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Notation

6, generic parameter of interest

ML, maximum likelihood

x, number of nonaurvivors in a binomial experiment

n, number of trials in a binomial experiment or the number of items
on lifetest

p, probability of nonsurvival

L(8;x), likelihood function of 6

R(6;JC), relative likelihood function of 6

g(8;£)» prior distribution of 8

£, vector of prior parameter values

x_, vector ot observed sample random variables

L(6;x,£), extended likelihood function of 6

R(8;x_,v_), extended relative likelihood function of 8

fOc;8), joint distribution of the observed sample random variables

ELI, extended likelihood interval

ELPI, extended likelihood prediction interval

A, failure-rate of an exponential time-to-failure model

r, number of failures for an exponential lifetest model

T, total time on test

t*, test termination time

a, gamma shape parameter

b, gamma scale parameter

no, beta parameter representing the pseudo-number of trials

xo, beta parameter representing the pseudo-number of nonsurvivors



second-order likelihood function of h

, ^ ) , extended aecond-order likelihood function of h

v, a future failure-time from an exponential distribution

s, the number of failures that occur in a future lifetest

experiment or the number of nonsurvivors in a future binomial
experiment

m, the number of items on test in a future lifetest or binomial
experiment

T, the calendar time period in a future lifetest experiment
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EXTENDED LIKELIHOOD INFERENCE IN RELIABIITY

by

H. F. Martz, Jr., R. J. Beckman, and R. A. Waller

ABSTRACT

Extended likelihood methods of inference are developed
in which subjective information in the form of a prior dis-
tribution is combined with sampling results by means of an
extended likelihood function. The extended likelihood func-
tion is standardized for use in obtaining extended likelihood
intervals. Extended likelihood intervals are derived for the
mean of a normal distribution with known variance, the
failure-rate of an exponential distribution, and the param-
eter of a binomial distribution.

Extended second-order likelihood methods are developed
and used to solve several prediction problems associated with
the exponential and binomial distributions. In particular,
such quantities as the next failure-time, the number of fail-
ures in a given time period, and the time required to observe
a given number of failures are predicted for the exponential
model with a gamma prior distribution on the failure-rate.
In addition, six types of life testing experiments are con-
sidered. For the bionomial model with a beta prior distribu-
tion on the probability of nonsurvival, methods are obtained
for predicting the number of nonsurvivors in a given sample
size and for predicting the required sample size for observ-
ing a specified number of nonsurvivors. Examples illustrate
each of the methods developed. Finally, comparisons are made
with Bayesian intervals in those cases where these are known
to exist.

INTRODUCTION

The method of maximum likelihood as proposed by Fisher is a well-known

and widely used technique for estimating unknown parameters of a statistical

model. More recently, further developments in this approach have been under-

taken by Barnard, Barnard, Jenkins, and Winsten, Sprott and Kalbfleisch^»5



Kalbfleitch and Sprott, ~ Kalbfleisch, and Hudson. The application

of this approach in reliability has besn considered by Singpurwalla, Bar
12 13 14

Lev, and Reiser and Bar Lev. Whitney gives an excellent tutorial

account of the current state of the art of the likelihood method with examples

for the binomial, exponential, and Weibull models. A comprehensive philosoph-

ical discussion of the method is given by Edwards.

In order to introduce the concept of likelihood, consider a specified

statistical distribution with a single unknown parameter 8 which is to be es-

timated. The method of maximum likelihood (ML) selects as the estimate that

value of 0, denoted by 9, which maximises the likelihood of obtaining the ob-

served data. This approach can be extended to provide an interval estimate

of 6 and this has been the thrust of the aost recent interest in the likeli-

hood method. Rather than consider only a single value of 6 which maximizes

the likelihood of producing the observed data, an interval of 6 values around

the maximum is considered which makes the likelihood of obtaining the observed

data relatively large. This range of 9 values is viewed as being supported by

the data, while those values outside this range are viewed as receiving little

support from the data.

To further introduce and quantify the notions of likelihood, consider the

following example which is similar to that used by Whitney. Suppose it is

desired to estimate the probability of failure-to-start of a diesel generator

that is used as an emergency power supply for a nuclear powered reactor. Sup-

pose that n trials are performed and the number of failurea-to-start x is re-

corded. For the sake of illustration, let us assume that all trials are inde-

pendent with the same probability of failure p on each trial. The probability

of observing exactly x failures is given by (")p (1-p) . Now consider two
specified values of p, say p. and p». The so-called "likelihood ratio" of

p, to p« is the ratio of the two probabilities given by

p^(l-p )n"x/P2(l-p2)
n~X. Suppose that Y is the value of this ratio. This

ratio says that when p - p., the observed data are Y times as likely as when

p » p.. For example, if 2 failures were observed in 200 trials, the likeli-
2 1 Qft

hood ratio of Pj - 0.008 to p2 - 0.04 is (0.008) (0.992)** /

(0.O4)2(o.96)198 - 24.33. That is, when p - 0.008 the observed data are

roughly 24 times more likely than when p • 0.04. Thus, p • 0.008 is a such

more plausible value of p than p - 0.04 and we aay that p • 0.008 is more



strongly supported by the data than p • 0.04. The ML estimate of p is

well known to be p » x/n. Thus, in our example, p • 2/200 • 0.01. All com-

parisons such as given above can be summarized by considering the likelihood

ratio of p to p as a function of p. This function is referred to as the rela-

tive likelihood function of p given x, and hence

_» \ X/, \n—x.^x,, *\n—x
R(p;x) - p (1-p) /p (1-p)

In our example,

R(p;2) - p2U-p)198/(0.01)2(0.99)198

- 73152.886 p2(l-p)198 .

This function is plotted in Fig. 1.

Values of p such that R(p;x) is close to 1 /which is the maximum value of

R(p;x)) are regarded as being plausible and supported by the data, while val-

ues of p such that R(p;x) is close to 0 are regarded as being implausible and

unsupported by the data. In this spirit, the interval of values of p for

which R(p;x) ̂  Y is referred to as a lOOyX likelihood interval for p. Such

ooo 002 0.03 004 005

Fig. 1. A plot of the relative likelihood function R(p;2).



intervals have also been referred to as plausibility intervals (Singpurwalla ),

credibility intervals (Jenkins and Watts ), and support intervals

(Edwards ). For instance, in our example, values of p in the 102 likeli-

hood interval (0.001, 0.033) have at least 10% relative likelihood and so are

fairly plausible. On the other hand, values of p outaide this interval are

fairly implausible since there exist values of p (near p) for which the ob-

served data are at least 10 times more likely. The 50% likelihood interval can

be interpreted as containing very plausible values of p (Whitney ). Here

the 50% likelihood interval is (0.004, 0.021). The 10% likelihood interval is

shown in Fig. I.

One final note concerns the likelihood function. It is customary to re-

fer to the joint probability function of the sample random variables as the

likelihood function, denoted by L(9;x), when considered as a function of the

unknown parameter. In the case of the binomial model

L(p;x) - (B)pX(l-p)n~x .

EXTENDED LIKELIHOOD INFERENCE

We can extend the likelihood method to directly incorporate a prior dis-

tribution on the parameter of interest. A similar approach has been used by

Blumenthal and Sanathanan for constructing maximum likelihood estimates

from truncated data. The prior distribution is assigned in order to account

for its inherent uncertainty. This inherent uncertainty may be due to such

factors as environmental effects, plant-to-plant differences, maintenance ef-

fects, and different operational demands. Such an approach is in widespread
18 19

use in reliability (Schafer ) and was used in WASH-1400. The main ad-

vantage of incorporating a prior distribution is that all available informa-

tion regarding the parameter is used. The prior distribution is frequently

chosen based on the best available subjective information concerning the

parameter.

We restrict our attention to the case of a single unknown parameter 6

which is to be estimated. We suppose that the prior distribution of 6 con-

tains the subjective data about 6 in the form of prior parameter values in a

specified prior model. For example, if a two-parameter gamma distribution is

used as a prior model for the failure-rate of an exponential distribution,

then the subjective data about 6 are contained in the choices for the prior
4



shape and scale parameters. In such a case, both the observed data and sub-

jective data are contained in the extended likelihood function according to

the following:

Definition; If f(x;e) is the joint distribution of the observed sample data

and g(8;v^) is the prior distribution or 6, then the extended likelihood func-

tion of e is given by

Ue;x,£) = g(e;v_) f(x;e), (l)

where x * (x,...x ) denotes the n-vector of observed sample random variables

and y_ * ^yi**'ym^ denotes the m-vector of prior parameter values. Later,

these prior parameter values will be referred to as subjective data. Here the

prior distribution g(G;y_) is used to weight the values of 0 in f(x;9), This

concept is not new and the foregoing definition is included only for the sake

of completeness.

It is a straightforward extension of the likelihood method to consider

the following:

Definition: The extended relative likelihood function of 6, denoted^by

R(6;x,v_), is defined as

,i). (2)

The interpretation of R(e;x,v^) is analogous to the interpretation of the (un-

extended) likelihood function R(e;x) given in the preceding section.

There is one important advantage that R(8;x,jr) has over R(6;x). If no

observed data are available, then R(e;v^) may still be used to compare the rel-

ative likelihood that 6 produced the subjective data. In particular, R(6;^r)

give8 the likelihood that 6 produced the subjective data £ relative to the

modal value of g(6;v^). This will be further illustrated in the succeeding

sections.

The set of valuos of e for which R(6;x,y_) £ y will be called the IOOYX

extended likelihood interval (ELI) for 6. The interpretation of this interval

is the same as the (unextended) likelihood interval.

To illustrate these concepts, consider the case of a normal distribu-

tion. Suppose that we observe a normally distributed random variable x with
2

unknown mean 6 and known variance a . Further suppose that 6 has a normal



prior distribution with mean X and variance V . Thus y_ •

algebraic manipulations we obtain

After son*

(3)

where

K - exp [- + ¥2x)(a2X + 4<2x-l)/(2cV)(a2+Y2) .

From Eq. (3), the IOOYZ extended likelihood interval on 0 is given by

+ . (A)

Further, if it is known that a' * 0.25, X • 2, y « 1, and x » 1 was ob-

served, then K * exp(-1.2) and the 10% extended likelihood interval on 3 is

easily computed to be (0.54, 1.86). For comparison, a 90Z Bayesian probabil-
20

ity interval on 6 is found to be (0.47, 1.94) (see Hines and Montgomery,

p. 459, for the Bayesian interval equation). This comparison is presented

only to illustrate the numerical agreement of the two procedures in this

special case. It must be stressed that they are based on entirely different

philosophies. The Bayesian interval emphasizes the probability of coverage

which would be expected in repeated sampling experiments. On the other hand,

the extended likelihood approach emphasizes the particular set of observed and

subjective data.

THE EXPONENTIAL MODEL

The exponential model is widely used in reliability as a statistical model

for time-to-failure at the component/subsystern/system level of analysis. In



this section the necessary equations for us* of the ELI methods in the,

nential model are developed. These will also be used in the section PtiixC-

TION IN THE EXPONENTIAL MODEL for solving several existing important and °

unsolved prediction problems regarding the exponential model.
2 1 — 2 3 • >'-.' s '••• " ' ' "

Epstein considered several possible life testing experiments;

namely, a°.

(i) Testing is terminated after a prespecified number of failures have

occurred; failures are replaced. s

(ii) Testing is terminated after a prespecified number of failures have

occurred; failures are hot replaced. =

(iii) Testing is terminated after a prespecified time has elapsed; fail-

ures are replaced. o o = "

(iv) Testing is terminated after a prespecified time has elapsed; fail-

ures are not replaced. <,,,

(v) Testing is terminated either after a prespecified number of failures

have occurred or after a prespecified time has elapsed, whichever

occurs first; failures are replaced,

(vi) As in (v) except that failures are not replaced.

It is noted that case (iii) denotes the situation encountered when data °

are collected and reported for field operational devices, e.g., reactor

component failures reported on an annual basis. By assuming an exponential

time-to-failure model, Epstein gives confidence intervals for theemean-time-

to-failure 9 and some related reliability quantities. In some cases0 only ap-
, • ° 1 3 . •-• •'• - 1 2

proximate solutions were given. Reiser and Bar Lev and Bar Lev con-

aider likelihood intervals based on these same testing experiments. Cases (i)

and (ii) are sometimes referred to as Type II or censored lifetests, while

cases (iii) and (iv) are called Type I or truncated lifetests.

Consider the exponential distribution given by
- ' " •• ' • <Q. -'

f(t;x) • Xexp(-Xt), \,'t > 0, |5)

where t represents time-to-failure and X is the failure-rate. The likelihood
function for all six experiments is given by

L(Ajt) « XTexp(-XT), , (6)



where £ a (t ,... , t ) iŝ t.he vector of ordered observed failure times, r

is the number of failures, and T is t:hr- total time on test which is defined

below. Let n represent the number of items on test and let t* represent the

test truncation tim*. Then T is defined in each corresponding experiment as

(i ) T = nt

r

(ii) T = / t. + (n-r)t

(ii i) T = nt*

r

(iv) T « > t. + (n-r)t*

(v) T * ntr, if tr < t*

= nt*, if t > t*

(vi) T * y t +• (n-r)t , if t < t*j • Ml -1 / u ,

r

= y ti + (n-r)t*, if tr > t*

18
The gamma distribution is widely used as a prior model for X. Schafer

investigated data from 32 different equipments and found that in 29 cases a

gainna prior distribution adequately fit the data. This distribution will also

be used here. The gamma prior distribution of X is given by

el

A e , A,a,b>0, (7)

where a and b are the prior shape and scale parameters, respectively. Because

the prior mean of Eq. (7) is a/b, the parameter a can be interpreted as the

number of failures in a prior lifetest of duration b hours. Waller et
24 25 . 26

al; MartE and Waller; Grohowski, Hausman and Lamberson; and Schick
27

and Drnas present simple methods for translating subjective prior percen-

tile information about X into corresponding values of a and b. These should

be consulted when fitting gamma prior distributions.

The extended likelihood function according to Eq. (1) thus becomes

8



m b .a+r-1 -X(b+T)

where y_ * («»b). Further,

^ ba

t.2) " f(a7

which occurs at X * (a+r-1)/(b+T). Hence, the extended relative likelihood

function given in Eq. (2) becomes

do)

The solution to R(X;it,y_) £ y yields the 100Y* ELI for X. Upon taking loga-

rithms and requiring that a+r>l, the lOOyX ELI for X in any of six l i fe tes t

experiments is given by the solution to the nonlinear inequality

- (b+T)X - (a+r-1) In / ^ I T M + a+r-1-fcrry * 0 . (11)

Also, for comparison, the usual 100(l-a)% Bayesian interval estimate of X
28

is given by (see Martz and Waller, p. 32)

^/2;2r+2a/(2T+2b) * X * Xl-a/2;2r+2a/(2T+2b) '

2
where x . is the 100(a)th percentile of a chi-square distribution with v

degrees of freedom.

Example 1; Consider a Type (iii) lifetest experiment for a certain component

in which six failures were observed in a total of 3 504 000 operating hours.

Further, suppose that a gamma prior distribution with a • 1.5 and b *

1.0 x 10 hours is appropriate for this component. Assuming a constant

failure-rate model (the exponential failure-time distribution), construct a

10Z ELI for X. Also, compute a 90Z Bayesian interval estimate of X and com-

pare the results.

Solving Eq. (11) with a • 1.5, b « 1.0 x 10 , T - 3,504 000, r • 6.0,

and y » 0.10 by means of a nonlinear root finder yields (0.54 * 10 f/h,



3.02 x 10 f/h) as the required 10% ELI. The extended relative likelihood

function is plotted in Fig, 2 and the 10!!! ELI is indicated. From (12) the 902

Bayeaian interval estimate of > is computed to be (0.81 * 10 f/h,

2.77 x 10~ f/h). Although the 10? ELI agrees quite well with the 90% Bay-

esian interval estimate, the ELI is slightly wider than the Bayesian inter-

val. Thus, it is slightly more conservative.

Example 2; Consider the preceding example in which no teat data are yet avail-

able. Based on a gamma prior distribution for X with a = 1.5 and b «

1.0 * 10 hours, a 102 ELI for X may be computed by setting T = r = 0 in

Eq. (11). Again, solving Eq. (11) by means of a nonlinear root finder yields

the 102 ELI for X given by (1.85 * 10~9 f/h, 3.82 * 10~6 f/h). The

extended relative likelihood function is plotted in Fig. 3 and the 102 ELI is

indicated. For comparison, the 902 Bayesian interval is (1.76 * 10 f/h,

3.91 x 10 f/h). The ELI interval is significantly wider tha-.j the Bayesian

interval. The interpretation of the ELI interval here is as follows:

values outside the interval (1.85 * 10 , 3.82 * 10 ) have less than a

102 likelihood of having produced the subjective data a = 1.5, b =

1.0 * 10 . In other words, there exist values of -X close to the mode of

Fig. 2. A plot of the extended relative likelihood
function in Example 1.

10
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p,. 'i. A plot of the extended relative likelihood
function in Example 2.

g(A;a,b) which are at least 10 times more likely to have produced a * 1.5,

b = 1.0 * 10 . The 90% Bayesian interval here may be interpreted as

follows: the probability that A lies within the interval (1.76 * 10 ,

3.91 x 10 ) is 90%. It is noted that the Bayesian interval emphasizes

probability while the ELI emphasizes the particular set of subjective data

used in the analysis. Since these are differing interpretations, no direct

comparisons can be made between these intervals. Finally, by comparing the

ELI with that in Example 1, it is observed that the use of objective test data

shrinks the interval, as expected.

THE BINOMIAL MODEL

The binomial model is widely used in reliability as the appropriate model

for use when only the survival/nonsurvival of a set of n items on lifetest is

reported. It is also assumed that items fail independently of one another

with the same probability of nonsurvival p. The necessary equations for con-

structing an ELI for p are developed and these will be further used in the

section PREDICTION IN THE BINOMIAL MODEL where several important binoaial pre-

diction problems will be formulated and solved.

11



Consider the binomial distribution given by

f ( x ; p ) . ___J^___ p
x a - p ) n - \ x - 0,1.. ...n. ( n )

0 s. p s 1

where x represents the number of nonsurvivors of a test of a specified dura-

tion in which n items are initially on test. The likelihood function L(p;x)

is also given by Eq. (13) when considered as a function of the probability of

nonsurvival p.

The beta distribution is widely uied as a prior model for p. It wili also

be used here and is given by

r<nQ) x - I VV1

g(p;no,xQ) - r ( ) r ( v X Q ) P U-P) . n o > x Q > O ,

where the prior parameter xQ may be interpreted as the pseudo number of non-

survivors in a prior test in which n_ items are tested.
29 30

Weiler and Waterman, Martz, and Waller present a set of tables and

graphs for use in translating subjective prior moment and percentile informa-

tion about p into corresponding values of x_ and nfl. These references

should be consulted when fitting beta prior distributions.

The extended likelihood function from Eq. (1) becomes

r(xo)r(no-xo)(n-x)!x!

where y_ • (x^, n^). Further, it is easily determined that

T(n )n!

(16)

12



which occurs at p • (x+xQ-l )/(n+nQ'-2). Thus, R(p;x,y_) upon simplification

and collecting terms becomes

(l-p)h+n.-2)l
n+n0-;<-1'o-1

•*.„-».,

The solution to R(p;x,^) £ y yields the lOOY* ELI for p. Upon taking loga-

rithms and requiring that nQ-xo-l>0, the 100Y% ELI for p is given by the

solution to the nonlinear inequality

+ (n+no-x-xo-lHn(l-p) + (x+xo-l)S.n(n+no-2)

- <x+xo-l)fcn(x+xo-l) + (n+n0-x-x0-l)in(n*n0-2)

-(n+no-x-xo-l)£n(n-Hio-x-xQ-l) - fcn.Y * 0 . (18)

For comparison, the usual 100(l-a)Z Bayesian interval estimate of p is

given by

x + XQ

)Fa/2;2x+2x.,2n+2nn-2x-2x
y y

^^2n+2n0-2x-2x0

where F is the 100(a)th percentage point of an F distribution with

v. numerator and v. denominator degrees of freedom*

Example 3: Consider a certain component in typical use in light-water nuclear

power reactors in the US. During a recent year, suppose that six failures of

this component occurred out of 400 such components in use in a given plant

during the year. Further suppose that a beta prior distribution with

XQ - 1.4 and nQ » 136.2 is chosen based on best available published gen-

eric data for this component. Construct both a 10Z ELI and a 90Z Bayesian

interval for the annual probability of nonsurvival p. Compare the results.

13



Solving Eq. (18) with x = 6, n *= '+00, x •= ] A n = ]'i6.2, and y =

0.10 yields the required 107. ELI for p gi.vrsn by (0.0045, 0.0250). The

extended relative likelihood function J'H plotted in Fig. 4 and the 10% ELI is

indicated. From Eq. (19) the 90A BJiyesi an interval estimate of p becomes

(0.0067, 0.0228) which is somewhat narrower than the ELI. However, they agree

closely.

Example A: Suppose that, in the preceding example, no test data are yet

available, such as would be the case prior to startup of a new reactor. Thus

x * n 3 0. With the same prior distribution as in Example 3, the solution to

Eq. (18) with x = n = 0, x = 1.4, nn = 136.2, and y = 0.10 yields the 10%
-6 -2

ELI for p given by (3.48 * 10 , 2.64 '• 10 ). The extended relative

likelihood function is plotted in Fig. 5 and the 10% ELI is shown. The cor-
-3 -2

responding 90X Bayesian interval for p becomes (1.22 * 10 , 2.64 * 10 ).

The Bayesian interval is observed to be significantly narrower than the ELI.

The interpretation of these intervals is analogous to that given in Example

2. It is also noted that the incorporation of objective test data as in Ex-

ample 3 significantly narrows the ELI, as expected.

oo-
ooo 004

14

Fig. 4. A plot of the extended relative likelihood
function in Example 3.
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FIR, 5. A plot of the extended relative likelihood
function in Example A.
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SECOND-ORDER EXTENDED LIKELIHOOD INFERENCE

Second-order likelihood methods for prediction have been developed by

Kalbfleisch and Sprott, ' and Kalbfleisch . Fisher also used this

same argument to obtain the "likelihood" of a future observation. Bar Lev
13

and Reiser and Bar Lev have used second-order likelihood methods for solv-

ing prediction problems related to the exponential distribution.

The notion of second-order likelihood will now be briefly summarized.

Consider two independent samples u * (u,uo..,un ) and v • (v v«. .vn ) from
— i z n^ — 1 2 n2

specified distributions with underlying parameters 8 and 9 , respective-

ly. Further, assume that the sample v is not entirely observable and further

that a function of v, say h * h(v), is to be predicted. For example, in the

case of a future sample from the same population it may be of interest to pre-

dict the number of sample observations that will fall in a given interval.

Other examples will be found in the following two sections. Now, the joint

information on 6 and 6 is summarized by the joint relative likelihood

function given by
R(e ,ey;u,h) e ?U)R (e

15



If «i and h are gi ren, then the plausibility that 0 * 6 is measured by

R^ - Sup R(e ,0 ;u,h) = Sup R.(O;U)R,(Q;h).

u v

Large (small) values of R^ provide support for (against) the claim that

6 = 6 . However, if it is known that 6 = 8 and h is unknown, then it is
u v u vdesirable that RM * \S

h) considered as a function of h be large. Thus,

plausible values of h are those that make Rw(h) large. The function K.(h)

is referred to as the second-order likelihood of h. To summarize, the likeli-

hood function rates the plausibility of 6 according to how 1ikely that value

of 6 makes a set of observed data that is known to have occurred. On the

other hand, the second-order likelihood rates the plausibility of h according

to how likely it makes the event G • 0 which is known to be true.

Let us now extend the notion of second-order likelihood to directly incor-

porate a prior distribution on G. A straightforward extension of the fore-

going notions yields the following:

Definition; The extended second-order likelihood of h is defined as

R^hpc,^) = Sup R1(6;x,x)R2(6;h) , (20)

where R|(6 $*.»£) is the marginal extended relative likelihood function of 9

corresponding to the first sample and R (6;h) is the. marginal relative like-

lihood function of 6 in the second sample. It is noted that once e has been

realized according to the prior distribution g(9;y_), this value of 9 is the

same in both samples.

The set of values of g for which IL/h^x,^) £ y will be called the lOOy*

extended likelihood prediction interval (ELPl) for h. The interpretation of

this interval will be illustrated in Example 5 in the next section.

PREDICTION IN THE EXPONENTIAL MODEL

Three general prediction problems will be considered; namely, (i) based on

either no observed data or data from any one of the six experiments described

in the section THE EXPONENTIAL MODEL, prediction of the next failure-tine;

(ii) based on either no observed data or data from any one of the six experi-

16



msnts, prediction of the results in a future Type (iii) experiment; and (iii)

based on either no observed data or data from any one of the six experiments,

prediction of the results in a future Type (i) experiment. Examples illus-

trating each type of problem are given.

Prediction of the Next Failure Time

Consider a sample of observed data arising from any one of the six experi-

ments described in the section THE EXPONENTIAL MODEL. Assuming a gamma prior

distribution on X, the extended relative likelihood function is given in Eq.

(10). Suppose that we are interested in predicting the failure time v of

another item taken from the same population in question. The likelihood of v

in this second sample is

L(), ;v) = Xe ,

with corresponding relative likelihood function

_ ,, >. , -Xv+1
R,(*;v) = k e

Using Eq. (20), after some elementary algebraic manipulations, and simplifica-

tion, the extended second-order likelihood of v becomes

|"(a+r) (b+T) 1
I(b+T+v)(a+r-1)J

a+r
a+r-1
b+T

(21)

where v_ = (a,b). The lOOy^ ELPI for v is given by the solution to the non-

linear inequality

- (a+rHn(b+T+v) + (a+rHn(a+r) + (a+r-1 kn.(b+T)

- (a+r-1 Hn(a+r-1) - S>nY ̂  0 , (22)

where we again require that a+r-1 > 0.

Example 5; Consider a Type (iii) lifetest experiment for a certain component

in which six failures were observed in a total of 3 504 000 operating hours.

Further, suppose that a gamma prior distribution with a * 1.5 and

b = 1.0 x 10 hours is appropriate for this component. Construct a 102 ELPI

17



for another (future) failure-time observation from the same exponential dis-

tribution that generated the observed data.

Solving Eq. (22) with a « 1.5, b - 1.0 * 10 , T - 3 504 000, r - 6,

and Y " 0.10 gives the required 10X ELPI as (2.47 * 10
4 h, 4.58 x io6 h).

The extended second-order likelihood function is plotted in Fig. 6. The

interpretation of this interval is as follows; a failure-time outside this

interval has less than a 10% relative likelihood of ensuring that X " X

based on both the observed and subjective data. In other words, there exist

values of v close to the supremura which ensure that the event X * X is

at least 10 times more likely to occur based on the observed and subjective

data.

Example 6; In Example 5, suppose that no objective test data have been ob-

served. Based on a gamma prior distribution for X with a s 1.5 and

b * 1.0 x 10 hours, an ELPI for the first failure time v may be computed by

setting T * r * 0 in Eq. (22). Solving Eq. (22) in this way yields the 10%
4 8

ELPI for v given by (4.09 x 10 h, 6.72 * 10 h), which is considerably

wider than the interval in Example 5 as expected. The extended second-order

likelihood function for this example is plotted in Fig. 7.

20 30 40 50 60 7000 10

Fig. 6. A plot of the extended second-order
likelihood in Example 5.
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Fig. 7. A plot of the extended second-order
likelihood in Example 6.

Finally, it is noted that classical prediction has been successfully ac-
32 33

coraplished for experiments (i) and (ii) by Lawless. ' Classical predic-

tion results for the remaining four cases have not been found. Also, (unex-

tended) likelihood prediction results similar to those obtained here are given

by Bar Lev and Reiser and Bar Lev.

Prediction in a Type (iii) Experiment

Consider a sampling experiment of Type (i) - (vi) and a gamma prior dis-

tribution on A. From previous results, the extended relative likelihood of X

is given by Eq. (10). We shall consider the problem of predicting the number

of failures s during a prespecified calendar time period t in a future experi-

ment in which there are m items on test and failures are to be replaced as

they occur. This is a future Type (iii) experiment. The relative likelihood

in this second (future) experiment is easily calculated to be

R2(A;s)

(mAt
8

(23)

, s « 0
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From Eq. (20), after some elementary algebraic manipulations and simplifica-

tion, the extended second-order likelihood of s is given by

a+r-1 _ , s

, s > 0E( a+r+s-1)(b+T) 1 [mi(a+r+s-1)1
(b+T+mt)(a+r-1)J [ s(b+T+mt)J

(24)

_ a+r-1

ML_1 , B - o
b+T+mr J

where v_ • (a,b) as before. The lOOyX ELPI for s is given by the solution to

the nonlinear inequality

(a+r-1 Hn(a+r+s-1) + sHn(mT) + S!LT\(a+r+s-1) - sX.n(s) - s£n(b+T+mT)

+ (a+r-1 Hn(b+T) - (a+r-1 )«.n(b+T+mt)

- (a+r-1 Hn(a+r-l) - Jln(Y) * 0, s > 0 , (25)

where we again require that a+r-1 > 0. For s = 0, the appropriate part of Eq.

(24) would be used.

Example 7; Consider a Type (iii) experiment in which six failures were ob-

served in a total of 3 504 000 operating hours during a recent one-year per-

iod. Further, suppose that a gamma prior distribution with a * 1.5 and

b • 1.0 x 10 hourr. is selected for the device under test. It is desired to

predict the number of failures that will occur next year in which 400 devices

will be in operation. This prediction is useful for determining the number of

replacement devices that should be stocked as well as in determining the nec-

essary maintenance policies.

Solving Eq. (24) with a * 1.5, b - 1.0 * 10 , T - 3 504 000, r « 6,

• - 400, T - 8760, and Y - 0.10 yields the 10Z ELPI for s given by (0.53,

13.54). Thus, conservatively, between 0 and 14 failures are anticipated next

year with 10Z likelihood. The 50Z ELPI is (2.10, 9.19). The extended
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second-order likelihood function of a is plotted in Fig. 8 and the 102LELPI is
indicated.

Example 8; In Example 7, suppose that no objective test data are available.
IN,, " P,

Based on the given prior distribution, it is desired to predict the number of

failures that will occur in a one-year period in which 400 devices, are in

operation and failures will be replaced as they occur. Solving Eq. (24) with

a - 1.5, b - 1.0 x 10 , T * r * 0, m » 400, T « 8760, and Y - 0.10,, the 10%

ELPI for s is found to be (0, 14.97). The extended second-order likelihood

function of s is plotted in Fig. 9 and again the 10X ELPI is given.

Finally, it is worth noting that no classical prediction interval methods
22 "

for predicting s are known to exist, although Epstein does consider a con-
- " = = o

fidence interval for the expected number of failures when predicting from a
12 "

Type (i) to a Type (iii) experiment. Again, Bar Lev and Reiser and Bar
1 3 • • --• D

Lev develop (unextended) likelihood prediction intervals analogous to

those considered here.

Predicting in a Type (i) Experiment

Again, consider a sampling experiment of Type (i) - (vi) and a gamma prior

distribution on X. The extended relative likelihood of \ is again given by

Eq. (10). We now consider the problem of predicting the calendar time T at o

160 200

Fig. 8. A plot of the expanded second-order
likelihood in Example 7.
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Fig. 9. A plot of the extended second-order
likelihood in Example 8.

which the prespecified sth failure occurs in a future experiment in which

there are m items on test and failures are to be replaced as they occur. This

is a future Type (i) experiment. The relative likelihood in this second (fu-

ture) experiment R-(X;x) is given by Eq. (23) and the extended second-order

likelihood of T is given by the first portion of Eq. (24) (s>0) when consid-

ered as a function of x instead of s. The lOOyZ ELPI for x is obtained by

solving the nonlinear inequality Eq. (25) for T.

Ex—pie 9; Consider a Type (iii) experiment in which six failures were ob-

served in a total of 3 504 000 operating hours during a recent one-year per-

iod. As before, consider a gamma prior distribution with a • 1.5 and

b » 1.0 x 10 hours. Suppose we wish to predict how long it will take in

calendar time to observe four failures in a future experiment in which 400

devices will be in operation and failures will be replaced.

Solving Eq. (24) for T with a - 1.5, b - 1.0 x 106, T - 3 504 000, r -

6, a « 400, s » 4, and Y * 0.10 yields the 10Z ELPI for T given by
3 4

(1.55 * 10 h, 2.61 x 10 h). The extended second-order likelihood

function of T is plotted in Fig. 10 and the 10% ELPI for t i« shown.

Ex—pie 10: If no objective test data are available in Example 9, the 10%

ELPI for T is obtained by solving Eq. (24) with a - 1.5, b • 1.0 * 10 ,

T * r « 0, • • 400, s • 4, and Y - 0.10. The resulting 10Z ELPI interval
22



Fig. 10. A plot of the extended second-order
likelihood in Example 9.

for T is found to be (1.70 x 103 h, 5.75 x 106 h), which is significantly

wider than the interval given in Example 9.

PREDICTION IN THE BINOMIAL MODEL

Two general prediction problems will be considered; namely, (i) based on

observed data from a binomial experiment, prediction of the number of non-

survivors s in a future binomial experiment in which m items will be tested;

and (ii) based on observed data from a binomial experiment, prediction of the

required sample size to be tested in order to observe a specified number of

nonsurvivors s.

Prediction of the Number of Nonsurvivors

Consider a binomial sampling experiment in which x nonsurvivors are ob-

served among n items on test. Assuming a beta prior distribution on the prob-

ability of nonsurvival p, the extended relative likelihood function is given

in Eq. (17). Suppose that we are interested in predicting the number of

nonsurvivors s in a second (future) binomial experiment in which m items are

to be tested. Now, the relative likelihood of p in the second experiment is

given by
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Using Eqs. (17) and (26) in Eq. (20) yields the extended second-order likeli

hood of 8 given by

x+x.,-1 r . _ "ln+nn-x-x,.-l

(27)

where y_ * (x_,nQ). The lOOyZ ELPI for s is given by the solution to

) J: y. The solution may be obtained upon taking logarithms and

solving the resulting equation. It is also required that n + n_ > 2 and

that x + x_ > 1 in order to solve the nonlinear inequality resulting from

taking logarithms in Eq. (27).

Example 11: Suppose that a lifetest has been conducted in which six non-

survivors were observed among 400 devices tested. Further, suppose that the

probability of nonsurvival p follows a beta distribution with parameters x_

• 1.4 and n- » 136.2. In a proposed future lifetest experiment of the same

size, it is desired to predict the number of nonsurvivors a by computing a 10Z

ELPI for this number.

Solving R ^ s ^ y P i 0.10 with xQ - 1.4, nQ - 136.2, x • 6, n - 400,

and m * 400 gives (0.46, 12.89) as the required interval. Thus, conserva-

tively, as few as 0 or as many as 13 failures are anticipated among the 400

test devices with 10Z likelihood. It is noted that, once p has been selected

by nature according to the beta distribution, this value is assumed to be the

same for both experiments. Figure 11 shows the extended second-order likeli-

hood function of s, and the 10% ELPI is indicated.
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Fig. 1.1. A plot of the extended second-order
likelihood in Example 11.

Prediction of the Sample Size

Based on the observed results of a binomial sampling experiment in which p

has a beta distribution, suppose we are interested in predicting the sample

size m required in a future binomial experiment in order to obtain s

failures. The extended second-order likelihood R^dnjx,^) is given by Eq.

(27) when considered as a function of m rather than s. The 100y% ELPI for m

is obtained by solving IL/injx,^) £ y , which may again be effectively accom-

plished by taking logarithms. Again, we require that n + n_ > 2, x + x_ > 1,

and s > 0.

Example 12; For the same objective and subjective data as in Example 11, how

many items should be tested in a future experiment in order to obtain four

nonsurvivors? Compute a 102 ELPI on this sample size.

Solving IL/m;x,y_) ̂  0.10 with xQ = 1.4, nQ « 136.2, x * 6, n - 400,

and s * 4 yields the 102 ELPI for m given by (76, 1279). Thus, as few as 76

or as many as 1279 items will ensure that four nonsurvivors occur with 10%

likelihood. The second-order extended likelihood function is plotted in Fig.

12 and the 10Z ELPI for m is indicated.
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Fig. 12. A plot of the extended second-order
likelihood in Example 12.

CONCLUSIONS

In this report, we have developed methods of extended likelihood inference

which provide a basis for combining both subjective and objective information

as an alternative to standard Bayesian methods of inference. Such an approach

permits a unified treatment and solution to a number of problems associated

with life testing. Several prediction problems associated with both the ex-

ponential and binomial models have been formulated and solved. In many of

these problems, neither classical nor Bayesian solutions exist. The solutions

presented here will be useful to reliability engineers engaged in such activi-

ties as test planning, maintenance scheduling, and spare-parts inventory

control.

It is important to distinguish between Bayesian intervals and extended

likelihood intervals. A Bayesian interval associates a probability that the

interval contains the parameter of interest based on the observed and subjec-

tive data* On the other hand, an extended likelihood interval gives a range

of values of the parameter of interest which makes the observed and subjective

data fairly likely. Thus, non-probabilistic methods are used which emphasise

the data on hand rather than probability arguments which imply repetition of

the experiment under consideration. However, in those examples where Bayesian
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intervals were known to exist, the Bayesian intervals agreed quite closely

with the extended likelihood intervals, although the extended likelihood in-

tervals generally tended to be somewhat wider and thus more conservative.
34

Evans has recently advocated such an approach in reliability.
35

As pointed out by Barnard, one of the main drawbacks of the Bayesian

approach is that it does not always make clear the proportion of the final

result that comes from the objective data and the proportion that is due to

the subjective prior distribution. The use of extended likelihood methods

remedies this situation. Since both (unextended) likelihood and extended

likelihood have the same interpretation, it is possible to directly compare

the resulting intervals for observing the reduction in the. length of the in-

terval due to the usr of a prior distribution. For example, consider Example

3 in which x = 6, n = 400, xQ = 1.4, and n = 136.2. The 10% extended

likelihood interval for p was found to be (0.0045, 0.0250), with a width of

0.0205. Now, using x = 6 and n = 400 (p = 0.015), the (unextended) 10% like-

lihood interval for p is easily found to be. (0.0054, 0.0320), with a width of

0.0266. Thus, the use of a prior distribution on p has the net effect of re-

ducing the width of the 10% likelihood interval by 23%. There is an alterna-

tive way of determining the influence of the prior distribution. Consider the

following question: How large would n have to be with p fixed at 0.015, in

order for the width of the 10% (unextended) likelihood interval to be the same

as the width of the 10% extended likelihood interval? By iteratively solving

the relative likelihood function of p in the section INTRODUCTION, it is eas-

ily found that n = 662 yields a 10% likelihood interval whose width is 0.0205,

the width of the 10% extended likelihood interval for p. This represents an

effective 35% increase in the sample size, or 262 component tests. Thus, it

may be concluded that the use of subjective data in the form of a prior beta

distribution with x_ = 1.4 and nn = 136.2 is equivalent to the use of 262

test units when computing 10% likelihood intervals.
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