as 3 function of the Twiss parameters.
To do this an additional variable is required. Courant and Snyvder in-

troduced for this purpose the nhase shift, 4y, measured between posi.ions

i and 2 and defined as follows:

H2
" _ds_
b = Sf e ®
]

where s 1s the distance measured along the oprical axis of the system




~5-

and B8(8) is the Twiss parameter B evaluated at position &. The final

result is the following [4],

B,
}—B—I- (cos 8v + ay sin ay) \lelsz sin 8y

(1+a,a.) sin &y + (a, -a,) cos Ay B
- 12 2 1 Bz (CDH Ay ~ u2 sin Aw)

BIBZ

N
where the subscripts 1 and 2 correspond to the initial and final posi-

tions of the bheam transfer section.
Several uaeful observations can be derived from eq. (7).
a) Glven the transformation matrix R, the phase shift &y may also be ex-

pressed an

R R R
12 12 12
sin &y ~ ——— ' tan Ay = ————— @ o (B)
NS BB mtom o RppBy*Ripey
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b) Furthermore

if Then
11 10
Ap i a function of both «, and B
1 1
R, 40
12
R“ =0
% independent of 8,
12 40
“12 =Q 8¢ = Nt independent of “1 and Bl
"
R, and 8, are con- 8, (minimum value) = ——
12 1 2 [
stants and Ryy 40 when sindy = 1. »

1t should be noted that a beam transport system, characterized by the
matrix R, i{s completely determined by the array of optical elements from
which 1t {s constructed, i.e., the lenses and driti distances making up

the system. 7“he numerical values of the matrix elements, , are there-

RU
fore independent of the particular phase space ellipse configuration that
exists at the beginning of the system. However, for design purposes, it
is often useful to specify a particular optical condition at the begin-
ning and at the end of a system for the purpose ot 'inventing' ar devising
an optical array. 1In particelar, {f it is assumed that the phase ellipses
at the beginning and at the end of a system are ldentical, then the mathe-
matical expressions describing the matrix R become particularly simple.
The propercies ot the resulting svscem miy then be studied for other

initial and final values of the Twiss pa.ameters., 1t then remnins to de-

vise an actual optical array of physical vlements that possesses the



'assumed' properties. Specific exomples using this design procedure zre

glven below.

1f the phase ellipses at the beginning and at the end of a transfer

section are identical, i.e., o =0, =a, B - BZ = B, and we define

Ay =y, than eq. (7) reduces to the well-known form used in circular ma-

chine theory 3,41,

[-l:osn-i-usinu B sin

R = [_- (10)

-y sin u

cos u - a sin v
where as before (8y - o) = 1, and now

Trace R = 2 cos u [$3))

Fo. N such unit cells in sequence, as in a mactched repetitive lac-

tice of a circuiar machine, the .otal transfer matrix is given by

cos Nu + a sin Nu ‘ B sin tu
N
- = |~ 12
Ry = R (12)
-y sin Nu cos Nu - a sin Ny
and
N
Trace R = 2 cos Nu (13}
An equally intercsting simplification occurs when @ =y =y and

by =

= ¥ are constant from cell to cell, whereas the beam enve _upe size is

allowed to change by a cons'ant ratio r from cell to cell, i.e.,
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—
B2 8 By .
B R, T JE T a8
1 2 N
For the first cell In such u serles, the transfer marrix, R, is

r(cos b + a sin u) J 1'13l gin y

R =
B Y, sinw cos u - a sln (15)
L r r
L+ \xz
where Yy = B Tne transfer matrix, RN. for the Nth cell is
1
t(cos u + u sin y) L -1 B, sin v

R - ty 61 v (16)

- cos v ~ o sin ¢
oN-1 T
T

and the total matrix, RT' for a sequence of N such cells is

[-rN(cos Ny + a sin Np) rN Bl 6in Ny
Rp =Ry .-eRp = |- o an
_ Il n cos Npy - a sin Ny
X XN
r r

This completes the discussion of the basic mathematics ioy linear optics

as is needed here. We shall now make use of {t to develop some specific

examples.
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2. Optical Building Blocks

Monoenergetic first-order (linear) optical systems are basically com-

posed of combinations of thin' lenses interspersed with drift distances.
It seems appropriate, therefore, to exnlore the properties of some of the

basic elements before formulating more complex systems,
A. Drift Distances

A drifct distance is characterized, In ray oprics, by the fact that
the angle o any arbitrary trajectory relative to the optical axis re-
mains unchanged. Stated in terms of an ensemble of trajectories caclosed
by an ellipse, the angular divergence of the beam, Omux = /y_:, 1s a con-

stant wh:reas the beam envelope, x /Be, and the orlentation a of the

ax
ellipse are changing.

A typical drift distance and its basic properties are illustrated in
f1g. 2. The followlng characteristics are to be noted:

a) Sinsé the phase space area is conserved, it follows that y =

whére Bw 1s the value of & at a beam waist.
b) -The phase shift through a ¢rift region depends not only on the
length of the drift, r.t also on the va‘ue of the initjal Twiks pa-

rameters 8‘ and a, at the beginning of the drif..

1

¢) If a thin lens of vartahle strength precedes 2 drift, it mav be ad-

justed to provide a minimum heaw size X S /32—(E-in € at the end of

i
the drift. The magnitude of B?(min) 1s derivable from eq. (9) hy

secting sindy = 1. We conclude that
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2
R 2
12 L
B, {min) = —= o =
2 BBt

where X = /ﬂ—l_c is the beam envelope size at the thin lens. By
measuring *oin and Xy the emittance of the beam is uniquely deter-
mined and given hy

¢« X nin

L

If it is desired to transmit a beam of particles through a constant
apcvture, e.g., the gap of a magnet, then the minimum aperture re-
qu..red is also readily obtained frow eq. (9) by equating Bl - Hz =8
and requiring that B be at a minimom value. That is, the beam em-
sclope should have the same size at rhe beginning and at the end of
the system and be at a minimum value. Under these circumstances a

F.am waist, Sw, occurs at the midpoint. The result is
-1.L
3 = L, and B\.' Y 3

The minimum aperture requirad to transmit the beam is
x‘(.nin) = /B = /e

and thz ratio of the beam envelope size at the two ends of the

system to the size of the waist at the midpoilnt (s

()& -7
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B. A Thin Lens

A chin lens changes the directlon but not the position of a particle
trajectory ar the particle passes through the lens. In linear theory the
change in angle is 48 = -x/F, where x is the amplitude of the trajectory
and F 1s the focal length of the lens. Stated in terms of the phase el-
lipse formalism, the Twiss parameter a changes by Aa = A/F, while the
beam envelope, "E, remains unchanged. The net phase shift, Ay, is zero
as can be seen from the Courant-Snyder definition of phase shift given in
eq. (6), and from the fact that the matrix element R for a thin leuns is

12

zaro. These proparties of a thin lens are illustrated in fig. 3.

C. A Thin Quadrupele Lens

A quadrupole focuses in one transverse L' ane while defocusing in the
other plane. For a thin lens quadrupole 1t is assumed that che two planes
diffes only by the eign of the focal length F as {s illustrated in fig. 4.
(In realistic systems the absolute value of the focal length in the two
planes is aot the same hut this assumption 1s a n»od approximation for
wmany purposes.) As with th: simple thin lens discussed ‘n the previous
paragraph, the phase shift, Ay, vanishes in both planes. If we define &
to be the particle direction in the x plane and ¢ its direction in the y
plane, then A8 = -x/F and 8¢ = y/F. Stated i{n terms of the phasc ellipse

formalism, o = BXKF and buy - —ﬁy/F, while x, y, £ and 5 terain con-

x
stant 1o a 'thin’ lens.

Ver: often in beam guidance aystems a segment of the system may be

tomposed of a periodic array of identical elements or 'unir cells', such
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that the phase ellipse [(n the two transverse planes x ond y is sinllar
or even identical at specific Jocations In the periodic array. One such
situation occurs at the midpoint between rwo quadrupoles of a matched
periodic array where the quadrupoles are of equal strengeh but of oppo-
site sign, {.e,, a FODO array. The beam envelopes. at this location,
have the same magnitude but the phase ellipses in the x and y plenes are
mirror images of each other about the 9 and ¢ axes, i.e., LN but
2 = S If a thin leas quadrupole Is positloned at this location, any

adjustment of its focual length preserves rhe above svmmetrv., The beta

functions 8, and B remain inchanged, the abaolute values of |ux| and

{a i change, but the mirror Syametry pruperty a_ = =a_ is maintained.
v - x Yy

This is illustrated at the bottom «f fig. 4. This characteristic Is 2

very useful feature for phase cllipse matching between two dissimilar

systems as will be demonstrated in some of the examples.

. A Teiescope

Anvther basic optical module is the telesiope. For a cue-dimension-
al system it consists of two thin Jenses, separated bv a distance equal
to the sum of their focal lengths, as illustrated in tig. 5. The tele-
scope has the unique propertv of simultenveus parallel te parallel and

point to point imaging. This Is eaquivalent to saying that the RZ] and

R , matrix elements are zero. Since Ry = 0, the phase

| ft 1s always

a mulriple of r, tndependent of the inftial phase ellipse conflguraci~i.

The fact that R,, = O ccincident with Ry = 0 requires that a, = o

}

t.e., the purameter a {s the same at the beginning and end of the tele-
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scope. (This 1s the condition imposed upon egs. (14-17) and the
significance of this will become evident later.)

A two-dimensional telescopic systea, using four quadrupoles, is {l-
lustrated in fig. 5. 1t is an obvious extension of the Lae-dimensional
example of fig. 5. It has the added advantage that the magnifications of
the beam envelopes in the twa trangverse planes may either be the same or
different., This property allows such an array of lenses ro be used for

matching systems with different properties in the x and y planes.

3. Beam Envelope Matchiag

A common task in beam optics is to match the phase space ellipse of
one beam guidance system to that of another one by an appropriate tran-
sition section. We shall now describe some solutions to this problem
that have evolved from the theory and techniques discussed in the previ-
ous parsgraphs.

In general, it is almost always possible ro match twe dissimilar
gystems by using one or more telescopic arrays similar to those shown in
figs. 5 and 6. 1n particular, the svstem {llustrated in fig. 6 has the
flexibility of simultaneously matching different phase ellipses In the x
and y planes, Six variables are iceded to achieve a match in buth trans-
verse planecs. Typlcally the variables used are the strengths of the four

quadrupoles and the two drife distances & and £

3 4 though other combina-

tions of six variables are permissibie. It should also be noted that the
endpoint {(position 2) for the Lwo planes nced not coincide, this provides

additional flexibility to the range of possible solutions. This system,
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however, has the disadvantage that the position of the quadrupoles as well
as thelr strengths change when the match requirements change. It 1is
therefore desirable to explore swlutions where only a variation of the
strengths of the lenses and nmot their positions is sufficient to esta-
blish a phase space match. This is posaible, and svstems having this pro-
perty are developed tn the followlng prragraphs,

A thin lens varies the Twiss parameter a. If it is placed at
the “+ ginning of an arbitrary beam tranafer sectlon, characterized by the
matrix R, It is observed from eq. (5) that as it varies ay it also varies
BZ and 3y provided the matrix elements R“ and Rlz are non-zero. A Se-
cond thin lens positioned at the end of the system will vary a,. Thus
82 anc @, may be continuously adiusted by varying only the strengths of
the two lenses. Thefr posit{ons remain fixed. The range of varifation o1

32 is obtained from eq. (9) and is

2
iz

BI M

where 5, = szlﬁl is the mintmum value of 8, allowed.

By using quadrupoles for the two variahle lenses, it 1s possible to
simultaneously match the phLise ellipses {n both transverse planes. Let us
assume that the desired phase ellipse in the two transverse planes x and

y at both positions | and 2 possesses the following symmetry: B _ = Sy and

3
EN -ny. but that In general 3(2) ¢ 8(!) and a(2) # a(l). Under these
circumstances it is pussible to achieve a match between the two positions

with two quadrupoles, one placed at the beginning of a transfer section

and the other pasitiaved at the ead provided that the transfer sectiou,
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described by the matrix R, has the following properties: a) The ab-
soluty value of the matrix elements of R is the same In the x and y
planes., b) Either R“ and RZZ shoula change sign from the x to the y
planes and R12 and RZl remain unchanged, or «¢) RlZ and RZ] change
sign and K“ and RZZ remaln unchanged. Under these circumstances the
two quadrupole singlets may be used to simultaneously match both planes.
As an example of matrices that possess the above properties we cite the

following:

where the underlined matrix vlements chang® sign from the x plane to the
y planc. The consequence of this Is te change the sign of the underlined

matrix elements in eq. {(95) as shown below:

where this Twiss transformatior applies te both Lhe X and ¥ transverse

planen. The abaolute value of each of the matrix elements in the Twiss

transformation is the same in bath planes. The consequences of this are

the following: If Bl(x) = ﬂl(v) and ul(x) = -ul(y) and i{f it is desired

to match another system wherc ”7(") - 8?(_\') and rxz(x) - -uz(y). then o
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thin lens quadrupole positioned at ) changes a by Af.\l(X) - —Aul(y) as 1ts
stcength {s adjusted. This variation, combined with the properties of
the Twiss trasasfomation, varies FZ and 3, such that the symmetry condf-
tions bz(x) = :Sz(y) and uz(x) = -nz(y) are always preserved. A second
quadrupole positioned at 2 varies o, ir a similar manner. Hence a combi-~

nation of the two quadrupoles plus the transfer section characterized by

the R matrix permits a match to be maue, provided

=

2
1

e

&

[y

We now wish to formulate a specific beam envelope maiching system
having the above properties. To do this ue make use of the linear phase
ellipse theory developed [n cthe earlier paragraphs. Consider a unit cell
such that & = 52 T T a, = o and 8y = »/2 for both transverse
planes, but where the sign of 2 changes from the x plane to the y plane.
By a simple Substitution of the above conditions into eq. (10), it imme-

dlately follows tnat the macrix R must have the following form:

where the upper sign of a corresponds to the X plane and the lower to the
v plane. Thus R“ and R:Z change sign from x to y whereas R12 am R21
do not change sign and the absclute valuce of each ol the matri; elements

{s the rame for bath transverse planes, The above matrix describes an

optical system that [s the same from lef: to right in the x plane as it
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is from right to left in the y plane. The question is, what optical
system ts described by this matrix? One posslble answer {s the quadru-
pole doublet shown in fig. 7. The proof that thfs {s 50 i cutlined in
the figure. The focul length and spacing of the eluments must now be
chosen such that &y = u = -2 for the "matched” conditton “l =8, " ¢ and
o, =a, = a. This condition for v is satistind when

fi%_

cia ¥ e Yos oL
2 2F 3

Having chosen the parvameters b, &, anc i‘; to currespond to a matched
phase shift of y = n/2, the optical deslgn of the cell is estab!ished and
remains fixed. The transformatjon properties of the Twiss prrameters for
any initial and final condition are then piven by substitutison of the

matrix Rx y 1Rt ey, (3).  The result is

2
B’Z 3 B]
o, - taf ay
2
YZ a 'Vl

We note that the above equation has t'w desired transformation properties;

that 1f

Ll\n) = &l(” and u](v\ - -nl(x)

then 1t must follow that

Bz(x) = Bz(y) and nh(y) - -uz(x).
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We now use this module, fig. 7, to formulate the beam envelope
natching system shown In fig. 8. A quadrupole Ql {s added at the begla-
ning of the system and a second qus drupole 02 at the end. The final re-
sult is a beam matching system having cthe properties outlined in fig. 8.
Energlzing Ql varies O and hence ay and BZ' Energizing Q7 varies a,.
Therefore, both 9y and B: may be adjusted by varying the strengths of the
two quadrupoles Ql and QZ without moving their positions. As before, the

range of adfustment o B, ls restricted by eq. (9) and is

ro
v

o
8y

In fig. 9 and fig. 10, two additional examples of phase rllipse
matching are gives. These examples use the same design concepts as were
used in the preceding example, but the choice of the matrix Rx , and
henue the optical module correspnnding to ft, is very di’ferent.

In fip. 9 we use the telescope as the basic module. A unity magni-
fication telescopic svitem {s devised such that the x plane image pre-
cears the v planc image by a distance L. The endpoint of the system,
yosttion 2, is chosen tu be midway hetween the % and y images. The matrix

R, descrihing the linear ray optics hetween posltions 1 and 2 is

Here R[ , and )(2[ change sipn between the x and y planes, while

Rll and R2" do not change sign. The fact that RZ] = 0 is uniwportant to



the final result. Again a guadrupole L)l ik positioned ar the beginning
of the system and a second quadrupole Qz at the end. By energlzing Ql
and Q2 a phase ellipse match becomes possible. The vesults are summar-
ized in fig. 9.

Figure 10 illustrates still another system. Here the basic module
1s a segment of a periodic FODO array of quadrupoles. The system is de~
aigned such that all of the gquadrupoles have the same focal length F and
the spacing between the quadrupoles is L =« F, When Qz is turned ~ff and

Ql is set to a focal length F = L, the ray optics matrix becomes

In this example RH and RZZ change sign between x and y, but R12 and
R,ZI remain unchanged. #s befere the absolute value of the matrix elements
1s the game in both transverse planes. As can be seen from the Twlss

transformation giveu in the figure, varying Ql varies o) and hence 2, and

ﬂz. Similarly varylog QZ varies a Hence, as before, a phase space

2
match is possible. The details are summarlzed in the 'igure.

Another approach to phase space matching is that d=scrlbed by eqs.
(14-17) where the beam envelope is increased by a constant ratie r from
cell to cell and several cells are used to complete the transition. The
advantage of this method is related to the mathematical ease with which
secona-order aberrations may be analyzed and controlled ({51, To ilius-
trate the concept, we choose a system with a phase sh.ft per cell of

u = n/2. The Twiss paraneter o ix held constant from cell to cell but



~20-

the function B Ix allowed te change. A practiczal realization of such a
system is illustrated In fig. 11. As can be seen, it is 21 sequence of

telescopic svstems such that the spacing wetween any two adjacent lenses

is equal to the sum of their focal lengths. The start’'ng ooint (position
1) of the system ks arbitrary as long as & H Ll' The total tramnsfer
matrix is derived by sctting u = n/2 and Nu = 2v in eq. (17). Such sys-
tems are being studied zs possible candidates for matchiig low beta In-
teraction regions co the main lattice in large storage rings {5]. The
ndvantage gained fs the ease with which global cancellat{on cf chro-

matic aberrations may he achieved.

4. Summary

Phase space matching between two dissimilar oprical systems has been
a time consuming task for optics designers in the past. In thils report
we have presented the mathematics for, and examples ol, phase space
matching techniques that have proved useful to the author and many of his

col eagues. It is hoped that the reader may benefir from our experience.
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A DRIFT
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THIN LENS QUADRUPOLE
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when ¢ or ; slgns appear, top sign = x

Conclusiong:
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Fig. 4
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A TELESCOPTC SYSTEM
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A THO-DIMENSIONAL TELESCOPIC TRANSFORMER USING QUADRUPOLE LENSES
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A u = n/2 UNIT CELL MATCHED FOR B AND «a

n
By=B,=B , aymo,-a . sy tue]
Then
5 - a 8 and R-l OR_]\ 0 --u 8
x L —a choose y 0 -3 s . a
or
*q 8 upper sign = x plane
Ry © where
R4 ~Y ia lover sign = y plane

This describes an optical asystem that i{s the same from left to right in
the x plane as it is frum right to left in the y plane.

One example of such a system is the Quadrupole Doublet

2
u (3
"~JI‘°'°" stof gt} o Voo
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i =
( 1744 1 7z |
‘ 7——1 y plone Yy %
F F
The Tuiss transform is
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Fig. 7



4 VARIABLE n/2 PHASE ELLIPSE TRANSFORMER
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VARTABLE TELESCOPIC

Energizing

It follows that:

The allow-"~
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PHASE ELLIPSE TRANSFORMERS
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Fig.
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A PERIODIC QUADRUPOLE ARRAY PHASE ELLIPSE MATCHING

g %
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. — . i - X plane 31 .
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The above equations apply when Qz Lls off and Ql is set to focal length

F =1L,
Varying Ql varies ay
Varying Qz varies o,
1f By T Ty and B, Bly
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A MAGNIFYING TELESCOPIC SYSTEM WHERE

THE PHASE SHIFT PER CELL v, = n/2
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Fig. 11



