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ABSTRACT

The ISX-A was a tokamak designed for studying plasma-wall inter-
actions and plasma impurities. It fulfilled this role quite well,
producing reiiable and reproducible plasmas which had currents up to
175 kA and energy containment times up to 30 msec., With discharge pre-

cleaning, Z was as low as 1.6; with titanium evaporation, Z

eff eff

approached 1.0. Values of Zeff > 2,0 were found to be proportional to

residual impurity gases in the vacuum system immediately following a

discharge. However, there was no clear dependence of Zeff on base

pressure. Stainless steel limiters were used in most of the ISX-A
experiments. When carbon limiters were introduced into the wvacuum

system, Zeff increased to 5.6, After twelve days of cleanup with tokamak

discharges, during which time Z steadily decreased, the carbon

eff
limiters tended to give slightly higher values of Zeff than stainless
steel limiters. Injection of <1016 atoms of tungsten into discharges
caused the power incident on the wall to double and the electron temper-

ature profile to become hollow.



1. INTRODUCTION

ISX-A ‘(Impurity Study Experiment)1 was an iron core tokamak with a
major radius of 92 cm and a minor radius of 26 cm. This machine was
designed for the study of plasma-wall interactions and plasma impurities.
The bulk of the data taken from ISX-A was recorded during a 12-week
period between December 12, 1977 and March 5, 1978. Stainless steel
limiters were used except during the last two weeks of operation, when
retractable molybdenum and carbon limiters were added. Upon completien
of the experimentai program, ISX-A was converted to ISX-B with the
addition of neutral beams, a new vacuum vessel, and a new poloidal field
system.

- The principal'experiments carried out during the lifetime of ISX-A
can be broadly classified as the impurity flow reversal experiment,z.

3  The confinement

confinement studies, and surface physics studies.
studies were conducted under a broad range of impurity and limiter
conditions. In addition, tungsten limiters were simulated by using a
laser blowoff system to puff tungsten into the plasma. The results of
the confinement experiments, which are described in Sects. 3 and 4, are
related to studies in several other tokamaks.“”°

Typical values of several plasma parameters are listed in Table 1
for sequences employing stainless steel and carbon limiters. The optimum
plasma parameters achieved are given in the last column of Table 1, but

these parameters were not all achieved during the same discharge sequence.

Table 1. 1ISX-A plasma parameters

Stainless steel

limiter Carbon limiter Optimum
B, (k6) 13.2 13.2 14.8
I {kA) 120 - 16 175
alay) 4 4 2.5
n, (0) (10'3 ¢~ 3) 5.2 4.0 9
vV (v) 1.5 1.5 0.9
T,(0) (keV) ‘ 0.69 0.82 1.5
T,(0) (keV) 0.42 0.39 " TD.ss
g (msec) 22 20 30
vA 1.8 3 i 1

eff




2. DESCRIPTION OF EXPERIMENTAL CONDITIONS

* The.vacuum vessel of ISX-A was constructed of welded 304L stainless
steel ‘with no insulating break. Metal vacuum seals were used through-
out, except for Viton seals in several gate valves and on.several laser
Awindows} -All Viton seals were prebaked in-.a vacuum oven. The vacuum-
vessel consisted of nine rectangular box-shaped sections connected by.
circular bellows. .Each of the box (or diagnostic) sections contained
diagnostic- ports on: the top, bottom, and cdutside. . Figure 1 shows the
location of a titanium evaporator, gas puffer,. and bottom movable toroidal
limiter, which were located in each of the nine diagnostic sections. ‘ Note
that the titanium evaporators were shielded so that titanium was deposited
mainly on the top of the vessel, as required by the impurity flow reversal
experiment. Except for - the last two weeks of operation, all:.nine bottom
limiters were made of stainless steel and were oriented.along the toroidal
magnetic field. In addition to the bottom limiters, .three 1l-in.-diam
poloidal-stainless steel bar limiters, insulated from the vacuum liner,
were located in one diagnostic section.

Among the diagnostics10 on ISX-A were a scanable Thomson scattering
system, a single-channel -microwave interferometer, a multichord visual -
spectrometer, both normal- and grazing-incidence ultraviolet spectrometers,
sott x-ray detecrors, PIN diode x-ray wounitors, a mass—-selectable charge
exchange analyzer, and a Langmuir probe. - A quadrupole mass analyzer,

-operated by a small computer via CAMAC, was used for gas analysis. A
sample transfer system was also attached, which allowed small specimens to

be positioned inside ISX-A and withdrawn under vacuum for Auger analysis.3

3. VACUUM CONDITIONS, Z AND RECYCLING

eff’
Residual gas analysis (RGA) scans ofvparticles with charge-to-mass
ratios of 1-50 were routinely made several times -each day using a quad-
rupole mass analyzer. These scans were taken starting 15 sec after a'
shot. The data were processed in a small computer and plotted on a
logarithmic scale in units of partial pressure above background. After

several weeks of operation, it became evident from viewing these scans
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~tion of several limiters.



that the measured values of Ze were proportional to the total partial

ff
pressure of contaminant gases. This relationship is shown quantitatively

in Fig. 2, where Ze values, as determined by the plasma conductivity and

ff
Te(r) profiles, are plotted against NI/NH (NI is the number of impurity

atoms in the residual gas scan, and N, is the number of hydrogen atoms).

H
It is not clear, a priori, that such a proportionality should exist.

However, because the low Z impurities carbon, oxygen, and nitrogen were

the principal contributors to Z in ISX-A, and because these impurities

eff .
formed gases (such as CH,, C,pH,, CO, HZO) which remained after each

discharge, this result is perhaps not too surpfising. For Z;ff < 2,
the relationship between RGA scans and Zeff is not totally c¢lear. This
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may be because heavy metals.or plasma turbulence played a role in determin-

ing Zeff at low levels. Littlg correlation between Ze and base pressure

was observed.

ff

Discharge cle?ning in hydrogen gas was routinely practiced prior to
December 12, 1977 and for five weeks thereafter. The cleaning discharges
consisted of 0.5-msec~long pulses, applied at the rate of 120/sec in a |
toroidal field of 200 G. Breakdown was‘;ssisted by a 1-GHz low power
(&50 W) microwave sourée. This procedure produced a cold plasma with
eleqtfon temperatures éstimated spectroscopically to be from 9 to 18 eV.
This cleaning procedure was sometimes varied to allow l-sec or shorter
bursts followed by 1-5 sec of pumping. As a by-product of discharge
cleaning, the bellows sections were heatéd to 160°C by currents running
through the liner whilé the box sections remained cool.

v “The ultimate vacuum attained after hydrogen discharge cleaning was
8 x 1078 torr (gage pressure), and hydrogen was the principal residual
gas. The pumping speed of the system was restricted by conductance
- limits to about 250 liters/sec. Values of'Zéff steadily decreased during
the five weeks of discharge cleaning after December 12, 1977, reaching
ZeffA= 1.6. The principal contaminant gases were CH;, CO, and HZO, each
contributing less than 1078 torr to the background partial pressure. The
resulting tokamak discharges exhibited relatively low impurity radiation
levels. Table 2 lists preliminary data for the fraction of the ohmic
input power radiated by the most abundant plasma impurities. Present
uncertainties in analysis of these data imply a 50% possible error in the
résults. '

Titanium gettering was the principal method of wall conditioning used
during the last seven weeks of ISX-A experiments. ~The initial effect of
titanium evaporation was that the ultimate base pressure decreased by a
factor of ten, and the carbon and oxygen radiation levels decreased by a
‘factor of three. At first titanium was evapofatéd'after each shot. While
‘this titanium decreased the base pressure, RGA scans 15 sec after the next
discharge showed that the CH, and CH, peaks increased by an order of

magnitude, ‘but that other impurity gases remained unchanged. Without

further titanium evaporation these contamination levels and the value of



Table 2. ISX: power,radiated to the wall

- Spectroscopic measurements: Zeff = 2.1

~Percent of ohmic heating input power

* Source 50 msec 100 msec - 150 msec
Hydrogen (Ly-a) 1.7 4.1 1.6
Carbon 1 3.5 ' 1.7
Oxygen 2 16.3 , 14

' Nitrogen 0.5 5.9 ’ 3.5
“lron 1 1.9 1.9
Nickel 0.2 0.2  To.s
Chromium 0.2 0.2 0.4
6.6 32.1  23.6

) Zeff remained fairly constant, regardless of the nﬁmber of shots. Because

of this constancy, it became common practice to evaporate titanium only
infrequently between shots and at the end of a day's run. The lowest

values_pf Ze achieved with titanium evaporation approached 1.0, and wiLh

Table 3 lists O VI, H, and C III radiation for several different
discharge sequences. The plasma density was not constant during these
experiments, so different shot sequences cannot be directly compared.

However, the general trend is clear; lower Z values imply more hydrogen

eff

. radiation and relatively less emission from C III and O VI. The increase

in the emission of hydrogen light is particularly striking for Zeff = 1.1.

The fraction of the total input power reaching the walls for dis-.

.charges with different Ze values is shown in Fig. 3. These data were

ff

. derived from a pyroelectric detector, and each trace represents an average

over several shots. In comparison with spectroscopy data, the radiometer
measurements show a larger fraction of the ohmic heating power reaching
the wall than was indicated by the intensities of impurity lines, as given
in Table 2. Typically, half as much power was radiated to the walls as

compared to similar ORMAK discharges.lo



Table 3. Impurity emission rates

1013 photons

[ sz

-sec-steradian

t = 100 msec into the discharge

Ohmic
heating
. Limiter H C ITI 0o VI power
Cleaning technique material Zeffv 1216 A 977 A 1032 A (kW)
Ti evaporation Stainless 1.1 23.2 0;13 1.05 225
: steel : ’ .
Ti evaporation Stainless 1.7 7.02 0.11 . 1.79 210
(D, puff into Hy) steel
Discharge cleaning Stainless 2.1 8.06 0.36 4.21 213 _
steel
Discharge cleaning Stainless 2.8 4.2 0.37 2.25 162
(carbon limiter steel
installed) .
Ti evaporation Carbon 2.8 0.88 0.36 3.38 203
. ORNL /DWG/ FED-78-273
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'Fig. 3. Fraction of the input power which was radiated to the wall,
as observed by a pyroelectric detector. The middle trace shows the result
of puffing tungsten atuws inlu Lhe discharge at t = 100 msec.



Although hydrogen was usually the working gas, deuterium was intro-
duced during three different periods of ISX-A operation. Figure 4 gives
data from RGA scans of HZ, HD, and D2 taken 15 sec after a number of
shots. Starting just after a deuterium run the D, partial pressure
decayed over several hundred shots, reaching a partial pressure of <27 of
the total. Much more deuterium was contained in the HD molecule, which
never fell below 20% of the total pressure. This implied a considerable
wall holdup and recycling of deuterium. A large amount of deuterium was
present in the evaporated titanlum layers, as indicated by a rise in the
D2 mass peak with each heating of the box sections during titanium evapora-
tion. This accounts for the scatter in the data between shots 4UU0 and
700. Similarly, with the reintroduction of deuterium after several hundred
hydrogen shots, a considerable amount of hydrogen remainédsin the vacuum

system.

ORNL/ OWG/FED-78-271
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Fig. 4. Variation of the fractional partial pressures of masses 2,
3, and 4 with Hy, and Dy as the working gases. Titanium evaporation was
used during the time period in which these shots were taken. Data were
taken starting 15 sec after the completion of tokamak discharges.



4. LIMITER EXPERIMENTS

For all except the last two weeks of operation, stainless steel
limiters were used exclusively in ISX-A. With two weeks of experiments
remaining, carbon limiters were inserted in a top, bottom, and outside
port of one diagnostic section. (Two of these limiters are shown in
Fig. 1; a third limiter located in a bottom port is not shown.) All
three limiters were adjustable from a distance of 2.5 cm in the shadow of
the stainless steel limiter to 5 cm into the plasma. All three carbon
limiters were made of ATJ-S graphite and contained tungsten heaters
wrapped on alumina spools which were in turn inserted inside the graphite.
In addition, a molybdenum limiter was substituted for one of the bottom
retractable stainless steel limiters.

The stainless steel limiters performed remarkably well throughout the
life of ISX-A. As may be noted from Table 2, metal contamination was not
a serious problem. Upon removal of the stainless steel bars, three distinct
types of limiter damage were noted (as shown in Fig. 5). The outside
limiter experienced some melting at the center. Pitting and melting due
to runaway electrons were mainly observed on the sides of the top limiter.
Arc tracks were observed on all limiters, particularly the inside limiter.
There was ample evidence of arcing near the insulators at the ends of each
rod.

The carbon limiters were baked to above 400°C upon installation in
ISX-A, having also been previously vacuum baked. Immediately after instal-

lation the carbon contamination levels and Z increased, and plasma

eff
discharges were irreproducible. Values of Z slowly decreased with

tokamak operation, as shown in Fig. 6. Howesii, plasmas bounded by the
carbon limiter never exhibited Zeff below 2.8. A detailed comparison of
plasma parameters on the last day of operation (see Table 1) shows only
small differences between stainless steel and carbon limiter shols,
although the elcctron temperature and density profiles were somewhat
broader using the carbon limiters. Table 3 shows that the emission of
hydrogen light was considerably reduced when the carbon limiter was

inserted. RGA scans showed an enhancement in hydrocarbon contaminants

throughout the time the carbon limiters were in ISX-A. When the bottom
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Three types of limiter damage to the stainless steel bars.
(b) Arc tracks,

Fig. 5.
(c) Limiter damage

(a) Surface melting at the center of the outside bar.

observed generally and particularly on the inner bar.
to the side of the top bar caused by runaway electrons melting the sur-
The relative magnifications of (a) to (b) and

face at localized points.
(e) are lubd.l:l.7.
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steel, molybdenum, and carbon limiters.
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Fig. 6. Zeff as a function of days‘befofe'andvafter installation of
the carbon and molybdenum limitérs; Z values are givén for stainless

cafbbn limitér was heated to 620°C in the'prééénce of plasma discharges,
no increase in the residual methane gas pressure of 9 x 1077 torr was
observed. Con51derable evidence of arcing was found on the graphite
after removal of the limiters. '

With the molybdenum limiter extended into the plasma, discharges °
.cduld not reproducibiy be run with densities above 1.5 x 1013 cm™3,
and so cbmparisons with other limiters were inconclusive. Tungsten~:
‘atoms were puffed into the plasma via‘'a laser blowoff syétem to simulate
the effect of the tungsten limiter in ORMAK.!! With the introduction of
51016 tungsten atoms (or less than‘Ojiz of the total number of electrons),
the electron temperature profiletbecame’hollowp the voltage increased,
and the radiation to the wall increased by 100%. This.lqtter effect is

illustrated in Fig. 3.
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5. CONCLUSIONS

ISX-A proved to be a very reliable and reproducible tokamak. Using
stainless steel limiters, low values of Ze were achieved both with

ff
discharge cleaning (Zeff = 1.6) and titanium evaporatioﬁ (Zeff = 1.0).
Line radiation and radiometer measurements confirmed that the level of
impurity contamination was low. The principal contaminants were carbon,
nitrogen, and oxygen, with metals contributing relatively little to the
radiated power. Energy containment times were exceptionally long,
reaching g < 30 msec at a toroidal field of 13 kG:

- Discharge cleaning was the preferred mode of wall conditioning.
Using titanium evaporation along with stainless steel limiters, it was
possible to open the vacuum system to air one day and to have reproducible
discharges the next day. However, there was much hydrogen and deuterium
holdup in the titanium, as evidenced by the slow changeover in the
residual gases when H, was substituted for D,. As titanium layers
became thicker over a several week period, outgassing with titanium
evaporation became more and more of a problem.

The introduction of the carbon limiters into ISX-A and their sub-

sequent bake-out caused Zeff to rise to the highest values observed,

Zeff = 5.6. During the twelve days of operation after their introdhction,

Z
eff
higher than comparable discharges with stainless steel limiters. Con-

steadily dropped, but Zeff values with carbon limiters were slightly

siderable evidence of arcing was observed on both the carbon aﬁd the
stainless steel limiters. When small amounts of tungsten were puffed into
the plasma, the radiated power doubled§and the temperature profile became
hollow.

Values of Zeff > 2.0 were found to be proportional to the amount of
contaminants in résidual gases immediately after a discharge, as observed

by RGA scans. There was little correlation between Ze and base pressure.

ff
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