
UCID- 18912
!.,!. -. „„„,„,, ^ ««Ci •"*'"« U-W

» VS". tw""
c">i r., leij - j t i

'"SF U.JJT.I. fl^-.' * , n-w> .

Lm ** '"j "•-'--̂ t*. t,* fed Su» C-*—— *- " - - « • • • **
%

^

SYSTEM DATA STRUCTURES FOR OX-LINE DISTRIBUTED DATA BASE MANAGEMENT SYSTEM

J. A. WADE

JANUARY 2 8 , 1981

7 hit is an informal report intended primarily tor internal or limited external distrihutiim. The
c-̂ rriorrs ami itrndutrons slated are (ho*e of the author arid may or may not be ihix* of the
L«ooratnry.
V"xli serCornud under tile auspice* oC the C S . l)«partraeoi at Erwre,; bv the Laorero.
Lhernore Laboratory under Contract VV-7405-EneHH.

j - . ' - i i '

CONTENTS
Page

Suiransry 1
Introduction,. • . . . 2
Hardware Framework • . . 3
Software Framework 5
Fundamental Design 6
System Data Structures 7

RTL I/O Hierarchy 7
Data Base Access Paths 8
Shared Memory Data Base Space 9

Link Summary 12
Open Relations List 13
Page Descriptions 14

Local Memory Datj Base Space IK
Link Summary 20
Active Task List 21
Page Descriptions 22

Run Time Entries 24
Main Entry for a Relation . . 25
Open By List 29
Attribute List 29

Symbol Table Entries 30
Main Entry for a Relation , . . , 32
Attribute List 37
Shared User Access List . 38

DBMS Files 39
SMFILE.D3M 39
PFOOOOGO.DBM 39
PF000001.DBM 40
PF000001.DBM..PFnnnnnn.OBM 42

DBMS Logical Units for a user 43
State Variable for a Relation 43

References 46

SYSTEM DATA STRUCTURES FOR

ON-LINE OrSTRIBUTED DATA
BASE W8AGEMEWT SYSTEM

SUMMARY

Described herein are the data structures used in implementing a
distributed data base management system (DBMS) for the Mirror Fusion Test
Facility (MFTF), a part of the Mirror Fusion Energy Program at the Laurence

National Laboratory. The hardware and software frameworks witYrin
which the DBMS have been developed are first described, followed by a brief
looK at the motivation and fundamental design goals of the system. The
structures are then given in detail.

1

INTRODUCTION

A DBMS that has been specifically adapted for MFTF--rather than
specialized data manipulation routines incapable of future expansion—has been
designed and in the process of implementation. Simply defined, it is a
comprehensive set of software tools and documentation which facilitate access
to the MFTF Data Base. Programs, operating on Interdata computers, provide
capabilities for creation of the Data Base, monitoring its usage, offloading
the Data Base to archival storage and subsequent reloading from archival
storage, recovery when catastrophic events occur, and access to the Cata Base
from interactive terminals. Libraries of subroutines, along with other
support packages, provide the user with access to the Data Base from computer
programs performing specific functions which require MFTF data as input and
possibly creating additional data to be written back to the Data Base.
Documentation in the form of descriptive material, instructions for use of the
various facets of the DMBS, and illustrative examples provide knowledge to use
the D3MS. Generally, the program and library parts of the DBMS may be
decomposed into four main aspects:

a. Pre-compiler - Used to transform Data Base and other constructs
existing in source code.

b. Program Level Interface (PLI) - Consists of a run-time library of
procedures and functions, and associated support programs.

c. Query Level Interface (QLI) - Used for access to the Data Base by a
user from an interactive terminal.

d. Utility Programs - Perform a variety of support functions.

2

HARDWARE FRAMEWORK

Pictured in Figure 1, the D8MS is implemented on set of nine Interdata
computers (four 8/32s and five 7/32s) that are interconnected in a star
fashion with a multi-port shared memory.* Each computer has its owr local
memory and disk storage; the 7/3Hs each have a 10-megabyta disk, and the 3/32s
each have an 80-msgabyte disk with one 300-megabyte disk and an additional
10-megabyte disk installed on one of the 8/32s. Two of the 8/32s each have a
1600-bpi, 75-ips tape drive. Shared memory is arranged on two 64-kilobyce
blocks. Seven of the nine computers incorporate MFTF operator consoles,
designed to perform specific HFTF functions. Two of the computers, the System
Supervisor and the Injector Supervisor, can each cause any of the other
computers to bootstrap the operating system (OS) from disk; hence remote OS
restart can be done. Although not shown in this figure, several bus switches
exist so that should (really, when) one computer goes down, another csn take
over its functions by switching the satellite subsystems.

3

f MFTF
wunon. fuMON i t s ' rAC'Lii

PLASMA , .
STUEAVlNIJ ¥ p

jfSTtM *

F I G U R E 1 : MFTF CONTRtl! *ND DIAGNOSTICS SYSTEM

-n? f' f POrti.*

- ^ -«
L-a^ '<> CfiYU

V-tfP (Ik ** 5YSTCW

r̂ c c i ̂ GCTT1H5

-HS3 c? SUPERCONDUCTING
UAGNET

SOFTWARE FRAMEWORK

There are several issues which work together to form the software
fraraework for the D3HS. First of all the Interdata-supplied operating system
was extended to a multi-processor OS in a manner so as to provide availability
of resources, comnon storage management, process control, mutual exclusion,
and associated error handling.^ Secondly, the shared memory is logically
divided in two, with the distributed OS managing one half and the distributed
DBMS managing the other half. Concerning the OS portion of shared memory,
buffers are allocated and deallocated dynamically and are used to contain
mail, of which there are three types: semaphores, coraaands, and data.
Semaphores are used by the OS for its own synchronization and by the DBMS to
rnaintain synchronization among its multi-user concurrent community. Commands
are used by the D3MS for inter-process requests, whether the process be on the
same physical machine or not. Concerning the portion of shared memory managed
by the DBMS, it is divided up into two basic entities; summary description
space, and page space. Further aspects of the actual data structures resident
in shared memory are presented later.

Another issue which effects the DBMS is our use of the implementation
language Pascal.3 Acquired from Kansas State University, it is the
sequential version of Brinch Hansen's "oncurrent Pascal, 4 along with a few
"enhancements" to allow further capabilities.

Finally, several programs have been built to aid in development of the
software packages. Most notably is an editor which builds finished versions
of documentation according to IBM's HIPO techniques,3 printed on a Versatec
printer. Additionally, systenatics for code generation, source-level
documentation standards, and structured walk thru techniques have been used
during construction of the software.

5

FUNDAMENTAL DESIGN ISSUES

Early in the prel I.T'nary design iteration of the overall MFTF control
system project, a decision was made that 311 data of importance to MFTF is to
be contained in the data Base. This declared that both control-type data and
diagnostics-type data be resident in the Data Base, each of which display
different properties concerning speed of access and volume of data. The
control data encompasses a large volume of scalar data (single data values)
such as current tenperatures, pressures, valve positions and journaling
information requiring niuch higher speed access than is normally aviaiable in a
commercial DBMS. In contrast, the diagnostics data is composed of a lessor
volume (with respect to count of relations), but much larger vectors (arrays
of data values). Due to the large volume of data acquired from each MFTF shot
(four megabytes of diagnostics alone for each five minute shot cycle), the
DBMS must be able to respond efficiently to both types of volume requests. In
addition, the scalar-oriented control data generally requires higher-speed
access than the vector-oriented diagnostic data. Obviously, a number of
mechanisms were necessary to allow the Data Base Administrator to "tune" the
Data Base, based on specific speed versus volume tradeoffs.

6

SYSTEM DATA STRUCTURES

The D3MS run-tirae library (RTL) performs several functions. At the user
level, routines exist to initialize a program to the C3MS (a one-time operation),
create, delete, open, close, read, write, checkpoint, lock, unlock, and search
tables. Although initialization, opening and closing of tables ar* allowed to
utilize a fairly "large" amount of processor time, Data 3ase reads and writes
must consume as little time as is reasonable. The DBtfS data structures have
been specifically designed to that end.

RTL I/O HIERARCHY

Figure 2 shows the overall hierarchy of RTL I/O organization. Given, for
example, a user-level read request from the Data Base, the table's state variably
contained in the user's impure btack space, is passed to the RTL which uses it
to access various system tables, eventually copying the specific data from the
DBMS work space area into the user's memory space. The state variable is also
updated as a result.

HIGH-L EVEL !
I/O .'
I

! PAGER

TABLE /
iDEFINITION I

DESCRIPTION /
OF PAGE SPACE!

^
LOGICAL

I/O

PHYSICAL
I/O

/LDGICAL-TO-,
(PHYSICAL ;

\ADDF.ESS MAP

Figure 2. Hierarchical View of RTL I/O Routines.

7

file:///addf.ess

DATA BASE ACCESS PATHS

Referencing Figure 3, a user task never needs to access an external *ask
to perform reads or writes on that part of the Data Base resident on the ?-ame
physical machine. Additionally, if the data is in DBMS paga space, no I/O is
requested.

Should the data requested for read reside on a physical machine other than
the machine upon which the user's program is running, the RTL read routine forms
an appropriate command and passes it to a "DBMS task" on the machine upon which
the data resides. This surrogate actually reads the Data Base ana retarns the
data, along with the updated table state variable.

Network corcmunications

ias<

11 l>

T
i

Data base
access request
to another
physical

I jmachine 'jf

Data base
access request
from another
physical computer
Returned status
of data base
access request on
another machine

Program-level interface

% eturn status
of data base
access and loca­
tion of data

Shaded or
global tables

Shared
memory

Private, shared,
or global tables

Local
memory

Figure 3. Data Base Access Paths for a Physical Computer.

8

Although the above is not meant to provide a complete description of what
functions the RTL performs and how they are actually done, enough of a flavor
is provided to form the framework for discussing the System Data Strurtures in
detail.

SHARED MEMORY DATA BASE SPACE

deferring to Table 1A, the SM08 space contains several sizes, pointers,
locks and other data used throughout the distributed DBMS for its overall
coordination. In addition to a basic size of SHDB Space, its associatdd lock,
and total available page count, there are four head-of-chain entries used for
various concepts. At this time, only two of the items are used; further
development of the system will complete use of the other links. Beyond the
four chain entries lie the set of shared memory page descriptions and related
page data space. Described in detail elsewhere, these pages fully support
concurrent intra- and inter-machine functions.

Common Size:
Specified originally as an input parameter to the initial DBMS startup
procedure, this value is checked for validity and entered in memory as
thi rize (in bytes) of the total available Shared Memory Data Base space.

Common Lock:
Allocated during the startup process, this semaphore is never used by the
D3MS. Its ultimate intention is as a hook for quiescing the entire DBMS.

Pjge Count:
The count of SMQB pages available to the D3MS. Set as a function of
co-mon size.

Save Relation List Lock;
Save Relation List Lock LA:

Although the semaphore is intially allocated, this lock and its associated
Logical Address are never actually used in the DBMS. Space is reserved for
future expansion. The intention is to provide a central head-of-chain entry
to those relations that must be saved on archive medium at some future time.

9

Open Relation List Lock:
Open Relation List Lock PM:

This hsad-of-chain entry, along with its semaphore, provide access to the
list of all relations currently open (ie., currently being accessed) in
the DBMS. Page Number refers to a page in SMDS Space which is the first
block of open relation entries.

Delete Relation List Lock:
Delete Relation List Lock LA:

Although the semaphore is initally allocated, this lock and its
associated Logical Address are never acuta!ly used in the DBMS. Space is
reserved for future expansion. The intention is to provide a central
Head-of-chain entry to those relations that have been marked as deleted;
actual reclamation of the space is suggested to be done during "idle"
time.

SM03 Pages Lock:
This semaphore controls access to the set of SMDB Page Descriptions
existing elsewhere in SMDB. When a page is desired, its Logical Address
is looked for in the page descriptions only after this overall semaphore
has been activated.

Top of LRU Page Queue:
Bottom of LRU Page Queue:

Contain the corresponding page number of the top and bottom of the LRU
(Last Recently Used) page queue. The most recent page used is at the
top; the last recent page used is at the bottom.

RTE Free Cpace Lock:
RTE Free Space PH:

Controls access and points to the head-of-chain for available Run Time
Entry Free Space. Since RTEs consume half-pages, the pointer is a
physical page and half-page number pair of the first available RTE Free
Space Entry. These RTts are dynamically allocated and released from SMDS
only and are used to contain information about the more dynamic state of
particular relations currently known to the system. Upon release, joined
half-pages are returned to the SMDB page space.

10

Page Descriptions:
Page Data Space:

Consisting of one entry per defined and known SM03 page, the page
descriptions contain information specific to the particular corresponding
data page, one description entry per data space page.

TABLE 1A. Shared Memory Data Base (SH03) Space.

Common Size
jCommon Lock
Page Count

Save Relation List Lock
Save Relation List LA
jOpen Relation List Lock
Open Relation List PH
Delete Relation List Lock
Delete Relation List LA
SMDB Pages Lock
fop of LRU Page Queue
8ottom of LRU Page Queue
RTE Free Space Lock
RT£ Free Space PH

Page Descriptions

;Page 1 Description

Page 2 Description

Page n Description

Page Data Space

Page 1 Data Space

Page 2 Dat i Space

»

Page n Data Space

11

Link Summary

As an alternate view of SM03 Data Space, Table 18 shows the link
structure of the two defined head-of-chain descriptions, the Open Relation
List and RTE Free Space List. As stated previously, both Save and Delete
Relation Lists are currently unused, but with the head-of-chains defined. As
this link structure shows, both defined lists have their entries blocked into
"sets" to be nearly approximate to the size of a page or half-page data space;
a link to the next set of entries is the last element in a block. The link is
a physical page number, a logical address, or a page, half-page combination
depending on whether the block fs swappable to disk or not and the probable
number of entries per block (so as to minimize empty space).

TABLE IB. Shared Memory Data Base (SMOB) Space

SHDB

Save Relation List
(currently unused)

Open Relation List PN

Delete Relation List
(currently unused)

:RTE Free Space List PH

TOJDT

/

Block 1
Open Relation List

NextSlockPN

^-iHext Rlock PM i
i

^&fBlock n

(0)"

RTE Free Space List
•jFree" Half. Page 1

^-iMext Free Link

< *

jFree Half Pace 2
Next Free Link

^-^TFree Half Page n

12

Open Relations List

Table 1C -shows the individual description for a typical block of entries
in the Open Relation List. Referenced by either the head-of-ehain Open
Relation List value in SMD3 or a Next Block page number, the blocks together
comprise all relations being accessed in the distributed DBMS at a specific
point in time. Each block may or may not be full; empty entries are
intermixed with entries currently in use. The reasoning is that compaction of
used entries is too expensive for such a dynamic process. Each time a
relation 1s opened for use, this chain is searched to see if it is already
open by another user. If already open, the rather expensive open when not yet
used need not be done. Tn this system, it is the binding of relation name
with a specific owner which provides uniqueness to the relation; that is to
say that there may be several relations called, R, but each with a different
owner. Upon an open for a relation, the Run Time Entry address is copied to
the user's state variable for that relation for subsequent use and the open
count is incremented, Careful comparison of this data structure with others
will show that specific user may open the same relation numerous times; when
an interaction is terminated, all this is cleared up.

Relation Dame:
Name of the relation which is currently open.

Relation Owner:
Mame of owner of the currently open relation.

RTE Location:
SMD3 page number and half-page where the RTE is located.

Open Count:
Total count of users currently accessing this relation.

13

TABLE 1C. Open Relation List

•SK03 - Open Relation L is t • - Block i
Relation
flame

Relation
Owner

RTE
Location

Open
Count

Entry 1
Entry 2
Entry 1
Entry 2

*

Entry 1
Entry 2

" " • " " "

*

9

*
Entry n
Next Block PN
1
Pane Descriptions

Given that SMDB contains a set of pages that may contain various data,
there is one description for each page'in SMDB, as shown in Table ID; the i-th
page description contains information regarding the i-th corresponding data
page. At any point in time, certain of the date pages (and therefore the
associated page desc-iption(s)) may or may not be included in the LRU Queue.
For example, the Open Relation List is a set of linked SM08 pages not in the
LRU Queue, but the head of which is in SMDB. The RTE Free Space List and the
actual RTEs themselves are additional examples of such behavior. Although the
total page count in SMDB is explicitly specified, the actual current page
count {which is the total minus those used for the Open Relation List, etc.)
is implicit in the LRU Queus.

Page Info Lock:
This semaphore is locked when the corresponding data pa^e is currently in
use. During the same time, oth.̂ r pages may also be locked.

10 Lock:
This semaphore is locked via a PC (P-concurrent) when read access is
desired, and via a PS (P-secjuential) whan a write access is desired for
the corresponding data page.

14

Logical Address:
if the corresponding data page contains .jlid data for some portion of
logical data space (either for a relation's data or for symbol table
dsta), this contains the logical ac:drsss of the page. If less than or
eflual to zero, the page is not within logical space (in which case, t n e

page is not in the LRU Queue either).

Owned Machine:
Existing only for SMDB pages, this differentiates among several pages in
508 belonging to various machines. A page is owned by a specific
machine if and only if the Owned Machine is the same as the LMDB machine
identifier.

Update Type:
S£t to "yes" if and only if the con-espon-ling page of data has been
modified since its last write to disk. Changed to "no" durinr a
successful page flush to dis*;.

Page Type:
Sgt to "virtual" if the corresponding data page is a member of a
relation's data space and may be reused for other data space should the
nged require. Set to "contained" if the page may not be reused for other
data space. Set to "workspace" if the page is being used by the D3MS for
its data space. If "virtual", the paqe description exists in the LSI'
Queue; otherwise it does not.

Previous Page:
p#ge number of the immediately newer page in the LRU Queue. Equals -1 if
the current page is at the tco of the LS'J Queue.

Next Page:
Page number of the immediately older page in the LRU Queue. Equals •-* if
tne current page is at the bottom cr" the LRU Queue.

15

TABLE ID. Shared Memory Page Map

;SMD3 - Page Description
i Uodate

i

} Page Info j 10 Logical Owned i Uodate j Page Previous Next
J Lock ' ^ock Address Machine : Type ; Tyoe Paqe Paae

I P a g e l [
i i ^ i

U
1

Paqe 2 1 1
i • i •

I

•
1
f

— r •—

!
i • •

j
1 . j

j
i
1 • . ' . • . ,

Page n ! |
! '
i 1

•

I i 1 1 1 1
1

LOCAL MEMORY DATA BASE SPACE

In contrast to SMOB Space (for which only one copy exists in Shared
Memory), LMDS Space is defined on each physical computer in the distributed
system. Although the structure of LMDB, shown in Table 2A, is the same
throughout the DBMS, the data resident therein is unique per physical
machine. As with SMDB, there is a common size, lock, total available page
count, and page descriptions with related page data space- In addition,
several scalar values, pointers and associated locks reside in LMD8 describing
the current state of the DBMS of the particular machine.

Connon Size:
Specified as an input argument to the DBMS task which initialized the
DBMS for a given machine, this value is checked for validity and
entered in memory as the size (in bytes} of the total available Local
Memory Data Base Space.

Common Lock:
Allocated during the startup process, this semaphore is never used by
the DBMS. Its ultimate intention is as a hook for quiescing the DBMS
on the specific physical machine.

16

Page Count:
The count of LM03 pages available to the DBMS. Sot as a function of
common size.

Machine Identifier:
Physical machine designation of the computer upon which this part of
the DBMS is running.

Active Task List Lock:
Active Task List LA:

Controlled with its semaphore, the Active Task List is a complete
list of all tasks (programs) currently accessing the Data Sase. The
Logical Address (as it is named) is actually the LMD8 page number of
the head of the chain.

Logical Space Free Space Lock:
Logical Space Free Space LA:

Controlled with its semaphore, this Free Space Logical Address is the
logical location of the free space map for relation data space. As
further data space is allocated or deallocated for containment of
data for a relation, the map referenced by this logical address is
updated.

Symbol Table Free Space Lock:
Symbol Table Free Space LA:

Controlled with its semaphore, this Free Space Logical Address is the
logical location of the free space map for DBMS symbol table space.
Noting that relation data space and D3MS symbol table space both n?.p
onto the sane set of physical files the synbol table s^ace is
allocated and deallocated as a function of relations being created
and deleted.

17

Last Physical File Number Lock:
Lasy Physical File Number LA:

As further physical file space is needed, contiguous files of a
specific length are allocated. The new data space is added to the
free-space pool of relation data c symbol table map and this last
physical file number is incremented.

Last Logical Space Address Used Lock:
Last Logical Space Address Used:

As further relation data space is allocated or deallocated, this
semaphore-controlled value is updated.

Last Symbol Table Address Used Lock:
Last Symbol Table Address Used:

As further symbol table space is allocated or deallocated, this
semaphore-controlled value is updated.

Hish Table Lock:
Controls access to the hash table, resident in LMOB page number one.
Accessed, among elsewhere, upon relation open requests when a
relation is found to be not yst open anywhere.

L"23 Pages Lock:
This semaphore controls access to the set of LHOB Page Descriptions
existing elsewhere in Local Memory. When a page is desired, its
Logical Address is looked fo>* in the page descriptions only after
this overall semapho'e has been activated.

Top of LRU Page Queue:
Batten of LRU Page Queue:

Contain the corresponding page number of the top and bottom of the
LRU (Last Recently Used) page queue. The most recent page used is at
the top; the last recent page used is at the bottom.

18

Page Descriptions:
Page Data Space:

Consisting of on? entry per defined dr.d known LMD3 pa-je, the page
descriptions contain information specific to the particular
corresponding data page, one description entry per data space page.

TASLE ZA. Local Memory Data Base (LMD3) Space

.Common Size
Common Lock
iPage Count
Machine Identifier
Active Task List Lock
Active Task List PN
Logical Space Free Space Lock
Logical Space Free Space LA
Symbol Table Frae Space Lock
Symbol Table Free Space LA
Last Physical File Number Lock
Last Physical File Number
List Logical Space Address Used Lock
Last Logical Space Address Used
Last Symbol Table Address Used Lock
Last Symbol Table Address Used
Hash Table Lock
'LMD3 Pages Lock
Top of LRU Page Qjeue
Sottom of LRU ?az= Queue_
Page Descriptions Page Data Space

i Page 1 Description 'Page 1 Data Space
.Page 2 Description j Page 2 Data Space

;- : i - - :

Page n Description j Page n Data Space

19

Link Summary

Again, in comparison to Table 18, Table 23 shows the link structure of LMD3
D=ta Space. Whereas the links shown in IB are completely memory contained, only
the Active Task List in K (L'*03) is memory contained; the two free space lists
shown reside on disk - only their initial pointers are in memory. Similiar to
other lists elsewhere in the D3MS, the entries are blocked into "sets" with each
set (in this case) consuming one page of LMBB page space.

TABLE 2B. Local Memory Data Base (LMD3) Space
LT!53~ Active Task List

Active Task List LA I- x .
Logical File Free Space LA
Symbol Table Free Space LA

\ •

j L -
Slock 1

Symbol Table Free Space

• El^ent__Coiiat -i
Next Block LA ;
Block 7 f-

Element Count
(Next block LA !-

.Block n__... __
Element Count
To)

Block 1

Next Block LA
Block..?

i

- y
next Block LA —h

*
Block n ~ K
(0) 1

Logical Fi le Free Space

Block 1

;E lenient Count
'Next block LA

Block 2

Element Jlount
Next 31 oc ITUT

Block ..n

Element Count
(0)

i
i

i
I

20

Active Task List

Tabic 2C shows the individual description for a typical block or Active
Task List entries; its head-of-chain physical LMD3 paga number is contained in
Table 2A's overall contents with access controlled via semaphore. There nay
exist enpty entries (denoted by a blank task nane) in one or mo^e of the
blocks. The last block's next block page nunber is zero. The entire set of
entries (ie., all entries in the list) are quite dynamic; as tasks start or
terminate interaction with the Data Base, one or more entries in this list are
modified.

Task Name:
Nome of the task (program) accessing the Data Base.

Logical Unit Table Address:
Memory Address of the D3MS Logical Unit Table used to issue disk I/O
directly from the user task. The DBMS uses units 16-31.

Open Relation List:
A set of up to five paga number, half-page combinations pointing to an
active Run Time Entry (in SMD3), one per active relation. Should more
than five relations be concurrently open by the user in one session, a
second entire Active Task List entry is generated.

TA3LE 2C. Active Task List

JLMOB Active Task List - Block i
i Task . Logical Unit Open Relation List t

Hanie ; Table Address Sin 1 Rln 2 Sin 3 ! Sin >i ! Sin 5
Entry I

i Entry J ^

Entry n |
Next Block PN

— - i .

1

21

Page Descriptions

Given that LMB3 contains a set of pages that may contain various data,
th^re is one description for each page in LMDS; the i-th page description
contains information regrding the i-t'n corresponding d*ta page. At any point
in time, certain of the data pages (and therefore the associated page
63scription(s)) may or may not be included in the LRU Queua. For example, the
Active Task List is a set of linked LHD3 pages not in the LRU Queue, but the
hs.id of which is in LMDB. The Hash table, resident as Lf-IDB page one and
statistics gathering space as LMD3 pages two and three are additional examples
of such behavior. Although the total page count in LMD3 is explicitly
sppcified, the actual current page count (which is the total minus those used
for the Active Task List, etc.) is implicit in the LRU Queue.

Page Info Lock:
This semaphore is locked when Vhe corresponding data page is currently in
use. During the same time, other pages may also be locked.

10 Lock:
This semaphore is locked via a PC (P-concurrent) vihen r<»ad access is
desired, and via a PS (P-sequential) when a write access is desired for
the corresponding data page.

Logical Address:
If the corresponding data page certains valid data for sone portion of
logical data space (either far a relation's data or for symbol table
data), this contains the logical address of the page. If less than or
equal to zero, the page is not within logical space (in which case, the
page is r.ot in the LRU Queue either).

Update Type:
Set to "yes" i f and only i f the corresponding page of data has been
modified since i ts last write to disk. Changed to "no" during a
successful page flush to disk.

22

Page Type:
Set to "virtual" if the corresponding data page is a merber of a
relation's data space and nay be reused" fo' othjr data space should t;-->
need require. Set to "contained" if tile page may not ba reused for othe"
data space. Set to "workspace" if the page Js being used by the U3MS for
its data space. If "virtual", the page description exist; in fie LRU
Queue; otherwise it does not.

Previous Page:
Page nurcber . -:.c \„;:,~I1\GI^'IJ richer puje in I.-.
the current page is at the top of the LRU Queue.

Equa'u -: ii

Next Page:
Page number of the immediately older page in the LRU Queue. Equa' » -1 if
the current page is at the bottom of the LSI) Queue.

TABLE 2D. Local M-Tiory Page Map

JLMDB - Page Descriptions

Page 1
Page 2

Page Info i Logical Update
Lock I Address | Type Type _ PaQ-a i Page .. j,. LoC:

Page Previous I Next
1

Page n

23

RUM TIME ENTRIES

As referenced briefly in the discussions for Tables 1A, IB and 2C, there
are several places in D3MS Data Structures pointing to Run Time Entries (RTEs).
Given a task name for a specific physical machine, one can reference the Active
Task List and obtain the RTE addresses of all relations being currently refer­
enced for that task. Alternatively, the Open Relation List (in SMDB) may be
referenced to obtain a comprehensive list of all relations currently active in
the system. RTEs are the fundamental unit of description for a relation. From
its root, two other lists are available (specific to the particular relation),
the relation's Open 3y List and the relation's Attribute List. All three data
structures are memory contained in SMDB and consume half pages only.

TABLE 3A. Run Time Entry for a Relation (Link Summary)
STiDB

SMOB - ORL - Block 1 |<-

Next Block PN

Open Relation List

SMOB - ORL - Block 2
Relation's RTE PH
Next Block PN rJ

SMDB - ORL - Block n

\ RTE for a Specific Relation
To.oT

I
Relation Attribute List /

Open By List PH

Attribute!ist PH
V

Relation Open By List
:Block 1 < • - —

i

Block 1
•

< • - —

i

-

Next Block PH

< • - —

i Next Block PH
• ; -

Block n •4 W Block n Block n •4 W

i?r?rzizz
24

Main Entry for a Relation

Referring to Table 3B, Run Time Entries are maintained in SMOB and are
memory contained (i s . , not pageable), each consuming one-half page each. To
f ind an RTE for a specific (re lat ion, owner) pair, the Open Relation List is
searched for satisfaction of c r i te r ion. The RTE pointer is then used to
access the particular SMOB page and half-page. When a user requests to open a
re lat ion, i f the relat ion is not yet open, the RTE is bu i l t in SMD3 space
using STEs for the relation and i ts associated additional pages of data. Once
bu i l t , the RTE is maintained unt i l a l l access to the relat ion is completed, at
which time the used half-pages are returned to the RTE Free Space L is t .

Open User L is t :
Page, half-page combination used to l i s t a l l users currently accessing
the particular relat ion.

Owner Private Access:
Set of rights the owner possesses for restr ict ing his own access to the
relat ion.

Global Access:
Set of rights given to a l l other users who do not own the relation nor
are given expl ic i t access to the relation via the share l i s t concept.

Primary Frame Location:
Starting Logical Address of the primary copy of the primary copy of the
relat ion.

Primary Frame Size:
Count of bytes necessary to contain the primary copy of the relation.

Primary Frame Machine:
Physical machine upon which the disk files containing the primary copy of
the relation reside. Should I/O be required for access to the relation,
it must be done on this machine.

25

Physical machine upon which the disk files containing the duplic a t e c°Py
of the relation reside. Should I/O be required for access to th g

relation, it must be done on tins machine.

Duplicate Frame Logical Address:
Starting Logical Address of the duplicate copy of the relation.

Duplicate Frame Size:
Count of bytes necessary to contain the duplicate copy of the relation.

Memory Location Type:
States whether the relations is utilizing local (LH08) or shared (SHOB)
paq,e. space.

Memory Usage Type:
States whether the relation is memory-contained or virtual. If
memory-conteined, all data for the relation is paged in with ths pages
set as not eligible for reuse.

Re?d Count:
Incremented by one for each raid request against the relat ion.

Vfr'te Count:
Incremented by one for each wrte request against the relation.

Op^n Count:
Incremented by one for each open request against the relation. W h e n this
count equals zero, there are nt tas!;s currently accessing the particular
relation.

Tuple Size:
Count of bytes required to contain one full tuple.

Tuple Access Method:
Data structure method required for access to a tuple.

26

Tuple Access Size:
Used to aid the Tuple Access Method.

Lower Tuple id:
Lowest tuple id the relation may reach.

Bottom Tuple id :
Currently defined lowest tuple id.

Top Tuple id:
Currently defined highest tuple id.

Upper Tuple id:
Highest tuple id the relation may reach.

Ring Size:
If the Tuple Access Method is of a ring type, this is ths maximum number
of tuples that can be defined at one time.

Notify List:
Hot documented herein.

Attribute Access Method:
Data Structure method required for access to attributes within a tuple.

Attribute List PH:
Page number and half of the start of all defined attributes for the
relation.

Attribute Count:
Count of defined attributes.

27

TABLE 3B. Run Time Entry for a Relation

SKD3 - Run Time Entry
Open User List
Owner Private Access
Global Accass
Primary Frarcs Location
Primary Frame Size
Primary Frame Machine
Duplicate Frame Machine
Duplicate Frame Logical Address
Duplicate Frame Size
Memory Location Type
Memory Usage Type
Read Count
Write Count
Open Count
Tuple Size
Tuple Access Method
Tuple Access Size
Lower Tuple id
Bottom Tuple
Top Tuple
;Upper Tuple
Ring Size
Notify List
Attribute Access Method
Attribute List PH
Attribute Count

28

Open By List

Table 3C shows the particular data definition for a block of entries for
a relation. Pointed intially to by an RTE element, the entries comprise all
currently defined users of the relation in question. In order to maintain
high speed access to currently opened relation, the access rights of all users
for open relations are maintained in memory so that subsequent opens by shared
users incur minimum overhead. The Next Block page number, half combination
equals (0, 0) for the last defined block.

User Name:
Ascii na>ne of a potential share! user.

User Access Rights:
Set of rights restricting access to the relation for the potential user.

TABLE 3C. RTE Relation Open By List

SHDB - Rela
User
Name

Entry 1
Entry 2
• '

Relation Open by List
User Access
Rights

Entry n
Next Block Page, Hal f

Attribute List

Given that a relation contains attributes, Table 30 shows the detail for
a given block of attribute descriptions. Initially pointed to from the
relation's RTE in SMDB with a page number, half-page combination, the
attribute entries are maintained in preorder form. Due to the nature of the
pre-compiler versus run-time library concept, only the starting and ending
byte address need be used during the run-time portion of data base access.

29

Start Byte Address:
Starting byte address of the corresponding attribute, relative to the
start of a tuple.

End Byte Address:
Last defined byte address for the corresponding attribute, relative to
the start of a tuple.

TABLE 30. RTE Relation Attribute List

SMQ3 - Attribute List

Entry 1
Entry 2 _

Entry n

Start Byte
Address

End Byte
Address

(
Next Block Page, Half

SYMBOL TABLE ENTRIES

As relations are created, various Symbol Table Entries (STEs} are
established to retain the information. Table 4A shows the link structure for
a single realtion. Given a relation name, a hash value is generated and the
hash table is probed (in LM08, page 1) yielding either a null entry or a
logical address for the head-of-collision chain list of all main STEs hashing
to the same value. Branching out from the relation's main entry are the
Attribute List, Share Access List, and Notify Change List. As with other
lists throughout the DMBS, the entries are blocked into "sets" so that
relatively full pages of data space may be used. All links from an STE to
the defined lists are in terms of logical address; the actual data resides on
disk (but may at some point in time be resident in LMDB page space).

30

TABLE 4A. Symbol Table Entry for a Relation
{Link Summary)

LMDS - Symbol Table Entry

•

LA Share Access Link LA

Attribute List LA
1

Notify Change List LA
•

Share Access List

"Block 1

,'Hext Block LA ; -

;BlockT <:-

i .*
I.
[Hext Block LA j - -

{8'Iock n Ss-

Notify Change List Attribute List
Block 1
•

Next Block LA
'Block Z ' • - • - • H?

i
Next Block LA ' '-

Block n

Block 1

[Block 2

;iaxt Block LA

Block n

°. .; .""

31

Main Entry for a Relation

Referring to Table 4B, it is this main Symbol Table Entry for a relation
that is established during the creite process. All other information is
linked from this entry as its root. Given a relation name, a hash value is
generated, the hash table {in LK03, page 1) is probed, and a logical address
is obtained. Via the paging mechanism, the associated page is read from disk
and accessed. In :his case, we are assuming that the RTE entries for the
relation are being created in SWDB. Should the paged STE not be the main
entry for the particular relation, the hash collision link is used as the
logical address for an STE of another relation having the same hash value.
Once the correct main STE is found for the relation, various logical address
entries exist within it to link to the other STE types.

Relation Name:
Name of the relation.

Relation Owner:
Name of the relation's owner.

Hash Collision LA:
Used by the hashing mechanism to form a linked list of main STEs of all
relations having the same hash value.

Owner Private Access:
Set of rights the owner possesses for restricting his own access to the
relation.

Global Access:
Set of rights given tc all other users who do not own the relation nor
are given explicit access to the relation via the share list concept.

Share Access List LA:
Logical Address of the start of all users allowed access rights other
than those allowed for the owner and globally.

32

Primary Location Information:
Structure containing information about the relat ion's primary copy of the
data.

Create Date:
Structure denoting the create date of the relat ion.

Create Time:
Structure denoting the create tine of the relation.

Frame Location:
Starting Logical Address of the relation.

Frame Size:
Count of bytes necessary to contain the relat ion.

Frame Prior Link:
Currently unused.

Frame Machine:
Physical nachine upon which the disk f i l e s containing the relation
reside. Should I/O be required for access to the relat ion, i t must
be done on this machine.

Memory Location Type:
States whether the relation is u t i l i z ing local (LMDS) or shared
(SMD3) page space.

Memory Usage Type:
States whether the relation is rnenory-contained or v i r tua l . I f
memory-contained, al l data for the relation is paged in with the
pages set as not el ig ible for reuse.

Tuple Access Size:
Used to aid the Tuple Access Method.

33

Tuple Access Method:
Data structure method required for access to attributes within a
tuple.

Attribute Access Method:
Data structure method required for access to attributes within a
tuple.

Duplicate Location Information
Structure containing information about the relation's duplicate copy of
the data. Some as the Priraary Location Information contents.

Lower Tuple id:
Lowest tuple id the relation may reach.

Bottom Tuple id:
Currently defined lowest tuple id.

Top Tuple id:
Currently defined highest tuple id.

Upper Tuple id:
Highest tuple id the relation may reach.

2ing Size:
If the Tuple Access Method is of a ring type, this is the maximum number
of tuples that can be d?.Mned at one time.

Attribute Lir.t L~:
Logical Address of the start of the attribute descriptions for the
relation.

Change Notify List LA:
Wot documented herein.

34

Archive Link LA:
Currently unused.

STE Create Date, Time:
Date and Time when this main STE was created.

Prior Incarnation LA:
Currently unused.

Attribute Count:
Count of defined attributes.

Existence Status:
Current state of the relation; declared, created, or deleted.

35

TA3LE 4B. Symbol Table Entry f o r a Re la t ion

LVG3 - Symbol Table Entry

;P e la t ion i'!&"9

de la t i on Owner

•Hash C o l l i s i o n Link LA

Owner's Pr iva te Access
I
,'ijJohal Access

jShare Access List LA
'Primary Location Information^

Create Date
Create Time
Frame Location
Frame Size
Frane Prior Link
Frame Machine

I

Memory Location Type
Memory Usage Type
Tuple Access Size
Tuple Access Method
Attribute Access Method

Triplicate Location Information
;Lower Tuple id
bottom Tuple id
Top Tuple id
[Upper i'uple id
;2ing Size

A t t r i b u t e L i s t LA

' i i o t i f y Change L i s t LA
Archive Lin ' , LA (cu r ren t l y unused)
5TE C*-eate r.5t<?
STE Create TiT!e
Prior Incarnation LA (currently unused)
Attribute Count
Existence Status

Attribute List

Table 4C shows the structure for a particular "set" or block of
attributes for a relation, initially linked to from the relations main STE.
Should more than one set be required, the Next Block Logical Address value
points to it. As with the corresponding RTE data structure (Table 3D), the
attributes are maintained in preorder form.

Attribute flame:

flame of the attribute.

Data xyne:
Data type of the a t t r i b u t e .

Star t Address:

S tar t ing byte address of the a t t r i b u t e , r e l a t i v e to the s ta r t of a tup le .

Data Size:
Count of bytes necessary to contain the attribute's data.

Dimension Count:
Count of dimensions for the attribute, if the attribute is an, array forn.
The attribute's data type then refers to the cjta type of an array element.

Dimensions:
Array (up to four elements allowed) of lower and upper bound combinations.
Each combination corresponds to the i-th dimension.

37

TABLE 4C. STE Attribute L is t

."03 Attribute List
" i Attr ibute j Data j Start

Name iType \ Address
Entry 1
Entry 2

T

entry n _;___ __i

.Next Block Logical Address

Data
Size

Dimension LPimensions^
Count !_L ower Bind T Upper 8nd

Shared User Access List

Table 4D shows the data structure for a block of shared access users for
a relation. Initially referenced by a logical address in the main STE of a
relation. Next Block Logical Address points to the next block of shared users.
As is the case with other STE types, zero is used to denote no further blocks.

Shared User:
Ascii name of a shared user.

Access Rights:
Set of rights restricting access to the relation for the shared user.

TABLE 4D. STE Share Access List

1 LMDB - Share Access List
j Shared
• User

1
LMDB - Share Access List

j Shared
• User

User Access
Rijjhts

' Entry 1 '
r ••
i
i Entry 2 i
i i l i
i

i

1
i

i
i

•

! Entry n !
i Next Block Logical Address

38

OBK FILES

Throughout the previous discussion, logical addresses have been useg.
Specify to each physical machine is the concept of logical address spac^
which i S then mapped onto physical files. To introduce this idea, a
description of what data exists in what files is presented. Further detail;
as to specific structures follow.

Data Base space on disk is resident in several files, all of which u s e

the file extension DBM.

SMF1LE.D8H

Currently written during every periodic page flush on all machines, this
f i l e '> not yet fully developed. Its intention is to provide a file which
contairls information specific to SMD3, such as the save relation and delete
relatit)n i j s t s .

PFOOOOCiQ.DBM

Referring to Table 5A, a summary index exists as the first sector in t no
file; &ach element in the index cccupies four bytes. Following the index are
the spq c e transformation maps, one block per sector. Within a specific niapi

there i s 0ne entry, triplet per defined physical file containing a physic:ai
file ruimber and its corresponding beginning and ending logical addresses; each
four b>tes long. To determine what physical file a logical address exist;s i P i

the summary index is first searched to determine which block to further
search, j^e appropriate block is then accessed and a search is executed to
determine the physical file number. The resultant fil^ number is used to.
generate a fii e n a n, e (if necessary) of the form PFxxxxxx.DBM where xxxxxx is
the fil e number.

39

TABLE 5A. Physical to Logical Address Transformation

•Summary Index
jSlock Count
;3lock 1 Last LA
;3lock 2 Last LA

I

•Block n Last LA

Entry 1

Entry 2

Entry n

Block 1 Map

Beginning • Ending physical
Logical Adr.] Logical Adr. jFile Mo.

. [

Pr000001.D3N

Block n Map

Beginning Ending
j Logical Adr. Logical Adr.

Physical
File Mo.

Entry 1

Entry 2

Entry n
...L

Referring to Table 5B, sectors zero through seven contain various data
about the specific physical machine upon which the files reside. The numbers
in parenthesis refer to how many bytes are used to contain the data. Many of
the values defined herein exist in LMOB.

40

Physical Machine id:
Identifies the owning machine of the files.

Start LA of Relation Data Free Space Hap:
Location of the space map of as yet unused data space for the symbol
table.

Physical File Count:
Number of currently used physical files.

Last Relation Data Space LA Used:
Highest logical address of currently used relation data space.

Last Symbol Table Space LA Used:
Highest logical address of currently used symbol table space.

Hash Table:
Used for primary access to the symbol table, given a relation n^e.

Statistics Data Space:
Currently unused. Intended for use in gathering frequency
statistics regarding performance of the DBMS.

Relation Data Free Space Map:
Symbol Table Free Space Map:

torfca'in informal"!on regarding .-/"here Tree space currently exists Tor
th« ent i t ies. As with other linked l i s t s , the last entry is th£
Next Block LA.

Entry 1
Entry 2

Start Logical
A_d_dress_X4j

Size of Free
Space Block (4)

Entry n |
Entry Count (4)
•Next Block. LA (4)

4;

Since the pager works with logical addresses, these free space maps
are subject to the same allowances given to a l l other data which is
accessed primarily via logical address.

Start of Used Symbol Table Space:
The start of Logical Address space for the Symbol Table.

PFOQ0001.D8M..PFnnnnnn.DBM

The physical data f i l e s for the DBMS on the specific physical machine.
A l l logical address space maps into these di'sfc f i l e s . The value nnnnnn is the
Ascil representation of the Hex Integer value.

Referring to Figure 3, please note that the Data Base is accessed
direct ly from a user task i f the actual data exists on the physical machine
upon which the task is running (assuming of course that I/O must be issued).
This implies that the standard mechanism supplied by a vendor operating system
to perform I/O from a user task via "logical units" be used; suff ic ient locks
must exist to prevent concurrence problems. In addition, the DBMS logical to
physical transformations just discussed must be taken into account.

TABLE 5B. Oisk Space Ut i l izat ion for PFOOOOOl.DBM

Sector
! Number

. 1 :
!
•J4,5:
;6,7:
3 . . :

Description

Physical Machine id (2)
j Unused (2)
| Start LA of Relation Data Free Space flap (4)
j Start LA of Symbol Table Free Space Hap (4)

Physical F i le Count (4)
Last Relation Data Space LA Used (4)
Last Symbol Table Space LA Used (4)
Hash Table, 4 bytes entry, 61 entries
Stat ist ics Data Space
Relation Data Free Space tops
Symbol Table Free Space Maps

i

j Start of Used Symbol Table Space

42

DBMS LOGICAL UNITS FOR A USER

Table 6 shows the Logical Unit Table, local to a given user's task.
Logical unit numbers 16-31 are reserved for D3MS usage. 8y way of example,
say the page space for a relation is not in SMOB or LMDB (on the same physical
machine) and must therefore be read in from disk. Once the logical address is
determined, this table is searched, the physical disk address is calculated,
and I/O issued against the affected logical un i t .

TABLE 6. Logical Unit Table for a Task

Start Logical
Address

Physical File • Open
Size 1 Count

Entry 16 •

I
; Entry 17
•

I
;

1 „

i •
i i

Entry 31 j
i

i !

STATE VARIABLE FOR A RELATION

Within a user's program, there are generally many places where Dat* Base
references exist and the current "state" of access with respect to each relation
must be retained. I f , for example, a Data Base access exists in some isolated
routine, the relation is "passed" to that routine (actually only the state
variable is passed). Referring to Table 7, the state variable, per re lat ion,
contains several items.

Relation Error Status:
Contains the type and resultant error of Uata Base access that was last
done.

Relation Name:
Name of the Relation.

43

Owner Name:

Name of the owner

User Maine:
fJair,e of the user.

Current Tuple id:
Which tuple within the relation that was last accessed.

Current Attribute Number:
Which attribute within the tuple that was last accessed.

function id:
Function last performed.

j_ine Number:
Pascal source l i n e number vihere the Data Base access was ca l l ed f rom.

frror Number:
Zero if no error; otherwise ihe number of the error for the function
last performed.

Logical Unit Table Memory Address:
Memory location where the LU Table {see Table 6) exists.

Relation RTE Pointer:
Location of the main RT£ for the relation (see Tables 3A-0).

User Access Rights:
$et of access restrictions applied to the specific user for the relation.

Workspace Tuple id:
Workspace Current LA:
Workspace Start:

Used by the DBMS for internal operations, dependant on the function
performed.

«A

TABLE 7. State Variable for a Relation

Relation Error Status

Relation j'iana
Owner Name
User Name
,'Current Tuple ID

{Logical Unit Table Memory Address
.RaUttoa RTE Painter (Pane-, Halfi
User Access Riyhts
Workspace Tuple ID
Workspace Current Logical Address
Workspace Start Logical Address

Current Attribute Number
{Function ID
ILine Number
'Error Number

«&

REFERENCES

Butner, D. N., "KFTF Supervisory Control and Diagnostics System Hardware",
Proceedings of the Eighth IEEE Synposium on Engineering Problems of Fusion
Research, (1979K

McGoldrick, P. R., "SCOS Distributed System," EPFR.

Young, Robert, PASCAL/32 Language Definit ion, Department of Computer
Science, Kansas State University, (1973).

Br inch., Hanson P.^ "The Proqramminq Lanq,uaq,e Concurrent Pascal-." I.EEE
Transactions on Software Engineering, Vol. SE-1, No. 2, pp. 199-20?
(June 1975}.

HIPO-A Design Aid and Documentation Technique, 2nd Ed. (May 1975),
GCZO-1851-1, IBM.

DISCI \I\1I It

this d"tfifn*fli »J*. prvparvd a-* *n Jurount wi work *pinisiuvJ lit jri « c n o M*
tlir I tiiiL-J Stales (imenlintni, \v'i\ht itir I nhnf Mules <.«»i.*rrtnivtir iinr fftv
I niu*rsft> nf C alifwrnia nor am of tlrir wiip lovers, makes am ujrmmt, t*\-
prvss «r implM. i>t awjnit* an* Wy±\ liability or ri'spujî ihilit* fur ih< j.<-
lurati. v<inipfv1t:llr*>s, »r Livfulflrss u any rrtfiirinjfiiin* apparJtui. product, fir
prm:vvt CUtloved. m represent* ihJE it* u*e would not infringe prit-utvh o»rird
fiyhls.. ttefeKQCV hvrvin to am. sp*cifi(comflnrfvial products, process, »r .̂TWC/C
b> tfjile name, trademark, numitaciaref. «r wlkrvii-rf, dno mil nvtft^^ariS
runstituir ur imply its endwrscmrnl. ftcnmrntrndjiiun. <«r fiimrinji 6> the I niteJ
Si ales Confmiwnt or the I imerMitaf California. The tiros and opinions of
auclwri «\pr*\ved herein do not nwVMfilj state or reflect thos<? of the I nifvd
Stats** <iu>*mm«nt ilivreiri. and shall nm hr cJtttl fur adtertising »r pruduct en­
dorsement purposes-

%

file:///I/1I

Physical Machine i d :
Identif ies the owning machine of the f i l es .

Sta<"t LA of Relation Data Free Space Map:
Location of the space map of as yet unused data space for the symbol
table.

Physical Fi le Count:
Nuraber of currently used physical f i l a s .

U.s.t HelaAian. Data Ss^acs. LA Used:.
Highest logical address of currently used relation data space.

Last Symbol Table Space LA Used:
Highest logical address of currently used symbol table space.

HasP Table:
Used for primary access to the symbol table, given a relation name.

Statistics Data Space:
Currently unused. Intended for use in gathering frequency
statistics regarding performance of the DBMS.

Relation Data Free Space Map:
SymPol Table Free Space Map:

Contain information regarding wlere free space currently exists for
the entities. As with other Hiked lists, the last entry is the
Next Slock LA.

i
i Start Logical
I Ad_dress.l4l „

Entry i
Entry z i

Entry n !
Entry Count (4)
,Ne«t Block. LA (4) ..

Size of Free
Saace_Biock,_(4J

41

Since the pager works with logical addresses, these free space maps
are subject to the sane allowances given to all other data which is
accessed primarily via logical address.

St-jr-t of Used Symbol Table Space:
The start of Logical Address space for the Symbol Table,

Pf000001. OBf-t.. Pfnnnnnn. 0B.M

The physical data files for the DBMS on the specific physical machine.
All logical address space maps into these disk files. The value nnnnnn is the
Ascii representation of the Hex Integer value.

Referring to Figure 3, please note that the Data Sase is accessed
directly from a user task if the actual data exists on the physical machine
upon which the task is running (assuming of course that I/O must be issued).
This implies that the standard mechanise supplied by a vendor operating system
to perform 1/0 from a user t'isk via "logical units" be used; sufficient locks
must exist to prevent concurrence problems. In addition, the D8MS logical to
physical transformations just discussed must be taken into account.

TABLE 5B. Disk Space Utilization for PF000001.DBM

Sector i Description
iNuPiber • i
0: i Physical Machine id (2)
i : Unused 12)
i

; Start LA of Relation Data Free Space M3p (4)
; Start LA of Symbol Table Free Space Map (4)
Physical File Count (4)
Last Relation Data Space LA Used (4)
Last Symbol Table Space LA Used (4)
Hash Table, 4 bytes entry, 61 entries
Statistics Data Space

i
;i =
J2.3:
|4,5:
6,7: j Symbol Table Free Space Haps
8..: I Start of Used Symbol Table Space

Relation Data Free Space Maps j

42

D3MS LOGICAL UNITS FOR A USER

Table 6 sho.-/s the Logical Unit Table, local to a given user 's task.
Logical un i t numbers 16-31 are reserved f o r 03MS usage. 8y way of example,
say the page space fo r a re l a t i on is not in SMD3 or LttD3 (on the same physical
machine) and must therefore be read in f r on d i s t . Once the log ica l address i s
determined, t h i s table i s searched, the physical disk address i s ca lcu la ted,
and I/O issued against the af fected log ica l un i t .

TABLE 6. Logical Unit Table fo r a Task

Start Logical Physical rile , Open
Address Size. ! Count

•
Address Size. ! Count

Entry 16 T - -Entry J7__ —

Entry 31

STATE VARIABLE FOS A RELATION

Within a user 's program, there are general ly many places where data Base
references ex is t and the current " s ta te " of access wi th respect to each r e l a t i on
must be re ta ined. I f , f o r example, a Data Base access exists in some isolated
r ou t i ne , the r e l a t i on i s "passed" to that rout ine (ac tua l l y only the state
var iab le is passed). Referr ing to Table 1, the stat"» var iab le , per r e l a t i o n ,
contains several i t ens .

Relat ion Error Status:

Contains the type and resu l tant error of Data Base access that was las t
done.

Relat ion Plane:
Name of the Relat ion.

13

Owner Name:
Name of the owner

User 'lame:
.anie of the user.

Curr^ ' i t Tuple i d :

..'hicb tuple w i t h i n the re la t i on that was l a s t accessed.

Curr t - i t A t t r i b u t e Number:

Jmch attribute u>i$bin the tap^s that was Jast accessed.

Func ton i d :

Function last performed.

Line ',umber:
•ascal source l i n e number where the Data Base access vas ca l led from.

Error Number:

Z-ro i f no e r ro r ; otherwise the number of the er ror f o r the funct ion

' i s t performed.

Lorji>;al U n ^ Table Memory Address:
Memory locat ion where the LU Table {see Table 6) e x i s t s .

? "• 111ion RIT Pointer :
Location of the main RTE f o r the r e l a t i on (see Tables 3A-D).

Iz-'-r A c e s ' Rights:

Set o access restrictions applied to the specific user for the relation.

Workspace Tuple id:
Workspace Current LA:
Workspace Start:

Used by the DBMS for internal operations, dependant on the function
performed.

44

