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Abstract

Bubble growth in superheated He-II is controlled by the transfer of heat to the surface of
the growing bubble by nonlinear Gorter-Mellink counterflow. The present work presents
analytic formulas for the bubble radius as a function of time in the limiting cases of
small and large superheats. The formulas include the effect of the irertial reactior: of the
surrounding liquid to the expansion of the bubble. A numerical example showr that bubble
velocities of the order of meters per second are possible. A related problem, involving only
heat transfer but no movement of the liquid, is the motion of the free surface of superheated
He-II in a very long tube. This problem has a similarity solution. The interfacial velocity
in the tube is muck smaller than the bubble growth velocity.

Introduction

Suppose we have a sample of liquid He-II at a pressure P and a temperature Ty = T,(P) +
AT, where T,(P) is the saturation temperature corresponding to the pressure P and AT
is a small superheat. (A list of symbols used in this work is included at the end of the
article.) Such a sample is thermodynamically unstable and will tcnd to change into vapor.
The rate of this conversion depends on the density of nucleation sites initially present and
the rate of growth of Jhe bubbles arising at these sites.

The rate of bubble growth is controlled by the transfer of heat from the superheated
liquid to the surface of the growing bubble. In He-II this transfer is by nonlinear Gorter-
Mellink counterflow (heat flux proportional to the cube root of the temperature gradient);
see eq. (16). For superheats AT that are not too large, the temperature distribution in
the liquid surrounding a bubble will be very close to its steady-state distribution T =
Ty — AT R® /v5. This greatly simplifies the problem of bubble growth; but, as we shall see
later, the superheats for which the quasi-static theory is valid are quite small. As will be
shown, the theory also takes a simple form in the opposite extreme of large superheats,
where bubble growth is so rapid that the liquid layer in which the temperature changes
appreciably is thin compared with the bubble radius.

Bubble growth in He-II is explosive, bubble velocities of hundreds of centimeters per
second easily being possible. ‘The growth of the bubbles can be studied by high-speed
photography if nucleation sites are present. A related situation, for which a complete
theory is available, and which may be easier to study experimentally, is evaporation from
the free surface of He-II in a long tube open at one end. The temperature of the liquid
helium in the tube is again T}, and at the start of the experiment the external pressure at
the open end of the tube is dropped to a pressure P so that Ty = T,(P) + AT, where AT
is the desired superheat. If no bubbles are nucleated in the bulk of the helium and phase
change takes place only at the free surface, the motion of the free surface is calculable. Its
velocity is nonuniform, varying as the three-fourths power of the elapsed time, and is of
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the order of centimeters per secoud. The reason for the much slower motion of the phase
front in this case compared with the case of bubble growth is that in this case the vapor
does not impart any motion to the liquid adjacent to it.

Characteristic Time to Reach Steady State

The characteristic time to reach the steady state is determined by the Gorter-Mellink
conductance parameter K (W m~5%/3 K~1/?), the heat capacity of He-II per unit volume
S (J m~3 K1), the superheat AT (K), and the instantaneous bubble radius R (m). The
only time that can be made out of these four variables is r = S(AT)*/*R‘/*/K. For
the quasi-static theory developed here to be valid, the condition Rr <« R must hold. In
such a case, the bubble radius will chaage little during the time it takes to reach thermal
equilibrium, and the temperature distribution will be a quasi-static steady state.

Quasi-static Heat Balance for the Growing Bubble

The quasi-static heat balance for the growing bubble can be written

4xR*Rp L = ArR* K (5AT/R)'/® (1)
From eq. (1) and the preceding expression for r, we find at once that
Rr _ 5'3SAT
[l (22)
so that the allowable superheats AT must satisfy
pvL

At T, = 18 K, P, = 1.64 kPa, and p, (estimated from the perfect gas law) is
4.38x10"* g/cm®. Using § = 0.408 J cm™ K~! and L = 23 J/g, we find that AT
must be €14.4 mK. According to the Clausius-Clapeyron equation, the slope (dP/dT),
of the saturation line at 1.8 K is 5.60 kPa/K. Thus, the limiting superheat of 14.4 mK
corresponds to a pressure reduction of 80.6 Pa = 0.612 torr, which is extremely small.
The heat balance equation [eq. (1)) can be integrated with respect to time to give

assuming the initial bubble radius is very small.
Transient Limit—Large Superheats

When the superheat is much larger than the limit of eq. (2b), the temperature distribution
is never close to the steady distribution. But we can approximate it with the help of
the assumption, justified later, that the layer in which the temperature changes is thin
compared with the radius of the bubble. Then we can neglect the curvature of that layer.

The temperature distribution in that layer in @ coordinate system moving with the bubble
surface is given by



Ty — T = AT 1-————-“‘———;,;) (4a)
) .
(+x2) ")
where

X = z(AT)Y*(§/Kt)*/* (4b)

and z is the distance outwards from the bubble surface. The solution of eq. {4 is the
solution to the clamped-temperature problem.! It is applied in the moving coordiaate
system because the thin liquid film in which the temperature changes appreciably is veing
transported outwards by the expanding vapor.

The inward heat flux at the bubble surface is given by

33 1/¢
K(8T/8z); = (T) K3 SHA(AT) 2t (5)
The heat balance equation for the growing bubble is
4xR*Rp L = K(8T/8z).03 4= R? (6a)

or

B (3\/5)1/6 K’“S‘/*(AT)l/zt“‘/‘

oL (6b)
This can be integrated at once to give
g \!/? K3/451/4(AT)1/2t’/‘ .
- (3\/5) poL (Te)

or

which allows easy comparison with eq. (3).
The thickness of the temperature transition layer will be small compared with the

radius given in eq. (7) if the value of X in eq. (4b) calculated for z = R is large compared
with 1. Substituting eq. (7a) into eq. (4b), we find

- ()" %2

which will be much greater than 1 if AT greatly exceeds the limit given by the right-hand
side of eq. (2b).

As an example, we take:



T,=18K K =116 W cm™%/* K~'/* (1.85 K)
0

AT =01 K py = 4.38x107* g/cm’®
T, =19K t=1s
L=231]/¢g §=0533Jcm™d K™! (1.85 K)

Then, according to eq. (7), R = 209 cm and R = 157 cm/s. At ¢ = 0.1s, R = 37.2 cm and
R = 279 cm/s. Such rapid bubble growth can be described as little less than explosive.

Consideration of Mechanical Terms

The expanding bubble pushes the surrounding liquid out of its way, and, in doing so, it
does work on the liquid that must be subtracted from the energy available for vaporization.
Furthermore, the inertial reaction of the liquid to being accelerated causes a rige in pressure
at the bubble surface that increases the saturation temperature there. We estimate these
effects now.

To calculate the pressure rise at the bubble surface, we treat the liquid as incompress-
ible. Then the velocity field surrounding a bubble is v = RR?/r?. The pressure rise at the
bubble can then be calculated from Euler’s equation

R AN ®)
A short calculation gives
- 3.
P(R)- P, =p, (RR + §R’) (10)
According to eq. (75), R ~ t3/%, in which case eq. (16) can be written
21 R?
P(R)~P, = 5 pe (11)
The power W expended by the expanding vapor in pushing the liquid out of its way is
; 21 R? :
W = — pt = 2
(P, + 39 Pt 3 ) 4mR°R (12)
If we divide this by the left-hand side of eq. (6a), we get
4 _ P, +(21/32)Pl (sztZ) (13)
4wR2Rp,L poL

In the numerical example considered at the end of the preceding section, this ratio is 0.294
at t = 0.1 5 and 0.204 at ¢ = 1 s. Thus, not all the heat transported to the bubble is
available for vaporization. We can estimate the effect of this on bubble growth by using
the complement of the ratio of eq. (13) as an ad hoc correction to K. Then the radii
achieved at t = 0.1 s and ¢t = 1 s are 28.7 cm and 176 cm, respectively.

If we use the pressure rise given in eq. (11) to correct the superheat in eq. (75), we
find, after rearrangement,



21p,R? /322 ]'/?
(dP/dT),AT |

where R, is the as yet uncorrected value of R given by eq. (7b). Here AT is still Ty, — T,.
From eq. (14), it follows at once that

R ~1/2 21 pyR./t)
g, =0+ a= 5 Gpar. AT (15)
In the numerical example we have been following. @ = 1.42 and 0.534 at t = 0.1 s and 1 s,
respectively, so that R = 18.5 cm and 142 cm, respectively.

Since R, ~ t3/%, it follows from eqs. (13) and (15) that the corrections will be large
for small ¢ and smell for large t. Thus, the theory presented here is an asymptotic theory
correct for large enough t.

Evaporation from a Free Surface

Let the tube containing the liquid He-II extend in the z-direction, and let the initial position
of the free surface be z = 0. At ¢ = 0, let the pressure above the free surface be dropped
suddenly so that the liquid at temperature T, becomes superheated by a temperature
difference AT. The vapor produced at the free surface exhausts in the negative z-direction,
while the free surface advances in the positive z-direction. The temperature distribution
in the quiescent liquid obeys the Gorter-Mellink diffusion equation

S%%-‘ = % [K (%f_)m] (16)

subject to the following boundary and initial conditions:

T(2,0) =T, (17a)
T(o0,t) = T} ‘ (175)
T(2(t),t) =T, (17¢)
peLZ = K(8T/0z).1, (17d)

Equations (17a) and {17b) state that the initial liquid temperature and the liquid tem-
perature at the far end of the tube are both T,. Equation (17c) says that the liquid
temperature at the free surface, whose instantaneous position is z = Z(t), is T,. Equation
(17d) is a heat balance equation that states that the heat transported to the free surface
by Gorter-Mellink counterflow is expended in vaporizing liquid.

When the thermophysical properties K, §, and L are independent of temperature, the
problem etated in eqs. (16) and (17) has a similarity solution, the details of which are given
in Appendix 1. The final result for the displacement Z of the free surface is

Z = A(K/S)¥*(AT) M 2/4 (18a)

where

(]



A = (8/3v3)/*B(1 — B)™'/* (18b)
and
B = §SAT/p.L (18¢)
When B < 1, which is usually the case,
8 1/2 K’/‘S’/“(AT)’/zt’/‘
- (é—ﬁ) peL
Equation (18) differs from eq. (7a) only in the appearance of p, (which is 0.145 g/cm®) in

place of p,. With the data given previously, B = 0.0159; eq. (18d) then gives Z = 0.630 cm
and Z = 0.473 cm/s at the end oi 1 s.

(B <1) (18d)

Reference

1 Dresner, Lawrence Transient heat transfer in superfluid helium—Part II. Adv
Cryog Eng (1984) 29 323-333.

Appendix 1

In solving eqs. (16) and (17), we find it convenient to set

c=Ty~T (A-1¢)
and work in special units in which
K/S=1 (A-1b)
AT=T,-T,=1 (A-1¢)
Then (16) and (17) become
no\1/3
c(z,0) =0 (A—3a)
¢(00,t) =0 (A-3b)
c(Z,t)=1 (A-3c)
(peL(S)Z = —(8¢/82).1, (A-3d)
These equations have a similarity solution of the form
c = (a1 (4-4a)
Z = A®/* (A—4b)

where y is a function and A is a constant yet to be determined.

If we substitute eq. (A-4a) into eq. (A-2), we find the following ordinary differential
equation for y:

d [dy 173 3 dy 3
— — /4
l (!) +4:: 2_0, T =z/t (A-5)



The boundary and initial conditions become

y(o0) =0 (A—6a)
y4) =1 (4-6b)
(3/4)(0cL/S)A = —§*/3(4) (A—6c)
Equation (16) can be integrated readily if we set §° = dy/dz. We find
3 N\ -3/2
§=6=- (Zzz + az) (A-7)

where a? is a constant of integration. If we integrate eq. (A-7) from A to oo, we have, in

view of eqs. (A-6a) and (A-65),

w73 _ —~3/2
/ (—mz + az) dz =1 (A—8a)
4 \4
With the help of eq. (A-7), eq. {A-6¢) becomes
3 N _ 16/ S\ _16
2242 2y _29( 9 \ _10, -
A (4.4 +a ) 3 (ng) 3 B (A-8b)
By using the identity [ dz(1 + z2)7%/2 = z(1 + 2?)~!/2, we can rewrite eq. (A-8a) as
a*v3/2 =1 — (V34/2a)(1 + 34%/4a?)~*/? (A—-8c)
If we set ¢2 = 342/4a® and 1 = a®v/3/2, eqs. (A-8b) and {A-8¢c) become
W1+ €)' = B (4-9a)
and «
n=1-§1+¢)"/? (A~9b)

From egs. ‘(A-Qa) and (A-9b), we find easily that

£ =B(1-2B)™'/? (A-10a)
n=(1-2B)(1 - B)™ (A--10b)

from which follows eq. (185).

If we now convert to ordinary units, B becomes SAT/p,L, which is dimensioniess.
Thus, so is A. Then, eq. (A-45) becomes eq. (18a). The function y can easily be calculated
from eq. (A-7), but we have no need for its explicit form here.

-y
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Symbols

constant of integration introduced in eq. (A-7)

constant in eq. (18a) and eq. (A-4b) for the displacement Z of the free surface
SAT/pL

T,-T

Gorter-Mellink conductance parameter

heat of vaporization

pressure

saturation pressure

radial coordinate

bubble radius

dR/dt

heat capacity per unit volume

time

temperature

bath or ambient temperature

saturation temperature

superheat T}, — T,

radial velocity of liquid

power expended by expanding vapor

z / ts /4

quantity defined in eq. (4b)

similarity solution introduced in eq. (A-4a)

distance from bubble surface; also length coordinate along the tube
displacement of the free surface of the liquid

dZ/dt

dimensionless quantity defined in eq. (15)

342 /4a®

a*/3/2

vapor density .
liquid density

gl/s

characteristic time to reach temperature equilibrium
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