

TCODE--A COMPUTER CODE FOR ANALYSIS OF TRITIUM AND VACUUM SYSTEMS FOR TOKAMAK FUSION REACTORS

by

Robert G. Clemmer

FUSION POWER PROGRAM

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439

ry Prepared for the U. S. Department of Energy under Contract W-31-109-Eng-38

We are set as a set of the set of the Carlos of the

sell afre atrenet en en Narmen i strenet en en Ners s

an an an an Arstan Arstan Arstan

$$\begin{split} & A = 0 M e^{-N_{\rm eff}} M e^{-N_{\rm eff}} M e^{-N_{\rm eff}} & A = 0 \\ & Q = 0 \\ & A = 0 \\ & A$$

en en provinción de la composición de l

CONTROLOGICAL VERSION OF THE ARE LEADED FOR THE AND THE AND THE DEST AVAILABLE THE ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR

Arrist a -

1997 - A.

Results reported in the FPP series of memoranca trequently are preliminary and subject to regision.

TABLE OF CONTENTS

	<u><u>P</u></u>	age
1.	Introduction	1
2.	Fuel Cycle Scenario	1
3.	Development of Computational Algorithms	3
	3.1 Plasma and D-T Mass Balance	3
	3.2 Torus Evacuation System	5
	3.3 Neutral Beam Vacuum System	6
	3.4 Emergency Air Detritiation System (EDS)	6
	3.5 Capital Cost Algorithms	7
	3.5.1 Torus Vacuum Systems	7
	3.5.2 Neutral Beam Vacuum System	8
	3.5.3 Tritium Processing	8
	3.5.4 Emergency Air Detritiation System	9
4.	Results and Discussion	10
	4.1 Torus Evacuation System	10
	4.2 Deuterium and Neutral Beam Vacuum Systems	12
	4.3 Emergency Air Detritiation System	12
	4.4 Tritium Mass Flow Rates and Inventories	13
5.	Conclusions	15
Refe	ences	17
APPE	DIX A	19

i

-}- ▲ 1.

1 Introduction

The Argonne National Laboratory (ANL) systems code¹ was recently upgraded to include a comprehensive package (TCODE) that performs detailed parametric analyses of tritium and vacuum systems. This report is a description of that package. The TCODE was originally developed as a design tool for the analysis of tritium and vacuum systems for the near-term tokamak fusion reactors ${\rm EPR}^2$ and TNS.³ The TCODE was used to carry out parametric trade studies for these near term reactors.^{4,5} Detailed design information for the code was also obtained from the Tritium Systems Assembly (TSTA),⁶ from a TSTF proposal,⁷ and from analyses carried out at ANL and elsewhere. $^{8-14}$ The detailed reference points used to develop TCODE all include a complete fuel cycle and they therefore rather closely resemble tritium processing systems for a commercial reactor.⁸ Recently, TCODE was revised to include models for commercial reactors. Provisions for the option of a divertor vacuum system were added, so that the code can either simulate systems that evacuate the torus between burn cycles or can simulate divertor vacuum systems, which operate during the burn. The code also includes models for some of the breeding blanket and tritium recovery systems. The code is now an integral part of the ANL systems code, but it can be run independently and as such is a powerful tool for analysis of tritium and 'acuum systems.

2. Fuel Cycle Scenario

The fuel cycle scenario that was developed for TNS³ and EPR² is shown in Figure 1. Major features of the fuel cycle will be discussed below (for details, see References 2 and 3). All the portions of the fuel cycle for a commercial reactor are shown except those related to tritium recovery from the blanket. Following Figure 1, the spent DT fuel is exhausted from the torus either through vacuum ducts or divertor slots to the main vacuum pumps, assumed to be compound cryopumps with separate DT cryocondensation pumping backed by He cryosorption panels.¹⁴ From this point, the fuel is passed to the tritium facility for chemical purification, isotopic separation, and preparation for refueling as cold gas or pellets. Also shown is the neutral beam injector system, which is assumed to input deuterium atoms. There are auxiliary systems that include tritium recovery, shipment-receiving, storage, waste processing, and safety systems.

1

- I. TORUS
- 2. DEBRIS SEPARATOR
- 3. VACUUM PUMPS
- 4. SAFETY SURGE TANK
- 5. REGENERATION PUMPS
- 6. CONSOLIDATION MANIFOLD
- 7. TRANSFER PUMPS
- 8. COMPRESSOR
- 9. IMPURITY REMOVAL
- IO. ISOTOPIC ENRICHMENT
- 11.D-T STORAGE
- 12. FUEL BLENDER
- **13. COLD FUEL INJECTOR**

- 14. D₂ STORAGE
- 15. D₂ SUPPLY
- 16. NEUTRAL BEAM INJECTOR .
- 17. BEAM PUMPING SYSTEM
- **18. FUEL LIQUIFIER**
- **19. PELLET INJECTOR**
- 20. T₂ RECEIVER / STORAGE
- 21. HELIUM REMOVAL
- 22. HOLDING TANK
- 23. T2 SUPPLY HOOKUP
- 24. PURGE/EFFLUENT PROCESSING
- 25. WASTE CONSOLIDATION
- 26. WASTE DISPOSAL

Figure 1. Fuel cycle scenario for a tokamak reactor.

3. Development of Computational Algorithms

3.1 Plasma and D-T Mass Balance

The sizes and costs of the components of the tritium and vacuum system are functions of the throughput rates. Therefore, it is necessary to determine D, T, He and impurity mass flow rates throughout the cycle (Figure 1). This is done by first obtaining a mass balance for all components in the plasma chamber, then each component is followed throughout the cycle. The inputs to the TCODE that determine flow rates in the plasma e.g., fusion power (P_{th}), burn time (t_B), and fractional burnup (F_b), are calculated in plasma physics routines external to TCODE. The inputs are then used to calculate input, burnup, and exhaust rates. The amount of tritium burned per cycle B_c is given by:

$$B_{c} = \frac{P_{th} \cdot t_{B} \cdot 10^{6} \cdot 3.0}{E_{F} \cdot 10^{-12} \cdot 6.02 \times 10^{23}} = 4.99 \times 10^{-6} \cdot P_{th} \cdot t_{B}/E_{F}$$
(1)

where P_{th} = thermal power (MW), t_B = burn time (s), and E_F = energy per fusion (pJ). From this, the tritium input F_c and exhaust T_{exc} per cycle are then calculated, using the fractional burnup F_b .

$$F_{c} = B_{c}/F_{b}$$
(2)

$$T_{exc} = F_{c} - B_{c}$$
(3)

Just prior to startup, cold DT gas is loaded into the torus and the amount of tritium in grams (T_i) is

$$T_{i} = n_{i} \cdot \frac{1}{2} \cdot V_{p} \cdot 3 \cdot 0/6 \cdot 02 \times 10^{23}$$
(4)

where $n_i = DT$ ion density (ions/m³) and $V_p = plasma$ volume (m³). The amount of tritium fueled (probably as pellets) per cycle (T_{F_c}) is simply

$$T_{Fc} = F_c - T_i$$
(5)

The amount of deuterium exhausted per cycle is simply 2/3 of T_{exc} . The neutral beams, however, supply deuterium to the plasma at the rate of D° (g/cycle) which is given by

$$\dot{D}^{\circ} = \frac{P_{B} \cdot 10^{6} \cdot t_{NB} \cdot 2.0}{U_{B} \cdot 10^{3} \cdot 1.6 \times 10^{-19} \cdot 6.02 \times 10^{23}} = 0.02075 \cdot P_{B} \cdot t_{NB} / U_{B}$$
(6)

or, on a daily basis,

$$\dot{D} = \frac{\dot{D}^{\circ} \cdot 3600 \cdot 24}{t_{\rm B}^{2} + t_{\rm D}^{2}} \, g/day$$
 (7)

where $P_B = neutral beam power (MW)$, $t_{NB} = neutral beam duration(s)$, $U_B = neutral beam energy (keV)$, $t_B = burn time(s)$ and $t_D = dwell period between burn(s)$. Then the amount of deuterium input per cycle is (D_{inc}) is given by

$$D_{inc} = (F_{c} \cdot 2/3) - \dot{D}^{\circ}$$
(8)

This amount is then rationed to determine the amount of deuterium fueled as pellets and cold gas.

The eight equations and derived relationships discussed above set the mass flow rates of D and T with respect to the plasma chamber. Further, the flow rates of other species (e.g., ¹H, He) can be calculated or estimated. The helium ash in the plasma exhaust is simply 4/3 the amount of tritium burned. The other impurity levels in the plasma exhaust are scaled from estimates previously described.³ The flow rates of the individual species can now be followed throughout the system.

Tritium inventories generally scale with mass flow rates. The pump inventory is set by the regeneration time, which is likely to be about four hours, allowing time for cooldown. Since the tritium processing system including the cryogenic distillation unit operates at a constant flow, it is necessary to provide surge tanks. The other rather small inventories in the fuel processing system are scaled from TNS and EPR values. The fuel preparation inventory is based upon an estimate of liquid DT necessary for the pellet maker. The storage is assumed to be 30 days burn. The decay

4

losses from the inventories, TDPY are then calculated. The annual tritium consumption (T_{AN}) rate is calculated, including losses from burnup and production from breeding. A negative consumption value $(T_{AN} < 0)$ implies net tritium production.

3.2 Torus Evacuation System

1 -

If there is no divertor, the vacuum pumps are assumed to operate between burns, and the required overall pumping speed (S_{tot}) is

$$S_{tot} = V_{T} \cdot \ln(P/P_{o})/t$$
(9)

where $V_T = \text{torus volume (m}^3)$, P = postburn gas pressure (Pa), P_o = preburn pressure (Pa), and t = portion of the dwell period (t_D) available for pumping = t_D - t_L. It should be noted S_{tot} is a strong function of P_o and t. It is difficult to operate with t less than about 20 s. Analyses have suggested^{2,3} that P_o should be about 4×10^{-3} Pa. The required DT pump speed S_D is computed by solving the duct conductance equations:

$$S = S_{tot}/N$$
(10)

$$C_{en} = 0.059 \cdot D^2 \cdot 39.37^2 \cdot 0.86 \cdot 0.31 \cdot \sqrt{(T_G/\overline{A})}$$
(11)

$$C_{d} = 0.079 \cdot 39.37^{3} \cdot D^{3} \cdot [0.86/(39.37 \cdot L)] \cdot 0.31 \cdot \sqrt{(T/A)}$$
(12)

$$C_{ef} = [(1/C_d) + (1/C_{en})]^{-1}$$
(13)

$$S_{p} = [(1/S) - (1/C_{ef})]^{-1}$$
 (14)

where N = number of vacuum ducts, C_{en} = conductance at entrance to duct (m^3/s) , C_d = duct conductance (m^3/s) , C_{ef} = effective duct conductance (m^3/s) , T_G = postburn gas temperature (K), \overline{T} = beam duct temperature (K), \overline{A} = average molecular weight, D = duct diameter (m), and L - duct length (m). The duct conductance is strongly dependent on the duct diameter, being a function of D² and D³. There is also an optimization routine in the program which calculates the minimum duct diameter for a given pump speed.

In the program the required speed for He is calculated independently of that for DT, in the manner described above. The required helium speed then determines the area of cryosorption surface required per pump. The cryosorption surface is assumed to have a pumping speed of 50 m^3/s per square meter.

The required pump capacity is simply the product of the cycle averaged gas load rate and che loading time, which is equal to the regeneration time (4 hours).

If the system has a divertor, the pump speed is then the gas load rate divided by the pressure maintained at the pump (~ 0.01 Pa). Again the pumps are assumed to be compound cryopumps and the required He and DT speeds are calculated independently.

3.3 Neutral Beam Vacuum System

The required pump speed in the neutral beam injector is the gas load rate divided by the pressure maintained (10^{-2} Pa) . The pumps are assumed to be Zr-Al getter pumps. The required surface areas are calculated, assuming a speed of 46 m³/s per m² of surface area. The gas loads also determine the amount of deuterium in the neutral beam recycle, which will contain some impurities and will require some purification and isotopic enrichment. The tritium backstreaming into the neutral beams $(T_{\rm p})$ can be estimated by:

$$T_{B} = \frac{2 \cdot 5 \times 10^{-24} \cdot n_{i} \cdot V_{p} \cdot t_{NB} \cdot A_{BD} \cdot Z_{i} \cdot N_{B}}{A_{T} \cdot \tau_{p}^{\circ}}$$
(15)

where n_i = ion density of plasma (ions/m³), V_p = plasma volume (m³), t_{NB} = neutral beam duration(s), A_{BD} = surface area of neutral beam port at first wall, Z_i = number of neutral beam injectors, N_B = number of burn cycles per day, A_T = torus surface area, and τ_p° = particle confinement time at startup.

3.4 Emergency Air Detritiation System (EDS)

The processing rate R_{EDS} (m³/s) for the EDS is calculated by:

$$R_{EDS} = \frac{V_{B1dg}}{\epsilon \cdot t_{EDS} \cdot 3600} \ln (T'/T^{\circ})$$
(16)

where V = building volume (m³), ε = efficiency, t_{EDS} = allowable time for air detritiation operation, T' = initial tritium concentration after maximum credible release, and T° = tritium level at which EDS is shut off and building air is exhausted to the stack. The maximum credible release is taken to be the maximum tritium inventory in the reactor building including the cryopumps, the tritium recovery systems and the pellet fueling systems. The tritium storage is in a barricaded vault and the fuel processing units are located in the tritium facility building. Both volumes associated with these items are small and they require, therefore, smaller EDS processing rates. Experimental and computer modeling studies carried out at ANL¹⁷ have suggested that the cleanup time should be no longer than 48 hours.

3.5 Capital Cost Algorithms

3.5.1 Torus Vacuum Systems

The torus vacuum system is assumed to use compound cryopumping. The unburned DT fuel is pumped by cryocondensation, followed by cryosorption pumping for He.

A cryosorption pump has a unit cost of \$750 per m^3 /s pump speed for helium. The cryocondensation pump is estimated to have a unit cost of \$300 per m^3 /s. It is assumed that there are two sets of pumps operated in tandem for regeneration purposes. Conventional regeneration pumps (roots blowers, e.g.) will cost about \$300 per m^3 /s of total vacuum pumping speed. Large hard-seal metal gate valves are a development item. Available cost figures for valves up to 80 cm in diameter scale as the diameter to the 1.6 power. The derived cost algorithms area:

> He cryosorption pumping = $\$750 \cdot \$_{He} \cdot 2$ N DT cryocondensation pumping = $\$300 \cdot \$_{DT} \cdot 2$ N Regeneration pumping = $\$300 \cdot \$ \cdot \$$ Hard seal metal valves = $\$78.500 \cdot D^{1.6} \cdot 2$ N

> > 7

3.5.2 Neutral Beam Vacuum System

The neutral beam vacuum system is assumed to use Zr-Al getter panels having a unit speed of 4.6 $\ell/s/cm^2$ with a unit pumping cost of \$750/m³/s. There is assumed to be a twofold excess of area in order to allow for panel regeneration. The cost of regeneration is estimated to be 20% of the getter costs. The overall cost C_M of the neutral beam vacuum system is:

$$C_{N} = 1.4 \cdot 750 \cdot S_{NB} \cdot Z_{i} \cdot 2$$
.

where S_{NB} = required pumping speed for neutral beams (m³/s) and Z_i = number of neutral beam injectors.

3.5.3 Tritium Processing

The total cost of the fuel processing system including auxiliary equipment in the tritium facility building is dominated by a few items. These include the isotope separation unit, the EDS, the pellet fueling system, gloveboxes, and piping. The costs are based upon TNS and EPR design studies, the MLM/ANL TSTF proposal, the TSTA, and cost analyses performed at ANL. The costs in the tritium processing facility should scale as the square root of the flow rate. Furcher, there are practical minimal sizes for these items, once the decision is made to have a complete fuel cycle. The costs, C_i , therefore, of fuel processing and tritium facility items are expressed as:

$$C_{i} = C_{i}^{o} + C_{i}^{\prime} (R_{T})^{1/2}$$

where C_i^o = fixed costs, C_i^i = scaling factor, and R_T = tritium throughput rate (g/day). The derived constants C_i^o and C_i^i are listed in Table 1 below.

The capital cost of tritium recovery from the blanket $\ensuremath{\mathsf{C}_{\mathrm{TREC}}}$ is represented by:

$$C_{\text{TREC}} = \$5000... T/[T]^{1/2}$$

where \dot{T} = tritium production rate (g/day), and [T] = tritium concentration in the breeder blanket, wppm.

Item	с _о (\$к)	$C'_{o}(SK/R_{T}^{1/2})$
Double-walled transfer piping and valves	520	20.
Gloveboxes, purifiers, inst., auxiliary equipment	1700	70.
Cryogenic distillation cascade	540	22.
Misc. items – storage, waste processing, analysis, etc.	1100	16.
TOTAL FUEL PROCESSING	3860	128.

Table 1. Capital Costs Scaling Factors for Fuel Processing

3.5.4 Emergency Air Detritiation System

The EDS system is an item of significant cost. Comparisons of capital costs of existing systems showed that the average unit cost for $\sim 10^4$ cfm systems was \$500/cfm (\$1.06 x $10^6/m^3/s$). Further, there is some economy of scale. However, in practice there will be a number of smaller units (about ten) rather than one large one to provide redundancy and to provide the capability of processing tritium releases in small contained volumes as well as the reactor room. There is a minimum cost of such systems of about \$1.0 M. The cost of the EDS, $C_{\rm FDS}$ is therefore expressed as

 $C_{EDS} = R_{EDS} \cdot 1.06 \times 10^6 + 1.0 \times 10^6$

4. <u>Results and Discussion</u>

TCODE can be used for either near-term experimental reactors or for commercial reactors. The code provides options for items that may be included in a commercial reactor such as a divertor, neutral beam heating, and a breeding blanket. The code was used to calculate tritium and vacuum system parameters for the near term reactors $ITR^{3,4}$, $TNS-UP^{3,4}$ and EPR^2 as well as for some commercial reactor designs, the UWMAK series.⁸,10-12 A selected sample of the tritium and vacuum parameters for these reactor designs is shown in Table 2. Also shown in the table are parameters for a hypothetical reactor UWMAK-III M having similar characteristics to UWMAK-III¹² but with a higher fractional burnup (5.0% cf. 0.83%). The impact of the reactor design scenario upon major tritium and vacuum systems as illustrated in Table 2 is discussed below.

4.1 Torus Evacuation System

For reactor designs without a divertor, it is assumed that the torus is evacuated between burns. For those designs with a divertor, it is assumed that the divertor is similar to that in UWMAK-III, ¹² with a collection plate to absorb the thermal energy and a vacuum pumping system. In either case, the vacuum pumps are assumed to be compound cryopumps, i.e., having cryocondensation pumping of hydrogenic species (DT) and cryosorption pumping of helium. The code separately calculates required pumping speeds for the two types of species. For reactors having no divertor, the duct conductances for helium pumping were assumed to be reduced by a factor of one-third because of the presence of the cryocondensation surface ahead of the cryosorption panels. It was a significant finding that, for a near-term reactor without a divertor and with large fractional burnup (> 10%), the required speed for helium pumping (Table 2) is very high, being from one to six times the required DT pumping speed This implies severe constraints upon the design of the compound pumps because it is necessary to achieve very high helium pumping speeds and minimize conductance losses by the presence of the condensation surfaces, while preventing accumulation of hydrogenic species on the cryopanels.

10

TCODE-Version III	GA/ANL	GA/ANL	ANL.	PWMAK	UWMAR	UWMAK	PWMAR
Selected Parameter List.	<u>ITR</u>	INS-UP	ι, "R	Ţ	11	111	III M
*Burn Time (s)	30	90	64	5400	5400	1000	
*Dwell Time (s)	270	30	16	300	230	1800.	1800.
*Thermal Power (MV)	390	565	10.	5000	5000	100.	100.
*Ion Density $(Ions/\pi^3)/10^{39}$	1.48	1 40	1.30	0.75	0 75	5000.	5000.
*Particle Confinement Time (s)	1.63	1 54	5.00	e ne n	9 Gine	0	0.79
*Divertor		1.7-			0.20	1,55	(2.5)
*Fractional Burnup, FB	0.124	0.187	0.161	0.050	0.0485	ves	Ves (O oto)
*Evacuation Volume $(z,3)$	314	443	450	7000	7000	2600	(0.050)
*Number of Vacuum Pumps (Operating/Total)	376	12/24	12/24	(Distant in)		(Dia	2600.
Required Pump Capacity (kPa-a ³)	277	4 11	7 36	1 48 8 10	1 AS - 10 ⁴	(Prvertor)	(Divertor)
Required DT Pump Speed (m ³ /m)	2.37	16.6?	37.06	8 11 v 10 1	8 12 5 10 ⁴	1.07 10	5.61 X 10 ³
Required He Pump Speed (m', s)	2.67	90.96	222	8 53 - 107	8 28 1 10 3	1.07×10^{-1}	1,98 8 10
Gryopanel Surface Area (m.)	0.053	1.82	4 64	171	166	1.77 % 10	2,08 X 10 /
Cost-He Sorption Pumping (SM)	0.012	1.6	4.2	1,8	12 4	2 7	41.0
Cost-DT Condensation Pumping (SM)	0.01	0.1	0.1	48.6	48.7	64.3	11 0
Cost-Cryopump Regeneration (SM)	0.01	0.03	0.1	25.6	25.6	30 4	6.2
Cost-Hard Seal Metal Valves (\$M)	0.77	1.1	1.3	9.6	9 4	2.8	3.1
Tritium Input (gas), (g/day)	27.2	84.4	126.	18.0	18.2	21 3	1.L. C IC
Tritium Pellet Fueling (g/day)	20.9	201.	121.	1.25×10^{4}	1.21×10^{4}	7 07 - 104	1 17 - 104
Tritium Burnup (g/dav)	6.0	53.3	39.8	624.	587.	587	587
Total Tritium Inventory (kg)	0.26	1.81	1.36	38.9	28.8	82.1	28.9
Annual Tritium Consumption (kg)	0.45	14.7	9.15	-92.8	-9.32	-43.7	-44 0
Deuterium Injected (g/dav)	12.0	29.9	51.1	1.36	0.88	0.0	0.0
Deuterium Pumped in Injectors (g/day)	77.6	194.1	81.0	4.21	2.71	0.0	0.0
Tritium Backstream to Beam Pumps (g/day)	0.42	1.04	2.60	0.19	0.19	0.0	0.0
*Number of Injectors	6	6	12	16	16	11	0
Beam Pump Speed (m 1/s)	3360.	3360.	820.	1600.	1600.	0.0	0.0
Beam Getter-Pump Surface Area (m ⁺)	146.	146.	35.6	69.6	69.6	0.0	0.0
Maximum Conceivable Release, MCR (g)	67.5	189.0	144.8	8730.	23.25.	47500.	8140.
Building Volume (m ⁻)/10 ⁵	17.6	0.6	0,6	13.6	5.0	1.0	1.0
*E.D.S. Cleanup Time (hr.)	48.0	48.0	48.0	48.0	48.0	48.0	48.0
E.D.S. Flow rate (m /s)	4.31	4.67	4.58	124.3	46.5	10.7	9,68
Tritium Stacked to Environment (Ci/MCR)	3.00	3.00	3.00	13.6	10.0	5,00	5.00
Tritium Vented to Environment (Ci/MCR)	0.15	0,39	0.30	15.3	14.3	70.9	13.5
Cost-Tritium Recovery (SM)	0.0	0.0	0.0	2.1	5.7	3.7	3.7
Cost-Fuel Processing (SM)	4.9	7.3	6,8	35.3	38.5	78.9	36.0
Cost-E.D.S. (SM)	5.6	6.0	5.8	133.	50.2	12.4	11.3
Cost-Torus Evacuation (5M)	0.3	2.8	5.7	96.6	96.1	102.	24.3
Cost-Neutral Beam Vacuum System (SM)	42.3	42.3	20.7	53,8	53.8	0.0	0.0
Total Cost: Tritium and Vacuum Systems (SM	53.0	58.4	39.0	320.	244.	197.	75,2

*Input Parameters

The required helium pumping speeds for commercial reactors with divertors are very high, but rather insensitive to fractional burnup. By contrast, the required DT speeds are very sensitive to fractional burnup with UWMAK-III having a required DT pumping speed in excess of $10^{5}m^{3}/s$. This speed is reduced by a factor of five in UWMAK-III M when the fractional burnup is increased to 5%.

4.2 Deuterium and Neutral Beam Vacuum Systems

For near-term reactors the neutral beam vacuum system requirements are relatively insensitive to overall reactor design. The design of the neutral beam injectors for EPR had a higher gas efficiency than that for TNS and ITR and, as a result, the pumping speeds and costs were lower. The results than represent the uncertainty in performance of injectors of this size (60 MW, 150 keV). The characteristics of larger (200 MW, 500 keV) neutral beams are even more uncertain at present. It is clear that pump speeds and costs are sensitive to the gas loads and therefore, gas efficiencies. Also, the costs of the neutral beam vacuum systems are very high, \sim \$20 M - \$50 M.

A significant point is that the deuterium recycle (in the neutral beams) for near-term reactors ranges from 80 to 200 g/day (Table 2). This amount is as large or larger than the amount of deuterium in the main fuel stream recycle. Since the neutral beams require very high isotopic purity feed $(D_2 > 99\% \ ^2D)$, a significant constraint is placed upon the isotope separation unit in the tritium facility. The unit must process large amounts of deuterium recycle from the neutral beam. By contrast, the neutral beam feed for commercial reactors with divertors and long burn times is only a few (< 10) grams per day. Since commercial reactors burn about 400 g of D_2 per day, the high purity feed for the neutral beams can be supplied from an external source and the recycle is simply added to the reactor fuel. Therefore, the fuel processing system for a commercial plant could be simpler than that for a near-term experimental reactor.

4.3 Emergency Air Detritiation System

An item of considerable significance both from the standpoints of safety and costs is the emergency air detritiation system (EDS). The costs of such systems are primarily due to the reactor building volume and the permissible

12

cleanup time. Our earlier studies¹⁷ showed that the cleanup time should be no longer than about 48 hours. The required speed to attain this is about 0.5% of the reactor b ding volume per minute. Further, since the unit costs are about \$20,000 i or m^3/min , the cost of <u>the EDS is about \$100 per m^3 of</u> reactor building. Since this is about half the cost of the reactor building itself, the EDS is a significant cost driver.

4.4 Tritium Mass Flow Rates and Inventories

The tritium throughput rates scale linearly with the power and inversely with the fractional burnup. Since tritium inventories are determined by the throughput rates, the fractional burnup can have a substantial impact upon all tritium systems. A comparison of UWMAK-III and UWMAK-III M (Table 2) shows that there are considerable economic and safety incentives for trying to increase the fractional burnup. Increasing the fractional burnup from 0.83% to 5% dramatically lowers tritium inventories, potential tritium releases, and overall costs.

There is a further implication to this result. If tritium inventories become very high, the decay losses may become unacceptably high.¹³ The doubling time is defined as the time necessary to breed enough tritium to equal the operating inventory of the plant, plus enough tritium to begin operation of a second plant. The effect of fractional burnup upon the required breeding ratio for a number of different doubling times is shown in Figure 2. If the fractional burnup is greater than 2%, a breeding ratio of 1.10 will result in a doubling time of less than 5 years. However, if the fractional burnup is less than 1%, it will be difficult to breed enough tritium to supply future reactors. These results show that there are strong incentives to have a fractional burnup of at least 2%.

The presence of a divertor will adversely affect the achievable fractional burnup. Further, the divertor slots are not available for breeding and it is difficult to provide breeding in the zone between the divertor slots. These results show that a form of impurity control other than a divertor is desirable.

13

Figure 2. Effect of fractional burnup and doubling time upon required breeding ratio.

5. <u>Conclusions</u>

- TCODE is a powerful tool for parametric analysis for tritium and vacuum systems of .oth near-term experimental and commercial tokamak fusion reactors.
- There are strong incentives for trying to increase the fractional burnup.
- 3. A divertor adversely affects both achievable breeding ratio and fractional burnup.
- 4. For compound torus vacuum pumps, the required pumping speeds for helium may be higher than those required for DT. The ability to pump helium in a mixture of gases is a critical R&D issue.
- 5. A longer burn time will lessen the impact of the deuterium in the neutral beam recycle upon the fuel processing system.
- 6. The neutral beam vacuum system is a high-cost item. Further, there are considerable uncertainties in the characteristics of large neutral beams. This is an area requiring further study.
- The emergency air detritiation system (EDS) was identified as a significant cost driver.

Acknowledgements

The author wishes to thank W. F. Calaway and R. H. Land for many helpful discussions on the computational aspects of the program. The advice of V. A. Maroni and J. M. Mintz on areas including both tritium and vacuum systems, and of J. S. Moenich on vacuum systems, were invaluable. The author wishes to thank the assistance of Carolyn Poore in the preparation and typing of this report.

This work was supported by the Office of Fusion Energy, U.S. Department of Energy.

References

- 1. M. A. Abdou, "ANL Parametric Systems Studies," Argonne National Laboratory ANL/FPP/TM-100, November, 1977.
- W. M. Stacey, Jr., et al., "EPR-77: A Revised Design for the Tokamak Experimental Power Reactor," Argonne National Laboratory, ANL/FPP/TM-77, March, 1977.
- J. R. Purcell, et al., "GAC-ANL TNS Scoping Studies," General Atomic Company, GA-A14614, Argonne National Laboratory, ANL/FPP/77-6, January, 1978.
- 4. J. M. Mintz, R. G. Clemmer, and V. A. Maroni, "Tritium Handling Trade Studies and Design Options for the GA/ANL TNS," General Atomic Company GA-A14640, Presented at the <u>Seventh Symposium on Engineering Problems</u> of Fusion Research, Knoxville, Tennessee (October 25-28, 1977).
- 5. R. G. Clemmer and W. F. Calaway, "Impact of Plasma Performance Parameters upon the Vacuum and Tritium System Design Requirements for Near-Term Tokamak Reactors," Presented at the <u>Proceedings of the International</u> <u>Atomic Energy Agency Conference and Workshop on Fusion Reactor Design</u>, Madison, Wisconsin (October 10-23, 1977), to be published in Nuclear Fusion.
- J. L. Anderson and R. H. Sherman, "Tritium Systems Test Assembly: Design for Major Tritium Device Fabrication Review," Los Alamos Scientific Laboratory, LA-6 55-P (1977).
- W. T. Cave, W. M. Stacey, F. A. Cafasso, V. A. Maroni, W. H. Smith, W. R. Wilkes, L. J. Wittenberg, et al., <u>Mound Laboratory and Argonne</u> <u>National Laboratory Joint Proposal for a Tritium Systems Test Assembly</u>, August 6, 1976.
- R. G. Clemmer, E. M. Larsen, and L. J. Wittenberg, "Tritium Handling Breeding, and Containment in Two Conceptual Fusion Reactor Designs: UWMAK-II and UWMAK-III," Nuclear Engineering and Design, <u>39</u>, 85 (1976).
- L. J. Wittenberg, et al., "Evaluation Study of the Tritium-Handling Requirements of a Tokamak Experimental Power Reactor," Mound Laboratory, MLM-2259, November, 1975.
- B. Badger, et al., "UWMAK-I: A Wisconsin Toroidal Fusion Reactor Design," University of Wisconsin, UWFDM-68, 1975.
- B. Badger, et al., "UWMAK-II: A Conceptual Tokamak Fusion Reactor Design," University of Wisconsin, UWFDM-112, November, 1975.
- B. Badger, et al., "UWMAK-III: A High Performance Non-Circular Tokamak Power Reactor Design," University of Wisconsin, UWFDM-150, December, 1975.

- 13. W. F. Vogelsang, "Breeding Ratio, Inventory, and Doubling Time in a D-T Fusion Reactor," Nucl. Tech. <u>15</u>, 470 (1972).
- 14. J. S. Watson and P. W. Fischer, "Cryosorption Vacuum Pumping under Fusion Reactor Conditions," <u>Proceedings of the Seventh International</u> <u>Vacuum Congress and the Third International Conference on Solid</u> <u>Surfaces</u>, Vienna, Austria, September, 1977.
- 15. H. C. Stevens, Argonne National Laboratory, private communication.
- 16. J. S. Moenich, Argonne National Laboratory, private communication.
- 17. R. G. Clemmer, R. H. Land, V. A. Maroni, and J. M. Mintz, "Simulation of Large Scale Air-Detritiation Operations by Computer Modeling and Bench-Scale Experimentation," Argonne National Laboratory, ANL/FPP-77-3 (November, 1977); also published in abridged form in the <u>Proceedings</u> of the Seventh IEEE Symposium on Engineering Problems of Fusion Research, Knoxville, Tennessee (October 25-28, 1977), IEEE 77 CHIZ67-4-NPS (1977).
- B. Misra and V. A. Maroni, "Isotopic Enrichment of Plasma Exhaust from Controlled Thermonuclear Reactors by Cryogenic Distillation," Nucl. Tech. <u>35</u>, 40 (1977).
- B. Misra and J. F. Davis, "Fuel Recycle and Enrichment Scenario for Near-Term Tokamak-Type Fusion Reactors," Argonne National Laboratory, to be published.

APPENDIX A

Description of the Code

The TCODE requires as inputs approximately 50 input parameters which include plasma performance characteristics, operating conditions, component sizes and unit costs. A description of these variables and some representative values is given in the next section. As a part of the ANL systems code, the TCODE is a subroutine and many of the inputs may be calculated from other routines in the systems code. However, the TCODE is designed so that it can be used independently.

The code then uses the inputs to calculate a plasma mass balance, from which the deuterium, tritium and helium flow rates are calculated. These mass flow rates are used to calculate tritium inventories and processing unit sizes and requirements. Vacuum pumping requirements are calculated using the mass flow rates and the set of design conditions input to the program. The EDS system requirements are calculated from potential release levels and the volume of the reactor building. The determined characteristics of each unit are then used to calculate costs for each items.

Glossary of Variables

Input Parameters

Variable	Symbol Used	
Name in	in this	
TCODE	Report	Description
BBLM		Mass of breeding material, kg
BDTEM		Temperature in neutral beam pumping zones, K
BIGLA		Gas load in neutral beam pumping zone 1, Pa-m ³ /s
BIGLB		Gas load in neutral beam pumping zone 2, Pa-m³/s
BIPPA		Pressure maintained by neutral beam pumps, zone 1, Pa
BIPPB		Pressure maintained by neutral beam pumps, zone 2, Pa
BRNTIM	t _B	Burn time, s
CUEFF	ີີ	Efficiency of emergency air detritiation system (EDS)
CUTIM	t _{EDS}	Allowable time for EDS operation, hr
DEFF		Divertor efficiency
DGL		Gas load to divertor pumps, Pa-m ³ /s
DIAM	D	Diameter of torus vacuum ducts, m
DION	n í	Ion density in plasma, ions/m³
DLEN	L^{-}	Length of torus vacuum ducts, m
DNUM	N	Number of torus vacuum ducts = number of pumps on line
DPP		Pressure maintained by divertor vacuum pumps, Pa
DWELL		Dwell time, s
EFUS	$^{\rm E}F$	Energy/fusion, pj (= MeV x 0.16)
EINJ		Neutral beam energy, keV
FB	F- b	Fractional burnup
LAG	tL	Lag time, s (= portion of t _o not available for pumping
		Divertor option: IDIV = 0 (no); IDIV = 1 (yes)
PAP		Plant availability (capacity) factor
PBGT	$^{\mathrm{T}}$ G	Postburn gas temperature, K
PCAP	_	Torus vacuum pump capacity, Pa-m³
PINJ	Р _В	Neutral beam power, MW
PITEM	•	Torus vacuum pump inlet temperature, K
PPP	$r_{\rm p}^{\rm P}$ th	Total thermal power during burn, MW
PKEP	Po	Preburn gas pressure, Pa
PSP		Rated speed per torus vacuum pump, m ^o /s
REFLI	^K DT	Reflectance (particle recycle) coefficient
REGEN		Allowable time for regeneration of cryopumps, hr
SA	A T	Surface area of first wall, m ²
SABD	A _{BD}	Surface area of neutral beam port at first wall, m ²
STACK	T	Tritium level stacked after major release, µCi/m ³
TAUP	^τ p	Particle confinement time, s
TAUPS	τ¯	Particle confinement time at startup, s
TBUUN		Tritium concentration in blanket, wppm
IBREAD	BK	Breeding ratio
LINJ	t _{NB}	Neutral beam duration, s
UCEDS		Unit cost for EDS, \$/m ³ /s
UUTKIT		Unit cost of tritium, \$/C
VBLDG	v _v Bldg	Volume of reactor building, m ⁻
VELAD	v v	Plasma volume, m ²
VIUI ZNINI	Ϋ́T	volume of torus plus ducts, m
CUT UP	² i	Number of neutral beam injectors

Variable Name in	GA/ANL	ANL FY 1977	UWMAK	UWMAK	UWMAK
TCODE	TNS	EPR	I	<u> </u>	<u> </u>
UDI M/106	0.0	0.0	1 /	0 //	0 49
DDLM/TO	200	0.0	1.4	0.44	0.40
BUIEM	290.	298.	298.	298.	
	16.00	4.10	8.0	8.0	
	10.00	4.10	8.0	8.0	
	0.010	0.010	0.010	0.010	
DIFFB	0.010	0.010	0.010	0.010	1000
DKNELM	30.	64.	5400	5400	1800
CUEFF	0.99	0.99	0.99	0.99	0.99
LUIIM	48.0	48.0	48.0	48.0	48.0
DEFF	0.00	0.00	0.99	0.99	0.99
DGL	0.0	0.0	853.	853.	1080.
DIAM DIAM	0.70	0.80	0.	0.	0.
D10N/1020	1.48	1.30	0.75	0.75	0.79
DLEN	8.00	6.00	0.	0.	0.
DNUM	3.	12.	0.0	0.0	0.
DPP	0.0	0.0	0.010	0.010	0.010
DWELL	270.	16.	390.	330.	100.
EFUS	2.82	2.82	3.22	3.46	3.48
EINJ	150.	150.	500.	500.	
FB	0.124	0.161	0.050	0.0485	0.0083
LAG	2.	2.	200.	100.	10.
Vldl	0	0	1	1	1
PAF	0.20	0.625	0.85	0.85	0.90
PBGT	373.2	773.2	800.	800.	900.
PCAP/10 ⁴	0.40	1.07	1500.	1500.	2000.
PINJ	60.	60.	200.	200.	
PITEM	273.2	273.2	273.2	273.2	273.2
РРР	390.	325.	5000.	5000.	5000.
PREP/10 ⁻³	4.00	4.00	0.0010	0.0010	0,0010
PSP	30.	80.	85,000	85,000	110.000
REFLT	0.98	0.95	0,001	0.001	0.001
REGEN	4.00	4.00	4.00	4.00	4.00
SA	350.	430	6600.	6600	2400.
SABD	1.0	1.0	1.0	1 0	0.0
STACK	50.	50.0	10	20.0	50.0
TAIIP	1.63	5.00	8.28	8 28	0.55
TAUPS	3.3	10 0	10.0	10.0	1.0
TRCON	0.00	0.00	6.2	0.20	2.08
TRREAD	0.00	0.00	1 /0	1 10	1 25
TINI	5.00	5 70	11 00	7.00	1.25
UCEDS /106	1 06	1.06	1 06	1.06	1.06
	0.70	0.70	0.70	1.00	1.00
VRI DC/105	0.60	0.70	0.70	0.70	0.70
	0.00	0.00	T2.0	5.0	1.0
VI LAO VTAT	2JJ. 21/	300.	0413.	0415. 7000	2370.
	J 14 .	450.	7000.	/000.	2600.
CNTND	0.	12.	16.	16.	0.

Representative Values for Input Parameters

Output Parameters

•

Variable Name in TCODE	Symbol Used in this Report	Description
ADT	· · · · · · · · · · · · · · · ·	Average temperature of torus vacuum duct. K
AMW	Ā	Average molecular weight of species evacuated from torus, g/mole
ANTC	^T AN	Annual net tritium consumption, kg (if < 0, net production)
AREXD		Argon exhausted to fuel cycle, g/day
BPC	B	Tritium burned per cycle, g
BPDAY	NR	Number of burn cycles per day
CANTC	Б	Annual cost of tritium consumed, \$
CBREC		Capital cost of tritium recovery system, \$
CCDIST		Capital cost of isotopic separation unit (cryogenic distillation cascade), \$
CCPHE		Capital cost of cryosorption pumping of He, \$
CCSPDT		Capital cost of cryocondensation pumping of DT, \$
CEDS	C	Capital cost of EDS, \$
CEXD	EDS	Carbon exhausted to fuel cycle, g/day
CGBOX		Capital cost of gloveboxes in tritium facility, including purifiers, \$
CMISCT		Total capital cost of miscellaneous tritium facility items, \$
CNBPR		Capital cost for neutral beam pump regeneration sys- tem, \$
COND	С,	Conductance of torus vacuum duct, m^3/s
CONEF		Effective conductance of torus vacuum duct, m ³ /s
CONEN	c ^{er}	Conductance of entrance to duct, m^3/s
CPBZA	en	Capital cost of getter pumps per neutral beam in- jector - zone 1, \$
CPBZB		Capital cost of getter pumps per neutral beam injector - zone 2, \$
CPFLS		Capital cost of pellet fueling system, \$
CPIP		Capital cost of tritium puping and valves, \$
CPSA		Cryosorption panel surface area, m ²
CRPS		Capacity required equivalent cryosorption pump size, m ³ /s
CTIME		Allowable time for EDS operation, min
CTRECB	C _{TREC}	Capital cost of tritium recovery system, \$
CUFR	REDS	EDS flow rate, m ³ /s
DBINV	205	Amount of tritium needed to start a second plant, doubling inventory, kg
DBPD		Deuterium burnup per day, g
DBPDA		Deuterium pumped per day - neutral beams, zone l, g
DBPDB		Deuterium pumped per day - neutral beams, zone 2. g
DECF		EDS decontamination factor (= 1.0×10^{-6})
DF		Plasma duty factor
DFULD		Deuterium fueling rate, g/day
DGLPD		Total deuterium feed as preburn gas charge for
		startup, g/day

,

Variable Name in TCODE	Symbol Used in this Report	Description
DIA	D	Torus vacuum duct diameter, m
DIAMIN	_	Minimum torus vacuum duct diameter, m
DINJD	Ď	Total deuterium injected by neutral beams, g/day
DL	$\Delta \mathbf{D}$	Perturbation on duct diameter
DPIND		Deuterium pumped in neutral beams, g/day
DPREG		Capital cost of divertor pump regeneration, \$
DPSDT		Divertor cryocondensation pump speed for DT, m ³ /s
DPSHE		Divertor cryosorption speed for He, m ³ /s
DPSP		Divertor pump speed, m ³ /s
DTIME		Doubling time, years
EPP		Energy per burn pulse, MJ
EPS		Effective torus vacuum pump speed, m ³ /s
FIC	F	Total tritium input per cycle, g
FIFPD	L	Total tritium input per day, g
FIFPH		Total tritium input per hour, g
HEEXD		Helium exhausted to fuel cycle, g/day
HSMV		Capital cost of hard seal metal valves for torus vacuum pumps, \$
MPR		Maximum credible tritium release, g
NEXD		Nitrogen in fuel cycle, g/day
OEXD		Oxygen in fuel cycle, g/day
PBGP	Р	Postburn gas pressure, Pa
РВНЕР		Postburn He pressure, Pa
PEXD		¹ H exhausted to fuel cycle, g/day
PF		Plant Factor = DF x PAF
PFAC		Allowable fraction of pump capacity (set at 0.83)
PRHEP		Preburn He pressure, Pa
PSBZA		Neutral beam pumping speed - zone 1, m³/s
PSBZB		Neutral beam pumping speed - zone 2, m³s
QPGP		Postburn gas load, Pa-m ³
REPS	Stot	Required torus vacuum pumping speed, m ³ /s
REPSHE		Required torus vacuum pumping speed for He, m ³ /s
RETIM		Cryopump regeneration time, hr
RPCAP		Required cryopump capacity, Pa-m ³
SAPZA		Neutral beam getter pump surface area, m ²
SAPZB		Neutral beam getter pump surface area - zone 2, m^2
5f CDD	0	Cost scaling factor
SPU	5	Required effective speed per torus vacuum pump, m ³ /s
SPUNE	C-	Required he pump speed (at the pump), m ³ /s
טנטר ממעית	зþ	Required DI pump speed (at the pump), m ² /s
ΙΟΓυ Ταρυ		Tritium purnup per day, g
TRRDV		Tritium burnup per nour, g
TCDVS		Tatal appital appt of dimentar maximum and
TCNRP		Total capital cost of neutral 1
TONDI		iocal capital cost of neutral beam vacuum pumps, \$

Output Parameters (Continued)

Variable Symbol Name in Used in TCODE this Report Description TCNBVS C_N T' Total capital cost of neutral beam vacuum system, \$ TCON Maximum tritium concentration after MPR, µCi/m³ TCTHS Total capital cost of tritium handling systems, \$ TCTVS Total capital cost of tritium and vacuum systems, \$ TDPY Tritium decay losses, g/year $r_{R_{T}}^{T}$ Tritium exhaust per cycle, g TEXC TEXD Tritium exhaust per day, g TEXH Tritium exhaust per hour, g TFLBD Tritium backstreaming flux to neutral beams, g/m²-s T_{Fc} TFULC Tritium pellet fueling per cycle, g TFULD Tritium pellet fueling per day, g TFULH Tritium pellet fueling per hour, g Total tritium feed as preburn gas charge for startup, TGLPD g/day TGLPH Total tritium preburn gas charge, g/hr TINBL Tritium inventory in blanket, g TINFP Tritium inventory - fuel preparation, g TINIS Tritium inventory - isotopic separation unit, g TINPL Tritium inventory - liquefaction unit, g TINPS Tritium inventory-- surge tank, g TINVP Tritium inventory - torus vacuum pump, g TINVS Tritium inventory - storage for 30 days burnup, g TPIND Т_В Tritium backstreaming to neutral beams, g/day TPPD Tritium production rate, g/day TPMW Cycle average thermal power, MW TREL Tritium stacked to environment at end of EDS operation, Ci TRINV Tritium inventory - tritium recovery system, g T_i TSTART Initial tritium in preburn gas charge for startup, g TTINV Total tritium inventory, g TVENT Tritium vented to environment during EDS operation after MPR, Ci VCCPHE Capital cost of He cryosorption pumping, \$ VCPDT Capital cost of DT cryocondensation pumping, \$ VCPSA He cryosorption pump surface area, m² VCREG Capital cost - torus vacuum pump regeneration, \$ VENT Vent rate to maintain reactor building at negative pressure, m³/min EDS volumetric flowrate, % bldg. volume/min VFR VHSMV Capital cost of hard seal metal valves for torus vacuum system, \$ Y Y A constant for duct conductance calculations (= 0.86 for cylindrical duct).

Output Parameters (Continued)

LISTING OF CODE

LEVEL	21.7	T E JAN	73) OS/360 FORTRAN H
		COMPILE	• 0	PTIONS - NAMF= MAIN, OPT=00, LINECNT=57, SIZE=0000K,
		-		STURGE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, XREF
		c		TCODE-VERSION III 1/13/77
		C		CALCULATES TRITIUM FACILITY AND VACUUM SYSTEMS PARAMETERS
		C		FOR TOKAMAK-TYPE FUSION REAGTORS
		c		
		. C		INPUTS TO ICODE
1.54	0002			DIMENSION TILLET(20), TILLE2(20)
150	0003	,		PEALT4 LAGINERUIMPR
120	0004	•	1	K*AU(5,10,5NU=999) (LEL, LE2
1 2 1	0009	•	10	PURMA!(2004)/2044) DEAD(E 201 RENTIN DUELL IAC DAE
1.24	0000	' r		REAULYIN STANIIMSIN THAIDAELILAADIEAE Bantin-Sudai timeiss angli-Fijeli timeiss
		č		DREFIGENTIAL AUXILADIA TY EACTID (EDACTION)
T S M	0.007	, C		PARTERNI ATALADILITI PALION ITRACIONIA DEANIS-211 INIV
1 54	2001		21	
	5000	C	<u></u>	
TSN	0009	, Ŭ		READ(5.20) VIDT.SA.VPLAS.PSP.PCAP
		c		VTOT=VOLUME OF TOPUS(M**3). SA=SURFACE AREA OF TORUS(M=+2).
		ć		VPLAS= PLASMA VOLUME(M++3), PSP=RATED SPEED PER PUMP(M++3/S).
		ć		PCAP=PUMP CAPACITY(PA-M**3)
ISN	0010	-		READ(5.20) DION.TAUP.PPP.EFJS.REELT
		c		DION-ION DENSITY(IONS/M**3), TAUP=PARTICLE CONFINEMENT TIME(S),
		С		PPP=POWER(TH) PER BURN PULS=(MW), EFUS=ENERGY PER FUSION(PJ),
		с		REFLIEREFLECTANCE COEFFICIENT
I SN	0011			9EAD(5+20) DEFF+F8+DGL+DPP
		C		DEFE=DIVENTOR FFFICIENCY(FRACTION), FB=FRACTIONAL BURNUP,
		C		DGL=DIVERTOR GAS LDAD(PA-M**3/S), DPP=DIVERTOR PUMP PRESSUPE(PA)
I SN	0012			PEAD(5+20) PBGT+PBGP+PREP
		с		PRGT=POSTBURN GAS TEMPERATURE(K)+P8GP=POSTBURN GAS PRESSURE(PA)+
		C		PREP=PREBURN GAS PRESSURF(PA)
15N	2013			READ(5,20) DIAM, DLEN, DNUM, PITEM, REGEN
		C		DIAM=VACUUM DUCT DIAM=TER(M), DLEN=DUCT LENGTH(M),
		C C		DNUM=NUMBER OF VACUUM DUCTS=NUMBER OF VACUUM PUMPS ON LINE,
		ι		PITEMEPJMP INLET TEMPERATURE(K), REGEN = REGENERATION PERIOD(HRS)
1 S N	0014			READ(5-20) ZNINJ, EINJ, PINJ, BDIEM, HINJ, SABD
		L C		ZNINJENJMBEP DE NEUPAL BEAM INJECTINS.
				FINJENFU'KAL BEAM ENERGYIKEVIPINJENEUKAL BEAM PUNERIMNI, Dotem Temberature of Neuton, beam Ductivi
		č		DUITMAL THE RAIDE UT NEUTRAL DEAM DUCTATA
TSN	0015	Ľ		TINGENEOTRAL DEAM CONATIONIST SADDESURTAL AREA OF DEAM DUCTIMETZY
1 314	0012	r		TAILOFEDATICLE CONETNEMENT TIME AT STARTID
		ř		BIGLA-GAS LOAD DER IN ECTOR-CHAMBER! ($PA-M**3/S$).
		č		BIPPA=PRESSURF(PA) AT BEAM PUMPS - CHAMBER I .
		č		BIGLB=GAS (DAD PER INJECTOR - CHAMBER2 (PA-M**3/S).
		č		BIPPB=PRESSURE(PA) AT BEAM PUMPS - CHAMBER 2
1 SN	0016	-		RFAD(5,20) CTRIT, BP, TBCON, BBLM
		С		BBLM=MASS OF BRFEDER BLANKET(KG)
		č		CTRIT=COST OF TRITIUM(\$/CURIE), BR=BREEDING RATIO,
		ċ		TBCON=CONCENTRATION OF TRITIUM IN BREEDER BLANKET(PPM)
ISN	0017			READ(5,20) UCEDS, VBLDG, CUTIN, STACK, CUEFF
		С		UCEDS=UNIT COST FOR EMERGENCY AIR DETRITIATION SYSTEM(*/M**3/S),
		c		VBLDG=VOLUME OF REACTOR BUILDING(M**3)+
		С		CUTIM=ALLOWABLE TIME FOR CLEANUP OF MAJOP SPILL(HRS).
		С		STACK=TRITIUM LEVEL AT WHICH BUILDING AIR IS FXHAUSTED(UCI/M**3).

LISTING OF CODE (Cont'd)

		С		CUEFF=E.D.S. REMOVAL EFFICIENCY(FRACTION)
1 SN	0018	-	20	FORMAT (6E12.0)
		C		MASS FLOW RATES - FUEL CYCLE
TSN	0019			5PP=PPP*BRNTIM
ISN	0020			TPMH≈EPP/(BRNTIM+DWELL)
I SN	0021			DF=BRNTIM/(BRNTIM+DWELL)
I SN	0022			₽F≠P&F≠DF
TSN	0023			TSTART=DION#VPLAS#2.5E-24
ISN	0024			BPC=BRNTIM*PPP*4.99F-06/EFUS
ISN	0025			TEXC=(BPC/FB)-BPC
ISN	0026			BPDAY=24.*3600./(BRNTIM+DWELL)
ISN	0027			TEXD=TEXC+BPCAY
I SN	0028			TFULC=TEXC-TSTART+BPC
I SN	0029			TFULD=8PDAY#TFULC
ISN	0030			TGLPD=BPD4¥#TSTART
ISN	0031			TGLPH=TGLPD/24.
ISN	0032			TEXH=TEXD/24.
ISN	0033			TFULH=TFULD/24.
ISN	0034			TBPD=BPC+BPDAY
ISN	0035			TBPH=TBPD/24.0
ISN	0036			FIC=TFXC+BPC
ISN	0037			FIFPH=TEXH+T8PH
ISN	2038			FIFPD≈TFX0+TBPD
ISN	0039			Lbb0=18bu+8b
ISN	0040			
ISN	0041			PEXD=0.031*HEFXD
1.57V	0042			しておりそし。LGDF Hたたんじ
TCN	0045			
TSN	0045			
TSN	2046			AREXD=1.124+HEEKD
	3040	С		TRITIUM INVENTORIES
I SN	2047	č		TINVP=TEXD*REGEN/24.
TSN	0048			TINVS=30.0#TBPD
TSN	0049			TINPS=TINVP+1.7/(DNUM+1.0)
ISN	0050			TINPL=5.0+0.01*TEXD
ISN	0051			TINIS=5.0+0.025*TEX0
ISN	0052			TINBL=BBLM*TBC3N*0.001
ISN	0053			TRINV=BR*TBPC+0.5
ISN	3054			TINFP=50.0+0.50*TFULD
ISN	0055			TIINV=TINVP+TINVS+TINPS+TINPL+TINIS+TINFP+TINBL+TRINV
ISN	0056			TDPY=0.056*TTINV
ISN	0057			ANTC=365.24*TEPD*(1.0-BR)*PAF+TDPY
ISN	0058			LANIL=AN'L*LIKI!*9700.
151	0059			
151	1000			UBINVEU.U
TCM	0001		774	171070L'818UJ 97 11 11 11 11 11 11 11 11 11 11 11 11 11
L D'V	1065		110	19881-30762471987710371607 307807-3 0x17180471805-71881
TSN	0065			DITTMELIUTT INTETINGUETINGE DTTMELIEI./A.OSKIKALAGIITARDY-A.OSKKORINGI/TEDOMI
TCN	0066		777	CONTINUE
	4 G./ U	C		NEUTRAL BEAM AND DEUTERIUM CYCLE
TSN	0067	ς.		DBPD=0.67*TBPD
ISN	0068			DINJD=1793.*PINJ*TINJ/(EINJ*(BRNTIM+DWELL)+1_0F-06)
		C		PUMPING SPEEDS, COSTS, SAES GETTER SURFACE AREA
		~		

LISTING OF CODE (Cont'd)

•

* * *	0010		
1 S N	0069		
15N	0070		PSBZB=BIGLB/IBIPPB+1.0E=061
! SN	0071		CPEZA=750.*PSBZA*2.0
I SN	2072		CPBZB=750.*PSBZB*2.0
ISN	0073		SAPZA=(PSBZA/46.0)*2.0
1 SN	0074		SAPZB=(PSRZB/46.0)*2.0
ISN	0075		TCNBP=[CPBZA+CPBZB]*ZNINJ
ISN	0076		CNEPR=0.20*TCN9P
ISN	0077		CBRFC=0,20*TCNBP
TSN	0078		TCNBVS=TCNBP+CNBPP+CBREC
T SN	2079		DBP0A=BIGLA#TINJ#BPDAY
T SM	0080		2BP2B=BIGLB*TINJ*BP2AY
ISN	0081		0P1ND=(080DA+0800B)*4.0/(8.31*BCTEM+1.0E+06)
TON	1082		TEL PD=12.55-241 *DIDN*VPLAS*TIN 1/154*TAUPS+1.05-08)
TSN	1083		TPIND=TELBD+SABD+7NIN I+RPDAY
1 S M	0084		
TSN	3095		
1	103.)	c	
1 5 21	1084	C.	
TCN	3090		
151	2000		
1.2.1	0088		
ICN	1085)PS=1=0.0
ISN	0090		3PSH#=0.0
T SN	1091		CPSA=0.0
Icvi	0093		DPREG=0.0
ICN	· JO 9 3		H SMV=0.0
1 5 12	0094		TC^VS=0.0
ISN	1095		Y=0.86
ISN	096		PFAC=0.83
I SN	0097		PRGP=4+15*010N*PBGT*(1+9+FB)*VPLAS/(VTOT*6+023F+23)
TSN	098		IF(101V.20.0) 50 TO 111
T S N	0100		R#TIM=PCAD*PFAC/("GL*3600.)
TSN	0101		PPCAP=DGL #REGEN#3600./PEAC
ISN	2102		1PG2=0.)
ISN	0103		9FPS=0.)
TSN	0104		SPD=0.0
TSM	1105		CONTN = 0
TCAL	0106		
1 5 1	1117		CONSE-0.0
101	0109		
1 C N	3106		
133	3109		
124			FIAMINEU./
121	111		· RPS=PP AP/133.32
121	5112		
150	0113		
151)114		KEDCHE=0.0
<u>I</u> SN	0115		PSP0H==0.0
ISN	0116		SPOH==0.0
ISM	0117		VCPSA=0.0
ISN	0118		VCCPHE=0.0
I SN	0119		VCPCT=0.0
ISN	0120		VCFTG=0.0
! SN	3121		VH SMV= 0. 0
t sn	0122		TCVS=0.0
ISN	0123	110	DPSP="GL/DPP

ISN	0124		DPSDT=f1.0-FB}+DPSP
- ESN	0125		DPSHE=FB*DPSP*2.0
1.5N	0126		CPSA=DPSHF/50.
151	0127		CCPHE=750.*PPSHF*2.0
1 SN	0128		CCSPDT=300.*0P50T*2.0
TEN	0129		DPREG= 300. * DPSP
TSN	0130		HSMV=((CPSA)++0.8)+(7.85+0.)+2.0
TSN	0131		TERVS#CEPHE+ECSPRT+PPPEG+HSW
TSN	0132		GO TO 400
	VIJL	c	TORIS EVACUATION SYSTEM-RETATEN RURNS
T C M	0133	~ i i	
1 3 4	0135	~ ''	PEACEALLOWARE ERACTION OF DUMP CAPACITY
TCM	0134	••	
TSM	0135		# CF = 5 GF = 2 111
TEN	0134		
TEN	0130		370-777377NUM 31-615NV30-37
1 5 4	0120		
1.2.4	0120		
15%	0139		478-340-3 Concu-o Scottoliteto Alferio Slationeri/Amultero Sl
1.5 1	0140		UNRY=U.U7*[]:A*=2.UJ*[*U.3]*[[[UU06]/A*W]**U.7]
1 5 1	0141		
120	3142		UN."=0.1779*("1A*3.01*(*/)L*0.3L*((A')//A#WI**0.31
ISN	0143		$CON^{2}F = I \cdot O/((1 \cdot O/CON^{2}N) + (1 \cdot O/CON^{2}))$
ISN	0144		SPDP=1.07((1.07SP ⁻)-(1.07CP ⁴ F))
ISN	0145		EPS=1.0/((1.0/PSP)+(1.0/CON2F))
ISN	0146		RETIM=PCAP*PFAC*[BRNTIM+DWFLL]*CNUM/(QPGP+3600.)
ISN	0147		PPCAP=(REGEN+PCAP+PEAC)/9ETIM
ISN	0148		CRPS=PPCAP/133.32
1 S M	0149		IF (SPN.GT.PSP) G0 T0 50
I SN	2151		CST1=FONENZ(PTA++2.0)
ISN	2152		CST2=CONC/(DIA**3.0)
TSM	2153		
15N)154		DTEST=FIA
T SN	0155	4	1 BTFST=1.0/((1.0/(CST1*(?TEST**2.0}))+(1.0/(CST2*(?TEST**3.0))))
ISN	0156		CTEST=1.0/((1.0/BTEST)+(1.0/PSP))
I SN	0157		IF (SP7-FTFST) 43,49,42
TSN)1 58	4	2 DTEST=0155T*2.0
ISN	0159		GO TO 41
ISN	2160	4	3 BTEST=1.0/((1.)/(CST1*(PT*S[**2.0]))+(1.0/(CST2*(PT*ST**3.0))))
TSN	0161		CTFST=1.0/((1.0)BTFST)+(1.0)PSP))
T SN	0162		IF (SPD-FTEST) 46.49.44
154	1163	4	4 DTEST=DTCST+(DINC+DTEST)
TSN	0164		EINC=0.1+DINC
TSN	0165		50 70 43
TEN	0166	4	6 TOLEP=SPD-CTEST
TEN	0167	•	IE (0.1+T0) ER1 48-49-49
ISN	0168	4	
TCM	0160		
TCN	3170		
TCAL	2170	4	2 JAN 1419-1 1 31737827 CO TO 50
1 2 4 T C AL	3172	ç	
TCAL	0172	2	J PRIIZIOFJI 1 CODMATIGN, Ferrer Mini RTD, MOC COMPEDATE FERENCES
TCM	2172	2	L CONTRA CONFERENCES IN CLUNCE CONVERGENTERTETTERT]
1.5.1	J1/4	ל	
1 3 N	5175		FDD12F-FDFFD96FF24V DD45D-0.05+005D
1	0177		
ESN	0177		REPAREVITIECALOG(PRHEP/PRHEP))/(OWELL=LAG)

î,

I SN I SN	0178 0179	PSPDHE=REPSHE/DNUM SPDHE≠1.0/(1.0/PSPDHE)-(1.5/CONEF))
ISN	0180	VCPSA=SPDHE750.
1.5N	0181	
TSM	0102	
TSN	0105	VLSMV=/DIAM##1.6\#/7.85E+04\#2.0#DNHM
TSN	0104	
TSN	0186	
	0100	C EMERGENCY AIR DETRITIATION SYSTEM (F.D.S)
I SN	0187	MPR=TINFP+TRINV+TINVP
ISN	0188	TCDN=9.6F+09*MPR/VBLDG
ISN	0189	CTIME=60.0*CUTIM
ISM	0190	VFR=(100.0/(CUFFF*CTIME})*ALOG(TCON/STACK)
1 SN	0191	CUFR≈VFP*VBLDG+0.01/60.0
ISN	0192	DFCF=1.0F-06
I SN	0193	VENT≈0.0010*VBL∿G/60.0
ISN	0194	TVENT=MPR*(1.0-STACK/TCON)*JECF*(VENT/CUFR)*9600.
ISN	0195	TREL=1.0F-06*VBLDG*STACK
I SN	0196	CEDS=CUFR*UCEDS+1.0F+06
151	0197	CIRECH=5000.*IPP'/([BCUN**3.5]+.0001)
15%	0198	
TCN	0199	
TCN	0200	CCD131=8+32+03*37+3+42+03 CCD04=8+32+03*37+3+42+03
TSN	1201	
TSN	0202	
TEN	0204	
ISN	3205	TETVS=TETHS+CEDS+TEVS+TEDVS+CTRFCP
		c
		C ******NUTPUTS*********
ISN	0206	WRITE(6,60) TITLF1,TITLE2
ISN	0207	60 FORMAT(1H1//2044/2044//)
ISN	0208	WRITE(6,61)
I SN	0209	61 FORMAT(8X, PLASMA AND BURN CYCLE+,/)
ISN	0210	WRITF(6,62) BRNTIM,DWELL,LAG,DF,PAF,PF,EPP,PPP,TPMW,DIGN
ISN	0211	62 FORMAT(9X, **BURN TIME (S) =*+F8.1+/+
		19X, **DWELL TIME (S) =*, F8.1,/,
		29X, **LAG TIMF (S) =*, F8.1,/,
		$49X_{7}$ + 7 +
		$210A_1 \cdot PLAN1 \cdot PAULUR = -1 \cdot 10 \cdot 12 \cdot 12 \cdot 12 \cdot 12 \cdot 12 \cdot 12 \cdot 1$
		TOTAL TO ACT PER DUPN PULSE (MJ) (PPEI2-24/)
		ALAX (V) E A VERACE DURED (MA) = 'JOFDALJ/,
		GIVAT CICLE AVENAGE FOREN CHMI - V 0-1777
TSN	0212	WRITE(6, 63) VPI AS TAIP REFIT FEIS FR
I SN	0213	63 FORMAT(9X, **PLASMA VOLUMF(M#*3) =*.F8.1./.
		19X. '+PARTICLE CONFINEMENT TIME(S) ='-F8.2./.
		29X, *REFLECTION COEFFICIENT =', F8.3./.
		39X, * ENERGY PER FUSION (PJ) =*, F8.2,/,
		49X, *FRACTIONAL BURNUP =*, F8.4)
I SN	0214	WPITE(6,998)
ISN	0215	998 FORMAT(///,9X,**INPUT PARAMETERS*)

ISN	0216	WRITE(6,60) TITLF1,TITL52
I SN	0217	WRITE(6,71)
ISN	0218	71 FORMAT(8X; TORUS EVACUATION SYSTEM PARAMFTERS*/)
ISN	0219	WRITE16,72)0GL,DPP,DPSP,DPSJT,DPSHF,CPSA,CCPHF,CCSPDT,DPRFG,
		XHSMV+TCDVS
ISN	0220	72 FORMAT(9X, **GAS LOAD-DIVERT)R (PA-M**3/5) =*IPE12.2./.
		19X. + DIVERTOR PUMP PRESSURE (PA) =1.512.2./.
		29X. +DIVERTOR PLIMP SPEED (M##3/S) =+.F12.2./.
		39X. 101 VERTOR PUMP SPEED-DT (M**3/S) =1. E12.2./.
		Agy This FOR PUMP SPEED-HE (M##3/S) =1.Et2.2./.
		274 ; C_{1} (Contracting Symplex Diverting to -1 , C_{2} , C_{3} , T_{1}
		(73, 7, 103) = 01 PUMPING UIV. (3) $-7712(2, 2, 7, 7)$
		OTA- UNDER DIA. FUMP RECENERATION STF- (512.2.1)
		99X, COST DIV. HARD SPAL WEIAL VALVE - + + 12.24/
		19X, 10/AL COST DIV. VACUUM SYSTEMIST=1,=12.2)
ISN	0,221	WRITE(6,80) VITT, SA, DNUM, DIAM, DLEN, PSP, PLAP, PFAC
121	0222	$80 = 0 \text{ RMA1} \{9X, * \in VACUATION \ VOLUME(M**3) = *, FB_{\bullet}I_{\bullet}/,$
		19X,"*SURFACE AREA (M**2) =',F8.1,/,
		29X, **NUMBER OF DUCTS =**+58.0,/,
		39X, ** DUCT DIAMETER (M) =*, F8, 2, /,
		49X,'*DUCT_LENGTH(M) =',F8.2,/,
		59X,**PATED_SPEED/PUMP(M**3/5} =*+F8.1,/,
		79X,**PUMP CAPACITY (PA-M**3) =*+1PE12.2./,
		89X, **PUMP LOADING FACTOR =*, OPFB.2)
ISN	0223	WRITE(6,100) PAGT,PAGP,PREP,QPGP,REPS,PAHEP,PRHEP,REPSHE
I SN	0224	100 FORMAT(9X, **POST BURN GAS TEMP(K) =*, FB.1,/,
		110X. POST BURN GAS PRESSURE (PA) = . 1PF12.2./.
		29X. *PREBURN PRESSURE (PA) = *. F12.2./.
		310X. POST BURN GAS LOAD (PA-4**3) = +.512.2./.
		410X. * PEQUIRED DT SPEED (M**3/5) =*. E12.2.4.
		510X, POST BUSN HE PRESSURE (PA) = +. F17.2./.
		610X. PREBURN HE PRESSURE (PA) =
		710x. (REQUIDED HE SPEE) (M##3/51 =(.512.2)
TCN	0225	WRITE (6, 101) DITEMS SDD. CONFESEDS, RETIMS DIAMIN, RECENS DRAD.
121	046.2	VICTOR CONDERVICES A VICTORE VICTOR AND
ESN	0226	ACATANAN AND AND AND AND AND AND AND AND AND
1.7.4	027.0	101 - 0.000 + 0.000
		$110A_1 \cdot r \cdot r \cdot u(r + C) \cdot u(r + C) \cdot (r $
		$210x_1 + 5001 + 50000 + 4000 + 4000 + 4000 + 5000 + - + - +$
		410X, 4EG WERATION PERIOD (HJORS) = 7, -8.3, /,
		510X, MINIMUM DUCT FIAMETER (M) = + + F8.4.7,
		610X, FIXED REGENERATION (IME (HOUPS)=+,FR.2,/,
		710X, PEU ^A , PUMP CAPACITY (PA-M**3) = +1PE12.2.7,
		810X, CAPACITY =0. PUMP. SIZE (M**3/S)=",EI2.2,/,
		910X;*REQUIRED PUMP SPEED (M**3/S))=*;0PE8.2,/;
		110X, PEQO. HE PUMP SPEED (M##3/S) = = + F8.2,/,
		210X,"CRYOPANEL SURFACE AREA (M**2) =",F8.4,/,
		310X, COST-HE SORPTION PUMPING (\$) =',1PEL2.2,/,
		410X,'COST-JT CONDENS. PUMPING (\$) =',Fl2.2,/,
		510X, COST-PUMP REGENERATION (\$) =',E12.2./.
		610X,"COST-HARD SEAL METAL VALVES (\$)=",Fl2.2,/,
		710X, 'TOTAL VACUUM SYSTEM COST (\$) =",E12.2)
T SN	0277	WRITF(6,998)
I SN	0228	WRITE(6,60) TITLE1,TITLE2

ISN	0229	WRITE(6,103)	
ISN	0230	103 FORMATISX, TRITIUM AND FUEL PROCESS	ING PARAMETERS (/)
ISN	0231	WRITE(6,104) TSTART, BPDAY, TGLPH, TGL	PD,BPC,TBPH,TBPD,TEXC,TEXH,TEX
1 C M	0222	AUSTRULLSTRULHSTRULDSTLUSTICSTIFFUSFIFFU	DN (C) -1.59 6.7
1.2.4	0232	ALOY, ANIMOCO DE RUDN CYCLES/34V	#1.59 1.7.
		ALUAN ATRITIUM CAS LOAD/HOUD (C)	
		TICKY TRITICH CAS LOADING (DAY 10)	
		ZION, TRITINA BURNUD DED CHCLE (C)	
		STOR TOTTLUM BURNUP PER CICLE (0)	
		DIUX, TRITIUM BURNUP PER MUURIGI	****F8*3*/*
		TLOV STOLTTUN EVUNUE DED EVELE PER	=' 10512 2./
		ALAK TREATUN EXHAUST PER CICLE (G)	
		BIUR, TRITIUM EXHAUST PER HOUR TOP	
		STORE TREATEN CUELTIC DED CHELT GE	
		TIDAY SKITION FUELING PER UTGLE (G)	
		210X, TRITION FUELING PER HOUR (G)	F' + E12 + 2 + / +
		SIDA, TRITIUM FUELING PER DATIGI	*********
		410X, TREATUM INPUT PER CYCLE (G)	**: 12:2:7:
		610X, TRITIUM INPUT PER HOUR (G)	=',E12.2./,
		710X, TRITIUM INPUT PER DAY (G)	=',E12.2)
ISN	0233	WRITE(6,106) HEEXD, PEXD, CEXD, UEXD, N	EXD+AREXD
I SN	0234	106 FORMAT(IOX, HELIUM EXHAUST PER DAY	(G) =',F8.3,/,
		910X, PROTIUM EXHAUST PER DAY (G)	=', F8.3,/,
		110X, CARBON EXHAUST PFR DAY (G)	=',F8.3,/,
		210X, OXYGEN EXHAUST PER DAY (G)	=',F8.3,/,
		310X, NITROGEN EXHAUST PER DAY (G)	=',F8.3,/,
		410X, ARGON EXHAUST PER DAY(G)	=',F8.3)
1 S N	0235	WRITE(6,105) BR,TINVP,TINVS,TINPS,T	INPL, TINIS, TINFP, TINBL, TRINV,
		XTTINV, TPPD, TDPY, DBINV, DTIME, ANTC, CA	NTC
ISN	0236	105 FORMAT(9X,**BREEDING RATIO	=",F8.2,/,
		19X; TPITIUM INVENTORIES (G)********	***************************************
		210X, VACUUM PUMPS	=**F8.1*/*
		310X, "STORAGE	=*+F8.1,/*
		4LOX+ SURGE TANK	=*,F8.l,/,
		510X. LIQUEFACTION UNIT	=*.F8.1,/,
		610X, CRYOGENIC DISTILLATION CASCADE	±',F8.1,/,
		710X, FUEL PREPARATION	=';F8.1;/;
		810X, BREEDER BLANKET	="+F8.1,/+
		910X, TRITIUM RECOVERY SYSTEM	='+F8.1,/+
		110X, TOTAL TRITIUM INVENTORY	='+F8.1./+
		210X, TRITIUM BRED PER DAY (G)	=',F8.2,/,
		310X, TRITIUM DECAY PER YEAR (G)	=',F8,2,/,
		CLOX, DOUBLING INVENTORY(G)	= 1 PE12.2./,
		CLOX, POUBLING TIME (YEARS)	=',0PF8.2./.
		410X, "ANNUAL TRITIUM CONSUMPTION (G)	=',1PE12.2,/,
		STOX, "ANNUAL COST OF TRITIUM IS)	** • E12.2)
I SN	0237	WRITE(6,998)	
ISN	0238	WRITE(6,60) TITLE1,TITLE2	
T SN	0239	WRITE(6,200)	
TSN	0240	200 FORMAT (BX. DEUTERTUM AND NEUTRAL BEA	H SYSTENI./)
ISN	0241	WRITE(6.201) BIGLA-BIPPA, BIGLB-BIPPE	PINJ-EINJ-TINJ-ZNINJ-TFIRD
		XPSR7A.PSR7R.CPR7A.CPR7R.SAP7A.SAP7R.	TCNBVS
TSN	0242	201 EDRMATI9X. **GAS 10AD/TNJ70NE1 (PA-	H##3/5)=!.10F17.7./.
	~ - ~ -	19% TAREAN PLIND DRESSING TONS 1 (DA)	='.F12.3./.
		2944 * DEAM FORE FREUDORE: 20HE 1 1FA7 2944 * #665 / 0AD/TN 1.+*70NF2 / DA-M###3/51	

	39X+**BFAM PUMP PRESSURE-ZONE 2 (PA)	=',E12.3,/,
	49X;**NEUTRAL BEAM POWER (NW)	=',OPF8.2,/,
	59X, **NEUTRAL BEAM ENERGY (KEV)	=',F8.2,/,
	69X, **NEUTRAL BEAM DURATION (S)	=',F8.2,/,
	79X, **NUMBER OF INJECTORS	=',F8.0,/,
	810X+'T UP BEAM DUCTS (G/(M*+2-BURN)	1]=",1PE12.2,/,
	9LOX, PUMP SPEED-ZONE 1 [M##3/S]	=",E12.2,/,
	110X, PUMP SPEED-ZONE 2 (M++3/S)	=',E12.2,/,
	2LOX, PUMP COST-ZONE 1 (\$)	=',E12.2,/,
	310X, PUMP COST-ZONE 2 (\$)	=',E12.2,/,
	4LOX, PUMP SURFACE AREA-ZONE 1 IM**2	!!=',E12.2,/,
	510X, PUMP SURFACE AREA-ZONE 2 1M##2	!!='+E12+2+/+
	610X, TUTAL CUST BEAM VACUUM SYS. (1	(I=1+E12+2)
ISN 0243	WRITE(6,LU7) OBPUIDINJU; UPINU; PPINU	I DE ULDI DGLED
ISN 0244	107 FURMATIIOX, TO BURNED PER DATIG)	=",+B.2,/,
	BLOX, D INJECTED PER DAY (G)	=',F8.2,/,
	9LOX, U PUMPED/DAY-BEAMS [3]	=*,F8.2,/,
	LLUX; 1 PUMPED/DAT~BEAMS 161	***********
	ZLUX, 'U FUELING/UAY (G)	1, 18.2, /,
1.54 0.545	SLOKI'D CULD GAS FILL/DAY IG	=********
ISN 0245	WHIIE(6,998)	
ISN 0246	WRITE(6,60] TITLEL,TITLE2	
ISN 0247	WRITE(D)/202)	
15N 0248	202 FURMATION, EMERGENCE AIR DETRITIAT	UN STSIER (E.U.S. 1.1/1
15N 0249	WRITE(6,203) MPR, ICUN, CUTIM, VBLOG, C	ELF, CUEFF, CUFR, VFR, STACK, TREL,
151 0260	AVENITIVENITEDS	5455 461-1 FA 2 4
120 0200	203 FURMATINA, MAAIMUM CUNCEIVADLE KEU	-1 10512 2 /
	ILUATINIIALI CUNCA (UCI/MP#3)	-1 00F9 2 /
	29X TANOLUME OF REACTOR BLDC (MAAD)	-*;UFF8.2;/;
	YON LODGONTANINATION EACTOR	-1 517 2 /
	AVA, THUELUNIAHINATIUN FALTUR	=, 1212.21/1
	49A; "CLEANUP EFFICIENCE Flow is D & Flow Date (Meea/6)	-1 50 3 /
	DLUAY'E +9+3+ FLUW KATE (M**3/3)	
	ALUANTENDISI FLUW KATE (AVDLUG/MIN/	-1 50 2 /
	TINY ITRITIUM DELEASE (CT)	-*********
	PLON, THENT DATE/WEASC (CI)	- 1 DE12 2./
	OLOX, TRITILM VENTED TO ENV (CT)	- 1 LFC12+2+/ +
	110% TE D S CADITAL COST (4)	- +C12+2+/+ =+.E12 21
1 CN 0 261	HDITE/6.0001	
15N 0251	WRIIC1017707 WRIIC1616.601 T17161.TIT152	
ISN 0252	WRITE(6,204)	
TSN 0254	204 EORNATINY, TRITING AND VACING SYSTE	NS COSTS1./)
ISN 0255	HRITE (6. 205) CTRECA, CPIP. CONST. CG	AX.CHISCT.COFIS.TCTHS.CEDS.
1311 0277	XTCVS+TCDVS+TCDVS+TCTVS	
ISN 0256	205 FORMATINOX. TRITIUM RECOVERY (S)	= 1. 19 F1 2. 2. /.
	LIGX. (PIPING (\$)	=1.F12.2.4.
	210X. ISOTOPIC SEPARATION UNIT	** • F12 • 2 • / •
	310X. GLOVEBOXES AND PURIETERS(\$)	=1.F12.7./.
	410X, MISC. T. FACILITY COSTS (\$)	=1.F12.2./.
	510X, PELLET FUELING (S)	='.F12.2./.
	610X TOTAL-FUEL PROCESSING (S)	='.F12.2./.
	710X. COST - E.D.S. (\$)	=1.F12.2./.
	BLOX- COST-VAC+ROUGHING SYSTEM (4)	# . F12. 2. /.
	910X. COST DIVERTOR VACUUM SYSTEM (4)=!.F12.2./.
	NEWA COST OFFICIAR ENGLISH OFFICER (\$	
	110X. TOST-N. BEAM VACUUM SYSTEM (<pre>\$1 =*,€12.2./,</pre>
	210X+ TOTAL-TRITIUM+VACUUM SYSTEMS	(\$)=(,~[2,2)
TSN 0257	GO TO 1	
ISN 0258	999 STOP	
ISN 0259	FND	

SAMPLE RESULTS

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

PLASMA AND BURN CYCLE

*BURN TIME (S)	\$	64.0
*DWELL TIME (S)	=	16.0
*LAG TIME (S)	×	2.0
DUTY FACTOR	=	0.800
*PLANT AVAILIBILITY FACTOR	*	0.625
PLANT FACTOR	z	0.500
ENERGY PER BURN PULSE (MJ)	=	2.082 04
*POWER PER BURN PULSE(MW)	=	325.0
CYCLE AVERAGE POWER (MW)	z	260.0
*ION DENSITY (IONS/M**3)	=	1.302 20
*PLASMA VOLUME(M**3)	=	360.0
*PARTICLE CONFINEMENT TIME(S)	=	5.00
*PEFLECTION COEFFICIENT	=	0.950
*ENERGY PER EUSION (PJ)	=	2.82
*FRACTIONAL BURNUP	=	0.1610

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

TORUS EVACUATION SYSTEM PARAMETERS

*GAS LOAD-DIVERTOR (PA-M**3/S) =	0.0
*PIVERTOR PUMP PRESSURE (PA) =	0.0
DIVERTOR PUMP SPEED (M**3/S) =	0.0
DIVERTOR PUMP SPEED-DT (M**3/S) =	0.0
DIVERTOR PUMP SPEED-HE (M**3/S) =	0.0
CRYDPANEL SURFACE-DIV, (M**2) =	0.0
COST - HE PUMPING DIV. (\$) =	0.0
COST - DT PUMPING DIV. (\$) =	0.0
COST- DIV. PUMP REGENERATION (\$)=	0.0
COST-DIV. HARD SEAL METAL VALVE =	0.0
TOTAL COST DIV. VACUUM SYSTEM(\$)=	0.0
*EVACUATION VOLUME(M**3) =	450.0
*SURFACE AREA (M**2) =	430.0
*NUMBER OF DUCTS =	12.
<pre>#DUCT_DIAMETER(M) =</pre>	0.80
*PUCT LENGTH(M) =	6.00
*RATED SPEED/PUMP(M**3/S) =	80.0
*PUMP CAPACITY (PA-M**3) =	1.07č 04
*PUMP LOADING FACTOR =	0.83
*POST BURN GAS TEMP(K) =	773.2
POST BURN GAS PRESSURE (PA) =	6.435-01
*PREBURN PRESSUPE (PA) =	4.002-03
POST BURN GAS LOAD(P1-M**3) =	2.89E 02
REQUIRED OT SPEED (M**3/S) =	1.63÷ 02
POST BURN HE PRESSURE (PA) =	2.07-01
PREBURN HE PRESSURE (PA) =	1.002-03
RFQUIRED HE SPEED (M**3/S) =	1.71= 02
*PUMP INLET TEMP (K) =	273.2
REQUIRED DUCT SPEED (M**3/S) =	13.61
DUCT CONDUCTANCE (M**3/S) =	25.26
FFFECTIVE DUCT SPEED (M**3/S) =	19.20
REGENERATION PERIOD (HOURS) =	8.155
MINIMUM DUCT DIAMETER (M) =	0.6902
FIXED REGENERATION TIME (HOURS)=	4.00
REQD. PUMP CAPACITY (PA-M**3) =	4.342 03
CAPACITY EQ. PUMP SIZE (M**3/S)=	3.265 01
REQUIRED PUMP SPEED (M**3/S))=	29.50
REQD. HE PUMP SPEED (M**3/S) =	94.25
CRYOPANEL SURFACE AREA (M**2) =	1.8850
COST-HE SORPTION PUMPING (\$) =	1.70E 06
COST-DT CONDENS. PUMPING (\$) =	9.80c 04
COST-PUMP REGENERATION (\$) =	4.90ž 04
COST-HARD SEAL METAL VALVES (\$)=	1.32÷ 06
TOTAL VACUUM SYSTEM COST (\$) =	3.16E 06
אוניאע אאנטטא אזוניי אניאע אאוניי 🕩 🍝	20102 00

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

TRITIUM AND FUEL PROCESSING PARAMETERS

TRITIUM INITIAL LOAD/BURN (G)	=	0.1170
NUMBER OF BURN CYCLES/DAY	=	1080.0
TRITIUM GAS LOAD/HOUR (G)	=	5.2650
TRITIUM GAS LOADING/DAY (G)	=	126.360
TRITIUM BURNUP PER CYCLE (G)	=	0.0368
TRITIUM BURNUP PER HOUR(G)	=	1.656
TRITIUM BURNUP PER DAY (G)	=	39.75
TRITIUM EXHAUST PER CYCLE (G)	=	1.922-01
TRITIUM EXHAUST PER HOUR (G)	=	8.632 00
TRITIUM EXHAUST PER DAY (G)	=	2.07E 02
TRITIUM FUELING PER CYCLE (G)	=	1.125-01
TRITIUM FUELING PER HOUR (G)	=	5.026 00
TRITIUM FUELING PER DAY(G)	=	1.21ā 02
TRITIUM INPUT PER CYCLE (G)	=	2.29 <i>2</i> -01
TRITIUM INPUT PER HOUR (G)	=	1.03E 01
TRITIUM INPUT PER DAY (G)	=	2.47E 02
HELIUM EXHAUST PER DAY (G)	=	52.868
PRUTIUM EXHAUST PER DAY (G)	=	1.639
CARBON EXHAUST PER DAY (G)	=	9.833
OXYGEN EXHAUST PER DAY (G)	=	0.793
NITROGEN EXHAUST PER DAY (G)	=	0.687
ARGON EXHAUST PER DAY(G)	=	6.556
*BREEDING RATIO	=	0.0
TRITIUM INVENTORIES [G] *********	***	*****
VACUUM PUMPS	=	34.5
STORAGE	=	1192.5
SUR GELTANK	=	3.2
LIQUEFACTION UNIT	=	7.1
CRYDGENIC DISTILLATION CASCADE	=	10.2
CUFL PREPARATION	=	110.3
BREEDER BLANKET	=	0.0
TRITIUM RECOVERY SYSTEM	=	0.0
TOTAL TRITIUM INVENTORY	=	1357.7
TRITIUM BRED PER DAY (G)	÷	0.0
TRITIUM DECAY PER YEAR (G)	=	76.03
DOUBLING INVENTORY(G)	=	0.0
DOUBLING TIME (YEARS)	=	0.0
ANNUAL TRITIUM CONSUMPTION (G)	=	9.155 03
ANNUAL COST OF TRITIUM (\$)	2	6.21= 07

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

ŗ

.

.

DEUTERIUM AND NEUTRAL BEAM SYSTEM

*GAS LOAD/INJZONE1 {PA-M**3/S}=	4.102 00
*BEAM PUMP PRESSURE-ZONE 1 (PA) =	1.000ž-02
*GAS LOAD/INJZONE2 (PA-M**3/S)=	4.100 2 00
*REAM PUMP PRESSURE-ZONE 2 (PA) =	1.000ž-02
*NEUTRAL BEAM POWER (MW) =	60.00
*NEUTRAL BEAM ENERGY (KEV) =	150.00
*NEUTRAL BEAM DURATION (S) =	5.70
*NUMBER OF INJECTOR'S =	12.
T UP BEAM DUCTS (G/(M**2-BURN))=	1.555-04
PUMP SPEED-ZONE 1 (M**3/S) =	4.10ê 02
PUMP SPEED-ZONE 2 (M**3/S) =	4.10ž 02
PUMP COST-ZONE 1 (\$) =	6.15E 05
PUMP COST-ZONE 2 (\$) =	6.15E 05
PUMP SURFACE AREA-ZONE 1 (M**?)=	1.78E 01
PUMP SURFACE AREA-ZONE 2 (M**2)=	1.78± 01
TOTAL COST BEAM VACUUM SYS. (\$)=	2.075 07
T BURNED PER DAY(G) =	26.63
D INJECTED PER DAY (G) =	51.10
D PUMPED/DAY-BEAMS (G) =	80.99
T PUMPED/DAY-BEAMS (G) =	2.0100
D FUELING/DAY (G) =	55.81
D COLD GAS FILL/DAY (G) =	58,51

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

EMERGENCY AIR DETRITIATION SYSTEM (E.D.S.)

MAXIMUM CONCEIVABLE RELEASE (G)	ŧ	144.79
INITIAL T CONC. (UCI/M**3)	=	2.32E 07
*CLEANUP TIME (HOURS)	£	48.00
*VOLUME OF REACTOR BLDG. (M**3)	=	6.00E 04
*DECONTAMINATION FACTOR	=	1.002-06
*CLEANUP EFFICIENCY	±	0.990
E.D.S. FLOW RATE (M**3/S)	=	4.576
E.D.S. FLOW RATE (%VBLOG/MIN)	=	0.458
*T LEVEL STACKED (UCI/M**3)	Ξ	50.000
TRITIUM RELEASE (CI)	=	3.000
VENT RATE(M**3/S)	=	1.00E 00
TRITIUM VENTED TO ENV.(CI)	=	3.042-01
E.D.S. CAPITAL COST (\$)	=	5.85ž 06

TRITIUM FACILITY AND VACUUM SYSTEM PARAMETERS FOR THE ANL EPR-FY1977

•

TRITIUM AND VACUUM SYSTEMS COSTS

TRITIUM RECOVERY (\$)	Ŧ	0.0	
PIPING (\$)	=	8.17E	05
ISCTOPIC SEPARATION UNIT	Ŧ	8.56E	05
GLOVEBOXES AND PURIFIERS(\$)	=	2.70÷	60
MISC. T. FACILITY COSTS (\$)	=	1.013	06
PELLET FUELING (\$)	=	1.43ē	06
TOTAL-FUEL PROCESSING (\$)	=	6.81E	06
COST - E.D.S. (\$)	÷	5.852	60
COST-VAC+ROUGHING SYSTEM (\$)	±	3.162	06
COST-DIVERTOR VACUUM SYSTEM (\$) =	0.0	
COST-N. BEAM VACUUM SYSTEM (\$)) =	2.07č	07
TOTAL-TRITIUM+VACUUM SYSTEMS(5)=	3.65E	07

Distribution for ANL/FPP/TM-110

Y. Gohar

Internal:

- K. Avery C. Baker M. Benson P. Bertoncini C. Bolev J. N. Brooks L. Burris M. K. Buller F. Cafasso W. Calaway R. Clemmer J. B. Darby C. Dennis D. Ehst K. Evans, Jr. J. Fasolo R. Fuja E. Gelbard
 - s.
- H. Griffin D. Gruen R. Heinrich S. Harkness J. Jung M. Kaminsky S. H. Kim J. Krazinski T. Kurkowski R. Kustom R. H. Land V. Maroni R. Martin R. Mattas G. McLennan B. Misra J. Moenich

A. Moretti

D. L. Smith H. Stevens L. Turner E. VanDeventer E. Veleckis S-T. Wang D. Weber J. R. Weston R. M. Yonco C. Youngdahl FP Program (25) A. B. Krisciunas ANL Contract File ANL Libraries (5) TIS Files (6)

-

F. Nolfi

J. Norem

M. V. Nevitt

E. G. Pewitt

External:

L. Greenwood

DOE-TIC, for distribution per UC-20 and -20d (151) Manager, Clicago Operations Office Chief, Office of Patent Counsel, CH President, Argonne Universities Association Chemical Engineering Division Review Committee: C. B. Alcock, U. Toronto R. C. Axtmann, Princeton U. R. E. Balzhiser, Electric Power Research Inst. J. T. Banchero, U. Notre Dame T. Cole, Ford Motor Co. P. W. Gilles, U. Kansas R. I. Newman, Allied Chemical Corp. G. M. Rosenblatt, Pennsylvania State U. M. Abdou, Georgia Institute of Technology R. Alire, Lawrence Livermore Laboratory N. Amherd, Electric Power Research Institute J. L. Anderson, Los Alamos Scientific Laboratory R. Axtmann, Princeton University J. Baublitz, Department of Energy Bibliothek, Max-Planck Inst. fur Plasmaphysik R. Blanken, Department of Energy G. A. Carlson, Lawrence Livermore Laboratory R. A. Carruthers, Culham Laboratory CEA Fusion, Grenoble, FRANCE J. F. Clarke, Department of Energy D. O. Coffin, Los Alamos Scientific Laboratory F. Coffman, Department of Energy R. Conn, University of Wisconsin B. J. Davey, University of Wisconsin

N. Anne Davies, Department of Energy H. K. Forsen, Exxon Nuclear Company H. Gauber, Westinghouse P. D. Gildea, Sandia Laboratories, Livermore C. Head, Department of Energy G. L. Kulcinski, University of Wisconsin D. Kummer, McDonnell Douglas Astronautics Co. - East G. Hopkins, General Atomic Company R. J. Impara, Department of Energy T. Kammash, University of Michigan E. M. Larsen, University of Wisconsin Librarian, Culham Laboratory Library - C.E.A. L. Lidsky, Massachusetts Institute of Technology C. W. Maynard, University of Wisconsin C. Meixner, Inst. fur Plasmaphysik, KFA-Juelich J. M. Mintz, Sandia Laboratories, Livermore J. Neff, Department of Energy M. Ortman, University of Wisconsin J. Powell, Brookhaven National Laboratory J. Purcell, General Atomic Company M. Roberts, Oak Ridge National Laboratory P. Sager, General Atomic Company R. H. Sherman, Los Alamos Scientific Laboratory D. Sink, Westinghouse W. M. Stacey, Georgia Institute of Technology B. Twining, Department of Energy W. F. Vogelsang, University of Wisconsin J. S. Watson, Oak Ridge National Laboratory W. R. Wilkes, Mound Laboratory L. J. Wittenberg, Mound Laboratory

J. Wrazel, University of Wisconsin