

beam envelope matching for bean guidance systens*

K. L. Brown
Stanford Linear Accelerator Cencer Stanford University, Stanford, California 94305

ABSTRACT

Ray optics and phase ellipse optics are developed as tools for designing charged particic beam guidance systems. Specific examples of basic optical systems and of phase ellipse matching are presented as 11lusire+ions of these mathematical techniques.

Presented at the

Conference on Charged Parcicic Optics
Ciessen, West Germany

September 8-12, 1980
also submitted to Nuclear Instruments and Methods

[^0]
$\operatorname{CONF}-800952-4$

1. Introduction

Traditionally ray optics expanded in a Taylor series of linear and higher order terms about a central trajectory has been used in che design of single pass charged particle optical systems such as spectromiters, spectrographs and beam analyzing systems [1,2]. Phase ollipse optics, on the other hand, has been used primarily for systems that can be described adequately by linear theory and where knowledge of the phase shift is paramount to an understanding of the system performance, such as in circular particle accelerators [3]. Both methods may be used to design single pass beam transport systems, but there are applications for which the conceptual understanding and or the mathematical descry \perp pion favors one of the two approaches. By combining the beat features of each technique further simplifications result which make many problems easier to solve and understand. It is the purpose of this report to develop the theory and to present some specific examples of the ge methods.

The basic tidthematical formalism for linear ray optics and linear phase ellipse optics Ls summarized below for monoencrgetic trajectories In one transverse plane. The notation used for the ray optics is that of the TRANSPORT program [2]. And t ', "Lotion for the phase ellipse optics follows that ' the traditional circular machine theory introduced by Cob.u.k, Snyder, Iwis, and others [3,4].

Linear ray optics may be described by a transfer matrix R expiressing the amplitude and angle of an arbitrary trajectory at position 2 as a linear function of the amplitude and angle at position., I, where the amplitudes and angles are measured relative to the optical axis of the
system. In TRANSPORT notation this becomes

$$
\binom{x_{2}}{\theta_{2}}=R\binom{x_{1}}{\theta_{1}} \text { with } R=\left[\begin{array}{ll}
R_{11} & R_{12} \tag{1}\\
R_{21} & R_{22}
\end{array}\right]
$$

where for static magnetic fields $|\mathbf{R}|=1$.
In linear phase ellipse optics an ensemble of paricies enclosed by an arbitraty ellipse at position 1 in a beam guidance sustem uilt be enclosed by another ellipse of the same area at position 2. The Twist parameters a, B, γ and the beam emittance c specify the beam ellipse at each position. This is illustrated in [1g. 1. The area of the ellipse is $A=\pi t$. The maxtmum spatial extent of the ellipse (the beam envelope) is $x_{\text {rax }}=\sqrt{\beta \varepsilon}$ and the maximum angular divergence of the beam within the phase ellipse is $\theta_{\max }=\sqrt{Y E}$. The parameters a or r_{21} define the orientation of the ellipse relative to the x and θ axes.

Given a matrlx

$$
T=\left[\begin{array}{rr}
B & -a \tag{2}\\
-n & \gamma
\end{array}\right] \text { wiLh }|r|=\left(B \gamma-a^{2}\right)=1 \text {, }
$$

an ellipse of area $A=\pi E$ is generated by the matrix equation
Wher

$$
X^{T} T^{-1} X=\varepsilon \quad \text { where } \quad X=\binom{x}{0}
$$

or in algebraic form, the equation of the ellipse is

$$
\begin{equation*}
r x^{2}+2 a x e^{2}+6 \theta^{2}=\varepsilon \tag{3}
\end{equation*}
$$

The transformation of the Twiss parameters definitis an ellipse at position 1 to those these defining an ellipse at position 2 is given by the matrix equation

$$
\begin{equation*}
T_{2}=R T_{1} R^{T} \tag{4}
\end{equation*}
$$

as derived in ref. [2]. This result may also be written in the familiar form [4]
$\left(\begin{array}{l}Z_{2} \\ \alpha_{2} \\ \gamma_{2}\end{array}\right)=\left[\begin{array}{c|c|c}R_{11}^{2} & -2 R_{11} R_{12} & R_{12}^{2} \\ \hline-R_{11} R_{21} & R_{11} R_{22}+R_{12} R_{21} & -R_{12} R_{22} \\ \hline R_{21}^{2} & -2 R_{21} R_{22} & R_{22}^{2}\end{array}\right]\left(\begin{array}{c}B_{1} \\ a_{1} \\ \gamma_{1}\end{array}\right)$

In eq. (5), the transformation of the Tviss parameters is expressed as a function of the ray optics matrix elements $R_{i j}$. It is equally waeful to express the matrix R describing the transformation of the ray uprics [rom position 1 to posicion 2 as a function of the Twiss parameters. To do ehis an additional variable is required. Courant and Snyder introduced for this purpose the shase shift, $\Delta \psi$, measured between posiwions : and 2 and defined as follows:

$$
\begin{equation*}
\Delta \psi=\int_{s_{1}}^{s_{2}}-\frac{d s}{B(s)} \tag{6}
\end{equation*}
$$

where s is the distance measured along the oprical axis of the system
and $B(s)$ is the Twiss parameter B evaluated $a t$ position s. The final reault is the following [4].

$$
\mathbf{R}=\left[\begin{array}{c|c}
\sqrt{\frac{B_{2}}{B_{1}}}\left(\cos \Delta \psi+a_{2} \sin \Delta \psi\right) & \sqrt{B_{2} \beta_{2}} \sin \Delta \psi \tag{7}\\
\hline-\left[\frac{\left(1+a_{1} \alpha_{2}\right) \operatorname{Bin} \Delta \psi+\left(a_{2}-a_{1}\right) \cos \Delta \psi}{\sqrt{B_{1} B_{2}}}\right] & \sqrt{\frac{B_{1}}{B_{2}}\left(\cos \Delta \psi-\alpha_{2} \sin \Delta \psi\right)}
\end{array}\right]
$$

where the aubscripts 1 and 2 correspond to the initial and final positions of the beam transfer section.

Several useful observations can be derived from eq. (7).
a) Given the transformation matrix R, the phase shift ou may also be expressed an

$$
\begin{equation*}
\sin \Delta \psi=\frac{R_{12}}{\sqrt{\beta_{1} \beta_{2}}} \quad, \quad \tan \Delta \psi=\frac{R_{12}}{R_{11} \beta_{1}-R_{12} a_{1}}=\frac{-}{R_{22} \beta_{2}+R_{12}} \frac{R_{12}}{} \tag{B}
\end{equation*}
$$

b) Puzthermore

If
Then

It should be noted that a beam transport system, characterized by the matrix R, is completely determined by the array of optical elements from Which it is conseructed, 1.e., the lensen and drifl distances making up the system. The numerical values of the matrix elements, $R_{1 j}$, are therefore findependent of the particular phase space ellipue configuration that exists at the beginning of the system. However, for design purposes, it is often useful to specify a particular optical condition at the beginning and at the end of a system for the purpose of 'Invencing' or devising an optical array. In partficular, if it is assumed that the phase ellipses at the beginning and at the end of a system are Identical, then the mathematical expressions describing the matrix R become particularly simple. The properties of the resulting system miy then be scudied for other inftial and final values of the Twiss pa amelers. It then tewains to devise an actual optical array oi physical ilements that possessen the
'assumed' properties. Specific eximples using this design procedure are given below.

If the phase ellipses at the beginning and at the end of a cransfer section are idantical, i.e., $\alpha_{1}=a_{2}=a, B_{1}=B_{2}=B$, and we define $\Delta \psi=H$, then eq. (7) reduces to the well-known form used in circular machine theory [3, 1],

$$
R=\left[\begin{array}{c|c}
\cos \mu+a \sin \mu & \beta \sin \mu \tag{10}\\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right]
$$

where as before $\left(8 y-a^{2}\right)=1$, and now

$$
\begin{equation*}
\text { Irace } R=2 \cos u \tag{11}
\end{equation*}
$$

Fo. N such unic celis in sequence, as in a matched repetitive lattice of a circuiar machine, the cotal transier matrix is given by

$$
\mathbf{R}_{T}=\mathbf{R}^{N}=\left[\begin{array}{c|c}
\cos N_{\mu}+a \sin N_{\mu} & B \sin \operatorname{lij} \tag{12}\\
--\gamma \sin N_{\mu} & \cos N_{\mu}-a \sin N_{\mu}
\end{array}\right]
$$

and

$$
\begin{equation*}
\operatorname{Trace} \mathbf{R}^{N}=2 \cos N_{\mu} \tag{13}
\end{equation*}
$$

An equally interesting simplification occurs when $a_{1}=a_{2}=u$ and $\mathcal{A} \psi=\mu$ are constant from rell to cell, whereas the beam enve -upe size is allowed to change by a coristant ratio r from cell to cell, i.e.,

$$
\begin{equation*}
\sqrt{\frac{B_{2}}{B_{1}}}=\sqrt{\frac{B_{3}}{B_{2}}}=\sqrt{\frac{B_{N+1}}{B_{N}}}=\tau \tag{14}
\end{equation*}
$$

For the flrst cell in such : serles, the transfer marrix, R, is

$$
R=\left[\begin{array}{c|c}
r(\cos \nu+a \sin \nu) & r \beta_{1} \sin \mu \tag{15}\\
\hline-\frac{\gamma_{1} \sin u}{r} & \frac{\cos \mu-\alpha \sin \mu}{r}
\end{array}\right]
$$

where $\gamma_{1}=\frac{t+\alpha^{2}}{B_{1}}$. Tac transfer matrix, R_{N}, for the N th cell is
and the total matrix, R_{T}, for a sequence of N such cells is

$$
\mathbf{R}_{T}=R_{N} \ldots R_{1}=\left[\begin{array}{c|c}
r^{N}\left(\cos N_{\mu}+\theta \sin N_{\mu}\right) & r_{\beta_{1} \sin N_{\mu}}^{\mathrm{N}_{1} \sin N_{\mu}} \tag{17}\\
-\frac{\cos N_{\mu}-a \sin N_{\mu}}{N^{N}}
\end{array}\right]
$$

This completes the discussion of the basic mathematics ion linear optics as is needed here. We shall now make use of it to develop some specific examples.

2. Optical Bullding Blocks

Monoenergetic first-order (linear) optical systems are basically composed of combinations of 'thin' lenses interspersed with drift distances. It seems appropriate, therefore, to explore the properties of some of the basic elements before formulating mare complex syscms.
A. Drift Distances

A drift distaise is characterized, In ray optics, by the fact that the angle of any arbitrary trajectory relative to the optical axis remains unchanged. Stated in tenns of an ensemble of tralectorles enclosed by an ellipse, the angular divergence of the beam, $0_{\text {max }}-\sqrt{Y E}$, is a sonstant whareas the beain enveiope, $x_{\text {max }}=\sqrt{8 \varepsilon}$, and the orientation a of the ellipse are changing.

A typical drift distance and its basic properties are illustrated in F1g. 2. The following chatacteristics are to be noted:
a) Singe the phase space area is conseryed, it follows that $r=\frac{1}{a_{w}}$, where A_{w} is the value of B at a beam vaist.
b) The phase shift through a crift region depends not only on thi length of the drift, l. t alac on the vaiue of the initial Twiss parameters B_{1} and a, at che beginning of the drif..
c) If a thin lens of variahle strength precedes e drift, it may be adjusted to provide aminimum hean size $x_{m l}=\sqrt{\beta_{2}(m i n) \varepsilon}$ at the end of the drift. Tie magnitude of $B_{\text {? }}$ (min) is derivable from eq. (9) hy setting alnat $=1$. We conclude that

$$
B_{2}(m i n)=\frac{R_{12}^{2}}{\beta_{1}}=\frac{L^{2}}{\beta_{1}},
$$

where $x_{1}=\sqrt{B_{1}}$ is the beam envelope size at the thin lens. By measuring $x_{\text {min }}$ and x_{1}, the emittance of the beam is uniquely determined and given hy

$$
c=\frac{x_{1} x_{m 1 n}}{L} .
$$

d) If it $f=$ desired to cransinit a bear of particles through a constant a; riture, e.g., the gap of a magnet, then the minlmum aperture req.. ired is also readily obtained frow eq. (9) by equating $B_{1} * B_{2}=B$ atd requiring that B be at a minimum value. That is, the beam en' clope should have the same size at the beginning and at the end of the bystem and be at a minimus value. Under these circumstances a r and waist, B_{w}, occurs at the midpoint. The result is

$$
g=L \text {, and } B_{w}=\frac{1}{Y}-\frac{L}{2} \text {. }
$$

The minimum aperture required to transmit the besm is

$$
x_{1}(, r i n)=\sqrt{B \varepsilon}=\sqrt{L_{\varepsilon}}
$$

and the ratio of the beam envelope size at the two ends of the system co the size of the waist at the midpoint is

$$
\left(\frac{x_{1}}{x_{w}}\right)=\sqrt{\frac{\beta}{g_{w}}}=\sqrt{2}
$$

B. A Thin Lens

A chin lens changes the direction but not the position of a particle trajectory af the particle passes through the lens. In linear theory the change in angle is $\Delta \theta=-x / F$, where x is the amplitude of the trajectory and F is the focal length of the lens. Stated in tecms of the phase ellipse formalism, the Tuiss parameter a changes by $\Delta 0=A / F$, while the beam envelope, $\sqrt{\beta_{E}}$, remalns unchanged. The net phast shift, $\Delta \psi$, is zero as can be seen from the Courant-Snyder definition of phase shift given in eq. (6), and fron the fact that the matrix element H_{12} for a thin latis is zaro. These properties of a thin lens are illustratid in fig. 3.

C. A Thin ouadrupole Lens

A quadrupole Eocuses in one transverse fiane while defocusing in the other plane. For a thin lens quadrupole it is assumed that the two planes differ miy by the sign of the focal length F as is illustrated in fig. 4. (In realistic systems the absolute value of the focal length in the two planes is not the same but this assumption is a mod approximation for many purposes.) As with tha simple thin lens discussed in the previous paragraph, the phase shift, A 4 , vanishes in both planes. If we define e to be the particle direction in the x plane and ϕ its direction in the y plane, then $\Delta \theta=-x / F$ and $\Delta \phi=y / F$, Stated in terms of the phasc ellipse fompaligm, $\Delta a_{x}=B_{x} / F$ and $\Delta a_{y}=-B_{y} / F$, while x, y, ϵ_{x} and \dot{b}_{y} terain constant 1 , a 'thin' lens.

Ver: often in beam guldance aystems a segment of the system may be *omposed of a feriodic array of identical elements or 'unit cells', such
that the phase elfipse fothe two transvertic planes x ind y is simblar or even idmitlcal at sperific jocations th the periodic array. One such situation occurs at the midpoith between rwo quadrupoles of a matched periodic artay where the quadrupoles are of equal strengeth but of optosite sign, f.e., a FODO array. The beamenvelopes. at this location, have the salle macriftude but the phase ellipses in the x and y planes are nirror inages of each other about the s alld \ddagger axes, t.e., $t_{x}=\%$ but $x^{x}=-\because^{-}$if a thla fons quadrupole is positioned at this focation, any adjustment of its focul itngth preserves the above symatry. The beta functions; H_{x} and B_{y} remain inchangect, the abocolute values of $\left|a_{x}\right|$ and Uuy change, Dut themirror syometry property $a_{x}=-o_{y}$ is maintained. This is illustrated at the botom ef fig. 4. This characteristic is a very useful feature for phase ellyse matching between two dissimilar systens as will be demonstrated in some of the examples.
D. A Trisscope

Another basie optical module is the teles:ope. For a car-dimensional s:stem it consists af two thin Jenses, separated bv a distance equal to the and of their focal iengths, as illustrated in fig. S. The telescope has the unique property of sitanltencou, parallel ti parallel and point to point imaging. This 1 is equivalent to saytng that the R_{21} and K_{12} wat rix elements are zero. Since $k_{12}=0$, the phase shift is always a multiple of r, independent of the inftlal phase ellipse configuracino. The fact that $R_{?, 1}=0$ coincident with $k_{12}=0$ requires that $a_{2} a_{1}$, t.e., the purameter a is the same at the beginming and end of the tele-
scope. (This is the condition imposed upon eqs. (14-17) and the significance of this will become evident later.)

A two-dimensional telescapic system, using four quadrupoles, is illustrated in fig. S. It is an obvious extension of the baedimensional example of fig. 5. It has the added advantage that the magnifications of the beam envelopes in the two trangverse planes may either be the same or different, This property allows such an array of lenses to be used for matching gystems with different properties in the x and y planes.

3. Beam Envelope Motching

A common task in beam optics is to match the phase space ellipse of one beam guidance system to that of another one by an appropriate cransition section. He shall now describe some solutions to this problem chat have evolved from the theory and techniquen discussed in the previous paragraphs.

In general, it is almost always possible to match two dissimilar systems by using one or more telescopic arrays sfmilar to chose shomi in
 flexibility of simulcaneously matching different phase ellipses in the x and y planes, Six variables are aceded to achieve a match in buth transverge planes. Typlcally the variables used are the strengths of the four quadrupoles and the two drife distances ε_{1} and ε_{4}, though ocher combinations of six variables are permiskibic. It should also be noted that the endpoint (position 2) for the two planpe need not coincide, this provides Additional flexibllity to the range of possible solutions. This system,
however, has the disadvantage that the position of the quadrupoles as well
 therefore desirable to explore solutions where only a variation of the strengths of the lenses and not their positions is sufficient to establish a phase space match. This is posmible, and systems having this property are developed in the following priagraphs,

A thin lens varies the Twiss parameter a. if it is placed at the ${ }^{\text {a }}$ ginning of an arbitrary bean transfer section, characterized by the matrix R, it is observed fromeq. (5) that as it varies a it also varies B_{2} and a_{2}, provided the matrix elements R_{11} and R_{12} are non-zero. A second thin lens positionsd at the end of the system will vary α_{i}. Thus ${ }^{6}{ }_{2}$ anc. a_{2} may be continuously adjusted by varying only the strengths of the two lenses. Their positions remain fixed. The range of variation ol B_{2} is obtained from eq. (9) and is

$$
\mathrm{B}_{2} \xlongequal{\cong} \frac{\mathrm{R}_{12}^{2}}{\mathrm{~B}_{1}}
$$

where $H_{2}=R_{12}^{2} / s_{1}$ is the minfmum value of B_{2} allowed.
Hy using quadrupoles for the two variahle lenses, it is possible to simultampously malch the plase pllipses in both transverse planes. Let us assume that the desfred phase ellipse in the two transuerse planes x and y at both posictons 1 and 2 prossesses the following symmetry: B_{x} * B_{y} and $a^{\prime}=-a^{\prime}$, but that in general $S(2) \notin B(1)$ and $a(2) \not a(1)$. Under these circumstances it is pussible to achleve a match between the two positions with two quadrupoles, one placed at the beginning of a transfer suction and the other postrioned at the end provided that the transfer section,
described by the matrix A, has the following properties: a) The absolute value of the matrix elements of R is the same it the x and y planes. b) Eicher A_{11} and k_{22} should change sign from the x to the y planes and R_{12} and R_{21} remain unchanged, or $\left.c\right) ~ R_{12}$ and R_{21} change sign and R_{11} and R_{22} remain unchanged. Under thesu circumstances the two quadrupole singlets may be used to simultaneously match boch planes. As an exaraple of matrices that possess the above properties wit cite the following:

$$
R_{x, y}=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22} \\
& =\text { or } R_{x, y}=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right] \text { 红 }
\end{array}\right]
$$

where the underlined matrix elements chang: sign from the x plane to the y plane. The consequence of this ts te change the sign of the underlined matrix elements in eq. (5) as shown belob:
where chis Twiss transfonation applies to both the x and y transverse planes. The absolute value of each of the matrix elemants in the Twiss transfonnation is the same in both planes. The consequences of this are the followlng: If $B_{1}(x)=B_{1}(v)$ and $a_{1}(x)=-a_{1}(y)$ and if it is desired so mateh another system where $b_{2}(x)=A_{2}(y)$ and $a_{2}(x)=-a_{2}(y)$, then a
thin leas guadrupole positioned at changes a by $\Delta a_{j}(x)=-\Delta a_{1}(y)$ as its strength Is adjusted. This variation, combined with the properties of the Twiss transfomation, vartes f_{2} and x_{2} such sivat the byumetry condttions $\mathrm{B}_{2}(x)=B_{2}(y)$ and $a_{2}(x)=-a_{2}(y)$ are always preserved. A second quadrupole positioned at 2 varies a_{2} in a similar manner. Hence a combination of the two quadrupoles plus the transfer section characterized by the R matrix perroits a mateb to be maue, frovided

$$
g_{2} * \frac{R_{12}^{2}}{e_{1}} .
$$

We now wish to formulate a specifit beam envelope matcing system having the above propertes. To do this we make use of the linear phase ellipse theory developed th che earlier paragraphs. Consider a unf cell such shat $G_{1}=\beta_{2}=$ B. $n_{1}=n_{2}=0$ and $\Delta \psi=\pi / 2$ for both tranaverse planes, but where the sign of a changes from the x plane to the y plane. By a simple substicution of the above conditions into eq. (10), it immed!abedy follows thas the matrix R must have the following form:

$$
\mathbf{R}_{x_{1}, v}=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]=\left[\begin{array}{cc}
10 & 8 \\
-\gamma & 2 a
\end{array}\right]
$$

where the upper sign of a corresponds to the x plane and the lower to the v planc. Thus R_{11} and K_{22} change $s i g n$ from x to y whereas R_{12} ant R_{21} do not change sign and the absulute value of each of the matris elements Is the fame for toth cransverse planes. The above matrix describes an optical system that is the same from lef: lo right in the x plane as it
de from righe to left in the plane. The question is, what optical gystem to described by chis matrix? One posslble answer is the quadrupole doublet show in fig. 7. The proof that tris is so itu cutilned in the figure. The focal length and spacing of the eluments must now be chosen such that $\Delta 屯=4=-2$ for the "aatched" condition $H_{1}=H_{2}=$ and $a_{1}=a_{2}=a$. This rondition for 4 is satistind when

$$
\sin \frac{\mu}{2}=\frac{\sqrt{\bar{R}} s}{2 F}=\frac{1}{\sqrt{2}}
$$

Having ehosen the brameters F, E, ane $q_{\text {is }}$ to currespond to a matched phase shift of $w=\pi / 2$. the optleal design of the cedl is establighed and remains fixpd. The cransfomathon properties of the Twiss prometers for Eny inltial and flnal condition ars then fiven by substitution of the watrix $R_{X, Y}$ 15:0 eq. (5). Thi result is

$$
\left(\begin{array}{l}
B_{2} \\
a_{2} \\
\gamma_{2}
\end{array}\right)=\left[\begin{array}{c|c|c}
a^{2} & \pm 7 \perp \beta & E^{2} \\
\hdashline \pm a \gamma & -\left(1+2 a^{2}\right) & \pm \alpha \beta \\
\hline \gamma^{2} & -2 a Y & a^{2}
\end{array}\right]\left(\begin{array}{c}
B_{1} \\
a_{1} \\
\gamma_{1}
\end{array}\right)
$$

We note that the above rquation has the destred transfomation properties; chat if

$$
L_{1}(n)=E_{1}(y) \text { and } a_{1}(y)=-n_{1}(x)
$$

then it must follow that

$$
B_{2}(x)=B_{2}(y) \text { and } n_{2}(y)=-1_{2}(x) .
$$

We now use this module, fig. 7, to fomulate the beam envelope natching hysem shown in fig. 8. A quadrupole $Q_{1} f s$ added at the beginning of the system and a second que drupole Q_{2} at the end. The final result is a bean matching system having the propurties outlined in fig. 8 . Energlzing Q_{1} varles a_{1} and hence a_{2} and B_{2}. Energizing Q_{2} varies a_{2}. Therefore, both a_{2} and B_{2} may be adfusted by varying the atrengths of the tuo quadrupoles Q_{1} and Q_{2} without moving their positions. As before, the range of adiustment ${ }^{\prime} B_{2}$ is restsfeted by eq. (9) and is

$$
R_{2} \geq \frac{R_{12}^{2}}{B_{1}} \text { or } A_{2} \geq \frac{B^{?}}{B_{1}}
$$

In fig. 9 and fig. 10 , two additional examples of phase elipse natching are give: Diese examples usie the same design colicepts as were used in the preceding example, but the choice of the matrix $R_{x, y}$, and hence the oftical module corresponding to $i t$, is very di'ferent.

In fig. Y we use the telescope as the basir module. A unfty magnifleation telescopic system Is devised such that the x plane image preceaks the y flane image by a distance 2 L , The endpoint of the system, fusition 2 , is chosen to be midway hetween the x and y images. The matrix $R_{x, y}$ descrthing the linear r y optirs between postons 1 and 2 is

$$
\mathbf{R}_{x, v}=\left[\begin{array}{cc}
R_{11} & R_{12} \\
R_{21} & R_{2 ?}
\end{array}\right]=\left[\begin{array}{cc}
-1 & \pm L \\
0 & -1
\end{array}\right]
$$

Here R_{12} and K_{21} (hange sign betmern the x and y planes, while R_{11} and R_{22} do not change sign. The fact that $R_{21}=0$ Ls unlaphetant to
the final result. Agalif a quidropole q_{1} in positioned at the beginning of the systerg and a second quadrupole Q_{2} at the end. By energizing Q_{1} and Q_{2} a phase ellipse mateh becomss posstble, The results are sumarized in fig. 9.

Figure 10 illustrates still another system. Here the bisic module Is a segonent of a periodic FODO array of quadrupoles. The system is designed such that all of the quadrupoles have the same focal length F and che spacing between the quadrupoleg is $L=F$. When Q_{2} is turned rift and Q1 is bet to a focal length $F=L$, the ray optics matrix becomes

$$
\mathbf{R}_{x, y}=\left[\begin{array}{ll}
\mathrm{R}_{1 I} & \mathrm{R}_{12} \\
\mathrm{R}_{21} & \mathrm{R}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mp 1 & 21 . \\
0 & \mp 1
\end{array}\right]
$$

In this example R_{11} and $R_{Z_{2}}$ change $s i g n$ between x and $y_{\text {, but }} R_{12}$ and R_{21} remain unchanged. As befere the absolute value of the matrix elements is the game in both cransverse planes. As can be seen from the Twiss transformation given in the fipure, varying Q_{1} varies a_{1} and hence a_{2} and σ_{2}. Similarly varying Q_{2} varies α_{2}. Hence, as before, a phase space match is possible. The details are sumararized in the igure.

Anothor approach to phase space matching is that iascrlbed by eqs. (14-17) where the beam envelope 16 incressed by a couscant ratio r from cell to cell and several cells are used to complete the transition. The advantage of this method is related co the mathematical ease with which secona-order aberrations may be anslyzed and controlled [5]. To tiiustrate the concept, we choose a system with a phase shift per csll of $\mu=\pi / 2$. The Twiss paranieter a 1κ held constant fronicell co cell hut
the function fis allowed to change. Apractival realizacton of such a system is illustratad in fig. ll. As can be seen, it is sequence of telescople ivstems such that the spacing wetween any two adjacent lenses Is equal to the sum of their focal lengchs. The start ig ooint (position 1) of the system is arbitrary as long as $\left\{\leqq L_{1}\right.$. The total transfer tuatrix is derived by secting $\omega=\pi / 2$ and $N \mu=2 \pi$ in eq. (17). Such syscems are being studied as possible candidates for matching low beta interaction regions co the main lattice in large storage rings [5]. The advantage gained is the ease with which global cancellation of chromatic aberracions may be achieved.
4. Summary

Phase space matching between :wo dissimilar oprical systems has been a time consuming task for ofics designeas in the past. In this report we have presenced the machematics for, and examples ot, phase space matching techniques that have proved useful to the author and oany of his col ieagues. It is hoped that the reader may benefit from our experfence.

References

[1] K.L. Brown, A first- and second-order matrix theory for the design of beam transport systems and charged particle spec:rometert, SLAC Report No. 75, or Adv, in Particle Phys. I (1967) 71-134.
[2] K.l.. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, TRANSPIORT, a computer progran for designing charged paridele beam trenspurt systems, SLAC 91 (1973 rev.), NAL. 91, and CERN 80-04.
[3] E.D. Courant and H.S. Snyder, Theory of the Alteranting Gradient Synchrotron, Arn. Phys. 1 :1958) 1-48.
[4] C. Bovet et al., A Selection of Furmulae and Data Useful for the Design of A. G. Synchrotrons, CERN/MPS-SI/Lnt. D1/70/4 Aprid, 1970.
[S] R.L. Bromm and R,V. Seryrancks, Chronatic Correct ons for Larene Storage Rings, the $X I$ Iat. Con. on High Energy Accelerators, CERN, Geneva, Switzerlund, 1980, and SLAC-PL'H-255: (1980).

A TWO-TIIMFNSIUNAL BEAM PHASE ELLIPSE

The aren of the ellipor is given by:

The equation af the ellifise 1 s

$$
x^{2}+3 x^{2} x+\operatorname{cin}^{2}=
$$

biner

$$
\begin{aligned}
& \text { TKANSPORT COMRANT-SINOEK } \\
& \text { HOTATION NOTATION } \\
& =\left[\begin{array}{cc}
11 & 0,1 \\
n 3 & -1
\end{array}\right]=1\left[\begin{array}{cc}
a & -i x \\
-a & y
\end{array}\right]
\end{aligned}
$$

.30 .1

$$
f-n^{2}=1
$$

1960れ

Fig. 1

A DRIFT

$R=\left[\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right]=\left[\begin{array}{c|c}\sqrt{\frac{B_{2}}{B_{1}}\left(\cos \Delta \psi+a_{1} \sin \Delta \psi\right)} & \sqrt{B_{1} \beta_{2}} \sin \Delta \psi \\ \hline-\left[\frac{\left(1+a_{1} a_{2}\right) \sin \Delta \psi+\left(a_{2}-a_{1}\right) \cos \Delta \psi}{\sqrt{B_{1} B_{2}}}\right] & \sqrt{\frac{\theta_{1}}{\beta_{2}}\left(\cos \Delta \psi-a_{2} \sin \Delta \psi\right)}\end{array}\right]$

$$
\left(\begin{array}{c}
B_{2} \\
a_{2} \\
\frac{1}{B_{u}}
\end{array}\right)=\left[\begin{array}{c|c|c}
1 & -2 L & L^{2} \\
\hline 0 & 1 & -L \\
\hline 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
a_{1} \\
a_{1} \\
\frac{1}{B_{u}}
\end{array}\right)
$$

Conclusions:

$Y=\frac{l}{\theta_{b}}$ is a constant for a drift

$$
\begin{aligned}
\sin \Delta \psi & =-\frac{L}{\sqrt{B_{1} B_{2}}}, \quad \tan \Delta \psi=\left(\frac{L_{1}-a_{2}}{1+a_{1} a_{2}}\right)=\frac{1}{\left(\frac{B_{1}}{L}\right)-a_{1}} \frac{1}{\left(\frac{B_{2}}{1}\right)+u_{2}} \\
\Delta u & =-\left(\frac{L}{B_{\psi}}\right), \quad B_{2} \text { (minimum) }=\frac{L^{2}}{B_{1}} \quad \text { when } \Delta \psi=\frac{\pi}{2}
\end{aligned}
$$

If $B_{1}=B_{2}$ then $\alpha_{2}=-\alpha_{1}$
If $B_{1}=B_{2}=8$ and $\hat{B}=\frac{\pi}{2}$, then B is at a minimum value and $B=1, a_{1}=-a_{2}=1,\left(\frac{B}{B_{w}}\right)=B_{Y}=\left(1+a^{2}\right)=2$

Fig. 2

A Thif Lens

$R=\left[\begin{array}{c|c}\overline{\beta_{2}}\left(\cos \Delta u+a_{1} \sin \Delta \psi\right) & \sqrt{\beta_{1} \beta_{2}} \sin \Delta \psi \\ {\left[\frac{\left(1+a_{1} \alpha_{2}\right) \sin \Delta \psi+\left(a_{2}-a_{1} \sin \Delta \psi\right.}{\sqrt{B_{1} \beta_{2}}}\right]} & \sqrt{\frac{\beta_{1}}{\beta_{2}}\left(\cos \Delta \psi-\alpha_{2} \sin \Delta \psi\right)}\end{array}\right]$
or

$$
R=\left[\begin{array}{cc}
i & 0 \\
-\frac{1}{F} & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
-\frac{4 a}{6} & 1
\end{array}\right]
$$

ana

$$
\left(\begin{array}{l}
\sigma_{2} \\
\alpha_{2} \\
r_{2}
\end{array}\right\}=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
\hline \frac{1}{F} & 1 & 0 \\
\hline \frac{1}{F^{2}} & \frac{2}{F} & 1
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{1} \\
r_{1}
\end{array}\right\}
$$

Conclugions:

E = constane for a lenf

$$
\begin{aligned}
& \Delta d=\int_{1}^{2} \frac{d s}{B(s)}=\sin ^{-1} R_{12}=0 \\
& B_{1}=B_{2}=B \quad \Delta_{0}=\left(\frac{\theta}{F}\right) \\
& x_{1}=Y_{2}=x
\end{aligned} \quad, \quad \Delta \theta=-\left(\frac{x}{F}\right) .
$$

3080ns
Fig. 3

A THIN LENS QUADRUPOLE

$$
\begin{aligned}
& \int^{+F} \times \text { plane } \\
& \prod \text { y plane }
\end{aligned}
$$

when \pm or $\bar{f} \mathrm{~s}$ ans appear, top sign $\pm x$ plane and bottom $s i g n=y$ plane

Conclusions:

$$
B_{2}-B_{1}, \Delta a_{x}-\frac{B_{x}}{F}, \Delta a_{y}=\frac{B_{y}}{F}, \Delta \varphi_{x, y}=\sin ^{-1} R_{12}=0
$$

Special Cage:
If $\quad H_{x}=\theta_{y}=H \quad$ and $\quad a_{x}(1)=-a_{y}(1)$
Then $\quad \beta_{x, y}^{(2)}=B_{x, y}^{(1)}=e \quad$ and $\quad a_{x}(2)=-\alpha_{y}(2) \quad \Delta u_{x}=\frac{B}{F}$

J989A4

Fig. 4

A TELESCOPIC SYSTEM

$$
\left(\begin{array}{c}
B_{2} \\
\alpha_{2} \\
\gamma_{2}
\end{array}\right)=\left[\begin{array}{c|c|c}
M^{2} & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & \frac{1}{M^{2}}
\end{array}\right]\left(\begin{array}{l}
B_{1} \\
a_{1} \\
r_{1}
\end{array}\right)
$$

Conclusions:

$$
a_{2}=a_{1}=a \quad \text { if a constant }
$$

$$
\left(\frac{B_{2}}{B_{1}}\right)=M^{2} \quad, \quad \Delta \psi_{1}=\sin ^{-1} R_{12}=\pi
$$

3084* 3

Fig. 5

A THO-DIMENSIONAL TELESCOPIC TRANSFORMER USING QUADRUPOLE LENSES

Fig. 6

$$
\text { A } \mu=\pi / 2 \text { UNIT CELL MATCHED FOR B AND a }
$$

$$
A_{1}=B_{2}=B, a_{3}-a_{2}=a, \Delta \dot{\psi}_{x, y}=\mu=\frac{\pi}{2}
$$

Then

$$
\mathbf{R}_{x}=\left[\begin{array}{cc}
a & B \\
-\gamma & -\alpha
\end{array}\right] \quad \begin{array}{cc}
\text { and } \\
\text { choose }
\end{array} \quad \mathbf{R}_{\mathbf{y}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \mathbf{R}_{\mathbf{x}}^{-1}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-a & 8 \\
-y & 0
\end{array}\right]
$$

or

$$
R_{x, y}=\left[\begin{array}{cc}
\pm a & B \\
-r & : a
\end{array}\right] \quad \text { where } \quad \begin{aligned}
& \text { upper sign }=x \text { plane } \\
& \text { lower sign }=y \text { plane }
\end{aligned}
$$

This describes an optical system that is the game from left to right in the x plane as it is from right to left in the y plane.

One example of such a system is the Quadrupole Doublet

The Twas transform is

$$
\left(\begin{array}{c}
B_{2} \\
a_{2} \\
y_{2}
\end{array}\right)=\left[\begin{array}{c|c|c}
a^{2} & +2 a & \theta^{2} \\
- \pm a \gamma & -\left(1+2 a^{2}\right) & \pm a \beta \\
\hline \gamma^{2} & =2 a \gamma & a^{2}
\end{array}\right]\left(\begin{array}{c}
\beta_{1} \\
a_{1} \\
\gamma_{1}
\end{array}\right)
$$

Notice that
If

$$
B_{1}(x)=B_{1}(y) \quad \text { and } \quad a_{1 y}=-a_{i x}
$$

"-
then

$$
\beta_{2}(x)=\beta_{2}(y) \quad \text { and } \quad a_{2 y}=-a_{2 x}
$$

Fig. 7
a variable $\pi / 2$ PHASE ELlIPSE TRANSFORMER

$$
\sin \frac{k}{2}=\frac{\sqrt{R \cdot 5}}{2 F}, \quad u_{x, y}=\frac{\pi}{2}
$$

$F_{1} \quad F \quad F \quad F_{2}$

$\mathbf{R}_{x, y}=\left[\begin{array}{cc} \pm 0 & \{ \\ -Y & i \pi\end{array}\right]$, Trace $R=2 \cos u$
$\left(\begin{array}{c}B_{2} \\ a_{2} \\ r_{2}\end{array}\right)=\left[\begin{array}{c|c|c}a^{2} & \mp 2 a \beta & B^{2} \\ \hline \pm a \gamma & -\left(1+2 a^{2}\right) & \pm a \beta \\ \hline r^{2} & \mp 2 a \gamma & a^{2}\end{array}\right]\left(\begin{array}{c}a_{1} \\ \alpha_{1} \\ \gamma_{1}\end{array}\right)$

The above equations apply when Q_{1} and Q_{2} are cured off:
Energizing Q_{1} varies a_{1} where $\Delta a_{1}= \pm\left(\frac{b_{1}}{F_{1}}\right)$

$$
Q_{2} \text { varies } a_{2} \quad \Delta u_{2}=-\left(\frac{\beta_{2}}{F_{2}}\right)
$$

It follows that:

$$
\begin{array}{rlrl}
\text { If } & a_{1 x} & =-a_{1 y} & \text { and } \\
\text { Then } & a_{1 x}=\varepsilon_{1 y} \\
2 x & =-a_{2 y} & \text { and } & b_{2 x}=B_{2 y}
\end{array}
$$

The allowable range of variation for B_{2} is:
$11-80$

$$
\left.\theta_{2} \geq \frac{B^{2}}{B_{1}} \quad \text { 1.e. } \quad B_{2} \text { (minimum }\right)=\frac{R_{12}^{2}}{B_{i}}
$$

Fig. 8

VARIABLE TELESCOPIC PHASE ELLIPSE TRANSFORMERS

$$
R_{x, y}=\left[\begin{array}{cc}
-1 & \pm L \\
0 & -1
\end{array}\right]
$$

$\left(\begin{array}{l}a_{2} \\ a_{2} \\ r_{2}\end{array}\right)=\left[\begin{array}{c|c|c}1 & \pm 2 \mathrm{~J} & 1^{2} \\ \hline 0 & 1 & \pm i \\ \hline 0 & 0 & 1\end{array}\right]\left(\begin{array}{l}B_{1} \\ a_{1} \\ r_{1}\end{array}\right)$

The above equations app $1 y$ when Q_{1} and Q_{2} are turned off.

$$
\begin{array}{rllll}
\text { Energizing } & Q_{1} \text { varies } & a_{1} & \text { where } & \Delta a_{1}
\end{array}=2\binom{B_{1}}{\frac{F_{1}}{2}}
$$

It follows that:

$$
\begin{aligned}
& \text { If } \quad a_{1 x}=-a_{1 y} \text { and } \quad{ }_{1 x}=\beta_{1 y} \\
& \text { Then } \quad a_{2 x}=-a_{2 y} \quad \text { and } \quad \beta_{2 x}=\beta_{2 y}
\end{aligned}
$$

The allow. - range of variation for β_{2} is:

$$
\theta_{2}=\frac{\mathrm{L}^{2}}{\varepsilon_{1}} \quad \text { 1.e. } \quad B_{2}\left(m 1 n 1 m(m)=\frac{R_{12}^{2}}{E_{1}}\right.
$$

Fig. 9

a periodic quadrupole. array phase ellipse matching

The above equations apply when $Q_{2} 15$ of f and η_{1} is set to focal length $\mathrm{F}=\mathrm{L}$.

$$
\begin{array}{ll}
\text { Varying } & Q_{1} \text { varies } a_{1} \\
\text { Varying } & Q_{2} \text { varies } a_{2}
\end{array}
$$

$$
\text { If } \quad a_{1 x}=-\alpha_{1 y} \quad \text { and } \quad \beta_{1 x}=\beta_{1 y}
$$

Then $a_{2 x}=-\alpha_{2 y}$ and $\beta_{2 x}=\beta_{2 y}$ when Q_{1} and Q_{2} are varied

The available range of variation for B_{2} is

$$
B_{2} \cong \frac{4 L^{2}}{B_{1}} \text { i.e., } \quad B_{2}(m \text { minimum })=\frac{R_{12}^{2}}{\beta_{1}}
$$

Fig. 10

A MAGNIFYING TELËSCOPIC SYSTEM WHERE

THE PHASE SHIFT PER CELL $\omega_{c}=\pi / 2$
$11=80$

$$
\binom{L_{N+1}}{L_{N}}=\binom{C_{N+1}}{E_{N}}=\left(\frac{F_{N+1}}{\bar{F}_{N}}\right)=\left(\frac{B_{N+1}}{B_{N}}\right)=r^{2}
$$

$$
{ }_{R} \mathbf{T}=\left[\begin{array}{cc}
r^{4} & 0 \\
0 & \frac{1}{r^{4}}
\end{array}\right]=\left[\begin{array}{cc}
M_{T} & 0 \\
0 & \frac{1}{M_{I}}
\end{array}\right]
$$

Fig. 11

[^0]: *Work supported by the Department of Energy, conrract DE-AC03-76SF00515.

