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Ploassa contfinement in toreidal devices may be significantly degraded because

af iux surface destres oo oand consequent s2ochastic wandering of magnetic lines.

tn this study o medel stovhastic differential cquation is considered which de-

sceribes puiding conter electron motion in a statistically specified spectrum of
turbulent magnetic fluctuations., The fluctuation intensity is assumed to satisfy
the Chirvikov criterion (resonance overlap) for onset of stochasticity.  In this
limit typical lines aiffuse and are adequately described by a guasilir o diffu-
sion coefficivnt Jm . However, guasilincar theory does not describe o Laportant
mechanisw for loss of particle correlations: particles collisicnally diffuse from
one line to an adjacent one which diverges rapidly from the first, carrving

the parvicles away. The scale length LK for line diverpence is related to Lhe
inverse of the Kolmogorov-Sinal entropy. An attempt is made to detcrmine LK
from a simplified Fulerian vertex renormalization. The exponentiation length

. : =2 -1/3
which cmerges is L. ~ L (k7D L)Y
s 0°m s

\ , where LS is the shear length, k, is a
N s

4]
typical azimuthal wavenumber, und Dr';x is of arder Dm . In a particular limit of
weak shear, the particle diffusion coefficiene can then be estimated as

2 2
D - Ar /1C , where aAr” - sz('rc) . z(1) is the distance traveled along the lines

in time 1, and for static fluctuations T~ T(Lﬁ) , where Lﬁ is L}{ multiplicd

by a logarithmic factor involving the perpendicular collisional diffusion coef-
ficient. The problems of more refined gquantitative computations from the rcenor-

malized kinctic equation are severe, and further study is tecessary.

1. Introduction
The physics of !‘ransport of hot plasma across a slirong magnetic

field is an arca very rich in nonlincar phenomcna, most of which are

as yebt understood only puorly.  The plasma is described theoretically
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in terms of either the (guadratically) nonlinear Tiouville
(Klimontovich) cquation or related nonlinear fluid equations, vari-
ants of the Navier-Stokes eguation. As is well known, such cquations
admit a variety of stochastic or turbulent solutions, and .t is
widely held that some form of turbulence is responsible for the

anomalews lessos observed in many confinement experiments, We will

2 conee-nad hoere with one paviicular mechanism for anomalous cross-

Cicld transport: the resonant destruction of magnelic tlux surfaces,

stochartic wandering of magnetic lines, and conseguent plasma 1o

by rapid particle motion along the lincs.

Stuldy of this stochastic transport mechanism is motivated in
part by _-he results of experiments on a particularly promising mag-
netin confincment device, the tokamak.l In these experiments, the
energy confinement time 1t is obscived to be distinctly anomalous:
althoush for stable magnetohydrodynamic equilibria the ion physics
appear to be nearly (neo-)cla551cal,* the electron energy losses far
exceed the neoclassical predictions. Now the neoclassical theory
assumes the existence of well formed, nested surfaces of constant

mignetic flux. This existence can be proven rigorously in situations

=

of special symmetry such as when the plasma retains the toroidal sym-

metry of the confining vessel. However, plasma fluctuaticns with
maynetic components perpendicular to the equilibrium flu:: surfaces
can spentaneously break this symmetry and destroy those surfaces.
(Examples of such fluctuations are drift and tearing modes, which are
most litely linearly unstable and are apparently ubiguitovs in
tokamaks.) Of course, for sufficiently small perturbations the

Kolmogecrov-Arnol'd-Moser theorem2 applies: most surfaces arc slightly

* . -~ i
Neoclarnsical theory describes the physics of randomr walk by Joulorn
collisions in toroidal systems with maynetic field gradicents and the
attendint magnetically trapped particles. For a review, s:e F.L.

Hinton and R.D. Hazeltine, Rev. Mod. Phys. 48 (1976),229.
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distort d but not destroyed. Because the equations forxr the sagnetic
lines o+ B=0 follow from a ltamiltonian with two degrees of free-
dom, th- phase space remains in this limit partitioned by invariant
KAM tor: and transport is inhibited. Haowever, far larger perturba-
tions such that the Chirikov criterion3 s (typical island width)/
(Lypical island separation) > 1 is satisfied, the well-known stochas-
tic instability sets in: Lori are destroyed over a large portion of
the pha v srace and magnttic lines wander randomly over 2 «izable
fraction of the confincment volume. The stochastic lines form an

effective chaanel for rvudial loss via parallel motion: the effective

radial velocity of the ouiding center of a particle is Vr V”(Br/B),
and parallel mobility is high.A'5 In this mechanism encrgy losses
are dominated by electrons because cof their higher thermal v:locitv;
this is in cualitative adgrcement with the observations. The macro-
scropic plasma diffusion is limited by the ambipolarity cors:raint.
We will review here the most recent attempts6 to describe this
process gquantitatively. Though we are motivated by practical con-

siunerations of confinement and scaling, it is important to rccognize

that the theoretical problem is generic in its nunlincar asprects to

many problems involving stochasticity, Hamiltonian and non-liamiltonian

mechanics.  Although these fields are undergoing rapid development,
it is clear that no complete description will likely be forthcoming
for guite some time; cur methods are in some ways very primitive.
lowever, we do attempt to employ modern advances in stoch. tic dif-
Tercntial eguations and turbulence theory. We would welcone and
benefit from a more vigorous dialogue between plasma theocists ind

workers in the morc traditional fields of statistical mechanics and

turbulence,

2, A Model Stochastic Differential Egquation

We vuncider Ltha moticn of a small number ol test eolectrons which
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move in specified stochastic magnetic fields. This is analogous to
the problem of turbulent advection of a passive scalar in fluids and
ignores the important nonlinear physics of the self-consistent gen-
eration of stochastic fields by random plasma currents flowing in
those fields. Let the unperturbed field be a standard cylindrical
modcl:* (Br , B;} , Bq,) = [0,r/Rg(r) ,L)BO ,with /R« 1, g=0(1) . This
field has both circular flux surfaces, centered around r= 0, and
magnetic shear, s d(fnq)/d(inr) = Q(l) . The advective toerm Tnr

1

guiding center motion in this field, V(B/B):V=V[(Rq) ~(3/33)*

R‘l(a_/w)] , transforms under variations ~exp i(mé - n¢) to ikn (riv,
where k“(r) R_l[m/q(r) -n] . Rescnances occur at all r for which
k"(r) vanishes. Motivated by microturbulence theory and obscrvation,
we consider short-wavelength fluctuations, moi/r=0(l) where o; is
the ion gyroradius, and expand ku(r) around a rational surface dq
q(ro) =mo/no: k“(r) = k"(o) - [(r-~ ro)/Ls]ke , where the shear lengch
Ls is defined as Ls = Raq./s, and ke Zm/rO . One can then arriveG at
the following model ecuation for the probability density P(x,y,z,V,t)
or test electrons of } :irallel velocity V at time t in slab coordi-

nates x 3 r=r, . the radial distance from a rational surface Ty
y = ro(P - r;w/qo) , the distance orthogonal to X and to the unperturbed
lines; and 2 " R¢, essentially the distance along the unperturbed

lines:
ZLopefu[d - X 20 p v clp-wndr=o (1)
ot dz L yJ oL ax :

2. .2 2 2 2 N . . .
Here 93 =02°/3x“+3%/8y” , b, represents a slow collisional diffusien
across the field, C is a collision operator on the parallel velocity
v ,and b{y,z;t) << 1 is the ratio of the perturbing radial field Lo
the total field. The perturbation b has a Fourier representation:

* : .
The cross-section of the cylinder is parametrized by polar coordi-
nates (1,8), the axial direction by z R¢ . The cylinder is
perindic mod 27 in both € and ¢ .



L(F,ert) = I bmn(t)pxp ilm ~n:), or in the slab coerdinates
mn

biy,z:;t) =} b“\t)exp ilkgy +kyz)
i

where 3 denotes the set {m,n) or, eguivalently, {k ,ke} . The par-

(0) is assumed to vary Over a range symmetric

mr)‘l , where d&r

N
around k” =0, of width Ak

allel wavenumber k” =k

2 2n/ L -2 <
" n/LO, Io nL _(k

5 o
dosceribes the localization (charactervistic width) of the backyground

radial eloenfunctions around the rational surface.  For infinite,

Lo joencons turbmlones Ly would vanish. However, FTor microturbulence
characeoristic af the finlte tokawmat geometry, kQSr‘fO(l) ,LO=:O(LS).
Wo postulate that the nerturbations are turbulent, an assumption

support:ed by observation.  The amplitudes are thus random variables
which we further assumc are CGaussian. ‘This is never strictly correct,
cspecially if the turbulence arises from a strange attractcr in the
background phase spacce. One may justify the approximation pragmati-
cally by noting that because of the stochasticity to be discussed
shortly and the structure of Fg. (1), interesting non-Gaussian stat-
istics are predicted for P even when absent from b . We can thus

attempt to study the mechanism of stochastic transport in isolation

tron 0o

-Gaussian complications of the backaground.  This argument

fails for the self{-consistent problem, which we do not ticat here.
The subjects of turbulence statistics and attractors in plasma are
worthy of much further investigakbion.

The instantanvous 1ield line orbits

dy | % ds |
dz Tl v oaz” by, 2) 2)

are the canonical cgquations for the Hamiltonian Hix,y:z) =xz/2L -

5
fy Ay by,z) with x and y considercd as conjugate momentur ond coor-
dinate. Weo assame that o is stochastic according to a mean Chirikov
critoerion: the mean soparation between resonance is A= fp/o -

1]
‘r/'n%fxik" t(q/s)('n\ku)_]; the tvpical rceanpance width
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numerical experiments and some theory tell us that for S not too

w = 4(21-S<|bu k ; and we assume that $:Iw/4>1. Both
close to the threshold S =1, most of the volume is stochastic:7
typical [ield lines separate exponentially for small sepa:ationsB

and wander throughout a substantial portion of the volume. For lar.ge
but Finite S, there is of course a small invariant set which is nor
stochastic. lowever, practical cstimates based on microturbulence
theory as well as some observation predict that the Chirikov crite-
rion will be very vell satisfied in many situations. We are then
justified in assuming the measure of the nonstochastic component to
be negligible.

From a practical point of view, the detailed structure of
Pi{x,y,7,V,t} is of little direct interest. We are concerned with L.
mean motion of an ensemble of particles distributed uniformly at t =0
over an equilibrium flux surface L We therefore treat P as a
random variable and the perturbatior b as a given random coeffi-
cient, statistically specified and independent of P . Equation (1
then buecomes a stochastic differential eguation of standard type.9
As 1s well known, such equations suffer from the closure problum,
which mecans that the eguation for <«P{x,V,t)> (the average taken ovor
both backyround turbulence and initial conditions) contains the un-
known paic corrclation V<b 3 Py/3dx~ . Onu proceeds by expressing this
correlition in times of <P> by a closure approximation.

The fluctuations described by Eg. (1) are both inhomogeneous
and anisotropic. Their character is determined, in part, by the
ratio RK ELO/LK , where the separation ¢ between typical adjacent
lines is taken to be ©&(2) = Q)exp(z/LK) . PFor physical reasons attnn-
tion has focussed to date on the regime RK< 1. [n some ways RR is
analogous to the Reynolds number for fluids. MHowcver, we will rce
that even in the limit Ry < 1 the nonlincar physics of the stoch stic

lines can be nontrivial and important.
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Equatior (1) can be analyzed by standard formal techniques for
stochastic differential equations; we discuss this in Sec. 4. How-
ever, more insight can be gained from simple gualitative arguments,

to which we now turn. -

3. Qualitative Physics of Stochastic Transport

Fyuation (1) has a natural intecrpretation in tcrms of two dis-
tinct physical processes: parallel motion along, and perpendicular
di1ffusion across tke lines. To describe the parallel physics, we
approximate Lrue lines by unperturbed lines and szt D, and b to
zeyn; kthe resulting equation preserves X as constant and the shear
term in x oan he removed. By choosing € to be the model opervator
5v(vV+Dv ':'v) , one is left with a standard Fokker-Planck equation
whose solution is well Known. I one applies this solution to the
quasilinecar approximation to the particle diffusion coefficient .

D(t;\/‘c) of particles with initial velocity Vo '

t
D(t;V ) = Jo ar E b (T)b_ (0)»<V(T)V_exp ik z (1)

he can write
. = r
D(t,vo) VODmd(J '

where the «quasilincar diffusion coefficient Dm of the lincs is de-
tined as

. 2
O - ”RanJ dk“<|bul o> .

and in the limit of static backaround fluctuations

czltiv,) - L
d(t) = J d: J dz C, (1 - 2)P(Z,t|V ) ,
0 [a)

where <z(t]\l0)> 2 11 - exp(-vt)1 (V,/v) is the mcan distance (averaged
over the Langevin white noise fluctuntions rosponsible for colli-
sions) traveled in Lime t, Cptz) is {the Pulerian correlaticon funclion

[of width O(LO)] for b taken alunyg the unpertuched lines, and the

probahility for finctuwations around the mean posit.on is
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2 -
Plz,t]v,) = (210l (t)] expl-z°/202(6)] ,

02(t) = (2ut -3+ a7V o722
L Evt/v , where Ve is the thermal velocity, related to the paraliel
diffusion coefficient through Dv=vt2/v .  One physically interecst-
ing limit is that of Eulerian correlation length small compared to 1
collisional mean fice path £ R, %LD/F;< 1. In Fig. 1 we ploL d{i;
for trke model function C“(z) I [H(z +LOJ - H(z -LO)]/ZL0 [H{z) is thn

Hdeoaviside functiond for scveral values of R and VO:V

[ t
smallest valies of R, , three distinct regimes are apparent. [r ro-
yime (a) the bulk of the particles remain within the domain L, of
magnecic correlations and d(t) -“-VD t,/Loz (ve)/R. . Tn reyime (b}
varticles, still essentially colllsionless, move on diffusing lines

S0 asyn\p‘:otically5 di{t) 1. This regime is guite small for RoZ0.i .

In regime fc) most particles have collided at least once sc a doublz

2
diffusion law nolds:’ sr° . Dméz f 622 - Dyt , 52 . Dm(D"L)]'/2 so d(t} -
(vt)_l/2 . Because energy confinement times in tokamaks are many

collision times, this model taken naively would predict negligible
stochastic transport in the limit t+=,

This picture is incomplete, however, Dbecause it incorrcctly as-
sumes that particles remain always on their initial lines. 1If par-
ticles lose correlation with a given line in time Tt then the as-~
ymptotic diffusion coefficient is finite, D{w) =V, Dmd(Tc) . Loss of
correlations arises from twc distinct effects. First, the backyground
turbulence can have a finite correlation time Ty - Because the prog-
erties of the bhackground fluctuations are not well known, we will not
discuss Tp further here. (Let us note in passing that some intercst
attaches to perturbations arising from wxternal coil asymmelries, in
which case Tp = = .)  Second, perpendicular collisional diffusion ro-
moves particles from lines. Lot the perpendicular Fulerian corrnla-
-1

tion lenath of the backyround turbulence bLe Ll{:O(k V1. VE
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iynored the stochastic nature of the field, he would es:imate the

corresponding corr2lation time to be 71 -~ LE/DJ_ . However, adjacent

lines diverge cxponcntially and particles can cross the distance L,

more rapidly by diffusing a small amount perpendicularly to a new -
line, moving rapidly along this new line, then repeating this process.

'he correlation time Ty for this process can be ecstimated as 1, =

0

2 {L,) , where 1{z) is the time reguired to travel a parallel dis-

tance 2z oand LTy -n[:(al)/LK] . This estimate is very rowvgh be- -

cause the lines become uncorrelated and diffuse independently for :
“{(2z) ~L_ . Finite sheuar introduces Turther correlations which we do 4
nat Giscuss heve,

Our yoals, then, are to determine L, , v, , and therefore D{(:) B

Regarding L. Chirikov7 has »sticdted a "typical" K-S entropy which
. n

. . . o2 - -1/3 C . R : 5 :
its L~ L 2 / & L Dica AzL- -
in our units is Ly IS(}_ Dm LS) , where )t; is a typicail i

muthal wavenumber. One can rocover this result by requiring that the

scale longth for exvonentiation coeree with the scale lenath {ov loss

ol corralations by single line diffusion (this amcunts to rguiring

contiauity of Lagrangian maynetic correlations as a function of =z ).
For diffusion of single linvs, onc »stimates om the shear relation

. e L2 . .
v/ 2z - 'r/LS and the diifusion law *‘r“ - D_ %z for sinale lines that

I

the mean syuare of the azimuthal phase fluctuation «<(k ty) 7> is of
order (»»-_v,/'LK) °. (This assumes that radial correlations do not play a

2 -
role. If they dominate, LK should presumally be replaced by (k; Dm) 1

r
with D, to be determined self-consistently from a strong =urbulence

type of calculation.) Altornatively, LP’ emerges from a closure for

2 . . .
<Ay”> applied to the equations for relative scpaiation

d f d [3s]
— A = T T.o w8 .
az Y T g R gy (3)
S
. o . R . . . . 2
L one expresses the throe-point fonctions in the cguations for - s,
Ay, Ay T oin tovis of four point oncg by inteoration of (3), makes
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Gaussian factorizations of the four-point functions, considers z - I
=)

so that the Markovian approximation is valid, and neglects terms

small in RK’ the equations reduce to

s o= (2 dany?s (4)
K

whose solutinn grows asymptotically as exp(Zz/LK), where L, I

K -
LRED L) 7Y3 and p" = [Mdieb' (b (0)> , b = Ib/3(K. y) W
s 7t Tm s m o . ! ARG Y- e
have D; 20(b ) . This scaling for L, appears to require that the

amplitudes bu be sutficiently random. Unfortunately, vervrificatior
of this result by direct numerical integration of Egs. (2) is .-
tromely tine-consuming and has not heen done.

The physics of the asymptotic regimes (b) and (c) were discosse
very qualitatively by Rechester and Rosenbluth.5 It would appear,
howevar, that quantitative determination of T and D(«) as well as
extension of these arguments to the self-consistent problem require a
kinetic approach. In the next section we discuss aspects of cur pre-

gram in this direction.

4. Closure Approximations

We wish to derive information about D by applying statistical

closure approximations to Eg. (1), Now it is well known that most
workable closures can be characterized as (ormal expansions of Eulerian
statistical functions around a Gaussian state.10 {The reccnt

11

Lagrangian scuemes of Kraichnan are an exception which we do not
discuss here.) It is not immediately clear that such Eulerian-based
schemes will succeed; the most prominant dynamical feature of the
stochastic state, the exponential divergence of adjacent trajectories,
involves structures, namely pairs of lines, and is therefore intrin-
sically non-Gaussian. However, as we will discuss, the exponcenti=l
divergence does emerge from an appropriate (vertex-renormalized)

Eulerian closure. This affords us in principle the [lirst guantita-

tive analytic description of the diffusion coefficient., Practically,
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the conputational ditficulties are scvere and much further work is
necassaly.

It is cony :ient to adopt the following notation: for arbitrary -
functio.s &,B, let A{l) ?A(.\'l ’ yl ’ 2y, vl) , B(1l) EB(},tl). Define -
the stochastic respense function R{1;1') by the functional deriva-
tive of P with respect to a nonrandom scurce n added to the right-
hand side of Eg. (1): l;{(l,l') = SP(1)/é&n(l'); denote its mean by R =
<R™ . The averaged response function R(1,t;1',t') is the solution of
Eq. (1) for <P> with initial condition 6(}—3') at t=t' . 1It can
be interpreted as the probability density of a test particle at Q,t)
given that it was precisely at (1',t')

Qner can write a formal Dyson esguation for R:

—-—
8, R(L,1T) + (L, D) -] (L, DIR(I, L = s(1-2")
1
where L{l1,1) is the bracketed operator in Eg. (1) times &(1 -1) and —
where an integration convention over repeated argunaents is assumed.
-

In this notation the radi-~l diffusion coetficient ™ can be oxoreossed

as

_ ‘ o { : R vy 2 - =
D ~—Lnlt1'm-m J d'vlll(Vl) J d(‘\l_‘\l) (xl—xl) Z(l.L)R(l.l ) (_5)

Sceveral techniques are available {or yenerating approximations to the
renormalized collision aperator Y. The one which is clearest both
logically and operationally is the functional schem2 of Martin,
Siggia, and Rosell although many of their results were anticipatnd by
Kraichnan who used the direct method of consolidating infinite per-
turbation series. 1In any case I can be expressed for Gaussian b in
terms of a certain component of a joint probability matrix K which
obeys the Bethe-Salpeter cquation {BSE).13 The theorics actually preo-
vide coupled ecquations for R and the correlation function C(1,1'V :
<¢P(L&P(17)> in terms of rhe covariance F{1,1') :<b(L)b(1')>. De-

note fluctrvations in T by "+", external perturbations by "-*, and the

random coefficient b by "o" and let R be the {(+-) componhent of a
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two-point correlation matrix Gi;’ which also contains C:G++ and

F=G_, - Further, define the bare vertex operator U'(1,2,3) =
\;’lé(l—Z)Ex §(1-3) . Then we h.:«wel'.l"la"'6

Tt 23 33).v,5 35 7
Ta,1) = (1.2.3)K(0+.0_]U (2,3,1y ,

where in farmal operator notation the BSE for K reads K=7%(GG+ 50+

GGIK . One can interpret KJ _{1,2;1',2') as the probability tiut

Yo
ore will observe a field fluctuation at 1 ir,‘é a particl~ at 2,

that one knew the field to be in the state 1' and the pavticie

in the state 2' . The interaction term I describes the efiv ot o
field particle or more generally two-body correlations on ®. 1%
these are arbitrarily neglected, the Direct Intevaction Appro: s
(D1A) emerges: K - %{GG+ GG); Ko+o- = kRF . This factoriza*rion inte -
body functions does not describc the exponentiation. DIA is thes 'ooe
Gaussian" approximation consistent with nonvanishing three-point oo
tions; it does not rectain phase information necessary to distinaiish

entities like pairs of lines. We conclude that DIA is inadeqga:ite tor
the present problem,
Higher order approximations can be generated by expanding 1 in

lG_ll{y , where 35 s oo

powers of a generalized skewness operatorml" © G
symmetric matrix whose elements are U' of various arguments. The
first nonvanishing t.rm of the skewness expansion is I(1,2;2,4) -
i'(l,S,B)G(B,g)I‘(Z,E,Q). To our knowledge, this renormalization was
first proposed classically bv Kra\'chnanlz in cennection with his wodeld
stochastic oscillator ath =~ 1wy for Gaussian, time- ;dependent o .
Our Eq. (1) is a generalization of this model to time-dependoent,
operator w . [This similarity is most apparent when Eg. (1) is Fouriei-
transformed in y and z; a principal difference is that our model,
but not Kraichnan's, is linearly dispersive.) Kraichnan shewed that

the solution of this approximation for the oscillator agreed very welld

with the exact R; this was particularly impressive since his :umicd
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had infinite Reynolds number. 1In later workl4 Kraichnan studied the
anproxi ation for a model convection problem and coucluded that it
might duescribe .ae behavier of the two-time functions very accurately.
The weli-known pri >lems of this and other Eulerian closures with raw -
alilcan invariance do not appear to be relevant for the cliss ~%
stochast ic equation we consider here.

It is straightforward *o write down the {irst vertex renormaliza-
tion of Eq. (1). Tt is not straightforward, and perhaps impos:ible,
to salve the resulting eguations without further approxliwmations Cim-
plications are possible in the limit Rh('l‘ Space consiraints pro-
hiptt a Jdetailed discussion here; sece Ref. 6. lHowever, onc may note

v

the following points. For R.< 1 the eguation for K(1,2;1 1% has

K
approximately the form of i« diffusion equation in the relative coor-
dinate &x: Xy - xz,with y-dependent diffusion coefficient _(8y) such
that D_(0) =0. For &y much less than L, , D_{ay) =% byz D" and the
second momants of the resulting equation combine to give again Eq. (4).
(The full solution of this short time solution for K is not Caussian.)
For ly=~L,., D_+D and the DIA is recovered. Qualitatively, the mqua-
tion has the bechavior we coxpect physically; one cvan recover the re-
sults of Sce. 3 from expression (9. OQuantitatively, very little is
known abaut the detailed solution connecting the short and long time
regines Tor any continuous meodel of D_(8y) having proper limits at
small and large &y .

The approximate relative diffusion equation for K appears to
conlain the minimum Allowable amount ot complexity consistent with
known gualitative physics. That it is still very complicated is dis-
hcartening, but at lcast one has a basis far further concrete calcu-
lations. However, more detailed solutions far I should undoubtedly
be proceded  y furbher eolucidation of the physics af the backyround
and the role of Lhe solf-consistent random currents which flow in the

vueginn of Goestroyed tori. Tn the limit Re > 1 a speculation is that
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the DIA may be adequate i1f proper account is taken of the radial
eigenstructure of the background. lowever, this limit requi ses a

large fluctuation level which may not be realized in practice.

5. Conclusion
The problem of plasma transport in stochastic magnetic ficlds

Is rich In Interesting linecar and nonlinear physics, and is of

coactical importance for our understanding of plasma cor-finoment.
The present work has barely begun to formulate, lot alosec anwer tin
relevant questions. The field is a large and challenging one or

future work.
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