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ABSTRACT ..

The concept of determinacy measures-the consistency of inter-
action between.the operating variables or parameters of a large
scale model. Determinacy is first defiﬁed;in a general "input-output"
model, and is related to similar concepts in economics and linear
programming. It is then applied to a particular network flow model.
Special techniquesAare then developed to detéct determinacy in this
“model and these techniques are apﬁlied to two special classes of
netwprks to uncover the high degree of determinacy in models of

these classes.
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I. INTRODUCTION

The motivation for this research came out of a series of technical

memoranda by Harvey Greenberg, Measuring Complementarity and Qualitative.

Determinacy in Matricial Form, [ 1], on the subject of model orgaﬁization, written
for the Department of Energy. His efforts have focused on quantifying the
‘interrelationships between variables of a well-defined model. Analysts

today, utilizing the speed and storage capabilities of modern computers, are

able Eo develop models with a high degree of realism and detail. By the time such
a complex model has been completed, however-—along with the necessary calibra-
tion, special case computations, and corrective factors--the basic relations
between variables have often been obscured. One of the present methods of
recovering the relations is through sensitivity analysis, which for these

models amounts to a "black box" statistical approach. An alternative
justification is desirable, particularly for those with a skeptical eye for
statistical or external techniques, and it is to this end that the techniques

developed in this paper are addressed.

The classically stated criterion apropos the questioh of the relation-
ships of variables in a model is: '"All other things being fixed, what is
the effect of a change in factor X (a variable, a parameter, or perhaps even a
computation) on factor Y?" Many authors make no further clarification on
this "definition," often with disquieting results; the fact is that in most
models it is impossible to change factor X without changing a sizable number
of other factors (in addition to Y). At the other extreme, the criterion,
"Under all circumstances, what is the effect of a change in X on Y?" is too
broad; rarely can any consistént answer'be made to this question. So the
problem remains to formulate a definition of relationships between variables

which is not so broad as to be meaningless and not so narrow as to be vacuous.

A reasonable and workable balance is drawn in this paper in the concept
of "output realizable configurations." This is a slight modification of
Greenberg's concept of configuration, made to allow meaningful relations among
a sufficiently large class of variables in a model. It is derived directly
from the idea of a '"feasible basis" in linear programming, and in Section III
this is the precise form in which it is applied. The criterion here is:

"If a certain maximal number of factors are fixed, what is the effect of .a

change in factor X on factor Y?" Implicit in this formulation is the require-

ment that the fixed factors allow the model to work "realistically," that is,

-1 -



X, Y, and the variable factors interact within specified operational limits.

Now we do not have a two-factor trade-off but a many—factor: (although

minimal):qlteration in the model performance. We can therefore no longer

" speak of the isolated effect of factor X on factor Y but rather the effect

of "substituting X into a configuration" on the other variables-—inclﬁding Y-- .
of the configuration. In linear programming terminology, this operation is

known: as a "pivot."

We are now able to define the concept of determinacy in models, extending
the ideas of Greenberg, and the earlier ideas of Lady [ 2]. The question
asked here is: "To what extent can two factors Xl and Xl be substituted into
the various configurations, in that they have similar effects on each other or
on the other factors of*the model?" It is here that we resort to the
simplification used in economic theory of "qualitative" eEfect. This has
been the subject of many papers--[3] - [6], to cite a few. To
assess the '"qualitative effect" of, say, a substitution on a set of variables,
we ignore the magnitude of the change (which is often subject to calibration

and judgment errors anyway), and consider only the sign of the change, i.e.,

we are interested only in whether affected variables increase, decrease, or

remain the same in response to a specified change in model operation. With

this final simplification, it becomes possible to state a workable
definition of determinancy--that is, two factors are considered determinant
if their qualitative effects on any configuration are either identical
(substitutes) or opposife (complements). This means that one can speak of
certain factors as being '"cooperative" or "competitive" according to their

effect on the operation of the model.

The second portion of the paper applies the definitions developed to an

important type of model, called the supply-demand model. Generally, this

model can be described as moving goods (information, events, etc.) from

supply points (sources, initiation points, etc.) to demand points (sinks,

termination points, ctre.): In thesé sénses, it underlies nearly all

organization and management processes, and thus is a natural and critical

plaée to begin determinacy studies. Further, since we are dealing with the -
model in a qualitative fashion, we can work with the structure of the network

itself, rather than the precise amount or nature of the entities traversing

the network. Tools and techniques are developed which enable analysts to

uncover substantial numbers of determinant pairs of variables in a network,
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and these tools are applied in the special cases of “transportation" and
"series-parallel” networks to give a complefe description of determinant
pairs. The strong series-parallel networks are, in addition, a wide class
of networks for which all pairs of variables are determinant, indicating

the high degree of organization these networks possess.

Determinacy and 1its application to networks, then, may uncover new
clues to organizational behavior and management of large-scale systems or
models. It can be used in constructing well-formuléted models as well as
evﬁluating determinancy in existiﬁg ones., Beyond this, though, network deter-

minancy can provide a measure of organization in systems with interrelated

factors, the degree of organization being a factor of the amount of deter-
minancy in the system; Thus, it transcends specific input-output models and
becomes important to more general descriptions and scenarios, and we hope

may be useful in policy decisions and general organization outlook.

IT. INPUT-OUTPUT MODELS AND QUALITATIVE DETERMINACY '

In'order to make a precise and general study of qualitative determinacy

it is necessary first to define the type of model with which we are dealing.

Definition 2.1: An input-output model M==M(RX,RY,f) consists of a real
vector X = (Xl”"’xn) of inputs chosen from an input domain RX’ and a real

vector Y

(Yl,...,Ym) of outputs chosen from an output domain RY which are

related by the functional equation
Y = £(X). . : (2.1)

M is called a differentiable model if f has continuous first-order partial

derivatives. For a working model, X may include parameters, intermediate
variables, and other factors as well as input, and Y may represent inter-
mediate processes or terminal states in addition to the outputs. Note that
it may not be true--and usually it is not--that f(RX) is contained

in RY. This is one of the interesting properties of the model. In

a pérticular energy system, for example, RX might represent the set of
available resources, the transportation and conversion infrastructure, and
the allocation decision rules; f then translates these into final energy
services. These services, however, may not satisfy specific energy service
demands ‘[f(RX) < RY]-' We do assume, for the sake of subsequent definitioms,
that f(RX) contains RY’ i.e, that any set of demands can be met by the

allocation of available resvurces. This may necessitate a restriction of

-3 -



the demand space, and the reader should assume for the sake of the definition
that any stated demand set Ry is actually restricted to Ry f(RX); We make
the further technical assumption that the. function f is.defined (and differen-

tiable when appropriate) on an open neighborhood containing~RX.

We now give three examples of input-output models for illustration and

for later use.

Example 2.1: A linear input-output model - This is the basic model sfructure of

interést in this paper. It models any activity where each output is a linear
"function of the inputs. Thus if X € Ry = R" consists of n real input factors and
Y € RY = R" consists of m real output facfors, then X and Y are relatéd:by the
functional equation

e Y = £(X) = AX, ‘ ' C(2.2)
where A is ‘an mX n matrix. This is clearly also a differentiable model with the
It will also follow that examples

partial derivatives'BYilax equal to a

3 13"

2.2 and 2.3 below are also differentiable.

Example 2.2: A real activigy»linear input-output model-Here‘in addition to
the liﬁear Qropéfty indicated in Example 2.1 we require that,ali inpqt and output
consist of feal actiQity——that is, the input and output are non-negative. Thus
the  functional Eq. (2.2) is also t'e equation. o+ this model, but now
Ry = m: {xe fm“lxi‘zo, i=1,.. yn}
and - - . '

U
RY = ﬁ{k.

A special case of this model, called the supply-demand model, is studied in

Section III. The reader is encouraged to refer to this model for illustration

of the concepts in this section. :

.Example 2.3: A fixed-demand model - We can make .a further' restriction .on .

Example -2.2 by choosing R, to be a single point, R,.= {b==(b1,.;.,bﬁ)} (with
RX = ]Ri as above). This corresponds to the standard linear programming model,
for now the set of values of X which realize the input-output model are precisely
those which satisfy the linear programming constréints
Ax = b
x 20.

Notice that no further .criteria are imposed other than boundedness of the solution.

Example 2.4: A linear programming model - We present this model because it

illustrateg the flexibility of usage for the input and output vectors. Here we
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assume a real fixed-demand submodel (Ax=Db, IS(=Rn, Ry = {b}, b € rl_:), but now we
alter the "inputs," or decision parameters (X), so as to optimize some standard
(c+X) of performance for the system. (It might be, for example, that c:X mini-
mizes system costs or maximizes the value to society of the energy system.) This
is the classical linear programming sensitivity analysis model, where now inputs
éorrespond to demands b as well as the optimization measure parameter c; outputs
'correspond to the optimal operating state as well as the optimal performance
measure. Specifically, the inputs X = (b,c) € :m$ x R" consist of the vector
b of demands and the m-vector c representing the objective function. The output
Y = (x*,d) € R: X IR consists of the optimal state x* and its optimal objective
function value d. The functional equation

f(b,c) = (x*,d)
is defined by

d = ex* = max{cx|Ax=b, x 2 0}.
The function f in this example is thus, loosely speaking, an inverse of the
function used in the previous three examples. Note that an input X = (b,c), in
order to be a factor in the functional equation, must -have the region

Ax = b, x20 (2.3)
feasible and the functional cx bounded over (2.3). The formulation given above
describes the most general sensitivity model. If one wishes to test sensitivity
of specific costs or deﬁands, one can simply restrict RX to include just those
parameters, letting the other elements be constants. It is important to note that
this mbdel is not differentiable, because jumps may occur for small changes in
operational parameters.

Examples 2.1 to 2.4 are illustrated in Fig. 1. We now define the concept

of configuration outlined in the Introduction.

Definition 2.2: An output-realizable configuration, or just

configuration for a model M = M(X,Y,f) is a partition (XB,XN) of the

variables of X so that for any choice y € RY for Y there exists a unique

choice Xg for X_ so that (XB,O) € RX and y = f(xB,O), that is,

B
the function of fB(XB) = f(XB,O) is invertible on the domain subset

-1 _ e , . i
RX N fB (RY) = {xBl(xB,O) € RX’ fB(XB) € RY}. We will identify the configuration

by Z = (Z5,2,), where Z = X; and Zg = X U Y.

Thus ZN corresponds to a maximal set of allowable "fixed'" variables. Specifically,
any desired operation of the model--as measured by output performance;—can be

obtained by the minimal set ZB of operating input variables. It will be assumed
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fl(x) = Ax

X

R, = R (Ng, RY)

bFigure la. Example 2.1 illustrated.

f2(§(') =f, ()

|

Figure 1b.

R, = Ry NERD)

Example 2.2 illustrated.




A 'f3(x)=fl<x> ’
g/ T

. n ) : _ )

Ry = R, Ry = {p}

(set of feasible X)

Figure lc. Example 2.3 illustrated.

Rl

.
7

d = cx*

Figure 1d. Example 2.4 illustrated.



throughout the paper that every model has at least one configuration.

It is a simple matter to characterize the configurations‘in linear, real
activity linear, and fixed-demand models (Examples 2.1 to 2.3). For the linear"
model we find that (ZB’ZN) is a configuration if and only if for every choice of

B
AX = Y5 - ' . ' | (2.4)

values for Y there exists a unique value of X_ for which

where AB is the submatrix of A consisting of the columns of A corresponding to XB.
Thus the configurations correspond to the. sets of m X variables whose columns in
A are linearly independent. For the real activity linear model we insist that for
every choice of non-negative values for Y there exists a unique non-negative value
of XB sitisfyiﬁg (2.4). Hence, in addition to solving (2.4) uniquely, the value
XB = AR Y must be non-negative for each non-negative Y. The configurations, then,

correspond to the sets of m X variables for which the corresponding matrix of

'columns has a non-negative inverse (known as a strongly monotoﬁe submatrix). For
fixed-demand mddels we need only ;hat ABXB = b can be satisfied by a unique choice
of XB € ZR:. Thus the configurations correspond to those sets of variables XB for
which AB is invertible and A;lb,is non-negative. These are precisely the feasible
bases of a linegr program, and the corresponding values of X = (XB,XN) comprise
the basic feasible solutions for the system

Ax = b

x 2 0.

Configurations are the central construct used to observe variable relation-

ships. In particular, we will be studying the effect'of bringing an inoperative
(non-basic) variable into a configuration. For this effect to be well defined, we

need to make a technical assumption on the model.

Definition 2.3: A model M==M(RX,RY,f) is called non-degenerate if, for every

configuration Z = (ZB,ZN), there is an £ > 0 so that for each set of values
i <
y € RY for Y and each set of values Xy for XN with ”xN|| € (the'standard

norm), there is a unique set of values g(xN,y) for X_ so that

B
y = f[g(xN,y),xN].

This is a strengthened form of Definition 2.2 in that we insist that the
function f(XB,XN), as a function of XB’ is invertible for XN in a neighhorhoead
of zero, rather than simply X, = 0. Note that the definition of non-degeneracy

N
does not depend on the input domain RX' It merely avoids "kinks" or jumps in £



about the values XN = 0, thus allowing us to measure in a well-defined way the
effect of bringing a non-basic variable into operation in a configuration.

Any linear model is non-degenerate, and in a differentiable model one can show
that a sufficient condition for non-degeneracy is that the function fB defined
in Definition 2.2 has its matrix of partial derivatives (with respect to XB)
both square and non-singular. Most qther models can be made non-degenerate by
perturbing f, RX’ orvRY slightly--a reasonable task in view of the estimates

usually built into the model.

It is easy to see that for a particular configuration of a non-degenerate
model, the effect of a (small) increase in any of the non-basic variables
(including the y variables) on the basic variables can be determined exactly
through the function g of Definition 2.3. We are concerned specifically with
the rate of changé of one variable with respect to another. For this type of
measure it is simplest to assume the model to be differentiable, although a
more elaborate definition could be stated which covers the general non-degenerate

case.

Definition2.4: Let M be a non-degenerate differentiable model, Z= (ZB,ZN) a

configuration of M, Zizin Z, and y € RY a set of values for Y. Then the span

N
of Zi with respect to Z and y is denoted

-9
OL(Z,Zi,Y) i azi 8(0,)’)

{where the right hand side is the vector of partial derivatives of g with
respect to Zi evaluated at (ZN,Y) = (0,y)], and the effect of Zi on any variable
Zj in ZB is denoted by aj(Z,Zi,y) = the component of a(Z,Zi,y) corresponding to

Zj. For Zi in Z_, we set aj(Z?Zi?y) equal to 0 for i # j and ai(Z,Zi,y) = -1.

B

Note: The extension of o to Zi in ZB reflccts the fact that

has the symmetric form
0 = 'XB + g(XN’Y) = gB(XsY)

and further

-9 3
a(Z,Zi’Y) = azi B(O,Y)-

The significance of this extension will be further clarified as we proceed.
. For the linear models the o vector is particularly easy to calculate. If

the configuration Z is given, XB and XN the corresponding partition of X, and A

-9 -



is partitioned into A, and A corresponding to the columns of X

B
"we can write Eq. (2.2) as

Y = Agky + ANXN ?

or, solving for X

B and XN’ then ‘

B’ _ A
_ .-l -1

Xp = g ¥ 7 Ap AvKy

Thus for each Zi in ZB, a(Z,Zi,y) is independent of y and corresponds to the

column A;l(-I,A) corresponding to the variable Zi (in linear programming, the

pivot column of Zi). For linear models, then, we will drop the y arguments,

and denote the span simply by a(Z,Zi).

We are finally able to make the main definition of the paper, namely, that

of qualitative determinacy between variables in a model. This will be a
measure of the consistency of interaction between the variables and is defined

in terms of the span vector a. By using the term "qualitative,"

we emphasize that
we are concerned solely with the sign of a rather than its magnitude; that is,

we wish only to know whether the variables increase activity, decrease activity,

or are unaffecfed by a given change in model operation. There is considerable
historical basis for this; see, for example ref. [ 5], pp. 23-28. '"Determinacy" will
measure the effect of one variable on another or the muttal effect of a pair of-

variables on the other variables of the model.

Definition 2.5t Let M be a differentiable model and Z= (ZB,ZN) a configuration

of M. For variables Z and Zj in M, we call Z, and zj Z-qualitative substitutes

(complements, independents) in Z if aK(Z,Zi,y)'aK(Z,Zj,y) is non-negative (non-

positive, zero) for all Z in ZB and all Y € RY' Zi and Zj are called

k
qualitative substitutes (complement%, independents) if they are Z-strong quali-

tative substitutes (complements, independents) for every configuration Z. Z1
and Z, will be called (Z-)determinant if they are either (Z-)substitutes,

(Z-)ccmplements, or (Z-)independents.
Nute chat if both variables are in ZB’ then a(Z,Zi,y)~a(Z,Zy,y) is 0 if

i #3and -1 if i = j; if exactly one variable, say Zj’ is in ZB’ then

[ 0 k #j
ak(Z,Zi}y)'ak(Z,Zj,y) =

1—aj(z’zi’y) k = J«

- 10 -



i
tends to 'be a.substitute" for Zj’ in that it will either tend to replace

Thus two variables Z, and Zj are substitutes if, for every configuration, Zi

Zj (if one of the variables is basic) or cause‘the same behavior as Zi on
each variable Zk (if both are in ZN). Similarly, Zi and Zj are complements
if Zi tends to '"complement" Zj in that the variables tend to vary similarly
with respect to each other or have opposite effects on the other variables.
Independence indicates no interaction or mutual action on other variables.
One could isolate the two types of interactions, with weak determinacy  con-

cerning only those configurations with one variable in Z and strong deter-

B’
minacy: concerning those with both variables in ZN (variables in ZB are
always mutually independent). This lends unnecessary complication, however,

and we will mention it only when it can be done without difficulties.

It follows from the definition that two variables are (Z-)independents
if and only if they are both (Z-)substitutes and (Z-)complements. Further,
a variable is always a substitute for ifself, and both substitution and com-
plementarity are symmetric properties. It is not true, as we will show later,
that there is a general form of transitivity of either substitution or

complementarity across pairs.

For the linear model, as developed thus far, recall that the o vector

is independent of Y and Z_  and simply corresponds to the appropriate column

A;l(—I,A), where (AB,AN) ?s the partition of A corresponding to (ZB,ZN). To
test the determinacy of Zi and Zj_it'is necessary to check the (Zi)ﬁland
(Zj)dlcolumns of A;l(—I,A) for each configuration. If the columns always
match term for term in sign whenever they are both non-zero, then Zi and Zj
are substitutes. If the terms are opposite in sign, the two variables are

complements, and if one term is always zero, the variables are independent.

Thus we could give a complete list of determinant pairs by checking every
configuration of the model in the above fashion. This is a substantial amount
of work, hbwever, since the number of configurations is generally an exponential
function of the number of variables. We investigate in Section III a special

class of linear models called the supply-demand models, and attempt to find

more tractable techniques for discovering determinant pairs.

- 11 -~



I1II. THE SUPPLY-DEMAND MODEL

We present in this section an important class of linear models which
represent the natural flow of goods through a directed network. We can then
restate the definitions given in Section II in the context of properties of the
network itself. This not only gives us a more realistic sense of detefminacy,

but provides techniques for discovering determinism in this type of model.

The Model

Let G = (N,A) be a direct network, defined by node set N and arc set A.
Denote elements in A by (u,v), the edge directed from u to v, where u and v 4
are elements 6f N (we allow multiple arcs). Specifying oﬁe element r of N as.

the supply node, we can-define the supply-demand model M(G,r) to be the real-

activity linear model with input variables
’ A

X = {t(u,v)l(q,v) € A} € RX = R4_, (3.1)
output variables
o N-{r}
Y = {y(u)lu € N-{r}} € RY = R+ , ' (3.2)
and functional equation Y = fG(X) defined by components
y() = Z t(x,u) - z t(u,x), u € N-{r}. (3.3)

(x,u)€eA “(u,x)€A
Physically, this model describes the process whereby goods are produced at a
single supply point r and are shipped through the network G with t(u,v)
denoting the flow from u to v. A residual amount y(u) of the matérial is left
at the non-supply node u. The residual at each node u is defined by (3.3),
and (3.1) and (3.2) indicate the fact that the shipped and residual amounts of
the material must always be non-negative. The quantity y(u) could represent,
for example, efficiency losses at a node u if node u represents a conversion

process or demands for energy services at the énd of the network.

Configurations

We now define the fundamental concepts of determinacy in terms of prop-
erties of the network G. For ease of notation, we will often identify an
arc interchangeably with the variable associated with that arc, and identify
a node interchangeably with the variable associated with that node, where
there is no confusion. Also for a given set of values t for X and set C £ A

we denote tC to be the values on the set C. We begin by defining the construct




in a graph'which corresponds to configurationé in the corresponding supply-

demand model. For nodes a and b in G, a directed path from a to b will be a

set of edges of the form
{(a’ul) bl (ul’uz) 9t ey (un_l ’un) -] (un’b)}-

Definition3.1: Let G= (N,A) be a directed graph, and r a node in G. Then an

r-rooted spanning tree, or simply r-tree, of G is any set of edges T of G with

the property that for each node v of G therée 1s a unique directed path in T

from r to v.

Examples: For a graph

L=

are r-trees, but -

/

L)

It is easy to see that an equivalent definition of an r-tree is any set

are not.

of edges which contains no directed cycle {edge set ‘of the form {(ul,uz)(uz,u3)...,
(un,ul)})’and for which every node except r has exactly one edge pointing into

that node.

Proposition3.2: Let M=M(G,r) be a supply-démand model and T a subset of the

arc set. (Recall that f is defined by (3.1) to (3.3) above and that X= (tT;o)
represents a partition of flows for which variables not in T are set to zero.
See definition 2.2.) Then thé following are equivalent:

(1) For some positive set of vélues y for Y there is a unique set of

positive values t for T such that
T

fG(tT,O) =y.
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~That is, for some set of p081tive re81dua1s there is a unlque
set of flows on the arc set T wh1ch y1e1ds these positive
residuals. ' T .
(2) For each non-negative set of values y for Y there 1s a unique

set of non-negative values t for T such that

f (t" )"=‘

(35 T forms an r-tree of G.

Proof: We prove (2) = (1) = (3) = (2)
(2) = (1): It is sufficient to prove that, for each set of positive values
y for Y, the set of values t, defined in(Z)is‘positive, since the unique-
ness follows. Suppose then that the to defined above has t{w,z) = 0 for

some (w,z) in T. Now consider the set of yalues'y"for.Y defined
' y(u) u#z
y' @) =4 -
0 T us=2z,
Then y' is non-negative, and so by (2) there is a non-negative set’ of values

1
tT for T with
fG(I%,O) = y'.

But if we define the set of values t; for T by

[t'(u v) (u,v) # (w,2)
t%(u,v)

1t (w ZJ+yL7) (i,v) = (w,2) ,

then it follows from (3. 3) that
) L S = oy - . . . . R
fG(tT,O) vy, *. : ,

where t"(w,z) > 0. Therefore tT is not unique, contradicting the fact

that such a value’exists.

(1) = (3): Suppose T satlsfles 1), and let s # r be a node in G. First

suppose there is no path from r to s in T. Define S to be that set of nodes

for which there is a directed path to s. Then s € S, r ¢ S, and no edge of

T goes from N-S to S. Therefore, by adding tbgether Eqs. (3.1) for every u € S,

we get
0<y(s) £ ] y()
: u€s
= X{—t(u,v)I(u,v) €A, u€S, v € N-s}
< 0,

?‘14 -



a contradiction. Second, suppose that there are two paths

r: (uo,ul),..;,(uk_l,uk)

"l. ot v '
I': (UO’ul)"'”’(uZ—l’uuQ)

from uy = u6 =stou = ui - r in T. Set € = min{t(ui,ui+1)| i=0,...,k-1}
and now define ti by
t (u,v) , (u,v) eT gy I
t'(u,v) = {t(u,v) -€/2 (u,v) €T
t(u,v)+¢e/2 (u,v) € I''. .
Then té > 0, fG(t') =y, and since T # T', t' # t, contradicting the fact that

t is unique, and that two such paths exist.

(3) = (2) Suppose T is an r-tree. Let y = [y(u)] be a set of non-negative
values for Y, and (w,v) an edge of T. Let U be a set of .nodes of G which can
be reached from v by a directed path of edges in T. Since T is an r-tree, the
only paths from r to nodes in U must go through the edge (w,v); in particular,
(w,v) is the only édge in T whose head is in U and whose tail is in V-U Thps,

by summing Eq. (3.1) over u € U, we get

Iy =} JLot(xu) - ) t(x,u)]
u€u u€lU‘(x,u) €T (u,x)€eT
= t(u,v)

since t(x,u) = 0 when (x,u) £ T, and every arc except (u,v) which appears in
the sum occurs once with each sign. Thus t(u,v) = Z y(u) 2 0 is the unique

value for t(u,v). (uev

Corollary 3.3: Let M==M(G,r)'be,a'supply—demand modél, and Z= (ZB,ZN) a

partition of the variables of M. Then Z is a configuration for M if and only

if ZB comprise edges forming an r-tree in G.

Proposition 3.2 points out the fact peculia£ to supply-demand models that"
the configurétions found with respect to any particular positive residual
value are in fact all of the configurations for the model. Thus, the set of
configurations characterized above is the same even when the model is taken
to be a fixed-demand model (Example 2.3) with demand b = [yl(u),...;ym(u)]

positive.

Determinacy

Using Proposition 3.1 we are in a position to calculate, for any con-

figuration, the effect on the basic variables of a change in one of the
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non-basic variables. For configuration Z = (ZB’ZN) we know that the edges
of ZB form an r-tree of G. Thus for any node u in G there is a directed path

Y(ZB,u) from r to u of edges in ZB. For variable Zi of M we define ¢(ZB,Zi)——

the forward edges of Zi with respect to ZB——and B(ZB,Zi)—éthe backward edges

of Zi with respect to ZB-—as follows: 1if Zi = t(u,v), then ¢(ZN,Zi) = Y(ZB,u)
and B(ZB’Zi) = Y(ZB,V); if Zi = y(v), then ¢(ZB,Zi) = Y(ZB,V) and B(ZB’Zi) = .

We can state the following lemma:

Lemma 3.4: Let M = M(G,r) be a supply demand model, Z = (ZB,ZN) a

configuration for M, and‘Zi a variable in M. Then

e s +
_ +1 if zj €S (zB,z
2.3 = 4= if 7. e 8 (2.,2Z,
uJ_(zB,Ll) 1 if 7j € (zB,zl)
0 otherwise,

where

§F E¢(Z Z.) - B(Z , 2, ) (i.e., the residual forward flow)

s~ "B(Z y 2. ) ¢(Z s2, ) (i.e., the re31dual backward flow).

Recall that the thlrd parameter, y, of o has been- dropped for linear models

Proof: Consider the effect of a unit increase of Zi on the variables of ZB.
This will increase the values of ¢(Z yZ, ) one unit and decrease the values in
S(Z Z ) one unlt, and the net effect on elements of ¢(Z Zi) N B(ZB,Zi) is

zZero. The lemma follows.

Graphically, we can describe a(Z »Z ) as follows. If Z = y(u) then
a(Z 22, ) is -1 on the edges of the unique path from r to u, and 0 on the other

edges of ZB——that is, S (Z Zi) comprises the entire path from r to u, ‘and

s (Z 22, ) is empty. If Z = t(u, v), we know that (u,v) forms a unique undirected
circuit C with ZB’ and a(Z 32, ) is then +l on the edges of C facing the same
direction as (u,v) on the c1rcu1t i.e., S (Z 1.),, -1 on the edges-faclng

'opp081te (u,v) on the circuit, i.e., s (ZB’zi)’ and 0 on all 6ther edges of ZB'

Examples:
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We remark that if Zi is in ZB (and therefore an edge) this definition is still
consistent with that of Definition 2.4, since then S—(ZB,Zi) ='{Zi} and

+

S (ZB’Zi) = @.

Lemma 3.5: Let Z= (ZB,ZN) be a configuration for the supply-demand model
M(G,r), and Zi and Zj two variables in M. Then Zi and Zj are Z-substitutes if

and only if

)
9.

. + -
) s (ZB’zi) ns (ZB’Zj)
and

- +
ii sZ,
(11) 8 (Z45,2) n S (Z4 J)
That is, the residual forward flow in Zi does not intersect the residual flow
in 2, and vice versa. They are complements if and only if
j - i
‘ + +
. ry Z -
(iii) s (ZB’Zi) ns (ZB’ j) ]

9.

“and

(iv) S (ZB’Zi) ns (ZB’Zj) .
That is, the residual forward flows in Zi and Zj do not intersect. Similarly
for the backward flows, they are independents if and only if
+ - + -
,Z_ S (2 ,Z. = .
W) [87(zgz) 0 872z 0 (8722 0 87(,20] = ¢
Proof: Follows immediately from Lemma 2 and Definition 2.5.

We illustrate with an example:

Zg = {zl,zz,z3,zz‘} and Z = {25,26,27,b,c,d}. Then
B(zg,2,) = B(Zgs25) = ¢(25,2,) = $(25,c) = {22,23}.

For example, increase in flow along any of the edges into node c (Z-2 or ZS)
results in a potential decrease in the flow from the source r to c through the
spanning tree--in this case through the edges 22 and ZB' On the other hand, an
increase of flow along any of the edges out of ¢ (Z7)‘or of the demand at c(Zg)
results in a potential increase in flow along spanning tree path.

B(Zg»2,) = B(Zy,Z0) = B(Z,,2,) = 6(Z,,b) = {2,,2,)

B(Zg2,) = 6(Z,20) = 6(25,d) = {z,)

B(Zph2Zq) = 0(2,2) = (2,)

$(25.2) = B(Z,,b) = B(Zy,0) = B(Z,,d) = B(Zga) = 0.

]
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The S+, S~ and a's* are calculated as follows:

1|5tz | 5T@nz) | 0@z | a2z | @z | o @)

1| (z,) {zi,z3} -1 0 0 0

2 {23} {zl,z3} 0 -1 0 0

31 ¢ {23} 0 0 -1 0

4 | 9 | {zz‘} 0 0 0 -1

5 | {z,} {22,23} 0 -1 -1 +1

6 | 0 {21,23} -1 0 -1 0

7 {22.,23} {21,213} -1 +1 0 0

8 {_zl,zs} )] +1 0 +1 0

9 {22,23} 8 0" +1 +1 0

10 | {z,) ) 0 0 0 +1

11 {z3} 0 0 0 +1 0
*Note that.the a's are only defined'for the basic variables Zl’ 22, Z3, Z4

The determinacies

- 18 -
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Strict Strict

Substitutes Complements Independents
Zy. | 2102602 Zg Zys23s24525:29521 4521,
Zy | ZpZs Z7:29 21929525 26528521421,
Zy | Z3:25524 ZgrZgsZ7; Z1529s24529524,
Z, | %4 252219 R T R
Zg | 2235255260210 | 240270202002 | 2y
Zo | 2102302502652 | ZgsZgsZyy 252240219
Z; | 21226727029 Z9sZ5:2g 23:245210°213
Zg | 2g+29121; 2152352552629 | 25524524,
Zg | 2722822921, ZysZ3s2552¢ 215245210
%10 | %5°%10 2, Z21929123526529528,29521
211 | %8°%29°%11 23225525 SR AL BT

where strict substitutes (complements) are substitutes (complements) which

are not independent. This table also shows the nontransitivity of determinacy.
Although both of the pairs (ZS’Z6) and (26,27) are Z-substitutes (and, in fact,
substitutes in every configuration), Z5 and Z7 are not Z-substitutes. The table
also suggests that in any given configuration, every pair of variables is deter-
minant. This is shown by Proposition 3.6 which implies that every pair of
variables in a given configuration of a supply-demand model have qualitatively

predictable effects--either complements or substitutes.

Proposition3.6: Let Z= (ZB,ZN) be a configuration for the supply-demand model

M and Zi a variable in M. Then every variable of'M is Z-determinant with Zi'

Proof: Choose variables Zjime. We must prove that at least one of the pairs
of states (i) and (ii) or (iii) and (iv) of Lemma 3.5 hold for Zi’zj’ and Z. Suppose
on the contrary that (i) and (iii) are both violated. (The other cases are
symmetric.) Then there must be an edge (ul,vl) in S+(ZB,Zi) N S-(ZN,Zj) and

ot + ] ]
an edge (u2,v2) in S (ZB’zi) ns (ZB,Zj). If (ul’vl) is further away from r
than (u2,v2) on ¢(ZB,Zi), then there are two paths from r to u,--one going up
- ’ . + . .
S (ZB’Zj) and one.g01ng up S (ZB,Lj) o (uz,vz) and then up ¢(ZB,Zi). Similarly,
if_(uz,vz) is further away from r than (ui,vl), then there are two paths from r
~to u,. In elther case we have a cuntradiction, and so such-a aituation cannot

2
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exist. This proves the lemma.

Although we will not show it here, the rgsults of Proposition 3.6 hold
for a much broader class of configurations, namely, the configurations of any
linear model where the underlying matrix is totally unimodﬁlar, (see ref. [TD).

A matrix is totally unimodular if every square submatrix of size m 2 1 has

determinant *1 or 0. This includes more general network models, as well as

certain models involving matching and assignment problems.

Proposition 3.6 has an important corollary. In the economic literature,
the economic correlation between two (domain) variables in a linear function
can be defined as the dot product of their cdlumn vectors in the corresponding
matrix [ 8]. Since the relationship between basic and non-basic variables in
any configuration of a linear model is a linear function, we can talk about the
correlation between non-basic variables in a configuration. If is clear from
the definition that substitutes (complements)Ain a configuration are positively
(negatively) correlated with respeci: to that configuration. In the particular
case of the supply-demand model, the i-th column of the métrix associated with
thé configuration Z = (ZB,ZN) consists of the elements aj(ZB,Zi) for Zj in ZB'

Proposition 3.6 asserts that no two terms in the correlation dot product can

have opposite signs. Corollary 3.7 follows immediately.

Corollary 3.7: Let Z= (ZB,ZN) be a configuration of the supply-demand model,

and Zi and Zj be two variables of M. Then Zi and Zj are Z-substitutes (Z-
complements) if and only if their correlation (with-respect to Z) is non-

negative (non-pasitive).

Now if there were only one configuration, then all variables would be
determinant. Unfortunately, variables are not necessarily determinant between

configurations, as the following example shows.

Zq Zy

r
Z. is a substitute for Z, in the configuration

1 2 a
e
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but is a complement in the configuration

We have, however, the following general result, which concerns "local"

determinancy in networks.

s

Proposition 3.8: Let M = M(G,r) be a supply-demand model. Then phé
following variables are determinant. ' ) R
(1) Variable pairs of the form -
(1) [t(u,v),t(w,v)]: flows to the same node,
(ii) [t(u,v),t(u,w)]: flows from the éame node,
(iii) [y(u),t(u,v)] ~: residuals and flows from same node,

(v) [y ,y(w)] : any two residuals
are substitutes; )

(2) wvariable pairs of the form .
(v) [t(u,v),t(v,w)]: flow in and out from same node,

(vi) [y(v),t(u,v)] : flow in and residual flow out same node,

(vii) [y(v),t{r,u)] : "demands' and “supplies™
are complements.

Proof: The key observation here is that for each variable pair (Zi’zj)
listed in the theorem one of the following cases holds for every configuration
(Zg,2 )¢

() 6(z5,2) = 0(25,2)

(b) B(ZB’Zi) = B(ZB,ZJ.;) ’ H '. . ¢ ) : : LI
(c) ¢(ZB.Zi) = B(ZB'Zj)
@ B(zgz) = 025,2)).

Applying Lemma 3.4 we get in cases (a) and (b) corresponding to (1) above,
that Z, and Zj are substitutes, and in cases (c) and (d) corresponding

to (2) above, that Zi and Zj are complements.

It is interesting to note here that in the "weak'" sense of determihacy, as
in Section II, ¥y variables are determinant to all other variables. Since
they are never basic variables, they are weakly independent of each other.
Further, for y variable Zi’ t variable Z_, and any configuration Z= (ZB,ZN)
with Zj € ZB’ we have S-(ZB,Zi) = S+(ZB,Zj) = @, so that y and t variables

are always weak complements.
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Series-Parallel Decompositions

We now consider two types of decompositions of a network G which allow

us to transfer determinacy in componehts to determinacy in all of G.

Definition 3.9: Let G = G(N;A) be a network and r and s two nodes in G.

Then an s-series decomposition of G is any pair of edge non-empty subnetworks
G' = G(N',A") and G" = G(N",A") of G for which

(S1) A' UA" = A, A'N A" = ¢, i.e. edge disjoint, and

(S2) N' UN" =N, N'n N' = {s}.
An (r,s)-parallel decomposition of G is any pair of edge non-empty subnetworks
' = C(N',A') and G" = G(N",A") uf G for which |

(P1) A U A" =4A, A'"N A" =¢ .

(P?) N' UN" =N, N'n N = {r,s)

(P3) No edge of A points out of s, and at least oneiedge in each

of A' and A" points into s. (Equiyaléntly, G' and'G" do not
form as r-series decomposition of G.) '

Example:

and
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has an (r,sf—parallel'decomposition into

'S s

G' -and G" =

r r
Lemma 3.10: Let G'=G®',A') and G"= (N",A") form an s-series decomposition
of the network G = G(N,A), r a node of G' and T a subset of A. Then T is an
r-tree of G if and only if T A' is an r~tree of G' and T j A" is an s-tree

of G".

Proof: If T is an r-tree of G, and u is a node in G, then there is.a unique
path from r to u. If u is in N' then the path lies entirely in A' and so
_comprises a unique path from r to u in T A'. If u is in N", then the path
must pass through s, and so the final part of the path comprises a unique path
from s to u in T | A". Conversely, if T A' and T | A" are r- and s-trees of
G' and G", respectively, then for any node u in G there exists a unique path
from r to u, which for u € N' is the unique path ffon r tou in T A','and
for u € N" and the unique path from r to s in T A’ followed by the unique

path from s to u in T | A". This proves the lemma.

Proposition3.1l: Let M=M(G,r) be a supply-demand model, u a node in G, and

G' and G" an s-series decomposition of G for which r is a node in G'. Set
M' = M(G,r) and M" = M(G",u). Then for variables Zi and‘zj in M: .

(1) 1If Zi and Zj are in M', then Zi and Zj are substitutes (complements)
in M if and only if they are substitutes (complements) in M'. ,

(2) 1If Zi and Zjlare in M" and both are not y—variables,.then Zi and Zj
are substitutes (complements) in M if and only if they are substitutes (comple-
ments) in M". ‘

(3) if zi and Zj are y-variables inlM", then they are indepen@ent if and
only if they are independent in M" and r = u (and are strict substitutes
otherwise). ‘

(4) ‘If Zi is any variable in M' and Zj is. a t;variable in M", then Zi
and Zj are independent.

(5) Ifr=u, Zi is a y-variable in M', and'Zj is a y-variable in M",

then Zi and Zj are independent.
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(6) If r# u, Zi
then Zi and Zj are substitutes (complements) if and only if Zi and y(u) are

substitutes (complements) in M'.

.is any variable in M', and Zj is a y-variable in M",

- Proof: Let Z = (ZB,ZN) be a configuration of M. Then from Lemma 3.10
we have ’ ‘
(a) If Z, is in M', then
+  t + .
- - ‘Y
S (ZB’Zi) S (ZB n A ’Zi)
(b) If Zi is a t-variable in M", then
BN + :
S (ZB’Zi) = S (ZB N A"’Zi)
s'(zB,zi) = s'(zB na",z):
(c) 1If Zi is a y-variable in M", then
+
7 =
S—(“B’zi) w— » _
S (zB,zi) =8 (zB n A",Zi) Us [zB n aA',y(s)l.

The lemma follows.

If r # s, the component M' of Proposition 3.11 will be called the

lower component of the decomposition, and M" the upper component.

For parallel decompositions we have similar results:

Lemma 3.12: Let G'=G(N',A') and G"=G(N",A") form an (r,s)-parallel
decomposition of the network G = G(N,A), and T a subset of A. Then T is
an r-tree of C if and only if there exists an r-tree T' of ¢' and an
r-tree T" of G" such that T'=T' U T - {(v,s)}, where (v,s) is the unique

‘edge adjacent to r in either T' or T".

Proof: First let T be a tree in G, and by symmetry suppose the unique
edge (v',s) adjacent to s in T is in A'. Then for any u' in N', there
exists a unique path from r to u' in T which lies entirely in A', and for
‘any u" in N"-{s} there exists a unique path from r to u'" in T which lies
entirely in A". Thus T[) A' is an r-tree in G', and for any edga (v",S)
in A" adjacent to r (by definition there must be at least one),

e¢n AU {(v',s)} is an r-tree in G".

Conversely, let T' and T" be r-trees in G' and G", respectively,
and (v",s) the edge in T" adjacent to s. Set T ='T' U T" - {(v",s)}, ‘and
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choose any node u in G, If u is in N' then there is a unique path from r to u
in T' and no path from r to u in T containing any edges of T", and if u is in
- N"-{s}, then there is a unique path from r to u in T"-{(v",s)}, and no path
from r to u in T containing any edges of T'. Thus T is an r-tree of G, and

this completes the lemma.

We call a node or arc interior to a component of an (r,s)-parallel
decomposition if it is neither equal to mor adjaceat to s. The parallel analog

to Proposition 3.11 is:

Proposition3.13: Let M=M(G,r) be a supply-demand model, and let G'=G(N',A')

and G" = G(N",A") comprise an (r,s)-parallel decomposition of G. Set M' =
M(G',f) and M" = M(G",r). Then for variables Zi and Zj in M:
(1) If Zi and Zj are interior to @',.then they are substitutes
(complements) in M if and only if they are substitutes (complements) in M'.
(g) If Zi is interior to M' and Zj is interior to M'", then Zi and Zj
are independent.

(3) 1f Zi

y(s) and Zj is interior to M', then Z; and Z_ are substitutes
(complements) in M if and only if they are substitutes (complements) in M'.
(4) 1f Z.

t(u,s) is in M' and Zj is interior to M', then Z. and Zj
are substltutes (complements) in M if and only if the pairs (Z Z ) and
[y(u) Z ] are both substitutes (complements) in M'.

(5) If Z1 = t(u,s) is in M' and ZJ 1s interior to M", then Zi and Zj
are substitutes (complements) in M if and only if y(s) and Zj are complements
(substitutes) in M'".

(6) If neither Zi nor Zj is interior to either component, then they
are strict substitutes if they are the same type of variable and strict com-

plements it they are difterent types.

Symmetrical statements hold for Zi and Zj in M", and for Zi in M" and Zj

in M'.

Proof: The idea of the proof will be to break each configurationinto its parallel
component edges and thus extend determinacy with respect to these components into
determinacy with respect to the entire configuration. By Lemma 3.11 we know that
Z= (ZB,ZN) is a configuration for M if and oﬁly if ZB==Z£[]Z;-{(V,S)}, where Z' =
(Z"N'r]A'-Z') and z"= (z!% N“[]A"—Zg)-are configurations in M' and M", respec-

B’ .
tively, and (v s) is in ZBn ; Now for Zi'in M', it is easy to verify the following.
(i) If (v,s) is in ZE’ or (v,s) is in Zé and Zi is interior to M', then
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+ +,. .,
S (zB,zi) s (z ,zi)

s'(zB,zi‘) s“(Z',zi);

(ii) if (v,s) is in Zé and z, = y{s), then

+,. _ otrom
S (zN,zi) =8 (zB,zi)

S (ZB,?i) g;

(iii) 4if (v,s) is in Zé and Zi = t{u,s), then

+
S (ZB,Zi)

» s¥ 25,y ()]
§7(2p,2,) = §T12,,y()];

and symmetrically ﬁn:Zj inM". Conclusions (1) and (2) follow immediately, and (6)

follows from Proposition 3.8 Csince B[ZB,t(u,s)] = B(ZB,y(s)]=‘Y(ZB,s) 0

for all configurations Z = (ZB’ZN))' “For (3) to (5), we prove the "if" parts by

contradiction. Suppose Zi and Zj are of the type indicated in (3), (4), or

(5), and are not substitutes (complements). Then there exists a configuration
= (ZB,ZN) of M for which Zi and Zj are not Z substitutes (complements). Let

z', Z“, and (v,s) be defined as above, so that Zj satisfies (i) (or its M"

counterpart). We consider two cases:

Case 1'[(v,s) is inizg]: Now Zi also satisfies (i). For (3) and (4), then,
Zi and Zj not being Z~substitutes (complements) implies that they cannot be
. Z'-substitutes (complements). Condltlon (5) cannot occur, since S (u ,Z ) and
S—(Z Z, ) are contained in A', and S (Z Zj) and S (ZB’Zj) are contained in
A",

Case 2 [(v,s) is in Zé]: Now Zisatisfies (ii) above if it isot type (3), and (iii)
if it is of type (4) or (5). The situation in (3) cannot therefore occur, since
S+(Z 22, ) is contained in A" and S (Z Z .) and 5§~ (Z Z ) are contained in A'.

For (4L Z and ZJ not being Z substltutes (complements) implies that y(u) and’
Zj are not Z-substitutes (complements), and for (5) Zi and Zj not being
Z-substitutes (complements) implies that y(s) and Zj are not Z'"-complements

(substitutes). This completes the "if" parts of (3) to (5).

For the "only if," we take (3), (4), and (5) separately.
(3): Suppose Zi'and Zj are not substitutes (complements) in M'. Then there
exists a configuration Z' = (Z' z' ) of M' for which Z and Z, are not Z'-

substitutes (Z'-complements). Now for any conflguratlon z" = (Z",Zﬁ) of M",
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set Z = (ZB,ZN), where Zg = Zg U ZEF{(V,S)} and (v,s) is the edge in Z;
adjacent to s. Zi and Zj are not Z-substitutes (Z—complements),Aand hence
not substitutes (complements) in M.

(4): 1If Zi and Zj are not substitutes(complements) in M', then by the same
argument as above they are not substitutes (complements) in M. If y(u) and
Zj are not substitutes (complements) in M', then‘there must be a configuration
?' = (Zé,Zﬁ) in M' for which y(u) and Zj are not Z'-substitutes (Z'—comple@ents).
Now let Z" = (Z",Z§) be any configuration for M, and set Z = (ZB,ZN), where

Z, = Zé U Zg#{(v,s)} and (v,s) is the edge in Z! adjacent to s. Now S+(ZB,Zi)=

S [Z'}y(y)]'and so since Zj is not adjacent to 2, then Zi and Z, are not
Z-substitutes (Z-complements) and hence not substitutes (complements).

(5): If Zi and y(s) are not complements (substitutes) in M", then by a
symmetric ﬁrgument to the one abave, Zi and Zi'are not substitutes (complements)

in M.

This completes .the proposition.

The main consequence of the preceding discussion relates to the important

class of series-parallel networks. We state the directed version here.

Definition 3.14: Let G = G(N,A) be a network and r and s two nodes of G.

G is called an (r,s)-series-parallel network if G is comprised of the single

edge (r.,s) or, one of the following holds:
(1) There exists an r-series decomposition of G into networks G' and G'" such
that G' is (r,s)-series-parallel, and G" is (r,u)-series-parallel for some node u in G".
(2) Thereexists au-series decompositionof G, u#r, into lower part G' and upper
part G" such that G' is (r,u)—series—péralléland(T'is (u,s)-series-parallel.
.(3) There exists an (r,s)-parallel decomposition of G into networks G' and

G", both of which are (r,s)-series-parallel.

(1), (2) (3)
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The decomposifion in'(l).will be called an improper series decomposition, and
that of (2).é'2roger ser?es decomposition. ' A

Example:
s
'}
r

is an (r,s)-series-parallel network, but

is not.
Series-parallel networks are a standard in organized flow processes (in fact

the Brookhaven National Laboratory reference energy system, is described

by a flow which is to a large degree series-parallel). The folléwing theorem illus-

‘trates just how organized these systems are.
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Theorem 3.15: Let M = M(G,r) be a supply-demand model for which G is an
(r,s)-series-parallel network. Then the following variable pairs in M are
determinant:

(1) y variables are substitutes;
(2) distinct t variables are
(a) substitutes if they lie in different components of some
parallel decomposition,
(b) complements otherwise;
(3) a particular y and t variable are
(a) substitutes if they lie in different components of a proper
series decomposition with the t variable in the upper part,
(b) complements if they are in different components of a proper
series decomposition with the t variable in the lower part,
(c) complements if they lie in different components of an (r,v)-
parallel decomposition,
(d) complements if they are of the form y(v), t(u,v).
Further,
(4) Any y-variable in one component of an r-series decomposition is
independent of any variable not in that component. .
(5) Any t-variable in a component of an improper series decomposition
is independent of any variable not in that component.
(6) Any y variable interior to one component of an (r,v)-parallel
decomposition is independent of any variable interior to the
other component.
(7) Any t variable interior to one component of a (u,v)-parallel
decomposition is independent of any variable interior to the
other component.
(8) Any t variable interior to the upper component of a u-series
decomposition is independent of any variable in the other component.
(9) A variable t(x,w) in the upper component of a u-series decomposition
for which all edges of G into w lie in that component is independent
of any variable in the lower component. -

All other pairs satisfying (1) to (3) are strict substitutes or strict complements.

Proof: Suppose first that G is comprised of the single edge (r,s). Then the

only distinct variables of M(G,r) afé y(s) and t(r,s). By Proposition 3.8
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these are complements, since B[ZB,t(r,s)] = ¢[ZB;y(s)]=-y(ZB,s)= $ for all
configurations Z= (ZB,ZN)aﬁd they are strict complements. Thus they satisfy (3d) of
the theorem. Otherwise, G must have a decomposition of one of the three types

described in Definition 3.14. We take each type separately.

Case }: Suppose G has an r-series decomposition into components G' énd G"
such fhat G' is (r,s)-series-parallel and G" is (r,u)-series parallel for
some node u in G". Then by induction we may assume that the variables in M'=
M(G',r)andIf“=M(G”,r).satisfy(l) to (9) of the theorem. Let Zi and zi'be variables
in M, and now apply Proposition 3.11, Proposition 3.11 (4) and (5) imply (4) and (5)
of thé theorem. In any other case Zivand Zj are in the same component, say M',
.and Proposition 3.11 (1) to (3) 'insure that they are substitutes, complements, or
independent exactly as they are in M'. But M' satisfies the theorem, and hence

so must M. This completes Case 1. .

Case 2: Suppose G has a properbu~series decomposition into lower part G!
and upper part G" such that G' is (r,u)-series-parallel and G" is (u,s)-series
parallel. Again by induction we may assume that the variables in M' = M(G',r)
a“d-M" = M(G",r) satisfy (15 to (9) of the theorem. Let Zi and Z..I be variables
in M, and apply Proposition 3.11. Proposition 3.11 (3) implies (1) of the
theorem, and 3.11 (4) implies (8) and (9) of the theorem. Any other case
when Zi and Zj are in different components must satisfy‘3.11 (6), that is,

Zi is in M', Zj is a y variable in M", and Zi and Zj are substitutes

(complements) if and only if Z, and y(u) are substitutes (complements) in M',

But then Z, and Zj satisfy (4)ior (5) of the theorem in M 1f and only if Zy

and y(u) satisfy (4) or (5) of the theorem, respectively, in M', and neither pair
can sétisfy (6) to (9) -or (2a), and must satisfy (3b), of the theorem. The
theorem then follows for Zi and Zj.- Finally, if Zi and Zj are in the same
component, then Propésition 3.11 (1) to (3) hold, and, as in Case 1, the theorem

follows for M. This completes Case 2.

Case 3: Suppose G has‘an (r,s)-parallel decomposition into components G'
and G", both of which are (r,s)-series-parallel. Again by induction we may
assume that the variables in M' = M(G',r) and M" = M(G",r) satisfy the conditions
of the theorem. Let Z; and Zj be variables in M', and now apply Proposition 3.13.
Proposition 3.13 (2) implies (6) and (7) of the theorem, and 3.11 (6) implies (2)
and (3) of the theorem whgn neither Zi nor Zj is interior to their components

(if they are both t variables, then they must eventually fall in different
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parallel components). If zZ; and Zj satisfy Proposition3.13(4),thenZi=?t(u,s)

is in M', Zj is interior to M', and Z, and Zj are substitutes (complements) in

M if and only if the pairs (Zi’zj) ani [y(u),Zj] are both substitutes
(complements) in M'. TFor both pairs, (4) and (5) of the theorem are true

in M if and only if they are then in M', and (6) to (9). cannot occur for either
pair in M. So suppose (4) and (5) do not occur. If Zj is a t variable,

then (2a) holds for Zi and Zj in M if and only if it holds for them in M',

and also occurs if and only if (7) occurs for y(u) and Zj in M'. Thus if

Zi and Z, are substitutes in M' they are strict substitutes in M' (since

(9) cannot occur) and.thus are strict substitutes in M. If (2b) holds for

zZ, and Zj in M', thep (3a) must hold in M' for y(u) and Zj. Further

(6) to (8) Fannot occur for y(u) and Zj; so that they are strict substitutes

in M'. Thus Zi and Zj are strict substitutes in M. If Zj is a y variable, then
(3a) to (3d) hold for Zi and Zj in M if and only if they hold for them in

M'. Further, if (3a) holds then (6) cannot occur for y(u) and Zj in M'

so that Zi and Zj are strict substitutes in M. If (3c) holds then y(u) and

Zj must be in different components of an (r,s)-parallel decomposition in M',
and so by (6) y(u) and Zj are independent. Further (6) to (9) cannot hold for
Zi and Zj’ so that Zi and Zj are strict complements. (3b) cannot occur.

The only other cases of Z, and Zj being in the same component are covered

by 3.11 (1) and (3), and igain, as in Cases 1 and 2, the theorem follows

for M. The only other case of Zi and Zj being in different cbmponents is that they
satisfy Proposition 3.13 (5), that is, Zi = t(u,s) is in M', Zj is interior
to M", and Zi and Zj are substitutes (complements) if and only if y(s) and
Zj are complements (substituteg) in‘M". 'Again, Zi and Zj satisfy (4) or

(5) of the theorem in-M if and only if y(u) and Zj satisfy (4) and (5) the
theorem, respectively, in M" and neither pair can satisfy (6) to (9). For
(2) and (3) of the theorem, if Zj is a t variable then Zi and Zj satisfy
(2a) in M and y(u) and Zj must satisfy (3b) in M".and if Zj is a y variable,
then Zi and Zj satisfy (3b) in M and y(u) and Zj satisfy (1) in M". 1In
either case, the theorem follows by induction. This completes Case 3, and

hence the theorem.

The one case when variables are not determinant in a series-parallel network
is when one variable is of the form t(v,w) and the other is y(x), where x is in a

different (u,w)-parallel component from (v,w) and this component in turn is in
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a (z,w)-parallel decomposition with z # u. For example, the (z,w)-series

" parallel network

<
]
c

Z

has y(x) and t(v,w) Z-substitutes in this configuration
AN
NN

Y
\ .

but Z-complements in this configuration
m.
N

Every other case is covered in (1) to (9). The following corollary follows

immediately.

Corollary 3.16: 1In a supply-demand model whose underlying graph is series-

parallel, all pairs of t variables are determinant. A particular y and t
variable are determinant if whenever they are in different paréllel components,

the t variable is interior to its component.

As indicated in the discussion at the end of the last subsection,
Corollary 3.16 implies that all variables in a series-parallel supply-demand

model are determinant in the "weak" sense.
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"In fact, the indeterminacy problems in Theorem 3.15 diséppear if we
modify Definition 3.14 slightly.

Definition 3.16: Lét‘G = (N,A) be a network and r-and s two-nodes -of G,

Then G is called a strong (rLs)—series-pérallel network if G consists of a

single edge, or, inductively, then exist edge disjoint subnetworks Gl,...,Gk

of G for which G is a strong (ri,si)—series—parallel network, i = 1,...,k,

and either

1) r, = si+li i=1,...,k-1, the Gi are otherwise diSJOinF,

and G = U Gi; i.e. the parallel componenté are in series;
i=1
2) r, =T, i=1,...,k and
k -
G = 'Ul Gi UG; i.e., all source nodes are the same;
1=
where G is comprised of some subset of the edges (si,s), i=1,...,k.

A decomposition satisfying (1) will be called a stroﬁg series decomposition

with components Gi’ i=1,...,k, and Gi is said to be above Gj ifi>j. A

decomposition satisfying (2) will be called a strong;pafallel decomposition

with components Gi u éi, when 61 is that portion of G containing the node s

Pictorially, this says that G looks like either, where each Gi may be like (1)
or (2) below. ‘

Tkl
G : /%‘\

(1 : ’ or

The example after Definition 3.14 is also an example of a strong series-
parallel network. Certainly these are series-parallel networks, so that
Theorem 3.15 holds.» Further, separating s from s by an edge enéures that
the only (z,s)-parallel components must have z = r, and so no variables

could satisfy the conditions outlined above for indeterminant pairs in
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the series-parallel model.
In particularAstatgmené (3¢c) of Theorem 3.15 can be amended for strong
series-parallel networks '
l (3c) - ... complements if they lie in different.components of a
(u,v)-parallel decomposition

so that we have the following'corollary to Theorem 3.15:

Theorem 3.17: Let M=M(G,r) be a supply-demand model for which G is a
strong (r,s)-series-parallel network. Then all variable pairs are deter-
minanf. In partic#lar

(1) y variables are substitutes;
(2) dioctinct t variablcslarc

(a)' substitutes if they lie in different components of

: oome strong parallel decomposition,

(b) complements otherwise;
(3) particular y and t variables are

(a) complements if they lie in different components of some

stréng series decomposition with t above Vs |

(b) substitutes otherwise.

Multiple Sources

Up to this poiﬁt we have been considering supply-demand models where
goods are shipped from a single supply point  to the other nodes in the
network. It is often the case that there are several supply points from
which goods can be shipped to satisfy demands, so we extend our definition

accordingly.

Definition3.17: Let G=5G(N!A) be a network and the set SS N denote ‘the set

of supply nodes.” Then the multiple source supply-demand model M(G,S) is

defined by input variables

X = [£(u,v)|(u,v) €Al e R ]R_f‘ , | (3.4)
output variables

Y =4{y(u)lu‘€ N-S} € RY = Igy_s, ‘ (3.5)

and functional relation
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vy = ¥ tuw - J  t(ux) @e€N-s. (3.6)
(x,u) €A (u,x) €A

Here the nodes in S produce the good, which is then shipped through the
arcs of the network, leaving residual amount y(u) at each node u in N-S.

Configurations are defined according to Definition 2.2. To -describe

configurations in multiple source models, we first need to prove a lemma

about these configurations.

Lemma 3.18: Let M(G,S) be a multiple-source supply~demand model, and
zZ = (ZB,ZN) a configuration for M. Then for every set of non-negative
values y € SY and each v € S and (tB,O)_e SX satisfying (3.6) for u € N-S,
we have that the net flow from source nodes is non-negative; that is, |

Z t(x,v) - z t(v,x) £ 0.
(X)V)GA (V,X)GA

Proof: First note that ZB contains no directed path between any nodes of

S, since then, for any set of values of Y and Z_ satisfying (3.6)

u € N-S, we can add a positive value € to each gf the arcs of this path
producing a second, and hence non-unique set of values for ZB satisfying
these equations. Now let y and tB be as specified by the lemma, and
suppose fqr some v € S,

dv) = X t(x,v) - z t(v,x) > O. (3.7)

(x,v) €A (v,x)€A :

Construct set W of nodes inductively as follows: v is in W, and if x is
in W and t(y,x) > 0, then y is in W. Suppose first that some s € s-{v}
is in W. Then the construction of W insures that there is a directed path
from s to v consisting of arca of Zé, a contra&iction. On the other hand,.
suppose W 1 S = {v}. Then since every edge going into W has t(u,v) = 0,

we have, by adding the Eq. (3.6) for u € W-{v} and (3.7),

av) + ) oy = ¥ t(x,u) - ) t(u,x)
u€eW-{v} u€w uew
(x,u)€eA (u,x) €A

- - z t(u,x)'
uew U
x€W

(u,x)eA’

so that z y(u) < 0, a contradiction. Thus (3.7) cannot occur, and
ueW-{v}

- 35 -



the lemma is proved.
There is a simple transformation which .reduces the multiple—;ource model

to the standard single—source4model while preserving determinant and non-

determinant pairs. Let M = M(G,S) be a multiple—soﬁrce supply-demand model.

Define graph G' = G(N',A') by adding to N the extra '"super" supply node r and to

E the arcs (r,s), where s € S. The single-source supply—&emand model

'M' = M(G',r) then has input variables B
A

X' =X Uxy = e v ] (v eA}U{t'(r,s)[sesler, = R, (3.8)
output variables
Y' = YI:I_SUYé= {y'(w)|uenN-s}U {y'(u)lueS}eRY; =1:R+N, (3.9)
and functional relation
): t'(AX,U)— ' Z t' (u.x) o u € N-S
"y (u) = Geowea (u,x)€h _ (3.10)
t'(r,u)+ ) t'(x,u)- ) t'(u,x) u€S. "
(x,u)€A (u,x) €A

The configurations of M and M' are related as follows:

Proposition3.19: Let M=M(G,S) be a multiple-source supply-demand model and

M' = M(G',r) the corresponding single-source supply-demand model. Then Z =
(ZB’ZN) is a configuration for M if and only if Zé ='(Zé,Z&) is a nnnfigura—'
tion for M', when
't = '
Zy ZB_U Xg
v — '
ZN ZN‘U YS |
(the variables in zB and ZN are taken to be primed here). Further, every confi-

guration of M' is of this form.

Proof: Lgt Z=:(ZB,Zﬁ) be a partition'of‘the variables in M, énd Z'= (Zﬁ,Zﬁ)“
the corresponding partitisn in' M' as defined by the theorem. First suppose |
that Z is a configuration. Let y'e€ Ry+ be a set of values for Y'. We know
that y&—S i3 also a set of values fur Y in RY’ 56 that there is a unique set

of values of Z; satisfying (3.6), ueN-S. Define

t(u,v) . Cif t(u,v) € ZB
t'"(u,v) = {y'(v) - z t(x,v) + y t(v,x), ifu=r1r
} (x,v)&A . (v,x)€A -

0 ,. otherwise .

- 36 -



Then t' € Ryr» since by Lemma 3.18

- Yt + ) tv,x) 20
(x,v)€eA (v,x)€eA
for all v € S. Further, t' satisfies (3.10), u € N, and these are the

only values Zé can have which satisfy these equations.

Conversely, if (zé,z&) is a configuration for M', and y € RY is a set
of values for Y, then if we define

fy(v) v € N-S

y'(v) = '
0 v €8S,

there is a unique set of values t'(u,v) of Z! which satisfies (3.10),

B
u € N. It we let t be the values of t' restricted to A, then t € RX’ y and
t satisfy (3.6), u € N-S, and these are the only values Z, can have which
satisfy these equations.

Finaliy, let (ZE,Z&) be any configuration for M', and consider (ZB,ZN)
to be defined

+ 7" - x'
Zg + 25 = Xg

ZN = ZN - (XS U YS).

Then by the converse argument above, (ZB,ZN) is a configuration of M, and

this completes the proposition.,

Determinant pairs in multiple-source models can now be found by con-

sidering the corresponding single-source model and applying Proposition 3.19.

Corollary 3.20: Let M=;M(G,S) be a multiple-source supply~demand model,
and M' = M(G',r) the corresponding single-source model. Then two variables
are complements (substitutes, independents) in M if and only if the corres-

ponding variables are substitutes (complements, independents) in M'.

Another nsefnl piece of information can be gained from this transformation.
Suppose we wish to treat the supplies at each node u € S as variables in

the model by adding equations

s(u) = z t(u,x) - Z t(x,u), u € S. (3.11)
(u,x)€A (x,u) €A
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Then the variable s(u) in M corresponds precisely to the variable t(r,u) in
M'. With this correspondence, Corollary 3.20 extends easily to single- or

multiple-source supply-demand models with supply variables.

The Transportation Network

To finish the section, we consider a special class of multiple source

models, namely, those whose only edges join supply and demand nodes.

Detinition 3.21: A transportation model is any»multiple—source supply-

demand model M = M(G,S), when G = G(N,A) has the property that every arc
in A is of the form (u,v), u € S, v € N-S.

Corollary 3.20 and the succeeding discussion allow us to give a complete

description of determinacy - in transportation models. -

Theorem: Let M?=M(G,S) be a transportation model. .Then the determinacy
of variables in M can be described as follows: ‘
I. s-variables arc independent;
II. Variables y(u) and y(v) are
(i) substitutes if u and v are adjacent to the same node,
(ii) 1independent otherwise;
1Il. variables s(u) and :y(v) are
(i) complements if:(u,v) is an arc,
(ii) independent otherwise;
IV. variables s(u) and t(w,z) are
(i) complements if u = w,
(ii) substitutes if u # w and (u.z) is an are,
(iii) independent otherwise; ' ‘
V. wvariables y(v) and t(w,z) are
(i) complements if v = z,
(ii) substitutes if v # z and (w,v) is an arc,
(iii) complements if v # z and v and z are adjacent to
‘ a common node distinct Lrom w,'
(iv) indeterminant if both (ii) and (iii) hold,

(v) independent otherwise;
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VI. .Variables t(u,v) and t(w,z) are
(i) substitutes if u =w or v = 2,
(ii) complements if n # w, v # z, and (u,z) or (w,v)
is an arc,
(iii) substitutes if u # w, v # z, and v and 2z are
adjacent to a node distinct from u and w,
(iv) - indeterminant if both (ii) and (iii) hold,

(v) independent otherwise.

Proof: Tramsform M into the corresponding single-source model M= M(G',x)
as in Proposition 3.19. Now we can list the eleven configurations in
which any of the conditions (i) to (iv) of Lemma 3.5 fails, as they appear

in the theorem v

u v ' o
[y(w),y(v)]: ’ [s(u),y(r)]
u
Ii(s) : I1Ti(e)| -
r

[s(u),t(w,2z)]: \>
Ivi(e) VIIIV
[y(v),t(w,2)]: v=z
w v
Vi(c) . | Vii(s) Viii(e)

ClE(u,v) st(w,2) ]y v=z v : 7 Y

z .
u A\ W
u=w u

VIi(s) VIii(c) VIiii(s)

Any of these subnetworks can be cxtended to a configuration Z for M'. In
the cases denoted by S the corresponding pairs are strict Z-substitutes, and
in cases denoted by C they are strict Z-complements. In every other case,
the variables must be independent, and in the case where either V(ii) and
V(4£4i) or VI(ii) and VI(iii) both held, the variables must be indeterminant.

This proves the theorem.



‘o

[}

Note that the only indeterminant pairs are [y(v),t(w,2)] or
[t(u,v),t(w,2z)] in the following configuration: ‘

v 2

Cwem = =

I¥. CONCLUSION

The definition of determinacy which we have developed is the same in
spirit as that of Greemnberg, namely one which correlates variables by measuring.
their mutual affect on other variables under certain minimal operating
conditions (configurations). For a particular configuration of a
linear model, the definitions match exactly. We have inmposed
further restrictions on the allowable configurations with the aim of
estéblishing a realistic, ‘and at the same time a more easily satisfiable,
measure of correlatior between variables in a large-scale model. For our
purposes, the definition has served to uncover determinacy in network models,

specifically those relating to supply-demand or series-parallel networks.

The concept of configuration, however, will clearly be dependent on the
class of models being investigated. A configuration could be taken
to mean for instance: optimal solutions to a linear program, parito
optimal solutions to a multi-objective program, or basic feasible solutions
to a set of linear inequalities. The resulting determinacy can highlight
different perspectives in relationships between the variables in a model.
Furthermore, the definition of determinacy itself is subject to modification.
Decterminacy, as it now stands, takes into account only the mutual affect .
of a pair of variables. Studying determinacy in terms of the effect of
another variable on this pair produces an entirely different viewpoint for
variable felationships. One might, in fact, define determinacy as a hybrid of X
these types of relationships. Tt is also possible to consider a definition of
- determinacy which is more continuous, that is, which measures tﬁe degree of

a relationship rather than the substitute-dependent-complement trichotomy.
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A concept such as determinacy, however, is best developed in practice. It will
be interesting to see what measure of determinacy emerges as the concept is put to
work on models used for policy analysis and decision making. To this end, we
have given as general a framework as possible for defining determinacy, since
the more ways one has of.looking at correlation and relationships in'models,
the more insight one can gain into their struéture,imbedded biases and

operating characteristics.
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