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A MATHEMATICAL MODEL FOR MULTICOMPONENT SEPARATIONS
ON _THE CONTINUOUS ANNULAR CHROMATOGRAPH

Robert L. Bratzler
John M. Begovich

HIGHLIGHTS

A model for multicomponent separations on ion exchange
columns has been adapted for use in studying the performance
of the continuous annular chromatograph. The model accurately
predicts solute peak positions in the column effluent and
qualitatively predicts trends in solute effluent resolution
as a function of increasing bandwidth of the solute feed
pulse. The major virtues of the model are its simplicity
in terms of the calculations involved and the fact that it
incorporates the.nonlinear solute—resin binding isotherms
common in many ion exchange separations. Because dispersion
effects are not accounted for in the model, discrepancies
exist between the shapes of the effluent peaks predicted by
the model and those determined experimentally.

1. INTRODUCTION

Conventional chromatographic séparations have been modeled using
both numerical and analytical calculations. Only the numerical methods
have been successful in incorporating all of the effects which vccur in
chromatography. Unfortunately, the calculations are usually long and
involved and do not yield much insight into the physics of the process.
On thé other hénd, the ana]ytica] methods usually involve assumptions
which yield only approximate results of the real experiment. However,
they do provide a theoretical basis for predicting the results of a
chroﬁatographic separation with fewer ca]éu]ations than with the numeri-

cal methods.



If the discussion is restricted to analytical models developed by
ion exchange chromatographic separations, it must include the following
effects in the most general model: (1) solute and solvent convection
axially through the bed (column); (2) solute dispersion and diffusion,
both parallel and normal to the direction of flow; and (3) nonlinear
sorption and desorption of the solute by the bed packing. To date no
analytical model has been deve]oped which includes all of these effects.
A model does exist for unidimensional convection and dispersion with
linear binding isotherms.] This model is adequate for those instances
in which the concentrations of solutes are much smaller than the concen-

trations at which the bed packing would be saturated (overloaded). For

those cases in which the solute loading is relatively high, an ana]ytiéa] '

model has been developed by Rhee2 which_treats nonlinear solute binding
isotherms, but it does not include diffusion and dispersion effects.
Othe}‘s3 have developed models based on the jdea that the column may be
approximated as a number of ideal mixing cells, all connected in series.
Although this approach is based on relatively crude geometrical assump-
tions, the results predicted have been shown to agree fairly well with
experimental findings, provided the bed is sufficiently long.

Both cell mode]s4 and numerical mode]s5 have been employed in
describing the continuous annular chromatoqraph (CAC) developed at the
Oak Ridge National Laboratory. A schematic diagram of the apparatus'is
shown in Fig. 1. A regulated gas overpressure provides the driving
force for a constant flow rate of eluent through the column. The feed
inlet is held stationary while the column is rotated, subjecting each

-poktion of the annulus to feed for a short period of time followed. by
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elution by the eluent stream. As elution proceeds, the eluted sub-
stances separate as they progress vertically down the annulus, giving
the appearance of helices as the annulus rotates. Component species
with a high affinity for the column packing exit from the rotating
annulus at a greater distance from the feed point compared to species
with Tower distribution coefficients:. Thus, multicomponent separations
can be made on a continuous basis depending on the sorption character-
istics of the component species.

The purpose of the work reported here is to assess the applica-
bility of the Rhee analytical model to the performance of the CAC. The
fo]]owingAsections describe the model, and the results predicted by the

model are compared with experimental results.
2. SUMMARY OF THE ANALYTICAL MODEL

Consider a conventional chromatographic column to which a liquid
solule mixture 1s fed for some short-time interval, tp, and is followed
by a stream containing just solvent (the eluent stream). If there is
sufficient variation in the affinities of the individual solutes for
the column packing material, the solutes will appear separated in the

effluent stream. The governing partial differential material balance

on the column is:

2
UG X g o
i T3 T x - 5t e ot

oX
8Bi n _
Tt = KeiGi(N - JZ By) - kg By (2)

'



where the nomenclature used is given in Table 1. Equation (1) results
from a material balance performed on the mobile (1liquid) phase, whereas
Eq. (2) applies to the immobile (solid) phase. These equations are
general and cannot be solved without simplifying the assumptions and
specifying the initial and boundary conditions. For the case considered

here, these latter conditions are:

0, all x: C, =B, =0 : (3)

o+
1}

- p i io
t> tp, x=20 Ci =0
lim Ci =0
X > o

Thus, the column is initially free of solute; up to time,'tp; the co]umn
feed contains solute of some constant concentration; thereafter, solute-
free eluent is fed to the column. Neg]ecting'column end effects, it is
assumed that the concentration vanishes as the axial position approaches
infinity. |

The model is simplified by neglecting the second-order dispersion
terms in Eq. (1). A second simplification is to assume that the binding
reaction [Eq. (2)] is sufficiently fast so that local chemical equilibrium
exists throughout the column. This second assumption is valid in most
cases, because the flow rates through ion exchange columns are relatively
- slow and the binding reactions are quite fast. The first assumption is
made, not from physical insight, but rather to facilitate an analytical
solution to the problem. Indeed, dispersion effects play a large role

in determining the performance of chromatographic separations.



Table 1. Nomenclature

Symbol Definition and units
Bi Concentration of solute i bound to resin, meq/ml resin
Ci Concentration of solute i in liquid phase, meq/ml solution
Cio Concentration of solute i in liquid feed, meq/ml solution
Di Dispersion coefficicnt for solute i, cmz/sec
kfi Forward binding-rate constant for solute i, (ml solution)/
(sec-meq)
kri Reverse binding-rate constant for solute i, sec’1
Ki kfi/kri = binding constant, ml solution/meq
L Overall bed length, cm
N Resin capacity. meg/ml resin
n Number of solutes in system
tp Duration of so]ute.feed pulse, sec
t Time, h
v Eluent superficial velocity, cm/min
X Axial coordinate, cm
€ Bed void fraction, ml voids/ml bed
] Angular displacement, deg arc
s Kici’ dimensionless transfourmed sulule i concentration
w Annular bed rotation rate, deg arc/h

]
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Even with these simplifying assumptions, Eqs. (1) and (2) are diffi-
cult to solve because of the nonlinearity in the concentration terms in
Eq. (2). For instantaneous binding, Eq. (2) may be rearranged into the

following form:

K.NC.
B, = ’n ! ) (4)

1+ 2 C.
1 j=1 KJCJ

This equation is often called the Langmuir binding isotherm. A plot of
thfs function is shown in Fig. 2. It adequately describes the'saturability"
of the ion exchange resin as the concentration of solute in the mobile
phase is increased. This equation is based on the concept that the resin
has only a finite number of binding sites. As sites become filled, the
tendency of any particﬁ]ar solute to bind decreases. Thfs is an important
consideration in the description of mu]ticompoﬁent chromatography, because
the presence of a solute with a higher affinity for the resin will effec-
tively displace solutes with lTower resin affinities. The linear binding
model described in ref. 1 does not include this effect.

The problem as posed has been solved analytica]]y.2 To apply the
solution to the CAC, in which solute bands are distributed both axia11y ,
and circumferentially, only a simple transformation from time to circum-

ferential displacement is needed:
6 = wt . “ (5)

Thus, these two coordinates may be'viewed as interchangeable.
The solution to the problem is best understood from plots in the x-t
(or x-6) plane. Consider the separation of a three-component mixture

(three solutes plus solvent). For clarity, the solutes are numbered 1in
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Fig. 2. Langmuir isotherm.



the order of increasing affinity for the resin, solute 1 having the lowest
affinity and solute 3 having the highest. Because solute 3 will spend a
greater proportion of time on the immobile phase, it will advance through
the column af a slower rate than solutes 1 and 2; Thus if the column is
initially solute-free when the mixture is applied (t = 0), a series of
shock waves, one for each solute, will be established which demarcate the
position of the solute fronts in the column. This is shown in Fig. 3.
The solute fronts are sharp (i.e., the shock fronts) because dispersion
has been.neglected. Solute 1 front advances the fastest. The numbers

of Fig. 3 indicate the solute content in the front and trailing regions
near each of the three shock waves. To the left of shock 3, all three
solutes coexist at concentrations equal to the respective feed concen-
trations. To the right of shock 3, only solutes 1 Snd 2 are present,

and to the right of shock 2, only solute 1 exists.

At some later time, tp, the column feed is switched to pure solvent,
and elution of the column begins. Because the solvent does not interact
with the resin, it will advance through the column faster than any of
the solutes. Solute that resides on the resin will be removed progres-
sively, starting with solute 1 (the solute with the Towest affinity for
the resin). Thus, the mobile phase concentration of solute 1 will gradu-
ally decrease from its maximum value (.= the inlet feed concentration) to
zero. Graphically, this is represented by a fan of isoconcentration
lines originating at (O,tp) as'showﬁ in Fig. 4. This family of Tlines
may be regarded as the solvent front permeating fhe column.

There will be as many fans as there are solutes in the column, in

this case, three. The fan for solute 1 will have smallest slopes (because
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solute 1 is removed from the resin first). Al11 three solutes are present
along each of the isoconcentration lines in fan 1. At time, t, fan 1
starts to overtake shock 3. This results in an interaction between the
two waves. The net effect of the interaction is that shock 3 will move
at a slower rate through the column (steeper slope) because there will

no 1on§er by any solute 1 competing for sites on the resin. The solvent
fan 1 will also be slowed because there will be an absence of solute 3

to the right of shock 3. That is, solutes 1 and 2 will spend a greater
proportion of time on the resin phase because competition from solute 3
is no longer a factor. Fan 1 will proceed down the column until it over-
takes shock 2 and a similar transmissive interaction will ensue. In this
case, solute 2 is depleted, leaving only solute 1 in fan 1. Again the
speed at which the isoconcentration waves move through the column will

bé rétarded due to the absence ot solute Z to the right of shock 2. This
is shown in Fig.'5. When the last of fan 1 (C1 = 0) has interacted with
shock 2, solutes 1 and 2 will have been separated. This occurs at point
A in Fig. 5. At times and bed lengths greater than those of point A, the
separation distance between solutes 1 and 2 increases. Point A thus
represents the minimum time and distance required to separate solutes 1
and 2.

After interaction with shock 2, fan 1 starts to interact with shock 1.
Unlike the previous fan-shock interactions, the fan wave is not transmitted
in this case. Instead, it is absorbed, thereby slowing the advance of
shock 1. What ultimately results at long times and distances is shown
on Fig. 6. The solvent front (fan 1) minimum velocity isoconcentration

Tine (corresponding to C] =‘0) moves at the same rate as the shock wave.

)
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Thus, the two lines are parallel and separated by a constant distance at
all bed lengths. This distance represents the solute 1 bandwidth.

Similar fan-shock interactions occur with the other waves. Typical
final results are shown in Fig. 7 (only one fan line is shown for each
fan wave). Point B depicts the time and position at which solute 2 is
completely separated from solute 3. The effluent concentration profiles
at any particular bed length may be determined by simply following along
a vertical line through each of the shock and fan waves. Figures 8 and 9
show typical profiles for x = 0.2 and x = 1.0 respectively. At x = 0.2,
there is incomplete separation between solutes 2 and 3. At x = 1.0, all
three solutes have been separated.

To summarize, if one knows the inlet concentrations for each solute;
the binding constants, Ki; the void volume of the column, €; the eluent
superficial velocity, v; and the total capacity of the resin, N, the
effluent concentration as a function of time at any arbitrary bed length,
X, can be predicted. A computer program has been written to perform the

calculations and is described in detail in Appendix A.
3. CASES STUDIED

The model was tested by performing calculations based on experimental
data already generated on the CAC. The experiment separated copper,
nickel, and cobalt (Co-1 and Co-2) amine complexes using Dowex 50W-X8
50- to 60-pm ion exchange resin (NH4+ form) with 1 M_(NH4)2CO3 at pH
7.88 as the e]uent.6 The purpose of the experiments was to study the

effect of variation in the feed bandwidth (tp) on product resolution.
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The binding constants for each of the solutes and the resin capacity
used in the calculation are given in Table 2. The resin capacity used
was the nominal capacity quoted by the resin manufacturer. The binding
constants were determined by a trial-and-error method. Initial estimates
were modified so that the results of the calculation matched those for
one particular set of experimental conditions. These constants were ﬁot
varied in any of the subsequent calculations. (Attempts to measure the
binding constants in separate equilibrium binding experiments yielded
inconsistent results, presumably due to the large errors involved in the
experiments.) The algorithm used to determine the binding constants is
fairly straightforward and is described in Appendix A.

Table 3 summarizes fhe experimental conditions used in the calcu-
lations. The feed bandwidth was varied from 5 to 38 mm. Because the
bed was rotating at 62.2°/h and the diameter of the annular bed is 28.2
cm, these bandwidths correspond to pulse widths ranging from 2 to 15 min.
The feed bandwidth is varied experimentally by changing the solute mix-
ture feed rate. When the feed rate exceeds the eluent rate, the feed
band spreads. Conversely, at feed rates lower than the eluent rate, the
feed pulse is confined to a narrower region and undoubtedly undergoes
some dilution in the process. For the cases studied here, the eluent
rate was 2.53 cm/min. For feed rates less than this eluent rate, the
inlet solute concentrations were assumed to be diluted in direct propor-

tion to the ratio of feed to eluent flow rates.
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Table 2. Binding isotherm data used in the model calculations

Resin capacity: N = 1.78 meq/ml resin.

& Eaploa
Solute complex (ml solution/meq) (ml_so]ution/m1.resin)
Cu 1.18 2.10
Ni 2.18 3.88
Co-1 2.92 5.20
Co-2 7.73 13.76

aKapp is the distribution coefficient at very low concentrations:

NKiCi n
= —_— N . if
Bi a ~ Kappc1 if §;1chj << 1 .
HI K.C, J
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Table 3. Experimental conditions used in the analytical model

v = 2.53 cm/min
e = 0.38
L =50cm

Feed bandwidth = 5 to 38 mm

w = 62.2°/h
a a
' Cio Lo Cio
Solute complex [ (meq/ml1 solution) x 107] (g/1iter)

cu?t 1.57 0.5

NiZ* 13.63 4

\ .
- Co-1 0.848 . 0.5
Co-22*

1.697 0.5

qnssuming the feed rate > eluent rate. For the 5- and 7-mm
bandwidth cases, these values were assumed to be 1.0/2.53
and 2.0/2.53 of the values shown here.
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4. RESULTS

Bed concentration profiles were computed for the range of bandwidths
listed in Table 3. The results predicted for a 7-mm feed bandwidth are
shown in Fig. 10 on the x/L-6 plane. Solute bands for each solute in the
system are representéd by a pair of broken lines. The lowest band is for
the copper complex. followed in order by the nickel, Co-1, and Co-2 com-
plexes. This figure corresponds to the traiectory of the bands that
would be observed during the operation of the CAC. In the calculations,
L was assumed to be 50 cm, equal approximately to the overall bed length
of the'CAC. The effluent concentration can thus be determined by a cut
at x/L = 1. This eluent profile is shown in Fig. 11 where ¢i(= Kici) as
a function of 6 is plotted. In the case shown, the copper complex exits
at 34°, the nickel complex at 55°, the Co-1 complex at 73°, and the Co-2
complex at 177°. Note that the shape of the peaks is not Gaussian. This,
of course, is because dispersion effects were heg]ected in the calculation.
Results for eﬁch of the other cases tested are shown in Figs. B.1-B.18
found in Appendix B.

Referring to the figures in Appendix B, the model predicts complete
separation of all four solutes for bandwidths up to 19 mm (7.7°). With
a feed bandwidth of 19 mm, the model predicts that the nickel complex
will emerge slightly contaminated with Co-1. At even larger feed band-
widths, the degree of overlap between the two bands increases. For the
range of bandwidths used, the model predicts complete separation of the
copper and nickel complexes.

Experimentally, the nickel and Co-1 bands overlapped for feed band-

widths greater than 22 mm, in agreement with the model. However, contrary
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to predictions, the copper and nickel bands also overlapped for feed
bandwidths of 19 mm and greater. This discrepancy between the model pre-
dictions and the experimental results may be explained in part by the
omission of dispersion effects in the model. Also, the binding constants
used in the calculation may not have been sufficiently accurate.

Although the model may not have predicted the band overlaps properly,
it did a reasonably good job of estimating the position of the effluent
concentration peaks. The comparison between experimentally measured and
model-predicted peak positions is shown in Fig. 12. Most of the data
points are scattered near the 45° line of identity. The major exception
to this observation is the data for the position of the Co-2 peaks. The
model generally overpredicted these peak locations, again probably due
to the choice of the binding coefficient for Co-2.

The column effluent solute bandwidths predicted by the model were;
in general, understandably smaller than thosé determined experimentally.
The compérison of theory and experiment is shown in Figs. 13 and 14. In
the case of copper, the model and experimental results show qualitative,
but not quantitative, agreement (Fig. 13). The results obtained with
nickel are somewhat surprising. Over the range of column feed bandwidths
tested, the model agrees quite well with the experimental findings.
Resu1t§ obtained with Co-1 apd Co-2 (Fig. 14) are similar to those of
copper in that the model predicts the correct trend but not the correct
quantitative values.

The comparison between predicted and measured peak resolution is
shown in Fig. 15; peak resolution is defined in ref. 7. A value of unity

means that the adjacent peaks are just touching. Values above unity infer



THEORETICAL PEAK POSITION (deg:

175

150

125

100

75

50

Fig.

26

ORNL-DWG 79-1344

— . o Co-2

| [

0 COPPER
A NICKEL
® Co-1|

1 1 | l 1 1 1

25 50 75 100 125 150 175
EXPERIMENTAL PEAK POSITION (deg)

12. Comparison of predicted and measured peak positions.



PRODUCT BANDWIDTH (deg)

50

-3
(o]

o
o

N
O

10

27

ORNL-DWG 79-1341{

T T T T T T T
EXPERIMENTAL DATA
O COPPER
— ® NICKEL m
PREDICTED 0®
CURVES :
NICKEL
o ©_COPPER

] L. ] . | | ]

0 5 . 10 15 20 . 25 30 35

FEED BANDWIDTH (mm)

Fig. 13. Experimental and predicted product bandwidths for

nickel and copper.

40



PRODUCT BANDWIOTH (deg)

28

ORNL-OWG 79-1342

50 T T T T T T T
EXPERIMENTAL DATA
O Co-{ - . .
40 - ® Co-2 .
PREDICTED
CURVES
30 -
20 |-
10 =
0 L ]l ] 1 1 ] 1
0 5 10 15 20 25 30 35 40

FEED BANDWIDTH (mm) '
Fig. 14. Experimental and predicted product bandwidths for

Co-1 and Co-2.



29

ORNL—-DWG 79—-1343

RESOLUTION

NICKEL-Co-t

T T T T T
EXPERIMENTAL DATA

O COPPER-NICKEL
® NICKEL-Co-1{

THEORETICAL
CURVES

o
- COPPER~-NICKEL
.
g
__ 0 b&
e — — —— —— — — ——— — — -o-——— —. — ced
, o .
8 @)

| | 1 1 ] 1

o 5 10 15 20 23 30

FEED BANDWIDTH (mm)
Fig. 15. Product resolution.

35



30

separation of the two solutes, and values below unity infer contamination.
The model predicted separation of the copper and nickel complexes over
the entire range of feed bandwidths. Experimental results showed an
overlap of the two solute bands at feed bandwidths in excess of 19 mm.

The agreement between the model and experimental results was better in
the case of the nickel--Co-1 separation. The onset of contamination at

about 22 mm was confirmed experimentally.
5. DISCUSSION

If a mathematical model 'is to predict the performance of the CAC
accurately, it must incorporate all the effects of convection, dispersion,
and nonlinear binding isotherms. The shortcoming of the model tested here
is the omission of the dispersion effects. These dispersion effects are
particularly important if one wishes to determine sb]ute resolution in
the column effluent. However, if only a prediction of gross behavior at
different operating conditions is desired, this model may be sufficient.
In models which include dispersion, it is necessary to estimate the dis-
persion coefficient for each solute. Since there is no reliable wéy to
make this estimate better than within an order of magnitude, the succes§
of these more complete models is also doubtful.

The virtues of the Rhee model are its simplicity in terms of the
calculations involved and the fact that it provides a convenient frame-
work for insight into the physical processes which occur in chromato-
graphic separations. It also allows consideration of the interactions
between solutes and the resin in multicomponent separations. For example,

one could expect to predict the effect of a doubling of the inlet feed
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composition of all the solutes being separated with reasonable accuracy.
Another desirable feature of this approach is that the theory could be
modified to account for gradient elution operations. This area might
warrant future exploration in light of the successful gradient elution

runs on the CAC.6

6. CONCLUSIONS

The multicomponent chromatographic mode12 has been compared to experi-
mental results obtained on the CAC. The model predicts the position of
the‘eff1uent solute peaks quite well under conditions of varying input
feed bandwidths. It also predicts the correct trends in effluent solute
resolution as the feed bandwidth is increased. Given a method for super-
imposing dispersion effects on the predicted output concentration profiles,
4one would be better able to make a quantitative prediction of band overlap
and contamination. One possible use of this model would be to predict CAC
performance as the solute concentrations in the feed stream were varied.
More experimental data need to be generated with wide ranges in feed com-
position before comparisons with the model can be made. The model may be
adapted for gradient elution operations, and this may prove useful in

assessing the gradient elution mode in the industrial setting.
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APPENDIX A. COMPUTER PROGRAM

A11 calculations were performed on a PDP-11 computer. A basic
description of how to use the program follows. No attempt will be made

to describe the program algorithm in detail.

1. Running the program MCHAR

Input data. Input data are read from a data file, MCHAR.DAT. The

data should be in the following format:

Line 1: . K; (6F8.4 format)

Line 2: c} (6F8.4 format)

Lines 3 and 4: Cio (4E10.4 format)

Line 5: N, € (2F8.4 format) |

Line 6:  n, nic, pw, v, w (212, 3F8.4 format)

where the symbols are defined in Table A.1. An example-of input data is
also shown in Table A.1.

In the example shown, K] = 1.18, K2'= 2.18, K3 = 2.92, and Kg = 7.73. -
Note that the Ki's must be entered in ascending numerical order. Since
the bed was assumed to be initially solute free, C} = 0, The feed (entry)
solute concentrations are: C]O = 0.0354, Cog = 0.1533, Cyo = 0.01909,

and C,, = 0.03818 meq/ml (CSO = C60 = 0). The resin binding capacity,

40
N, = 1.78 meq/ml resin; € = 0.38; the total number of solutes, n, = 4
(the program may handle up to six component systems); the number of
isoconcentration 1ines in each "fan wave," nic, = 8 (8 is the max imum
number possible); the feed bandwidth, pw, = 12.0 mm; the superficial
eluent velocity, v, = 2.53 cm/min; and, finally, the bed rotation rate,

w, = 62.2 °/hr.
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Table A.1. Program input data

Sample data file:

1.18, 2.18, 2.92, 7.73, 0., O.
0.,0.,0.,0.,0.,0

3.54E-02, 1.533E-01, 1.909E-02, 3.818E-02
0.0E-00, 0.0E-00, 0.0E-00, 0.0E-00

1.78, 0.38

4, 8, 12., 2.53, 62.2

Notations used:

K
i
¢

nic

pw

solute binding constants, ml solution/meq (line 1)

initial solute concentrations in ion exchange bed,
meq/ml solution (line 2)

feed solute concentrations, meq/ml (lines 3 and 4)
resin binding capacity, meq/ml resin (1ine 5 - #1)
column void fraction (1ine 5 - #2)

number of solutes (line 6 - #1)

number of isoconcentration line in each "fan wave"
(1ine 6 - #2)

feed bandwidth, mm (line 6 - #3)
superficial eluent velocity, cm/min (line 6 - #4)

column rotation rate, “/hr (line 6 - #5)
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Executing the program. If MCHAR.DAT has the proper input data, only

"RUN MCHAR" needs to be entered. After results are printed, the line
terminal will ask if a plot is wanted (in the X-6 plane as shown in

Fig. B.1). If the response is yes, the maximum values for X and 8 are
requested; In this case, X is the dimensionless bed length, x/L. After
entering the requested value, press "return" and the plot will be made on
the cathode ray terminal (CRT). A hard copy of the plot may be obtained
using the "copy" key on the CRT keyboard. The line terminal will ask if
another plot with different scaling is wanted; if so, it will ask for
maxihum values for X and 8.

Once all the desired X-6 b]ots have been obtained, concentration
profiles may be drawn (similar to those shown on Fig. B.2) at any desired
dimensionless bed length. Enter only the appropriate responses to the
questions posed by the line terminal. The coordinates of the curves to
be plotted are shown ahead of time on the line printer. This should aid

in determining the best scaling parameters to enter.

2. Estimation of binding constants, Ki

Suppose one wishes to model a particular experimental run in which

the 610 (position of the peak maxima) are known. To a first approxi-

mation, the binding constants, Ki’ may be estimated from:

o, (1+ (‘—E—€> NK;) = 6 (A.1)

where 6 is the angular position (in degrees) at which the pure eluent

would exit (analogous to the void volume time in gel permeation chroma-

tography) .
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g = EWX (A.2)

These relationships are exact if the competitive binding effects among
the solutes are minimal. The program-predicted eio will differ from the
experimental values to the extent that competitive binding is important.

A second guess of the Ki may be made based on the following:.

Ki-program - VKi-new | _ (A.3)
0, -6 0, -0 )
i-program v i-expt v
The Ki_ oy Which is calculated will usually result in ei-program’ which

matches the experimental values quite closely.

3. Program components

The program FORTRAN code consists of a MAIN section (called MCHAR
for method of characteristics) and subroutines. MCHAR calls all the
necessary subroutines and function subprograms. A listing of the various

subroutines and program organization is shown in Fig. A.1.

4. Program listing

The detailed FORTRAN code is listed on the following pages.
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PLOTDT

'} v

INSECT PLOTPR

GRID

GRID

Functions of subprograms

1.

MCHAR - main driving program; calculates initia1‘s1opes of shock waves
and fan waves; calculates initial isoconcentrations associated with
all waves.

OMRT,F - finds wi's as defined in ref. 2.
n

DFUN - calculates 1 + ¢ Kici‘
i=1

SUBR - determines intersection coordinates and new isoconcentrations
associated with shock and fan waves.

PLOTDT - plots X-8 figures on CRT.
GRID - supplies grid for plots.

INSECT - determines the coordinates of all shock and fan waves at a
particular bed length.

PLOTPR - plots concentration profiles.

Fig. A.1. Organization of program.
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REALX4 K(&) 1 NsNM(b626)sLA(S) s NE(S) s NI(6)

LOGICALX1 XDATE(9):XTIME(S)

DIMENSION CI(4)sCE(S)Y9yPHII(S)PHIE(H)9sD(A8)1PHIC(L96)ySSH(S)
DDC698) o XJ(b26)sPHICE161618)9XS5(b1698)rTAUCSH1628) sHI(S)
WE(&)y SCW(6+8)sDG(6)»PHICS(696)yNMS(6286)2ETA(B) s TAUAR(A)

2 DEG(b6+698)y DEGACA)sTI(72)PHICON(72+6)DEE(72)

1

COMMON TY,SSHsSCW,TAUsDDyDsWEIWIEPSYPHI/N,KsDI»DE,TAUA
Vs ROT

COMMON /BLK2/ XDATE:XTINME

COMMON /BLK3/ XISOsPHICS,DEE,PHICON,ICNT

COMMON /BLKA4/ DEGs+XSsMsNIC»TYD,DEGA

CALL ASSIGN(2,'MCHAR.DAT ' ¢?)

CALL ASSIGN(1»'TT7:7)

READ(2+1000) K

READ(2,1000) C1I

REALI(2+1050) CE

READ(2+,1000) N,EPS

READ(2,1100) MsNIC,PW,V,ROT

CALL DATE(XDATE)

CALL TIME(XTIME)

WRITE(651110) XDATESXTIME,K,CI»CE

WRITE(6,1120) NsPUWsV,ROT

TY=,470763%PUXV/ROT

DO 100 J=1,HM

PHII (D =K(DXCI(J)

PHIE(J)=K(J)XCE(D)

CONTINUE

DE=DFUN(PHIE)

DI=DFUN(PHII)

Do 200 J=1.HM

NE(J)=NXPHIE(J) /DE

NICJ)=NSPHII(J} /D]

CONTINUE

CALL OMRT(NsKsyNIsMsWIJIER)

60 7O (210,2000)y IER

WRITE(4,1130) WI

CALL OMRT(NsKyNEsMsWEs1ER)

GO TO (220,21090), IER

WRITE(6,1140) WE

DO S00 IM=1,M

DO 400 KR=1sM

PRON=MHICCIN)

DK=DE

DO 300 J=1,KK

PROD=FRODX(1.-NXK(IM)/WI(J))/ (1, -NXK(IM)/MECD))

IF (I¥ .GT. 1) GO TO 300

DK=DKXWE(.J)/"I(J)

CONTINUE

IF (IM .GT. 1) GO TO 320

D(KK)=DK

PHIC(IMyKK)=PROD

NM(IMsKK)=NXPHIC(IM+KK)/D(KK)

CONTINUE .

CONTINUE



600

630

635

638

640
645

650

651
652
6595
657
660
670

700

a1

WRITE(6,1150)

DO 600 KK=1,M

WRITE(4r1200) KKs (PHICCIMsKK)yIN=1,M)
CONTINUE '

DO 445 IM=1+M

DO 640 KK=1,H

PROD=PHIE(IM)

DK=IDE

DD 430 J=KK+1sM

IF (J 6T, M) GO TO 638
PROD=FRODX(1.,-NXK¢IM)/WI(J))/(1.~NXK(IM)/ME(D))
DK=DKXWE(J) /WI(J) .
CONTINUE

IF (IM +6T. 1) GO TO 635

DS (KK+1)=DK

PHICS(IMsKK)=PROD

NMS ( IM»KK)=NXPHICS(IMyKK) /DS (KK+1)

GO TO 440

DS(1)=DI

PHICS(IMsKK)=FHIECIM)

NMS (IMsKK)=NE(IM)

CONTINUE

CONTINUE

DO 450 IN=1+M
SSH(IM)=EPS+(1,-EFS)XWE(IM)/DS(IM)
CONTINUE

DELD=D(1)-DE

DO 700 KK=1,M

LACKK) =WI (KK)XD(KK)

DO 670 L=1,NIC

XL=NIC-L
DD(KKsL)=D(KK)~-XLXDELD/ (NIC~1)
SCH(KKsL)=EPS+(1.~EFS)XLA(KK) /DD(KKsL) kX2
DO 660 IM=1.M

IF (IM .NE. KK) GO TO 655

IF ( KK ,EQ., 1) GO TO 452

POLD=D(KK-1)

PHIOLD=PHIC(IMyKK-1)
XJCINsKK)=PHIOLD/(DOLD- D(KK))

GO TO 457 ‘

DOLD=DE

PHIOLD=FHIE(IM)

GO TO 651

XJCIMoKK) =K CIM)XNM(IMyKK) / (NRK CIM) -WI (KK)) .
PHI(MyIMsKKsL)=PHIC(IMsKK)+XJCIHsKK)X¢(DBD(KKsL)-D(KK))
CONTINUE

CONTINUE

DELD=D(KK+1)-D(KK)

CONTINUE

WRITE(4s1240)

WRITEC6,12%0) SSH

WRITE(4+1290)

[0 710 KK=1+M

WRITE(4+1300) KK»(SCW(KKsLL)eLL=1,NIC)



710

720

740
750

770

780

g Myl

1000
1050
1100

1110

1120

1130
1140
1150

1200
1240
1250
1290

1300

1340
1390

1400
1430
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CONTINUE

WRITE(651340).

DO 720 KK=1sM

WRITE(451300) KKy (DD(KKsL)sL=1,NIC)
CONTINUE .

WRITE(421390)

DO 750 KK=1,M

DO 740 L=1,NIC

WRITE(491400) KKoLy (PHI(MyIM»KKsL)»IM=1+M)
CONTINUE

CONTINUE

WRITE(4¢1430)

DO 770 KK=1,M

WRITE(6,1440) KKy (PHICS(IN»KK)»IN=1,HM)
CONTINUE

CALL SUBR

TYD=ROTXTYX50./(VX60,)

CALL PLOTDT

TYFE 2400

ACCEFT 2500,1A

IF (IA JEQ. 0) CALL FINITT(0,»700)

FIND INTERSECTIONS WITH SHOCK WAVES

CALL INSECT

CALL PLOTPR(M)

TYPE 2600

ACCEPT 2700+1A

IF (IA .NE. 0) GO TO 780

CALL FINITT(0:700)

FORMAT (4F8.4)

FORMAT(4E16.4)

FORMAT(212,3F8.4)

FORMAT(’1y//T10+9A1+3Xs8A1+//T10s 'INPUT DATA’»/T10+10('%")y///
17205 'K 'S 9/T2023C %’ )9//T2096F10,41//T20+°CT’"S2 /720,
24C'%° )9 //T20+6F10,4+///T205'CE’ 'St »/T2004( %" )9//T20+6F10.,4)

FORMAT(///T20+'N='+F5.2+’ MEQUIV/ML’y/T20s‘PULSE WIDTH=',

1 F4.1»° HM‘9/720y'SUPERFICIAL VELOCITY=",F3.2+y" LM/MIN'+/T20,
2 ‘ROTATION RATE='sF4.,0y’ DEGREES/HR’)

FORMAT(///T20y 'OMEGA-ENTRY'’S:’»/T20913(’X’)+//T720:6F10.4)

FORMAT(//T20, "OMEGA-INITIAL ’S2/+/T20516( %’ )»//T20+6F10.4)

FORMAT(’19//T10+'CONSTANT CONCENTRATIONS'»/T10,23(°%X")+//T20,
1 ‘WAVE NO.’sT40,‘PHI'»/T30,80('%")s/)

FORMAT(T23,12,T730,6E13.3)

FORMAT(////+710,'SLOPES OF SHOCK WAVES=',/)

FORMAT(T20y6E13.3)

FORMAT(////»T10y "INITIAL SLOPES OF C-WAVES=',//T20s’WAVE NO.’,
1 T309/L=1"9T435s'L=2"yTS6+'L=3"sT6%+'L=4',T82,'L=5"4+/)

FORHAT(T23,12,728,8E11.3)

FORMAT(////+T710y 'VALUES FOR D='y/)

FORMAT(////T10y’ ISO-CONCENTRATIONS (INITIAL)="+//T20s WAVE NO.':»
1 T30:°L"sTA0,'M'2//)

FORMAT(T23,12,730,11,T38,6E13.3)

FORMAT(////T10, " ISOCONCENTRATIONS ASSOCIATED WITH SHOCK WAVES’,
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1 /720, "WAVE NO.’sT33y'KH'y/)
1440 FORMAT(T23,12,T29+6E13,3)
2000 WRITE(692200)
STYOP
2100 WRITE(4+2300)
sTop
2200 FORMAT(’1’5//T10»’'¥XSERRORXXX-NO ROOTY COULD BE FOUND FOR ‘‘HWI’‘,
1 CHECK INPUT DATA.’)
2300 FORMAT(’1/9/T10s ' $XXERRORXXXNO ROOT COULD BE FOUND FOR ‘‘MWE’‘,
2 CHECK INPUT DATA.’)
2400 FORMAT(’ DO YOU WANT ANY PLOTS OF CONCENTRATION PROFILES?
1(0=NO; 1=YES):'s¢)
2500 FORMAT(I2)
2600 FORMAT(’ DO YOU WANT ANOTHER PLOT OF CONCENTRATION PROFILES:
1 AT A LARGER BED LENGTH? (0=NO; 1=YES):!’s$)
2700 FORMAT(I2)
END
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SUBROUTINE OMRT(NsKsNIsM>WI»IER)
REALX4 NsK(6)NI(H)
DIMENSION WI(4) :
DO 700 J=1,M -
IF (NI(J) .NE. Q) GO TO 50
WI(J)=NIK(D)
60 1O 700
IF ¢(J +NE. 1) XL=NxK(J-1)+.,0001
XR=NXK(J)-.,0001
FL=F(XLsKsNIsNsM)
FREF{XReKeNIsNsM)
IF(FL/FR +GT. 0.) GO TO 800 -
IF (FL LT, 0.) GO TN to00- : :
XFO8=XL
XNEG=XR
GO TO 300 '
100 XNEG=XL
XP0OS=XR
300 =, 53X (XPOS+XNEG)
DO 400 I=1,50
EX=F(X2KoNIeNe M)
IF (ABS(FX) +LT. .001) GO TO 400
IF (FX LT, 0.) GO TO 320
XP0S=X -
GO TO 340
320 XNEG=X
340 X=+ X (XFOSH+XNEG)
400 CONTINUE
WRITECAL,1000) J
IER=2
RETURN
600 WI(Sr=X
700 CONTINUE
TIER=1
RETURN
80O WRITE(4,1100)
IER=2
RETURN
1000 FORMAT(’1’s/T10, ' XXXERRORXXX-NO ROOT COULD RE FOUND FOR J=':12y
1/ IN OMRT.,’") :
1100 FORMATC 1 »/T10y ' kRXERRORXAR-INITIAL ESTIMATES DID NOY BRACKET
1 THE SOLUTION IN OMRT.’)
END
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FUNCTION F(XsKyNIsNsM)

REALX4 K(6)NI(8)sN

SuUM=0.

DO 100 I= 1ol

SuN= SUH+K(I)XNI(I)/(N#K(I) X)
CONTINUE

F=1.-SUM

RETURN .

END

FUNCTION DFUN(PHI)
DIMENSION PHI(6)
DFUN=0.,

DO 100 I=1+6
DFUN=DFUN+PHI(I)
CONTINUE
DFUN=DFUN+1.0
RETURN

END

45
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SUBROUTINE SUBR
REALX4 K(&6)rNsNM(696)sLA(S)YNE(S) 1 NI(S)
LOGICAL®1 XDATE(?)sXTIME(S8)
DIMENSION CI(8)sCEC(E)sPHIT(S)IPHIE(S)»D(E)YyPHIC(656)1SSH(S)
1DDC6+8) s XJ(br6)sPHI(E169618)9XS(61638)1TAUCE1698)9MI(S)
1 WEC(A)y SCN(4+8B)rDS(H)sPHICS(626)NMX(6+6)ETA(B)»TAUVA(S)
2 DEG(6+698)» DEGA(S)
COMMON TY»SSHySCWsTAUYDD»DWEIWIVEPSyPHIYNsKsDI»DE,TAUA
1 »V,yROT
COMMON /BLK2/ XDATEXTINME
COMMON /BLK4/ DEGeXSsMsNIC»TYD,DEGA
T1=0.
XI=0.
DO 950 KK=1+M
IF (KK .NE. 1) TI-TAU(M,KK-1;NIC)
IF (KK «NE. 1) XI=XS(MsKK-1,sNIC)
XS(MyKKy1)=(TY-TI+SSH(M)XXI)/(SSH(M)-SCW(KKs1))
TAU(H KKy 1 )=SCW (KK 1) KXS(MsKK»1)+TY
DIN=DD(KK:1)
DO 900 IM=Ms1,-1
OMNEW=WI(IM)
OMOLD=UWE (IM)
IF(KK LT, IM) WRITE(6,1450) IM
DO 850 L=1,NIC
IF (IM .NE, M) GO TO 833
IF (KK .EQ. M) GO TO 833
IF (L .EQ. NIC) GO TO 820 ‘
XSCIMs KKy L41)=XS(IMsKKs 1) X(DD(KKsL+1)X(DNIN-DD(KKsNIC)SWI(KK)/
LOMNEW) 7/ (DINX(DD(KKsL+1)~DP(KK,NIC)XWI(KK)/OMNEW)) ) XX%2
TAUCIM KK L41)=SCUCKK,LE1)EXS(IMsKICoL+1)#TY
820 IF (IM +GTs KK) SCW(KKsL)=-EFS4(1,<EPS)XK(OMNEW/DMOLD)I XKWL (KK) ¥
1 DD(KKNIC)/ (DD{KKsL))X%2
SSH(IM)=EPS5+(1.~-EPS)XOMNEW/DD(KKyNIC)
SUN=0,
DO 830 I=1+M
IF (IM .EQ. 1) GO TO 850
IF (I JEQ. IM) GO TO 822
PHICIM-19IsKKeL)=PHICIMsI KKeL)X(1.~NEK(I)/OMNEW)/
1 (1,-N&K¢(I)/080LD)
GO TO 824
822 FHI{IM=1s1sKKsL)=0.
824 SUN=SUMtPHT(TM-1+I+yKKsL)
830 CONTINUE
IF (KK LT+ IM) WRITE(6+1500) KKoLy (PHICIM-1+s1+KKsL)I=1,HM)
DD(KKsL)=SUM+1.,
GO TO 850
833 IF (IM .NE. KK) GO TO 846
IF (IM .NE. M) GO TO 834
IF (L .67, 1) GO TO 8331
XSCIMsKKs 1)=(TY-TAUCIMsKK-1yNIC)+SSH{IM)XXS(IMsKK~1/NIC))/
1 (SSH(IM)-SCH(KKys1))
TAUCIMsKK21)=SCW(KKy1)XXS(IMIKKs»1)4TY
GO TO 820
8331 DOLD=DD(KK-1,NIC)
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DNEW=D(KK-1) .
XSCIMsRKsL)=XS(IMs/KKs1)%((1,-DOLD/DNEW)/(1.-DOLD/DD(KKsL)))%XX2
TAUCIMyKKoL)=SCU(KKsL)XXSCIMsKKsL)+TY
GO TO 820
834 IF ((KK .E@. 1) .AND. (L .E@. 1)) GO TO 836
IF ( L +NE. 1) GO TO 840
XSCIMyKKy 1) =(TAUCIM/KK-1sNIC)-TAUCIMN+1+KKs»1)-XS(IM/KK~1/NIC)X
1 SSH(IM)¢ XSCIM+1,KKe1)XSCU(KK»1))/(SCH(KKs1)-SSH(IM))
TAUCIMo KKy 1) =SSH(IM)X(XS(IN)KKy1)-XS(IM/KK-1,NIC))+

1 TAUCIMsKK-1+NIC)

GO 70 820
836  XS(IM/KKsy1)=(-TAUCIM$1,KKy1)+XS(IM+1,KKy1)XSCW(KK»1))/(SCUW(KK,1)
1 -SSH(IN))
TAUCIMs KKy 1)=SSH(IM)XXS(IMsKKs1)
GO TO 820

840 IF (L .6T. 2) GO TO 843
DELD=DD(KKs3)-DD(KK»2)
IF(KK .EQ. 1) GO TO 841
DOLD=DD(KK~1sNIC)
60 TO 8411
841  DOLD=DI
8411 DSTAR=DD(KK,1)
DO 842 LL=1,NIC
ETACLL)=FETA(TAUCTM1oKKsLL) » TAUCIHIKK2 1) 1SCUCKKSLL) y
1 XSCIM#1sKKsLL) 1 XSCIMIKKs1))
842  CONTINUE
843  SUM=0,
DO 845 LL=1,L
SUN=SUM$ETA(LL)
845  CONTINUE o
XIETA=(SUM-.SRC(ETACL)+ETAC1)) ) XDELD
IF (L .E@. NIC) GO TO 820
XSC(IMsKKsL)=((DOLDXDD(KK,L)%%2)/((1,-EPS)®(DL(KK,L)-DOLD)
1 SWI(KK)XDD(KK»1)))X(ETA(L)-(1.,/(DD(KKsL)-DOLD))EXIETA)
2 $XS(IMsKKs1)
TAUCINPKK oL ) =SCUW (KK L) KCXSCTHIKK L) =XSCTHFLoKKoL) ) +
1 TAUCIM+1/KKsL)
GO TO 820
846 IF (IM .LT. KK) GO TO 900
IF (L .NE. 1) GO T0 847
IF (KK +E@. 1) GO TO B4é1
XSCIMIKKy1)=(TAUCINsKK-1yNIC)~-TAUCIM+1sKKy1)-XSCIMsKK-1sNIC)%
1 SSHCIM) +XSCIM#1sKKy1)XSCH(KK»1))/(SCU(KKs1)-SSH(IM))
TAUCIMIKK»1)=SSHCIM) R (XSCIMsKKs1)-XS(IMsKK-1,NIC) } 4
1 TAUCINsKK-1,NIC)
60 TO 820
8461 XSC(IMyKK»1)=(~TAUCIM+1sKK» 1) +XSCIM$12KKs1)KSCH(KK, 1))/
1 (SCW(KKs1)-SSH(IM))
TAUCIMIKK,1)=5SH(IM)XXS(IMeKKs1)
60 TO 820
847 IF (L .GT, 2) GO TO 8481
DELD=DD(KK»+3)~DDB(KK2)
DO 848 LL=1,NIC
ETACLL)=FETACTAUCTNHL rKKrLL) s TAUCTMsKK+1) » SCHIKKoLL) »
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1 XSCIN$1,KKHLL) s XS(INIKKY1))

CONTINUE

SUM=0,

DO 849 LL=1,L

SUM=SUM+ETA(LL)

CONTINUE

XIETA=(SUM-.S¥(ETA(L)+ETA(1)))XDELD
DNEW=DD(KKsL)-DD(KKyNIC)XWI (KK)/OMNEW
XS(IMIKKsL)=XS(IMsKKy1)+(DD(KK L) X22/((1.,-EPS)XOMNEWEDNEW) )X
1 (ETA(L)-(1./DNEW)XXIETA)

TAUCIM KKy L) =SCW(KKsL)X(XS(IMIKKsL)-XS(IM+1,KKsL) )+

1 TAUCIM+1.KKyL)

GO TO 820

CONTINUE

XMAX=XS(1s1,NIC-1)

DO 860 L=1,M-1

IF (XS(L+1+L+1sNIC-1) ,GT. XMAX) XMAX=XS(L+1sL+1,NIC-1)
CONTINUE

XMAX=XMAX+1.,

DO 890 L=1+M
TAUCLsLyNIC)=TAU(LsLoNIC-1)+5SH(L)X(XMAX-XS(LsLsNIC-1))

TAUA(L)=TAU(L-1»LsNIC)+SCUW(L NIC)X(XMAX-XS(L~-1sLsNIC))
DEGA(L)=ROTXTAUA(L)®50./(Vx60.)

XS(L2L/NIC)=XMAX

CONTINUE

IF (IM .FQ. KK) GO TO 89S

WRITE(4,1550) IMsKK S

WRITE(6+1600) (DD(KKsL)sL=1,NIC)

WRITE(A+1620) KKyIM

WRITE(4,1625) (SCU{KK:L)sL=1,NID)

WRITE(4+1630) SSH(IM)

CONTINUE

CONTINUE :

WRITE(4,14650) XDATEXTIME

WRITE(6,1660)

DO 980 I=Msl1ys-1

DO 970 KK=1,M

IF (KK .67, 1) GO TO 980

DO 960 L=1+NIC

DEG(IyKK,L)=ROTXTAUCI »KKyL) %50,/ (V%460,)

WRITE(6+1700) I+KKyLsXS(I KKoL)yTAUCIKKsL)yDEG(I,KKsL)
CONTINUE

CONTINUE

CONTINUE )
FORMAT(///7//T710, ' ISOCONCENTRATIONS AFTER INTERACTION WITH SHOCK
1 WAVE NO,/»12:/7/T20y'WAVE NO. ' »T302’L » T35y 'ML7 /)
FORMAT(T23,12,730,11,T33,4E13,3)

FORMAT(////710y'NEW D’’S AFTER SHOCK NO.‘»I2y’ WAVE NO.‘,
1 12+/)

FORMAT(T30,5E13,3»/T30+5E13.3)

FORMAT(////T10,'NEW C-WAVE SLOFES:’»I2y’ WAVE AFTER’,I2,
1 7 SHOCK'»/). :

FORMAT(T30+5E13.3+/T730,5E13,3)
FORMAT(////710+ “NEW SHOCK WAVE SLOPE’»/T30,E13.3)
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1650 FORMAT(’1’,/T10+9A1s3Xs8A1)
1660 FORMAT(///T10s'COORDINATES OF INTERSECTIONS
1 OF C-WAVES AND SHOCK WAVES‘»/T10+57(‘X’)y/T20, SHOCK NO,’sT30s
2 'WAVE ND.’+T40,’L’+T55,’X’»T65+ ' TAU’+T75 ' DEGREES ROT,’»/)
1700 FORMAT(T23,11,T33,11,T40+11,T50+F10,4sT60+sF10.,4,T70sF10.2)
RETURN ~ :

END

FUNCTION FETA(U:VsW»X»Y)
FETA=U-V-U%(X-Y)

RETURN ‘

END
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SUBROUTINE PLOTDT

LOGICALX®1 XTIME(8)sXDATE(9)
DIMENSION Y(6+658)¢X(626+8)DEGA(S)
COMMON /BLK1/MINX,MAXXsMINY»MAXY
COMMON /BLK2/XDATEsXTINME .
COMMON /BLK4/ YsXsNSOLsNICyYI,DEGA
ICNT=0

TYPE 100

FORMAT(’ DO YOU WANT A PLOT? (0=NDi 1=YES)’»$)
MINX=1350

HAXX=%00

HINY=150

MAXY=700

ACCEPT 150-1IA

FORMAT(I2)

IF (IA +EQ. 0) RETURN

CALL INITT(480)

ICNT=ICNT+1

TYPE 60

FORMAT(’ ENTER XMAX AND YMAX IN F8.4 FORMAT.’)
ACCEPT 70, XMAX»YMAX

FORMAT(2F8,4)

CALL TWINDO(MINXsMAXXsMINYsMAXY)
CALL DWINDO(O. s XMAX»0. 9y YMAX)

DRAM SHOCK WAVES

CALL MOVEA(0.,0.)

DO 300 I=NSOLs1,-1

DO 200 J=1,NSOL

IF (4 .GT., I) GO TO 260

DO 180 K=1,NIC

CALL DASHA(X(IsJrK)2Y(IsJsK)rI)
CONTINUE

CONTINUE

CALL MOVEA(0.:0.)

CONTINUL

DRAW C-WAVES

CALL MOVEA(O.»YI)

B0 800 J=1,NS0L

K=NIC

DD 400 I=NSOL,1,-1

IF (J 6T, 1) GO TO 400

IF ((I .EQ. J) .AND. (K .EG. NIC)) GO TO 55¢
CALL DASHA(X(TIsJsK)sY(IyJsK)sd)

GO T0 600

CALL DASHA(X(NSOL»NSOLsNIC)yDEGA(J)+J)
CONTINUE

CALL MOVEA(O.,»YI)

CONTINUE

CALL GRID(O.sXHAXs0.sYMAX)
IX0=MINX
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1Y0=730

CALL MOVABS(IXO0,IYD)

CALL ANMODE

WRITE(1,900) XDATE,XTIME»ICNT
900  FORMAT(1H+,$,9A1,3X,8A1,5Xs 'GRAPH NO.’,12)

TYPE 1000 '
1000 - FORMAT(’ DO YOU WANT ANOTHER PLOT WITH DIFFERENT SCALING? (0=NO;

1 1=YES): »$) A

ACCEPT 1100, IA :
1100 FORMAT(I2)

IF (IA .NE. 0) GO TO 50

RETURN

END
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SUBROUTINE GRID(XMIN»XMAXyYMIN) YMAX)
COMMON /BLK1/MINX,MAXXsMINY,HAXY

IDELY=(MAXY-NINY)/S
IDELX=(MAXX-HINX)/S
CALL MOVABS(MINX,MINY)
IX=MINX

DO 100 I=1,6

CALL DRWABS(IXysMAXY)
IX=IX+IDELX

CALL MOVABS(IXsyMINY)
CONTINUE

TY=MINY

CALL HOVABS(HINX»MINY)
DO 200 I=1,6

CALL DRUABS(MAXXsIY)
IY=IY4IDELY

CALL MOVABS(MINX,IY)
CONTINUE

CALL CSIZE(IHORZ,IVERT)
IXEXP=ALOG10(XMAX)
IYEXP=ALOGL1O(YMAX)
XMAXN=XHAX/ (105X IXEXF)
XMINN=XMIN/(10X8IXEXP)
YMINN=YMIN/ (10XXIYEXP)
YMAXN=YMAX/ (10X IYEXP)
DELX=(XMAXN-XMINN) /5.
DELY=(YMAXN-YMINN) /5,
IXO=HINX-2%1HURZ
IYO=MINY-1.5%IVERT
CALL MOVABS(IXQ.IYD)
X=XMINN

DO 300 I=1+6

CALL ANMODE
WRITE(1,1000) X
X=X+DELX

IX0=IX0+IDELX

CALL MOVARS(IX0.1YO)
FORMAT(1H+9$,F4.2)
CONTINUE
IX0=MAXX-7XTHORZ
IYO=IYO-2XIVERT
IXEXP=-IXEXP
IYEXP=-TYEXP

CALL MOVABS(IXO0,IY0)
CALL ANMODE
WRITE(1,1100) IXEXF
FORMAT(1H+ 285/ X10%%’,12)
IX0=MINX-4%IHORZ
IYO=MINY-.S%IVERT

CALL MOVABS(IX0,IY0)
Y=YMINN

DO 400 I=1:s6

CALL ANHMODE
WRITE(1,1200) Y



1200

400

1300

FORMAT(1H$+$+F4.2)
Y=Y+DELY
1Y0=IYO+IDELY

CALL MOVABS(IX0,1Y0D)
CONTINUE ‘
IYO=HAXY-2XIVERT
IX0=MINX-7%XIHORZ
CALL MOVABS(IX0,1YD)
CALL ANMODE
WRITE(1,1300) IYEXP
FORMAT (1H4s$y/X10%%’912)
RETURN *

END

53
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SUBROUTINE INSECT

REAL%4 K(&6)sN

LOGICAL¥1 XDATE(9),XTIME(8)

DIMENSION D(6)sSSH(6)sDD(698) sPHI(6169618)91XS(62618)y
1 TAUC61698) sWIC6) s WE(6)s SCU(618) 1PHICS(616) 2 TAUACS) »

1 DEG(6+6+8)y DEGA(S) 1 TI(72)+PHICON(72y6)sDEE(72)PHICSN(S)6)
COMMON TY,SSH,SCH»TAU»DDsDyWEYWISEPSyPHIsN+KsDIyDEyTAUA

1 sVyROT

COMMON /BLK2/ XDATE,XTIME

COMMON /BLK3/ XISOsFHICSsDEE,PHICON,ICNT
COMMON /BLK4/ DEG+XSs»M»NIC»TYDyDEGA

FIND INTERSECTIONS WITH SHOCK WAVES

TYPE 2600

ACCEPTY 2700, X150

ICNT=0

DO 200 KK=1sH

DO 100 I=1sM
PHICSN(IKK)=PHICS(I+KK)

CONTINUE

CONTINUE

DO 900 I=1+M

DO 850 KK=1+M

IF (KK .6T7. I) GO TO 8350

DO 800 L=1,NIC

IF (XISD .GT. XS({I.KK«L)) RN TD 800
ICNT=ICNT+1

XRT=XS(1,KK»L)

TRT=TAU(IKKsL)

IF ((KK .EQ. 1) .AND. (L +EQ. 1)) GO TO 790
IF ( L +EQ. 1) GO TQ 785
XLT=XS(IsKKsL-1)

TLT=TAI(T +KKsL-1)

GO TO 795

XLT=XS(IKK-1,NIC)
TLT=TAUCT s KK-1sNIC)

GO T0O 795

XLT=0,

TLT=0,
TICICNT)=(XISO-XLT)X(TLT-TRT)/(XLT-XRT)+TLT
IF (1 +EQ. 1) GO TO 7938

DO 7955 KK=1,1-1

IF (XISO .LT. XS(IsKKsNIC)) GO TO 7956
PHICSN(KK+I-1)=0,

PHICSN(KK»I)=0.

60 TO 7955

IF (XISO +LT. XS{(I,KK»1)) GU 1O 7958

XISO INTERSECTS BETWEEN L==1 AND L=NIC

PO 7957 KKK=KK,I-1
PHICSN(KKKs I-1)=(XISO-XLT)X(PHI(I-1,KKKsKKK,L)-

1 PHI(I-1+,KKKyKKKyL=-1))/ (XRT=XLT) + PHI(I-1,KKKrKKKsL-1)



55

PHICSN(KKKyI}=(XISO~-XLT)K(PHI(I»KKKsKKKsL)-PHI(I»KKKsKKK+L-1))/
1 (XRT-XLT) + PHI(I,KKK,KKKsL~1)
7957 CONTINUE
7953 CONTINUE
7958 DO 796 MN=1.M
IF (I +EQ. 1) 6O TO 7995
PHICONCICNTyMM)=PHICSN(MMN»I-1)
60 TO 796
7995 PHICONCICNT,MM)=0,
796  CONTINUE
ICNT=ICNT+1
TI(ICNT)=TICICNT-1) |
DO 799 MM=1,M
PHICONCICNT s ¥M)=PHICSN(MM,I)
799  CONTINUE :
GO TO 900
800 CONTINUE
850  CONTINUE
900  CONTINUE

c FIND INTERSECTIONS WITH C-WAVES

DO 990 KK=1+M
DO 980 L=1,NIC
DO 970 I=Ms1,-1
IF (1 .LT. KK) GO TO 970
IF (XISO .GT. XS(IsKKsL)) GO TO 970
ICNT=ICNT+1
XRT=XS(I+KKsL)
TRT=TAUCI¢+KK,L)
IF ¢1I .EQ. M) GO TO 950
XLT=XS(I+1+KK-L)
TLT=TAUCI+1+KK»L)
GO TO 960
950 XLT=0,
TLT=TY
960 TICICNT)=(XISO-XLT)RK(TLT-TRT)/(XLT-XRT)+TLT
DO 946 MM=1-M
PHICONCICNT »MM)=PHI(I+MMsKKsL)
964 CONTINUE
G0 TO 980
970 CONTINUE
980 CONTINUE
290 CONTINUE

C .
¥ PUT TI’S IN ASCENDING ORDER
c

TIEND=ICNT-1

PO 999 I=1,IEND

DO 997 J=1,I

II=1=J+1

IF (TI(II+1) .GE., TI(II)) GO TO 997
TSAV=TI(II)
TICID)=TI(II+1)
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TI(II+1)=TSAV
DO 995 Mh=1:H
PHISAV=PHICON(II,»NM)
PHICONCIIsMM)=PHICONC(II+1sMH)
PHICON(II+1,MM)=PHISAV
995  CONTINUE
997  CONTINUE
999  CONTINUE
WRITE(6+2750) XDATE»XTIME,XISO
DO 998 I=1,ICNY
DEE(I)=ROTXTI(I)X50./(VX40,)
WRITE(4+2800) TI(I),DEE(I)y(PHICON(I,NM) HN=1 M)
998  CONTINUE
RETURN
2600 FORMAT(’ ENTER THE DIMFNSIONLESS BED LENGT!I DESIRED IN F8.4
1FORMAT. ‘) ' Co
2700 FORMAT(FB.4)
2750 FORMAT(’1’,/T10+9A193X»8A1,//T10s'PROFILE DATA’»/T10+11C %" )s//T20
1 ‘TAU’+T30s 'DEGREES’»T40,’PHI' ‘S5 +»T80y
2 'X="3FS.2v//)
2800 FORMAT(T1S5,8F10.4)
END
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SUBROUTINE PLOTPR(NSOL)
LOGICALX1 XTIME(8),XDATE(9)
DIMENSION X(72)sY(72+6)sDUM(6+6)
COMMON /BLK2/XDATE,XTIME
COMMON /BLK1/MINX»MAXX»MINYsMAXY
COMMON /BLK3/ XISOsDUMsXsYsNPTS
ICNT=0
30 CALL INITT(480)
ICNT=ICNT#1
: TYPE 60 '
60 FORMAT(’ ENTER RANGE (MINIMUM AND MAXIMUM) VALUES FOR ANGULAR RO
1TATION IN 2F8.4 FORMAT.')
ACCEPT 70» XMIN»XMAX
70 FORMAT(2F8.4)
TYPE 80
80 FORMAT(‘ ENTER RANGE (MINIMUM AND MAXIMUM) VALUES OF
1CONCENTRATIONS IN 2F8.,4 FORMAT.’)
ACCEPT 70, YMIN,YMAX
MINX=150
HAXX=900
MINY=150
HAXY=700
CALL TWINDO(MINX»MAXXs»MINYsMAXY)
CALL DWINDOCXMIN,XMAX)YHIN:YMAX)

DRAW CURVES FOREACH SOLUTE

a0

DO 200 I=1,NSOL

CALL MOVEA(X{(1)+0,)

DO 100 J=1,NPTS

CALL DASHA(X(J)»Y(JrI)sI)
100  CONTINUE
200  CONTINUE

CALL GRID(XMINsXMAX,YMIN:YMAX)

IX0=MINX

IY0=730

CALL MOVABS(IX0:.IY0)

CALL ANMODE

WRITE(1,300) XDATE.XTIME,XISOsICNT
300 FORMAT(1H+»$>9A1,3X+BA1sOXr ' X="+F4.1,3Xy»'GRAFH NO.’',12)

TYPE 1000
1000 FORMAT(‘’ DO YOU WANT ANOTHER PLOT WITH DIFFERENT SCALING?

1 (0=NOF 1=YES):!'s$)

ACCEPT 1100, IA
1100 FORMAT(I2)

IF (IA .NE. 0) GO TO 50

RETURN

END
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APPENDIX B. GRAPHICAL RESULTS
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