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ABSTRACT. :.:: 

- . . . The concept of determinacy measures-..the consistency. ,of  i n t e r -  

a c t i o n  between. the  opera t ing  v a r i a b l e s  o r  p q r b e t e r s  of a l a r g e  

s c a l e  model. Determinacy i s  f i r s t  def ined . . in a genera l  "input-output" 

hodel'; and is  r e l a t e d  t o  s i m i l a r  concepts i n  economics and l i n e a r  

p rograming .  . I t  i s  then app l i ed  t o  a p a r t i c u l a r  network flow model. 

Spec ia l  techniques a r e  then developed t o  d e t e c t  determinacy i n  t h i s  

model and thes,e techniques  a r e  appl ied  t o  two s p e c i a l  c l a s s e s  of 

networks t o  uncover the  h igh degree of determinacy i n  models of 

t h e s e  c l a s s e s .  



I. INTRODUCTION 

The motivation for this research came out of a series of technical 
. . 

memoranda by Harvey Greenberg, f4easuring Complementarity and Qualitative. 

Determinacv in btricial Form, [ 1 1, on the subject of model organization, written 

for the Department of Energy. His efforts have focused on quantifying the 

interrelationships between variables of a well-defined model. Analysts 

today, utilizing the speed and storage capabilities of modern computers, are 

able to develop models with a high degree of realism and detail. By the time such 

a complex model-has been completed, however--along with the' necessary calibra- 

tion, special case computations, and corrective factors--the basic relations 

between variables have often been obscured. One of the present methods of 

recovering the relations is through sensitivity analysis, whlch for these 

models amounts to a "black box" statistical approach. An alternative 

justification is desirable, particularly for those with a skeptical eye for 

statistical or external techniques, and it is to this end that the techniques 

developed in this paper are addressed. 

The classically stated criterion apropos the question of the relation- 

ships of variables in a model is: "All other things being fixed, what is 

the effect of a change in factor X (a variable, a parameter, or perhaps even a 

computation) on factor Y?" Many authors make no further clarification on 

this "definition," often with disquieting results; the fact is that in most 

models it is impossible to change factor X without changing a sizable number 

of other factors (in addition to Y). At the other extreme, the criterion, 

"Under all circumstances, what is the effect of a change in X on Y?" is too 

broad; rarely can any consistent answer'be made to this question. So the 

problem remains to formulate a definition of relationships between variables 

which is not so broad as to be meaningless and not so narrow as to be vacuous. 

A reasonable and workable balance is drawn in this paper in the concept 

of "output realizable configurations." This is a slight modification of 

Greenberg's concept of configuration, made to allow meaningful relations among 

a sufficiently large class of variables in a model. It is derived directly 

from the idea .of a "feasible basis" in linear programming, and in Section 111 

this is the precise form in which it is applied. The criterion here is: 

"If a certain maximal number of factors are fixed, what is the effect 0f.a 

change in factor X on factor Y?" Implicit in this formulation is the require- 

ment that the fixed factors allow the model to work "realistically," that is, 



X, Y ,  and t h e  v a r i a b l e  f a c t o r s  i n t e r a c t  w i t h i n  s p e c i f i e d  o p e r a t i o n a l  l i m i t s .  

Now we do no t  have a  two-factor trade-off  bu t  a  many-factor(a1though 

min ima1) :a l t e ra t ion  i n  t h e  model performance. We can t h e r e f o r e  no longer  
. . 

. . ' i speak  of . the  i s o l a t e d  e f f e c t  of f a c t o r  X on f a c t o r  Y b u t  r a t h e r  t h e  e f f e c t  

of " s u b s t i t u t i n g  X i n t o  a  conf igurat ion"  on t h e  o t h e r  var iables-- including Y-- 

of t h e  conf igura t ion .  I n  l i n e a r  programming terminology, t h i s  o p e r a t i o n  is  

known: a s  a  "pivot .  I '  

- :.:.. '. 
We a r e  now a b l e  t o  d e f i n e  the  concept of determinacy i n  models, extending 

t h e  i d e a s  of Greenberg, and t h e  e a r l i e r  i d e a s  of Lady 8 2 1. The ques t ion  

asked he re  is: "To what e x t e n t  can two f a c t o r s  X and X2 be s u b s t i t u t e d  i n t o  1 
t h e  va r ious  conf igura t ions ,  i n  t h a t  they 'have simi'lar e f f e c t s  on each ,o ther  o r  

on t h e  o t h e r  f a c t o r s  'of ' the model?" . I t  is  h e r e  t h a t  we r e s o r t  t o  t h e  . 

s i m p l i f i c a t i o n  used i n  economic theory o t  " q u a l i t a t i v e "  e f f e c t .  This has  

been t h e  s u b j e c t  of many papers--[3] - [61, t o  c i t e  a  few. To 

assess t h e  . " q u a l i t a t i v e  e f f e c t "  o f ,  say ,  a  s u b s t i t u t i o n  on a  s e t  of v a r i a b l e s ,  

we ignore  the  magnitude of t h e  change (which is o f t e n  s u b j e c t  t o  c a l i b r a t i o n  

and judgment e r r o r s  anyway), and consider  only  the  s i g n  of t h e  change, i . e . ,  

we a r e  i n t e r e s t e d  only  i n  whether a f f e c t e d  v a r i a b l e s  i n c r e a s e ,  dec rease ,  o r  

remain t h e  same i n  response t o  a  s p e c i f i e d  change i n  model opera t ion .  With 

t h i s  f i n a l  s i m p l i f i c a t i o n ,  i t  becomes p o s s i b l e  t o  s t a t e  a  workable ' 

d e f i n i t i o n  of determinancy--that i s ,  two f a c t o r s  a r e  considered determinant 

i f  t h e i r  q u a l i t a t i v e  e f f e c t s  on any conf igura t ion  a r e  e i t h e r  i d e n t i c a l  

( s u b s t i t u t e s )  o r  oppos i t e  (complements). This  means t h a t  one can speak of 

c e r t a i n  f a c t o r s  a s  being "cooperative" o r  "competi t ive" according t o  t h e i r  

e f f e c t  on t h e  opera t ion  of t h e  model. 

' The second p o r t i o n  of t h e  paper a p p l i e s  t h e  d e f i n i t i o n s  developed t o  an' 

important  type  of  model, c a l l e d  t h e  supply-demand model. Genera l ly ,  t h i s  

model can be descr ibed a s  moving goods ( informat ion,  events.,  e t c . )  from 

s u p p l y - p o i n t s  ( sources ,  i n i t i a t i o n  p o i n t s ,  e t c . )  t o  demand p o i n t s  ( s i n k s ,  . 

tc.rminnrion p o i n m j  c ~ c . ) ~  In these  senses ,  i t  u n d e r l i e s  nea r ly  a l l  

o r g a n i z a t i o n  and management processes ,  and thus  is  a  n a t u r a l  and c r i t i c a l  

p l a c e  t o  begin  determinacy s t u d i e s .  F u r t h e r ,  s i n c e  we a r e  d e a l i n g  wi th  t h e  

model i n  a  q u a l i t a t i v e  fash ion ,  we can work wi th  t h e  s t r u c t u r e  of t h e  network 

i t s e l f ,  r a t h e r  than t h e  p r e c i s e  amount o r  n a t u r e  of t h e  e n t i t i e s  t r a v e r s i n g  

t h e  network. Tools and techniques  ' a re  developed which enable  a n a l y s t s  t o  

uncover s u b s t a n t i a l  numbers of determinant p a i r s  of v a r i a b l e s  i n  a  network, 



and these tools are applied in the special cases of "transportation" and 

"series-parallel" networks to give a complete description of determinant 

pairs. The strong series-parallel networks are, in addition, a wide class 

of networks for which all pairs of variables are determinant, indicating 

the high degree of organization these networks possess. 

Determinacy and its application to networks, then, may uncover new 

clues to organizational behavior and management of large-scale systems or 

models. It can be used in constructing well-formulated models as well as 

evaluating determinancy in existing ones. Beyond this, though, network deter- 

minancy can provide a measure of organization in systems with interrelated 

factors, the degree of organization being a factor of the amount of deter- 

minancy in the system. Thus, it transcends specific input-output models and 

becomes important to more general descriptions and scenarios, and we hope 

may be useful in policy decisions and general organization outlook. 

11. INPUT-OUTPUT MODELS AND QUALITATIVE DETERMINACY 

In order to make a precise and general study of qualitative determinacy 

it is necessary first to define the type of model with which we are dealing. 

Definition2.1: An input-output model M=M(RX,%,f) consists of a real 

vector X = (XI, ...., X ) of inputs chosen from an input domain %, and a real n 
vector Y = (Y ..., Y ) of outputs chosen from an output domah which are 

1 ' m 
related by the functional equation 

Ry 

M is called a differentiable model if,f has continuous first-order partial 

derivatives. For a working model, X may include parameters, intermediate 

variables, and other factors as well as input, and Y may represent inter- 

mediate processes or terminal states in addition to the outputs. Note that 

it may not be true--and usually it is not--that f(%) is contained 

in %. This is one of the interesting properties of the model. In 

a particular energy system, for example, l$ might represent the set of 

available resources, the transportation and conversion infrastructure, and 

the allocation decision rules; f then translates these into final energy 

services. These services, however, may not satisfy specific energy service 

demands if (s) 5 % I .  We do assume, for the sake of subsequent definitions, 

that f (RX) contains Ry, i.e, that any set of demands can be met by the 

allocation of available i e suurces .  This may necessitate a restriction of 



t h e  demand space,  and t h e  reader  should assume f o r  t h e  sake of t h e  d e f i n i t i o n  

t h a t  any stated.,demand s e t  % is  a c t u a l l y  . . r e s t r i c t e d  t o  Ity n f  (s) . We make 

t h e  f u r t h e r .  t e c h n i c a l  assumption t h a t .  t h e .  func t ion  f  is. def ined (and d i f f  eren- 

t i a b l e .  when appropr ia te )  on an open neighborhood c o n t a i n i n g  RX. 

We now g ive  t h r e e  examples of input-output models f o r  i l l u s t r a t i o n  and 

f o r  l a t e r  use .  

Example 2.1: A l i n e a r  input-output model-  This  i s  t h e  b a s i c  model s t r u c t u r e  of 

i n t e r e s t  i n  t h i s  paper.  It models any a c t i v i t y  where each output  i s  a  l i n e a r  

f u n c t i o n  of t h e  i n p u t s .  Thus i f  X e = IRn c o n s i s t s  of n  r e a l  i n p u t  f a c t o r s  and 
m Y e % = ,R c o n s i s t s  of m r e a l  output  f a c t o r s ,  then X and Y are r e l a t e d  by t h e  

f u n c t i o n a l  equat ion 

where A . is 'an in x n mat r ix .  Th i s  is c l e a r l y  a l s o  a  ' d i f f e r e n t i a b l e  model wi th '  t h e  

p a r t i a l  d e r i v a t i v e s  ' a Y i / a X  equal  t o  a  I t  w i l l  a l s o  fo l low t h a t  examples 
j ij ' 

2.2 and 2 .3  below a r e  a l s o  d i f f e r e n t i a b l e .  

Example2.2: A r e a l  a c t i v i t y  l i n e a r  input-output m o d e l - H e r e , i n  a d d i t i o n  t o  
. . 

t h e  l i n e a r  p roper ty  i n d i c a t e d  i n  Example 2.1 we r e q u i r e  t h a t  a l l  inpu t  and output  
. ,  

c o n s i s t  of r e a l  a c t i v i t y - - t h a t  is ,  t h e  inpu t  and output  a r e  non-negative. Thus 

the ;£unc t iona l  Eq. .(2.2) i s  a l s o  t'. e  t?qu.?tion.. r-o.-: t h i s  model, but  now 
. . . . . . 

= I R ~  {X E 2 0, i = 1 ,... + , n l  
and : ..' . . ' 

't ; Jp + ' 
A s p e c i a l  c a s e  of t h i s  model, c a l l e d  the  supply-demand model, i s  s tud ied  i n  

Sec t ion  111. The reader  is  encouraged t o  r e f e r  t o  t h i s  model f o r  i l l u s t r a t i o n  
,. . .. . 

of t h e  concepts i n  t h i s  s e c t i o n .  . 

. Example 2.3: A f ixed-demand model - We can make .a f u r t h e r '  r e s t r i c t i o n  .on, . 

Example 2 . 2  by choosing $ t o  b e  a  s i n g l e  p o i n t ,  %. = {b = (b l , .  '. ,b,) 1 (with . 

n RX = lR+ a s  above). Th i s  corresponds t o  t h e  s t andard  l i n e a r  programming model, 

f o r  now t h e  s e t  of va lues  of X which r e a l i z e  the  input-output model a r e  p r e c i s e l y  

those  which s , a t i s f y  t h e  l i n e a r  programming c o n s t r a i n t s  

. A x = b  , 

.x. > - 0 . .- 
Not ice  t h a t  no fur the-r  . c r i t e r i a  a r e  imposed o t h e r  than boundedness of t h e  s o l u t i o n .  

Example 2.4': A l i n e a r  programming model- We presen t  t h i s  model because i t  

i l l u s t r a r e a  t h e  f l e x i b i l i t y  of usaze f o r  t h e  i n p u t  and output  v e c t o r s .  Here we 
. . 



n  
assume a  r e a l  f  ixed-demand submodel (Ax = b ,  % = R+, Ry = {b) , b  E r y )  , b u t  now we 

a l t e r  t h e  " inputs ,"  o r  d e c i s i o n  parameters (X), s o  a s  t o  optimize some s tandard 

(c.X) of performance f o r  t h e  system. ( I t  might be,  f o r  example, t h a t  c.X mini- 

mizes system c o s t s  o r  maximizes t h e  v a l u e  t o  s o c i e t y  of t h e  energy system.) Th i s  

i s  t h e  c l a s s i c a l  l i n e a r  programming s e n s i t i v i t y  a n a l y s i s  model, where now i n p u t s  

correspond t o  demands b- a s  we l l  a s  t h e  op t imiza t ion  measure parameter c ;  ou tpu t s  

correspond t o  t h e  optimal opera t ing  s t a t e  a s  w e l l  a s  t h e  opt imal  performance 

measure. S p e c i f i c a l l y ,  t h e  i n p u t s  X = (b, c )  E IR; x IRn c o n s i s t  of  t h e  vector 

b  of demands and the  m-vector c  r ep resen t ing  t h e  o b j e c t i v e  func t ion .  The output  
n  

Y = (x*,d) € R+ x IR c o n s i s t s  of t h e  optimal s t a t e  x* and i t s  optiinal o b j e c t i v e  

func t ion  va lue  d.  The f u n c t i o n a l  equat ion 

f ( b , c )  = (x*,d) 

is def ined by 

d  = c x *  = m a x ( c x I ~ x = b ,  x  2 01. 

The func t ion  f  i n  t h i s  example is  thus ,  loose ly  speaking,  a n  i n v e r s e  of t h e  

func t ion  used i n  t h e  previous  t h r e e  examples. Note t h a t  an  inpu t  X = ( b , c ) ,  i n  

o rde r  t o  be a  f a c t o r  i n  t h e  f u n c t i o n a l  equat ion,  must ,have t h e  reg ion  

A x = b ,  x 1 O  (2.3) 

f e a s i b l e  and t h e  f u n c t i o n a l  cx bounded over (2.3). The formulat ion given above 

desc r ibes  the  most genera l  s e n s i t i v i t y  model. I f  one wishes t o  t e s t  s e n s i t i v i t y  

of s p e c i f i c  c o s t s  o r  demands, one can simply r e s t r i c t  RX t o  inc1u.de j u s t  those  

parameters,  l e t t i n g  t h e  o t h e r  elements be  cons tan t s .  It i s  important  t o  no te  t h a t  

t h i s  model is not d i f f e r e n t i a b l e ,  because jumps may occur for .  smal l  changes i n  

o p e r a t i o n a l  parameters.  

Examples 2 . l t o  2.4 a r e  i l l u s t r a t e d  i n  Fig .  1. We now'def ine  the  concept 

of conf igura t ion  ou t l ined  i n  t h e  In t roduc t ion .  

D e f i n i t i o n  2 .2 :  An ou tpu t - rea l i zab le  conf igura t ion ,  o r  j u s t  

conf igura t ion  f o r  a  model M = I.f(X,Y;f) i s  a  p a r t i t i o n  (X B,%) of t h e  

v a r i a b l e s  of X s o  t h a t  f o r  any choice  y  e % f o r  Y t h e r e  e x i s t s  a  unique 

choice  x  f o r  X so  t h a t  (xB,O) € RX and y  = f ( x  ,O) , t h a t  is ,  
B B B 

t h e  func t ion  of f  (X = f(X ,O) i s  i n v e r t i b l e  on the  domain subse t  
-1 

B B B 

% n f, = {xB! (xB,O) f RX, f  (xR) € % I .  We w i l l  i d e n t i f y  t h e  conf igura t ion  
B 

by Z = (Z Z ) ,  where Z = X and ZN = 5 U Y .  
B' N B B 

Thus Z corresponds t o  a  maximal s e t  of a l lowable  "fixed" v a r i a b l e s .  S p e c i f i c a l l y ,  
N 

a n y . d e s i r e d  opera t ion  of t h e  model--as measured by ou tpu t  performance--can be  

obta ined by t h e  minimal s e t  Z of opera t ing  inpu t  v a r i a b l e s .  It w i l l  be assumed R 



Figure la. Example 2.1 illustrated. , 

. . 

Figure lb. Example 2.2 illustrated. 



(set of feasible X) 

Figure lc. Example 2.3 illustrated. 

d = cx* 

Figure Id. Example 2.4 illustrated. 



throughout t h e  paper t h a t  every  model has  a t  l e a s t  one conf igura t ion .  

It is  a simple mat te r  t o  c h a r a c t e r i z e  t h e  c o n f i g u r a t i o n s i i n  l i n e a r ,  r e a l  

a c t i v i t y  l i n e a r ,  and f  ixed-demand models (Examples 2.1 to 2.3).  For t h e  l i n e a r  ' 

model we f i n d  t h a t  ( Z  Z ) i s  a conf igura t ion  i f  and only  i f  f o r  every choice of B Y  N 
v a l u e s  f o r  Y t h e r e  e x i s t s  a unique va lue  of X f o r  which 

B 

where A i s  the  submatrix of A c o n s i s t i n g  of the.columns of A corresponding t o  . B 53 
Thus t h e  conf igura t ions  correspond t o  t h e  s e t s  of m X v a r i a b l e s  whose columns i n  

A a r e  l i n e a r l y  independent. For t h e  r e a l  a c t i v i t y  l i n e a r  model we i n s i s t  t h a t  f o r  

every  choice  of non-negative va lues  f o r  Y t h e r e  e x i s t s  a unique non-negative v a l u e  

of 53 s a t i s f y i n g  (2 .4) .  Hence, i n  a d d i t i o n  t o  so lv ing  (2.4) uniquely ,  t h e  va lue  

XR = 
must be non-negative f o r  each non-negative Y.  The conf igura t ions ,  then,  

correspond t o  the  s e t s  of m X v a r i a b l e s  f o r  which the  corresponding mat r ix  of 

columns has  a non-negative i n v e r s e  (known a s  a s t r o n g l y  monotone submatrix).  For 

fixed-demand models we need only  t h a t  ABXB = b can b e  s a t i s f i e d  by a 11ni.que choice  
n 

of XB € lR+. Thus t h e  conf igura t ions  correspond t o  those  s e t s ,  of v a r i a b l e s  X f o r  
B 

which $ i s  i n v e r t i b l e  and s l b .  i s  non-negative. These a r e  p r e c i s e l y  t h e  f e a s i b l e  

bases  of a l i n e a r  program, and t h e  corresponding va lues  of X = (%,XN) comprise 

t h e  b a s i c  f e a s i b l e  s o l u t i o n s  f o r  the  system 

Ax = b 

x l 0. 

Configurat , ions are t h e  c e n t r a l  cons t ruc t  used t o  observe v a r i a b l e  r e l a t i o n -  

s h i p s .  I n  p a r t i c u l a r ,  we w i l l  be s tudying t h e  e f f e c t  of br inging an i n o p e r a t i v e  

(non-basic) v a r i a b l e  i n t o  a conf igura t ion .  For t h i s  e f f e c t  t o  be we l l  defined,we 

need t o  make a t e c h n i c a l  assumption on t h e  dodel .  

D e f i n i t i o n  2.3: A model M = M ( R X , % , f )  i s  c a l l e d  non-degenerate i f ,  f o r  every 

c o n f i g u r a t i o n  Z = (ZB,ZN), t h e r e  i s  a n  6 > 0 s o  t h a t  f o r  each s e t  of valuea  

y e % f o r  Y and each s e t  of va lues  x f o r  2$ with  llx 1 1  < E ( t h e  s tandard 
N N 

norm), t h e r e  is  a unique s e t  of va lues  g(xN,y) f o r  XB s o  t h a t  

Th i s  i s  a s t rengthened form of D e f i n i t i o n  2 .2  i n  t h a t  we i n s i s t  t h a t  t h e  

f u n c t i o n  f (  %,%), a s  a f u n c t i o n  of X is i n v e r t i b l e  f o r  X i n  a neighborhood B ' N 
of zero ,  r a t h e r  than simply X = 0. Note t h a t  t h e  d e f i n i t i o n  of non-degeneracy N 
does not .depend on t h e  inpu t  domain RX. It  merely avoids  "kinks" o r  jumps i n  f  



about t h e  va lues  X = 0 ,  thus  a l lowing u s  t o  measure i n  a well-defined way t h e  . . 
N 

e f f e c t  of br inging a non-basic v a r i a b l e  i n t o  opera t ion  i n  a conf igura t ion .  

Any l i n e a r  model is non-degenerate, and i n  a d i f f e r e n t i a b l e  model one can show 
' .' 

5 .  

t h a t  a s u f f i c i e n t  cond i t ion  fo rnon-degeneracy i s  t h a t  t h e  f u n c t i o n  f B  def ined 

i n  D e f i n i t i o n  2 .2  has  i ts  mat r ix  of . p a r t i a l  d e r i v a t i v e s  (with r e s p e c t  t o  Xg) 
both  square  and non-singular. Most o t h e r  models can be  made non-degenerate by 

pe r tu rb ing  f  , s, o r  .% s l ight ly--a  reasonable  t a s k  i n  view of t h e  e s t i m a t e s  

u s u a l l y  b u i l t  i n t o  t h e  model. 

It is  easy t o  s e e  t h a t  f o r  a p a r t i c u l a r  conf igura t ion  of a non-degenerate 

model, t h e  e f f e c t  of a (smal l )  i n c r e a s e  i n  any of t h e  non-basic v a r i a b l e s  

( including t h e  y v a r i a b l e s )  on t h e  b a s i c  v a r i a b l e s  can be determined e x a c t l y  

through t h e  func t ion  g of D e f i n i t i o n  2 . 3 .  We a r e  concerned s p e c i f i c a l l y  wi th  

t h e  r a t e  of change of one v a r i a b l e  wi th  r e s p e c t  t o  another .  For t h i s  type  of 

measure i t  i s  s imples t  t o  assume t h e  model t o  be  d i f f e r e n t i a b l e ,  a l though a 

more e l a b o r a t e  d e f i n i t i o n  could be  s t a t e d  which covers t h e  genera l  non-degenerate 

case .  

Def in i t ion  2.4:  Let  M be  a non-degenerate d i f f e r e n t i a b l e  model, Z = (Z Z ) a 
B Y  N 

conf igura t ion  of M,  Z:in Z and y E % a s e t  of va lues  f o r  Y.  Then t h e  span 
1 N ' 

of Z .  wi th  r e s p e c t  t o  Z and y is  denoted 
1 

[where t h e  r i g h t  hand s i d e  is  t h e  v e c t o r  of p a r t i a l  de r iva t ' i ves  of g wi th  

r e s p e c t  t o  Z evaluated a t  (Z ,Y) = (0,y) 1, and t h e  e f f e c t  of Z .  on any v a r i a b l e  
i N 1 

Z .  i n  Z i s  denoted by a.(Z,Zi,y) = t h e  component of a ( z , Z . , ~ )  corresponding t o  
J B J 1. 

Z . For Zi  i n  Z we s e t  a.(Z,,Zi,y) equal  t o  0 f o r  i # j and a i (Z,z i ,y)  = -1. 
j B J ; 

Note: The extension of a t o  Z i n  Z r e f l c c t s  t h e  f a c t  t h a t  
i B 

has  t h e  symmetric form 

and f u r t h e r  

The s i g n i f i c a n c e  of t h i s  extension w i l l  be f u r t h e r  c l a r i f i e d  a s  we proceed. 

. For t h e  l i n e a r  models t h e  a v e c t o r  i s  p a r t i c u l a r l y  easy t o  c a l c u l a t e .  I f  

t h e  conf igura t ion  Z i s  given,  X and X t h e  corresponding p a r t i t i o n  of X ,  and A B N 



is partitioned into A and A corresponding to the columns of X and XN, then B N B 
we can write Eq. (2.2) as 

Y = $XB + phT5 , 

or, solving for X B' \ 
-1 % = A B Y -  

Thus for each Z. in Z a(Z,Zi,y) is independent of y and corresponds to the 
1 -1 B' 

column $ (-1,A) corresponding to the variable Z (in linear programming, the i 
pivot column of Z.). For linear models, then, we will drop the y arguments, 

l 

and denote the span simply by a(Z,Zi). 

We are finally able to make the main definition of the paper, namely,that 

of gualitative determinacy between variables in a model. This will be a 

measure of the consistency of interaction between the variables and is defined 

in terms of the span vector a. By using the term "qualitative," we emphasize that 

we are concerned solely with the sign of a rather than its magnitude; that is, 

we wish only to know whether the variables increase activity, decrease activity, 

or are unaffected by a given change in model operation. There is considerable 

historical basis for this; see, for example ref. [ 5 1 ,  pp. 23-28. "~eterminacy" will 

measure the effect of one variable on another or the mutual effect of a pair of- 

variables on the other variables of the model. 

Definition2.5: Let M be a differentiable model and Z =  (Z ,Z ) a configuration 
B N 

of M. For variables Z and Z in M, we call Z. and 2. 2-qt.~alitative substitu;~ 
i J 1 J 

(complements, independents) in Z if aK(Z, Zi, y) *aK(Z, zj, y) is non-negative (non- 

positive, zero) for all Zk in Z and all Y e Ry. Z. and Z. are called 
B 1 J 

qualitative substitutes (complement's, independents) if they are Z-strong quali- 

tative substitutes (complements, independents) for every configuration Z. 
zi 

and Z will be called (Z-)determinant if they are either (Z-)substitutes, 
j 

(Z-) ccmplements, or (Z-) independents. 

N U L ~  rliac if b ~ r h  Variables are in 2 then a(~,~~,~)*a(~,z~,y) is 0 if 
B' 

i # j and -1 if i = j; if exactly one variable, say Z is in Z then 
j ' B' 



Thus two variables Z and Z. are substitutes if, for every configuration, Zi 
i J 

tends to "be a. substitute" for Zi , in that it will either tend 'to replace 
J 

Z. (if one'of the variables is basic) or cause the same behavior as Z on 
3 i 
each variable Z (if both are in ZN). Similarly, Z. and Z. are complements 

k 1 1 - 
if Zi tends to "complement" Z. in that the variables tend to vary similarly 

1 
with respect to each other or-have opposite effects on the other variables. 

Independence indicates no interaction .or mutual action on other variables. 

One,could isolate the two types of interactions, with weak determinacy'. con- 

cerning only those configurations with one variable in Z and. strong deter- B ' 
minacy:. concerning those with both variables in Z (variables in Z are N B 
always mutually independent). This lends unnecessary complication, however, 

and we will mention it only when it can be done without difficulties. 

It follows from the definition that two variables are (&)independents 

if and only if they are both (Z-)substitutes and (2-)complements. Further, 

a variable is always a substitute for itself, and both substitution and com- 

plementarity are symmetric properties. It is not true, as we will show later, 

that there is a general form of transitivity of either. substitution or 

complementarity across pairs. 

For the linear model, as developed thus far, recall that the a vector 

is independent of Y and ZN and simply corresponds to the appropriate column 

<I(-I,A) , where (AB,%) is the partition of A corresponding to (ZB,ZN). TO 
th test the determinacy of Z. and Z. it is necessary to check the (Z.) and 

1 - 1 3 1 
(Z .)& columns of $ (-1,A) for each configuration. If the columns always 

3 
match term for term in sign whenever they are both non-zero, then Zi and Z 

j 
are substitutes. If the terms are opposite in sign, the two variables are 

complements, and if one term is always zero, the variables are independent. 

Thus we could give a complete list of determinant pairs by checking every 

configuration of the model in the above fashion. This is a substantial amount 

of work, however, since the number of configurations is generally an exponential 

function of the number of variables. We investigate in Section I11 a special 

class of linear models called the supply-demand models, and attempt to find 

more tractable techniques for discovering determinant pairs. 



111. THE SUPPLY-DEMAND MODEL 

We presen t  i n  t h i s  s e c t i o n  a n  important  c l a s s  of l i n e a r  models which 

r e p r e s e n t  t h e  n a t u r a l  f low of goods through a d i r e c t e d  network. We can then 

r e s t a t e  t h e  d e f i n i t i o n s  g iven i n  S e c t i o n I I i n  t h e  con tex t  of p r o p e r t i e s  of t h e  

network i t s e l f .  Th i s  no t  only  g ives  u s  a more r e a l i s t i c  sense  of determinacy, 

b u t  provides  techniques f o r  d i scover ing  determinism i n  t h i s  type  of model. 

The Model 

~ e t ' G  = (N,A) be a d i r e c t  network, def ined by node s e t  N and a r c  s e t  A. 

Denote elements i n  A by (u ,v ) ,  t h e  edge d i r e c t e d  from u t o  v ,  where u and v 

a r e  elements of N (we a l low m u l t i p l e  a r c s ) .  Speci fying one element r of N as. 

t h e  supply node, we c a n , d e f i n e  t h e  supply-demand model M(G,r) t o  be t h e  r e a l -  

a c t i v i t y  l i n e a r  model w i t h  i n p u t  v a r i a b l e s  

ou tpu t  v a r i a b l e s  

~ - { r )  
Y ' =  { y ( u ) l u  E ~ - { r ) }  e % = R+ , 

and f u n c t i o n a l  equat ion Y = f  (X) def ined by components 1 
G 

y (u )  = L t ( x , u )  - 1 t ( u , x ) ,  u e ~ - { r } .  (3.3) 
(x,u)€A (u,x)€A 

P h y s i c a l l y ,  t h i s  model d e s c r i b e s  t h e  process  whereby goods a r e  produced a t  a  

s i n g l e  supply  p o i n t  r and a r e  shipped through t h e  network G wi th  t ( u , v )  

denot ing t h e  flow from u t o  v .  A r e s i d u a l  amount y(u)  of t h e  m a t e r i a l  i s  l e f t  

a t  t h e  non-supply node u. The r e s i d u a l  a t  each node u is  def ined by (3 .3 ) ,  

and (3.1) and (3.2) i n d i c a t e  t h e  f a c t  t h a t  t h e  shipped and r e s i d u a l  amounts of 

t h e  m a t e r i a l  must always b e  non-negative. The q u a n t i t y  y(u)  could r e p r e s e n t ,  

f o r  example, e f f i c i e n c y  l o s s e s  a t  a  node u i f  node u r e p r e s e n t s  a conversion 

process  o r  demands f o r  energy s e r v i c e s  a t  the  end Of t h e  network. 

Conf igurat ions  

We now d e f i n e  t h e  fundamental concepts of determinacy i n  terms of prop- 

e r t i e s  of t h e  network G.  For ease  of n o t a t i o n ,  we w i l l  o f t e n  i d e n t i f y  a n  

a r c  in terchangeably  wi th  t h e  v a r i a b l e ' a s s o c i a t e d  wi th  t h a t ' a r c ,  and i d e n t i f y  

a node in terchangeably  w i t h  t h e  v a r i a b l e  a s s o c i a t e d  wi th  t h a t  node, where 

t h e r e  is  no confusion.  Also f o r  a g iven s e t  of va lues  t f o r  X and s e t  C G A 

we denote  t t o  b e  t h e  va lues  on t h e  s e t  C .  We begin by d e f i n i n g  t h e  c o n s t r u c t  
C 



i n  a graph which corresponds t o  conf igura t ions  i n  t h e  corresponding supply- 

demand model. Fornodes a and b i n  G ,  a d i r e c t e d  pa th  from a t o  b w i l l  be  a 

s e t  of edges of t h e  form 

{ (a ,u l ) ,  (u,,u,), , (unnl,un) , (un,b) 1 .  

D e f i n i t i o n 3 . 1 :  Le t  G =  (N,A)  be a d i r e c t e d  graph, and r a node i n  G. Then an 

r-rooted spanning t r e e ,  o r  simply r - t r e e ,  of G i s  any s e t  of edges T of G wi th  

t h e  proper ty  t h a t  f o r  each node v of G t h e r e  i s  a unique d i r e c t e d  path  i n  T 

from r t o  v. 

Examples: For a graph - 

we have 

a r e  no t .  

I t  is  easy t o  s e e  t h a t  an  equ iva len t  d e f i n i t i o n  of a n  r - t r e e  is  any s e t  

of edges which con ta ins  no d i r e c t e d  c y c l e  (edge s e t  o f  t h e  form { (u1,u2) (u2,u3) . . . , 
u n , u )  a n d  f o r  which every node except r has  e x a c t l y  one. edge po in t ing  i n t o  

that: node. 

Propos i t ion3 .2 :  L e t  M=M(G,r) be a supply-demand model and T a subse t  of t h e  

a r c  s e t .  (Recal l  t h a t  f i s  def ined by (3.1) t o  (3.3) above and t h a t  X = (.tT,O) 

r e p r e s e n t s  a p a r t i t i o n  of flows' f o r  which v a r i a b l e s  no t  i n  T a r e  set t o  zero .  

See d e f i n i t i o n  2.2.) Then t h e  fo l lowing a r e  equ iva len t :  

(1) For some p o s i t i v e  s e t  of va lues  y f o r  Y t h e r e  is  a unique set of 

, p o s i t i v e  va lues  t f o r  T such t h a t  
T 

fG(tT,O)  = y. 



That is, for some set of positive residua1s.there.i~ a unique 
. . . . . :  i ' . . '  . * . . 2 ' . .  - 

set, of flows on . . .  the arc set T which yields these positive 
. . . . .. . 

. 
residuals. 

, .. . . .  . 
(2) For each non-negative set .of values y for Y there is a unique 

, . . . 
set of non-negative values t for T such that T 

f (t o)-.=.~.' G T' . . .. . 
(.3j T forms an r-tree'of G. 

. . . . . . 

Prdof: We prove (2) + '(1) +. (3) * ( 2 ) .  

? + 4 :  It is sufficient to prove that, for each set of positive values 

y for Y, the set of values tT defined in (2) is positive, since 'the unique- 

ness follows. Supbose then that the tT defined above has t(w,a) = 0 Iuu 

some (w, z) in T. Now consider the set .of values y ' 'for. Y defined 

Then y' is non-negative, and so by (2) there is a non-negatfve set' of "slues 
ti for T with 

f (t',O) = y'. . G . T  

But if we define the set of values tl' for T by T 

t' CU,V) (u,v> # (w,z) . ,  

t;(u,v) = 
(li,yj = (w,z) , 

. . . . - . .  . . 

then it follows from (3,.3) that , . .. 

.. . 

where tt1(w,z) > 0. Therefore t is not unique, contradicting the fact 
T .  

, . that such a value' exists. . ' 

1 ' 3 : ~uppdse T iafisf ies I), and let s # r be a node ' in G. First, 
. . 

suppose there fs no path from r to s in T. ~efine S to be that set of nodes 

for which there is a directed path to-' s. Then s € S, r 6 S, and no edge of ' 
T goes from N-S to S. Therefore, by adding together Eqs. (3.1) for every u E S, 

. . 

we get 



a c o n t r a d i c t i o n .  Second, suppose t h a t  t h e r e  a r e  two pa ths  

r : ( ~ ~ , u ~ ) , . . ~ , ( u ~ - ~ , u ~ )  

r i :  (u;,u;), ..., 
from u = u;) = s t o  u = u i  = r i n  T. S e t  E = m i n { t ( u . , ~ ~ + ~ )  I i = O  ,..., k-1) 

0 k R 1 

and now d e f i n e  t '  
T by 

1 t (u,v) (u ,v) 

t l ( u , v )  = t ( u , v )  - €12 (u,v> 

t ( u , v )  + €12 (u ,v)  

Then ti > 0, f  ( t ' )  = y, and s i n c e  r # T ' ,  
G 

t i s  unique, and t h a t  two such pa ths  e x i s t  

e r u r i  
€ r 
e r i .  
t '  #, t ,  c o n t r a d i c t i n g  t h e  f a c t  t h a t  

(3) + (2) Suppose T i s  an r - t r e e .  Le t  y = [ y ( u ) ]  be a s e t  of non-negative 

va lues  f o r  Y ,  and (w,v) an edge of T. Le t  U be a s e t  o f .nodes  of G which can 

be reached from v by a d i r e c t e d  path  of edges i n  T .  Since T i s  an r - t r e e ,  the  

only pa ths  from r t o  nodes i n  U must go through t h e  edge (w,v); i n . p a r t i c u l a r ,  

(w,v) i s  the  only edge i n  T whose head is  i n  U and whose t a i l  i s  i n  V-U Thus, . . 

by summing E q .  (3.1) over u E U ,  we g e t  

1 Y(U)  = 1 [ 1 ~ ( x , u )  - 1 t(X,U)] 
ueu ueu (x,u)€T (u,x) eT 

s i n c e  t ( x , u )  = 0 when (x,u) $! T, and every a r c  except (u,v) which appears  i n  

t h e  sum occurs  once wi th  each s ign .  Thus t ( u , v )  = 1 y(u) 1 0 is  t h e  unique 

va lue  f o r  t (u ,v)  . u€U 

Corol lary  3.3: Let  M = M(G,r) be.  a  supply-demand model, and Z = (ZB,ZN) a 

p a r t i t i o n  of t h e  v a r i a b l e s  'of M.  Then Z i s  a conf igura t ion  f o r  M i f  and only 

i f  Z comprise edges forming an r - t r e e  i n  G .  
B 

. . 

.. . 
Propos i t ion  3.2 p o i n t s  ou t  t h e  f a c t  p e c u l i a r  to'supply-demand models t h a t  

t h e  conf igura t ions  found wi th  r e s p e c t  t o  any p a r t i c u l a r  p o s i t i v e  r e s i d u a l  

va lue  a r e  i n  f a c t  a l l  of t h e  conf igura t ions  f o r  t h e  model. Thus, t h e  s e t  of 

conf igura t ions  charac te r i zed  above is  the  same even when t h e  model i s  taken 

t o  be a f  ixed-demand model (Example 2.3) wi th  demand b = [ y  (u) , . . . , ym(u) ] 
1 

p o s i t i v e .  

Determinacy 

Using Propos i t ion  3 .1  we a r e  i n  a p o s i t i o n  t o  c a l c u l a t e ,  f o r  any con- 

f i g u r a t i o n ,  the  e f f e c t  on the  b a s i c  v a r i a b l e s  of a change i n  one of t h e  



non-basic v a r i a b l e s .  For conf igura t ion  Z = (Z Z ) we know t h a t  t h e  edges B" N 
of ZB form an r - t r e e  of G. Thus f o r  any node u i n  G t h e r e  is  a d i r e c t e d  pa th  

y(Z ,u )  from r t o  u of edges i n  Z For v a r i a b l e  Zi of M we d e f i n e  @(Z Z )-- 
B B ' B' i 

t h e  forward edges of Z .  w i th  r e s p e c t  t o  Z --and B(Z , Z  )--the backward edges 
1 B B i 

of Z .  w i th  r e s p e c t  t o  Z --as follows: i f  Z = t ( u , v ) ,  then @(Z , Z  ) = y(ZB,u) 
1 B i N i 

and $(ZB,Zi) = y(ZB,v);  i f  Zi = y ( v ) ,  then @(Z , Z  ) = Y ( z ~ , v )  and B(z , z . )  = 0. 
B i B 1 

We can s t a t e  t h e  fo l lowing lemma: 

Lemma 3.4: Le t  M = M(G,r) be a supply demand model, Z = (Z Z ) a 
B' N 

conf igura t ion  f o r  M, and Z, a v a r i a b l e  i n  M. Then 

i f  z E s+(zB,zij 
j .  

i f  2 e S-(2.. ) . . u. (ZB,BYS = 
J j B' i 

otherwise ,  

where 

S+ E $(Z , Z .  ) - B(Z , Z  .) ( i - e .  , the  . r e s i d u a l  forward flow) - B 1 B 1 

S E B(Z , Z  .) - $(Z , Z  .) ( i .e . ,  t h e  resiclual  backward f low).  
B 1 B 1 

R e c a l l  t h a t  t h e  t h i r d  parameter,  y ,  of a has  been.dropped f o r  l i n e a r  models. 

Proof :  Consider t h e  e f f e c t  of a u n i t  i n c r e a s e  of Z .  on t h e  v a r i a b l e s  of Z 
1 B' 

T h i s  w i l l  i n c r e a s e  t h e  v a l u e s  of @(Z ,Z. )  one u n i t  and dec rease  t h e  va lues  i n  B 1 

B(ZR,Zi) one u n i t ,  and t h e  n e t  e f f e c t  on elements of $(ZB,Zi) ll B(Z Z ) is  
B' i 

zero.  The lentma fol lows.  

Graphical . ly,  we can d e s c r i b e  a(Z Z.) a s  fo l lows.  I f  Zi = y (u) then 
B' 1 

a(ZB,Zi) is ' -1 on t h e  edges of t h e  unique path from r t o  u ,  and 0 on t h e  o t h e r  
+ 

edges of Z - - that  i s ,  S (Z ,Z . )  comprises t h e  e n t i r e  path  from r t o  u ,  'and 
B B 1 

s-(zB,Zi) i s  empty. I f  Zi = t (u,v) , we know t h a t  (u ,v)  forms a unique undirected 

c i r c u i t  C wi th  Z and a(Z Z.) i s  'then +1 on t h e  edges of C f a c i n g  the .  same 
B; B' 1 + 

d i r e c t i o n  a s  (u,v) on the  c i r c u i t , f . e . ,  S (Zn,Zi);  -1 on t h e  edges f a r i n g  

' o p p o s i t e  (u ,v)  on t h e  c i r c u i t ,  i. e . .  S-(Z Z .  ; and 0 o n  a l l  o t h e r  edges of Z B -  
, B 1  

Examples: 



We remark t h a t  i f  Zi i s  i n  ZB (and t h e r e f o r e  an  edge) t h i s  d e f i n i t i o n  is s t i l l  

c o n s i s t e n t  wi th  t h a t  of D e f i n i t i o n  2.4, s i n c e  then s-(zB,zi) = {zi} and 
+ s (ZB,Zi) = 0. 

Lemma 3.5: Let  Z =  (Z Z ) be a conf igura t ion  f o r  the  supply-demand model 
B' N 

M(G,r), and Zi  and Z two v a r i a b l e s  i n  M. Then Z .  and Z .  a r e  Z-subs t i tu tes  i f  
j 1 J 

and only  i f  

and 

That is, t h e  r e s i d u a l  forward flow i n  Zi does no t  i n t e r s e c t  t h e  r e s i d u a l  f low 

i n  Z and v i c e  ve r sa .  They a r e  complements i f  and on ly  i f  
j 

( i i i )  s+(z,,z,) n s+(zB,zj)  = 0 
and 

( i v )  s-(zB,zi) n s - (zB,z j )  = 0. 

That is ,  t h e  r e s i d u a l  forward flows i n  Z .  and Z .  do not  i n t e r s e c t .  S i m i l a r l y  
1 J 

f o r  the  backward flows, they a r e  independents i f  and only i f  

(v) [s+(zB,zi) n s-(zB,zi)l n [s+(z  , z . )  n s-(z , z . ) I  = 0. 
B J B J  

Proof:  FolJ.ows immediately from Lemma 2 and Def in i t ion  2.5. 

We i l l u s t r a t e  wi th  an example: 

r 

ZB = {zl,Z2,Z3,Z4} and Z = {Z , Z  , Z  , b , c , d ) .  Then 
N 5 6 7 

B(ZB,Z2) = B(ZB,Z5) = +(ZB,Z7) = +(ZB,c) = {z2,z31. 

For example, i n c r e a s e  i n  flow along any of t h e  edges i n t o  node c (Z. o r  Z ) 
2 5 

r e s u l t s  i n  a p o t e n t i a l  decrease  i n  t h e  f low from the  source  r t o  c through t h e  

spanning t ree-- in  t h i s  case  through the  edges Z and Z On t h e  o t h e r  hand. a n  
2 3 '  

i n c r e a s e  of f low along any of t h e  edges o u t  of c (Z ) ' o r  of t h e  demand a t  c(Z ) 
7 9 

r e s u l t s  i n  a p o t e n t i a l  inc rease  i n  flow along spanning t r e e  path .  



+ 
The S , S- and a's* a r e  c a l c u l a t e d  . a s  follows: 

*Note t h a t  t h e  a 's  a r e  only  def ined f o r  t h e  b a s i c  v a r i a b l e s  Z z29 z 3 ,  z 4 .  
The determinacies  a r e  shown i n  t h e  fo l lowing t a b l e .  



where s t r i c t  s u b s t i t u t e s  (complements) a r e  s u b s t i t u t e s  (complements) which 

a r e  not  independent. Th i s  t a b l e  a l s o  shows t h e  n o n t r a n s i t i v i t y  of determinacy. 

Although both  of the  p a i r s  (Z5,Z6) and (Z , Z  ) a r e  Z-subs t i tu tes  (and, i n  f a c t ,  
6 7 

s u b s t i t u t e s  i n  every conf igurat ion) ,  Z and Z a r e  not  Z-subs t i tu tes .  The t a b l e  
5 7 

a l s o  sugges t s  t h a t  i n  any given conf igura t ion ,  every p a i r  of v a r i a b l e s  is  de te r -  

minant. Th i s  i s  shown by Propos i t ion  3.6 which impl ies  t h a t  every p a i r  of 

Independents 
S t r i c t  
S u b s t i t u t e s  

v a r i a b l e s  i n  a g iven conf igura t ion  of a supply-demand mode1,have q u a l i t a t i v e l y  

S t r i c t  
Complements 

p r e d i c t a b l e  e f fec t s - -e i the r  complements o r  s u b s t i t u t e s .  

P ropos i t ion3 .6 :  ' L e t  Z =  (Z Z ) be a conf igura t ion  f o r  t h e  supply-demand model 
B Y  N 

M and Z .  a  v a r i a b l e  i n  M. Then every v a r i a b l e  of . M  is  Z-determinant wi th  Z 
1 i' 

Proof:  Choose v a r i a b l e s  Z . inM.  We must prove t h a t  a t  l e a s t  one of t h e  p a i r s  
J 

of s t a t e s  ( i )  and ( i i )  o r  ( i i i )  and ( i v )  of Lemma 3 .5  hold f o r  Zi,  Z , and Z .  Suppose 
j 

on t h e  con t ra ry  t h a t  ( i )  and (ii-i..) a r e  both  v i o l a t e d .  (The o t h e r  cases  a r e  

symmetric.) Then t h e r e  must be  an  edge (u v ) i n  s + ( z ~ , z ~ )  n S'(Z 2 ) and 
+ + 1' 1 N' j 

a n  edge (u ,v  ) i n  S (ZB,Zi) n S (Z Z ). I f  (u v ) is  f u r t h e r  away from r 
2 2 B' j 1' 1 

than (u2,v2) on $(Z , Z  . I ,  then t h e r e  a r e  two pa ths  from r t o  u --one going up B 1  + 1 
S-(Z , Z  .) and one going up S (Z ,Z ) KG (u ,v  ) and then up $ (Z Z ) . S i m i l a r l y  , 

B J  S j 2 2 B' i 
i f  (u , v  ) i s  f u r t h e r  away from r than (ul ,vl) ,  then t h e r e  a r e  two pa ths  from r 

2 2 
eo u I n  e i t h e r  case we have a c u u t r a d i c t i o n ,  and s o  s u c h . a  s i t u a t i o n  cannot 

2' 



e x i s t .  Th i s  proves t h e  lemma. 

Although we w i l l  no t  show i t  here ,  t h e  r e s u l t s  of P ropos i t ion  3 . 6  hold 

f o r  a  much broader c l a s s  of conf igura t ions ,  namely, t h e  conf igura t ions  of any 

l i n e a r  model where t h e  underlying matr ix  i s  t o t a l l y  unimodular, ( see  r e f .  [71). 

A mat r ix  is t o t a l l y  unimodular i f  every square  submatrix of s i z e  m 2 1 has 

determinant  +1 o r  0. This  inc ludes  more genera l  network models, a s  we l l  a s  

c e r t a i n  models involving matching and assignment problems. 

Propos i t ion  3. .6 has an  important coro l l a ry .  I n  t h e  economic l i t e r a t u r e ,  

t h e  economic c o r r e l a t i o n  between two (domain) v a r i a b l e s  i n  a  l i n e a r  func t ion  

can be  de f ined  as' t h e  do t  product of t h e i r  cdlumn v e c t o r s  i n  t h e  corresponding 

mat r ix  [ 8 1. Since t h e  r e l a t i o n s h i p  between b a s i c  and non-basic v a r i a b l e s  i n  

any conf igura t ion  of a  l i n e a r  model i s  a  l i n e a r  func t ion ,  we can t a l k  about t h e  

c o r r e l a t i o n  between non-basic v a r i a b l e s  i n  a  conf igura t ion .  It is  c l e a r  from 

t h e  d e f i n i t i o n  t h a t  s u b s t i t u t e s  (complements) i n  a  conf igura t ion  a r e  p o s i t i v e l y  

(nega t ive ly )  c o r r e l a t e d  wi th  respec t  t o  t h a t  conf igura t ion .  I n  t h e  p a r t i c u l a r  

c a s e  of t h e  supply-demand model, t h e  i - t h  column of t h e  m a t r i x  assoc ia ted  with.  
I 

t h e  conf igura t ion  Z = (Z Z ) c o n s i s t s  of t h e  elements a .  (Z , Z  ) f o r  Z .  i n  ZB. 
B Y  N J B i  J 

P ropos i t ion  3 . 6  a s s e r t s  t h a t  no two terms i n  t h e  c o r r e l a t i o n  do t  product can 

have oppos i t e  s igns .  Corol lary  3 . 7  fol lows immediately. 

Corol lary  3 .7:  Let Z =  (ZB,ZN) be a conf igurat ion of t h e  supply-demand model, 

and Z and Z be two v a r i a b l e s  of M.  Then Z .  and Z .  a r e  Z-subst i tu tes  (Z- 
i j 1 J 

complements) i f  and only i f  t h e i r  c o r r e l a t i o n  (with r e s p e c t  t o  Z) i s  non- 

negative (nnn-pnsi t i v ~ ) .  

Now i f  t h e r e  were only  one conf igura t ion ,  then a l l  v a r i a b l e s  would be 

determinant .  Unfortunately,  v a r i a b l e s  a r e  no t  n e c e s s a r i l y  determinant between 

conf igura t ions ,  a s  t h e  following example shows. 

Z i s  a  s u b s t i t u t e  f o r  Z i n  the  conf igura t ion  
1 .  2 



b u t  is  a  complement i n  t h e  conf igura t ion  

determinancy i n  networks. 
: .  

Propos i t ion  3 .8 :  Let  M = M(G,r) be a  supply-demand model. Then the  
, . I  > .: 

. . f ol1,owing v a r i a b l e s  a r e  determinant.  

(1) Var iable  p a i r s  of t h e  fo rm.  - 

( i )  [ t ( u , v ) , t ( w , v ) l :  flows to t h e  same node, 

( i i )  [ t ( u , v ) , t ( u , w ) ] :  f lows from the  same node, 

( i i i )  [y (u ) ,  t (u ,v ) . ]  ' : r e s i d u a l s  and flows from same node, 

( iv ) .  [y  (u) , (v) ]  : any two re ' s idua l s  
. . 

a r e  s u b s t i t u t e s ;  

(2) Var iable  p a i r s  of t h e  form 
(v) [ t (u ,v)  , t (v,w) ]  : f low i n  and ou t  from same node, 

( v i )  [y(v) , t (u ,v )  ] : f low i n  ,and r e s i d u a l  f low ou t  same node, 

( v i i )  [ y  (v) , t ( r  ,u) ] : "demands',' and "suppl ies"  
a r e  complements. 

Proof: The key observat ion he re  i s  t h a t  f o r  each v a r i a b l e  p a i r  (Z ,Z . )  
i 3 

l i s t e d  i n  t h e  theorem one of the  fo l lowing cases  holds  f o r  every conf igura t ion  

(ZB'ZN) : 

( a )  $(ZB,Zi) = $(ZB,Zj) 

(b) B(zB,Zi) = B(zByZjd , -  

( c )  $(zBpzi) = a t z  .Z ) ' 
B j  

(d)  B(ZB,Zi) = $(ZB,Zj). 

Applying Lemma 3 . 4  we g e t  i n  c a s e s  (a)  and (b) corresponding t o  (1) above, 

t h a t  Z .  and Z .  a r e  s u b s t i t u t e s ,  and i n  cases  (c)  and (d) corresponding 
1 J 

t o  ( 2 )  above, t h a t  2 .  and Z .  a r e  complements.' 
1 J 

It is i n t e r e s t i n g  t o  no te  he re  t h a t  i n  t h e  "weak" sense  of determinacy,  a s  

i n  Sec t ion  11, y v a r i a b l e s  a r e  determinant t o  a l l  o t h e r  v a r i a b l e s .  S ince  

they a r e  never b a s i c  v a r i a b l e s ,  they a r e  weakly independent of each o t h e r .  

Fur the r ,  f o r  y  v a r i a b l e  Z t v a r i a b l e  Z and any conf igura t ion  Z =  (Z Z ) 
iy + j' B' N 

with  Z .  E ZB,  we have S-(Z ,Z.) = S (2 Z ) = 8 ,  s o  t h a t  y  and t v a r i a b l e s  
J B 1 B y  j 

a r e  always weak complements. 



Series-Parallel Decompositions 

We now consider two types of decompositions of a network G which allow 

us to transfer determinacy. in components to determinacy in all of G. 

Definition 3.9: Let G = G(NGA) be a network and r and s two nodes in G. 

Then an s-series decomposition of G is any pair of edge non-empty subnetworks 

G' = G(N1,A') and G" = G(N",An) of G for which 

(Sl) A' U A" = A, A' fl A" = 4, i;e. edge disjoint, and 

(~2) N' U N "  = N ,  N' n N" = {s). 

An (r,s)-parallel decomposition of G is any pair of edge non-empty subnetworks 

C' = C(N'  , A ' )  and C;" = O(N",A1') uT G fo r  which 

(PI) A' u A'* = A, A' n .  = 4 
(P7) N' U N" = N, N' n N" {r,sl 

(P3)  No edge of A points out of s, and at least one edge in each 

of A' and A" points into s. ( ~ ~ u i ~ a l e n t l ~ ,  G' and 'G" do not 

form as r-series decomposition of G . )  

Example : 

has an s-series decomposition into I 



has  an  ( r ,  ~ ) : - ~ a r a i l e l  decomposition i n t o  

I 

Lemma 3.10: Let  G '  = G(N' ,A') and G" = (N" ,A") form an s - s e r i e s  decomposition 

of the  network G = G(N,A), r a node of G '  ' and T a subse t  of A. Then T is an 

r - t r e e  of G i f  and only ii' T n A' is an r - t r e e  of G '  and T n A" i s  an s - t r e e  

of G". 

Proof:  I f  T i s  an r - t r e e  of G ,  and u is  a node i n  G ,  then t h e r e  5 s . a  unique 

pa th  from r t o  u. I f  u is i n  N '  then t h e  path  lies e n t i r e l y  i n  A' and s o  

comprises a unique path  from r t o  u i n  T n A ' .  I f  u is  i n  N", then t h e  path  

must pass  through s ,  and s o  t h e  f i n a l  p a r t  of the  path  comprises a unique path  

from s t o  u i n  T n A". Conversely, i f  T n A' and T fl A" a r e  r- and s - t r e e s  of 

G '  and G", r e s p e c t i v e l y ,  then f o r  any node u i n  G t h e r e  e x i s t s  a unique path  . . 

from r t o  u, which f o r  u e N '  i s  t h e  unique path  from r t o  u i n  T n A ' ,  and 

f o r  u € N" and t h e  unique path  from r t o  s i n  T n A' followed by t h e  unique 

path  from s t o  u i n  T fl A". This  proves t h e  lemma. 

P ropos i t ion3 .11 :  Le t  M=M(G,r) be  a supply-demand model, u a node i n  G ,  and 

G '  and G" an s - s e r i e s  decomposition of G f o r  which r is  a node i n  G ' .  Se t  

M'  = M(G,r) and M" = M(G" ,u) . Then f o r  v a r i a b l e s  Z and Z i n  M : 
i j 

(1) I f  Zi and Z a r e  i n  MI, then Z .  and Z .  a r e  s u b s t i t u t e s  (complements) 
j 1 J 

in M i f  and only i f  they a r e  s u b s t i t u t e s  (complcmcnts) i n  M ' .  

(2) I f  Zi and Z a r e  i n  M" and both  a r e  not  y -va r iab les ,  then Zi and Z 
j . j 

a r e  s u b s t i t u t e s  (complements) i n  M i f  and only i f  they a r e  s u b s t i t u t e s  (comple- 

ments) i n  M" . 
* .  

(3) I f  Zi and Z a r e  y-var iables  i n  M", then they a r e  independent i f  and 
j . . 

only i f  they a r e  independent i n  M" and r = u (and a r e  s t r i c t  s u b s t i t u t e s  

o therwise) .  

(4)  I f  Z .  i s  any v a r i a b l e  i n  M '  and Z is .  a t - v a r i a b l e  i n  M", then Z 
1 j i 

and Z a r e  independent. 
j 
(5) I f  r = u, Z .  i s  a y-var iable  i n  M ' ,  and Z .  i s  a y-var iable  i n  MI ' ,  

1 J 
then Z and Z a r e  independent. 

i j 



( 6 )  I f  r . #  u,  Z . i s  any v a r i a b l e  i n  M', and Z i s  a y-var iable  i n  M", 
i j 

then  Zi and Z a r e  ' s u b s t i t u t e s  (complements) i f  and only i f  Zi and y(u) a r e  
ri 

s u b s t i t u t e s  (complements) i n  M' . 

Proof:  Let  Z = (Z , Z  ) b e  a conf igura t ion  of M. Then.from Lemma 3.10 
B N 

we have 

(a)  If Z, i s  i n  M I ,  then 

(b) I f  2, i s  a t - v a r i a b l e  i n  M", then 

(,-) 1 f  Z .  i s  a y-var iable  i n  M", then 
+ 1 

s ( ~ ~ $ 2 ~ )  = 0 
S-(Z ,z.) = s-(z, n A",z,) u s-[zB n A ' , Y ( ~ ) ] .  

B 1 

The lemma follows.  

I f  r # s ,  t h e  component M" of P ropos i t ion  3.11 w i l l  be c a l l e d  the  

lower component of t h e  decomposition, and M" . the  upper component. 

For p a r a l l e l  decompositions we have s i m i l a r  r e s u l t s :  

Lemma 3.12: Let G '  = G(N' ,A') and G" = G(N" ,A") form an ( r ,  s ) - p a r a l l e l  

decomposition of  t h e  network G = G(N,A) , and T a subse t  of A. Then T is  

an r - t r o a  of G i f  and only  i f  t h e r e  e x i s t s  an r - t r e e  T' of C' and an 

r - t r e e  TI' of G" such t h a t  T = T '  U T" - { ( v , s )  1, where ( v , s )  i s  t h e  unique 

edge ad jacen t  t o  r i n  e i t h e r  T,' o r  TI'. , 

Proof:  F i r s t  l e t  T be  a t r e e  i n  G ,  and by symmetry suppose the  unique ----- 
edge (v' ,s )  ad jacen t  t o  s i n  T is i n  A ' .  Then f o r  any u '  i n  N '  , t h e r e  

e x i s t s  a unique path  from r t o  u' i n  T which l i e s  e n t i r e l y  i n  A ' ,  and f o r  

any u" i n  N"-(s) t h e r e  e x i s t s  a unique path  from r t o  u" i n  T which l i e s  

c n t i r c l y  i n  A". Thus T n A' i s  an r-tree i n  G', and for any edae ( v " , ~ )  

i n  A" ad jacen t  t o  r (by d e f i n i t i o n  t h e r e  must be a t  l e a s t  one) ,  

(r n A'? U { (v' , s )  ) is  an r - t r e e  i n  G". 

Conversely, l e t  T '  and TI' be r - t r e e s  i n  G '  and G", r e s p e c t i v e l y .  

and (v" , s )  the  edge i n  TI' ad jacen t  t o  s. Se t  T = .T' U T" - { (v" , s )  ) , .and 



choose any node u in G. If u is in N' then there is a unique path from r to u 

in T' and no path from r to u in T containing any edges of TI', and if u is in 

N"-{s}, then there is a unique path from r to u in T"-{(vl',s)}, and no path 

from r to u in T containing any edges of T'. Thus T is an r-tree of G, and 

this completes the lemma. 

We call a node or arc interior to a component of an (r,s)-parallel 
., . 

decomposition if it is neither equal to nor adjacent to s. The parallel analog 

to Proposition 3.11 is: 

Proposition3.13: Let M=M(G,r) be a supply-demand model, and let G' =G(N1,A') 

and G" = G(N",A") comprise an (r,s)-parallel decomposition of G. Set M' = 

M(G1,r) and MI' = M(G1',r). Then for variables Z and Z in M: 
i j 

(1) If Z. and Z. are interior to M',. then they are substitutes 
1 3 

(complements) in M if and only if they a;e substitutes (complements) in M'. 

(2) If Z. is, interior to M' and Z is interior to M',', then Z and Z 
1 j i j 

are independent. 

(3) If Zi = y(s) and Z is interior to M', then Z. and Z are substitutes 
j 1 . j 

(complements) in M if and only if they are substitutes (complements) in M'. 

(4) If Zi = t(u,s) is in M' and Z is interior to M', then Z and Z 
j i j 

are substitutes (complements) in M if and only if the pairs (Z Z .) and 
i' J 

[y (u) ,Z4 J are both substitutes (,complements) in M' . 
J 

(5) If Zi = t(u,s) is in M' and Z is interior to MI', then Zi and Z 
j j 

are substitutes (complements) in M if and only if y(s) and Z are complements 
j 

(.substitutes) in MI'. 

(6) If neither Z nor Z is interior to either component, then they i 
, j 

are strict substitutes if they are the same type of variable and strict com- 

plements if they are different types. 

Symmetrical statements hold for Zi and Z in MI', and for Zi in M" and Z 
j j 

in MI.. 

Proof: The idea of the proofwill be to break each configurationinto its parallel 

component edges and thus extend determinacy with respect to these components into 

determinacy with respect to the entire configuration. By Lemma 3.11 we know that 
Z =  (Z ,Z ) is a configuration for If if and only if Z = Zi n z;-{(v,s)), where Z' = 

B N B 
(Z;,N1 A' - Z ' ) and Z'j = (Z",1\l1' f l  A"-Z"). are configurations in M' and MI', respec- 

B B B 
tively, and (v, s) is in Z; 

Zi. 
Now for Z .  in M' , it is easy to verify the following. 

1 
' 

(i) If (v,s) is in Z:, or (v,s) is 5n Z' and Z is interior to M' , then 
B i 



(ii) if (v, s) is in Z' and Zi = CS) , then B 

(iki) if (v,s) is in Z' and Z = t(u,s), then 
B i 

and symmetrf cally for 2. in ?I". Conclusions (1) and (2) follow immediately, and (6) 
J 

follows from Proposition 3.8 [since @(Z,,,t(.u,s)] = B(ZB,Y(,~)]= y(Z B ,s) f 0 

for all configurations Z = (:ZB.zN]). For (3) to (5), we prove the "if" parts by 

contradiction. Suppose Z and Z. are of the type indicated in (3), (4),or i J 
( 5 ) ,  and are not substitutes (complements). Then there exists a configuration 

Z = (Z ,Z ) of M for which Zi and Z. are not Z substitutes (complements). Let 
B N J .  

Z' , Z", and (v,'s) be defined as above, so .that Z. satisfies (i) ' (or its M" 
.I 

counterpart). We 'consider two cases: 

Case 1 [ (v, s) is in z;] : Now Z . also satisf i&s (i) . For (3) and ( 4 ) ,  then, 1 

Z. and Z. not being Z-substitutes (complements) implies that they cannot be 
1 J + 

. Z1-substitutes (complements). Condition (5) cannot occur, since S (Z Z.) and 
+ BY 1 

S-(Z ,Z.) are contained in A', and S (Z Z ) and S-(2 Z ) are contained in 
B 1 By j By j 

\ 

A" . 
Case 2 [ (v, s) is in Z' 1 :. Now Z .  satisfies (ii) above if it is of type (3), and (iii) B 1 

if it is of type ( 4 )  or (5). The situation in (3) cannot therefore occur, since, 
4- 
S (,Z ,Z .) is contained in A" and S*(Z ,Z .) and S-(Z ,Z .) are contained in A'. B 1 B J B J  
For (4), Zi and Z. not being Z-substitutes (complements) implies that ~ ( u )  and' 

1 - 
Z. are not Z-substitutes (complements), and for (5) Zi and Z. not being 
J J 
Z-substitutes (complements) implies that y(s) and Z. are not Z"-complements 

:I 
(substitutes). This completes the "if" parts of (3) to (5). 

For the "only if ," we take (3), ( 4 1 ,  and (5) separately. 

(3): Suppose Z. and Z are not substitutes (complements) in M' . Then there 
1 j 

exists a configuration Z' = (ZA,Zi) of M' for which Zi and Z. are not Z'- 
J 

substitutes (Z'-complements). Now for any con£ iguration Z" = (Zi,ZI;) of MI', 



set Z = (.ZB,ZN), where Z = Zi U zC-{ (v,s)} and (v,s) is the edge in Z" 
B B 

adjacent to s. Z. and Z. are not Z-substitutes (Z-complements), and hence 
1 J 

not substitutes (complements) in M. 

( 4 ) :  If i and Z. are not substitutes (complements) in M' , then by the same 
i 3 - 

argument as above they are not substitutes (complements) in M. If y(u) and 

Z. are not substitutes (complements) in M', then there must be a configuration 
J 
Z' = (.Zi,Zi) in M' for which ~(u) and Z are not Z1-substitutes (Z1-complements). 

j 
Now let Z" = (Zi,Zi) be any configuration for MI1, and set Z = (Z ,Z ), where 

+ 
= Z' u z"-{(v,~)) and (v,s) is the edge in Zi adjacent to s. Now S (.ZB,Zi) = 

z$ 
S IZB,y(u)] and so since Z is not adjacent to s, then Zi and Z are not 

j j 
Z-substitutes (Z-complements) and hence not substitutes (.complements]. 

(5): If Z. and y(s) are not complements (substitutes) in M", then by a 
1 

symmetr2c qrgument to the one above, 2.. and Z. are not substitutes (,complements) 
I 1 J 

This completes the proposition. 

The main consequence of the preceding discussion relates to the important 

class of series-parallel networks. We state the directed version here. 

Definition 3.14: Let G = G(N,A) be a network and r and s two nodes of G. 

G is called an (r,s)-series-parallel network if G is comprised of the single 

edge '(r-,s) or, one of the following holds: 

(1) There exists an r-series decomposition of G into networks G' and G" such 

that G' is (r, s)-series-paralle'l, and G" is (r ,u)-series-parallel for some node u in G" . 
(2) There exists a u-series decomposition of G, u # r, into .lower part G' and upper 

part G" such that G' is (r , u)-series-Parallel and G" is (u, s)-series-parallel. 
(3) There exists an (r, s)-parallel decomposition of G into networks G' and 

G", both of which are (r,s)-series-parallel, 



The decomposition in (1) will be called an improper .series decomposition, and 

that of (2).a proper series decomposition. 

Example : 
S 

is an (r,s)-series-parallel network, but 

S 

is not. 

Series-parallel networks are a standard in organized flow processes (in fact 

the Brookhaven National Laboratory reference energy system, is described 

by a flow which is to a large degree series-parallel). The following theorem illus- 

.trates just how organized these systems are. 



Theorem 3.15: Let  M = M ( G , ~ )  be  a supply-demand model f o r  which G i s  an 

( r , s ) - s e r i e s - p a r a l l e l  network. Then t h e  fo l lowing v a r i a b l e  p a i r s  i n  M a r e  

determinant:  

Fur the r  , 
( 4  

y v a r i a b l e s  a r e  s u b s t i t u t e s ;  

d i s t i n c t  t v a r i a b l e s  a r e  

(a)  s u b s t i t u t e s  i f  they l i e  i n  d i f f e r e n t  components of some 

p a r a l l e l  decomposition, 

.(b) complements otherwise;  

a p a r t i c u l a r  y and t v a r i a b l e  a r e  

(a)  s u b s t i t u t e s  i f  they l i e  i n  d i f f e r e n t  components of a proper 

s e r i e s  decomposition wi th  t h e  t v a r i a b l e  i n  t h e  upper p a r t ,  

(b) complements i f  they a r e  i n  d i f f e r e n t  components of a proper 

s e r i e s  decomposition wi th  t h e  t v a r i a b l e  i n  t h e  lower p a r t ,  

(c)  complements i f  they l i e  i n  d i f f e r e n t  components of an ( r , v ) -  

p a r a l l e l  decomposition, 

(d) complements i f  they a r e  of t h e  form y ( v ) ,  t (u,v.) .  

Any y-var iable  i n  one component of an  r - s e r i e s  d.ecomposition is  

independent of any v a r i a b l e  not  i n  t h a t  component. 

Any t -va r i ab le  i n  a component of a n  improper s e r i e s  decomposition 

i s  independent of any v a r i a b l e  not  i n  t h a t  component. 

Any y v a r i a b l e  i n t e r i o r  t o  one component of an ( r , v ) - p a r a l l e l  

decomposition i s  independent of any v a r i a b l e  i n t e r i o r  t o  t h e  

o t h e r  component. 

Any t v a r i a b l e  i n t e r i o r  t o  one component o f ' a  ( u , v ) - p a r a l l e l  

decomposition is  independent of any v a r i a b l e  i n t e r i o r  t o  t h e  

o t h e r  component. 

Any t v a r i a b l e  i n t e r i o r  t o  t h e  upper component of a u - se r i e s  

decomposition is  independent of any v a r i a b l e  i n  t h e  o t h e r  component. 

A v a r i a b l e  t(x,w) i n  t h e  upper component of a u - se r i e s  decomposition 

f o r  which a l l  edges of G i n t o  w l i e  i n  t h a t  component i s  independent 

of any v a r i a b l e  i n  t h e  lower component. 

A l l  o t h e r  p a i r s  s a t i s f y i n g  (1) t o  (3)  a r e  s t r i c t  s u b s t i t u t e s  o r  s t r i c t  complements. 

Proof:  Suppose f i r s t  t h a t  G is  comprised of the  s i n g l e  edge ( r , s ) .  Then t h e  

only  d i s t i n c t  v a r i a b l e s  of M(G,r) a r e  y ( s )  and t ( r , s ) .  By Propos i t ion  3 . 8  



t h e s e  a r e  complements, s i n c e  f3[zB, t ( r , ~ ) ]  = @ [ Z ~ , ' Y  ( a ) ]  = y(ZB,s) = 0 Eor a l l  

c o n f i g u r a t i o n s  Z = (Z Z ) and they a r e  s t r i c t  complements'. Thus they s a t i s f y  (3d) of 
B Y  N 

t h e  theorem. Otherwise, G must have a decomposition of one of the  t h r e e  types  

descr ibed i n  D e f i n i t i o n  3.14. W e  t ake  each type s e p a r a t e l y .  

Case I :  Suppose G has  an  r - s e r i e s  decomposition i n t o  components G' and GI' 

such t h a t  G '  i s  ( r , s ) - s e r i e s - p a r a l l e l  and G" is ( r , u ) - s e r i e s  p a r a l l e l  f o r  

some node u  i n  G". Then by induc t ion  we may assume t h a t  t h e  v a r i a b l e s  i n  M '  = 

I.I(G' , r )  and ll" = M(G3',r) s a t i s f y  (1) t o  (9) of the  theorem. Let  Z . and Z'' be v a r i a b l e s  
1 J 

i n  M, and now apply Propos i t ion  3.11, Propos i t ion  '3.11 (4) and (5) imply (4) and (5) 

of t h e  theorem. I n  any o t h e r  c a s e  Z and X .  a r e  i n  the  same component, say MI, i J 
and P r o p o s i t i o n  3.11 (1) t o  (3) i n s u r e  t h a t  they a r e  s u b s t i t u t e s ,  c o m p l ~ m ~ n t s ,  or 

independent e x a c t l y  a s  they a r e  i n  M ' .  But M '  s a t i s f i e s  t h e  theorem, and hence 

s o  must 11. This  completes Case 1. . 

Case 2: Suppose G has  a  proper u-ser2es decompusit i~,n i n t o  lower p a r t  G '  

and upper p a r t  G" such t h a t  G '  is ( r , u ) - s e r i e s - p a r a l l e l  and G" i s  ( u , s ) - s e r i e s  

p a r a l l e l .  Again by induc t ion  w e  may assume t h a t  t h e  v a r i a b l e s  i n  M' = M(G1,r) 

and MI'  = M(G1',r) s a t i s f y  (,I) t o  (9) of t h e  theorem. Let  Z and Z .  be v a r i a b l e s  
i -1 

i n  M, and app ly  Propos i t ion  3.11. P ropos i t ion  3 .11 (3) impl ies  (1) of t h e  

theorem, and 3.11 (4) impl ies  (8) and ( 9 )  of t h e  theorem. Any o t h e r  case  

when Zi a i d  Z .  a r e  i n  d i f f e r e n t  components must s a t i s f y  3.11 ( 6 ) ,  t h a t  is ,  
J 

Z .  is i n  M ' ,  Z .  is a  y  v a r i a b l e  i n  M", and Z and Z a r e  s u b s t i t u t e s  
1 J i j 

(complements) i f  and only i f  Zi and y(u) a r e  s u b s t i t u t e s  (complements) i n  MI, 

But then Z and Z .  s a t i s f y  ( 4 )  o r  (5 )  of t h e  theorem i n  M i f  and only i f  Z i J i 
and y (u )  s a t i s f y  (4) o r  (5) of t h e  theorem, r e s p e c t i v e l y ,  i n  M ' ,  and n e i t h e r  p a i r  

can s a t i s f y  (6 )  t o  (9) . o r  ( 2 a ) ,  and must s a t i s f y  (3b) ,  of t h e  theorem. The 

theorem then fol lows f o r  Z and Z .- F i n a l l y ,  i f  Z .  and Z .  a r e  i n  t h e  same 
i j 1 J 

component, then Propos i t ion  3.11 (1) t o  (3) hold,  and, a s  i n  Case 1, the  theorem 

fo l lows  f o r  M. Th i s  completes Case 2. 

Case 3:  Suppose G has  an (r,s)-para1.l.el. de.c.ompnsi.tio'n i.nt,o compone.nts 6' 

and GI1, both  of which a r e  (r,s)-series-paral.1.e.l.. Again by , induct ion w e  may 

assume t h a t  t h e  v a r i a b l e s  i n  M' = M(Gt , r )  and M" = M(G1',r) s a t i s f y  the  cond i t ions  

of t h e  theorem. Let  Z .  and Z .  be  v a r i a b l e s  i n  M ' ,  and now apply Propos i t ion  3.13. 
1 J 

P r o p o s i t i o n  3.13 ( 2 )  impl ies  ( 6 )  and (7 )  of t h e  theorem, and 3.11 (6)  impl ies  (2) 

and (3) of t h e  theorem when n e i t h e r  Z nor Z i s  i n t e r i o r  t o  t h e i r  components 
i j 

( i f  they a r e  both  t v a r i a b l e s ,  then they must even tua l ly  f a l l  i n  d i f f e r e n t  



p a r a l l e l  components). I f  Z .  and Z .  s a t i s f y  Propos i t ion  3.13 ( 4 ) ,  then Zi = t (u ,s )  
1 J 

i s  i n  M ' ,  Z .  i s  i n t e r i o r  t o  M', and Zi and Z a r e  s u b s t i t u t e s  (complements) i n  
J j 

M i f  and only i f  t h e  p a i r s  (Zi,Z.) and [y(u) , Z .  ] a r e  both s u b s t i t u t e s  
J J 

(complements) i n  M'  . For both  p a i r s ,  (4) and (5) of t h e  theorem a r e  t r u e  

i n  M i f  and only i f  they a r e  then i n  M I ,  and (6) t o  (,9.). cannot occur '  f o r  e f t h e r  

p a i r  i n  M. So suppose (4) and (5) do not  occur.  I f  Z .  i s  a  t v a r i a b l e ,  
J 

then (2a) holds  f o r  Zi and Z i n  M i f  and only i f  i t  holds  f o r  them i n  M ' ,  
j 

and a l s o  occurs  i f  and only i f  ( 7 )  occurs f o r  y(u) and Z i  i n  M ' .  Thus i f  
J 

Z .  and Z .  a r e  s u b s t i t u t e s  i n  M' they a r e  s t r i c t  s u b s t i t u t e s  i n  M' ( s i n c e  
1 J 

(9) cannot occur)  a n d .  thus  a r e  s t r i c t  s u b s t i t u t e s  i n  M. I f  (2b) holds  f o r  

Z .  and Z .  i n  M ' ,  then (3a) must hold i n  M' f o r  y(u) and Z . Fur the r  
1 J j 

(6) t o  (8) cannot occur f o r  y(u) and Z _ ;  s o  t h a t  they a r e  s t r i c t  s u b s t i t u t e s  
J 

i n  M ' .  Thus Z .  and Z .  a r e  s t r i c t  s u b s t i t u t e s  i n  M. I f  Z .  i s  a  y  v a r i a b l e ,  then 
1 J J 

(3a) t o  (3d) hold f o r  Zi  and Z. i n  M i f  and only i f  they hold f o r  them i n  
1 - 

M ' .  Fu r the r ,  i f  (3a) holds  then (6) cannot occur f o r  ~ ( u )  and Z i  i n  M' 
J 

so  t h a t  Zi and Z a r e  s t r i c t  s u b s t i t u t e s  i n  M. I f  (3c) holds  then y(u) and 
j 

Z i  must be i n  d i f f e r e n t  components of an ( r , s ) - p a r a l l e l  decomposition i n  M I ,  

J 

and s o  by (6) y(u) and Z; a r e  independent. Fur the r  (6) t o  (9) cannot hold f o r  
J 

Z .  and Z s o  t h a t  Z and Z a r e  s t r i c t  complements. (3b) cannot occur.  
1 j ' i j 

The only o t h e r  cases  of Z and Z .  be ing i n  t h e  same component a r e  covered 
i J 

by 3.11 (1) and ( 3 ) ,  and aga in ,  a s  i n  Cases 1 and 2, t h e  theorem fol lows 

f o r  M. The only o t h e r  case  of Z and Z .  be ing i n  d i f f e r e n t  components i s  t h a t  they 
i J 

s a t i s f y  Propos i t ion  3.13 ( 5 ) ,  t h a t  i s ,  Zi  = t ( u , s )  i s  i n  M', " i s  i n t e r i o r  
'> j 

t o  MI1 ,  and Zi and Z a r e  s u b s t i t u t e s  (complements) i f  and only i f  y ( s )  and 
j 

Z .  a r e  complements ( s u b s t i t u t e s )  i n  M". Again, Z .  and Z .  s a t i s f y  (4) o r  
J 1 J 

(5) nf  t h e  theorem i n  M i f  and only  i f  y (u )  and Z s a t i s f y  (4) and (5) the  
j 

theorem, r e s p e c t i v e l y ,  i n  M" and n e i t h e r  p a i r  can s a t i s f y  (6) t o  ( 9 ) .  For 

( 2 )  and (3) of the  theorem, i f  Z is a  t v a r i a b l e  then Z and Z s a t i s f y  
j i j 

(2a) i n  M and y(u) and Z must s a t i s f y  (3b) i n  MI' and i f  Z i s  a  y  v a r i a b l e ,  
j j 

then Zi and Z s a t i s f y  (3b) i n  M and y(u) and Z s a t i s f y  (1) i n  M". I n  
j , j 

e i t h e r  case ,  the  theorem follows by induct ion.  Th i s  completes Case 3, and 

hence t h e  theorem. 

The one case  when v a r i a b l e s  a r e  no t  determinant i n  a  s e r i e s - p a r a l l e l  network 

i s  when one v a r i a b l e  is  of the  form t (v,w) and t h e  o t h e r  i s  y  (x) , where x i s  i n  a  

d i f f e r e n t  (u ,w)-para l le l  component f rom(v,w)and t h i s  component i n  t u r n  is  i n  



a (z,w)-parallel decomposition with z # u. For example, the (2,~)-series 

parallel network 
W 

v = u  

has y(x) and t(v,w) Z-substitutes in this configuration 
, , 

but Z-complements in this configuration 

Every other case is covered in (1) to (9). The following corollary follows 

immediately. 

Corollary 3.16: In a supply-demand model whose underlying graph is series- 

parallel, all pairs of t variables are determinant. A particular y and t 

variable are determinant if whenever they are in different parallel components, 

the t variable is interior to its component. 

As indicated in the discussion at the end of the last subsection, 

Corollary 3,16 implies that all variables in a series-parallel supply-demand 
model are determinant in the "weak" sense. 



In fact, the indeterminacy problems in Theorem.3.15 disappear if we 

modify Definition 3.14 slightly. 

Definition 3.16: Let G = ( N , A )  be a network and r .and s. two--no.dea .of G :  

Then G is called a strong (r,s)-series-parallel network if G consists of a 

single edge, or, inductively, then exist edge disjoint subnetworks G Is • • • ,Gk 

of G for which G is a strong (ri,si)-series-parallel network, i = 1, ..., k, 
and either 

1) r i = s  i+l ' i = 1, ..., k-1, the G. are otherwise disjoint, 
1 

k -- 
and G = U Gi; i.e. the parallel components are in series; 

i=l 

2) ri = r, i = 1, ..., k and 
- 

k 
G = U G. U G; i.e.? all source nodes are the same; 

i=l 1 

where 5 i s  comprised of some subset of the edges ( s  s). i = 1 y .  -, k -  i' 
A decomposition satisfying (1) will be called a strong series decomposition 

with components G i =  1, ..., k, and G. is said to be above G if i >  j. A i' 1 j 
decomposition satisfying (2) will be called a strong parallel decomposition 

- 
with components G U Gi, when E is that portion of E containing the node si. 

i i 

Pictorially, this says that G looks like either, where each Gi may be like (1) 

or (2) below. 

The example after Dcfini.ti .on 3.3.4 i.s also an example of a strong series- 

parallel network. Certainly these are series-parallel networks, so that 

Theorem 3.15 holds. Further, separating s from s by an edge ensures that i 
the only (z,s)-parallel components must have z = r, and so no variables 

could satisfy the conditions outlined above for indeterminant pairs in 



the series-parallel model. 

In particular statement (312) of Theorem 3.15 can be amended for strong 

series-parallel networks 

(3c) . . . .-complements if they lie in different components of a 
(u,v)-parallel decomposition 

so that we have the following corollary to Theorem 3.15: 

Theorem 3.17: Let M=M(G,r) be a supply-demand model for which G is a 

strong (r,s)-series-parallel network. Then all variable pairs are deter- 

minant. In particular 

(1) y variables are substitutes; 

(2) diotinct t vnrioblco arc 

(a) substitutes if they lie in different components of 

oomc otrong parallel dccompooition, 

(b) complements otherwise; 

(3) particular y and t variables are 

(a) complements if they lie in different components of some 

strong series decomposition with t above y, 

(b) substitutes otherwise. 

Multiple Sources 

Up to this point we have been considering supply-demand models where 

goods are shipped from a single supply point. to the other nodes in the 

' network. It is often the case that there are'several suppl~ points from 

which goods can be shipped to satisfy demands, so we extend our definition 

accordingly. 

Definition3.17: Let G = G(N,A). be a network and the set SC N denote the set 

of supply nodes.' Then the multiplesource supply-demand model EI(G,S) is 

defined by input variables 

output variables 

N-S Y ='{y(u)lu E N - S )  E R y F  R+ , 

and functional relation 



y(u)= 1 ~(x,u)- 1 ~(u,x) u e N - S .  (3.6.) 
(x,u) (~9x1 

Here the nodes in S produce the good, which is then shipped through the 

.:.:". j ' . '  arcs of the network, leaving residual amount y(u) at each node u in N-S. . .I '. . .:_. ...; .. . . >. . 
' , .: ,>.:.. .: . . . . .  . ' I! ... , 

, . . . . .. .. Configurations are defined according to Definition 2.2. To .describe - ..: .>.-..: . 
, . . . . .  . ,., .. . . . . , . . .  ,..,.: . :  . ... configurations in multiple source models, we .first need to prove a lemma 

about these configurations. 

Lemma 3.18: Let M(G,S) be a multiple-source supply.~demand..model,, and 

Z = (Z ,Z ) a configuration for M. Then.for every set of non-negative 
B N 

values y € S and each v E s and (tB, 0) € SX satisfying (3.6) for u € N-S, 
Y 

we have that the net flow from source nodes is non-negative; that is, , 

Proof: First note that Z contains n'o directed path between any nodes of B 
S, since then, for any set of values of Y and Z satisfying (3.6) 

B 
u e N-S, we can add a positive value E to each of the arcs of this path 

producing a second, and hence non-unique set of values for Z satisfying 
B 

these equations. Now let y and t be as specified by the lemma, and 
B 

suppose for some v € S, 

Construct set W of nodes inductively as follows: v is in W, and if x is 

in W and t(y,x) > 0, then y is in W. Suppose first that some s S-{v} . . 
is in W. Then the construction of W insures that there is a directed path 

from s to v consisting of arcs of Z a contradiction. On the othcr hand, B ' 
suppose W n S = {v). Then'since every edge going into W has t(u,v) = 0, 

we have, by adding the E q -  ( 3 . 6 )  for u € ~ - ( y )  and (3.7),, 

d(v) + 1 y(u) = 1 t(x,u) - 1 t(u,x) 
uew- {v) uew uew 

(x,u)eA (u,x)€A 

so. that 1 y(u) < 0, a contradiction. Thus (3.7) cannot occur, and 
uew- {v) 



the lema is proved. 

There is a simple transformation which reduces the multiple-source model 

to the standard single-source model while preserving determinant and non- 

determinant pairs. Let M = M(G,S] be a multiple-source supply-demand model. 

Define graph G' =. G(N',A1) by.adding to N the extra "super" supply node r and to 

E the arcs (r,s), where s € S. The single-source supply-demand model 

M' = M(G1 , r) then has input variables 

output variables 

N 
- Y' = Y;-~UY;= Iyf(u)lue~-s)U {yl(~)lues}e$, =B+, (3.9) 

and functional relation 

The configurations of M and M' are related as follows: 

Proposition3.19: Let El=M(G,S) be a multiple-source'supply-demand model and 

M' = M(G1,r) the corresponding single-source supply-demand model. Then Z = 

(Z Z ) is a configuration for M if and only if 2 '  = (Z' Z') j s  a rnnfigura- 
B' N B B '  N' 

tion for M' , when 

(the variables in Z and Z are taken to be primed here). Further, every confi- B . N  
guration of M' is of this form. . . 

Proof : Let z = ' (z  ,z' ) be a partition of the variables in M, and Z' = (Z' Z '  ) 
, . J3 N. D' N ,  

the corresponding partition in M' as defined by the theorem. First suppose 

that Z is a configuration. Let yl€$, be a set of values for Y'. We know 

rhhc yi-S I s  also a set of values fur Y in %, So that there is a unique set 

of values of Z satisfying (3.6) u € N-S. Define 
B 

, if t (u,v) E ZB 

- 1 t(x,v) + t(v,x), i.6 u = r 
(x,v) €A (v,x)€A 

, otherwise . 



Then t' E s,, since by Lemma 3.18 

for all v € S. Further, t' satisfies (3.101, u € N, and these are the 

only values Z' can have which satisfy these equations. 
B 

Conversely, if (z;~,Z&) is a configuration for M', and y % is a set 
of values for Y, then if we define 

v € N-S 

y' (v) = 1: v € s, 
there is a unique set of values tV(u,v) of Z' which satisfies (3.10), B 
u e N. It we let t be the values of t' restricted to A, then t € %, Y and 
t satisfy (3.61, u e N-S, and these are the only values Z can have which 

B 
satisfy these equations. 

Finally, let (ZW,Z") be any configuration for M', and consider (ZB,ZN) 
B N 

to be defined 

Then by the converse argument above, (Z Z ) is a configuration of M, and 
B' N 

this completes the proposition., 

Determinant pairs in multiple-source models can now be found by con- 

sidering the corresponding single-source model and applying Proposition 3.19. 

! 

Corollary 3.20: Let M=M(G,S) be a multiple-source supply-demand model, .- . . -- . . 
and M' = M(G' ,r) the corresponding single-source model. Then two variables 

are complements (substitutes, independents) in M if and only if the corres- 

ponding variables are substitutes (complements, independents) in M'. 

Another i i s ~ f i i l   pier.^. o f  i.nformation can be gained from this transformation. 

Suppose we wish to treat the supplies at each node u € S as variables in 

the model by adding equations 



Then t h e  v a r i a b l e  s ( u )  i n  M corresponds p r e c i s e l y  t o  t h e  v a r i a b l e  t ( r , u )  i n  

M ' .  With t h i s  correspondence,  Corol lary  3.20 extends  e a s i l y  t o  s ingle-  o r  

mult iple-source supply-demand models wi th  supply v a r i a b l e s .  , 

The Transpor ta t ion  Network 

To f i n i s h  t h e  s e c t i o n ,  we cons ide r  a s p e c i a l  c l a s s  of m u l t i p l e  source  

models, namely, those  whose only  edges j o i n  supply and demand nodes. 

Def in i t ion  3.21: A t r a n s p o r t a t i o n  model i s  any mul t ip le-source  supply- 

demand model M = M(G,S), when G = G(N,A) has  the  p roper ty  t h a t  every a r c  

i n  A i s  of t h e  form ( u , v ) ,  u € S ,  v € N-S. 

Corol lary  3.20 and t h e  succeeding d i s c u s s i o n  a l low u s  t o  g ive  a complete 

d e s c r i p t i o n  of determinacy ' i n  t r a n s p o r t a t i o n  models. - 

Theorem: Let  M = M(G, S) be a t r a n s p o r t a t i o n  yode.1. - Then t h e  determinacy 

of v a r i a b l e s  i n  M can be descr ibed a s  fo l lows:  

I. s -va r i ab les  a r c  independent; 

11. v a r i a b l e s  y(u) and y(v) a r e  

( i )  s u b s t i t u t e s  i f  u and v a r e  ad jacen t  t o  t h e  same node, 

( i i )  independent o therwise;  

111. v a r i a b l e s  s ( u )  and:y ('v) a r e  

(i) complements i f  : (u,v) i s  an a r c ,  

( i i )  independent o therwise;  . 

I V .  vari ,ab<s s ( u )  and t(w,z) a r e  

( i )  compl.ements i.f 11 = . w ,  

, (ii) substitutes i f  u # w and (~1.21 i .s an arc., . . 

( i i i )  independent o therwise;  

V. v a r i a b l e s  y(v)  and t (w,z)  a r e  

( i )  complements i f  v = z ,  

( i i )  s u b s t i t u t e s  i f  v # z and (w,v) i s  an a r c ,  

( i i i )  complements i f  v # z and v and z a r e  ad jacen t  t o  

a common node d i s t i n c t  Icuul w , '  

( i v )  indeterminant  i f  both  ( i i )  and ( i i i )  hold ,  

(v) independent o therwise;  



V I .  v a r i a b l e s  t ( u , v )  and t(w,z) a r e  

( i )  s u b s t i t u t e s  i f  u = w o r  v = z ,  

( i i )  complements i f  n # w,  v # z ,  and (u ,z)  o r  (w,v) 

is  an a r c ,  

( i i i )  s u b s t i t u t e s  i f  u # w,  v # z ,  and v and z a r e  

ad jacen t  t o  a node d i s t i n c t  from u and w,  

( i v ) .  indeterminant i f  both  ( i i )  and ( i i i )  ho ld ,  

(v) independent otherwise.  

Proof:  Transform M i n t o  the  corresponding si:ngle-source model If' = M(G! , r )  

a s  i n  P ropos i t ion  3.19. Now we can l is t  t h e  e leven conf igura t ions  i n  

which any of the  cond i t ions  ( i )  t o  ( i v )  of Lemma 3.5 f a i l s ,  a s  they appear 

i n  t h e  theorem 

[ s  (u) , t (w, z> I : 

I V i  (c)  
r r 

Any of these  subnetworks can bc cirtcnded t o  a configlira t i  on Z for  M' . I n  

t h e  cases  denoted by S t h e  corresponding p a i r s  a r e  s t r i c t  Z-subs t i tu tes ,  and 

i n  cases  denoted by C they a r e  s t r i c t  Z-complements. I n  every o t h e r  c a s e ,  

the  v a r i a b l e s  must be independent,  and i n  t h e  case  where e i t h e r  V(ii) ,  and 

V(ii . i )  o r  VI.(,ii). and V I ( i i i )  both hold,  t h e  v a r i a b l e s  must be indeterminant .  

i his proves t h e  theorem. 



Note that the only indeterminant pairs are [~(v) ,t(w,z) 1 or 
[t (u,v) , t (w, z) 1 in the following configuration: 

The definition of determinacy wh1p.h we have developed is the same in 

spirit as that of Greenberg, namely one which correlates variables by measuring 

their mutual affect on other variables under certain minimal operating 

conditions (configurations). For a particular configuration of a 

linear model, the definitions match exactly. We have imposed 

further restrictions on the allowable configurations with the aim of 

est=blishing a realistic, and at the same time a more easily satisfiable, 

measure of correlatio~ between variables in a large-scale model. For our 

purposes, the definition has served to uncover determinacy in network models, 

specifically those relating to supply-demand or series-parallel networks. 

The concept of configuratiun, however, will clearly be dependent on the 

class of models being investigated. A configuration could be taken 

to mean for instance: optimal solutions to a linear program, parito 

optimal solutions to a multi-objective program, or basic feasible solutions 

to a set of linear inequalities. The resulting determinacy can highlight 

different perspectives in relationships between , the variables in a model. 

Furthermore, the definition of determinacy itself is subject to modification. 

Dereminacy, as it now stands, takes into account only the mutual affect 
. -- 

of a pair of variables. Studying determinacy in terms of the effect of 

another variable on this pair produces an entirely different viewpoint for 

variable relationships. One might, in fact, define determinacy as a hybrid of 

thesetypesofrelationships- T t  is also .possible to consider a definition uf 

determinacy which is more continuous, that is, which measures the degree of 

a relationship rather than the substitute-dependent-complement trichotomy. 



A concept such a s  determinacy, however, i s  b e s t  developed i n  p r a c t i c e .  I t w i l l  

be i n t e r e s t i n g  t o  s e e  what measure of determinacy emerges a s  t h e  concept i s  pu t  t o  

work on models used f o r  po l i cy  a n a l y s i s  and dec i s ion  making. To t h i s  end, we 

have given a s  genera l  a  framework a s  p o s s i b l e  f o r  de f in ing  determinacy, s i n c e  

t h e  more ways one has  of looking a t  c o r r e l a t i o n  and r e l a t i o n s h i p s  i n  models, 

t h e  more i n s i g h t  one can g a i n  i n t o  t h e i r  structure, imbedded b i a s e s  and 

opera t ing  c h a r a c t e r i s t i c s .  
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