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State Space Forecasting and Noise Reduction

S. Eubank, M. Casdagli, J, D. Farmer, J. Gibson
Los Alamos Nat ionM Laboratory

Los Alamos, NM 87545

Abstract In the presence of noise our definition of a state
can be readily generalized by replacing "COZll-

We discuss the effects of nonlinearity and noise pletely determiMstic" with "£{,sdeterministic a.s
cn the problenl of finding States and dynamics, possible", in this view, complete determinism
We point out problems which arise in the con- is a limiting case of a Markov process in which
struction of state space models for scalar time the state transition probabilities are delta fun(z-
series. We describ(, solutions for the case when tions. "[he degree of determinism is mea sure(t
error clue to noise dominates parameter estima- by the width of the transition probability den-
tion error and outline a framework for the general sitv. Since the error in a deterministic model is
case. bo]lnded below by this width, an optimal ehi-

bedding is one which minimizes the width. 'l?l_e
1. States and Dynamics problems of noise reduction and optim'A embed-
A deterministic view of the world suggests that ding are thus closely related.
the best approach to modeling systems l-'sto iden- In classical systems, we expect even nois(,, to
tify underlyin_ states and tlieir d n mics The be deterministically, generated. The distinc.:iou
two are closely related, s_nce a state can be de- between noise and cteterminism is better thought
fined as that set of quantities in terms of which of as a distinction between low and high dirac',:
the dynamics is completely deterministic. The s,onal' dynamics. In this context, high,, means
probl6m of finding states can be expressed as the "higher than we are willing to model.
problem of embedding time series da,ta in. a re- Even a small contamination by noise can inval-

idate Takens's theorem. For example, if the s_lm-constructed state space. Thus recognizing the
' _, ,Oa

state v_riables for a system depends on finding piing rate 1/A is too large the change bet _ ._ngood deterministic models for the dynamics in con_,ecutive measurements will be obscured I_v
the embedding space, noise. In this case not ali delay reconstructi_)tis

Takens has roven that for eneric dynami- in 2d + 1 dimensions will be su't-ficient for _teu,r-
cal systems, ttPre is a diffeomgphism between mining the state, since the coordinates zo(t) ',_ncl

the true state space and one reconstructed from xo(t - A) are redundant. Noise in a chaotic svs-delayed ',alues of a scalar time series of observa-
t.ions on that system, as long as the dimension tem makes the past seem causally disconnoct(,d

of tl_e embedding space is large enough. Given frorn the future. That is, the measured va.lll_:snoiseless data, from a deterministic system and xo(t) and z0(t+kA) are be statistically il_de:l)exL-
a method for modeling functions in high dimen- dent variables. In this case there is nothing to
sion_l spa,:es, the determination of a good re- be gained by m king the embedding dilneI_oll
constr_lction for the state is not difficult: simply larger than k - _.
increase the dimension rn of the reconstruction
and fit models for the dynamics. When a good 3. Nonlinear Embeddings
model is obtained, the corresponding delay space
is by definition a good embedding. A dimension When the noise level is low and the a.l_ollllt ,)f
algorithm such as Grassberger and Procaccla s data large enough that distances between z_e;L.rb,v
gives a reasonable first estimate of ra. [1] There points are smauer than the local radius oi" (:_lr-vature of the dynamics, local principal c¢,l_p(:,-
are two problems with ap_,lying this strategy to nents embeddings are optimal, These ;_r(, l,:,-rem data: nonlinearity ann noise, cal analogues of Broomhead and King c lIl})_,¢l-

dings, whl"_chproject neighborhoods fl'_l_, a lli_l_
2. Nonlinearity And Noise dimensional delay space onto lower-di_nsiofl;d
If our models are drawn from aclass of functions, hyperplanes.[4] The appropriate dimension for

e:.g. linear functions, which does not include the hyperplanes is determined by a, sil_;_la, rthe true dynamics, forecasting accuracy will be value analysis of the correlation ma,trix o_1a l_-
limited. We find that the best way to fit the cal neighborhood. The projection _tv(_ra,.i,_'s(_v,,r
graph of a nonlinear function in high dimensional noisy degrees of freedom to yield a l)_,ii_,r ,,i,_-
space is with locally low order maps, much a,s bedding than delay reconstr_[ction in th__ sa_,
slllin_:s rather than high orderpolynomials might dimensmn. Figure 1 compares the accu_i;_(:v,,t"be used to fit a_one dimensionalcurve. The local- forecasts $ for noisy data from the Lor_.ll/2al-

i_v of t l_c'fits allows us to model a large class of tractor using global and loom princip,tl co_l,,,-d('n_mtics withoat overparameterizing the rood- nent embeddings in three dimensions, l?;vrc_ris
,,ls. [2,3] measured relative to the true (non-noisy) v;_l_,,



tl

I.) ....... _ , .-._---.----r---;-.-_---_ , , i .... ] r "_,---,---'_---_- ..... r ........................... v--

I'

-0.5 L [ . 1o" .,

i-_" LO "

--Ii-_. 1o" II

_- T tO "_

I 10 -,e

[-

i I0 -,a

0 ;_O 40 60 80 0 so 1oo iso _00
m

Figure 1: Forecast error using global (upper FiCure 2: Observational noise added to a tim(:
points) and local principal component embed- series is removed using knowledge of the dvnam-
dinfz,s vs, the number of dimensions in the orlgi- ics. The noise in the original signal is shown iil
nM'iJelay space. The dotted line shows the noise the upper curve; that of tj'Lecleaned signM in lhc
level in the original dat_. lower curve,

R,edundance is the amount of information abo_t
of the time series x(t)' z which is common to both yl and. y2. V,;.."i-

E - (log(]a:(t + T)- __(t + T)[/aa:)} ables ,vhich are redundant c_m be combineJ .o
reduce noise. Redundance is best quant;fied

at T = 10. The forecast error for 3 dimensional not by a covariance as above, but by the in-
delay coordinates is -0.9 for this example. [5] For dependence of y2 and z given yl. An informa-
details of the technique and the conditions under tion based statistic which measures redundance
wMch it perforrns well see the reference, is R = I(z;yl)/I(z', Yl,Y2), where the semicolon

An alternative procedure is to use the esti- denotes mutual information. The second condi-
mated dynamics to push data measured at dif- tion translates to maximizing the 'mutug..d iI_t'or-
fereut ti[nes forward or backward to a common mation I(z;yl) or minimizing [(z;y2). :\ itol,-
time, effectively yielding many measurements of hnear genera,,zatlon of Gram-Schmidt ts lll<e:lv
a sillgle variab'ie[ In a_dition, estimates of the to be useful for enforcing these conditions: givc,_

"- two variables x_ and z2 which are _ot st aTtis_i-relative precision of ea,ch measurement can be de-
termined from the approximate dynamics. These cally independent, they ca,n be made so _sin_;
,,sti_a, tes give the weights with which the mea- the invertfble transformatio_t:

surements should be averaged together.[2] Fig- y., = x_, (1
ure 2 shows the noise reduction achieved using

this procedure when the true dynamics is known: Y2 = F _ Pa:_p,-_x)dz. (2
For higher noise levels, a nonlinear g;eneraliza- J-_

tion of factor analysis would be useful. We out- References
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