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Abstract

The stability of ballooning modes in the presence of sheared toroidal flows
is investigated. The eigenmodes are shown to be related by a Fourier trans-
formation to the non-exponentially growing Floquet solutions found by Cooper
[Plasma Phys. Controlled Fusion 30, 1805 (1988)]. It is further shown that the
problem cannot be reduced further than to a two dimensional partial differen-
tial equation. Next, the generalized ballooning equation is solved analytically
for a circular tokamak equilibrium with sonic flows, but with a small rotation
shear compared to the sound speed. With this ordering, the centrifugal forces
are comparabie to the pressure gradient forces driving the instability, but cou-
pling of the mode with the sound wave is avoided. A new stability criterion is
derived which explicitly demonstrates that flow shear is stabilizing at constant

centrifugal force gradient. '
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I. INTRODUCTION

The ability to attain high values of beta, where beta is the ratio of plasma to
magnetic pressure, is limited by the class of instabilities known as ballooning
modes.! These modes are now well understood for static equilibria.’~® However,
new difficulties arise in the analysis when differential rotation is present in
the equilibrium state.”~® This problem is of considerable practical importance,
since strong toroidal flows are known to result from unbalanced neutral beam
injection, 101

The structure of ballooning modes is determined by the conjunction ¢ dy-
namical and geometrical constraints.'? In static equilibria, dynamical consider-
ations lead to the requirement of large parallel wavelength. In the presence of
flow, an additional dynamical constraint must be satisfied: in order to minimize
the kinetic energy, the pbase velocity of the perturbation must match the rota-
tion speed of the plasma. In more physical terms, perturbations which cause the
plasma to flow along a corrugated flux surface require a large amount of energy
and are théreforc proscribed.

This additional constraint can be readily accommodated within the frame-
work of the WKB farmalism by incorporating in the eikonal the Doppler shift
associated with the flow.’>~1® In equilibria with differcntial rotation, however,
the Doppler-shifted frequency varies from one flux surface to another. Thus,
the eikonal solutions do not have pure exponential time dependence and are
not eigenmodes of the system. This is a source of difficulties when one seeks
to determine the radial structure of these solutions. In particular, the eikonal

solutions are found to develop large radial gradients which eventually violate



the WKB ordering.

In the present paper. we show that the eikonal solutions consist of a su-
perposition of a large, quasi-periodic array of radially shifted eigenmodes. The
eigenmodes are well-behaved and satisfy the large-wavelength ordering uni-
formly. They are related to the eikonal solutions by 2 transformation formula
which we derive.

We then present an asymptotic solution of the generalized ballooning equa-
tion for large aspect ratio, axisymmetric tokamaks with circular cross-section.
We assume that the flows are purely toroidal and sonic but that the flow shear
is relatively small, dQ/dq ~ €'/?w,, where Q is the rotation frequency, g is the
safety factor, w, = ¢,/qR is the sound frequency, and ¢ is the inverse aspect
ratio. The purpose of this last assumption is to avoid coupling to the sound
wave. We emphasize that no assumption is made as to the relative size of the
growth rate compared to the shear of the rotation frequency. A new dispersion
formula is derived, in which the stabilizing effect of the radial variation of the
Doppler shift is displayed in a transparent fashion. The connection between this
analysis and the conventional ballooning mode analysis is made in Appendix
A.

The body of the paper is divided into two essentially independent sections.
In Sec. II, we describe the two basic representations for perturbations of an
equilibrium with sheared flow and derive the transformation formula relating
them. In Sec. III, we present the solution of the generalized ballooning equation,

and the results are discussed in Sec. IV.



II. REPRESENTATION OF THE PERTURBATION

A. Introduction

The essential features of large wavenumber perturbations in plasmas with

flow are expressed by the heuristic dispersion relation

A
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where w and k are the mode frequency and wavevector, v is the equilibrium

flow velocity and v4 is the Alfvén speed. The left hand side of this equation
corresponds to the kinetic energy. On the right hand side, ;he first term represents
the line bending energy and the last term models the destabilizing forces. Here
A is a modified beta representing the combined effect of pressure and centrifugal
forces, while L, and L. are the pressure gradient and curvature scale fcngths,
respectively.

For large toroidal wavenumber n, the dispersion relation is dominated by the
stabilizing line bending and kinetic energy terms. In seeking the most unstable
modes, one is led to require that the magnetic and flow resonance conditions,
kj =0 and w = k - v, be satisfied simultaneously. In axisymmetric equilibria
with toroidal flows, the flow resonance condition is simply w = n(Q, and the
magnetic resonance condition for a poloidal Fourier harmonic m is m = ngq.

It is well known that coupling between poloidal Fourier harmonics prevents
the magnetic shear from localizing ballooning modes. However, there is no
coupling between different frequency components or eigenmodes. Flow shear,
therefore, will localize the unstable eigenmodes around their flow-resonant sur-

face. The localization width can be estimated from the dispersion relation to
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be w ~ wa(n df/dr)~1, where the poloidal Alfvén frequency wy is defined as
w4 = v4/qR. It is important to compare this localization width to the distance
between magnetic resonant surfaces, given by § = (n dg/ dr)~'. For sonic flows,
§/w ~ B?* <« 1, so that the mode will extend over many magnetic resonant
surfaces and have rich poloidal harmonic content.

Flow shear also has important consequences for the geometrical properties
of the problem. In static equilibria, there is an approximate lattice symmetry
between poloidal harmonics centered on nearby magnetic resonant surfaces. 617
This symmetry can be described more precisely as an invariance of the mode
equation under a radial shift accompanied by a twist such that the field lines
in each magnetic resonant surface are mapped onto the field lines of the next
resonant surface.’® The symmetry manifests itself in the dispersion relation as
an invariance under the substitution ¢ — ¢ +1/n and m — m +1. '

In the presence of flow shear, by contrast, the poloidal harmonics on nearby
resonant surfaces will experience different flow velocities. As a result, the
purely spatial, “twisting slice” symmetry described above will be replaced by a
dynamical symmetry between poloidal harmonics of different eigenmodes. This
dynamical symmetry is reflected in the dispersion relation as an invariance under
wow+Q,g—q+i/n and m — m + 1, where Q = dQ/dq.

It is clear that reduction of the stability problem to its simplest form depends
critically on the effective use of the geometrical or symmetry properties of the
equilibrium. In fact, we will see that the symmetries provide a simple classifi-
cation of the three relevant representations for ballooning modes: namely, the

classical ballooning representation, and the eikonal and eigenmode representa-



tions. We will begin by describing the latter two representations and deriving
the transformation formulas relating one to the other. We will then conclude the
section with a discussion of the role of symmetry and with a comparison of the
classical ballooning representation with the representations for perturbations in
equilibria with sheared flows.

B. Eikonal Representation

The primary motivation for the eikonal representation is to formulate the
problem so as to automatically satisfy the dynamical constraints. Assuming the

canonical form for the displacement,

£(r,t) = &(r,t) exp(iS(r, t)), )

the magnetic and flow resonance conditions can be expressed as B - V.S = 0
and dS/dt = 0, where d/dt = 8/0t + v - V is the convective time derivative

along the unperturbed flow. The solution is'3

S=n (a —Qt+ /,, : 00(4)44) , 3)

where a = ( — ¢f is the usual field-line label and ¢ is a reference flux-surface.

The wavevector associated with this eikonal is
ki =n[V(-qVo—(0+0t - 60)Vq|. @)

The most important new feature of this wavevector is that it is nonstationary
in time. As a result, the time translation invariance of the original mode equation

is lost in the eikonal formalism. The eikonal or WKB approach thus leads to a
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partial differential equation in two variables: time, and the coordinate along the
field line.!®-'5 The explicit form of this equation will be given in Sec. II. Its
most significant property is that it depends on time only through the wavevector
k.. Note that, k also introduces the familiar secular dependence on 4.
The final, periodic solution is constructed as for static equilibria:
€)= 5 E0+2mit | QexplinS(a.0+275,C0) O
j==c0

Equation (5) is Cooper’s eikonal representation for perturbations in the pres-
ence of shear flow.!® This répresentaﬁon yields solutions which are clearly not
eigenmodes of the system, that is, thcsc solutions are not invariant under time
translations. They are, however, invariant under the dynamical lattice symmetry,
as emphasized by Pegoraro.!* »

It is instructive to write the ballooning equation in a coordinaie system drift-
ing along the field lines at a speed such that the wavevector remains independent
of time.!® In this coordinate system the equilibrium coefficients become periodic
functions of n — 7, where n = 0 + (Ot — 8, is the new field line coordinate and
T (Ot — 0, is the new time variable. The time periodicity of the equation in
this frame of reference implies that solutions can be found which behave like
Floquet or Bloch functions, that is, these solutions are the product of a periodic

and an exponential function of time:!®

E(n,7) = ®(n, ) exp(—iwt), 6)

where ® is a periodic function of its second argument.

We now turn to the eigenmode formulation of the problem, with which

we will derive the transformation formula relating the Floquet solutions to the
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eigenmodes.

C. Eigenmode Representation

The eigenmode equation can be written schematically as
L(V|, V1,00 =v -V |r8)r,t)=0. )]

The explicit form of this equation for magnetohydrodynamic instabilities is given
in Sec. IIL In its general form, however, Eq. (7) is equally applicabie to other
types of instabilities such as drift modes. |

The eigenmode equation can be reduced to two dimensions by expressing
the plasma displacement in terms of solutions which are invariant ander the

" azimuthal and time translation symmetry,
€nr(r,t) = exp(ing — ikf — iwn k)&, 4(r, ), ®)

where k is the principal poloidal mode-number. The eigenfrequency must satisfy
w,;,-;, = n{y + O(1) where Qy = Q(qo) and go = k/n labels the flow-resonant
surface. Note that k can also be interpreted as a radial mode-number for a given
n._

We now derive the lowest order eigenmode equation. Recall that flow shear
limits the radial extent of the mode to a width w ~ w4/n{)'. We assume that
the flow shear is ﬁnite; V' ~ 1, so that w ~ 1/n. In this narrow interval,
the radial variation of the equilibrium parameters can be neglected, except for
the rotation frequency which must he expanded to first order around the flow-
resonant surface go. The perpendicular gradient can be seen to be dominated by
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the gradient of the exponential factor and by the radial gradient of €. Introducing

the microscopic radial variable z = nq — k, the lowest order mode equation is
Lo[-z +i0s, iky + £ng'8,, Dns — Oz | 0)€, 4(2,0) =0, ©)

where k, = V(an — k0) and # = Vr. The lowest order rotation frequency has
been incorporated into the DQppler shifted frequency, & = w -- n{,. Note that
this equation depends on the radial variable x only through the parallel gradient
and inertial terms.

Equation (9) is the reduced equation for the perturbation in the “eigenmode
representation.” It should be emphasized that this equation, a two-dimensional
partial differential equation, is formally of the same degree of complexity as the
generalized ballooning equation which results from the WKB approach. Because
of the similarity between the classical and the gcncralizéd ballooning equations,

however, the latter is usually easier to solve than the eigenmode Eq. (9).

D. Transformation Formula

The distinguishing property of the eikonal solutions is that they are invariant,
to lowest order, under the dynamical lattice symmetry. The eigenmodes evidently
do not have this property since they are radially localized to a region of width
w ~ 1/n. To construct an eikonal perturbation, one must then superpose a large
number of eigenmodes centered on successive magnetic resonant surfaces. The
amplitude of these modes must be bounded by an envelope which is slowly
varying on the scale length of the resonant surface spacing but nonetheless

narrow with respect to the equilibrium scale length. This latter condition is only

9



necessary to justify the neglect of the variation of the equilibrium parameters.
Therefore, we will henceforth ignore the slow variation of the envelope and
extend the sum over an infinite array of eigenmodes centered around a reference
surface go. We will also choose the initial conditions such that for ¢t = 0, the
Bloch shift 8, = 0. The lattice-symmetric perturbation is then
w . . -
&(r,t) = e Z 6"“’““'“&(%0), (10)
k=00

where wy = wy, + (k — ko)f) and the central mode number k; is such that
ko = ngo. We have dropped the subscript n to simplify the notation. The lattice
symmetry implies that the different eigenfunctions are related to each other by

€:(g,0) = Y(ng - k,0) + O(1/n). (11)

In order to carry out the summation in Eq. (10), we replace v by its inverse

Fourier transform ¥,

¥(z,0) = 2—17; / :" ¥(n, 0)e=="dn, - ®
and fnakc use of the identity
i:j e = 2r f:o §(y — 2xl), (13)
k=—oco 1=—c0 |
whence
§(r,t) = e™o’ 3_05 gin(¢-eab-0t=2rl) g (9 + Ot + 271, 6). (14)
I=—c0

The lattice-symmetric perturbétion given in Eq. (14) is seen to be identical

to the eikonal solution in Eqgs. (5) and (6) after the simple change of variables
¥(n,0) = ®(n,n —9). (15)
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Conversely, the eigendisplacement can be expressed in terms of the Floquet
solution of the eikonal problem by combining Egs. (8), (11)-(12), and (15). One
finds

&0.0)= o [ " @(0 -+ v, ) explin (o = () = Qo)) = ] .
| (16)

The transformation formula, Eq. (16), is the main result of this section.
It allows the eigenmodes to be recovered from the solution of the generalized
‘ballooning equations. We emphasize that the consistency of this analysis depends
on the finiteness of the flow shear. In the limit 2 — 0, the lowest order solutions
of the eigenmode equatioh are no longer localized and the sum in Eq. (10) will
diverge.

The limit of vanishing flow shear is thus seen to be singular. The physical
interpretation of this singularity is that even an arbitrarily small amount of flow
shear will qualitatively modify the long-time response of the plasma. The sin-
gularity can be resolved by carrying out a classical ballooning analysis with the
ordering n{) ~ 1. This analysis is sketched in Appendix A, where it is shown
that the large flow-shear limit of the classical ballooning formalism converges
properly tc the small flow-shear limit of the general theory. The © — 0 limit

will be discussed further in Sec. II.

E. Summary

The role of symmetry can now be summarized as follows: The eikonal rep-

resentation results when the general perturbation is expanded on a “basis™ of
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solutions which are invariant under the dynamic Juttice symmetry; the eigex}-
mode representation results from expanding the perturbation in terms of time-
translation invariant solutions.

‘The classical ballooning representation, by contrast, expresses the perturba-
tion in terms of functions which are invariant under both the time translation

‘and lattice symmetries. The simultanéous application of the time translation
and lattice symmetries allows the mode equation to be reduced to an ordinary
differential equation. |
| It is easy to see, however, that in the presence of flow shear the time trans-
lation and lattice symmetry operations do not commute. As a result, it is not
possible to find solutions which are invariant under both of these operations. A
corollary of this statement, and the principal conclusion to be drawn from the
foregoing discussion, is that the problem cannot be reduced further than to a
two dimensional partial differential equation.

We conclude this section by sordc comments on the problem of higher or-
der corrections in the expansion in powers of 1/n. For ballooning modes in .
rigid equilibria, the 1/n corrections problem is of fundamental interest since
the lowest order equation yields radially unbounded solutions which are clearly
not appropriate eigenmodes.®!8 This is not the case in sheared equilibria, since
the global radial structure of the eigenmode is completely determined by the
lowest order equations. There is thus no motivation for carrying the expansion
to a higher order. In this rcspect, ballooning modes in sheared equilibria are

somewhat analogous to resistive interchange modes.!®

A related question concerns the comparison between our transformation
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equations ana the inverse ballooning transformation derived by Hazeltine et
al. and Newcomb.?~%? The irverse ballooning transf..-mation involves a filter-
ing operation which does not appear in our formulation. The filtering serves to
uniquely exizact higher order information concerning the slow variation of the
amplitude of the poloidal harmom>s. The equivalent information for sheared-
flow systems would consist of the vasiation in the amplitude of the eigenmodes
which are superposed to construct the lattice-symmetric perturbation. These
amplitudes have no physical sigunificance and are, therefore, irrelevant.

I e next section, we will adopt the eikonal representation and solve the

generaiized balloonirg equation.

III. STABILITY ANALYSIS

A. Equilibrium

Neoclassical transport theory for axisymmetric equilibria predicts that poloidal
flows are strongly damped in axisymmetric tokamaks.?>?* We therefore restrict

consideration to purely toroidal flows,

a

v = RQ(Y)(,
where 1 is the poloidal magnetic flux.
The magnetohydrodynamic (MHD) force balance equation is

Vp+p(v-V)v=J xB. amn

In addition to force balance, it is also necessary to satisfy the equation of state.

We will not use the adiabatic equation of state, however, but will replace it by
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the temperature convection equation,

dT
P 0. (18)

This choice of equation of state is motivated by the observation that strong
electron parallel thermal conductivity will enforce isothermal flux surfaces at
equilibrium. Note that while both the adiabatic and the temperature convec-
tion equations suffer from degeneracy for axisymmetric geometries with purely
toroidal flows, so that equilibria with isothermal flux surfaces are in fact allowed
by the adiabatic model,?® such configurations are pathological for an adiabatic
fluid. In particular, they will not have nearby bifurcated equilibria at marginal
stability. This is an undesirable circumstance for the stability analysis; it is
avoided here by the use of the temperature convection equation.

For isothermal flux surfaces, the parallel component of the equilibrium equa-

tion requires that?®2¢

2 pR
p(6, B) = po(i) exp (“ f )

2T (19
while the component of the equilibrium equation perpendicular to the flux sur-

faces yields the Grad-Shafranov equation,

RV (R-sz) = —I% - R? (%)R, (20)

where [ is the poloidal current anc' the partial d=vivative of the pressure is to be
taken at constant K. Analytical solutions of the Grad-Shafranov equation with

flow have been given by Maschke and Perrin.?®
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B. Linearized Equations

The linearized MHD equations of motion are?”

0% 43
p5p +20v- Vo =F(&), 1)

where the force operator F is the sum of the static force operator F, and of

terms related to the flow,
F(€) =F,(§) + V- (p€v- Vv —pvv - V§). (22)
The static force operator is |
F,(6) = (Vx Q) xB+JIxQ+V(pV-£+§-Vp),
where Q is the perturbed magnetic field,
Q =V x (& xB).

The equilibrium flow can be seen to affect the stability properties in two
distinct ways. First, it produces centrifugal forces which affect stability both
directly and through modifications of the equilibrium. Second, it modifies
the inertial response of the plasma. This second effect is dominant for large
wavenumbers and is the most interesting effect from the theoretical point of
view due to its profound consequences for the structure of ballooning modes, as
discussed ir Sec. II.

It is important to note that these two effects can be modified separately. '
That is, sequences of equilibria with identical cetrifugal force and pressure
profiles but varying flow shear can be constructed. One can also construct
families of equilibria with the same flow frequency profiles but with varying

centrifugal forces.
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C. Gencralized Ballooning Equations

The generalized ballooning equations have been derived previously by other
authors.”® An aliernative derivation based on the eigenmode formulation of
Sec. Il is given in Appendix B. After elimination of te longitudinal component
of the displacement, one is lef: with two coupled equations for the parallel and

perpendicular components of the transverse displacement:
§ = XN+ ZB/p,

where N = (B x k)/B%k,. In terms of these variables, the generalized balloon-
ing equations take the form

: 2
02 <N2ax) c.NnZ_ 13(_1\5_?3.{.) - VX

Poi ot ot Jo0\ T 00
(192 _
+AS (.7 T AX (23)
82z ) 10 192
-1 2 LY -2 lq2
B'—=++C &(NX) 730 [s (760 AX)] (24)

where C = 2Q(B x ¢) is a Coriolis-like coefficient and $? = pB2/,”(p + B?)
is proporional to the sound frequency. The “potential” term V driving the
instability is given by V = v - N, where
dp 9(pQ2R?)

v= 2—— - ———5-1;—-—-

Here &7 is the toroidal curvature, k7 = —R/R, and Q' = d0/dy. The coupling

B-

'z
V¥ (25)

T + 200 ——

R

term A is similarly given by A = a - N with
a = (2px + pQ*R?k7) [T. (26)

16



The potential V' contains two new terms in addition to the pressure-gradient
driving term. The first of these represents the effect of the certrifugal forces,
while the second is directly related to flow shear. This latter term is small
for sonic flows and will not be considered further. The centrifugal force term,
however, is of the same magnitude as the pressure gradient driving term and
plays an important role in determining the stability properties. It is destabilizing
for centrally peaked centrifugal force profiles.”1%

When investigating the asymptotic properties of the ballooning equations, it
is useful to separate the parts of V and A which are secular in n = 6 + Q.

Thus, we write V = —¢'nV, + V;, where

B xVy
o=y =
. Bx(V(-qV0)
Vo=v: B .

The notation used here has its origin in the fact that, for static equilibria, V,
and V,, are proportional respectively to the geodesic and normal components
of the field-line curvature «. In the static case, one finds that the flux surface
average of the geodesic curvature vanishes. The appropriate generalization of

this fundamental property to rotating equilibria is that
‘/g = —B . VO’, (27)

so that the flux surface average of the ‘geodesic’ component of the potential
vanishes: (V) =0.

The same property holds for A. Namely, if A = —¢'nA,; + A, then
Ay=-B.Va, (28)
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where a = pI/B?, and (A,) = 0.

We thus see that the generalized ballooning equations are almost identical in
structure to the compressible ballooning equations for static equilibria.’ Only the
two Coriolis-like terms have no static equivalent. The most important difference,

of course, is that N now depends on time through the wavevector k.

D. Asymptotic Solution

The ballooning equations can be solved analytically for marginally unstable
modes in a large aspect ratio tokamak.?®2° We adopt the “high beta” ordering,

where € < 1 is the inverse aspect-ratio, and assume that the Mach number M
is of order unity:

2 _ 1
M= 5T 1

‘The growth rate and flow shear, on the other hand, are assumed to be comparable

to each other but somewhat smaller than the rotation frequency. Specifically,
v~ Qo 20~ €, ~ ey

The ballooning equations (23)-(24) are most easily solved by transforming
to the coordinates (n,7), where n = 6 + Qf, and 7 — (. Inspection of the
ballooning equations then reveals two different asymptotic regimes for finite
and large n. In the inner region, determined by n ~ 1, the inertial effects are

negligible and the parallel displacement Z can be eliminated. Equation (23) is

18
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then reduced to the marginal stability equation
Lo (oK
Jom\J on
For large values of 7}, the solutions of Eq. (29) have the asymptotic behavior

) -V(nn-7)X=0. (29)

X ~ Ag(r) (Inl72 + As(r)in*+) (30)
where
1 1/2
v=(3-D1)

Note that for each  there is a unique A(7) and a unique solution of Eq.{29) such
that A_ = A, = A. We will see that this is the solution which is required by the
asymptotic matching procedure. The matching parameter A(T) is the prihcipal
result of the solution of the inner problcm for the purpoée of the asymptotic
analysis. For small values of A, one can show that A = 26W (&o, £0)/(AL+A2),
where §W is the usual energy functional and ¢, is the solution of Eq. (29) for
a potential V5 such that A = 0.

The coefficient D; is the analog of the coefficient which appears in the
Mercier criterion, D; < 1/4. Its general form is given in Appendix C. Near the

magnetic axis of tokamaks with circular flux surfaces it reduces to

D= j,:‘;;g (@~ Dy = ¢ [(1 + M MR }. 6D

As a result of the small flow-shear assumption, our . pression for D; does not
contain the resonances at ! = w, and () = wy found by Bondeson ct al. in
their derivation of the Suydam criterion for cylindrical plasmas with flows.*

The resonance at €} = w,, however, has been shown to be an artifact of the
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MHD model by Bondeson and Iacono.?! This resonance is removed by a kinetic

treatment of the parallel motion.

In the outer region, determined by n R ¢!, the ballooning equations are
characterized by two scale lengths: namely, the connection length 67 ~ 27
which characterizes the variation of the equilibrium parameters and the inertial
length 67 ~ ¢! over which the inertial terms vary appreciably. A two-scale
analysis may thus be applied to reduce the system of equations to a single

differential equation for the averaged function X,

— 1 n+m . .
X =5 [ XGhr)di. (32)

T Jp=n

The two-scale analysis is detailed in Appendix C. One finds

9 [ ,0% v _ a2 Q) #X
(1) o= () B >

where M is a constant related to the geometry. Near the magnetic axis of a

tokarnak with circular flux surfaces, it is given by
M =1+42¢*(1+4M?* + M%), (34)

Note that Eq. (33) is separable, but is subject to a time-dependent matching

condition. It can be solved by Fourier transformation in the r variable,?8?

+00 .
I(nw) = / X(n,7)e™“ dr.
The soluton is

Z(n,w) = ag(w)2' ™ (=idw)’|n|"V2 K, (=idwln])/T(v), (35)
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where ]
LAJPA

A=
‘ WA

The small-n asymptotic form of Z is

'2—2u P(l - ”)

) W, |~1/24v
R ] FRCD

2(0,) ~ asle) [l -

The inverse Fourier transform of z, X, is now matched to the large-7 asymp-
totic form of the inner solution given in Eq. (30). It is acceptable to match X
to X since the large-n limit of the inner solution does not have rapid variation
in n. The result is an integral equation for the amplitudes a(w):

0, (1 —v © . v —-iwT —th
2-2‘/ .i:ﬁ(_l:—l_/%Ah _/_oo(—zw)z ai(w)e dw = — T)/oo dw.

(37
This equation can be solved for the special case Dy = 0, such as for the model

circular equilibrium of Ref. 6. One finds

dA A :
R We) (38)

Equation (38) can be integrated to find

Ax(T) = Aoz exp (—%[A(S)dsy (39)

The integral of the zeroth harmonic of A yields a secular term proportional to
the time t. The proportionality constant is the growth rate of the eigenmode:

~gear § 40) @

Equation (40) is the principal resnl¢ of this section. In order to interpret this

result and assess its significance it is necessary to compare the growth rate in
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Eq. (40) to that of the equivalent rigid rotator. By equivalent rigid rotator, it is
meant here the rigidly rotating equilibrium which has locally the same pressure
and centrifugal force gradients as the sheared equilibrium under invcstigation.
In the case of a rigid rotator, the conventional ballooning formulation can |
be applied.® The resulting equations are similar to Eqgs. (23) and (24), but the
parameter T now réduccs to the Bloch phase shift §,. The growth rate for the
rigid rotator is thus givén by v = —wal(for)/ M2, where the Bloch phase
shift Ggas is defermined bylthe cendition that the growth rate be maximal.
| Going back to the case with flow shear, one concludes that the growth rate
is always smaller than that of the equivalent rigid rotator, as the pgrturbation
is unable to maintain the most unstable Bloch phase-shift. More significantly,
equilibria which are unstable for Q = 0 may be completely stabilized by flow
shear when the average of A is pdsitivc. This result has been conjectured by
previous authors.®15 Eq. (40}, however, provides an explicit criterion for the
mcumﬁce of flow-shear stabilization.
The difference between the growth rate for small flow shear calculated above
and the growth rate for the équivalent rigid rotator reflects the fact that even a
- small amount of flow shear will destroy the phase cohercncé of the perturbation
after a time ¢t ~ 1/(2. The coherence is regained when all the eigenmodes have
drifted an entire number of times around the torus. The eikonal solutions thus
display periodic bursts of ballooning activity with frequency wr = 2 and overall
growth rate .13.1%
If the growth rate +o(6opr) is much larger than the burst frequency, however,

a coherent perturbation will grow to large amplitude before the phase mixing
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effects become significant. In this case, the rigid rotator growth rate may be
more physically relevant than the long-time growth rate in Eq. (40).

IV. DISCUSSION

The eikonal method for the stability analysis of equilibria with sheared flows
has been placed on a firm physical basis. We have shown that the eikonal
solutions can be interpreted as superpositions qf eigenmodes centered on the
lattice of mode-rational surfaces. This construction is analogous to the quasi-

“mode construction of Roberts and Taylor,® é.lthough here it results in solutions
| that are not approximate eigenmodcs. The true eigenmodes are localized to a
narrow radial layer, but for sonic flows they will still extend over many mode
rational surfaces and will contain a large number of strongly coupled poloidal
harmonics. Therefore, a purely local stability analysis such as that leading to
the Mercier criterion is not sufficient. | .

We have presented a solution of the generalized Balloning equations for a
model equilibrium with circular flux surfaces such as that used in Ref. 6. The
result of this analysis can be summarized as follows.

Plasma flows affect stability in two ways: first, flow acts on perturbations
directly through centrifugal forces; second, flow shear modifies the plasma re-
sponse by introducing a mismatch between the mode frequency and the plasma
rotation frequency.

The centrifugal forces act in essentially the same way in sheared and rigidly
rotéting equilibria. They are found to be destabilizing when their gradient is

directed towards the magnetic axis, as has been reported previously by other
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authors.”1®

Flow shear, by contrast, is found to be always stabilizing for equivalent
centrifugal force profiles. The stabilizing effect of flow shear can be understood
as resultihg from the precession of the Bloch shift around the flux surfaces. This
precession causes the perturbation to experience alﬁ:matively stabilizing and
destabilizing effects.??3® The resultant growth rate corresponds to the average
over the Bloch phase-shift of the energy available to drive thc'instability and is
therefore reduced from the achievable peak value at 6y = Ogpy.

The siability results derived here correspond to the zero flow-shear limit
of the general, finite flow-shear theory developed in Sec. II. One expects that
these results can be derived in an equivalent way from the classical balloon-
ing formalism in the limit nf) — oo. This is indeed the case, as shown in
Appendix A. The time-dependent ballooning fomulaﬁion, however, has the ad-
vantage of being more general. For example, the shear of the rotation frequency
is comparable to the characteristic frequency for drif( instabilities, so that the
conventional ballooning formulation will not be applicable to those instabilities.

The results of our analytic solution of the ballooming equation are in qual-
itative agreement with the numerical results of Cooper.!® Detailed comparison
is not possible, however, as the éalculations of Ref. 13 are based on an in-
compressible model. In static equilibria, marginally unstable displacements are
divergence-free, so that such a model will correctly predict the marginal stability
curves. In equilibria with flow, however, this is no Ldnger the case: marginal
eigenmodes have nonzero divergence and compressibility must be allowed to

obtain quantitatively correct stability results.
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Comparison of the predictions of the theory presented in this paper with
experimental results is also difficult. First, it must be noted that the beta limits in
current experiments are ‘belicved to be set primarily by the external kink modes.
This difficulty can be avoided by assuming that the kink-mode and ballooning
mode stability limits are similar, as they are for static equilibria. One may then
regard the ballooning mode results as indicative of general siability trends. A
more serious difficulty is that balanced beam injection, which produces nearly
static equilibria, results in confinement degradation. Therefore, balanced beam
plasmas are generaliy not capable of reaching the beta limit.

It has recently been proposed that sheared toroidal rotation might be used
as a way of gaining access to the region of second stability.? Further analytic
and numerical work is needed before this important issue can be resolved. The
analy;sis presented here, however, leads to a somewhat pessimistic assessment
of this possibility. This assessment is based on the observation that for extended
~ pallooning modes in low shear equilibria (i.e., the “weak ballooning” limit)
the stability criterion is independent of the Bloch shift 6. Thus, the stability
will only be affected by the centrifugal force gradients, which are generally
destabilizing.

It has also been suggested that stabilization might be achieved by inversion
of the centrifugal force profile.®'> However, while this may be possible in the
core region, the density and rotation speed must return to zero at the edge, so
that stabilization of the core can only be achieved at the expense of the stability

-

of the exterior region.
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Appendix A: Classical Ballooning Analysis

When the flow shear is small compared to the characteristic frequency of
the instability under consideration, the classical ballooning formalism may be
appiicd. In order to apply this formalism, the flow shear frequency is formally
assumed to be of the order of 1/n, and the subsidiary ordering n{ ~ A~'wy is
adopted, where A = (ne)™! < 1. A caléu'lation similar to that in Sec. III leads

to the dispersion relation
w — nf¥(q) = A(0o, ),

where A = —iwaA (6o, q)/ M2

In static equilibria, the most unstable modes are localized between two turn-
ing points in the vicinity of the maximum growth rate allowed by the dispersion
relation. The maximum growth rate is usually, but not always, reached at a point .
where 6y = 0.

In the presence of flow  ‘ar, by contrast, the dependence of the frequency
on the radial cocrdinate ¢ is Jominated by the strong variation in the doppler
shift, and no extremum can be found. Therefore, the only stationary modes
present arc the so-called “passing” modes localized between turning points at
8, = 0 and 6, = +.34 Note that these turning points are located in the complex
g plane. The amplitude of the mode envelope is determined to lowest order by
the equation

w4

. 0
(‘)’ - nQ-éb_(;) 0(90) = —WA(%,qo)a(Oo).
The quantization condition is then obtained by requiring that a(6o) be periodic.
This condition yields the growth rate found previously and given in Eq. (40).
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Note that the radial envelope of the mode is determined from a(6,) by a filtered
Fourier transform, as described in Ref. 21.
Appendix B: Generalized Ballooning Equations

The equations of motion are most easily manipulated ia their variational

form. The action is given by
L=T-Y,
where T is the kinetic energy,

T=/dt/d3rp

and V is the potential energy,

d¢ |?
dt|

= [dt [&re B8+ V- (pk(v- TV

The action can be rearranged in order to “diagonalize” the potential in terms of
the three basic modes, namely the shear Alfvén, and the slow and fast compres-
sional Alfvén modes. The procedure is similar to that used Jor static equilibria.
The parallel cornponent of the perturbed magnetic field is eliminated in favor of

the perpendicular divergence through

B. (I xB
R v, goagns 80XB)
where k is the field-line curvature,
_JXB+V_LB
D B
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and o is proportional to the parallel component of the current
o=J.B/B.

After collecting the self-adjoint pairs of terms, integrating by parts and complet-

ing the squares, the potential becomes
‘ 1
v= [t [@[IQuP+pIV-€ - 7€ (ve VIVE 4 BYVL €428 wP

+o(Bx £€):Q-2A¢ - k) (- (Ix B)) = L&~ (v- V)P

(€ V) (pv- IV + R xB) Y x (v V)|,
where the terms have the following interpretation: the first term is the line-
bending energy associated with the shear-Alfvén wave; the second term is re-
sponsible for the slow wave; the third for the fast wave; the fourth term is the
kink term, which does not contribute to ballooning instabilities; the fifth term
represents the destabilizing effect of unfavorable curvature, and the remaining
terms are related to the centrifugal forces. |

The variational form can now be simplified, for large wavenumber perturba-

tions, by observing that the action is dominated by the perpendicular divergence
terms unless the perturbation is chosen to be incompressible to the lowest order
in 1/n. That is, one must take

BxVX ZB
= T + p + 0(1/n).

Note that ¥V -€ can be varied independently at constant X and Z. The potential

may, therefore, be minimized directly with respect to V- €. The minimum is

2 "
v=[at[ & [%{i (B V)2 - (2o + (p/T)V - 9V) - &,
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+Qu[F - 21 - k) (€1 - (I x B))
-—5;,313- (B-V)(v-V)v—Ele, - (v- Tv)P
~€1 (6L V) (pv- VV)) = 22¢, - (B- V)(v- V).
An explicit expression for Q_ in terms of X can be derived from
QL=-B"*Bx[Vy§(B V)Va-Va(B:-V)Vy|-£,.
We find

QL=J"'B’B x (V( -qV0 —iVqd,)(iz + 8)X.

It is clear from this result that the eigenmode representation will lead to a rather
formidable partial differential equation containing fourth order derivatives. Com-
pleting the derivation of this equation presents no fundamental difficulty. For
the sake of conciseness, however, we will instead transform to the eikonal rep-
resentation, which yields much more compact equations. We, therefore, replace
X by its inverse Fourier transform

N +o0 .
X(@0) = [ X(n,0)e = an,

T J=0

and similarly for Z. We then change variables to (5, 7), where 7 = n — 4. This
results in 19, — 7 and iz + 95 — O, so that in the eikonal representation one
has

Q.=NB VX

and £, = NX, where N = B x k/(nB?).
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We next examine the kinetic energy 7. In the eikonal representation, the
convective time derivative is

d . of0 0 .
_..._[-—Zw—ﬂ('g;]--}-'é—;)—QZX],

tive,

where the two partial derivatives can be abbreviated as a constant-4 time deriva-
0 0

. (0
'55;”(5;,' a)

Note that the time derivative does not commute with the wavevector k.

r

The ballooning equations of motion Egs. (23)-(24), are now easily obtainéd

from the action L.

Appendix C: Asymptotic Ballooning Equations

The derivation of the exterior ballooning equation presented in this appendix
follows a similar derivation by Kotschenreuther.?® The asymptotic equations for
large n are derived by separating the displacement into the sum of its slowly and
rapidly varying parts. The slowly varying part of the perpendicular displacement,
X, is given by Eq. (32); its fluctuating part is X = X — X. The parallel
displacement Z is separated likewise into Z and Z.

The ballooning equations can themselves be separated in the same fashion.
The aim of the derivation presented here is then to reduce the resulting system
of equations to a single equation for X, |

We adopt the ordering described in Sec. III, and further assume that 7 ~ ¢*

and that, by convention, X ~ 1. The relative order of the remaining unknowns is
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then determined by balancing the dominant terms in the equations. By inspection
of the fluctuating part of the perpendicular equation one deduces that X ~ ¢and
Z ~ €='. Note that in the averaged perpendicular equation the leading order
 contribution of Z is compensated by AX, and the higher order corrections to
these terms are needed. It is convenient to introduce the auxilliary dependent
variable F defined by
F=5B -VZ-AX).

From the averaged part of the parallel equation, one finds that F' ~ ¢%/2, Thus,
Z ~ €1/2 and neither Z nor F' will contribute to the other equations.

The fluctuating part of the parallel equation determines F:

oF ., 8(R*)OX K JB*&Z
o e et

where primes denote derivatives with respect to the flux ¢. The first term on the

0(e"?), (C1)

right hand side is of order /2 and the second term is of order €2. We integrate

this equation, keeping only the lowest order term:
8Z da- TV ( B (122/52)) X

+0(1). (C2)

0 e T 1/5% ) &

The integration constant in Eq. (C2) has been determined so as to satisfy the

integrability condition for Z. The brackets denote the flux surface average:
1
(9) = 5 f Jgdn
Z is now determined, to lowest order by integrating Eq. (C2):
Z =naX + O(c" ). (C3)
This result can be used to eliminate Z from Eq. (C1).
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We next turn to the perpendicular ballooning equation. Integration of the
fluctuating part of this equation yields

X __ (1 _ _J_B_/_LYJAL) X _ JB’ (a (08294 )
on (BY/|VY[) (B*/|V[?)

on  |Vy[?
while the slowly varying part is

i (o () 5K e (LX) - <vf>—<V>)?+<Aﬁ>

o ]2 02\ [ 8 (Ul 0%
""Qq"<6 (R)dt>+<p‘76t( 5 ")) ©

Equations (C1)-(C4) can now bc used to eliminate Z, F' and X from Eq. (C5)

)—{-, (C4)
nq

in favor of the slowly varying part of the perpendicular component of the dis-
placement, X. The result is Eq. (33), with

Di=E+F+4, (C6)

£= o (m) I (r+ ) + (255 (%557), )
(%) - (%) (o) | ~((3).)
L<i:7?:|2> <|j¢|> - <<Uff>>]

(5 () ()2
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