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State Space Forecasting and Noise Reduction

S. Eubank, M. Casdagli, J. D. Farmer, J. Gibson
~ Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

We discuss the effects of nonlinearity and noise
cn the problem of finding states and dynamics.
We point out problems which arise in the con-
struction of state space models for scalar time
series. We describe solutions for the case when
error due to noise dominates parameter estima-
tion error and outline a framework for the general
case.

1. States and Dynamics

A deterministic view of the world suggests that

the best approach to modeling systems is to iden-
tify underlying states and their dyr mics, The
two are closely related, since a state can be de-
fined as that set of quantities in terms of which
the dynamics is completely deterministic. The
problem of finding states can be expressed as the
problem of embeading time series data in a re-
constructed state space. Thus recognizing the
state variables for a system depends on finding
good deterministic models for the dynamics in
the embedding space.

~ Takens has proven that for generic dynami-
cal systems, there is a diffeomorphism between
the true state space and one reconstructed from
delayed values of a scalar time series of observa-
tions on that system, as long as the dimension
of the embedding space is large enough. Given
noiseless data from a deterministic system and
a method for modeling functions in high dimen-
sional spaces, the determination of a good re-
construction for the state is not difficult: simply
increase the dimension m of the reconstruction
and fit models for the dynamics. When a good
model is obtained, the corresponding delay space
is by definition a good embedding. A dimension
algorithm such as Grassberger and Procaccia’s
gives a reasonable first estimate of m. {1] There
are two problems with apglying this strategy to
real data: nonlinearity and noise.

2. Nonlinearity And Noise

If our models are drawn from a class of functions,
¢.g. linear functions, which does not include
the true dynamics, forecasting accuracy will be
limited. We find that the best way to fit the
oraph of a nonlinear function in high dimensional
space is with locally low order maps, much as
splines rather than high order polynomials might
be used to fit a one dimensional curve. The local-
ity of the fits allows us to model a large class of
dynamics without overparameterizing the mod-

els. [2,3]

In the presence of noise our definition of a state
can be readily generalized by replacing “com-
pletely deterministic” with “as deterministic as
possible”. In this view, complete determinisin
1s a limiting case of a Markov process in which
the state transition probabilities are delta func-
tions. The degree of determinism is measured
by the width of the transition probability den-
sity. Since the error in a deterministic model is
bounded below by this width, an optimal em-
bedding is one which minimizes the width. The
problems of noise reduction and optimal embed-
ding are thus closely related.

In classical systems, we expect even nois: to
be deterministically generated. The distinc:ion
between noise and determinism is better thought
of as a distinction betwuen low and high dimen:
sional dynamics, In this context, high means
“higher than we are willing to model.”

ven a small contamination by noise can inval-
idate Takens’s theorem. For example, if the sam-
pling rate 1/A is too large the change hetween
consecutive measurements will be obscured by
noise. In this case not all delay reconstructions
in 2d + 1 dimensions will be sufficient for deter-
mining the state, since the coordinates (1) and
zo(t — A) are redundant. Noise in a chaotic sys-
tem makes the past seem causally disconnected
from the future. That is, the measured values
zp(t) and zo(t+kA) are be statistically tudepen-
dent variables. In this case there is nothing to
be gained by making the embedding dimension
larger than & - 1.

3. Nonlinear Embeddings

When the noise level is low and the amount of
data large enough that distances between ncarby
points are smaller than the local radius of cur-
vature of the dynamics, local principal compo-
nents embeddinfgs are optimal. These are lo-
cal analogues of” Broomhead and King embed-
dings, which project neighborhoods from a high
dimensional delay space onto lower-dimensional
hyperplanes.[d] The appropriate dimension for
the hyperplanes is determined by a singular
value analysis of the correlation matrix on a lo-
cal neighborhood. The projection averages over
noisy degrees of freedom to yield a better em-
bedding than delay reconstruction in the same
dimension. Figure 1 compares the accuracy of
forecasts & for noisy data from the Lorenz at-
tractor using global and local principal conmpo-
nent embedﬁings in three dimensions. rror is
measured relative to the true (non-noisv) valne
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Figure 1: Forecast error using global (upper
points) and local principal component embed-
dings vs. the number of dimensions in the origi-
nal delay space. The dotted line shows the noise
level in the original data.

of the time series z(t):
E = (log(Je(t + T) - 3(t + T)|/0)

at T' = 10. The forecast error for 3 dimensional
delay ceordinates is -0.9 for this example. [5] For
details of the technique and the conditions under
which it performs well see the reference.

An alternative procedure is to use the esti-
mated dynamics to push data measured at dif-
ferent times forward or backward to a common
time. effectively vielding many measurements of
a single variable. In addition, estimates of the
relative precision of each measurement can be de-
l.ern‘line([l from the approximate dynamics. These
estimates give the weights with which the mea-
surements should be averaged together.[2] Fig-
ure 2 shows the noise reduction achieved using
this procedure when the true dynamics is known.

For higher noise levels, a nonlinear generaliza-
tion of factor analysis would be useful. We out-
line helow some of the steps in such a method.
Estimates of probability densities based on trial
embeddings are used to build dynamical models
which in turn help refine the embeddings.

Counsider the problem of finding a transforma-
tion from (zy,x9) to (y1,Y2), such that y; pre-
dicts a third variable 2z as well as possible. A
tvpical linear solution uses Gram-Schmidt or-
thogonalization to enforce the following two con-
ditions: y, and y; are not redundant, and y,
is maximally relevant to z. The second (varia-
tional) condition is equivalent to the (algebraic)
condition that y, be irrelevant to z. In this
framework, redundance and relevance are mea-
sured bv correlations.

These two conditions and the method of so-
lution can be generalized to the nonlinear case.
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Figure 2: Observational noise added to a time
series is removed using knowledge of the dynam-
ics. The ncise in the original signal is shown in
the upper curve; that of ﬁle cleaned signal in the
lower curve.
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Redundance is the amount of information ahout
z which is common to both y; and y;. Vi
ables which are redundant can be combined o
reduce noise. Redundance is best quantifed
not by a covariance as above, but by the in-
dependence of y; and z given y;. An informa-
tion based statistic which measures redundance
is R = I(z;y1)/1(2;y1,y2), where the semicolon
denotes mutual information. The second condi-
tion translates to maximizing the mutual infor-
mation I(z;y;) or minimizing I(z;y2). A uon-
linear generalization of Gram-Schmidt is likely
to be useful for enforcing these conditions: given
two variables z; and ry which are not statisti-
cally independent, they can be made so using
the invertible transformation:

yBoo= T, ()
e
Yo = / Prole (2)d2. (2)
—_—00
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