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ABSTRACT 

Electron m i  croprabe analyses of natural rhyol i t e  gl ass reveal 

compositional gradients 10-15 pm wide adjacent t o  microphenocrysts .of 

plagioclase,  a1 kal i fe ldspar ,  and magnetite. 

gradients has  previously been interpreted as indicat ive of 

disequilibrium between l i q u i d  and solid.  

not i n  compositional equilibrium, temperatures determined from the 

The presence of such 

If  c rys ta l s  and l iquid are 

compositions of coexisting mineral phases might be erroneous. 

Gradients may be a t t r ibu ted ,  however, t o  diffusion controlled 

c rys t a l l i za t ion .  

comparison of cha rac t e r i s t i c  t r a n s p o r t  distances and thickness of 

compositional boundary layers the  model of T i l l e r  e t  a l .  (1953) is  

deemed inappropr i a t e .  The microprobe d a t a  are consistent with the 

Because convection o f  magma i s  i n d i c a t e d  based on a 

. model of Burton, Prim, and S l ich ter  (1953) i n  w h i c h  t he  l iquid i s  

stirred by convection and the c rys ta l s  are surrounded by a 

diffusive-advective boundary layer.  Computed apparent and ?qu i1  ibr ium 

d i s t r i b u t i o n  coef f ic ien ts  for natural rhyol i tes ,  combined with ,- 

publ i shed  diffusion coeff ic ients  for  K ,  y ie ld  l inear  growth ra tes  f o r  

feldspars on the order of 7x10-7 cm sec-1, s imilar  t o  experimentally 

determined equilibrium growth rates. 

consis tent  w i t h  a model of diffusion controlled c rys ta l l iza t ion  i n  

The analytical  d a t a  are  

fo r  na tu ra l  s i l i c i c  l iqu ids ,  and  the  u t i l i za t ion  of coexisting phases 

thermometry remains reasonable in the presence of narrow composi t 

gradients. 

onal 



TABLE OF CONTENTS 

Page 

A B S T R A C T . .  . . . . . . . . . . . . . . . . . . . . iii 

L I S T O F F I G U R E S  . . . . . . . . . . . . . . . . . . . . .  * .  V 

L I S T  OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . v i  

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . v i 1  

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 

ANALYTICAL RESULTS .-. . . . . . . . . . . . . 5 

DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 19 

CONCLUSIONS . . . . . . . . . . . . . . . . .  . . *  i . . . .  26 

REFERENCES . . . . . . . . .'. . . . . . . . . . . . . . . . . 28 
Y 



Fi qure 

L I S T  OF FIGURES 

Page 

1. Photomicrographs o f  feldspar microphenocrysts: a )  
Sanidine, b )  Plagioclase . . . . . . . 3 

2. Reconnaissance t raverses  of glass adjacent t o  magnetite 
microphenocrysts . . . . . . . . 8 

3 a .  Detailed t raverses  a t  2 pm intervals  o f  glass adjacent 
t o  sanidine and plagioclase microphenocrysts i n  obsidian 
sample MR75-14 . , . . . . . . . 10 

3b. Detailed t raverses  a t  2wn intervals  o f  glass adjacent 
t o  sanidine and plagioclase microphenocrysts i n  obsidian 

I sample MR75-20 . . . . . . . . . . 12 

4.  Feldspar analyses p l o t t e d  i n  terms o f  mole percent . 16 



LIST OF TABLES 

0 
Tab1 e 

1. 

2. 

3 .  

Microprobe analyses of glass  2 pm from crystal-glass 
in te r face  and bulk composition remote from c rys t a l s  

Average feldspar compositions determined by electron 
microprobe. . . . . . . . . . . . . . . . . . . . 
E q u i l i b r i u m  in te r fac ia l  segregation coef f ic ien ts  ( ko)  
and e f fec t ive  segregation coeff ic ients  ( k )  f o r  assium 
between san id ine  and l iquid (g lass )  . . . . . 

. 

Page 

6 

15 

24 



ACKNOWLEDGEMENTS 

Research reported on herein was funded by Department o f  Energy w 
contracts EG-78-C-07-1701 and DE-AC07-78ET28392 t o  the University of 

Utah. Thoughtful reviews by Drs. Franz Rosenberger and Francis Brown 

markedly improved the quality o f  this report and are greatly 0 

w 

appreciated . 



I NT RODUCT ION 

The assumption of equilibrium between phases i s  c r i t i c a l  t o  the 

I n  a previous application o f  any geothermometer t o  natural systems. 

study of a s i l i c i c  volcanic system associated with the Roosevelt Hot 

Spr ings  therinal area (Evans,  1978) use was made o f  the iron-titanium 

oxide geothermometer of Buddington and Lindsley (1964) and the two 

feldspar  geothermometer o f  Stormer (1975), t o  calculate  eruptive 

temperatures. The present study was undertaken t o  determine i f  

equilibrium d i d  ex i s t  between phases present in two high s i l i c a  

rhyol i tes .  The c r i t e r ion  selected t o  evaluate the s t a t e  of 

equilibrium i n  the two rhyol i tes  was the presence o r  absence o f  

compositional gradients adjacent t o  feldspar and  magnetite 

microphenocrysts. 

Previous work on this problem i n  natural systems i s  sparse. 

B o t t i n g a  e t  a1 (1966) documented the  presence of compositional 

gradients adjacent t o  plagioclase c rys ta l s  i n  basal t ic  glass.  They 

suggested t h a t  diffusion i n  a compositional boundary layer  next t o  

plagioclase i s  the ra te  determining s tep i n  plagioclase growth, and 

t h a t  f luctuat ions i n  the  concentration o f  consti tuents i n  the  boundary 

layer  resu l t  i n  osc i l l  atory zoning. Anderson (1973) a1 so reported 

compositional gradients adjacent t o  ol ivine and plagioclase from a 

Hawaiian basal t .  His resu l t s  were similar t o  Bottinga's i n  magnitude 
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growth. 

experimental results concluded t h a t  t he  reported absence of gradients 

in calcium and sodium by Bottinga e t  a l .  (1966) i s  problematical 

because these elements would be expected t o  be depleted adjacent t o  

Smith (1974) in a review of previous work and more recent 

Y 
. 

0 plagioclase. Experimental determination o f  the  diffusivity o f  calcium 

by Magaritz and Hofmann (1977) indicates t h a t  gradients i n  calcium 

could develop during plagioclase growth depending on the crystal 

@ growth rate, as will be discussed i n  more detail below. Sibley e t  a1 . 
(1976) discussed the development of osci 11 a tory  zoning in p l  agi ocl ase 

and re1 ated i t s  development t o  transient constitutional supercooling 
0 i n  the interfacial liquid. / 

I n  th i s  s tudy ,  two samples of obsidian containing approximately 

5% rnicrophenocrysts were selected for analysis  . These samples are 

from the interior o f  two volcanic domes i n  the Mineral Mountains,  w 

southwestern U t a h  (Lipman, e t  a1 ., 1978). An attempt was made t o  

detect compositional gradients adjacent t o  microphenocrysts o f  

sanidine, plagioclase and magnetite by electron microprobe analyses. Y 

Figure 1 shows photomicrographs of representative grains o f  sanidine 

and oligoclase. Average g r a i n  sizes for these minerals are 0.3 mm and 

0.5 m, respectively. The feldspar grains are euhedral in habit. The 

magnetite grains are so small t h a t  their morphology i s  obscure. Most 

appear t o  be subhedral cubes o r  octahedrons. 

9 
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Figure 1 .  Photomicrographs o f  feldspar microphenocrysts a )  Sanidine, 

b )  Plagioclase (Black dots and black margins on upper and 

right side are ink markings). 

3 



ANALYTICAL RESULTS 

A thorough analysis of the glass matrix f a r  removed from crys ta l s  

was undertaken t o  es tabl ish the degree of homogeneity of the glasses. 

Chemical analyses of the  two obsidians studied are  presented i n  Table 

1. All constants except H20 were determined with a n  electron 

microprobe using a beam diameter of 50 micrometers. The analytical 

precision i s  indicated t o  ,+ one sigma. H20 values were determined on 

the  bulk sample by a modified Penfield method and 

assumed t o  be i n  t h e  glass. 
t 

A main objective of t h i s  study was t o  o b t a i n  

analyses of the glass matrix as  close t o  c rys ta l l  - 

a l l  water was 

precise chemical 

ne phases as  

possible.  In order t o  accomplish this  a one micrometer beam was used 

on our ARL-EMX 

t rans la ted  manually w i t h  the  beam i n i t i a l l y  located on a 

microphenocryst. A t raverse  was then made outward across the 

mineral -glass interface and continued fo r  approximately 30 t o  50 

micrometers i n to  the glass.  A step l e n g t h  of 2 micrometers was used 

i n  order  t o  e s t i m a t e ,  a s  nearly as possible, t h e  concentration o f  

electron microprobe. The stage of the  microprobe was 

. elements i n  the glass immediately ad jacen t  t o  a mineral gra in .  This 

s tep  interval  a l so  allowed location of the mineral-glass interface t o  
- 

a precision o f  1 micrometer. 

provided on the stage drive of the  electron microprobe with backlash 

removed before each t raverse  was begun. 

Step distance was measured on the scale  

As a preliminary s tep,  reconaissance traverses were made a t  5 pm 

intervals which established t h a t  gradients were present ad jacent  t o  

small g ra ins  o f  magnetite and feldspar.  The resu l t s  o f  these 
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h Table 1. Xicroprobe analyses of glass 2um from crystal-glass  . 
in te r face  and bulk composition remote from crystals .  
;‘dues g i v e n  in weight percent oxide .  

0, 

7 5 - 1 4 
21:m from 2 ~ m  from . Bulk 
Sanidi ne Plagioclase Composition 

W 77.3 77.2 76.5 S i  02 

A1 203 11.9 11.8 12.6 
FeO 0.50 0.55 0.53 

0.40 0.30 0.38 19 CaO 

4.5 4.6 

4.6 
Icp (0.14) 

i v 1 R  7 5 - 20 

2un from 2pm from B u l k  
S a n i d i  ne Plagioclase Composition 

dD 

( l a )  

0.5 

0 02 

0.08 

0.02 

0.1 

0.2 

0.5 

0.2 , 

0.08 

0.03 

0.1 

0.2 
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reconaissance traverses f o r  magnetite a re  presented in Figure 2.  

Because of t h e  small grain size of the magnetite detailed traverses 

were not undertaken. 

The d i rec t ion  of the gradients shown in Figure 2 are those t o  be 

expected from growth of magnetite. Constituents which a re  not 

stoichiometric components of magnetite (Si02, Al2O3, K20) are 

preferen t ia l ly  re jected d u r i n g  growth and consequently b u i l d  up  i n  the  

boundary layer .  Iron however shows a decline due t o  i t s  preferential 

i ncorporation i n t o  magnetite. 

low t h a t  gradients cannot be resolved i n  the boundary layer.  Chemical 

components a r e  presented as oxides on a l l  f igures  solely as a matter 

Cal c i  um and t i  t a n i  um contents a re  so 

of convenience f o r  easy comparison w i t h  b u l k  values fo r  oxides i n  the 

glass .  

bans fe r r ed  d u r i n g  crystal  growth. 

I t  should not be inferred t h a t  these are  the actual species 

Various attempts were made t o  analyze f o r  sodium, b u t  a l l  fa i led  

because of i t s  h i g h  v o l a t i l i t y  i n  glass under the  microprobe beam. I f  

the beam diameter was increased, the gradien t  could n o t  be resolved, 

whereas, i f  sample current was lowered w i t h  t he  beam diameter 

maintained a t  one micron, vo la t i l i za t ion  continued t o  vanishingly 

small sample currents .  Water as well could not be analyzed. Perhaps 

. 

an ion microprobe m i g h t  be able t o  analyze f o r  water in the glasses 

s tudied bu t  i t  i s  doubtful i f  present instrumentation could resolve a 

gradient i n  water w i t h i n  a distance 10-20 pm from a crystal  boundary. 

Analytical r e su l t s  f o r  detai led t raverses  adjacent t o  feldspar 

I n  boundary layers adjacent t o  c rys t a l s  a re  presented i n  Figure 3.  

both sanidine and plagioclase the direct ions of enrichment o r  
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Figure 2. Reconnaissance t raverses  o f  glass adjacent t o  magnetite 

rnicrophenocrysts. Error bars show precision o f  analyses 

t o  one sigma. Note: Components plotted as oxides f o r  

convenience only. 
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Figure 3a. Detailed traverses a t  2 pm intervals  o f  glass  adjacent 

s a n i d i n e  and plagioclase microphenocrysts i n  obsidian 

sample MR75-14. Shaded areas encompass a1 1 analytical 

r e su l t s  obtained. Note: components plotted as oxides 

convenience only. Tick marks on abscissa labeled w i t h  

chemical symbols a re  concentrations o f  components i n  

crystal  1 i ne phases . I 

t o  

fu r  
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Figure 3b. Detailed traverses a t  2pm intervals  o f  glass adjacent t o  

sanidine and plagioc3ase microphenocrysts i n  obsidian 

sample MR75-20. Shaded areas encompass a1 1 analytical  

r e su l t s  ob ta ined .  

convenience only. 

Note: Components plotted as oxides f o r  

Tick marks on abscissa, labeled w i t h  

chemical symbols, a r e  concentrations o f  components i n  

yi, 

crystal  1 ine phases. 
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depletion are i n  accord w i t h  a crystal  growth model. Constitutents 

incorporated preferent ia l ly  i n t o  the sol i d  (A1203, K20) are  depleted 

in the boundary layer ,  whereas SiO2, which i s  lower i n  feldspar t h a n  

i n  t he  l iqu id ,  i s  concentrated i n  t h e  boundary'layer. T h e  direction 

of t h e  g r a d i e n t  fo r  CaO i s  also compatible with crystal  growth, as  i t  

i s  depleted adjacent t o  plagioclase. Average values f o r  components 

Y .  

4d 

2pm from the crystal-glass  interface,  obtained during the gradient 

studies, are a l so  given i n  Table 1. a, 

Feldspar microphenocrysts were careful ly  analyzed on the electron 

microprobe as par t  of the  present study i n  order t o  assess intra-grain 

zoning and var ia t ion of composition between grains. Figure 4 presents V 

the r e su l t s  of microprobe analyses o f  approximately twenty grains from 

W 

the two obsidians studied. 

fe ldspars  i s minimal , averaging approximately 2-3 mol e percent. 

Inter-grain va r i ab i l i t y  i s  a l so  minimal, aga in  on the order of 2-3 

As can be seen, zoning w i t h i n  i n d i v i d u a l .  

mole percent. The average compositions o f  feldspars a re  given i n  

Table  2. Previous analyses of oxide phases separated from glasses by Y 

heavy 1 i q u i d  extraction indicated they were homogeneous (Evans, 1978). 

A curious feature  i s  t h e  presence of a l b i t e  rims on some sanidine 

microphenocrysts in  each of the two glasses.  These rims are 1-2 um 

wide, barely analyzable on the microprobe, and remarkably uniform i n  

composition. 

Y 

Analyses of these rims are shown i n  Figure 4 .  Rims are  
Y 

present on approximately one quarter  of the sanidines analyzed and d o  

n o t  a f f ec t  the  magnitude-or direct ion of gradients as compared t o  

those adjacent t o  sanidines without rims. T h e  rims are  seldom 

continuous around a given g r a i n  b u t  do tend t o  follow any 
t.1 
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Table 2 .  Average feldspar compositions determined by electron 
microprobe. 

Y 

Y 

V 

MR75-14 MR75-20 
Sanidi ne Pl agiocl ase Sanidi ne Plagioclase 

Si 02 66.7 65.5 66.5 65.3 

TOTAL 

19.4 

0.21 

0.20 

10 .o 
4 045 

20.9 19.7 21.4 

0.24 0.20 0.22 

1.91 0.20 1.88 

1.83 10.2 1.79 

9.31 4.76 9.52 

101 .o 99.7 101.6 100.1 

Two feldspar 720°C 7 1 5 O C  
geot he rmomet er  
temperature 
(Stormer , 1975) 

W 
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Figure 4 .  Feldspar analyses plotted in terms o f  mole percent. 

c i r c l e s  represent sanidi ne and pl agiocl ase microphenocrysts, 

t r i ang le s  are a l b i t i c  rims discussed i n  t e x t ,  and  squares 

are  whole rock analyses plotted in terns  o f  normative 

Fil led 



#
 

Y
 

v u #
 

V
 

Y
 

Y
 

.rs 

ud 

W
 

c
 

17 



c 
18 

\ 

irregularities present. Simi 1 ar rims have been described by Gilbert 

(1938) and Hildreth (1979) for feldspar of the Bishop T u f f ,  and were 

interpreted by them t o  be late stage vapor deposited phenomena. This 

mechanism i s  a possible explanation f o r  the rims in the Mineral 

Mountains obsidians b u t  their presence on sanidines i n  compact glasses 

rather t h a n  porous pumices i s  difficult  t o  interpret. F 
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DISCUSSION 

There i s  l i t t l e  doubt  t h a t  t h e  compositional gradients are  caused 

by crystal  growth, t h i s  i s  substantiated by both the magnitudes and 

direct ions o f  the  gradients determined. I n  order t o  assess possible 
1 

departure from equilibrium which may be represented by the 

compositional gradients preserved i n  the glasses s t u d i e d ,  some 

judgement must be made regarding the mode of crystal  growth. Growth 

may have  been either steady s t a t e  or transient i n  nature. 

There are various theoretical  models f o r  crystal  growth which may 

be applied t o  the  analytical  data.  For steady s t a t e  growth the models 

of T i l l e r  e t  a1 . (1953) or Burton e t  a1 . (1953) may be applicable. 

Other theore t ica l  models a re  avai 1 ab1 e f o r  transient growth (see 

Rosenberger , 1979, Chapter 6 ) .  \ 

Transient c rys ta l  growth i s  growth for which the r a t e  of 

c rys t a l l i za t ion  i s  time-dependent. Two c r i t e r i a  may be used t o  decide 

whether crystal  growth was t ransient  o r  n o t .  The f i r s t ,  and most 

obvious, i s  the presence or absence of zoning i n  c rys ta l s .  Zoning  is  

absent or minor i n  feldspars i n  the obsidians studied. 

i s  zoned t h i s  indicates  t h a t  t h e  crystal  growth rate variea during 

crystal  1 i za t ion .  The  functional dependence between growth rate and 

zoning has recent ly  been modeled by Haase e t  a1 . (1980) f o r  

plagiocl ase . 
interplay of:  

composition, ( 2 )  the  stoichiometry o f  the  so l id i f ica t ion  reactions, 

( 3 )  the diffusion of melt species,  and ( 4 )  t he  motion o f  the growing 

crys ta l  rim. I f  zoning is  absent steady state c rys ta l l iza t ion  i s  

If  a k r y s t a l  

They show t h a t  osci 11 atory zoni ng resu l t s  from t h e  

(1) t h e  dependence of growth on melt and solid surface 
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assumed to  be the mode of growth and no time dependence of the  four  

fac tors  above existed d u r i n g  growth of the c rys ta l .  

A second c r i t e r i a  of steady s ta te  c rys ta l l iza t ion  is  the presence 
? 

of well developed face ts  on the feldspar c rys ta l s .  

varied w i t h  time preferential  growth of cer ta in  crystal  faces would 

I f  growth r a t e  

have taken place. 

devel opment of a to l l  and swall ow-tail morpho1 ogies would be expected. 

Petrographic study indicates feldspar c rys ta l s  i n  the glasses s tudied  

are tabular t o  equidimensional and are therefore interpreted t o  have 

If  t rans ien ts  in growth r a t e  were extreme the  

grown under steady s t a t e  conditions. 

The approach t o  equilibrium between sanidine and plagioclase may 

be assessed by comparing growth ra te  d a t a  from experiment (Swanson, 

1977)  and calculated growth ra tes  for  t h e  feldspars i n  the analyzed 

samples. In order t o  proceed w i t h  a calculation of growth rate two 

items merit discussion. First ,  w h a t  i s  meant by "equilibrium"? In 

crystal  growth from the  melt, equilibrium i s  confined loca l ly  t o  the 

crystal- l iquid interface.  This local equilibrium i s  a function of the 

in te r fac ia l  mass t r ans fe r  kinet ics  controll ing t ransport  of material 

from the l iquid t o  the sol id .  How f a r  t h i s  in te r fac ia l  or local 

equilibrium deviates from bulk equilibrium between sol id  and l iquid i s  

controlled 

rate .  

by t ransport  kinet ics  i n  the l iquid and t he  crystal  growth 

Secondly, t h e  convective s t a t e  of t he  l iquid neids t o  be known 

i n  order t o  decide on an appropriate crystal  growth model. 

l iquid i s  s t a g n a n t  then the model of T i l l e r  e t  a l .  (1953) i s  

appropriate. 

forced, and has reached a steady s t a t e  condition, then the model of 

I f  the 

However, i f  t h e  l iquid i s  convective, e i t h e r  f r ee  or  
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Burton et  a l .  (1953) i s  appropriate. 

I n  order t o  decide upon a n  appropriate l iquid flow regime a 
' charac te r i s t ic  dis tance f o r  mass transport  near the crystal- l iquid 

in te r face  can be conveniently calculated. This distance i s  Y '  = D K / V ~  

or d i f fus iv i ty  divided by crystal  growth rate (Rosenberger, 1979). 

For feldspars this distance i s  on the order of 100 t o  1000 urn; 

assuming a d i f f u s i v i t y  f o r  potassium of 1x10-8 cmZ/sec and growth 

rates of 1x10-6 cm/sec t o  1x10-7 cm/sec (data from Margaritz and 

Hofmann, 1978 and Swanson, 1977) .  Because this character is t ic  

distance i s  subs tan t ia l ly  greater t h a n  the observed thickness of the 

boundary layer i n  the  glasses studied, i t  serves as s t rong evidence 

for convective motion d u r i n g  the growth of microphenocrysts. The 

impetus for  convection i s  a matter of speculation: 

a magma chamber caused by a thermal gradient, or forced convection 

caused by movement of the magma t h r o u g h  a volcanic conduit a re  

poss ib i l i t i e s .  

f r e e  convection i n  

Addit ional  evidence f o r  thorough mix ing  of the magma is  seen i n  

chemical analyses of a rhyol i te  f l o w  erupted pr ior  t o  the domal 

. material described here. Four analyses (Evans ,  1978), one a t  the 

d i s t a l  e n d  of t h e  flow, two a t  a n  intermediate distance from the  

source and one analysis  close t o  the vent are chemically 
i 

indistinguishable from one another. T h i s  flow i s  approximately 0.1 t o  

0.2 km3 i n  volume, a volume considerably greater  t h a n  t h a t  of any of 

the domes. I t  i s  apparent then t h a t  substantial  volumes of 

compositionally homogeneous magma existed from which crys ta l l ine  

phases could grow. Beyond the  compositional boundary layers there  i s  
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evidence t h a t  t h i s  homogeneity was maintained by convective mix ing  of 

the magma, b u t  on what  scale th i s  convection operated i s  unknown. 

Recent s tudies  of experimentally determined growth ra tes  for  

feldspars have been conducted by Fenn (1977)  and Swanson (1977) .  

Swanson's data are par t icu lar ly  pertinent because his 1 iquid 

compositions are comparable t o  those of the glasses of t h i s  study. 

Fenn searched for compositional gradients adjacent t o  his synthetic 

feldspars and found none. However, the technique he used would not  

have revealed gradients of the magnitude detected i n  the present 

study. 

experiments . 
Swanson made no a t tempt  t o  measure gradients i n  his 

Growth ra tes  may be calculated by adopting the  model of Burton, 

Prim and S l i ch te r  (1953) t o  describe t h e  segregation of potassium i n ,  

the l iquid dur ing  crystal  growth. I t  i s  important  t o  s t r e s s  t h a t  the 

Burton-Prim-Slichter model i s  a hybrid; i n  the original paper mixing 

of t h e  f l u i d  was forced by rotating the growing c rys t a l ,  a technique 

common i n  metallurgy, This technique generates a forced convective 

regime around the growing crystal w h i c h  gives r i s e  t o  a momentum 

t r ans fe r  boundary layer  accounted fo r  i n  t h e i r  model as a stagnant 

boundary 1 ayer. Within t h i s  s t a g n a n t  boundary layer  diffusion was 

purported t o  be the dominant mode of mass t ransfer .  

known t o  be physical l y  unreal i s t i c .  Rosenberger (1979)  has  p o i n t e d  

This model i s  now 

out t ha t  the  B.P.S. re la t ionship i s  not res t r ic ted  t o  rotated systems 

and a p p l i e s  t o  any diffusive-convective growth s i t u a t i o n  so long as 

the boundary layer  thickness i s  properly defined. 

Wilson (1978a, 1978b)  fur ther  c l a r i fy  the  def ini t ion o f  the boundary 

Recent papers by 
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layer  i n  the B.P.S. 

For the crude 

relat ionship will be 

ko + 
k =  

where ko i s  t h e  "equi 1 

i s  the bulk segregaticn 

i s  the d i f fus iv i ty  of 

boundary 1 ayer thickness 

dominates over convective 

application of t h e  

l iquid and so l id s  a re  

sat i sf i ed fo r  geol ogi  

I t  i s  possible t c  

from the  in te r face  t o  

re la t ionship.  

calculat ion of growth rate t o  follow the  B.P.S. 

Lsed i n  t he  form: 

k0 

(:,-ko) exp (-6'Vc/D) 

i brium" interfacial  segregation coeff ic ient ,  k 

coef f ic ien t ,  Vc  i s  the crystal  growth ra te ,  0 

the component under consideration and 6 '  i s  the 

w i t h i n  which diffusive-advective transport 

t ransport .  Another assumption necessary for 

B.P.S. re la t ionship i s  t h a t  the  densities of the 

equal ( o r  nearly s o ) ,  which is  generally 

cal materi a1 s . 
estimate ko for potassium u s i n g  analyses a t  2w-i 

approximate the in te r fac ia l  equilibrium values. 

. k may be calculated f om the  b u l k  values for glasses and feldspar.  1 
The estimates f o r  k ard 

d i f fus iv i ty  f o r  potassium 

Magaritz and Hofmann 

DK = 0.0050 exp(-26.0 

The temperature used 

geothermometer of Stormer 

boundary layer  w i d t h ,  

presented i n  Figure 3 .  

10pm crn). For 

i s  calculated t o  be 

ko f o r  b o t h  glasses are  g iven  in Table 3 .  The 

i s  calculated from the relationship given by 

( 1 9 7 8 ) :  

x lO3/RT) 

has t h a t  calculated from the two-fel dspa r  

( 1 9 7 5 )  (Table  2 ) .  Finally 6', the diffusion 

i s  determined d i r ec t ly  from the  analytical  d a t a  

The boundary layer thickness for potassium i s  

sample MR75-14 a crystal  growth rate for-sanidine 

7x10'7 un/sec and f o r  sample MR75-20 the  r a t e  i s  
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Tab le  3. E q u i l i b r i u m  i n t e r f a c i a l  segregat ion c o e f f i c i e n t s  (ko) and 
e f f e c t i v e  segregat ion c o e f f i c i e n t s  (k) f o r  potassium 
between san id ine  and 1 i q u i d  (g lass) .  

Sampl e 

75-14 

75-20 

, 

k0 

2.38 

2.83 

k 

2.17 

2.26 
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1x10-6 cm/sec. These values compare favorably w i t h  growth rates 

r3 determined by Swanson for  an undercooling of 100-200°C. (Swanson's 

diagrams are di f f i cul t t o  in te rpre t  because the absci ssa i s apparently 

mislabeled i n  his Figure 3a. )  

below t h e  l i q u i d u s  fo r  sanidine migh t  be less  t h a n  indicated above, as 

wou ld  be expected in order t o  develop the  euhedral morphology of 

sanidine observed i n  the glasses o f  the present study. 

I t  i s  possible t h a t  the undercooling 

w 

In the work of 

3 Fenn (1977), undercool ings of 2OoC t o  400C lead t o  the development o f  

crystal  morphologies s imilar  t o  those shown in Figure 1. 

Y 
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CONCLUSIONS 

T h e  presence of compositional gradients ad jacent  t o  feldspars 

apparently do not imply severe disruptions of crystal  - l iquid Y 

equilibrium d u r i n g  crystal1 ization. Rates obta ined  cornputationally, 

based on equi 1 i bri urn assumptions, are  comparabl e t o  those determi ned 

experimentally f o r  sanidine. The generation o f  compositional 
v 

gradients i s  t o  be expected fo r  any reasonable growth rate .  

Equ i l ib r ium between mineral pairs  consti tuting geothermometers, 

such as  fe ldspars ,  i s  taken t o  mean t h a t  local equilibrium exis t s  a t  

the crystal- l iquid interface,  and t h a t  through successive local 

W 

Y 

w 

3 

equi l ibr ia  ( i  .e. by vir tue o f  microscopic r eve r s ib i l i t y )  equilibrium 

between c rys t a l s  and l i q u i d  i s  obtained and hence equil ibrium between 

mineral pairs a l so  ex is t s .  

mere presence of compositional gradients i s  no t  a suf f ic ien t  condition 

t o  discount equi 1 i bri  urn between mineral s useful as geothermometers. 

Rather i t  i s  important t o  emphasize t h a t  compositional gradients are a 

natural consequence of crystal  growth from a melt even under steady 

In the context of igneous petrology the 

s ta te  conditions in which values f o r  the  d i f f u s i v i t i e s  of m i g r a t i n g  

components a re  small. Future s tudies  of igneous systems i n  which 

* mineral pa i r  geothermometers are  be u t i l i zed  should include a n  

i n v e s t i g a t i o n  o f  homogeneity of the ninerdl s and subsequent assessment 

of growth mode. In glassy samples, an  attempt should be made t o  

J detect compositional gradients, bearing i n  mind t h a t  careful 
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microprobe work may be required t o  resolve them when they are 10-20 urn 

wide w 

W 

3 
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