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1, Introduction 

Traditionally ray optics expanded in a Taylor series of linear and 

higher order terms about a central trajectory has been used in the de­

sign of single pass charged particle optical systems such as spectro­

meters, spectrographs and beam analysing systems [1,2]. Phase ellipse 

optics, on the other hand, has been used primarily for systems that can 

be described adequately by linear theory and where knowledge of the phase 

shift is paramount to an understanding of the system performance, such as 

in circular particle accelerators [3]. Both methods may be used to de­

sign single pass beam transport systems, but there are applications for 

which the conceptual understanding and/or the mathematical description 

favors one of the two approaches. By combining the best features of each 

technique further simplifications result which make many problems easier 

to solve and understand. It is the purpose of this report to develop the 

theory and to present some specific examples of these methods. 

The basic mathematical lormallsm for linear ray optics and linear 

phase ellipse optics is summarized below for monoenergetic trajectories 

in one transverse plane. The notation used for the ray optics Is that of 

the TRANSPORT program [2], And t\ .nation for the phase ellipse optics 

follows that r the traditional circular machine theory Introduced by 

Ct.i......L, Snyder, Twiss, and others [3,43. 

Linear ray optics may be described by a transfer matrix R expres­

sing the amplitude and angle of an arbitrary trajectory at position 2 as 

a linear function of the amplitude and angle at positio,. I, where the 

amplitudes and angles are measured relative to the optical axis of the 
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system. In TRANSPORT notation this becomes 

W \'J K l R22 J 
where for static magnetic fields \ R | = 1. 

In linear phase ellipse optics an ensemble of parades enclosed by 

an arbitrary ellipse at position 1 in a beam guidance system will bo en­

closed by another ellipse of the samp area at position 2. Thf Twiss pa­

rameters a,6,Y and the beam emittance e specify the beam ellipse at each 

position. This is illustrated in fig. 1. The area of the ellipse is 

A = ne. The maximum spatial extent of the ellipse (the beam envelope) is 

x = <ffiz and the maximum angular divergence or the beam within the 

phase ellipse is 9 = /YE. The parameters a or r„, define the orien-max ' 21 

tation of the ellipse relative to the x and 9 axes. 

Given a matrix 

T - wlLli |Tl • ( B Y - a 2 ) - 1 • 

an ellipse of area A = TIE Is generated by Che matrix equation 

X T T " ' X - c where X - I * \ 

or in algebraic form, Che equation of the ellipse Is 

(2) 

2ox0 "r 69 (3) 

The transformation of the Twiss parameters defining, an ellipse at 

position 1 to those those defining an ellipse at position 2 is given by 

the matrix equation 

as derived in ref. [2 J. This result may also be written in the familiar 

form [4] 

»n - 2 R U R 1 2 *l 
~ R11 R21 R11 R22 + R12 R21 " R12 R22 

R2! - 2 R 2 1 R 2 2 "22 

In eq. (5), the transformation of the Twiss parameters is expressed 

as a function of the ray optics matrix elements R..- It. is equally use­

ful lu express the matrix R describing the transformation of the ray op­

tics from position 1 to position 2 as a function of the Twiss parameters. 

To do this an additional variable is required. Courant and Snyder in­

troduced for this purpose the phase shift, Aiji, measured between positions 

'. and 2 and defined as follows: 

J B(s) (6) 

where s i5 the distance measured along the optical axis of the system 



and 6(B) is che Twlss parameter 6 evaluaced at position B. The final 

result is che following O ] , 

\-~- fcos AiJ< + a. sin AI(J) J B . B , sin aij-

(1 + a . a 9 ) Bin fliji + (a 3 - a.) cos 4i|> 1 1 — (cos A* - a 2 sin Ai{.) 

where the subscripts 1 and 2 correspond to the initial and final posi­

tions of the beam transfer section. 

Several uaeful observations can be derived from eq. (71. 

a) Given the transformation matrix R, the phase shift tail may also be i 

pressed an 

R11 B1 - "l2"l R22 B2 + K12"-2 



b) Furthermore 

:[£ 

» . , " 
R12 >° 

R n ' ° 
« , , * n 

tan iiii independent of B, 

fiij; = Nfl independent o f a and fl 

6̂  (minimum value) " —— 

when sinii^ = 1. (9) 

It should be noted that a beam transport system, characterized by the 

matrix R, is completely determined by the array of optical elements from 

which It is constructed, i.e., the lenses and dril L distances making up 

the system. Vhe numerical values of the matrix elements, R... are there­

fore Independent of the particular phase space ellipse configuration that 

exists at the beginning of the system. However, for design purposes, it 

is often useful to specify a particular optical condition at the begin­

ning and at the end of a system for the purpose ot 'inventing' or devising 

an optical array. In particular, if it is assumed that the phase ellipses 

at the beginning and at the end of a system are identical, then the mathe­

matical expressions describing the matrix R become particularly simple. 

The properties of the resulting system m,iy then be studied for other 

Initial and final values of the Twiss pa. .lmeters. It then remains to de­

vise an actual optical array of physical i-lements that possesses the 



'assumed' properties. Specific examples using this design procedure ore 

given below. 

If the phase ellipses at the beginning and at the end of a transfer 

section are identical, i.e., a. =• n = a, H. - B, = 8, and we define 

Atp •= u, than eq. (7) reduces to the well-known form used in circular ma­

chine theory [J,4"J, 

[ cos JI + a : 

cos u - a sin u 

where as before (BY - a "> = 1, an-J now 

Trace R - 2 cos u 

Fo,. M such unit cells in sequence, as in a matched repetitive lat­

tice of a circular machine, the Lotal transfer matrix is gtv^n by 

cos Nu + a sin Nu 

os Nu - a sin Nu 

Trace R = 2 cos Nu (13) 

l V = u are constant from fell to cell, whereas the beam envc .jpe size is 

allowed to change by a constant ratio r from cell to cell, i.e., 
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For the first cell In such ^ scries, the transfer matrix, R, is 

r(cog v + a sin v) rB. sin v 

y . sin M 
r 

cos v - a sin v 
r 

(15) 

2N-1 D t 1 r B, sin u 

R N - fj sin v 

r" 
cos u - a sin \t 

r 

and the total matrix, R for a sequence of N such cells is 

r (cos Nu + a sin Ny) r e sin Nu 

cos Nu - o sin Hn 
N 

This completes the discussion of the basic mathematics to! linear optics 

as is needed here. We shall now make use of It to develop some specific 

examples. 



2. Optical Building Blocks 

Monoenergetic first-order (linear) optical systems are basically com­

posed of combinations of 'thin' lenses intf-rspersed ultli drift distances. 

It seems appropriate, therefore, to explore the properties of some of the 

basic elements before formulating more complex systems. 

A. Drift Distances 

A drift distance Is characterized, In ray optics, by the fact that 
the angle ot any arbitrary trajectory relative to the optical axis re­
mains unchanged. Stated in terms of an ensemble of trajectories enclosed 
by an ellipse, the angular divergence of thu beam, 0 •- /ye, Is a con­
stant whereas the beam envelope, x = /Be, and the orientation a of the 

max 

ellipse are changing. 

A typical drift distance and its basic properties are illustrated in 

fig. 2. The following characteristics are to be noted: 

a) Since the phase space area is conserved, it follows that t =
 a'", 

/ W 

where B is the value of 8 ai a beam uaist. 

b) -The phase shift through a drift region depends not only on the* 

length of the drift, '.jt also on the vn:uc of the initial Twins pa­

rameters B and a at the beginning of the drii'.. 

c) If a thin lens of variable strength precedes a drift, it may be ad-

Justed to provide a minimum beain size x = /3.(roin)E at the end of 

the drift. The magnitude of 6.(rain) is derivable from eq. (9) In­

setting flinA* B 1. We conclude that 



*h 

where x, =• *6.e is the beam envelope size at the thin lens. By 

measuring x , and x. , the emlttance of thfi beam is uniquely deter­

mined and givun hy 

If it is desired to transmit a beam of particles through a constant 

?;...tturef e.g., the gap of a magnet, then the minimum aperture re-

qi. tred is also readily obtained from eq. (9) by equating B. " B_ = fl 

ai.d requiring that B be at a minimum value. That is, the beam en­

velope should have the same size at the beginning and at the end of 

the system and be at a minimum value. Under these circumstances a 

Kara waist, 6 , occurs at the midpoint. The result is 
w 

3 • 1, and 6 = - - 7 . w Y 2 

The minimum aperture required to transmit the be-̂ m is 

x. I.r.in) = /Se « fiZ 

and the ra-io of the beam envelope nize at the two ends of the 

sy.stera to the size of the waist at the midpoint is 

ft)"^-*-
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B. A Thin Lens 

A chin lens changes the direction but not the position of a particle 

trajectory aF the particle passes through the lens. In linear theory tin-

change in angle is A8 - -x/F, where x is the amplitude of the trajectory 

and F is the focal length of the lens. Stated in terms of the phase el­

lipse formalism, the Twiss parameter a changes by Aa m fl/F, while the 

beam envelope, •/&£, remains unchanged. The net phasi; shift, A'K is zero 

as can be seen from the Courant-Snyder definition of phase shift given in 

eq. (6), and from the fact that the matrix element K for a thin l«ns is 

zero. These properties of a thin lens are illustrated in fig, 3. 

C. A Thin Quadrupole Lens 

A quadrupole focuses in one transverse plane while defocusing in the 

other plane. For a thin lens quadrupole it is assumed that the two planes 

differ only by the sign of '.he focal length F a s is illustrated in fig. 4. 

(In realistic systems the absolute value of tht focal lencth in the two 

planes is not the same but this assumption is a '̂ od approximation for 

many purposes.) As with tl.-; simple thin lens discussed in the previous 

paragraph, the phase shift, A*, vanishes in both planes. If we define e 

to be the particle direction in the x plane and $ its direction in the y 

plane, then A9 = -x/F and flifr * y/F. Stated in terms of the phase ellipse 

formalism, An = B /F and Aa •- -0 /F, while x, y, k and 6 i rernin con­

stant ii? a 'thin' lens. 

Ver" often in beam guidance systems a segment of the system may be 

(ompoeed of a periodic array of identical elements or 'unit cells', such 
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ttiat the phase ellipse in the two transverse planes x . nd y is similar 

or even identical at specific locations In the periodic array. One such 

situation occurs 3t the midpoint between two quadruples of a matched 

periodic array where the quadrupoles are of e<[uaL strength but of oppo­

site sign, i.e., a FODO array. The beam envelopes, at tills location, 

have the same magnitude but the phase ellipses in the x and y planes are 

nirror images of each other about the a and * axes, i.e., t> - - but 

i - - i _. If a thin lens quadrupote is positioned at this location, any 

adjustment of its foci length preserves the above symmetry. The beta 

function;; ti and B remain inchangeii, the absolute vulues of \a | and 

'u i change, Dut the mirror svmmetrv property a = -a is maintained. 1 y - r x y 
This is illustrated at the bottom if fig. U. This characteristic is* 3 

very useful feature for phase ellipse matching between two dissimilar 

systems as will be demonstrated in some of the examples. 

L>. A Teiescope 

Another basic optical module is the telescope. For a cue-dimension­

al system it consists of two thin lenses, separated bv a distance equal 

to the s-jm of their focal lengths, as illustrated in fifi. 5. The tele­

scope has thp unique property of simultaneous parallel tr parallel and 

point to point Imaging. This Is equivalent to saying that the R . and 

K ma'rlx elements are zero. Since K ~ - 0, the phase shift is always 

H multiple of r, indep.-r.dent of the initial phase ellipse conf igurac'n"i. 

The fact that R - 0 coincident with R., - 0 requires that a - a , 

i.e., the parameter a Is the same at the beginning and end of the tele-

http://indep.-r.dent
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Scope. (This Is the condition imppsed upon eqs. (14-17) and the 

significance of this will become evident later.) 

A two-dimensional telescopic system, using four quadripoles, is il­

lustrated in fig. 6. It is an obvious extension of the une-dimensional 

example of fig. 5. It has the added advantage that the magnifications of 

the beam envelopes in the two transverse planes may either be the same or 

different. This property allows such an array of lenses [o be used for 

matching systems with different properties in the x and y planes. 

3. Beam Envelope Matching 

A common task in beam optics is to match the phase space ellipse of 

one beam guidance system to that of another one by an appropriate tran­

sition section. Up shall now describe some solutions to this problem 

Chat have evolved from the theory and techniques discussed in the previ­

ous paragraphs. 

In general, it is almost always possible r« match twe dissimilar 

systems by using one. or more telescopic arrays sslmiljir to those shown in 

figs. 5 and 6. In particular, the svstera illustrated in fig. 6 has the 

flexibility of simultaneously matching different phase ellipses in DIP x 

and y planes. Six variables are iceded to achieve a match in bi>th trans­

verse planes. Typically the variables used are the strengths of the four 

quadrupoles and the two drift distances t and t , , though other combina­

tions of six variables are permissible. It should also be noted that the 

endpoint (position 2) for the Lwo planes need not coincide, this provides 

additional flexibility to the range of possible solutions. This system. 



however, has the disadvantage that the position of the quadrupolea as well 

as their strengths change "hen the natch requirements change. It Is 

therefore desirable to explore solutions where only a variation of the 

strengths of the lenses and not their positions is sufficient to esta­

blish a phase space match. This is possible, and systems having this pro­

perty are developed in the following paragraphs. 

A thin lens varies the Tviss parameter a. If it is placed at 

the **• ginning of an arbitrary beam transfer section, characterized by the 

matrix R, It is observed from eq. (5) that as it varies a. it also varies 

B_ and o , provided the matrix elements R and R.- are non-zero. A se­

cond thin lens positioned at the end of the system will vary a,,. Thus 

6 ? ant', a may be continuously adjusted by varying only the strengths o^ 

the two lenses. Their positions remain fixed. The range of variation 01 

&7 is obtained from eq. (9) and is 

By using quadrupoles for the two variable lenses, it is possible to 

simultaneously match the pMse ellipses In both transverse planes. Lt't us 

assume that the desired phase ellipse in the two transverse planes X and 

y at both positions I and 2 possesses the following symmetry: B • 6 and 

u - -n , but that In general &(2) f 0(1) and a(2) 4 a<I). Under these x y 
circumstances it is possible to achieve a match between the two positions 

with two quadrupoles, one placed at the beginning of a transfer section 

and the other positioned at the end provided that the transfer sectioa, 



described by the matrix R, has the following properties: a) The ab­

solute value of the matrix elements of R is the same in the x and y 

planes and R. _ and R ?. remain unchanged, or c) R and R . change 

sign and R. and R , remain unchanged. Under these circumstances the 

two quadrupole singlets may be used to simultaneously match both planes-

Aa an example of matrices that possess the above properties w cite the 

following: 

21 22 21 

where the underlined matrix i-lements chaiifct:j sign from the x plane to the 

y plane. The consequence of this is to change the si^n of the underlined 

matrix elements in eq. (5) as shown belnw: 

J 21 

'"'I 

where this Twiss eransformatior applies to both the x and y transverse 

planet). Tlie absolute value of each of the matrix elenunts in the Twlas 

transformation is the same in both planes. The consequences of this arc 

the following: If B,(x) = 8 (v) and n (x) = -a (y) and if it Is desired 

to match another system where p (x) - fl.(y) and n.(x) - -a.(y), then a 



strength Is adjusted. This variation, combined with the properties of 

the Twlss tra.isf ormat Ion, varies f. .inil t such t:>at the symmetry candi-

°2( 

nation of the two quadrupoles plus the transfer section characterized by 

the R matrix permits a match to be maue, provided 

, > i 
We now wish to formulate a specific beam envelope matching system 

having the above properties. To do this we make use of the linear phase 

ellipse theory developed in the earlier paragraphs. Consider a unit cell 

such that 6. 5 3, • &. a. •= a = a and fltf. •= u/2 for both transverse 

planes, but where che SIRII of a changes from the x plane to the y plane. 

By JI s imp It- substitution of the above conditions into eq. (10), it imme­

diately follows tnat the matrix R must have the following form: 

II 12 

n V 
where the upper sign of a corresponds to the x plane and the lower to the 

v plane. Thus R and K change stjjn from x to y whereas R.- a n ' Rjl 

do not ch.inge sign and the absolute value of each of the matrix elements 

is the same for both transverse planes. The above matrix describes an 

optical system that is the same from lef; L-) right in the x plane as it 



1B from right to left in the y plane. The question is, what optical 

system ts described by this matrix? One possible answer Is the quadm-

pcjle doublet shown in fig. 7. The proof that this is so is outlined in 

the figure. The focal length and spacing of the elements must now be 

chosen such that A* * u H ~ 2 for the "matched" condition f • B • t* and 

o- This condition for u is satisfied when I 

1 

Having chosen the parameters I-, E, ant £_ to correspond to a matched 

phase shift of IJ - n/2, the optical design of the cell Is established and 

remains fixed. The transformation properties r>f the Twiss parameters for 

any initial and final condition are then ^iven bv substitut 1 jn of the 

\*i) . Tiie result is 

2 
u i ? j p I2 / • . 

±af - 0 + 2a 2 ) 

I2 

•' 2 
L If :2a-, 2 a U 

WL note that the above equation has t'i» desired transformation propertle 

that If 

, U ) H 6.(y) and a (y 

then i t must follow that 



We now use this module, fig. 7, to formulate the beam envelope 

matching nyslum shown in fig. 8. A quadrupole Q. Is added at the begin­

ning of the system and a second qui drupole Q. at the end. The final rs-

sult is a beam matching system having the properties outlined in fig. 8. 

Energizing Q vurles a and hsnee ci and B . Energizing () varies a . 
^l 1 

range of adjustment <-• 6, Is restricted by eq, (9) and is 

In fig. 9 a.̂ d fig. 10, two additional examples of Dhaae ellipse 

matching are gfve:i- These examples use the same design concepts as were 

used In the preceding example, but the choice of the matrix R , and 

hence the optical module corresponding to it, is very di'ferent. 

In fig. y we use the telescope as the basi<- module. A unity magni­

fication telescopic svjitem Is devised such that, the x plane image pre­

cedes the y plane image by a distance 2L. The endpolnt of the system, 

]jsttion 2, is chosen to be midway between the x and y images. The matrix 

R describing the linear ray optics between positions 1 and 2 is 

11 12 

R „ R., 

Here R and R change sign between the X and y planes, while 

ot change sign. The fact that R... = 0 is unimportant to 



the final rt-sult. Again a quiulrupole 1} is |ii>sitioned at the beginning 

of the system and a second qundrupole Q at ihe end. By energizing Q 

and Q ? a phase ellipse match boconu's possible. The results are summar­

ized in fig. 9. 

Figure 10 Illustrates still another system. Here the basic module 

is a segment of a periodic FODt) array of quadrupoles. The system is de­

signed such that all of the quadrupoles have the same focal length F and 

Che spacing between the quadrupoles is L - F. When Q, is turned r-ft and 

Q. is set to a focal length F - L, the ray optics matrix becomes 

In this example R and R change sign between x and y, but R. - and 

R„T remain unchanged, /s before the absolute value of the matrix elements 

is the same in both transverse planes. As can be seen from the Twiss 

transformation given in the figure, varying Q. varies a. and hence a. and 

match is possible. The details are summarized in the lgure. 

Another approach to phase space matching Is that described by eqs. 

(1A-17) where the beam envelope is increased by a constant ratio r f>-cm 

cell to cell and several cells are used to complete th<: transition. The 

advantage of this method is related to the mathematical ease with which 

secono-order aberrations may be analyzed and controlled [5]. To illus­

trate the concept, we choose a system with a phase sh'.ft per cell of 

U - it/2. The Twist; parameter a IK held constant from cell to cell hut 
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lh<> function 6 la allowed to clianRf. A practical real tzation of such a 

system Is illustrated in fig. 11. As can he seen, it is i sequence of 

telescopic systems such that the spacing uetween any two adjacent lenses 

Is equal to the sum of their focal lengths. The start'ng Doint (position 

1) of th« system is arbitrary as long as I - L.. The total transfer 

matrix is derived by setting u • n/2 and Nu • 2n in eq. (175. Such sys­

tems are being studied as possible candidates for matching low beta in­

teraction regions co the main lattice in large storage rings [5]. The 

advantage gained is the ease with which global cancellation ef chro­

matic aberrations may he achieved. 

fr. Summary 

Phase space matching between f.wo dissimilar optical systems has been 

a time consuming task for optics designers in the past. In this report 

we have presented the mathematics for, and examples oi, phase space 

matching techniques that have proved useful to the author and many of his 

col leagues. It is hoped that the reader may benefit fr^m our experience. 
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A TWO-DIMENSIONAL BEAM PHASE ELLIPSE 

T h e a r e n of t h e e l l i p s e I s g i v e n b y : 

A - n ( d e c o> ' - max l i u i n t max 

Tli!' c q u L: Inn ,-if I h e e l t i j . s e 1«; 

TKANSPORT 
NOTAIION 

COI:RANT-S:^DER 
NOTATION 

Fig. 1 
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1 . .. 1 8 ? = «, 

Iconttont) s~ — 

- [ : : ] • 
J-g- (cos fl* + Oj s in fliji^ 

(1 + a j Q 2 ) s l n f l* + ( a 2 -Oj> COE M 

V e i 0 2 Bin fl* 

£<- . fl* - o_ s in Aif.1 

I -2L L 2 " 

0 I -L 

0 0 1 

Conclusions: 

i s a constant for a d r i f t 

6 in tH> - — , can 6<fr 

i a - " ( g - ) » fl2(minimum) - — when ill* " £• 

then a- - - a 

I f 6, » 6 , - 6 and Â> • — , then B i s a t a minimum value 

""°2" ' • ( t ) " " ' " (' + , , 2 ) " 2 and 6 • 1-

Fig. 2 



A. THIK LEtiS 

^ ^ ( c o s A0 + a, s i n 4*) 

(1 + ( i .o , ) s i n fl* + ( a , - a.? s in A* 

>/V: 

•/S7 

\JB 6 2 s in o* 

/ r (" s '* - °2 s l " «*) 

I n 

• 4 r ' 

1 0 0 

i ; °__ 
.7m 7 

Conclusions: 

6 - constanc for a lens 

"-(?) 

Fig. 3 



A THIN LENS QUADRUPOLE 

ol 
4 0 * («2-°l) 

1 0 0 

4 1 0 

1 
. f2 

4 2 t 

when i or ; SIRHS appear, top sign * x plane and bottom sifcn - y plai 

Conclusions: 

»2 " «1 Aa - ~ , Aa 1 sin R _ • 0 

Special Cast-: 

If (̂  - B - B 

Thon 6< 2> - B ( 1> . 
x,y x,y 

and ax(l) - -a.(l) 

and a (2) •= -a.(2) Aa 

7**, 

Fig. 4 



A TILESCOPIC SYSTEM 

r / 

9 
/ 

slope = - • = -

1 ^<?-^ J -^-"~~y\ 

c 2 ^ "/J ^ ^ D 2 I " 

2 / 
X 2 = - M « | 

v4 

-H 0 
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* f1! = ." 0 
" V B 2 . 

0 
" r l . 

' M 2 0 0 

0 1 0 

0 0 *] •V \ Y l ' 

C o n c l u s i o n s : 

Fig. 5 



A TWO-DIMENSIONAL TELESCOPIC TRANSFORMER USING OUADRUPOLE LENSES 
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Fig. 6 



A g - n/2 UNIT CELL MATCHED FOR B AND i 

%-f: and 
choose 

J o] _ fl 0 
R 

y Lo -J * [o -i •[: 

" * . > • 

upper sign • x plane 

lover sign - y plane 

This describes an optical system that Is the same from left to right In 

the x plane as it Is ftum right to left in the y plane-

One example of such a system in the Quadrupole Doublet 

Mh V"7 

The Twiss transform Is 

if 

2 ; 2 a 8 fl

2 

•o r - ( ] + 2 o 2 ) t a p 

2 = 2 a Y 

2 

Notice that Sjdc) - 6j(y) »nd a,y - -alx 

,(x) • B,(y) and a - -o 

Fig. 7 



• VARIABLE n/2 PHASE ELLIPSE TRANSFORMER 

n. 1/2 W 
-H- Trace R • 2 cos u 

2 a + 2afl B 2 ' 

• a y - ( l + 2 a 2 ) !a6 

2 
T * 2 a T 

2 a 

The above equation*; apply when Q. and Q-, are turned off. 

Energizing Q varies a, where An. - i l ^ - J 

Q_ varies a- An,, * 

It follows that: 

Then 

The allowable range of variation for 6. is 

6 2 I | i i . e . , B . W M ^ ) - ^ 
i i - e o 1 I 

12 

Fig. 8 



VARIABLE TELESCOPIC PHASE ELLIPSE TRANSFORMERS 

^ M — y a 
H * H - « # K : •jlon* 

] + 21. I . 2 / 
0 1 ±1 

0 0 1 \ 
1 

' 1 , 

The above equations apply when (J. and Qj are turned off. 

Energizing Q, varl«s u. where fia, • 11 — I 

Q_ varies • • • f t ) 
It follows that: 

If a. « -a, and R lx ply 

Then a_ - - and a. "2y m , u u2x °2y 

The allow-' " -ange of variation for [U l s : 

.2 R^2 

I.e. , 6.,(minimum) = —— "2 ' °1 "1 

Fig. 9 



A PERIODIC Qt'ADRtlPOLF ARRAY PKASE ELLIPSE MATCHINC 

F, F F Fj 

Jl 21. 

0 '1 

1 ±4F 2 1 4F 

0 1 J2F 

0 0 1 U) 
The above equations apply when Q„ is off and Q. ib set to focal lengil 

F •= L. 

Varying Q, varies a. 

Varying Q„ varies a ? 

2x D2y when Q. and Q ? are varied 

The available range of variation for B~ is 

,.,2 
8?(minimum) = — -

Fig. 10 



A MAGNIFYING TELESCOPIC SYSTEM WHERE 

THE PHASE SHIFT PER CELL p - v/2 

L, 
~ T -

-2 L 3 

-iil ^jW 4) 
• - 1 \ -

c. 

<2 <3 

c 2 c 3 

^r-fl,.^ K: 
M 2 ( L , - I ) 

I 2 5 

°1 " a2 ' " 3 * °4 " ° 5 ' Atf, o 4ll = 2n 

1 1 ^ 1 
S " ( f N + V . ) • rK LN ' LKtl 

W • ( % ' ) • ( * ) • ( * ) • 

- [ . ' "l ° 

«T J 

Fig. 11 


