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FINITE ION LARMOR RADIUS EFFECTS AND
WALL EFFECTS ON m = 1 INSTABILITIES

by

Thomas E. Cayton

ABSTRACT

A set of fluid-like equations that simultaneously
includes effects due to geometry and finite ion gyroradii
is used to examine the stability of a straight, radially
diffuse screw pinch in the regime where the poloidal
magnetic field is very small compared with the axial
magnetic field. It 1Is shown that this pinch may be
rendered completely stable through a combination of
finite Larmor radius effects and wall effects. Many of
the m = 1 modes of the diffuse pinch can be stabilized by
finite ion Larmor radius effects, just as all flute modes
can be stabilized. Because of the special nature of the
m= 1 eigenfunctions, finite ion gyroradius effects are
negligible for the kink modes of very large wavelength.
This special nature of the -eigenfunctions, however,
makes these modes good candidates for wall
stabilization. The finite Larmor radius stabilization of
m = ! modes of a diffuse pinch 1is contrary to the
conventional wisdom that has evolved from studies of
sharp-boundary, skin-current models of the pinch.

I. INTRODUCTION
In a recent article, Pearlstein and freidbergl! derived a set of

linearized fluid-like equations suitable for investigating the stability of
hot-ion, high-8, near 8-pinch configurations to low-frequency, long-wavelength
perturbations. These fluid-like equations were extracted by asymptotic
expansion from a version of the Vlasov-fluid model? that includes finite
electron pressure3»% ynder the assumptions that the ion gyroradius is very
small compared with the pinch radius, and simultaneously, that the non-axial
magnetic field components that drive instabilities in ideal

magnetohydrodynamics are very small compared with the axial magnetic field.



(By '"'very small' we mean sufficiently small that only the leading-order terms

in the asymptotic series expansions need to be retained.) The system of

equations that results from this finite Larmor radius ordering include effects
due to geometry, as does ideal magnetohydrodynamics; but, 1t also includes
effects due to the kinetic ions, particularly, the electric and gradient-B
drifts. To the order that the calculation has been carried, certain other ion
kinetic effects cancel exactly and, therefore, are not represented in the
finite Larmor radius equations; examples of effects which cancel exactly
include: resconant particles, drifts due to. the non-axial magnetic field
components, and inertial drifts. 1In this report w. apply this finite Larmor
radius description of Ref. ! to study the effects of finite ion gyroradii on
magnetohydrodynamic 1instabilities of straight, cylindrically symmetric,
radially diffuse screw pinch equilibria.

In previous related work, Wright, et al.> expanded the Vlasov equation in

a finite Larmor radius limit to obtain a dispersion differential equation
governing the modes of cylindrically symmetric, radially diffuse
configurations. 1In general, the model developed in Ref. 5 admits a broader

class of distribution functions than that of Ref. 1; however, Ref. 5 considers
only cylindrically symmetric pinches, whereas Ref. 1 allows arbitrary geometry
for configurations dominated by an axial magnetic field. In the absence of
equilibrium pressure anisotropy, flow, and heat flux the differential
equations derived and studied in Ref. 5 are entirely equivalent to the ones
studied here. Furthermore, many of the results reported nere are also
mentioned in Ref. 5.

Finite ion gyroradius effects on the stability of the sharp-boundary,
skin-current model of the screw pinch have been studied and delineated by
several authors.!>f™% For the sharp-boundary pinch both analyticall»87% and
numerical®”’ results demonstrate that flute modes with azimuthal mode number
m > 2 are stabilized btv finite ion gyroradius effects, but that kink modes
with m = | behave quite differently and are not stabilized. In fact, the
growth rates of m = 1 1instabilities in the Vlasov-fluid description of the
sharp-boundary pinch are precisely the same as the ones predicted by ideal
magnetohydrodynamics. Thus, a conventional wisdom concerning finite

gyroradius stabilization has evolved, namely, tnat m = | modes are unaffected.



Wright, et al.> describe the modifications of Suydam tiodes by finite ion

Larmor radius effects 1in a radially diffuse screw pinch. A marked lack of

influence of gyrcradius effects on m = | modes in comparison with higher mw
instabilities is noted. However, data presented in Ref. 5 indicate that m = 1
modes are affected to some degree by finite ion gyroradii. Thus, results

obtained with diffuse radial profiles disagree with those of the

sharp-boundary model that predict m = 1 modes to be completely free of finite

ion gyroradius effects.

In this report we examine, both numerically and analytically, the linear
stability of radially diffuse screw pinch equilibria. Our results demonstrate
that combinations of finite Larmor radius stabilization and wall stabilization
can eliminate all magnetohydrodynamic instabilities, in2luding m = 1l modes; a
stability «criterion 1involving the 1ion gyroradius and the wall radius is
presented. We find that some of the m = | modes can be finite Larmor radius
stabilized, contrary to the conventional wisdom; this is a consequence of the
diffuse cquilibrium profiles. On the other hand, we find that ion gyroradius

effects are negligible for very long wavelength m = | modes; again, this is a
consequence of the detailed radial structure of the m =1 eigenfunctions and
the diffuse equil‘brium profiles. The finite Larmor radius contriburion to
the eigenvalue proolem for m = 1 modes is shown to consist of an overlap-type
integral involving the equilibrium magnetic field gradient and the squared
magnitude of the gradient ~f the radial eigenfunction. An approximate,
algebraic e¢quation for the eigenfrequencies of m = | modes is developed by
using, for the eigenfunction, a trial function that 1is suggested by the
numerical results. This algebraic approximation illuminates the behavior ot
the m = | mode, and the necessity for both fir "te Larmor radius stabilization
and wall stabilization to achieve a completely stable pinch.

The report is organized as follows. In Sec. II, the model is introduced,
notation is established, and the finite Larmor radius equations that ygovera
the perturbations of the equilibria are stated. Numerical results are
presented in Sec. IlI. We show that some of the m = 1 modes are fiuite Larmor
radius stabilized, just as are all m > 2 modes. The parameter boundary for a
completely stable pinch is explored. In Sec. IV, we <cast the eigenvalue
problem in variational form and derive, using trial functions, an approximate

quadratic equation for the eigenfrequencfes. Section V consists of a summary

and conclusions.



II. THE MODEL

We shall use the fluid-like equations of Ref. | to investigate the effect

of tfinite 1ion gyroradii upon the wunstable magnetohydrodynamic modes of

straight, cylindrically symmetric screw pinch equilibria. The equations that

govern the equilibrium and perturbation quantities are obtained from the

leading-order terms of appropriate asymptotic expansions. The derivation

begins with the Vlasov-fluid model? of the pinch. In  cylindrical polar

coordinated, the equilibrium density, p, pressure, p, and the magnetic field

components, B, and Bz’ are functions only of the radial coordinate, r, and

satisfy the equations of ideal magnetohydrostatics.!*? However, to utilize the

results of Ref. !, we must restrict our attention to near 8-pinch equilibria,

where
B, << B_ .

Also,  we assuu~ that the gyroradius of a typical fon, r, iy small compared

with the radius of the pinch, a. These two assumpticns guarantve that boto
the growthh rates of megnetohydrodynamic instabilities and the characteristi
{on drift frequencies (i.e., the electric and gradient-B drifts) are small
compared with the characteristic magnetohydrodynamic frequency fthe invers.
transit-time of an Alfvén wave across the column, Bz/(pl/za)]. Al though  the

growth rate and the drift frequencies are all small quantities, the magnitudes
are themselves comparable, so that geometric and ion kinetic eftects are
handled on the same basis. This is the basic finite Larmor radius ordering.
We use a system of units whose characteristic length, mass, and time arwe
defined in terms of the following physical quantities: 1) the equivalent
sharp-boundary vradius of the pinch, a; 2) the mass density measured on tie
axis of the pinch, Py 3) the magnetic field measured far from the pinch, BAT-

To give precise meaning to the adjective "small', we introduce a smallnes

parameter u,

T Be(r/a=l)/Bza0 .

4



and we scale the equilibrium quantities as follows (scaled quantities are

denored by a tilde):

B'=UB‘3’
B, =8B, .,
P =5
P=p

To leading order, the equilibrium pressure and magnetic field components

satisty the 9-pinch pressure balance relation,

where B, is, to leading order, an arbitrary function of r. Numerical results

presented in Sec. 1II are obtained using the rigid-rotor profiles of Ref. 10,

plr) = o s mmesm o e (3
sech o
5
B, (r) = Bszanh(rZ/ra + a) o, {a)
2,92
tg  tanh(r®/rg + a) - tanha
B,(r = B S R 5
alr) Wze l - tanha (3

where the parameter a is related to the plasma R by B = sech? a. and

ry = nr+ (1 - 8)1/2]1/2 a. We assume that the temperature is uniform and,
hence that the pressure is proportional to density,



(r) (b)

Equations (3)-(6) specify the equilibrium in terms of the expansicon
parameter 4 and a single parameter 8; Eq. (1) is satisfied by virtue of the
scaling and the expansion parameter p that appears in Eq. (5). The plasma is
assumed to extend to a rigid perfectly conducting cylindrical surface at
r = b. Therefore, the configuration is characterized by two dimensionless
parameters, f and b/a, in addition to the expansion:parameter y.

The linear stability problem is formulated ir terms of a vector fos the
displacement of the electron fluid. Becconse of  the symmetry of the

equilibrium, we assume that all perturbation quantitier are of the form

Tor, y,oz, t)y = fr(r) expli(m® + kz - wt)] ,

where  m, k, and . are parameters. The finite Larmor radius description ot
Ref. | applies to lopg-wavelength, low-frequerncy vperturbations. To satisry

these criteria we introduce the following scaled quantities:

~)
~.
'Y

rl/d =

r, is the thermal gyroradius of a typical ion.

Now Pearlst:in and Freidbergl have shown that, to lowest order, the
radial component of the displacement, Err satisfies a single second-order
ordinary differential equation [Eq. (40) of Ref. l}]. In the notation used

here, the equation reads (the tilde is supressed hereafter):

Bg
— kB, " + (— " Flre_ = 0, (7}
= .

-
pu—

" o1 - B 3 2
4fr(r‘r S = Afrr,r + wgtf . + 2m

6



where a prime denotes Jifferentiation with respect to r,

- fal = we — F2 N

F . ke_+ 2B
4 r °
and
r
-1/2m L1 .
o =8 D21+ 371 .
2 a ‘r ( B 7%z |

The solution of Eq. 7) subject to the boundary conditions

(ct)lp 2 0=0, (%)

and

(9)

determines the complex eigenvalue w and eigenfunctin sp+ In the limit that

the ion gyrorad.us vanishes, the parameter rL/a, the scaled Laraor radius
divided hy the plasma radius, equals =zero and the eigenvalue problem,
Eqs. (7)-(9), 1is precisely the sawme as the one derived frow leadiag order

ideal magnetohydrodynamicsll or the ieading order guiding center plasma
dvscription.lz In the next section we use Eqs. (7)-(9) to study the effects of
finite ion gyroradii upon wmagnetohydrodynamic instabilities. Note that the
parametoer rL/a occurs in the combination 6"1/2 mrL/Za, therefore, the
influence of f[inite ion gyroradil increases with increasing azimuthal mode

number m, and with decreasing d.



ITI. NUMEKRICAL RESULTS

In this section we present specific results obtained by numerical
solution of Eqgs. (7)-(9). These computations werce executed wusiag the
equilibrium profiles specified 1in Eqs. (2)-(6). Figures 1-3 show the

dependence  upon scaled axial wavevector, (ka/u), of the scalea growth rate,

(Jia/LJA), for m =3, m =2, and m = | modes, respectively, when = 0.75, and
(b/a) = 5.0, for several values of the Larwor radius parameter, (rJ/;a). YA
. . . - . 2 . 2 -

is a characteristic value of the Alfvér speed defined by vy = BZ /ige When
{ry/uva) 0, the solution is identical to that in ideal magnetohydrodvnamics

I and 2 illustrate the

(and isotropic guiding center plasma theory). Figures
influence of finite ion Larmor radius effects upon w # 1 modes. All unstable

ideal magnetohydrodynawmic nedes are stabilized when (rL/ua) assumes  rather

modest values. Note that finite ion Larmor radius eifects are wore pronounced
for the modes with a larger azimuthal mode number, m: As mentioned in See. [1,
the relevant quantity is = x (r{/ua). The  same qualitative features are
exhibited by modes with m > 3. Thus, 1ideal wagneteiydrodynamic naodes  wilh

nm > 1 can easily be stabilized by finite ion Laruor radius cffects.

me2, (L7s) =80,
B.073

i me 3 (b/0)+50,
! B-o078

'

i

;; ;ios
2 N
3 <
03
D2
o1
0
LTY Y -(ne/p)
Fig. l. Scaled growth rate for m = 3 Fizg. 2. Scaled growth rate for m = 2
modes versus scaled axial wavenumbers modes versus scaled axial wav/enumbers
for several salues of (rr/pa). The for several values of (rL/ua). The
pinch is stable to m = 3 perturbations pinch is stable to m = 2 perturhations
when (rL/pa) > N.18. when (r /pa) > 0.28.
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me1, (b/o1= 8.0
B-o7s

lwio/ava)

L Pl

Fiaure 3.

Scaled pgrowth rate for m = | modes .ersus scaled axial wacenurher for secers
salues  of (rL/hﬂ). Lonc=wavelength instabilitic: are ot afrected by Tini
fon Larmor radias effcots, ceoon o0 extremely farse calaes vy (r;/uz\. .
dashed line is a plot of Eqo (203, ¥all erfects oliniaate the modes ot
- (ka/u) 0.07.

Figure 2 illustrates toe influence or tinite ton Laraer radias croect
upon  a = 1 modes, for the same equilibrium configuration usce for Fio-. 1 an.
2. In tnis case, the requiread calnes of LU are e daroer L SN
and  some anstable  Ddeal o warnetobrdrodvanamic modes renada o b REUEY
sery large calues of the parameters Thus, while souwe of o 0 - 0 mde s 0y
b finite  Larmor rcadius  stabilized,  other ones, o . L
waselength, canonot.  The dashed Tine Iin Fig. 3 oshows e 0 wth rge. Dol
"internal  kink"  or "iatcerchange' aoae when Uhe plasma rolion ta Drdes )
space: g ;1/2 <o These modes hacse a0 siapular oo oty v
(denoted by ¢ o= rH) that recedes  to diatinite, roos o ; -oe "
e¢lgentunci ions of these instabilitics canse unitors troanslition o0 1 :
within tie singular surface. When the plasma regofon 10 hoanded v 0 raod
nerfectly conducting cylindrical surface at r = h, vnly moces whos Ll av
surface lies withir the conducting shell, r, < by Ca o eXiste Thoas s
manifestation of wall stabilization. In Fiye 3 wall criects wtasid . "
whose axial wavenumber is sufticiently small, ~(xi/,0) i), .

In Fig. 4, the perfectly conducting wall has been moced fror (b/a) = 5.0
to (b/a) = 2.9, while all the other parameters are  the  sane  as i Fic. 3.
Wall effects now eliminate all unstable modes with = (ka/ ) « 0.2; the



10

remaining wunstable ideal magnetohydrodynamic modes may be finite ion Larmor
radius stabilized. Thus, an appropriate combination ol wall effects and

finite 1ion Larwmor radius effects can render the pinch completely stable to

ideal magnetohydrodynamic modes; m = ! modes are the most tenacious, howeer.

To illuminate the nature of the m = | mode, we plot in Fig. 5 the radial
eipenfunction of a typical mode; the equilibrium density profile is also
plotted. Note that the gradient of the eigenfunction is negligible except in

the vicirity ot the singular surface, r = ry, where it is large. On the other

hand, the gradients of the leading-order equilibrium quantities, 7, p~, and

B_~ all heccme vanishingly small as r increases. Since the finite Larmor

7 r
radius contribution in Eq. (7), o, is directly proportional to BZ‘, finite ion

Larmor radius effects are neglipgible for m = 1 modes whose singular surfaccs

occur at large values of r.

Ve further examine the « = | eigenfunctions in Fig. 6 where we plot (with

a dashed line the  radius  of the singular surface, r , against the scialed
2 » g 4

axial wavevector, (ka/u); the Suydam radius, TaUvDAM? inside of which the

Suydam criterion is viclated [i. e., p” + ng(v’/J)z/B < 0, where v = Bb/rBZ]

is shown with a broken line. Finally, we plot (wit:1 2 solid line) the

T

ms+1, (bsa)=2.0
B 075

(wja/puvy)

LY
Figure 4.
Scaled growth rate for m = 1 modes versus scaled axial wavenumber for several

values of (r;/ua). The compression ratio has been reduced from (b/a) = 5.0 in
Fig. 3 to %b/a) = 2.0 in this case. Wall effects now eliminate modes with

- (ka/u) < 0.2. The pinch 1is stable to m = 1 perturbations when (rL/“) > 1.7,



position where the radial cigenfunction of the unstable e = I mode assumes the

calue 0.5, denoting this by r; .., against the scaled axial wase ector,
, 3

(ka/wu). Yrrom Fig. A we can scee that the equilibrium configuration is actually

unstable  for o wider ranpge  of (ka/wn) than i{s precicted by the Suydanm
10

Note that

criterion; this result s been reported previously Freidbery.

tivee  half-radii of the o =1 sodes, Tyias and the sadii of tne singular
/!

SrIAces, I, dgree ery well, partivularly for small satues of (ka/u), excent

Avair the conducting wiall.  Wo snall male use of this feature of » = | modes in
Sec, TV,
Because of the special nature of the o= | eigenfunction, a canmbination

Powall efrecte and finire fon Lar-or radius offects is required to achiere o

ipletely stable pinch. The stability boundary is plofted in Fiw. 7 as

tunction ot rhe  wall  radius,  (b/a), and the critical value of the Larvor

soadins parameler, N (FI/uJ)r, for three  valunes ot . As  mentionea in
cow I, finite [Larmor radius stabilization i more cifeetioe o
- R
. H N r ‘ 1 I 1 ‘\ .
m =1, {b/o): 4 \ m:1 .
G (hofuis-0I67, 05 A B:075
\
- b
) rer, !
1 ¢ ) ’ Voo
i ' b
e R S r=b -=J B .
; | ]
P
oo 1 1 |
) | 4 SUYDAN
1 -
e i &
i -
K -
» | -
. t | STABLE
i !
i ‘.
! |
I . 1
e s | N VR T— | | f :
B 1< 2C 30 ag x vy
(r/gy = ko)
Fivs 5 The radial cipenfunction of a Fige no Dependence on the scalod
Cupicat bonp=wavelongth ao= 1 insta- axial wavenumber of the aalf radius o
R The cquilibriur Jdensity pra- the m = | cirpenfuncd ion, Ty oine oy

the radins of the singular svrface, r
(dashed line). This Suyvdam criterion

i iolated when the curve r = T lics

Pidle i also shown.

below tihe broken line v = r he

) . syvaanm
However, the pinch is unstable to a
larger range of axial wavenumbers thaa
the Suydam criterion indicates.



configurations with smaller [. Note that N, the required wvalue of rL/pa,
increases rapidly as the conducting wall radius increases. This 1is a
consequence of the long-wavelength n = | instabilities; the same ecffect is
illustrated in Figs. 3 and 4.

Finally, we wuse the vresults of Fig. 7 to determine the maximum axial
current permitted for a pinch to be stable to all 1ideal magnetohydrodynamic
modes, including m = 1 modes. Unraveling the scaling and changes of variable

that have occurred, we find

[[ka] < 323

. 1/2
ienray (TlkevD e, (i)

where brackets denote the dimensions of the current and temperature  of  the
plasma and N(b/a) 1is the function that determines the boundary curve in

Fis. 7. For exanple, for a near {-pinch configuration having the narameters

o

T = lkeV, ¢ = 0.75, and (b/a) = 2.2 the maximum axial rurrent permitted by
magnetonydrodynamic stability considerations is I = l6ka; if the compression
ratio is increased to (b/fa) = 2.8, the maximum permissible axial curreant is
" T T T T I T T T
6 - 1
14 -
2k 1
10 B
z
el 4
ol ]
4 ~
2 L ]
[ SEN— t 1 i 1 1 1 1 _J
\9 20 21 22 23 24 25 26 27 28
(b/0) =
Figure 7.
Stability boundary for the diffuse screw pinch, for three values of /. The

area above the curve corresponds to stability to all ideal magnetohydrodynamic
modes .



1 - 2kA. These examples cmphasize the important role played by wall effects

in overconing long-wa.celength n = | modes.

IV, VARTATTIONAL FORMULATTON

By multiplyving  FEq. (7) by r'% (an asterick denotes complex conjugation)

and integrating over the interval 7 < r < b, we cast Eq. (7) in the form

DA+ B+ C =0 (1t)
where
.b L 2
A= np r |‘r|‘ + (m - ! rl rdr
/b ) s
L A D
- i el dr (2
(9]
r. b
- moLoAP 1., P ; o 1o
Bo= - T PP SR v oL M o R R S G O LA LI (13
- z
] S . ,
= - v g m - \NEs
o= Foordd r! + (m 1Y l.] rdr
9]
’ 'h - £ ’
L A LA ER I P (14)
9]

Because the coefficients A, B, and C in Eq. (11) depend on . implicitly
the dispersion cquation is more complicated than a quadratic equation.
Furthermore, a0 minimum principle exists  for this problem, which invloves
complex eigenvalues; the usual variational method that is emploved in quantum
mechanics to estimate c¢ipencalues does not apply. Nevertheless, some
qualitative features can be extracted through the use of trial functions

approximating the eigenfunction.

13
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For m = 1 modes, Egqs. (12)~(14) become

b . L Lo
A= pletdetdr = 7 o is 1% de (15)
J r s T
o o
a=l/e T D
- r Lf l\., P (16)
8 = S (1 + §7’Sz‘”r' redr , (16)
- o] ..
z
/“.) Do . 1 ’ 'b » ) . 5
C = - IR B S T S M LAY e Y] T
S ’ 0
Fauation (11) reduces to the ideal magnetohydrodynami result  wien  the
covfficient B ovanishes. Therefore, m = 1| instabilities can only be influenced

11

N finite {on Larmor radiuvs effects when a nonvanishing overlap exists between

tine  pradient of the cigenfunction, and the gradient of the leadiag-order

2,
couilibriune aipnetic field, 8. This is negligibly small for  long-wacelongth
mo= 1 instabilities whose singular surfaces occur at large values of r, whers
the ygradients of the equilibrium quaritities are negligible.

'

Now, consider the following trail fuuction for long-waselength n o= |

aodes, as suggested in Fige S

1 R r < rh -

r». +. =71

. n
r 5 s h F<r <oy e (17
2r
o r,+ 5 <r

where ry and €& are parameters, which specify the half radius and pradient

thickness of the eigenfunction, respectively. For small wvalues of ., the



gradient of this trial functaoor o vnoedrent in the siciaity o of the point
ro=ry,
0o, r < r. -
!
!
N - coros o, 4 (1
e 2% ’ b
[N r, - S
Subaticating Has. Cl=v and (19) fate Faos 219 =017 and expanli o, w wtain
the faollowing.
Loy r,
‘. Goth TR ( ) P
AEos e + 2 Lordr ~ o, (- s
: T T I ,
bom = - - O R N + e \
A 2 ) R. ST ET
2
{ry-r.» S ry, r,
o= - e ST e ke 0 Lrdro - ir + i
o h ’
2 .
whe s r denotes the radias of the singular surface, F{(r Y = 9. The <iacular
5
surfaces for tong=wacelenyth instabiliticos  oceur  at larpe v farthersere,
Fige A shows that oY r... Thereforv, an aoproximate dispersion cjaation for

= [ modes I3

Tonp—wavelength

15



and the srowth rale tor tid- instability is

/
s = N . (.
i
A ¥ i fnervased, the  solution  of Fag. (I1Y deciates  fror the b
retationshin hotween g and k, due oco Field Tine bendine (whih decreasc o 0,
ind inertia (whiich increases A, Finite  fon Lartor  radias oerboeots i

Qe lieihle tor o this tyvpe of dinstabilitye  These Peatnares are Dllastrated Do
'

Ficae fnv and (9 where  the  imacinary and  real parts of 0 the o oa b

cieencaline are }"}«‘f[l‘(i apaiast w.

023~ - - B e e
' L
! /\MHD Odaat
026 J ’ me1,{b/a)+40 me1, (b/a)+ 40
/

] T
L '
{4 5)-08, 5-03 oest  (;5)e05 B-05

[
., ERIYS
‘ i
! 012 1
tze- ' - r /
MHD ™ ! ;
-ca ‘l __oesf
- 1 < !
= | Toul
. 02a
R — 5 r
3 3
= -coa . 020
{
|
coB 4 o6k
]
. |
o2 i ok

- :\:
b
t
|
o
o
a
AR .

e e 24 s e 10 12 :a 8 O %7 oa oe o8 1o
~lkasp} ~(ka/u}
Tise L. Imapinary part of the comples Fige Q. Real part of the oo g -
Iroesnency cersus axial wavenumber. quency versus axial wacenumher.
T encaluaes of Hge (L) ocear as The eigzencalues of Fq. (11 ocour -
ronjugate pairs when complex conjugate pairs when

- < 1.2, and as two parely real - (ka/p) < 1.2, and as teo parele reo
- latinns Wwhen - (ka/u) > le2. solutions when = (ka/.u) - 1.2,
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