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ABSTRACT

A set of fluid-like equations that simultaneously
includes effects due to geometry and finite ion gyroradii
is used to examine the stability of a straight, radially
diffuse screw pinch in the regime where the poloidal
magnetic field is very small compared with the axial
magnetic field. It is shown that this pinch may be
rendered completely stable through a combination of
finite Larmor radius effects and wall effects. Many of
the m = 1 modes of the diffuse pinch can be stabilized by
finite ion Larmor radius effects, just as all flute modes
can be stabilized. Because of the special nature of the
ra = 1 eigenfunctions, finite ion gyroradius effects are
negligible for the kink modes of very large wavelength.
This special nature of the eigenfunctions, howe/er,
makes these modes good candidates for wall
stabilization. The finite Larraor radius stabilization of
m = 1 modes of a diffuse pinch is contrary to the
conventional wisdom that has evolved from studies of
sharp-boundary, skin-current models of the pinch.

I. INTRODUCTION

In a recent article, Pearlstein and Freidbergl derived a set of

linearized fluid-like equations suitable for investigating the stability of

hot-ion, high-g, near 6-pinch configurations to low-frequency, long-wavelength

perturbations. These fluid-like equations were extracted by asymptotic

expansion from a version of the Vlasov-fluid model2 that includes finite

electron pressure3I1* under the assumptions that the ion gyroradius is very

small compared with the pinch radius, and simultaneously, that the non-axial

magnetic field components that drive instabilities in ideal

magnetohydrodynamics are very small compared with the axial magnetic field.



(By "very small" we mean sufficiently small that only the leading-order terras

in the asymptotic series expansions need to be retained.) The system of

equations that results from this finite Larmor radius ordering include effects

due to geometry, as does ideal magnetohydrodynamics; but, it also includes

effects due to the kinetic ions, particularly, the electric and gradient-B

drifts. To the order that the calculation has been carried, certain other ion

kinetic effects cancel exactly and, therefore, are not represented in the

finite Larmor radius equations; examples of effects which cancel exactly

include: resonant particles, drifts due to. the non-axial magnetic field

components, and inertial drifts. In this report w. apply this finite Larmor

radius description of Ref. 1 to study the effects of finite ion gyroradii on

magnetohydrodynamic instabilities of straight, cylindrically symmetric,

radially diffuse screw pinch equilibria.

In previous related work, Wright, et al. 5 expanded the Vlasov equation in

a finite Larmor radius limit to obtain a dispersion differential equation

governing the modes of cylindrically symmetric, radially diffuse

configurations. In general, the model developed in Ref- 5 admits a broader

class of distribution functions than that of Ref. 1; however, Ref. 5 considers

only cylindirically symmetric pinches, whereas Ref. 1 allows arbitrary geometry

for configurations dominated by an axial magnetic field. In the absence oi

equilibrium pressure anisotropy, flow, and heat flux the differential

equations derived and studied in Ref. 5 are entirely equivalent to the ones

studied here. Furthermore, many of the results reported nere are also

mentioned in Ref. 5.

Finite ion gyroradius effects on the stability of the sharp-boundary,

skin-current model of the screw pinch have been studied and delineated by

several authors.1'6"9 For the sharp-boundary pinch both analytical1'9"9 and

numerical6"' results demonstrate that flute modes with azimuthal mode number

m > 2 are stabilized by finite ion gyroradius effects, but that kink modes

with m = 1 behave quite differently and are not stabilised. In fact, the

growth rates of m = 1 instabilities in the Vlasov-fluid description of the

sharp-boundary pinch are precisely the same as the ones predicted by ideal

magnetohydrodynamics. Thus, a conventional wisdom concerning finite

gyroradius stabilization has evolved, namely, that m = 1 modes are unaffected.



Wright, et al. 5 describe the modifications of Suydatn codes by finite ion

Larmor radius effects in a radially diffuse screw pinch. A marked lack of

influence of gyroradius effects on m = 1 modes in comparison with higher ni

instabilities is noted. However, data presented in Ref. 5 indicate that ra = 1

modes are affected to some degree by finite ion gyroradii. Thus, results

obtained with diffuse radial profiles disagree with those of the

sharp-boundary model that predict m = 1 modes to be completely free of finite

ion gyroradius effects.

In this report we examine, both numerically and analytically, the linear

stability of radially diffuse screw pinch equilibria. Our results demonstrate

that combinations of finite Larmor radius stabilization and wall stabilization

can eliminate all magnetohydrodynamic instabilities, including m = 1 modes; a

stability criterion involving the ion gytoradius and the wall radius is

presented. We find that some of the m = 1 modes can be finite Larmor radius

stabilized, contrary to the conventional wisdom; this is a consequence of tin-

diffuse equilibrium profiles. On the other hand, we Find that ion gyroradius

effects are negligible for very long wavelength m = 1 modes; again, this is a

consequence of the detailed radial structure of the m = 1 eigenfunctions and

the diffuse equil-'brium profiles. The finite Larmor radius contribution to

the eigenvalue proo.'em for m = 1 modes is shown to consist of an overlap-type

integral involving the equilibrium magnetic field gradient and the squared

magnitude of the gradient "f the radial eigenfunction. An approximate,

algebraic equation for the eigenfrequencies of m = 1 modes is developed by

using, for the eigenf unct ion, a trial function that is suggested Dy tin.'

numerical results. This algebraic approximation illuminates the behavior of

t.he m - 1 mode, and the necessity for both fii te Larmor radius stabilization

and wall stabilization to achieve a completely stable pinch.

The report if, organized as follows. In Sec. II, the model is introduced,

notation is established, and the finite Larraor radius equations that govern

the perturbations of the equilibria are stated. Numerical results are

presented in Sec. III. We show that some of the m = 1 modes are finite Larmor

radius stabilized, just as are all m > 2 modes. The parameter boundary for a

completely stable pinch is explored. In Sec. IV, we cast the eigenvalue

problem in variational form and derive, using trial functions, an approximate

quadratic equation for the eigenf requenc^.es. Section V consists of a summary

and conclusions.



II. THE MODEL

We shall use the fluid-like equations of Kef- 1 to investigate the effect

of finite ion gyroradii upon the unstable magnetohydrodynarnic modes of

straight, cylindrically symmetric screw pinch equilibria. The equations that

govern the equilibrium and perturbation quantities are obtained from the

leading-order terms of appropriate asymptotic expansions. The derivation

begins with the Vlasov-fluid model 2 of the pinch. In cylindrical polar

coordinated, the equilibrium density, p, pressure, p, and the magnetic field

components, B^ and B , are functions only of the radial coordinate, r, and

satisfy the equations of ideal magnetohydrostatics.''' However, to utilize the

results of Ref. 1, we must restrict our attention to near 0-pinch equilibria,

where

r. << B z . ( I i

Also, we assufli'- that the gyroradius of a typical ion, r^, is small .-unp.irrd

with t'.ie radius of the pinch, a. These two assumptions guarantee that buii,

the growth rates of mrgnetohydrodynamic instabilities and the ciiaractrri^tii

ion drift frequencies (i.e., the electric and gradient-B drifts) are .small

compared with the characteristic magnet ohydrodynarn i c frequency [tin- inviTM

transit-time of an Al fv£n wave across the column, B. /(p ' a ) ] . Although tin-

growth rate and the drift frequencies are all small quantities, the magnitudes

arc themselves comparable, so that geometric and ion kinetic efterts art1

handled on the same basis. This is the basic finite Larmor radius ordering.

We use a system of units whose characteristic length, mass, and time .1 re-

defined in terras of the following physical quantities: 1) the equivalent

sharp-boundary radius of the pinch, a; 2) the mass density measured nn tin

axis of the pinch, P Q ; 3) the magnetic field measured far from the pinch, b

To give precise meaning to the adjective "small", we introduce a sraalliu-s

parameter u,

Bfl(r/a=l)/Bzoo



and we scale the equilibrium quantities as follows (scaled quantities are

denoted by a tilde):

p •= p

To leading order, the equilibrium pressure and magnetic field components

satisfy the 9-pinch pressure balance reiation,

2 z 2

where B,_, is, to leading order, an arbitrary function of r. Numerical results

presented in Sec. Ill are obtained using the rigid-rotor profiles of Kef. 10,

such1' ( r' /TQ + a)
, ( 3)

si-ch- a

a)

t a n h ( r " / r Q + a) - t anha
, (3)

. t g n

where the parameter m is related to the plasma 6 by g = seen a. and

I"Q = [1 + (1 - p) ] a. We assume that the temperature is uniform and,

hence, that the pressure is proportional to density,



p(r) = | £(r) . (6)

Equations (3)—(6) specify the equilibrium in terras of the expansion

parameter y and a single parameter R; Eq . (1) is satisfied by virtue of the

scaling and the expansion parameter y that appears in Eq. ( 5 ) . The plasma is

assumed to extend to a rigid perfectly conducting cylindrical surface at

r = b. Therefore, the configuration is characterized by two diniensionless

parameters, p and b/a, in addition to the expansion•parameter p.

The linear stability problem is formulated ir. terras of a vector t the

displacement of the electron fluid. Becj'ise of the symmetry of the

equilibrium, we assume that all perturbation quantities are of the f o m

' r ( r , •', ?. , t) = r
r ( D exp[i(m-> + k/. - yt)] ,

where ir,, k, and •: are parameters. The finite 1.armor radius description ot

Kef. 1 applies to long-wavelength, 1ow-frequer.cy perturbations. To satisfy

' iifst- criteria we introduce the following scaled quantities:

r, / A - ;j r . / a

r, is the thermal gyroradius of a typical ion.

Sow Pearlstfin and Freidberg' have shown that, to lowest order, lhe

radial component of the displacement, f,r, satisfies a single second-order

ordinary differential equation [Eq. (40) of Ref. 1 ] . In the notation used

here, the equation reads (the tilde is supressed hereafter;:

r A f r ( r f r ) ' ! ' - — Afrf,r + u)<jrf.r+ 2 m i f — ̂ kB z" + i — )'F^rKr= 0 ,



where a priine denotes differentiation with respect to r,

and

2 a

The solution of Eq. 7) subject to the boundary conditions

and

= b

determines the complex eigenvalue u and eigenf unct i .in . In t'ne limit that

tin- ion gyroradlus vanishes, the parameter r^/a, the scaled Lar^nor radius

d i /ided hy tlie plasma radius, equals zero and t'ne eigenvalue problem,

Eqs. (7)-(9), is precisely the same as the one deri/ed froui leading order

ideal magnetohydrodynamics1' or ihe leading order guiding center plasma

description.'^ In the next section we use Eqs. (7)-(9) to study the effects of

finite ion gyroradii upon inagnetohydrodynamic instabilities. Note that the

parameter r L ^ a occurs in the combination g tnrj/2a, therefore, the

influence of finite ion gyroradii increases with increasing azimuthal 'node

number m, and with decreasing tf.



III. NUMERICAL RESULTS

In this section we present specific results obtained by numerical

solution of Eqs. (7)-(9). These computations were executed usin;; the

equilibrium profiles specified in Eqs. (2)-(6). Figures 1-3 shot, the

dependence upon scaled axial waveveetor, (ka/u), of the scaled growth rate,

( .] j a/u-'A) , tor in = 3, rn = 2, and m = 1 modes, respectively, when ?, = 0.75, and

(b/a) = 5.0, for several values of the Larnor radius parameter, (r. /ua) .

9 9

is a characteristic value of the Alfver. speed defined by vj - ^""a,/>'0* ^ i e n

(r./pa) = 0, the solution is identical to that in ideal magnetohydrodynamic.s

(and isotropic guiding center plasma theory). Figures 1 and 2 illustrate the

influence of finite ion Larmor radius effects upon m * 1 noues. All unstable

ideal raagnetohydrodynai.iic modes .are stabilized when (r./ua) assumes rather

mules t ;alues. Note that finite ion I.ariiior radius effects are '.-.on- prunminicd

for the modes with a larger azimuthal mode number, r.\: As mentioned in Sec. II,

the r.'levant quantity is m .•; (t-j/ya). The same qualitative features are

exhibited by modes with m > 3. Thus, ideal ,,iagnet ohydrody nami e -,iodes with

n > I ran easily be stabilize."! by finite ion Larnor radius effects.

m- S. I6/o

0- 0 75

M - 2 . ( L / « | - S O .

OOO .. ^
0 0 4 . \ J&

0 0*—O^v/^^J^/^""—Xs

,

j

Fig. 1. Scaled growth rate for m = 3

modes versus scaled axial wavenurabers

f o r s e v e r a l v a l u e s o f ( r , / p a ) , The
pinch is stable to ra

when (rL/ua) * 0.18.
3 perturbations

Fig. 2. Scaled growth rate for m = 2

modes versus scaled axial wavenu.nbers

for several values of (rT/Ma) • The

pinch is stable to m = 2"perturbations

when (rL/ua) > 0.28.



S c a l e d g r o w t h r a L e f o r MI = 1 m o d e s . e r s u s s c a l e d a x i a l V . J . ' e n u r . ' > • • r f o r
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F i g u r e "* i l l u s t r a t e s L M . - i n f l u e n c e o : r i n i t e I . M I i . i r ••.

u p o n m = 1 m o d e s , f o r t h e s a m e e q u i l i b r i u m c o n f i g u r a t i o n u :

2 . I n t h i s c a s e , t h e r e q u i r e d . ' a l l i e s o f •[ r, / . . . n a r e " m e 1 , ! .

a n d s o i n e u n s t a b l e i d e a l ' g a r n e t o l i y d r o j v n . n : : i c l i i m i e s r o . i i i ' i

. ' e r y ! a r ; ; e . ' a l l i e s o f t h e p a r a m e t e r . T h u s , w h i l e s o i . i e o l ; : , .

h i . 1 f i n i t e I . a r - ; : o r r . n l i n s : i ! i h i ! i / r . ! , . > t ' : e r o n e . - . , ! : . •
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( d e n o t e d b y r = r s ) t h a t reced..'S t o i n i i n i t v , r • •

e i ,-^enl u n c i i o n s o f t iiese i n s t a b i l i t i e s c a u s e u n i t n r r : t r.iM * 1 11

w i t h i n tl.e s i n g u l a r s u r f a c e . Wlien t h e p l a s m a r< , ior. i

p e r f e c t l y c o n d u c t i n g c y l i n d r i c a l s u r f a c e a t r = b , e n ! v v.oc.i.

s u r f a c e l i e s w i t h if tlie c o n d u c t in;; s i i e l l , r < b , c.i;

m a n i f e s t a t i o n o f w a l l s t a b i l i z a t i o n . In Ki>;. S w a l l e i i e c t ••
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remaining unstable ideal magnetohydrodynainic modes may be finite ion Larmor

radius stabilized. Thus, an appropriate combination oT wall effects and

finite ion Lariuor radius effects can render the pinch completely stable to

ideal magnetohydrodynamic modes; m = 1 modes are the most tenacious, however.

To illuminate the nature of the m = 1 mode, we plot in fig- 5 the radial

eigenfunction of a typical mode; the equilibrium density profile is also

plotted. Note that the gradient of the eijjenf unct ion is negligible except in

the /icinity ot the singular surface, r = r , where it is large. On the oilier

hand, the gradients of the lend i ng-order equilibrium quantities, •;>', p', and

B ', all become vanishingly small as r increases. Since the finite I.amor

radius contribution in F.q. (7), a, is directly proportional to B ', finite ion

Larmor radius effects are negligible for m = 1 modes whose singular surfaces

occur at large values of r.

We further examine the -. = 1 eigenf unctions in Fig. 6 where we plot (with

a dashed line) the radius ol the singular surface, r ., against the scaled

axial i /ever tnr, l± ) ; the Su>dam radius, rSUViJAM' inside of which tin

Suydani criterion is violated [i. e., p' + rB^ (v' / J ) "V8 < 0, where •.• = B,../rB.,]

is shown with a broken line. Finally, we plot (wil i n solid line) the

Figure A.
Scaled growth rate for m = 1 modes versus scaled axial wavenumber for several
vplues of (r,/]ja). The compression ratio has been reduced from (b/a) = 5.0 in
Fig. 3 to (b/a) = 2.0 in this case. Wall effects now eliminate modes with
- (ka/u) < 0.2. The pinch is stable to m = 1 perturbations when (r^/u) > 1.7.

in



p o s i t i o n wiicre flip rai'iil e i ̂ e n f u n c t ion of the- u n s t a b l e w. = 1 mode a s s u m e s the

..-line 0 . 5 , d e n o t i n g t h i s by rj ,-, a g a i n s t the s c a l e d a x i a l w a / e . ' e c t o r ,

(k;]/;i)- STOin F i g . 6 we c m s e e that, tiie e q u i l i b r i u m c o n f i g u r a t i o n is a c t u a l l y

u n s t a b l e for a w i d e r rur,,».e of (ka/;. ) t h a n is p i e u i c t e u b y the Sir. dan,

c r i t e r i o n ; t h i s r e s u l t i.a.; be e n r e p o r t e d p r e v i o u s l y bv Freidber>',. ' N o t e that

h a l f - r a d i i of the [/?. t h e r a d i i o f t n e s i n j i u i a r

, u r ; a c e s , r . , a g r e e ; e r y w e l l , p a r t i c u l a r l y f o r s i : ' a l l i a h i c s o f ( k a / ; j ) , e x t e n t

; i e - i r t h e c o n d u c t i n ; ; w a l l . ' , - . 'e S M a l l - l n k e u s e o f t h i s f e a t u r e o f fin = 1 randi;s i n

S I T . T V .

l i p r a n s u o f t h e s p e c i a l n a t u r e o f t i i e i n = i e i , : o n f u r i c t ' i o n , a c o n h i n a t i i i : i

, > i w a l l e ! " M " - t v m J i i n i f • • i o n I . a r - . o r r a d i u s i - f f e r t s i s r e q u i r e d t o a c h i e . - e a

i- ' - : : i p I •• f i - ! v s t a b l e p i n c h . i ' i i e s t a b i l i t y b o u n d a r y i s p l o t t e d i n I - ' i i ' . . 7 a s a

1 ' i n c t i o n , . ( ' h e w a l l r a d i u s , ( b / a ) , a n d t h e c r i t i c a l v a l u e o f t h e I . a r n o r

r a d i u s p a r n n e t e r , N ( r . / t ; a ) , f o r t i i r e e v a l u e s o f , . A s n e n t i o n e u i n

i - c I I , f i n i t e l . a r : i , o r r a d i u s s t a b i .! i z a t i o n i s ' n o r e e l f c - c t i . e i : .

1 i I
1
, • • ) .

. ' | > i • • . ! 1

i ! i I v .

i It- i s

T h e r a d i a l e i g e i i f n i u ' t i on of a

I oUj ' .-wa v e l e n g l h 1.1 = 1 i n s t a -

' P . e e q u i ! i!

a l s o s h o w u .

'! .STABLE (b/o=5l " > ^
[/' STABLE (b/o =

a.:
'ko.,J •-

I " ] ' , ; . 0 . D i ' i i e n d e n i ' e on I'IC s e a ' e i ]

a x i a l w a . ' e n u n b e r o f t h t ; a a l r i . n . i i u s :•

t h e to - 1 c i -.'•.••ni unci i o n , r , , , m,'. ,>;'

t h e r a d i u s of t h e s i n g u l a r s e r f a c c , r
( d a s h e d l i n e ) . T h i s SuyJani c r i t e r i o n
i s v i o l a t e d when t h e c u r v e r = r l i e s
b e l o w t i ie b r o k e n l i n e r = r ,

s u v d a ;i
Howeve r , t h e p i n c h i s u n s t a b l e t o a
l a r g e r r a n g e of a x i a l wavenuinbers t h a n
t h e Suvdam c r i t e r i o n i n d i c a t e s .

1 1



configurations with smaller C• Note that N, the required value nf rj/pa,

increases rapidly as the conducting wall radius increases. This is a

consequence of the long-wavelength ri •= 1 instabilities; the same effect is

illustrated in Figs. 3 and A.

Finally, we use the results of Fig. 7 to determine the maximum axial

current permitted for a pinch to be stable to all ideal aiagnetohydrodynamic

modes, including m = 1 modes. Unraveling the scaling and changes of ,'ariable

that have occurred, we find

[[kA] < -~l~- (T[keV])
N(b/a)

1 / 2 (i.).l

where brackets denote the dimensions of tiie current and temperature of the

plasma and N(b/a) is the function that determines the boundary cur.'e in

Fig. 7. For example, for a near f.-pinch configuration having the parameters

T = ikeV, '/ = 0.75, and (b/a) = 2.2 the maximum axial current permitted by

magnetohydrodynamic stability considerations is I ~ 16kA; if the compression

ratio is increased to (b/a) = 2.8, the maximum permissible axial current is

19 20 21 22 2J 34 ?5 26 2? ?fl

Figure 7.
Stability boundary for the diffuse screw pinch, for three values of •• . The
area above the curve corresponds to stability to all ideal magnetohydrodynamic
modes.

12



1 • 2kA. These examples emphasize the important role played by wall effects

in overcoming 1 ong-wa .'elengtb r.\ ~ 1 modes.

IV. VAKIATIONAI. FORJ-tUI.ATTON

By multiplying Eq. (7) by r"* (an asterick denotes complex conjugation)

and integrating over the interval 0 s; r < b, we cast Eq. (7) in the form

•./-'A + .B + C = 0 , (li )

_ r,

(m- - 1) |- r|' ,rdr

clr , (12)

(1)1

' F'" r-' I " |-; + (:n- - 1 ) | r | •' ' rdr

v ̂'' ' P ' Ir, r I *' r''dr

Because the coefficients A, B, and C in Eq. (11) depend on ., implicitly

the dispersion •rquation is more complicated than a quadratic equation.

Furthermore, no ninimun principle exists for this problem, which in cloves

complex eigenvalues; the usual .ariational method that is employed in quantum

mechanics to estimate eigenvalues does not apply. Nevertheless, some

qualitative features can be extracted through the use of trial functions

approximating the eigenfunction.

13



For r.i = 1 modes, Eqs. (12) —(14) become

A = ; plr^r'dr - ;•' ,' |'r|'r'dr , (15)
o

B - -?~~--± :° (1 + ̂ )3-|^|'r^dr , (16)

b b

C = - I'-' K'J-rVr - ;-V / p' |'rh'r
/dr . ( 1 7

E q u a t i o n f l l ) reducr-s t o t h e i d e a l m a g n e t o h y d r o d y n a m i r e s u l t w h e n t h e

• ' n'ff I r i e n t B v.Tiiishes. T h e r e f o r e , m = 1 i n s t a b i l i t i e s c m o n l y b e i nf 1 ucm-i'd

V : f i n i t e i o n I^rinor r a d i u s e f f e c t s w h e n ,i n<in .'ani s h in;.; o v e r l a p e x i s t s b e t w c " i

':'<•,<' ^,radi'->nt of t h e c i g e n f u n c t i o n , .r^7 a n [ j t h e g r a d i e n t of t h e lcviii i i>;-orj<-r

t-f.;u i 1 i b r i u;i Tiif.rietic f i e l d , 3 ' . T h i s is n e g l i g i b l y s m a l l f n r [ o n ^ - w a .-•• I- MI;.: ';

'-; = 1 i n s t a b i l i t i e s who.se s i n g u l a r s u r f a c e s o c c u r a t l a r g e ,'aiues ,il r, w!»-r>-

t h e g r a d i e n t s o f t h e e q u i l i b r i u n q u a n t i t i e s a r e n e g l i g i b l e .

N o w , c o n s i d e r t h e f o l l o w i n g t r a i l f u n c t i o n f o r l o n g - w a .'el o m ; th n = !

noii.>s , a s s u g g e s t e d in F i g . 5

r < rh - c

, - r
__ , r h - r. < r < r,, + c fl.X)

0 , rh + r <

where r, and e are parameters, which specify the half radius and gradient

thickness of the eigenfunction, respectively. For small values of ,., the
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a n d t i n - ; ' r » « [ : i r a l e t " r t u i - . i n s t a b i l i t y i s

( j

A s V i s i i n - r e a s e i | , t h e s o l u t i o n o f l-'.q .

r e l a t i o n s h i p b e t w e e n . . . - l rn l W , d u e c o f i e 1 .

i n i l i n i - r t i < f w h i ' h i n c r e a s e s A i . ' - ' i n i t <•

• i i - • 1 i • i h ' i- t o r :. a i :-, t \ - ; j e o l i n s L a l i i 1 i t y .

l - ' i - ' s . ' -. i a m ! ' " ' i , w h e r e t i n - i - n a ; i n a r y

e ; _ - • - ! ! , - i ! i n - a r e p l o t t i ' i l .!•,'. i i : i s * '« .

• ( 1 1 ) i j . • .- i a t i - s t r o r t a t - 1 ! , i - u

1 I i n c ! J I - n - I i a r (wii i " i i i K - c r • - a -. • . •' ) ,

i m i ! . a r : o r r a i i i ' i s • - : ! ' • < • t . - . : i r -

T h e s e i . - a t n r e s a n i 1 '. M -; t r a I • • •'. : •

. n i - . i r . - a 1 p.i r t s n i L h < - • • • ; i ! . ••

• . I . I " ; . ! ; 1 i n - i r y p / i r t n f t h e c o m p l e x

••;:>.inr.1 . ' t - r sns .1 :•; i a 1 w a v e n u n b e r .
• .-•; , - r y n / ' i l u c - s f i f K q . ( 1 1 ) i i i ' i ' n r . i s

.;I !•'••< r u n jugat >• p a i r s w h e n

'•?'.,) < 1.2, and as two purely real

- i t i o n s w h e n - ( k a / ; i ) > 1 . 2 .

F i i . ; . ' ) . K i ' ; i I p a r t , o f t i n ' - o p l e x : n

q i i L - n i >•• ; i ' r s u s a x i a l w a / e n u r n b e r .

T h e I? i , ' C ! i - ' a 1 u e s o f K q . ( 1 1 ) n o u r . e -

c o m p l e x c o n j u j ; . ! t i - p a i r s w h e n

- ( k i - ' i ; ) < 1 . 2 , a n i l a s t w o p u r . - l v r - - .
solutions when - (ka/,,) -> 1.2.
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