
JULY 1378 PPPL-1462 
UC-20g 

PLASMA TRANSPORT IN STOCHASTIC 
MAGNETIC FIELDS II: PRINCIPLES 
AND PROBLEMS OF TEST ELECTRON 

TRANSPORT 
BY 

J , A. KROMMES 

PLASMA PHYSICS 
LABORATORY 

MAST 

W3TBIBUTICW OF TSI3 DCCilMEttt IS TOtUMmn 

PRINCETON UNIVERSITY 
PRINCETON, NEW JERSEY 

This work was supported by the U. S. Department of Energy 
Contract No. E*-76-C-02-3073. Reproduction, translation, 
publication, use and disposal, in whole or in part, by at 
for the United States Government is permitted. 



Plasma Transpo r t in S t c c h a s t i r Magnetic F i e l d s I I : 

P r i n c i p l e s and Problems of Test F l e e t r o n Transpor t 
Cnnri) Slain mil rlit I'mlcd Sinn rtyutniri 

J o h n A. KRO.'-IMES ] =.. »»..n, s„,„„,.,'',*„, „,,„„„,„,„, i,„ 
luh.lni " ' tripunubOitv lm \h« a«Mia^ i.inpleientv 

Plasma Physics Laboratory, Princeton University I"""" *"•"""-- "i""™" *" 
Irm^e pnviieK (itvned ngriii 

1'rinceton, New Jerfey 08540 USA 

1'I,..:-.:r.a conf in.-mriu in toroidal devices may be signif i candy degraded because 

ul" M u x surface (h-itr"'' ;t,ii .•jriu ronscquenL >;lochnslic wandering of magnetic lines. 

In this study .1 model stochastic d i f 1 "ereiit i a 1 equation is considered which de-

scr'bes j'.uid inj.'. I'Liiu-r electron notion in a statistically specified spectrum of 

turbulent magnetic fluctuations. The fluctuation intensity is assumed to satisfy 

the Chirikov criterion (resonance overlap) for onset of stochasticity. In this 

limit typical lines a it'fuse and are adequately described by a uuasili* -. diffu­

sion coef f ic Lent Z! , However, quasi linear the wry does not describe ._ ...iportant 

m J 

median Lsis r 0r less ff particle cor r el at ions: particles col lisional ly di ffuse from 

one line to an adpuent one vhich diverges rapidly from the first, carrying 

the particles away. The scale length L for line divergence is related tu the 

inverse of the Kolniu^erov-S Lnai entropv. An attempt is made to Jetcrmine L 
K 

f rom a s impl i Fied E u l e r i a n v e r t e x r e n o r m a l i s a t i o n . The e x p o n e n t i a t i o n 1cngth 
- 7 " - 1 /3 which emerges i s h - L (It" U L \ , where L i s the shear l e n g t h . k„ i s a k s 0 m s" s fo B 

t v n i c a l aaimuthal wavemiinber, and D" is of o r d e r D . In a p a r t i c u l a r l i m i t of • ' m m ' 

weak s h e a r , the p a r t i c l e d i f f u s i o n coe f f i c i en t can then be e s t ima ted as 
2 n 

1) - Ar'Vi , where Ar" - D a ( i ) , Z ( T ) i s the d i s t a n c e t r ave led a lonp the l i n e s c m c 

i n t ime 1 , and for s t a t i c f l u c t u a t i o n s T - t ( L , ) , where L,. i s L.. m u l t i p l i e d 

by a l o g a r i t h m i c f ac to r i n v o l v i n g the p e r p e n d i c u l a r c o l l i s i o n s ! d i f f u s i o n coef­

f i c i e n t . The problems of more re f ined q u a n t i t a t i v e computat ions from the r eno r -

malized k i n e t i c equa t ion a r e s e v e r e , and f u r t h e r s tudy i s t . ecessa ry . 

1 . i n t r o d u c t i o n 

T h e p h y s i c s of t r a n s p o r t o f h o t p l a s m a a c r o s s a s t r o n g m a g n e t i c 

f i e l d i s an a r o a v e r y rich i n n o n l i n r a r p h e n o m e n a , m o s t o f w h i c h a r e 

a s y e t u n d e r s t o o d o n l y p o o r l y . The? p l a s m a i s d e s c r i b e d t h e o r e t i c a l l y 
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in terms of either the (qviadratica] ly) nonlinear Liouville 
(Klimontovich) equation or related nonlinear fluid equations, vari­
ants of the Navier-Stokes equation. As is well known, such equations 
admit a variety of stochastic or turbulent solutions, and .'.t is 
widely held that some form of turbulence is responsible for the 
C!iicaaU>ii i losses observed in many confinement experiments. We will 
:ie ''onioned here with one particular mechanism for anomalous eross-
LieUl (rinsport: the resonant destruction of nuunctic Mux :uirr,iccf, 
stochastic wandering of magnetic lines, and consequent plasma l":;sss 
by rapid particle motion along the lines. 

Study of this stochastic transport mechanism is motivated in 
part by Jie results of experiments on a particularly promising mag­
netic confinement device, the tokamak. In these experiments, the 
energy confinement time T is observed to be distinctly anomalous: 
although for stable magnetohydrodynamic euui1ibria the ion physics 
appear to be nearly (neo-)classical, the electron energy losses far 
exceed the neoclassical predictions. Now the neoclassical theory 
assumes the existence of well formed, nested surfaces of constant 
magnetic flux. This existence can be proven rigorously in situations 
of special syminetry such as when the plasma retains the toroidal sym­
metry of the confining vessel. However, plasma fluctuations with 
magnetic component? perpendicular to the equilibrium flu.', surfaces 
can spontaneously break this symmetry and destroy those surfaces. 
(Examples of such fluctuations are drift and tearing modes, which are 
most liVely linearly unstable and are apparently ubiquitous in 

tokamaks.) Of course, for sufficiently small perturbations the 
2 

Kolmogerov-Arno l ' d -Mose r t heo rem a p p l i e s : most s u r f a c e s a r e s l i g h t l y 

* 
N e o c l a s s i c a l t h e o r y d e s c r i b e s t h e p h y s i c s of r.-nvloi? walk by Couli ' :• 
c o l l i s i o n s i n t o r o i d a l s y s t e m s wi th m a g n e t i c f i e l d y r a d i e n i s and the 
a t t e n d a n t m a g n e t i c a l l y t r a p p e d p a r t i c l e s . For P. r ev i ew , s 'e F . L . 
Hinton and R.D. H a z e l t m e , Rev. Mod. Phys . 48 (1976) , 239. 
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distort d but not destroyed. Because the equations for the .tvagnetic 
lines •:•' > B - 0 follow from a llamiltonian with two degrees of free­
dom, th - phase space remains in this limit partitioned by invariant 
KAM tori and transport is inhibited. However, for larger perturba­
tions such that the Chirikov criterion S: (typical island width)/ 
(typical island separation) > 1 is satisfied, the well-known stochas-
( ic instability sots in: Lori are destroyed over a large portion of 
Hie pha .e :•.•.-.ice- and magi. ~ t ic linos wander randomly over a :• i .'able 
fraction of the confinement volume. The stochastic lines form an 
effective channel for radial loss via parallel motion: the effective 

radial velocity of I ho (mining center of a particle is V. v,i(B /B) , 
4 5 

and parallel mobility is high. ' In this mechanism energy losses 
are dominated by electrons because of their higher thermal v-loci'v; 
this is in Qualitative agreement with the observations. The macro-
scropic plasma diffusion is limited by the ambipolarity constraint. 

We will review here the most recent attempts to describe this 
process quantitatively. Though we are motivated by practical con­
siderations of confinement and scaling, it is important to recognize 
that the theoretical problem is generic in its nonlinear aspects to 
many problems involving stochasticity, llamiltonian and non-liaroiltonian 
mechanics. Although those fields are undergoing rapid development, 
it is clear that no complete description will likely be forthcoming 
for quite some Lime; our methods are in SOIK ways very primitive. 
However, we do attempt to employ modern advances in stocli. tic dif­
ferential equations and turbulence theory. We would ivelcoi.ie and 
benefit from a more vigorous dialogue between plasma theorists ind 
workers in the more traditional fields of statistical mechanics and 
turbulence. 

2. A Model Stochastic Differential Equation 
Wo consider the mot it." of a small number ol test elect reus wh i eh 
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move in specified stochastic magnetic fields. This is analogous to 
the problem of turbulent advection of a passive scalar in fluids and 
ignores the important nonlinear physics of the self-consistent gen­
eration of stochastic fields by random plasma currents floving in 
those fields. Let the unperturbed field be a standard cylindrical 
model: (Br , B^ , B ) = [0 , r/Rq (r) , 1) B Q , with r/R « 1 , q = O U ) . This 
field has both circular flux surfaces, centered around r=Q , and 
magnetic shear, s " d (i n q] /d (tn r) = 0(1] . The advr-ctive trrn- fm-
guiding center motion in this field, V (B/B) • V = V [ (Rq) ~ ( 3/55) J-

R (3/3i}0 ] , transforms under variations - exp i (me - ncf) to ik (rlv, 
where kN(r) R [m/q(r) - n] . Resonances occur at all r for which 
k (r) vanishes. Motivated by microturbulence theory and observation, 
we consider short-wavelength fluctuations, mo./r=0(l) where o. is 
the ion gyroradius, and expand k.. (r) around a rational surface q 
q(r ) = m /n : k n (r) = k (0) - [(r-r )/L ]k g , where the shear length 
L is defined as L = Ra /s , and k„ 3 m/r . One can then arrive at 
S S *r\' 6 O 

the following model eauation for the probability density P(x,y,z,V,t! 
or test electrons of \. irallel velocity V at time t in slab coordi­
nates x :r-r , the radial distance from a rational surface r ; 
y =r (P - c/q ) , the distance orthogonal to x and to the unperturbed 
lines; and z ~ R<f , essentially the distance along the unperturbed 
lines: 

i t p + [ v f e - i ~ - 3 y - D ^ -c]p-vbAP = 0 . ( 1 ) 

2 •> 2 2 2 
Here V][ = 0 /3x + 3 /Sy , Dj. represents a slow collisional diffusion 
across the field, C is a collision operator on the parallel velocity 
V , and b(y,z;t) « 1 is the ratio of the perturbing radial field Lo 
the total field. The perturbation b has a Fourier representation: 

The cross-section of the cylinder is parametrized by polar coordi­
nates (r,9), the axial direction by z ' R* . The cylinder is 
periodic mod 2TT in both 6 and $ . 



hl'-.t-t) - 1 b (t) oxo 1 m -n: , or m the slab coordinates 1'' ' ' mn mn 
b(y,z;t) = I b U)exp i (kg y + k^z) , 

where y denotes the set {m,n) or, equivaiently, {k M , k^l . The par­
allel wavenumbcr k " k.|(0) is assumed to vary over a range symmetric 

.lro'ind k: -- 0 , of width Ak(| - 2n/L , L ' 2TT 1^ (ktf >'r) , where 6r 
describes the localization (chai actoristic width) of the background 
r.idi.il i' i eon fund i out. a round (ho rational surface. For infinite, 
hoi-:-.j ; i -iii -. eis turbulence L would vanish. ilov.-..-v"r , for microturbulence J o 
characteristic oC the finite tokama •. geometry, t ^ S r - O H ) , "L =0(L ). 

l\V postulate that the pel I urbat: ons are tuibulent, an assumption 
supported by observation. The amplitudes are thus random variables 
which we further assume are Gaussian. This is never strictly correct, 
especially if the turbulence arises from a strange attractcr in the 
background phase space. One may justify the approximation pragmati­
cally by noting that because of the stochasticity to be discussed 
shortly and the structure of fit. (1), interesting non-Gaussian stat­
istics are predicted for P evon when absent from b . We can thus 
attempt to study the mechanism of stochastic transport in isolation 
from rjn-Cuiussi an complications of the background. This argument 
fails for the GcU-consi stent problem, which we do not tieat here. 
The subjects of turbulence statistics and attractors in plasma are 
worthy of much further investigation. 

The instantaneous rield line orbits 

& - £ • d! = b'V,Z» (2) 
are the canonical equations for the Hamiltonian H(>:,y;z) = x 2/2L -
y — -
/ dyb(y,z) with >: and y considered as conjugate momentum end coor­
dinate. We assume I hat 11 is stochastic according to a mean Chirikov 
criterion: the pican separat ion between resonance is A - -'r/\ -

' r/' i( .' .1 kn - (<l/s) ('inkj) ; i he typical i esonance width 
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w = 4(2I.s<|b I > kg ) ; and we assume that S ; w/i > 1 .. Both 
numerical experiments and some theory tell us that for S not too 
close to the threshold S = 1 , most of the volume is stochastic: 
typical field lines separate exponentially for small separations 
and wander throughout a substantial portion of the volume. For large 
but finite S , there is of course a small invariant set which is not 
stochastic. However, practical estimates based on microturbulence 
theory as well as some observation predict that the Chirikov crite­
rion will be very veil satisfied in many situations. We are then 
justified in assuming the measure of the nonstochastic component to 
be negligible. 

From a practical point of view, the detailed structure of 
P (x,y, 7.,V,t) is of little direct interest. We are concerned with l'.-: 

mean motion of an ensemble of particles distributed uniformly at t - 0 
over an equilibrium flux surface r . We therefore treat P as a 

o 
random variable and the perturbation b as a given random coeffi­
cient, statistically specified and independent of P . Equation (1) 

9 then becomes a stochastic differential equation of standard type. 
As is well known, such equations suffer from the closure problem, 
which pcans that the equation for ^P(x,V,t)> (the average taken over 
both brickuround turbulence and initial conditions) contains the un­
known paii1 correlation V<b 3 P/ 3x.> . One proceeds by expressing this 
correlation in times of <P> by a closure approximation. 

The fluctuations described by Eq. (1) are both inhomogeneous 
and anisotropic. Their character is determined, in part, by the 
ratio R,. H L /L R , where the separation & between typical adjacent 
lines is taken to be 5 (z) = 6„ exp (z/L,,) . For physical reasons atten-

o K 

tion has focussed to date on the regime P.R < 1 . In some ways P.K 'S 
analogous to the Reynolds number for fluids. However, we v. ill PC? 
that even in the limit R„ < 1 the nonlinear physics of the --, toch ,H t ic 
lines can be nontrivia1 and important. 



Equation (1) can be analyzed by standard formal techniques for 

stochastic differential equations; we discuss this in Sec. 4. How­

ever, more insight can be gained from simple qualitative arguments, 

to which we now turn. 

3. Qualitative Physics of Stochastic Transport 
Equation (1) has a natural interpretation in terms of two dis­

tinct physical processes: parallel motion along, and perpendicular 
diffusion across the lines. To describe the parallel physics, we 
approximate true lines by unperturbed lines and sjt D± and b to 
zero; the resulting equation preserves x as constant and the shear 
term in x enn be removed. By choosing C to be the model operator 
d (vV t D 5 ) , one is left with a standard Fokker-Planck equation 
V V V 3 

whose solution is well known. II one applies this solution to the 
quasilincar approximation to the particle diffusion coefficient 
D(t;V ) of particles with initial velocity V , o J o 

ft 
D(t 

'0 V 
;Vo) = j di I <hu [T)b_u(0)><V(T)Vo e.xp ik(|3(T)r- , 

ho can write 
D( t;V ) = V D d(t) , o o ra 

where the quasilinear diffusion coefficient D of the lines is dc-
m 

i ir.ed a s 
i 2 D m - " R l \ d k f c < | b | " ( 0 ) > , 

and in the l i m i t of s t a t i c background f l u c t u a t i o n s 

f - z ( t | v ) { 

d ( t ) = d ' dz C . , ( : - z ) P ( z , t | V ) , 
' 0 ' 

whore <z[t\VQ)> = I I - e x p ( - v t ) ] (V /v> i s t h e moan d i s t a n c e ( a v e r a g e d 

o v e r t h e I .angevin w h i t e n o i s e f l u c t u a l i ons r e s p o n s i b l e f o r c o l l i -

s i o n s \ t r a v e l e d i n t i m e t , C | | t u ) i s I he n u l e r i n n c o r r e l a t i o n f u n c t i o n 

[of w id th 0 ( L Q H f o r b t aken a luny Lhc u n p e r t u r b e d l i n e s , and t h e 

p r o b - i b i l i t y for f 1 ne i n i l i ens ,i round I he mean p o s i t i o n i s 



P(z,t|Vo) = [2ia^(tl] 1 / 2 exp(- z2/2o2(t)] , 

o 2(t) - (2vt-3 + 4 e - v t - e - 2 v t ) > 2 • 
t = vfc/v , where v t is the thermal velocity, related to the pa ml. lei 
diffusion coefficient through D y=v f c /v. One physically interest­
ing limit is that of Eulerian correlation length small compared to i 
collision,-:! mean flee path £ : R - L /£. < 1 . In Fig. 1 we plot d(t! 
fur the model function C M(z) -" [II (z + L ) -H(z-L )1/2L [H(z) j <i ( 1 ••-> 
Sleaviside function! for several values of R„ , and V =v . Ft"' Mi-

K o t 

smallest valies of R̂  , three distinct regimes are apparent. In re­

gime (a) the bulk of the particles remain within the domain L of 
o 

magnetic correlations and d(t) ~ V t/L = (vt]/Rf . Tn regime (b) 
particles, still essentially collisionlcss, move on diffusing liivs 
so asymptotically d(t) = 1 . This regime is quite small for R. •• D. \ 

In regime <c) most particles have collided at least once so a double c 2 2 2 1/2 diffusion law holds: 6r - D 6z , 6z - Dut , 6r - D (Diit) so d (t) -m " m " -1/2 (vt) . Because energy confinement times in tokamaks are many 
collision times, this model taken naively would predict negligible 
stochastic transport in the limit t + •» . 

This picture is incomplete, however, because it incorrectly as­
sumes that particles remain always on their initial lines. If par­
ticles lose correlation with a given line in time T , then the as-

c ymptotic diffusion coefficient is finite, D(~) = V D dd ) . Loss of J o m c 

correlations arises from twe distinct effects. First, the background 

turbulence can have a finite correlation time i, . Because the prop­

ert ies of the background fluctuations are not well known, we will not 
discuss T, further here. (Let us note in passing that some interest b 

attaches to perturbations arising from external coil asymmetries, in 

which case x. = =» . ) Second, perpendicular collisional diffusion re­

moves particles from linos. Lot the perpendicular F.ulerian correla­

tion length of the backuround turbulence be L^l-Ofk. ) ) . | C - < : ) -



ignored the stochastic nature of the field, he would estimate the 
corresponding correlation time to be T A - 1>X/D± . However, adjacent 
lines diverge exponentially and particles can cross the distance h± 

more rapidly by diffusing a small amount perpendicularly to a new 
line, moving rapidly along this new line, then repeating this process. 
1'he correlation time [. for this process can be estimated as i, = 
•; |L,) , where ; (z) is the time required to tiavel a parallel dis­
tance z and L, ••- l v r n [ : { i x )./L ] . This estimate is very rough D C -
causc the lines become uneorro 1 a ted and diffuse independonrj y for 
• (z) - L^ . Finite shear introduces further cor^elations which we do 
not o i seuss he- re . 

Our goals, then, are to determine I,,, , T, , and therefore D ( ••) . 
Regarding L.. , Ch.irik.ov has r-stiMtcd a "typical" K-S entropy which 
in our units is Lr. -- L (k*"D L ) . where k. is a typical a,;i-K s • • ir s t- J * 

muthal wavenumber. One can recover this result by requiring that the 
scale length for exponentiation agree with the scale length for loss 
of correlations by single line diffusion (this amounts to requiring 
continuity of Lagranqian magnetic correlations as a function of z ) . 
For diffusion of single lines, one estimates cm the shear relation 
y/'Z - ' r/L and the di.'. fusion law :r" - D :z for sinule lines that s m 

the moan square of the az iniuthal phase fluctuation < (k l-y)"> is of 
eider (c-./I,,) J. (This assumes that radial correlations do not play a 

2 -1 role. If they dominate, L„ should presunath' be replaced bv (k D ) , K l • ' - r m 
with D to be determined self-ennsistently from a strong turbulence 
type of calculation.) Alternatively, L emerges from a closure for 

2 
'-'Ay > a p p l i e d t o t h e e q u a t i o n s f o r r e l a t i v e s e p a i a f i o n 

d . . . . ' x d . ,. >~o . 
di ' i y - L ' • ,u " '- % y -y • ( 3 > 

s J 

i t o n e e x p r e s s e s tVic t h n ••. - : m i n t f a l io ! i . H I S i n t h e e q u a t i o n s r o r •:.>:"•, 

2 
• '.x ,\y • , • . ,\y ;• i n t o n u s o t f o u r p o i n t o n e s by i n l o n r a t i o n o f ( 3 ) , m i k e s 

http://Ch.irik.ov
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G a u s s i a n f a c t o r i z a t i o n s of t h e f o u r - p o i n t f u n c t i o n s , c o n s i d e r s z - I. 

so t h a t t h e Markovian a p p r o x i m a t i o n i s v a l i d , and n e g l e c t s te rms 

s m a l l i n R , t he e q u a t i o n s r educe t o 

d 2 2 3 2 
3 <&y > = (f—) <£y > , (4) 

d z "K 
whose Bo'.-jfiijn grows asymptotically as exp(2z/L ), where L„ : 

K K 
L s ( ' i ^ D r a V " 1 / 3 a n d D

m = ̂ d-.-'b' (',)b' (0)> , b' = lb/3(k0 y) . Wo 
have n" -0(D ) . This scaling for L R appears to require th.it the 
amplitudes b. be su! f icient ly random. Unfortunately, ver t ficat ior. 
of this result by direct numerical integration of Eqs. (2) is .x-
trenely tir.ic-oonsuming and has not been done. 

The physics of Lhe asymptotic regimes (b) and (c) were discuss. • 
very qualitatively by Rochester and Rosenbluth." It would appear, 
however, that quantitative determination of T, and D(«-) as well as 
extension of these arguments to the self-consistent problem require a 
kinetic approach. In the next section we discuss aspects of our pro­
gram in thi-i direction. 

4. Closure Approximations 
We wish to derive information about D by applying statistical 

closure approximations to Eq. (1). Now it is well known that most 
workable closures can be characterized as formal expansions of Euleria 
statistical functions around a Gaussian state. (The recent 
Lagrangian suuemes of Kraichnan are an exception which we do not 
discuss here.) It is not immediately clear that such Eulerian-bnsed 
schemes will succeed; the most prominant dynamical feature of the 
stochastic state, the exponential divergence of adjacent trajectories, 
involves structures, namely pairs of lines, and is therefore intrin­
sically non-Gaussian. However, as we will discuss, the exponenti"1 
divergence does emerge from an appropriate (vertex-renormalized) 
Eulerian closure. This affords us in principle the first quantita­
tive analytic description of the diffusion coefficient. Practically, 

M I i i in 

! ! II I 

http://th.it


-li­

the computational difficulties arc severe and much further work is 

necessaiy. 
It is com .ient to adopt the following notation: for arbitrary 

functions fl, B , let A(l) : A(x x , y ; l , z L , V 1) , B(l) : B(l,t 1) . Define 
the stochastic response function R(l;l') by the functional deriva­
tive of P with respect to a nonrandom source n added to the right-
hand side of Eq. (1): R(l,l') = IP (I)/6n(1'!; denote its mean by R ; 
vR- . The averaged response function R(l,t;l',t") is the solution of 
Eq. (1) for <P> with initial condition f(l-l') at t = t' . It can 
be interpreted as the probability density of a test particle at (l,t) 
given that it was precisely at (1 ,t') . 

One can write a formal riyson equation for R : 

d R(l,l') + [L(lri) -I (1,1)]R(I,D = 4(1-1') , 
rl 

where L(l , l ) is the bracketed operator in Eq. (1) times 6(1 - I ) and 

where an integration convention over repeated arguments is assumed. 

In this notation the radial diffusion coefficient ^ can be expressed 

as 

D = - lim dV, <? (V ) I d(x, - x ' ) (x - x' ) 2 I (1,1) R(l, 1 ') 

t - t -» > x > L x 1 (5) 

Several techniques are available fur generating approximations to the 

renormali~ed col l i s ion operator ;; . The one which is c leares t both 

logically and operationally is the functional scheme of Martin, 

Siggia, and Rose although many of the i r resul ts wore anticipated by 

12 

Kraichnan who used the direct method of consolidating inf in i te per­

turbation ser ies . In any case !". can be expressed for Gaussian b in 

terms of a certain component of a joint probability matrix K which 

obeys the Bethe-Salpeter equation (BSE). The theories actually pro­

vide coupled equations for R and the correlat ion function C ( l , l ' ) ; 

<iP(i; M' (1')> in terms of the covoiiance F ( l , l ' ) ; <b (1)b(1')> . De­

note fluctuations in P by "+", external perturbations by " - " , and the 

random coefficient b by "o" and let R be the (+-) component of a 
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two-ooint correlation matrix u_. j which also contains C = G, L and -point correlation matrix G. . which also contains C = G 
e verte> 
11,13>,6 

V(1,I) = j' (1,2,3) K {H ; Q^ju' (2,3,1) , 

F = G . Further, define the bare vertex operator U 1 (1,2,3) = oo 
V. 5(1-2)3 6(1-3) . Then we have 
1 x x 

where in formal operator notation the BSE for K reads K-'s(GG+ •'.•'.;; J 

GGIK . One can interpret K _ (1, 2; 1' , 2 ') as the probability Hi,a 
oi e will observe a field fluctuation at 1 and a particle ,it 2 , >•• • 

that one knew the field to be in the state 1 a_nd_ the pail i,-i,' •. • . 
in tile state 2* . The interaction term T describes the c(;'< •:'• :•"> -1: 
field particle or more generally two-body correlations on K . 1; 
these arc arbitrarily neglected, the Di:~ect Interaction Appt^xi ••••.• . 

(Q1A) emerges: K-*s(GG + GG); K + ~ hRF . This factorization in in 
body functions does not describe the exponentiation. DIA is Lh-:- '.•."' 
Gaussian" approxin.ation consistent with nonv£.nishing three-point •: c • 
tions; it does not retain phase information necessary to distinn i-:-h 
entities like pairs of lines. We conclude that Qlh is inadpcj- >i o : UT 
the present problem. 

Higher order approximations can be generated by expanding i in 
powers of a generalized skewness operator r -G G KY , where -, is .i 
symmetric matrix whose elements are U' of various arguments. The 
first nonvanishing t,. rm of the skewness expansion is I (1, 2 ; 3 . 4 ) -
1'(1,5, 3)G(5,5) I" (2,5,4) . To our knowledge, this renormalization was 
first proposed classically by Kraichnan in connection with his MOU<;1 
stochastic oscillator 3 (, = - ii»|) for Gaussian, time- • ̂ dtpenclont i. . 
Our Eq. (1) is a generalization of this model to time-dependent, 
operator u> . [This similarity is most apparent when Eq. (1) is ]"ouiiei-
transformed in y and z ; a principal difference is that our nodol, 
but not Kraichnan's, is linearly dispersive.) Kraichnan shewed that 
the solution of this approximation for the oscillator agreed very well 
with the csact R ; this was particularly impressive since hi:; ;-if>• i• :• 1 
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had infinite Reynolds number. In later work Kraichnan studied the 
aoproxi. ation for a model convection problem and concluded that it 
miaht describe -ie behavior of the two-time functions very accurately. 
The well-known pr< olems of this and other Eulerian closures with ran 
den; Galilean invariance do not appear to be relevant for the diss •-•' 
stochastic equation we consider here. 

It is straightforward *o write down the first vertex reivirmaliza-
tion of Eg. (1). It is not straightforward, and perhaps imposiible, 
to solve the resulting equations without further approximations C im­
plications are possible in the limit ft < 1 . Space constraints pro­
hibit a detailed discussion here; see Rof. 6. However, one may note 
the following points. For R < 1 the equation for K(1,2;1 ,1 ) has 
approximately the form of i diffu-ion equation in the relative coor­
dinate J X H x. - x ,with y-dependent diffusion coefficient _(6y) such 

2 " that D_(0) = 0 . For 5y much less than L x , D_dSy) = h 6y D and the 
second moments of the resulting equation combine to give again Eq. (4). 
iThe full solution of this short time solution for K is not Gaussian.) 
For „cy - h± , T> ^D and the DIA is recovered. Qualitatively, the equa­
tion has the behavior we expect physically; one can recover the re­
sults of Pec. 3 from expression (5). Quantitatively, very little is 
known about the detailed solution connecting the short and long time 
n.'ij i res for any continuous model of D (iy) having proper limits at 
small and largo 6y . 

The approximate relative diffusion equation for K appears to 
contain, the minimum allowable amount ol complexity consistent with 
known qualitative physics. That it is still very complicated is dis­
heartening, but at least one has a basis far further concrete calcu­
lations. However, more detailed solutions for 1' should undoubtedly 
be preconVd i further elucidation of the physics of the background 
and the role of the self-consistent random currents which flow in the 
n.:gi:;.e of dest r< >yed tori. Tn the limit R K > 1 a speculation is that 
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t h e DIA may be a d e q u a t e i f p r o p e r accoun t i s t aken of t he r a d i a l 

e i g e n s t r u c t u r e of t h e b a c k g r o u n d . However, t h i s l i m i t r e u u i : i ' s a 

l a r g e f l u c t u a t i o n l e v e l which may not be r e a l i z e d in p r a c t i c e . 

5 . Conc lus ion 

The problem of p la sma t r a n s p o r t in s t o c h a s t i c magnet ic f i e l d s 

i s r i c h i n i n t e r e s t i n g 1 i n o a r and n o n l i n e a r p h y s i c s , and i s of ''rieh 

• v a c t i c a l impor tance for o u r u n d e r s t a n d i n g of plasma eo'-fi IT men t . 

The p r e s e n t work has b a r e l y begun to f o r m u l a t e , l o t alo-.c in -wei: : i : 

r e l e v a n t q u e s t i o n s . The f i e l d i s a l a r g e and c h a l l e n g i n g one for 

f u t u r e work. 
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