ŝĒ

MCC Materials Characterization Center

Characterization of Spent Fuel Approved Testing Material—ATM-106

October 1988

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY operated by BATTELLE MEMORIAL INSTITUTE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Printed in the United States of America Available from National Technical Information Service United States Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

NTIS Price Codes Microfiche A01

Printed Copy

	Price
Pages	Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A10
226-250	A11
251-275	A12
276-300	A13

3 3679 00048 8686

CHARACTERIZATION OF SPENT FUEL APPROVED TESTING MATERIAL--ATM-106

R. J. Guenther D. E. Blahnik T. K. Campbell U. P. Jenquin J. E. Mendel C. K. Thornhill

.

......

.

. .

total (gf

October 1988

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory Richland, Washington 99352

<u>ABSTRACT</u>

The characterization data obtained to date are described for Approved Testing Material (ATM)-106 spent fuel from Assembly BT03 of pressurized-water reactor Calvert Cliffs No. 1. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the U.S. Department of Energy Office of Civilian Radioactive Waste Management (OCWRM) program. ATM-106 consists of 20 full-length irradiated fuel rods with rod-average burnups of about 3700 GJ/kgM (43 MWd/kgM) and expected fission gas release of _10%. Characterization data include 1) as-fabricated fuel design, irradiation history, and subsequent storage and handling; 2) isotopic gamma scans; 3) fission gas analyses; 4) ceramography of the fuel and metallography of the cladding; 5) calculated nuclide inventories and radioactivities in the fuel and cladding; and 6) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel rod are being conducted and will be included in planned revisions of this report.

......

wi-0

ACKNOWLEDGMENTS

The characterization of ATM-106 fuel has resulted from the efforts of a large number of people. The authors extend their appreciation to the following individuals who provided valuable assistance in making this report possible.

Assistance with startup and initial operation of the gamma scanning system was provided by M. L. Elliott and R. W. Goles. R. S. Holeman and L. J. Dunn conducted the in-cell fuel rod gamma scanning, fission gas sampling, and fuel rod sectioning operations. N. J. Wildung provided the graphics for the gamma scan data.

Radiochemical analyses were supervised by J. J. McCown and G. E. Meadows, and conducted by W. Y. Matsumoto, D. L. Baldwin, M. W. Goheen, A. C. Leaf, and numerous technicians.

Ceramography and metallography of fuel sections, under the supervision of D. J. DesChane, were conducted by R. D. Bell, D. Romsos, and T. Barry.

Appreciation is also extended to J. O. Barner for his technical review and to representatives of the Nevada Nuclear Waste Storage Investigations for their review of this report.

The editorial assistance of D. K. Hilliard is also sincerely appreciated.

<u>CONTENTS</u>

~

1.94

* 2494

ABST	RACT	· · · · · · · · · · · · · · · · · · ·	ii
ACKN	OWLED	DGMENTS	v
1.0	INTR	RODUCTION	1
2.0	CONC	LUSIONS	2.1
3.0	CHAR	ACTERIZATION PLAN FOR ATM-106	3.1
	3.1	STANDARD EXAMINATIONS	3.1
	3.2	DETAILED EXAMINATIONS	3.2
	3.3	SELECTION OF RODS FOR DETAILED EXAMINATION	3.6
4.0	CHAR	ACTERIZATION OF ATM-106	1.1
	4.1	ASSEMBLY AND FUEL ROD DESCRIPTIONS	1.1
	4.2	IRRADIATION AND HANDLING HISTORY	1.8
	4.3	GAMMA SCANNING RESULTS	1.12
	4.4	FISSION GAS ANALYSES	1.16
		4.4.1 Elemental and Isotopic Gas Analyses 4	1.17
		4.4.2 Fission Gas Release	1.20
	4.5	CERAMOGRAPHIC/METALLOGRAPHIC EXAMINATIONS	1.21
		4.5.1 Fuel Rod Sectioning and Sample Selection	1.23
		4.5.2 Ceramography of ATM-106 Fuel	1.23
		4.5.3 Metallography of ATM-106 Cladding 4	1.40
		4.5.4 Autoradiography of ATM-106 Samples 4	1.47
	4.6	NUCLIDE INVENTORY AND RADIOACTIVITY CALCULATIONS 4	1.54
	4.7	RADIOCHEMISTRY ANALYSES	1.56
		4.7.1 Fuel Burnup Measurements	1.56
		4.7.2 Fuel Radiochemistry Analyses and Comparisons with ORIGEN2 Predictions	1.63

4.7.3 Cladding Radiochemistry Analyses	4.66
5.0 DISTRIBUTION OF ATM-106 SPENT FUEL	5.1
REFERENCES	Ref.1
APPENDIX A - POWER HISTORY FOR ASSEMBLY BT03	A.1
APPENDIX B - GAMMA SCANNING OF ATM-106	B.1
APPENDIX C - FISSION GAS SAMPLING	C.1 -
APPENDIX D - SECTIONING DIAGRAM	D.1
APPENDIX E - DETAILS OF CERAMOGRAPHY/METALLOGRAPHY	E.1
APPENDIX F - RESULTS OF ORIGEN2 RADIONUCLIDE INVENTORY CALCULATIONS	F.1

<u>FIGURES</u>

s ki ĝi

-

3.1	Characterization of Spent Fuel ATMs	3.3
4.1	Combustion Engineering 14 x 14 Fuel Assembly Schematic $$.	4.2
4.2	ATM-106 Pellet and Fuel Rod Dimensions	4.4
4.3	Locations of Twenty Rods in Assembly BTO3	4.7
4.4	Core Map Showing the Location of Assembly BTO3 in Calvert Cliffs No. 1 for Cycles 1, 2, 3, and 4	4.9
4.5	Calvert Cliffs No. 1 Operating History	4.10
4.6	Power History for Rod NBD107 in Assembly BT03	4.11
4.7	Spectral Gamma Scan for 137 Cs - Rod NBDO40 \ldots \ldots \ldots	4.14
4.8	Spectral Gamma Scan for 137 Cs - Rod NBD107 \ldots \ldots \ldots	4.15
4.9	Expanded View of ¹³⁷ Cs Gamma Scan for Central Portion of Rod NBD107	4.16
4.10	Comparison of 137 Cs Gamma Scan Data of Four ATM-106 Fuel Rods with Different Fission Gas Releases	4.22
4.11	Locations of Ceramographic/Metallographic Samples from Rod NBD107	4.24
4.12	Photomacrograph of As-Polished Transverse Sample 106-NBD107-P from the Peak-Power Region	4.26
4.13	Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-0 from the Peak-Power Region	4.27
4.14	Photomicrographs of As-Polished Transverse Sample 106-NBD107-C from a Region at Approximately 56% of Peak Power	4.29
4.15	Photomicrographs of As-Polished Transverse Sample 106-NBD107-P from the Peak-Power Region	4.30
4.16	Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-0 from the Peak-Power Region	4.31
4.17	Example of Metallic Ingots Near Center of As-Polished Transverse Sample 106-NBD107-Z	4.33

4.18	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-C from a Region at Approximately 56% of Peak Power	4.35
4.19	Photomicrographs of Argon Ion-Etched Transverse Fuel Sample 106-NBD107-P from the Peak-Power Region	4.36
4.20	Photomicrographs of Ion-Etched Longitudinal Sample 106-NBD107-0 from the Peak Power Region	4.37
4.21	Comparison of Radial Variation in True Grain Size of Fuel Samples from Rod NBD107 of ATM-106	4.39
4.22	Exterior and Interior Cladding Surface of As-Polished Sample 106-NBD107-KK Taken from a Region at about 73% of the Peak Power	4.43
4.23	Exterior and Interior Cladding Surface of As-Polished Sample 106-NBD107-0 from the Peak-Power Region	4.44
4.24	Etched Cladding of Longitudinal Sample 106-NBD107-0 from the Peak-Power Region	4.45
4.25	Etched Cladding of Transverse Sample 106-NBD107-P from the Peak-Power Region	4.45
4.26	Etched Cladding of Transverse Sample 106-NBD107-C from Approximately 56% of Peak Power	4.46
4.27	Etched Cladding of Transverse Sample 106-NBD107-G from the Peak-Power Region	4.46
4.28	Alpha Autoradiograph of Longitudinal Sample 106-NBD107-0 from the Peak-Power Region	4.48
4.29	Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-0 from the Peak-Power Region	4.49
4.30	Alpha Autoradiograph of Transverse Sample 106-NBD107-P from the Peak-Power Region	4.50
4.31	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-P from the Peak-Power Region	4.50
4.32	Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-Y from the Peak-Power Region	4.52
4.33	Comparison of Beta-Gamma Autoradiography and Fuel Grain Growth of Transverse Sample 106-NBD107-Z from the Peak- Power Region	4.53

4.34	General Locations of Samples Used for Radiochemical Analyses of Rod NBD107	4.57
4.35	Correlation Between ¹³⁷ Cs Gamma Counting and ¹⁴⁸ Nd Burnup Analyses	4.62
4.36	<code>Fractional 137Cs Activity as a Function of Decay Period</code>	4.62
4.37	Comparison of Fission Product Movement in Rod NBD107 Using Gamma Scanning, Cladding, Radiochemistry, and $meta/\gamma$ Autoradiography Data $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	4.69
B. 1	Data Acquisition System and IBM Host System for Gamma Scanning Spent Fuel Rods	B.2
B.2	Plan View of In- Cell Hardware for Gamma Scanning of MCC Spent Fuel Rods	B.3
B.3	Spectral Gamma Scan for 137 Cs - Rod NBD040 \ldots	B.5
B.4	Spectral Gamma Scan for 137 Cs - Rod NBD066 \ldots \ldots \ldots	B.6
B.5	Spectral Gamma Scan for 137 Cs - Rod NBD095 \ldots	B.7
B.6	Spectral Gamma Scan for 137 Cs - Rod NBD107 \ldots	B.8
B.7	Spectral Gamma Scan for 134 Cs - Rod NBDO40 \ldots	B.9
B.8	Spectral Gamma Scan for ¹³⁴ Cs - Rod NBD066	B.10
B.9	Spectral Gamma Scan for ¹³⁴ Cs - Rod NBD095	B.1 1
B.10	Spectral Gamma Scan for 134 Cs - Rod NBD107 \ldots	B.12
B.11	Spectral Gamma Scan for 134 Cs - Rod NBD040 \ldots	B.13
B.12	Spectral Gamma Scan for 134 Cs - Rod NBD066 \ldots \ldots \ldots	B.14
B.13	Spectral Gamma Scan for ¹³⁴ Cs - Rod NBD095	B.15
B.14	Spectral Gamma Scan for 134 Cs - Rod NBD107 \ldots	B.16
C.1	Schematic of Fission Gas Sampling System	C.2
D.1	As-Cut Sectioning Diagram for Rod NBD107	D.2
E.1.a	Photomacrograph of As-Polished Transverse Sample 106-NBD107-C	E.3

wide

xi

E.1.b	Photomacrograph of As-Polished Transverse Sample 106-NBD107-G	E.3
E.1.c	Photomacrograph of As-Polished Transverse Sample 106-NBD107-P	E.4
E.1.d	Photomacrograph of As-Polished Transverse Sample 106-NBD107-Z	E.4
E.1.e	Photomacrograph of As-Polished Transverse Sample 106-NBD107-LL	E.5
E.1.f	Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-0	E.6
E.1.g	Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-Y	E.7
E.1.h	Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-KK	E.8
E.2.a	Photomicrographs of As-Polished Transverse Sample 106-NBD107-C	E.9
E.2.b	Photomicrographs of As-Polished Transverse Sample 106-NBD107-G	E.10
E.2.c	Photomicrographs of As-Polished Transverse Sample 106-NBD107-P	E.11
E.2.d	Photomicrographs of As-Polished Transverse Sample 106-NBD107-Z	E.12
E.2.e	Photomicrographs of As-Polished Transverse Sample 106-NBD107-LL	E.13
E.2.f	Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-0	E.14
E.2.g	Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-Y	E.15
E.2.h	Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-KK	E.16
E.3.a	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-C	E.17
E.3.b	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-G	E.18

E.3.c	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-P	E.19
E.3.d	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-Z	E.20
E.3.e	Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-LL	E.21
E.3.f	Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-0	E.22
E.3.g	Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-Y	E.23
E.3.h	Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-KK	E.24
E.4.a	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-G	E.25
E.4.b	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-0	E.26
E.4.c	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-Y	E.27
E.4.d	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-Z	E.28
E.4.e	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-KK	E.29
E.4.f	Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-LL	E.30
E.5.a	Etched Cladding of Transverse Sample 106-NBD107-C	E.31
E.5.b	Etched Cladding of Transverse Sample 106-NBD107-G	E.31
E.5.c	Etched Cladding of Transverse Sample 106-NBD107-P	E.32
E.5.d	Etched Cladding of Transverse Sample 106-NBD107-Z	E.32
E.5.e	Etched Cladding of Transverse Sample 106-NBD107-LL	E.33
E.5.f	Etched Cladding of Longitudinal Sample 106-NBD107-0	E.33
E.5.g	Etched Cladding of Longitudinal Sample 106-NBD107-Y	E.34

• I II

E.5.h	Etched Cladding of Longitudinal Fuel Sample 106-NBD107-KK	E.34
E.6.a	Alpha Autoradiograph of Transverse Sample 106-NBD107-C	E.36
E.6.b	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-C	E.37
E.6.c	Alpha Autoradiograph of Transverse Sample 106-NBD107-G	E.38
E.6.d	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-G	E.39
E.6.e	Alpha Autoradiograph of Transverse Sample 106-NBD107-P	E.40
E.6.f	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-P	E.41
E.6.g	Alpha Autoradiograph of Transverse Sample 106-NBD107-Z	E.42
E.6.h	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-Z	E.43
E.6.i	Alpha Autoradiograph of Transverse Sample 106-NBD107-LL	E.44
E.6.j	Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-LL	E.45
E.6.k	Alpha Autoradiograph of Longitudinal Sample 106-NBD107-0	E.46
E.6.1	Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-0	E.47
E.6.m	Alpha Autoradiograph of Longitudinal Sample 106-NBD107-Y	E.48
E.6.n	Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-Y	E.49
E.6.o	Alpha Autoradiograph of Longitudinal Sample 106-NBD107-KK	E.50
E.6.p	Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-KK	E.51

F.1	Sample ORIGEN2	Input fo	or ATM-106	Fuel	•	• •	•	•	•	•	•	•	F.2
F.2	Sample ORIGEN2	Input fo	or ATM-106	Cladding	•		•	•	•	•	•	•	F.4

•

•

<u>TABLES</u>

1.1	Summary of Spent Fuel ATMs Being Characterized by the MCC	1.2
4.1	ATM-106 Fuel Pellet Certification Data	4.5
4.2	ATM-106 Fuel Rod Cladding Certification Data	4.6
4.3	Initial ATM-106 Fuel Rods to be Characterized and Used in Repository Project Testing Program	4.12
4.4	Fuel Rod Lengths Measured During Gamma Scanning	4.14
4.5	Gas Composition for ATM-106 Fuel Rods	4.17
4.6	Percentage of Xenon Isotopes in Total Rod Gas	4.18
4.7	Percentage of Krypton Isotopes in Total Rod Gas	4.18
4.8	Relative Amounts of Xenon Isotopes in Xenon Gas	4.19
4.9	Relative Amounts of Krypton Isotopes in Krypton Gas	4.19
4.10	Fission Gas Release Information for ATM-106 Fuel Rods	4.21
4.11	Results of Fuel Grain Size Measurements	4.38
4.12	Oxide Layer Thicknesses on Cladding of ATM-106 Samples	4.41
4.13	Fuel Composition of ATM-106 Assumed for ORIGEN2 Calculations	4.5 5
4.14	Cladding Composition of ATM-106 Assumed for ORIGEN2 Calculations	4.55
4.15	Description of Radiochemical Analysis Procedures	4.58
4.16	Burnup Results for ATM-106 Fuel Samples	4.61
4.17	Fuel Radiochemical Analyses Results and Comparisons with ORIGEN2-Calculated Radionuclide Inventory	4.64
4.18	Cladding Radiochemistry Analyses Results	4.67
4.19	Radiochemical Analyses of ¹⁴ C in Cladding and Comparison with ORIGEN2 Predictions	4.72

5.1	Initially Planned Distributions of ATM-106 Spent Fuel Rod NBD107	5.1
A.1	Detailed Power History for Rod NBD107	A.2
A.2	ATM-106 Power History Based on Rod NBD107	A.3
D.1	Description of As-Cut Sections of ATM-106, Rod NBD107	D.6
E.1	Summary of Ceramographic/Metallographic Sections	E.2
F.1.a	Fission Product Radioactivity by Isotope at 20 MWd/kgM, Ci/gU	F.6
F.1.b	Fission Product Radioactivity by Isotope at 25 MWd/kgM, Ci/gU	F.8
F.1.c	Fission Product Radioactivity by Isotope at 30 MWd/kgM, Ci/gU	F.10
F.1.d	Fission Product Radioactivity by Isotope at 35 MWd/kgM, Ci/gU	F.12
F.l.e	Fission Product Radioactivity by Isotope at 40 MWd/kgM, Ci/gU	F.14
F.1.f	Fission Product Radioactivity by Isotope at 45 MWd/kgM, Ci/gU	F.16
F.1.g	Fission Product Radioactivity by Isotope at 50 MWd/kgM, Ci/gU	F.18
F.2.a	Actinide Radioactivity by Isotope at 20 MWd/kgM, Ci/gU	F.20
F.2.b	Actinide Radioactivity by Isotope at 25 MWd/kgM, Ci/gU	F.22
F.2.c	Actinide Radioactivity by Isotope at 30 MWd/kgM, Ci/gU	F.24
F.2.d	Actinide Radioactivity by Isotope at 35 MWd/kgM, Ci/gU	F.26
F.2.e	Actinide Radioactivity by Isotope at 40 MWd/kgM, Ci/gU	F.28
F.2.f	Actinide Radioactivity by Isotope at 45 MWd/kgM, Ci/gU	F.30

F.2.g	Actinide Radioactivity by Isotope at 50 MWd/kgM, Ci/gU	F.32
F.3.a	Fission Product Inventory by Isotope at 20 MWd/kgM, g/gU	F.34
F.3.b	Fission Product Inventory by Isotope at 25 MWd/kgM, g/gU	F.39
F.3.c	Fission Product Inventory by Isotope at 30 MWd/kgM, g/gU	F.44
F.3.d	Fission Product Inventory by Isotope at 35 MWd/kgM, g/gU	F.49
F.3.e	Fission Product Inventory by Isotope at 40 MWD/kgM, g/gU	F.54
F.3.f	Fission Product Inventory by Isotope at 45 MWd/kgM, g/gU	F.59
F.3.g	Fission Product Inventory by Isotope at 50 MWd/kgM, g/gU	F.64
F.4.a	Actinide Inventory by Isotope at 20 MWd/kgM, g/gU	F.69
F.4.b	Actinide Inventory by Isotope at 25 MWd/kgM, g/gU	F.71
F.4.c	Actinide Inventory by Isotope at 30 MWd/kgM, g/gU	F.73
F.4.d	Actinide Inventory by Isotope at 35 MWd/kgM, g/gU	F.75
F.4.e	Actinide Inventory by Isotope at 40 MWd/kgM, g/gU	F.77
F.4.f	Actinide Inventory by Isotope at 45 MWd/kgM, g/gU	F.79
F.4.g	Actinide Inventory by Isotope at 50 MWd/kgM, g/gU	F.81
F.5.a	Fission Product Inventory by Element at 20 MWd/kgM, g/gU	F.83
F.5.b	Fission Product Inventory by Element at 25 MWd/kgM, g/gU	F.84

F.5.c	Fission Product Inventory by Element at 30 MWd/kgM, g/gU	F.85
F.5.d	Fission Product Inventory by Element at 35 MWd/kgM, g/gU	F.86
F.5.e	Fission Product Inventory by Element at 40 MWd/kgM, g/gU	F.87
F.5.f	Fission Product Inventory by Element at 45 MWd/kgM, g/gU	F.88
F.5.g	Fission Product Inventory by Element at 50 MWd/kgM, g/gU	F.89
F.6.a	Actinide Inventory by Element at 20 MWd/kgM, g/gU	F.90
F.6.b	Actinide Inventory by Element at 25 MWd/kgM, g/gU	F.90
F.6.c	Actinide Inventory by Element at 30 MWd/kgM, g/gU	F.91
F.6.d	Actinide Inventory by Element at 35 MWd/kgM, g/gU	F.91
F.6.e	Actinide Inventory by Element at 40 MWd/kgM, g/gU	F.92
F.6.f	Actinide Inventory by Element at 45 MWd/kgM, g/gU	F.92
F.6.g	Actinide Inventory by Element at 50 MWd/kgM, g/gU	F.93
F.7.a	Fuel Activation Product Inventory by Isotope at 20 MWd/kgM, g/gU	F.94
F.7.b	Fuel Activation Product Inventory by Isotope at 25 MWd/kgM, g/gU	F.97
F.7.c	Fuel Activation Product Inventory by Isotope at 30 MWd/kgM, g/gU	F.100
F.7.d	Fuel Activation Product Inventory by Isotope at 35 MWd/kgM, g/gU	F.103
F.7.e	Fuel Activation Product Inventory by Isotope at 40 MWd/kgM, g/gU	F.106
F.7.f	Fuel Activation Product Inventory by Isotope at 45 MWd/kgM, g/gU	F.109
F.7.g	Fuel Activation Product Inventory by Isotope at 50 MWd/kgM, g/gU	F.112

F.8.a	Cladding Activation 20 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at		, •	•	F.115
F.8.b	Cladding Activation 25 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	• •	, •	•	F.118
F.8.c	Cladding Activation 30 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	• •		•	F.121
F.8.d	Cladding Activation 35 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	• •			F.124
F.8.e	Cladding Activation 40 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	•		•	F.127
F.8.f	Cladding Activation 45 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	•			F.130
F.8.g	Cladding Activation 50 MWd/kgM, g/gZr .	Product	Inventory	by Isotope at	•			F.133

1.0 INTRODUCTION

The Materials Characterization Center (MCC) at Pacific Northwest Laboratory^(a) (PNL) has the responsibility to provide spent fuel test material (samples) for laboratory investigations of nuclear waste forms by the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCWRM) program. This MCC reference report describes the characterization of Approved Testing Material (ATM)-106, one of five spent fuel ATMs that are being characterized. The first two reports in the series are on ATM-101 (Barner 1985) and ATM-103 (Guenther et al. 1988). General descriptions of the five spent fuel ATMs presently being characterized by the MCC are provided in Table 1.1. Additional ATMs, such as fuel rods with burnable poisons, rods from newer high-burnup designs, and rods with stainless steel cladding, are being considered as future ATMs.

Fuel rods from ATM-106 have a high burnup of about 3700 GJ/kgM (43 MWd/kgM) and were expected to have fission gas release from the UO_2 fuel during irradiation of about 10%. The fuel rods were fabricated by Combustion Engineering (C-E) and irradiated in the Calvert Cliffs No. 1 (CC-1) pressurized-water reactor (PWR), which is operated by Baltimore Gas and Electric (BG&E) in Maryland.

Twenty full-length fuel rods from Assembly BT03 constitute ATM-106--the remaining fuel rods were removed for other purposes by BG&E. ATM-106 fuel was selected for characterization because it had high burnup and expected high fission gas release based on information provided by BG&E. It was also manufactured by the same vendor and irradiated in the same reactor as ATM-103 fuel (moderate burnup, low fission gas release) and ATM-104 fuel (high burnup, low fission gas release). The expected differences in burnup and fission gas release among the various ATMs provide useful comparisons of as-irradiated characteristics of PWR fuel. ATM-105 will provide characterization data for boiling-water reactor (BWR) spent fuel and will be useful in comparing differences between irradiated PWR and BWR fuel rods. These spent fuel ATMs were selected to represent the typical end-of-life (EOL) fuel

4.4

⁽a) Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-ACO6-76RLO 1830.

<u>atm</u>	Fuel <u>Type</u>	Reactor	Expected <u>Burnup Level</u>	Expected Fission <u>Gas Release, %</u>	No. of <u>Rods</u>
101	PWR	H. B. Robinson, No. 1	Moderate, 2600 GJ/kgM (~30 MWd/kgM)	<1	9 as 27 1.2-m (4-ft) segments
103	PWR	CC-1	Moderate, 2600 GJ/kgM (~30 MWd/kgM)	<1	176 full length
104	PWR	CC-1	High, 3700 GJ/kgM (~43 MWd/kgM)	<1	128 full length
105	BWR	Cooper	Moderate, 2400 GJ/kgM (~28 MWd/kgM)	<1	98 full length
106	PWR	CC-1	High, 3700 GJ/kgM (~43 MWd/kgM)	~10	20 full length

TABLE 1.1. Summary of Spent Fuel ATMs Being Characterized by the MCC

conditions, potential extremes in EOL spent fuel conditions, or differences between PWR and BWR spent fuel from U.S. commercial nuclear reactors. The high burnup and expected high fission gas release of ATM-106 is representative of one type of spent fuel bounding condition for PWR reactors operating in the United States. Portions of the characterized fuel rods have been made available to the Nevada Nuclear Waste Storage Investigation (NNWSI) project for spent fuel testing. Additional quantities of ATM-106 will also be available for further distribution to experimenters.

The characterizations of ATM-106 spent fuel are based on a general characterization plan described by Barner (1984) and the specific characterization plan described in Section 3.0. All of the characterizations completed to date have been conducted at DOE's Hanford Site near Richland, Washington. The present report describes the characterizations completed to date for Rod NBD107 of ATM-106. Additional characterization data for Rod NBD107 and other ATM-106 fuel rods will be included in subsequent revisions of this report.

2.0 <u>CONCLUSIONS</u>

Analyses completed to date on four ATM-106 fuel rods, including detailed analyses of Rod NBD107, indicate that this fuel achieved a typical peak burnup of about 3900 GJ/kgM (46 MWd/kgM) and rod-average fission gas release from the fuel up to 11.2%.

Detailed characterization of two other fuel rods from ATM-106 will be conducted to further establish the characteristics of the ATM-106 fuel rods that are considered representative of one class of spent fuel that might be deposited in a repository. However, even the limited data obtained to date for ATM-106 indicates that differences in fission gas release correspond with significant differences in the fuel microstructure (such as grain growth) and the distribution of fission products. In addition, the high- burnup fuel with or without high fission gas release has a thin porous rim near the fuel edge. These results affirm the need to adequately characterize test materials because of potential variations in fission product distributions and their possible effects on subsequent test results. The results of the characterization of ATM-106 fuel rods are summarized below.

Fission Gas Release and Gamma Scans

Based on analyses of gas samples, the rod-average fission gas releases in Rods NBD040, NBD095, and NBD107 were 1.4%, 7.4%, and 11.2%, respectively. Gamma scans of the full-length rods indicated local variations in cesium beyond those expected from burnup alone and were consistent with the differences in the fission gas releases. As the rod-average fission gas release increased, the gamma scan data indicated greater portions of the fuel rods had cesium release or movement. The local variations in cesium release along the length of Rod NBD107 corresponded to measured changes in fuel grain growth and deposits of cesium and iodine on the interior surfaces of the cladding. Such information may provide a means of estimating the release of cesium and iodine for rods that do not receive destructive examination.

Fuel Radiochemistry

Radiochemical analyses of 11 fuel samples from different locations in Rod NBD107 indicated that the ORIGEN2 computer code provides reasonable

predictions of the inventory and radioactivity of the nuclides examined. Measured values for 135_{CS} , 137_{CS} , 243_{Cm} and 244_{Cm} , 129_{I} , 90_{Sr} , 236_{U} , 238_{U} , $238p_{u}$, $239p_{u}$, $240p_{u}$, $241p_{u}$, and $242p_{u}$ agreed within about $\pm 15\%$ of the values predicted by ORIGEN2. The amount of 241 Am measured in the fuel averaged about 6% above the predicted values, but was 32% higher than that predicted by ORIGEN2 for one of the samples. The 14 C in the fuel varied substantially from sample to sample, probably because of different amounts of initial nitrogen impurities, but averaged about 9% below the predicted 14 C levels. The measured amounts of 235 U were about 20% lower than those predicted by ORIGEN2. The measured amounts of 234 U were scattered over a wide range. averaging abut 11% higher than the predicted value, probably a result of analytical uncertainties for these small quantities. Both 237_{Np} and 99_{Tc} were measured at about 30% below their predicted values. The measured values for 79 Se and 126 Sn were consistently lower than the predicted values by about 87% and 81%, respectively. Similar differences between the measured and predicted values for 79 Se and 126 Sn have been obtained for other ATMs characterized by the MCC and suggests that modifications may be required in the ORIGEN2 code for predicting amounts of 79 Se and 126 Sn. Results of the fuel radiochemistry are being provided to Oak Ridge National Laboratory for their use in validating ORIGEN2. These differences will be further investigated when analytical results become available from spark source mass spectrometry of the fuel.

Fuel burnups for three samples from Rod NBD107 were determined based on the measured 148 Nd content. A correlation between measured burnup and 137 Cs activity obtained from gamma scanning was developed and used to estimate the burnup in samples from other locations in Rod NBD107. This correlation appears reasonable for estimating burnup in samples from Rod NBD107 even though there was high fission gas release and apparent local cesium migration in this rod.

<u>Cladding Radiochemistry</u>

Analyses of the Zircaloy-4 cladding were conducted to determine the amount of 135 Cs and 137 Cs on the exterior and interior surfaces, 129 I on the interior surface, and 14 C in the cladding. The deposits of 135 Cs and 137 Cs did not show any particular trend along the exterior surface of the cladding.

The levels of cesium on the interior cladding surface followed the power/ burnup profile of the rod and were 10 to 1000 times higher than for an ATM-103 fuel rod with low fission gas release. The ^{129}I level on the interior surface also approximated the power profile of the fuel, and was up to several orders of magnitude higher than for comparable samples from ATM-103. The variations of the ^{135}Cs , ^{137}Cs , and ^{129}I on the interior cladding surface are probably a result of different combinations of local fuel temperature and fission gas release that occurred at different regions of the fuel because the variations in the measured deposits on the cladding correlate with the variations in cesium release indicated by the gamma scans of the full-length rods and with the measured grain growth in the fuel. For Rod NBD107 with a rod-average fission gas release of 11.2%, it was estimated that 2% of the ^{137}Cs and 8% of the ^{129}I inventories were deposited rather firmly on the interior cladding surface.

The measured 14C levels in the cladding averaged about 20% higher than the amounts predicted by ORIGEN2 and were about twice as high as those measured in cladding from ATM-103. Based on the range in as-fabricated nitrogen contents in the ATM-103 and ATM-106 cladding, such a difference is possible. The variations in 14C in the cladding of a given rod or between rods of different ATMs may be primarily a result of differences in the as-fabricated nitrogen contents rather than analytical uncertainties.

Fuel Ceramography and Autoradiography

presid

Ceramography conducted on fuel samples from Rod NBD107 indicated that the fuel grain size increased by 6 to 116%; the apparent as-fabricated grain size averaged about 7 μ m. The grain growth at the fuel center at different axial locations in Rod NBD107 followed the same trend observed in the gamma scanning and radiochemical analyses. Fuel grain growth was lowest at the upper end of the fuel rod where there was no apparent cesium release according to the gamma scan and very low amounts of cesium deposited on the cladding. In the peak-power region, the fuel experienced a range of grain growth, with the highest grain growth corresponding to regions of apparently higher cesium release as indicated by the gamma scanning and radiochemistry of the cladding surfaces. More indications of fission-product metal ingots

and fission gas bubbles at the grain boundaries were observed in the peakpower fuel samples of ATM-106 than in ATM-103. These results are indicative of higher fuel operating temperatures and are consistent with the ~50 times higher fission gas release in the ATM-106 fuel than in the ATM-103 fuel rod with only moderate burnup and low fission gas release.

Examination of the porosity distribution in the fuel also indicated a thin (~100- to $200-\mu m$) porous rim near the fuel edge that is related to the high fission rate in this region. For fuel with burnups of about 40 MWd/kgM or higher, this effect can be important to the fuel structure and fission gas release, even if the central fuel temperatures are too low for significant fission gas release. Preliminary results for electron probe microanalyses of both ATM-104 and ATM-106 fuel indicate depletion of xenon in this rim region; the depletion may contribute a substantial portion of the fission gas release in high-burnup fuels with low fission gas release.

The beta/gamma autoradiography of ceramographic samples from the peakpower region of Rod NBD107 indicated movement of fission products from the central fuel region towards the outer edge, occasionally causing localized concentrations of fission products near the fuel/cladding interface. Regions of the fuel rod that had higher deposition of cesium and iodine on the interior cladding surface and greater fuel grain growth corresponded with a higher incidence of localized deposits of beta/gamma emitters in the autoradiographs. The beta/gamma autoradiography and measurement of fuel grain growth from ceramographic fuel samples provides additional information needed to understand differences in the as-irradiated fuel condition.

Cladding Metallography

Metallography of the Zircaloy-4 cladding from Rod NBD107 was conducted to evaluate the deposits on the exterior and interior cladding surfaces and the hydriding within the cladding. Cladding samples were examined at five locations along the fuel rod that represented different combinations of fuel and cladding operating temperatures. The oxide layer on the exterior cladding surface near the middle of the rod ranged from 11 to 15 μ m thick which was about 2 to 3 times thicker than the deposits at the lower end of the rod. There was some layering on the exterior surface at the middle of the rod with

an apparently loose outermost layer; the bottom of the rod had a solid monolayer. There were no apparent deposits of crud on the cladding. The interior surface of the Zircaloy-4 cladding had a relatively solid deposit about 5 μ m thick that appears to be an oxide.

The amount and orientation of hydrides in the cladding are important to the strength of the irradiated cladding. Hydrides are a brittle phase formed from zirconium and hydrogen in the as-fabricated rod and/or hydrogen from the corrosion process at the exterior cladding surface. There was an obvious increase in hydride content from the bottom to the upper half of the rod where oxide layers on the cladding exterior surface were correspondingly higher. The orientations of the hydrides were primarily in the circumferential/longitudinal plane, which is the desired orientation to minimize the effect of hydrides on the cladding strength and ductility.

3.0 CHARACTERIZATION PLAN FOR ATM-106

The characterization plan for ATM-106 was prepared by the MCC and approved by the repository project. The plan describes standard examinations that are performed on all rods and detailed examinations that are performed on three representative rods. Information is provided below on the types of analyses conducted on rods receiving standard or detailed examinations as well as the criteria for selecting rods for detailed characterization.

3.1 STANDARD EXAMINATIONS

As can be seen in Figure 3.1, the first step in the MCC's characterization of spent fuel ATMs is to perform a full-length gamma scan on each of the intact fuel rods. A correlation between cesium activity and burnup will be developed for each spent fuel ATM, which will make it possible to define the burnup of samples from any portion of a rod from a given ATM after the rod has been gamma scanned. The gamma scan data also provide valuable information on fission product movement in the rod (such as cesium migration) and on densification or shifts, if any, in the fuel column.

After gamma scanning, each rod (except for the rod used as a gamma scan reference) is punctured and a gas sample is taken. Analysis of the gas provides an estimate of the fission gas released from the fuel during irradiation. The magnitude of the fission gas release is an indication of the extent of the microstructural changes that have occurred in the fuel. These microstructural changes may be important to the dissolution of fuel in a repository. The magnitude of fission gas release is also indicative of the fraction of volatile fission products, such as cesium and iodine, which have migrated to the grain boundaries and the gap between the fuel and cladding. Quantifying the inventory of fission products in the gap and at the grain boundaries is important because fission product release in a repository after the waste package barriers are breached will occur from these locations first and will be independent of the dissolution rate of the matrix.

It is planned to gamma scan and fission gas sample a number of ATM-106 rods to 1) have a backlog ATM-106 material that can be made available immediately upon request, 2) document the homogeneity of or differences in the

ATM-106 rods, and 3) provide a means of correlating measured data for fully characterized fuel rods with the gamma scan and fission gas release data that will be obtained from other ATM-106 fuel rods.

3.2 DETAILED EXAMINATIONS

As shown in Figure 3.1, samples are taken from several locations along the length of a rod receiving detailed characterization. Three rods from each ATM are scheduled to receive detailed characterization. Samples are scheduled to be taken for radiochemical analysis of the fuel and cladding, metallography of the cladding, ceramography of the fuel, analysis of the assembly hardware, and special examinations involving spark-source mass spectrometry (SSMS), electron probe microanalyses (EPMA), and analytical transmission electron microscopy (AEM).

A principle purpose of sampling the fuel rod at different locations is to determine the bulk inventory of long-lived radionuclides in fuel with different burnups. The fission products, actinides, and activation products of interest in assessments of geologic disposal are analyzed. Samples are taken from the peak-power region of the rod that corresponds with the region of maximum gamma activity, and from additional locations of lower power near the rod ends. Generally, the radionuclide concentrations are obtained from radiometric measurements of dissolved, or in the case of ¹⁴C, thermally decomposed samples. In addition to the radiometric measurements, thermal ionization and SSMS are being used to obtain the bulk concentration of selected isotopes to supplement the data obtained from radiochemical methods or as overchecks on the determined values.

The bulk concentrations of the radionuclides of interest to geologic disposal are measured and compared with the predictions made with the ORIGEN2 computer code. These calculations are based on measured and estimated burnups for samples from the rods and the power history for the fuel rod. Comparison of the measured and predicted values serves to validate the ORIGEN2 code for use in predicting the radionuclide inventory in samples from other locations or other rods from the spent fuel ATMs at any decay time of interest.

Report Sections	Type of Characterization	Description	Bottom		General Location of Examination	
Sec. 4.3 & Append. B&D	Gamma Scan ^(a)	Selected isotopes, e.g., Cs-137, Cs-134, etc.	0			
Sec. 4.4 & Append C	Fission Gas ^(a)	H₂, Ar, Kr, Xe, N₂, O₂, CO₂ (C-14), etc.	0			
Sec. 4.7	Burnup	Nd-148 method, isotopes of U and Pu				
Sec. 4.7	Specific Radionuclides	Se-79, Sr-90, Tc-99, Sn-126, Cs-135, Cs-137, Np-237, Am-241 and Cm-244				
	Spark Source Mass Spectroscopy (ORNL)	Radial distribution (six points on radius) of most fission products and actinides, plus bulk concentration of same radionuclides (adjacent sample)				
Sec. 4.5 & Append. E	Fuel Ceramography	Amount and type of cracking, grain size and structure, por- osity and noble metal fission product particles				
Sec. 4.5 & Append. E	Cladding Metallography	Hydride orientation, inner and outer surface oxidation, crud on outer surface, if present			$ \begin{vmatrix} $	
	Microprobe	Radial distribution of selected elements				
Sec. 4.5 & Append. E	Autoradiography	Alpha and beta-gamma intensity maps				
Sec. 4.7	I-129 Distribution	Bulk concentration in fuel and chemically stripped from inner cladding surface	۱۱۱ ۱۱۱ ۰			
Sec. 4.7	Cs-135 and Cs-137 on Cladding	Chemically stripped from inner and outer cladding surfaces				
Sec. 4.7	C-14 Distribution	Bulk concentration in fuel and cladding	С Г	с <u>р</u>		
	Transmission Electron Microscopy	Fission product distribution within grains and at grain boundaries				
	Activation Products in Assembly Hardware	C-14, Ni-59, Ni-63 and Nb-94			Selected samples of grids, springs and subfittings	
	Crud Analyses ^(b)	C-14 and selected radionuclides		Selected samp	les from cladding of poiling water reactor fuel only, eg., ATM-105	

^(a)Conducted on all rods

^(b)Conducted on one rod per ATM

^(c)Transverse and longitudinal examinations

^(d)Transverse section examinations only

FIGURE 3.1. Characterization of Spent Fuel ATMs

In addition to determining the bulk concentrations of radionuclides in the fuel and cladding, characterization is also directed towards obtaining information on the radionuclide distribution in the fuel. Information on the nonuniform distribution of radionuclides will assist in providing an understanding of the preferential release of certain radionuclides that is observed in leach testing of spent fuel (Oversby and Wilson 1985). Special emphasis is being placed on determining the 14 C distribution in the fuel, cladding, crud, and assembly hardware because less is known about the actual concentrations of this radionuclide than most of the other radionuclides. Several mutually supportive techniques are being used to evaluate nonuniform distribution, including autoradiography, EPMA, AEM, SSMS of small radial samples from fuel pellets, and radiochemical analyses of material chemically stripped from the interior cladding surfaces.

The second major type of examination involves metallography and ceramography of samples from the peak-power and other lower-power regions of the fuel rod. Because cladding corrosion varies along the entire length of the rod, metallographic samples from the lower-power regions of the bottom and the top of the rod are examined. An understanding of cladding characteristics is needed because the cladding may serve as an important barrier during geologic disposal. Cladding corrosion on both the water side and fuel side is evaluated, along with hydriding and any crud deposition. Ceramography of the fuel is conducted to evaluate 1) the amount and location of fuel grain growth, 2) fission gas bubble formation and distribution, 3) the amount and distribution of fuel pellet cracking, 4) as-fabricated porosity and changes caused during irradiation, and 5) the formation of noble metal fission product agglomerates. Ceramography is important to interpreting differences in the behavior of fuel in leach tests and oxidation tests. Ceramography is also very important in establishing the characteristics of the individual spent fuel ATMs for comparison with the overall spent fuel population.

As indicated in Figure 3.1, selected samples from the spent fuel ATM assembly hardware will also be analyzed for specific activation products. To interpret this information, it will also be necessary to analyze for the precursor isotopes. The inventory of activation products in hardware is an important part of the evaluation of repository performance.

Special examinations consisting of SSMS, EPMA, and AEM are planned for selected samples from the rods that are receiving detailed characterization. As previously noted, SSMS is used to confirm the bulk measurements made by radiochemistry as well as to provide measurements of nuclides for which radiochemistry is not conducted. EPMA is used to determine the distribution of elements across the fuel radius and may prove useful in identifying secondary phases in the fuel and on the cladding. AEM provides a method for examining the fuel on a scale approaching the atomic level and can identify phases and structures that are not discernible in normal ceramography but are important to the understanding of the distribution of fission products in the fuel.

3.3 <u>SELECTION OF RODS FOR DETAILED EXAMINATION</u>

ATM-106 was selected for characterization because it contained fuel rods with high burnup and expected fission gas releases from the fuel of about 10%. This combination of high burnup with high fission gas release is one type of spent fuel that is expected to be emplaced in a geologic repository.

Because all of the ATM-106 rods had similar high burnups according to data provided by the vendor, it was desired to perform detailed examination on an ATM-106 rod with 10% or greater fission gas release. Gamma scanning and fission gas sampling were used to select the rod that received detailed characterization.

Seven ATM-106 rods from representative locations around the central water hole in the fuel assembly were selected for the initial gamma scanning and fission gas sampling. Results of the gamma scanning and fission gas sampling indicated a range of fission gas release for the first four ATM-106 fuel rods examined. Rod NBD107 was selected for detailed characterization because it had distinct indications of cesium release and possible movement in the gamma scan as well as a measured fission gas release greater than 10%. Because they had fission gas releases less than 10%, Rods NBD040 and NBD095 were gamma scanned and fission gas sampled only. Rod NBD066 was only gamma scanned because it was preselected to be the reference rod for gamma scanning examinations. Additional ATM-106 fuel rods will be gamma scanned and fission gas sampled to establish the rod-to-rod variability among the ATM-106 fuel

rods and to select the next rods to receive detailed characterization. The results of the detailed examinations of Rod NBD107 and the limited examinations conducted on Rods NBD040, NBD066, and NBD095 are discussed in Section 4.

4.0 CHARACTERIZATION OF ATM-106

The following characterization of ATM-106 spent fuel consists of a description of the fuel rods and assembly design, the irradiation history, postirradiation handling and transportation, and a variety of destructive and nondestructive examinations conducted on four ATM-106 fuel rods. Of these rods, only Rod NBD107 received detailed examination. Sections 4.1 and 4.2 include information on the as-fabricated fuel design, irradiation histories, and subsequent storage and handling of the 20 spent fuel rods that comprise ATM-106. The remaining sections deal with the examinations conducted to date on ATM-106 fuel rods. This information includes 1) gamma scans of full-length fuel rods (Section 4.3), 2) fission gas analyses (Section 4.4), 3) ceramography and metallography of the fuel and cladding (Section 4.5), 4) calculated nuclide inventories and radioactivities in the fuel and cladding as well as a comparison with predicted values (Section 4.7).

4.1 ASSEMBLY AND FUEL ROD DESCRIPTIONS

ATM-106 consists of 20 rods from one fuel assembly (BT03) that was fabricated by C-E and irradiated for four cycles in the CC-1 PWR, which is operated by BG&E and located outside Lusby, Maryland. The fuel assembly was discharged on October 18, 1980. The 20 ATM-106 fuel rods were transported from the reactor cooling basin to PNL in September 1985. Information in this section and Section 4.2 was provided to the MCC by C-E.

Assembly BT03 is a standard C-E 14 x 14 fuel assembly. The fuel assembly is constructed with five guide tubes that comprise the main structure of the assembly. The upper and lower end fittings, together with eight spacer grids and the five guide tubes, form a structural cage to support the fuel rods (Figure 4.1). All structural components except the lower Inconel grid and the stainless steel upper and lower end fittings are fabricated from Zircaloy-4.

A standard 14 x 14 fuel assembly contains 176 fuel rods. The fuel rods rest on the flow plate, which is part of the lower end fitting. Zircaloy-4 grid strips with integral springs align the rods with each other and provide

FIGURE 4.1. Combustion Engineering 14 x 14 Fuel Assembly Schematic

axial, lateral, and rotational restraint against fuel rod motion during operation. Combustion Engineering's standard fuel assembly is reconstitutable. Any or all fuel rods can be easily removed and replaced using the proper remote handling tools.

The ATM-106 fuel rod and pellet dimensions are shown in Figure 4.2. The pellets are approximately 1.5 times longer than the ATM-103 fuel pellets, and the void volumes of the two dished ends in the pellets are ~38% smaller than in the ATM-103 fuel pellet design. The fuel pellet certification data for Assembly BT03 are shown in Table 4.1. All ATM-106 fuel rods are clad with Zircaloy-4 tubing fabricated by Sandvik Special Metals, Lot Numbers 54028 and 54027. Cladding certification data are listed in Table 4.2.

In fabricating the fuel rods, the pellet stacks were laid out on a V-trough. The stacks were weighed and the stack lengths measured. The pellet stacks were then dried in a vacuum furnace and cooled in a flowing helium atmosphere. An Al_20_3 spacer was added to each stack at the top and bottom, and the stacks were loaded into the Zircaloy-4 tubes with bottom end caps already welded on. The tubes were then closed with temporary caps to minimize exposure to the environment prior to welding the upper end caps. The plenum springs and permanent upper end caps were inserted, the rods were pressurized with 95% helium-5% argon to 3.1 MPa (450 psi), and the end caps were welded. The end cap welds were made using a magnetic force welding machine, which provides for pressurizing the rods to the required level.

Only 20 rods from Assembly BT03 were obtained by the MCC. The locations of the 20 rods during irradiation in Assembly BT03 are shown in Figure 4.3. To facilitate their shipment to PNL, the 20 rods were transferred into 20 vacant locations in Assembly D047 (ATM-104) in July of 1985. Rod NBD107, the first ATM-106 rod to receive detailed characterization, was located at position F7 adjacent to the center guide tube of the assembly.

FIGURE 4.2. ATM-106 Pellet and Fuel Rod Dimensions
<u>Chemical Attribute</u>	Fue	<u>el Lot B-2</u>	<u>5-BB Anal</u>	<u>ysis Resul</u>	<u>ts</u>
Total uranium wt%	88.158	88.136	88.136	88.142	88.142
Carbon, ppm	17	23	33	9	15
Nitrogen, ppm	39	41	47	45	48
Fluorine, ppm	<10	<10	<10	<10	<10
Total halides, ppm	<20	<20	<20	<20	<20
Iron, ppm	<45	<45	<45	<45	<45
Silver, ppm	<1	<1	<1	<1	<1
Calcium, ppm					
Aluminum, ppm	<115	<115	<115	<117	<132
Silicon, ppm					
O:U ratio	2.00	2.00	2.00	2.00	2.00
Mass spec. analysis			2.453% U-	235	
Density		1	0.05-10.3	0 g/cm ³	
Grain size		2	5μm		

TABLE 4.1. ATM-106 Fuel Pellet Certification Data

1

.....

<u>TABLE 4.2</u> .	ATM-106 Fuel	Rod C	ladding C	ertificati	on Data	
Fuel Assembly: BTO3 CL	ROD LOT: ADDING LOT:	NBC 54028	C	ROD LOT LADDING LOT	: NBC/NB : 54027	D
<u>Tensile Properties</u>						
Room UTS, psi 0.2% YS, psi Elong. 2 in., % 750°F UTS, psi 0.2% YS, psi Elong. 2 in., %	98500 74300 23.2 52200 36600 29.8	97900 73900 24.4 50000 32600 34.4		89000 64500 27.9 48200 32000 31.8	97300 69700 24.8 52700 36500 29.2	
<u>Burst Test</u> (closed end	l with mandrel	l at ro	om tempe	rature)		
Pressure, psi Circ. elong., %	16300 20.1	16000 34.7		15100 45.3	15900 22	
<u>Hydride Orientation</u>						
OD Fn Mid ID	0.06 0.04 0.02	0.07 0.06 0.02		0.05 0.02 0.03	0.08 0.01 0.02	
<u>Corrosion Test</u> (3 day,	750°F steam)				
Sample wt/dm ² Color Std. wt/dm ² Std. No.	17.2 Slightly 12.5 41	16.7 Gray 13.5 46	13.8 55	15.3 Slightl 12.5 41	17.6 y Gray 13.5 46	13.8 57
<u>Chemical Analysis</u> , ppn	1					
Hydrogen Nitrogen Oxygen Carbon	12 38 1260 151	13 45 1230 160		12 41 1280 141	10 45 1220 133	
<u>Grain Size</u>						
Long. ASTM Trans. ASTM Recrystallization	11.5 12.0	11.0 12.0		11.5 12.0	11.5 12.0	
Data	1100°F, 45	min		1100°F, 4	15 min	
<u>Surface Roughness</u>						
OD, RMS, microinch ID, RMS, microinch	12 12	10 20		14 16	12 16	

.

..3. Locations of Twenty Rods in Assembly BT03 (characterized rods denoted in highlighted boxes)

٠

4.2 IRRADIATION AND HANDLING HISTORY

The position of Assembly BT03 in the core during each cycle of irradiation is shown in Figure 4.4. Assembly BT03 was irradiated in Cycles 1, 2, 3, and 4 of operation of CC-1 between October 7, 1974, and October 18, 1980 (see Figure 4.5). The core thermal power rating at CC-1 was 2560 MWt from beginning-of-life (BOL) until midway through Cycle 2 (September 9, 1977) when a new license was issued to increase the power rating to 2700 MWt. Except for a period of about 5 months at reduced power during Cycle 4, the reactor operated at essentially full power during Cycles 1, 2, 3, and 4.

The CC-1 contains a total of 217 fuel assemblies. The linear heat generation rates (LHGRs) given in Figure 4.5 are averages for the entire core. The LHGRs for specific fuel rods vary significantly from average LHGRs. This is a typical effect of loading fresh fuel at the beginning of each cycle and moving the fuel assemblies to different core locations to optimally utilize the fissile fuel and maintain the required power distribution across the reactor core. As an example, the core-average LHGR was relatively constant at about 20 kW/m (6.1 kW/ft) during Cycles 1, 2, 3, and 4, but the average LHGR in Rod NBD107 ranged from a high of about 24 kW/m (7.3 kW/ft) at the beginning of Cycle 1 to a low of about 16 kW/m (4.8 kW/ft) at the end of Cycle 4. The power history specific to Rod NBD107 in Assembly BT03 is shown in Figure 4.6 and is approximated in tabular form in Appendix A.

Following discharge, Assembly BT03 was stored in the fuel storage basin at CC-1. In July of 1985, 20 rods were transferred to vacant positions in Assembly D047, which was loaded into a National Assurance Corporation NLI-1/2 cask in September 1985 and shipped dry to PNL. Since that time, Assembly D047 has been stored in air in B-cell of the 324 Building. There have been no unusua] incidents associated with these fuel rods. Seven rods (see Table 4.3) were removed from the assembly in August 1986 and transferred to D-cell, 324 Building, where the intact fuel rods were stored in air at an ambient cell temperature of ~25°C. These rods are being characterized by the MCC (see Sections 4.3 through 4.8) and are available for use in the repository testing program (see Section 5.0).

FIGURE 4.4. Core Map Showing the Location of Assembly BT03 (ATM-106) in Calvert Cliffs No. 1 for Cycles 1, 2, 3, and 4

Ê	Cvcle 1	Cycle 2	Cycle 3	Cycle 4	
Power, % (2560 MW 0					_
	1974 1975 1976	1977	1978 19 	79 1980	
	Dates	Cycle 1	Cycle 2	Cycle3	Cycle 4
	Beginning of Cycle End of Cycle	10-7-74 12-31-76	3-22-77 1-22-78	4-3-78 4-20-79	7-10-79 10-18-80
	Burnups and Powers				
	Cycle average Burnup at Shutdown, GJ/kgM (MWd/kgM)	1469 (17.0)	717 (8.3)	821 (9.5)	1011 (11.7)
	Accumlative BTO3 Assembly Average Burnup, GJ/kgM (MWd/kgM)	1680 (19.4)	2340 (27.1)	2950 (34.1)	3650 (42.7)
	Cycle Average Linear Heat Generation Rate, kW/m (kW/ft)	19.99 (6.093)	19.97 (6.086) 21.06 (6.419*)	20.37 (6.209)	20.37 (6.209)

*After Increase to Stretch Power

FIGURE 4.5. Calvert Cliffs No. 1 Operating History

Cycle No.	1	2	3	4
Start./End of Cycle	10-7-74/12-31-76	3-22-77/ 1-22-78	4-3-78/ 4-20-79	7-10-79⁄ 10-18-80
Cycle Duration	~24 months	~10 months	~12.5 months	~15 months
Cycle Burnup MWd/kgM	19.67	7.70	6.72	8.23
Cumulative Burnup MWd/kgM	19.67	27.37	34.09	42.32

FIGURE 4.6. Power History for Rod NBD107 from Assembly BT03

<u>TABLE 4.3</u> .	Initial ATM-106 Fuel Rods to be Characterized and	t
	and Used in Repository Project Testing Program	

<u>Rod Number</u>	Rod Location(a)	Comments
NDB040	G6	Gamma scanned and fission gas sampled only. Described in this report.
NBD066	18	Gamma scan reference rod.
NBD095 NBD106	G7 H6	One of these rods may receive in- depth characterization (pending results of gamma scans/fission gas sampling. NBD095 gamma scan and fission gas data reported.
NBD107	F7	Detailed characterization of this rod described in this report.
NBD131	M4	Detailed characterization in progress for this rod.
NBD133	Н9	To be gamma scanned and fission gas sampled only.

(a) Locations refer to Figure 4.3.

1

4.3 GAMMA_SCANNING RESULTS

Each fuel rod was gamma scanned axially using a germanium-lithium gamma ray detector. Details on the gamma scanning equipment and procedure are provided in Appendix B. The same counting geometry, counting equipment, analyzing equipment, and data storage equipment were used for each measurement. This system is the same system used to measure the gamma activity in the ATM-103 fuel rods (Guenther et al. 1988). As in the gamma scans for other MCC spent fuel rods, the gamma scans for standard rods in ATM-106 are preceded and followed by gamma scans of short portions of a reference rod. The reference rod for ATM-106 is Rod NBD066.

Initial spectral counting of the high-activity regions of the reference Rod NBD066 showed significant gamma ray peaks at 605 KeV (134 Cs), 662 KeV (137 Cs), and 796 KeV (134 Cs). The activity was sufficient to provide adequate counting statistics. A 60 Co signal was also detected during gamma

scanning because a sample of this material is placed in the detection system as a reference point. The detailed results of the gamma scanning are provided in Appendix B for Rods NBD040, NBD066, NBD095, and NBD107.

The gamma scanning procedure requires the measurement of the as-irradiated fuel rod length from one end cap to the other. The as-measured fuel rod lengths are summarized in Table 4.4 for the four ATM-106 rods that have been gamma scanned. These rod lengths compare very well with the fuel rods in ATM-103 and may be compared with the nominal design length of 3.73 m (147 in.).

The 137 Cs gamma activity along the fuel rod length is shown in Figures 4.7 and 4.8 for Rods NBD040 and NBD107, respectively. These two rods were irradiated next to each other on adjacent sides of the central guide tube of Assembly BT03 (see Figure 4.3). The 137 Cs gamma scan for Rod NBD040 is similar to those seen for ATM-103, even though the ATM-106 fuel was expected to have had high fission gas release, i.e., greater than 10%, with an EOL burnup of about 43 MWd/kgM. The dips in cesium activity in Figure 4.7 indicate pellet/pellet interfaces that are on a spacing equivalent to the pellet length of 16.5 mm (0.65 in.). The location of the grid spacers along the fuel rod are also obvious from the approximately 5% decrease in activity at regular intervals along the fuel rod. The slight increase in activity near the ends of the fuel rods is a common result of neutron streaming at the fuel rods ends where the neutron flux peaks near the region containing a larger percentage of moderator, i.e., water. A small portion of the data near the middle of the rod was affected by an electronic shift and has been omitted from the plot in Figure 4.7. Except for differences in the peak average 137 Cs activity, the gamma scan for Rod NBD040 is very similar to those for the ATM-103 fuel rods.

In stark comparison, definite cesium movement occurred in Rod NBD107, as indicated by the major spikes and dips in the activity along the fuel rod near both the upper and lower ends of the fuel rod. The gamma scan of the central region of the rod is more regular, indicating slight decreases in activity on intervals equal to the pellet length. The ceramographic examination of fuel from this region of normal cesium activity does indicate that

Fuel Rod Number	As-Irradiated Fuel Rod Length, m (in.)
NBD040	3.757 ±0.003 (147.9 ±0.2)
NBD066	3.759 ±0.003 (148.0 ±0.2)
NBD095	3.757 ±0.003 (147.9 ±0.2)
NBD107	3.754 ±0.003 (147.8 ±0.2)

TABLE 4.4. Fuel Rod Lengths Measured During Gamma Scanning

FIGURE 4.8. Spectral Gamma Scan for ¹³⁷Cs - Rod NBD107

the fuel experienced significant grain growth and fission gas agglomeration along the grain boundaries (see Section 4.5).

An expanded view of the 137 Cs activity in a selected portion of Rod NBD107 is shown in Figure 4.9 to highlight the differences in cesium behavior. One portion of fuel rod appears to have had little cesium movement, while only 40 cm (16 in.) away another portion of the fuel rod exhibits as much as 10% higher 137 Cs activity. The increase in cesium at the midplane of a fuel pellet requires that there be a depletion of cesium at the pellet/ pellet interfaces, at a mid-pellet transverse crack, or at another part of the fuel rod, i.e., the cesium could move from the generally hotter central region of the fuel rod to the cooler ends of the fuel rod. The increase in cesium activity appears to occur at pellet/pellet interfaces and near the middle of the pellets. The release of cesium and its subsequent movement are

١

Portion of Rod NBD107

typical indications of a thermal feedback mechanism in which the escaping fission gas degrades the thermal conductivity of the gas in the fuel/cladding gap. This behavior causes the fuel temperature to increase, followed by a further increase in fission gas release, etc. Thermal feedback requires a minimum combination of fuel temperature, fission gas production, and fission gas release before it becomes significant. The observed differences in apparent cesium release at the bottom and top of the rod may be partly due to differences in mixing of the released fission gas with the gas in the fuel/ cladding gap at the bottom of the rod and the large reservoir of gas in the plenum at the upper end of the rod.

4.4 FISSION GAS ANALYSES

The amount of fission gas release and the subsequent composition of the gas in the fuel rod void space can appreciably affect the fuel temperatures during reactor operations. This in turn can have an effect on the final

characteristics of the spent fuel by increasing grain size, promoting additional fission gas release, and changing the distribution of some fission products within the fuel. The extent of this effect depends on the initial gas composition, initial fuel characteristics, power history, and final burnup. Fission gas analyses were made on the gas from Rods NBD040, NBD095, and NBD107 to determine the release of fission gas from within the fuel. The fission gas release was expected to be 10% or greater based on data provided by C-E. The procedures for gas sampling, void volume measurement, and determination of the gas volume are described in Appendix C. Results are provided below for the elemental and isotopic gas analyses, measurement of the ¹⁴C in the gas, and calculated fission gas releases.

4.4.1 Elemental and Isotopic Gas Analyses

Analyses were conducted on gas samples from three ATM-106 rods to determine the components of the gas in the rods, the amounts of the xenon and krypton isotopes, and the amount of 14 C in the gas.

Elemental Gas Analyses

The results of the elemental gas analyses for the ATM-106 rods are listed in Table 4.5. These data were obtained using a mass spectrometer. The primary components of the gas samples were helium and argon, the gases used to pressurize the rods during fabrication, and the fission gases xenon and krypton (see Table 4.5). The gas in the ATM-106 rods has substantially greater percentages of xenon and krypton than in either the ATM-101 (Barner 1985) or ATM-103 rods (Guenther et al. 1988). There were no significant indications of air in the ATM-106 fuel rods. Based on the gamma scan for rods that were sampled for fission gas, the lowest release was expected in Rod NBD040 and the highest release in Rod NBD107.

TABLE 4.5. Gas composition for Alm-100 ruel Rous, vo	TABLE	4.5.	Gas	Composition	for	ATM-106	Fuel	Rods.	Vo
--	-------	------	-----	-------------	-----	---------	------	-------	----

Rod No.	He	Хе	Kr	Ar	H 2	C0 2	C0	N 2	0	Organics	Xe-Kr Ratio
NBD040	90.6	4.18	0.47	4.64	<0.01	<0.01	<0.05	0.05	0.02	<0.01	8.9
NBD095	76.8	17.97	1.84	3.38	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	9.8
NBD107	72.1	22.64	2.58	2.70	<0.01	<0.01	<0.02	0.02	<0.01	<0.01	8.8

The average xenon/krypton ratio of about 9.2 for the three ATM-106 rods compares reasonably well with the average value of 9.0 for the ATM-101 rods and 9.0 for the single ATM-103 rod. Assuming a 40 MWd/kgM average burnup and a 6.5-year discharge time, ORIGEN2 calculations described in Section 4.6 result in a xenon/krypton ratio of 10.5. The ratio of xenon and krypton measured in the gas sampled from the ATM-106 rods is about 12% lower than the predicted value.

Xenon and Krypton Isotopes in the Gas

The amounts of xenon and krypton gas recovered from each rod were evaluated in two ways. First, the volume percentages of the total rod gas were determined for xenon isotopes and krypton isotopes; the total rod gas includes the original fill gases plus any gases released to the rod void as shown in Table 4.5. Second, the relative amounts of the various isotopes that make up the total xenon or krypton gas were determined and compared with the calculated values.

The isotopic gas analyses for xenon and krypton as a percentage of the total rod gas are given in Tables 4.6 and 4.7, respectively. As indicated in Tables 4.6 and 4.7, the volume percentage of both xenon and krypton increased as expected based on the gamma scanning results.

			Volume Pe	ercentage		
<u>Rod No.</u>	¹²⁸ χe	¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³⁴ Xe	¹³⁶ Xe
NBD040	<0.01	0.01	0.24	0.96	1.19	1.78
NBD095	0.01	0.07	0.86	4.26	5.03	7.74
NBD107	0.02	0.08	1.17	5.28	6.35	9.74

TABLE 4.6.	Percentages	of	Xenon	Isotopes	in	Total	Rod	Gas
	J							

TABLE 4.7. Percentages of Krypton Isotopes in Total Rod Gas

		Volum	<u>e Percenta</u>	age	
<u>Rod No.</u>	82 _{Kr}	⁸³ Kr	⁸⁴ Kr	85 _{Kr}	86 _{Kr}
NBD040	<0.01	0.04	0.17	0.02	0.24
NBD095	<0.01	0.16	0.65	0.07	0.96
NBD107	0.01	0.25	0.88	0.10	1.34

The relative amounts of the isotopes of the xenon or krypton measured in the rod gas are given in Tables 4.8 and 4.9, repectively. The relative amounts of the different isotopes of xenon and krypton estimated by using the ORIGEN2 code (see Section 4.6) assuming a discharge time of 6.5 years and 40 MWd/kgM burnup are also listed in Tables 4.8 and 4.9. The relative amounts predicted using ORIGEN2 are very close to the measured values.

<u>TABLE 4.8</u> .	Relative	Amounts	of	Xenon	Isotopes	in	Xenon	Gas
--------------------	----------	---------	----	-------	----------	----	-------	-----

	Relative Volume Percentage						
Rod No.	¹²⁸ χe	¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³⁴ Xe	136 _{Xe}	
NBD040	(a)	0.2	5.7	23.0	28.5	42.6	
NBD095	0.1	0.4	4.8	23.7	28.0	43.1	
NBD107	0.1	0.4	5.2	23.3	28.0	43.0	
Predicted ^(b)	0.1	0.4	7.2	22.0	27.4	43.0	

(a) Assumed to be essentially zero for calculating relative percentages of xenon (See Table 4.6).

(b) Relative amounts of xenon isotopes predicted by ORIGEN2 (See Section 4.6) assuming a burnup of 40 MWd/kgM and 6.5-y-discharge.

<u>TABLE 4.9</u>. Relative Amounts of Krypton Isotopes in Krypton Gas

		Relative	Volume	Percentage	
Rod No.	⁸² Kr	⁸³ Kr	⁸⁴ Kr	⁸⁵ Kr	⁸⁶ Kr
NBD040	(a)	8.5	36.2	4.3	51.1
NBD095	(a)	8.7	35.3	3.8	52.2
NBD107	0.4	9.7	34.1	3.9	51.9
Predicted ^(b)	0.4	10.4	33.3	3.8	52.0

- (a) Assumed to be essentially zero for calculating relative percentages of krypton (See Table 4.7).
- (b) Relative amounts of krypton isotopes predicted by ORIGEN2 (See Section 4.6) assuming a burnup of 40 MWd/kgM and 6.5-y-discharge.

Carbon-14 in the Gas

The ¹⁴C content in the gas removed from the three ATM-106 rods was determined by collecting the gas containing carbon, converting it to CO_2 , trapping the CO_2 in a caustic solution, and measuring it by beta-scintillation analysis. The amounts of ¹⁴C in the gas from the ATM-106 fuel rods are listed below.

Rod Number	¹⁴ C, nCi/cm ³ at STP
NBD040	<0.0007
NBD095	0.0038
NBD107	<0.011

The measured ¹⁴C content in the gas sample from Rod NBD095 was the only one for ATM-106 that was above the detection level; the detection level varies from rod to rod depending primarily on the volume of the gas sample and the measurement system background level. If the highest ¹⁴C level is assumed to be 0.011 nCi/cm³ for ATM-106, then the ¹⁴C level is comparable to the value measured for one ATM-103 rod (Guenther et al. 1988) and only about 1% of the average measurements for the nine ATM-101 fuel rods (Barner 1985). The ATM-101 fuel rods were believed to contain a small amount of residual nitrogen in the fill gas that activated to ¹⁴C.

4.4.2 Fission Gas Release

Fission gas release in the three ATM-106 rods ranged between 1.4% and 11.2%. These values were obtained assuming 1) 31.0 cm³ of fission gas was generated for each MWd of burnup at standard temperature (0°C) and pressure (0.1 MPa, 1 Atm.) (SSA 1982), 2) data in Table 4.10, and 3) the rod-average burnup of 3664 GJ/kgM (42.32 MWd/kgM) provided by C-E. The measured rod void volumes varied between 19.9 and 25.4 cm³ based on the sampling described in Appendix C. The as-fabricated void volume was estimated to be 27 cm³. Any errors in the measured EOL void volume contribute very little error in estimating fission gas release because the fuel rod void volume is only a small fraction of the total measuring system gas volume at standard temperature and pressure. Based on these calculations, the fission gas releases for the ATM-106 fuel rods are all higher than for the rods from ATMs 101 and 103.

Rod <u>Number</u>	Total Recovered Gas at <u>STP, cm³</u>	Xe + Kr, 	Volume of Xe + Kr at <u>STP, cm³</u>	Rod-Average Burnup, <u>MWd/kgM</u>	Estimated Fission Gas <u>Produced, cm³</u>	Fission Gas <u>Released, %</u>
NBD040	874	4.65	40.6	42.32	2941	1.4
NBD095	1098	19.81	217.5	42.32	2941	7.4
NBD107	1300	25.22	327.9	42.32	2941	11.2

TABLE 4.10. Fission Gas Release Information for ATM-106 Fuel Rods^(a)

(a) Fuel weight in each rod was 2.242 kgM.

The measured fission gas releases are consistent with the different levels of apparent cesium movement noted in Section 4.3 for the four ATM-106 fuel rods. Although the actual fuel operating conditions that caused these different cesium releases are not known, the fission gas analyses for three of the ATM-106 fuel rods can be used to obtain a rough visual correlation between cesium movement and fission gas release. Figure 4.10 is a composite of four ¹³⁷Cs gamma scans for Rods NBD040, NBD066, NBD095, and NBD107. The fission gas release calculated for three of these rods (the reference Rod NBD066 was not punctured) are indicated on their respective figures. For Rod NBD040, which did not exhibit any cesium movement, the fission gas release is ~1.4%. For Rod NBD095, with cesium movement apparent in only the lower half of the fuel rod, the fission gas release is ~7.4%. Finally, Rod NBD107 evidenced significant cesium movement over major portions near both ends of the rod. The calculated release was about 11.2%. Based on these results, the fission gas release in Rod NBD066 is probably about 4%. If a correlation such as inferred in Figure 4.10 can also be tied to actual chemical analyses of fuel and cladding samples, then a method of estimating the gap inventory of volatile nuclides may be possible for similar fuel rods that have gamma scan and fission gas release data.

4.5 <u>CERAMOGRAPHIC/METALLOGRAPHIC EXAMINATIONS</u>

Selected fuel samples were sectioned from Rod NBD107 for ceramographic examination of the irradiated fuel, metallographic examination of the irradiated cladding at the same location, and alpha and beta-gamma autoradiography 「「「」」

.

4.22

199

12

of each sample. These fuel samples were taken in coordination with several other samples for radiochemistry, transmission electron microscopy, distribution to experimenters, and archiving. The sectioning was based on the results of the 137Cs gamma scan and the desired number and types of examinations for this fuel (Figure 3.1).

4.5.1 Fuel Rod Sectioning and Sample Selection

After gamma scanning and fission gas sampling, a sectioning diagram was prepared for Rod NBD107. The sectioning was based on the characterization plan and the results of a 137 Cs gamma scan of the entire length of Rod NBD107. The sectioning diagram was provided to representatives of the repository project for review prior to sectioning.

The sections used for radiochemical, ceramographic, and metallographic analyses were 0.6 to 2.5 cm (0.25 to 1.0 in.) in length. Each sample was designated with an alpha-numeric symbol in the order of sectioning from the top of the fuel rod. Detailed descriptions of the fuel sections, their lengths, and locations in the fuel rod are given in Appendix D. Additional details on the sectioning process are also given in Appendix D.

Five transverse and three longitudinal fuel sections were taken from Rod NBD107 as indicated in Figure 4.11 to provide detailed ceramographic/metallographic characterization across the fuel radius and at fuel axial locations with a variety of cladding temperatures and fuel burnups. The fuel sections taken from the low-power regions of the fuel rod also provide information on as-fabricated fuel data such as grain size and porosity. Representative results obtained to date of the fuel ceramography (Section 4.5.2) and cladding metallography (Section 4.5.3) conducted on Rod NBD107 of ATM-106 are discussed below. Photographic details of all samples are provided in Appendix E.

4.5.2 Ceramography of ATM-106 Fuel

ļ

The fuel sections obtained from Rod NBD107 were used to characterize porosity and microstructural variations as a function of radial position and axial location. The general cracking pattern, porosity in the fuel, wedging of small fuel particles between fuel fragments and in the gap, and as-irradiated gap width are of interest and can be observed in the

<u>FIGURE 4.11</u>. Locations of Ceramographic/Metallographic Samples from Rod NBD107

as-polished transverse and longitudinal samples. The cracking pattern and gap width are of interest in calculating in-reactor temperatures. The number of fuel fragments/pieces and their sizes can be used to estimate the surface area of the fuel. Fission gas bubble size and distribution, metallic ingots, and grain size variations are also of interest. The grain size variations are particularly observable after etching the fuel samples. The number and size of fission gas bubbles is best observed in the as-polished condition; however, etching is useful in determining the location of the fission gas bubbles. The formation of fission gas bubbles and grain growth correlate with higher fuel temperatures and migration of fission products. The metallic ingots (also called five-metal particles) are typically seen only near the fuel center, if at all, in fuel with moderate to high operating temperatures. Details are given below for the macrophotography and microphotography of the fuel in the as-polished and as-etched conditions.

Both the transverse and longitudinal fuel samples were prepared for examination by placing them in mounts followed by vacuum impregnation with polyester resin. The mounts included a reference notch so that highmagnification photographs of the as-polished and etched samples could be taken along approximately the same radial line. After grinding the mounted fuel with up to a 600 grit in a water-base lubricant, the samples were polished with a 1- μ m diamond paste using kerosene. A final polish was then made in a 0.3- μ m Al₂O₃ aqueous suspension.

<u>As-Polished Fuel Condition</u>

Several features of interest were investigated using the as-polished fuel samples: 1) crack patterns, 2) variations in porosity of the fuel, and 3) metallic ingot formation. These features are discussed below.

<u>Crack Patterns</u>. The as-polished transverse and longitudinal samples of fuel sectioned from the peak-power region of Rod NBD107 are shown in Figures 4.12 and 4.13, respectively. Sample 106-NBD107-P (a transverse sample) is highly fragmented. There are four to five relatively wide-gapped cracks approximately the length of the fuel radius intersecting at various locations in the fuel. Randomly-oriented shorter cracks intersect the longer cracks at various angles. In addition, nonintersecting shorter cracks approximately

FIGURE 4.12. Photomacrograph of As-Polished Transverse Sample 106-NBD107-P from the Peak-Power Region (~10x) (Neg. No. 8704675-20) (Note: Photo taken at an oblique angle to fuel surface)

0.6 to 0.8 mm (0.02 to 0.03 in.) in length are present. The majority of cracks intersecting the outer fuel edge are approximately normal to this edge.

As-polished longitudinal Sample 106-NBD107-0 (also taken at the peakpower region adjacent to the previously described transverse section) has several cracks intersecting along the fuel center axis of the longitudinal sample. Multiple transverse cracks, extending from the central axial cracks to the outer pellet edge, intersect the outer edge of the fuel at random angles. Although the fuel is highly fragmented, negligible numbers of fuel particles relocated into the dish region or the fuel/cladding gap. The ATM-106 fuel sample from Rod NBD107 at the peak-power region is similar to samples taken from the peak-power regions of ATM-101 (Barner 1985) and ATM-103 (Guenther et al. 1988).

<u>Porosity Variation</u>. Porosity in the fuel consists of macropores that are generally greater than 50 μ m in size and micropores of less than 4 μ m in diameter. The macroporosity is observable under low magnification and is

4.26

H.

formed during fue and irrad ation a nification. Spec the ATM-106 fuel

and 4.13) reveal examined from ei pores that áré gr iarger than those

Photomicrographic at four radial poto edge at a give parison of radial fraction gas bubb agglomeration of peratures from the of the rod that o ure 4.14), a peak

sample 100and low concentr from the fuel ce pores appears to in Sample 105-NB former during fu

power Samples 10 ple 106-NBD107-C

ruel fabrication 1 under high mag icroporosity for

107 (Figures 4.12 ved for samples 03). The macroe significantly ATMs

mai fuel samples ity from center position form ting changes in sing fuel temasing fuel temomparisons are e from a region wer (Fig

elatively uniform 4 µm in diameter) htration of small res are observed tion of a pore

> sent to peak bower Sam: ètor is rresen

FIGURE 4.13.

Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-0 from the Peak-Power Region (~10x) (Neg. No. 8704675-15) (Note: Photo taken at an oblique angle to fuel surface) formed during fuel fabrication. Microporosity results from fuel fabrication and irradiation and is observable in photos taken of the fuel under high magnification. Specific information on the macroporosity and microporosity for the ATM-106 fuel is given in the following paragraphs.

The photomacrographs of peak-power samples from Rod NBD107 (Figures 4.12 and 4.13) reveal significantly less macroporosity than observed for samples examined from either Rod N9-C (ATM-101) or Rod MLA098 (ATM-103). The macropores that are present in the ATM-106 samples from NBD107 are significantly larger than those present in samples examined from the other ATMs.

Photomicrographs were taken of transverse and longitudinal fuel samples at four radial positions to determine the variation in porosity from center to edge at a given axial location and as a function of axial position. Comparison of radial photomicrographs provides a means of detecting changes in fission gas bubble size, porosity concentration and distribution, and the agglomeration of fission products that may result from increasing fuel temperatures from the edge to the center of the fuel pellet. Comparisons are made between the as-polished condition of a transverse sample from a region of the rod that operated at approximately 56% of the peak power (Figure 4.14), a peak-power transverse sample (Figure 4.15), and a peak-power longitudinal sample (Figure 4.16).

Sample 106-NBD107-C from the lower-power region has a relatively uniform and low concentration of rounded microporosity (up to about 4 μ m in diameter) from the fuel center to 2/3 radius (Figure 4.14). The concentration of small pores appears to increase near the fuel edge. A few macropores are observed in Sample 106-NBD107-C and are probably a result of the addition of a pore former during fuel fabrication.

A significantly higher concentration of porosity is present in peakpower Samples 106-NBD107-0 and 106-NBD107-P than in the low-power Sample 106-NBD107-C. Rounded porosity up to about 5 μ m in diameter is present from the centerline to 1/3-radius positions in Samples 106-NBD107-O and 106-NBD107-P. The amount of porosity with diameters above 2 μ m substantially decreases as the distance from the center increases; the majority of porosity beyond 1/3-radius is $\leq 2 \mu$ m in diameter. A substantial amount of elongated porosity is present in both samples and is concentrated at the fuel

1

I

C

C

FIGURE 4.14. Photomicrographs of As-Polished Transverse Sample 106-NBD107-C from a Region at Approximately 56% of Peak Power

c) 2/3 Radius (Neg. No. P-2766)

1

FIGURE 4.15. Photomicrographs of As-Polished Transverse Sample 106-NBD107-P from the Peak-Power Region

center to 1/3-radius region. Neglecting the large voids (that are believed to be due to grain pullout), the elongated porosity is up to 10 μ m on edge. These elongated pores located at the grain boundaries are indicative of fission gas formation because their size and number increase from 1/3-radius towards the center.

In addition to the fission gas bubbles indicated in the center and midradius regions of the fuel in Samples 106-NBD107-0 and 106-NBD107-P, there is a distinct increase in small (~1- to $5-\mu m$) pores within a few hundred micrometers from the fuel edge (Figures 4.15.d and 4.16.d). This increase in porosity at the fuel edge, or rim, has been noted by Pati, Garde, and Clink (1988) and is related to the significantly higher fission rate near the fuel edge than across most of the fuel radius. This rim effect is reported in fuel with pellet-average burnups of greater than 40 MWd/kgM even if there is low fission gas release. For the peak-power samples from Rod NBD107, the outer rim probably has a burnup of about 70 MWd/kgM based on unpublished EPMA data for ATM-104, preliminary EPMA data for this rod, and measured burnups for this rod (see Section 4.7.1). In addition, EPMA of the ATM-104 fuel indicates substantial depletion of xenon in the rim region, which was also observed by Pati, Garde, and Clink (1988). The existence of this thin, porous outer rim will probably be important to the understanding of repository condition leach rates for high-burnup fuel with generally low fission gas release. Although a 200- μ m rim is small, such a porous region is equivalent to about 8 percent of the pellet volume. The rim region is being investigated in detail.

<u>Metallic Ingot Formation</u>. If sufficient burnup and fuel temperatures are attained, metallic ingots, also called five-metal particles, large enough for observation by optical microscopy can form in the fuel. These particles are made of the -ruthenium phase that contains molybdenum, ruthenium, technetium, palladium, and rhodium. When seen, the ingots appear as bright white spots as shown in Figure 4.17 for the central fuel region of peak-power Sample 106-NBD107-Z. The concentration of the metal ingots is much higher than in the ATM-103 fuel with low fission gas release, particularly for highpower samples in Rod NBD107 where substantial cesium movement occurred as

p near the middle pear Down es for other fuel ion in grain size

ntercept method ted in are plotted in

180107-C from the is believed to be Euel because neg no grain growth

FIGURE 4.17. Example of Metallic Ingots Near Center of As-Polished Transverse Sample 106-NBD107-Z (Neg. No. P-3041)

indicated for Samples 106-NBD107-G, 106-NBD107-Y, and 106-NBD107-Z in Figure 4.11. The number of visible metallic ingots decreases with increasing distance from the center of a sample and drops significantly at positions beyond 2/3 radius.

The metallic ingots are significantly more visible in the peak-power fuel samples from Rod NBD107 than they were in PWR Rod MLA098 (ATM-103). Because higher fission gas release indicates higher operating fuel temperatures, the formation of secondary phases in the ATM-106 fuel is consistent with the considerably higher fission gas release of ~11% determined for Rod NBD107 compared with ~0.25% for Rod MLA098.

As Etched Fuel Condition

ATM-106 peak-power fuel samples were etched using argon ions in a cathode vacuum etcher to determine any grain size variation with radial position and determine if porosity was preferentially located at selected sites, e.g., at grain boundaries, in the grain interior. Examples of the as-etched fuel are provided for a transverse sample from a region at about 56% of peak power (Figure 4.18), a transverse sample from the peak-power region near the middle of the rod (Figure 4.19), and a longitudinal sample from the peak-power region (Figure 4.20). These photomicrographs and similar ones for other fuel samples shown in Appendix E were used to evaluate the variation in grain size and porosity in the fuel of Rod NBD107.

<u>Fuel Grain Size</u>. Grain size was determined using the intercept method (ASTM 1980) on the 250x photomicrographs; results are presented in Table 4.11. The intercept grain sizes listed in Table 4.11 are plotted in Figure 4.21 as a function of the fuel radial position.

Essentially no grain growth was detected in Sample 106-NBD107-C from the low-power region. The true grain size is ~6.9 μ m, ^(a) which is believed to be representative of the as-manufactured grain size in ATM-106 fuel because negligible growth is expected near the fuel edge and there was no grain growth across the fuel at this location. The fuel design specified grains $\geq 5 \mu$ m. A significant increase in grain size is apparent near the fuel center and 1/3 radius positions of high-power samples from Rod 106-NBD107. True grain size near the fuel center ranged from 6 to 16 μ m, compared with the outer pellet edge grain sizes of 6 to 9 μ m, indicating grain growth as high as 116% (See Table 4.11).

Sample 106-NBD107-Z had greater grain growth at the 1/3-radius and 2/3-radius locations than at the fuel center. However, the gamma scan data suggest more cesium release in the region of Sample 106-NBD107-Z (See Figure 4.11) than in other peak-power locations, and beta-gamma autoradiography of this sample (See Section 4.5.4) suggests an asymmetric fission product distribution that is consistent with slightly lower grain growth at the fuel center than at the 1/3-radius locations. The photomicrographs used to obtain the grain growth in this sample were taken on a radial line from the fuel edge across a large crack perpendicular to the fuel radius (See Appendix E). This crack could have created a heat transfer barrier that caused the

⁽a) True grain size is determined by multiplying the grain size obtained using the intercept method by 1.57 (ASTM 1980). This corrects for the grains that appear smaller in the ceramographic section than they really are because sectioning does not show the true grain size of all grains.

IGURE 4.18. Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-C from a Region at Approximately 56% of Peak Power

ļ

- c) 2/3 Radius (Neg. No. P-2938)
- d) Edge (Neg. No. P-2937)

b) 1/3 Radius (Neg. No. P-2935)

c) 2/3 Radius (Neg. No. P-2934)

d) Edge (Neg. No. P-2933)

FIGURE 4.20. Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-0 from the Peak-Power Region

	Grain Size, µm									
Sample ID	Center		1/3 Radius		2/3 Radius		Edge			
	Intercept	True	Intercept	True	Intercept	True	Intercept	True		
106-NBD107-C	4.3	6.8	4.8	7.5	4.4	6.9	4.1	6.4		
106-NBD107-G	8.6	13.5	6.9	10.8	5.6	8.8	4.2	6.6		
106-NBD107-0	7.6	11.9	7.7	12.1	5.4	8.5	4.4	6.9		
106-NBD107-P	8.7	13.7	7.6	11.9	5.5	8.6	4.9	7.7		
106-NBD107-Y	10.3	16.2	7.9	12.4	5.9	9.3	4.8	7.5		
106-NBD107-Z	9.1	14.3	10.0	15.7	9.0	14.1	4.7	7.4		
106-NBD107-KK	9.6	15.1	7.3	11.5	6.0	9.4	5.8	9.1		
106-NBD107-LL	9.2	14.4	7.1	11.2	5.2	8.2	5.6	8.8		

<u>TABLE 4.11</u>. Results of Fuel Grain Size Measurements^(a)

(a) The true grain size equals the intercept grain size multiplied by 1.57.

FIGURE 4.21. Comparison of Radial Variation in True Grain Size of Fuel Samples from Rod NBD107 of ATM-106

apparently asymmetric radial temperture profile in Sample 106-NBD107-Z indicated by the shape of the grain growth curve in Figure 4.21.

In contrast to Rod NBD107, the samples from Rod MLA098 of ATM-103 indicated negligible grain growth at peak-power locations (Guenther et al. 1988) as expected because of the lower discharge burnup and fission gas release than in the ATM-106 rods. The significant grain growth observed in the peak-power region of Rod NBD107 indicates high fuel operating temperatures and is consistent with the high fission gas release of approximately 11%.

<u>Fuel Porosity</u>. The ~2- to $5-\mu m$ diameter pores previously noted for the as-polished fuel samples from Rod NBD107 are present almost exclusively at grain boundaries and grain boundary intersections. Elongated porosity, concentrated primarily near the fuel center is located predominantly at grain boundary intersections. The rounded and elongated pores at the fuel centers are consistent with the formation of fission gas bubbles in this fuel with a rod-averaged fission gas release of ~11%, although some of the elongated

porosity is probably due to grain pullout during the sample preparation steps. Variations in the amount of grain boundary porosity in the fuel samples from Rod NBD107 are consistent with the cesium release indicated by the gamma scan data and by the grain growth measured for these samples. Greater cesium release and fuel grain growth are indicative of higher fuel temperatures. Sample 106-NBD107-C from the upper end of Rod NBD107, where the power was low (about 56% of peak burnup), had essentially no grain growth (Table 4.11), no indication of cesium release (Figure 4.11), and no indication of fission gas bubbles at the grain boundaries near the fuel center (Figure 4.18.a). In contrast, Sample 106-NBD107-KK from the other end of the rod at about 73% of the peak power had about 66% grain growth at the fuel center, indications of cesium release, and grain boundary porosity similar to that in the peak-power Sample 106-NBD107-0, which had about 72% grain growth. Such variations in the distribution of fission products and grain growth are expected to be important to the selection of fuel samples for repository testing.

4.5.3 Metallography of ATM-106 Cladding

Oxide thickness on the interior and exterior cladding surfaces and hydride orientation within the cladding were determined during the cladding examinations conducted on the same mounted samples used for the fuel examinations. Information on the exterior oxide/crud layers is useful in determining the potential for airborne contamination during handling operations and potential interactions with the exterior environment during disposal. The interior oxide layer is of interest for correlating fission product deposits with structural observations in the fuel as possible clues to fission product distributions. Hydride orientations are important to the failure sensitivity of the cladding because of the brittle nature of zirconium hydrides. Selected data obtained on cladding oxide and hydride examinations from Rod NBD107 are provided below. Photographic details of all samples examined are provided in Appendix E.

Cladding Oxide Examinations

Oxide thickness measurements made on as-polished cladding samples are listed in Table 4.12. The interior cladding surfaces of low-power Sample 106-NBD107-KK and peak-power Sample 106-NBD107-0 have relatively uniform
		Oxide Thickness, ^(a) µm (mil)					
			Exterior	Laver		Interior L	ayer
Sample	Axial Location, cm (in.) From Top of Fuel Rod	Average Measured Thickness	Standard Denitration	Observations	Average Measured Thickness	Standard <u>Denitration</u>	Observations
106-NBD107-G	87.0 (34.3)			No examination.	5.4 (0.21)	±2.3 (0.09)	Nonuniform thick- ness, solid. Fuel adhered to oxide. Oxide partly sepa- rated from cladding surface.
106-NBD107-0	206.4 (81.3)	11.1 (0.44)	±2.6 (0.10)	Uniform thickness, layered. Outermost layer spalling.	9.3 (0.37) ^(b)	±4.4 (0.17)	Uniform thickness, solid, some bare cladding.
106-NBD107-Y	232.3 (91.4)	15.4 (0.61)	±1.2 (0.04)	Uniform thickness, layered.	3.5 (0.14)	±1.6 (0.06)	Uniform thickness, solid.
106-NBD107-KK	356.3 (140.3)	4.4 (0.17)	±1.6 (0.06)	Uniform thickness, solid. Notched on outer surface.	3.8 (0.15)	±1.6 (0.06)	Uniform thickness, solid. Fuel adhered to oxide.
106-NBD107-LL	358.0 (140.9)	5.5 (0.22)	±1.4 (0.05)	Uniform thickness, solid. Notched on outer surface.	5.3 (0.21)	±1.4 (0.05)	Uniform thickness, solid. Fuel adhered to oxide.

TABLE 4.12. Oxide Layer Thicknesses on Cladding of ATM-106 Samples

40

×.

(a) Oxide thickness determined from Figures 4.22 and 4.23 and the figures in Appendix E with a minimum of 30 measurements over the length of the photographed region of the sample. Reported range is two standard deviations.

(b) Typical where present.

医酸 的复数

oxide/reaction product deposits as shown in Figures 4.22 and 4.23, respectively. The typical oxide layer thickness on the interior cladding surface varies from 4 to 9 μ m. The uniform deposits on the ATM-106 cladding surface contrast with cladding oxides measured for ATM-103, which had localized reaction products on the relatively bare interior cladding surfaces of peakpower samples and negligible deposits on the low-power samples of Rod MLA098 (Guenther et al. 1988). These high-magnification photos also clearly show the difference in rim porosity near the edges of high-burnup (~46 MWd/kgM) and moderate-burnup (~34 MWd/kgM) fuel.

The oxide thickness on the exterior cladding surface of Rod NBD107 was thicker at the center than at the bottom of the fuel rod. No exterior cladding surfaces have been examined at the top of the rod. Samples examined from near the center of the fuel rod had a multi-layered exterior oxide ranging from approximately 11 to 15 μ m thick (Table 4.12). The outermost oxide layer has separated from the remaining inner layers of Sample 106-NBD107-0, indicating that the deposits are loosely held (Figure 4.23a). The oxide on the cladding exterior surface near the bottom end of the rod formed a single solid layer (Figure 4.22a). The observations of deposits on the exterior cladding surfaces of Rod NBD107 (ATM-106) are similar to samples examined from Rod MLA098 of ATM-103, neither of which had indications of crud deposits.

Cladding Hydride Examinations

The Zircaloy-4 cladding was etched with a 45% HNO₃, 45% glycerin, 10% HF solution to reveal the cladding grain structure. This step was followed by etching with a 45% HNO₃, 45% H₂O₂, 10% HF solution to reveal the hydrides. Hydrides in the cladding near the center of the fuel rod are present primarily in the circumferential/longitudinal planes as shown in Figures 4.24 and 4.25. A significantly greater amount of hydriding is observed in cladding samples from the upper half of Rod NBD107 (Figures 4.26 and 4.27). This increase in hydriding is consistent with the higher cladding oxide thicknesses indicated in Table 4.12. The hydriding level is known to increase with increasing corrosion but also depends on neutron fluence, cladding prefilms, and other factors (Lanning et al. 1984; Johnson and Lanning 1985).

a) Exterior Surface (Neg. No. P-3006)

在 索

12

b) Interior Surface (Neg. No. P-3007)

FIGURE 4.22. Exterior and Interior Cladding Surface of As-Polished Sample 106-NBD107-KK Taken from a Region at about 73% of the Peak Power

a) Exterior Surface (Neg. No. P-2784)

b) Interior Surface (Neg. No. P-2785)

FIGURE 4.23. Exterior and Interior Cladding Surface of As-Polished Sample 106-NBD107-0 from the Peak-Power Region

FIGURE 4.24. Etched Cladding of Longitudinal Sample 106-NBD107-0 from the Peak-Power Region (Neg. No. P-3273)

FIGURE 4.25. Etched Cladding of Transverse Sample 106-NBD107-P from the Peak-Power Region (Neg. No. P-3247)

ļ

FIGURE 4.26. Etched Cladding of Transverse Sample 106-NBD107-C from Approximately 56% of Peak-Power (Neg. No. P-3310)

FIGURE 4.27. Etched Cladding of Transverse Sample 106-NBD107-G from the Peak-Power Region (Neg. No. P-3315)

4.5.4 Autoradiography of ATM-106 Samples

Alpha and beta-gamma autoradiographs of the ion-etched fuel are given in Figures 4.28 through 4.31 for samples from Rod NBD107. The autoradiographs are used to determine the relative distributions of alpha-emitting isotopes and fission products. Kodak LR115 (Type II) film and Kodak SO-343 film were used for the alpha and beta-gamma autoradiographs, respectively.

The alpha autoradiographs for longitudinal Sample 106-NBD107-O and transverse Sample 106-NBD107-P are shown in Figures 4.28 and 4.30. The darker regions of the photographs indicate higher relative activity. The high activity in the alpha autoradiographs at the pellet outer edges indicates the preferential generation of alpha-emitting isotopes such as plutonium, americium, and curium. The neutron flux peaks at the outer edge of the fuel during irradiation, thus producing a relatively higher amount of alphaemitting isotopes. Comparisons of ATM-106 samples with the peak-power ATM-103 samples, which have a lower burnup than in the ATM-106 rod, show similar relative radial distributions of alpha-emitting isotopes.

The beta-gamma autoradiograph of Sample 106-NBD107-0 from the peak-power region indicates fission product migration. This sample was removed from a location in the peak-power region of the fuel rod as indicated in Figure 4.11. The fission product migration is primarily from center to edge as indicated by the lower activity in the central core of the fuel sample, i.e., the lighter regions indicated in Figure 4.29. This region extends from the fuel center to approximately the mid-radius of the fuel, suggesting that the operating temperature at the fuel center was sufficiently high to cause fission product migration towards the cooler outer radial location of the fuel. Preferential migration of fission products along cracks to the fuel pellet edge may also have occurred as indicated by the localized dark regions along some cracks near the outer edges of the fuel. Regions with more beta-gamma emitting material are evident on the outer surfaces of longitudinal Sample 106-NBD107-0. These sites may be at or adjacent to crack openings in the fuel outer surface that are hidden in Figure 4.29 because of the curvature of the fuel pellet. The observed fission product migration correlates with the 11.2% fission gas release from Rod NBD107 and the 75% grain growth in peakpower Samples 106-NBD107-0 and 106-NBD107-P. In contrast, negligible fission

FIGURE 4.28. Alpha Autoradiograph of Longitudinal Sample 106-NBD107-0 from the Peak-Power Region (Neg. No. 5430)

.

1

FIGURE 4.31. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-P from the Peak-Power Region (Neg. No. 5433)

product migration was observed in fuel samples removed from the peak-power region of ATM-103 Rod MLA089, which had only 0.25% release (Guenther et al. 1988). Some of the dark regions at the cracks and surfaces near the fuel edge may result from cesium moving into these regions during sample preparation. This possibility is being evaluated, but no definitive results are available.

Beta/gamma autoradiography of other samples from Rod NBD107 indicates apparently greater fission product release than in Samples 106-NBD-107-0 and 106-NBD107-P even though the samples had similar burnup. These results are consistent with the variability in cesium levels indicated in Figure 4.11 and grain growth indicated in Table 4.11. Comparison of beta-gamma autoradiographs of Samples 106-NBD107-0 and 106-NBD107-P (low ¹³⁷Cs gamma variability) in Figures 4.29 and 4.31 with Samples 106-NBD107-Y and 106-NBD107-Z (high 137 Cs gamma variability) in Figures 4.32 and 4.33 shows these differences. In Samples 106-NBD107-Y and 106-NBD107-Z, the central cores of the fuel appear more depleted of beta/gamma emitting fission products (as indicated by the more distinct boundaries in Figures 4.32 and 4.33) than in Samples 106-NBD107-0 and 106-NBD107-P. A continuous thin region of high beta/gamma activity at the pellet periphery is also evident on Samples 106-NBD107-Y and 106-NBD107-Z. Samples 106-NBD107-O and 106-NBD107-P appear to have less depletion at the central fuel core and localized areas of high activity at the fuel outer radius. Apparently the operating temperatures of peak-power Samples 106-NBD107-Y and 106-NBD107-Z were higher than in peak-power Samples 106-NBD107-0 and 106-NBD107-P. This observation correlates with the average 105% grain growth (from the center to edge) of Samples 106-NBD107-Y and 106-NBD107-Z compared with the average 75% grain growth for Samples 106-NBD107-0 and 106-NBD107-P. The apparent asymmetric radial temperature profile suggested previously in Section 4.5.2 in Sample 106-NBD107-Z is more clearly indicated by comparing the plot of grain growth in Figure 4.33.b with a beta/gamma autoradiograph for this sample in Figure 4.33a. These apparent differences in radial distributions of fission products will be further examined by EPMA.

(NEFE

1 1 1000 µm

FIGURE 4.32. Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-Y from the Peak-Power Region (Neg. No. 5437)

FIGURE 4.33. Comparison of Beta-Gamma Autoradiography and Fuel Grain Growth of Transverse Sample 106-NBD107-Z from the Peak-Power Region

4.6 NUCLIDE INVENTORY AND RADIOACTIVITY CALCULATIONS

Burnup and decay calculations were made with the ORIGEN2 computer code (Croff 1980a, Croff 1980b, Croff et al. 1978) to estimate the nuclide inventories in the fuel and the cladding as a function of exposure and decay times. This information is useful for comparison with the measured values obtained by radiochemical methods. The comparison of measured and predicted values of radionuclides in the fuel and cladding provides a means of cross checking the validity of the predictions as well as the measurements. The VAX version of the ORIGEN2 code and the decay, photon, and cross-section libraries (Croff, Haese, and Gove 1979) were obtained from the Radiation Shielding Information Center in July 1986. A summary of the input data for making these computer calculations is provided below, including fuel composition, cladding composition, and power history.

The fuel composition given in Table 4.13 was used as a basis for ORIGEN2 input. It is based on information reported by C-E and reproduced in Section 4.1, except for the 234 U content. The 234 U content was estimated by interpolating between published values for fuels of various 235 U enrichments.

The cladding composition given in Table 4.14 was used as a basis for ORIGEN2 input. It is based on information reported by C-E, also reported in Section 4.1, plus nominal values assumed for the cladding. There are 4.573 g of uranium for each gram of cladding over the UO₂-bearing length of the rod.

The irradiation history shown in Figure 4.6 and tabulated in Appendix A was used as a basis for ORIGEN2 input. The power densities were normalized to give burnup exposures of 20, 25, 30, 35, 40, 45, and 50 MWd/kgM.

Nuclide inventories were calculated for decay times of 6, 8, 10, 12, 15, 20, and 1000 years after discharge from the reactor. These times bracket the period during which experimenters may be evaluating this fuel and approximates a common time at which long-term repository calculations are made. Sample inputs for fuel irradiation/decay and cladding irradiation/decay calculations are provided in Appendix F. Appendix F also contains tables of ORIGEN2 output for fuel and cladding.

Parameter	<u>Value(a)</u>
Enrichment, wt%	2.453
²³⁴ U, ppm	199 ^(b)
Total Uranium, wt%	88.143
Oxygen, wt%	11.857
Carbon, ppm	19
Nitrogen, ppm	44
Fluorine, ppm	10
Chlorine, ppm	10
Iron, ppm	45
Silver, ppm	1
Calcium, ppm	40
Aluminum, ppm	40
Silicon, ppm	40
Nickel, ppm	25

Fuel Composition of ATM-106 Assumed <u>TABLE 4.13</u>. for ORIGEN2 Calculations

(a) Based on measured values (see Table 4.1)(b) Based on other fuel enrichments.

<u>TABLE 4.14</u>. Cladding Composition of ATM-106 Assumed for ORIGEN2 Calculations

Parameter	Value
Zirconium, wt%	98.0
Tin, wt%	$1.5^{(a)}$
Iron, wt%	0.2 ^(a)
Chromium, wt%	0.1 ^(a)
Aluminum, ppm	40 ^(a)
Hafnium, ppm	55 ^(a)
Silicon, ppm	80 ^(a)
Oxygen, ppm	1248 ^(b)
Carbon, ppm	146 ^(b)
Nitrogen, ppm	$42^{(a)}$
Hydrogen, ppm	12 ^(a)

(a) Nominal values.(b) Average of measured values (see Table 4.2).

4.7 RADIOCHEMISTRY ANALYSES

This section provides the results from radiochemical analyses of the fuel and cladding from Rod NBD107 of ATM-106. The analyses were conducted primarily to verify or identify deficiencies in the results of the ORIGEN2 calculations. Secondary reasons for radiochemical analyses were to 1) characterize radionuclide migration (which ORIGEN2 cannot predict), and 2) characterize inventories of radionuclides for which input information is unknown or uncertain, such as ¹⁴C or various activation products. Thus, analytical samples were taken at various burnups and fuel and cladding operating temperature levels. Figure 4.34 provides a general view of the locations of the fuel samples used for radiochemical analyses of the ATM-106 fuel rod. Two pairs of fuel samples were taken from the upper half and three sets of three fuel samples were taken from the lower half of Rod NBD107. The analyses performed on the fuel and cladding samples are indicated in Figure 4.34. In the lower three sets of fuel samples an additional fuel sample is included to measure the fuel burnup, the isotopes of uranium and plutonium, and specific nuclides: ⁷⁹Se, ⁹⁰Sr, ⁹⁹Tc, ¹²⁶Sn, ¹³⁵Cs, ¹³⁷Cs, ²³⁷Np, ²⁴¹Am, and ²⁴³Cm plus 244 Cm. Additional details of these fuel sections, as they relate to other samples cut from Rod NBD107, are provided in Appendix D. The procedures used in performing the radiochemistry analyses are described in Table 4.15. An estimate of the uncertainty, expressed as the relative standard deviation, is included for each analysis. Results from the fuel burnup analyses are given in Section 4.7.1. Radiochemistry of the fuel and cladding are discussed in Sections 4.7.2 and 4.7.3, respectively.

4.7.1 Fuel Burnup Measurements

Burnup analyses were completed on three fuel samples from the lower half of Rod NBD107 at positions representative of three burnups as indicated by the level of 137 Cs activity. The measured burnup for these samples have been correlated to the 137 Cs gamma scan results in order to estimate the burnup and radionuclide content of any particular sample from ATM-106 that might be provided to a repository experimenter.

澨

15

FIGURE 4.34. General Locations of Samples Used for Radiochemical Analyses of Rod NBD107

Analysis	Description
Fuel	
Burnup Sample Preparation	Weighed sample is dissolved in heated $12N$ HNO ₃ (+trace HF). Solution is separated from cladding and made up to 100 mL. Aliquots are taken for subsequent analyses. Uncertainty: $\pm 1.0\%$.
Burnup (including U and Pu isotopes)	Fission product neodymium is chemically separated from irradiated fuel and determined by isotopic dilution mass spectrometry. Enriched 150 Nd is used as the Nd isotope diluent, and mass 142 is used to determine natural Nd contamination. Uranium and plutonium are also determined by mass spectrometry. The method uses a calibrated triple spike of 150 Nd, 233 U, and 242 Pu per ANSI/ASTM Standard Test Method E321-79. Uncertainty: Atom % burnup, $\pm 2.5\%$; Pu, $\pm 1.6\%$; U, $\pm 1.6\%$.
¹⁴ C	The carbon in a specially-crushed sample of the fuel is evolved by combustion in pure oxygen. The CO ₂ is collected and 14 C is measured by liquid scintillation counting. Uncertainty: $\pm 5.6\%$.
⁷⁹ Se	Selenium-79 is separated from other radioactive species by passing the chemically-adjusted solution through a cation plus anion exchange resin column. The selenium in the column effluent is distilled from hydrobromic acid and precipitated as metal by reducing it with hydroxylamine hydrochloride. The reduced metal is dissolved in nitric acid, and the ⁷⁹ Se is measured using liquid scintillation counting. Uncertainty: $\pm 4.9\%$.
90 _{Sr}	The 90 Sr is separated from other radioactive species by selective elution from a cation exchange resin using 2-methyllactic acid. Following separation, the growth of 90 Y is measured by beta counting. The 90 Sr is then calculated, based on the growth of the 90 Y daughter over a measured period of time. Uncertainty: $\pm 5.7\%$.
99 _{Tc}	Technetium is separated from other radioactive species by a process that absorbs most of the other species onto a cation exchange resin. The technetium is extracted from the effluent into hexone as tetra- phenylarsonium pertechnetate. The technetium activity is then measured by beta counting. Uncertainty: $\pm 3.5\%$.

<u>TABLE 4.15</u>. Description of Radiochemical Analysis Procedures

-

ļ

TABLE 4.15. (contd)

於以來根於影响於

-

(A

D

Ì

1

-

1

Analysis	Description				
<u>Fuel</u> (contd)					
129 _I	Iodine is separated by distillation and precipitation as AgI. Iodine-129 is determined in a GeLi well detector. Uncertainty: ±2.2%.				
126 _{Sn}	Tin is separated by a combination of cation and anion exchange resins. Tin is finally eluted with dilute nitric acid and measured using a GeLi gamma spectrometer. Uncertainty: $\pm 10.2\%$.				
135Cs	Cesium is separated from other elements by chromato- graphic elution from a cation exchange column. Iso- topic abundance of the cesium isotope is determined by mass spectrometry. Uncertainty: $\pm 14\%$.				
137 _{Cs}	The cesium is determined by gamma ray spectrometry on an aliquot of the aqueous solution. Uncertainty: ±3.5%.				
237 _{Np}	Neptunium-237 is separated from other radionuclides species by extraction into a mixture of tri-iso-octyl-amine (TiOA) in xylene, stripped from the TiOA phase with HCl and re-extraction into a mixture of thenoyl-trifluoracetone (TTA) in xylene for additional separation. Neptunium-237 is measured by alpha counting. A 239 Np tracer is added to the sample and gamma-counted to determine a recovery factor. Uncertainty: $\pm 1.9\%$.				
²⁴¹ Am, ²⁴³ Cm plus ²⁴⁴ Cm	Americium and curium are separated using cation and anion exchange and determined by alpha spectrometry. Uncertainty: 241 Am, $\pm 4.9\%$; 243 Cm plus 244 Cm, $\pm 4.1\%$.				
<u>Cladding</u>					
14 _C	The carbon in the cladding is evolved by total combus- tion in pure oxygen, the CO ₂ collected, and the 14 C measured by liquid scintillation counting. Uncertainty: $\pm 5.6\%$.				
¹³⁵ Cs Interior and Exterior Surfaces	The cesium is leached from (interior or exterior) surface and separated from other elements by chromatographic elution from a cation exchange column. Isotope abundance of cesium isotopes is determined by mass spectrometry. Uncertainty: ±14%.				

記 第一日

TABLE 4.15. (contd)

Analysis	Description			
<u>Fuel</u> (contd)				
¹³⁷ Cs Interior and Exterior Surfaces	The cesium is leached from interior or exterior sur face and determined by gamma ray spectrometry on an aliquot of the leachate. Uncertainty: ±3.7%.			
¹²⁹ I Interior Surface	The cladding interior surface is leached in nitric acid. The iodine is separated from the nitric acid leachate by distillation and precipitation as AgI. Iodine-129 is determined in a GeLi well detector. Uncertainty: ±2.8%.			

The results of the burnup analyses are listed in Table 4.16. Values are presented for burnups based on the measured amounts of 148 Nd as well as burnups derived from the 137 Cs contents. The gamma activity for 137 Cs obtained during the full-length scan of Rod NBD107 is also presented in Table 4.16. These two methods of obtaining measured burnup values provide a check on each other if there is no substantial 137 Cs movement in the fuel rod. The agreement between the burnups based on 148 Nd and 137 Cs for the fuel samples is not as close for the ATM-106 fuel as it was for the ATM-103 fuel (Guenther et al. 1988).

The measured burnup values, in units of MWd/kgM for ease of interpolating in the tables of Appendix F, are plotted in Figure 4.35 against the 137 Cs activity measured during gamma scanning of the full-length rod. The location of the fuel samples and detailed gamma scanning data are provided in Appendices D and B, respectively. Because the 137 Cs activity and the measured burnup form a linear relationship in the burnup range measured, an equation can be derived for estimating the burnup in other fuel samples from Rod NBD107. Using the measured 137 Cs activity and burnup values shown in Table 4.16, the relationship between burnup and 137 Cs activity for Rod NBD107 is:

 $BU = 0.01980 \,\bar{A} + 0.815$

where BU = the burnup of the Rod NBD107 fuel sample in question, MWd/kgM

 \bar{A} = the average activity measured over the length of the desired fuel sample (see the as-cut sectioning diagram in Appendix D), counts/s.

Sample No.	<u>(</u> 148 <mark>N</mark> <u>At.%</u>	urnup <u>d Basis)</u> GJ/kgM <u>(MWd/kgM)</u>	Measured Gamma Activity, <u>Counts/s</u>	Burnup (137 _{Cs Basis),} GJ/kgM (MWd/kgM)(b)	Sample Location
106-NBD107-Q	4.859	4014 (46.46)	2310	4294 (49.70)	Typical peak burnup in center portion of Rod NBD107.
106-NBD107-GG	3.901	3220 (37.27)	1828	3255 (37.67)	Representative of approximately 80% of peak Cs ac- tivity in bottom portion of Rod NBD107.
106-NBD107-MM	3.289	2713 (31.40)	1553	2863 (33.14)	Representative of approximately 67% of peak Cs ac- tivity in bottom portion of Rod NBD107.

當 麗 2

3:

TABLE 4.16. Burnup Results for ATM-106 Fuel Samples^(a)

- (a) See sectioning diagrams in Appendix D for sample locations with respect to gamma activity.
- (b) Calculation based on Cs half-life of 30.174 years and effective fission yield of 6.31% for Sample 106-NBD107-Q, 6.31% for Sample 106-NBD107-GG, and 6.29% for Sample 106-NBD107-MM. The calculation procedure used was ASTM Standard E-219 "Standard Test Method for Atom Percent Fission in Uranium Fuel" (Radiochemical Method).

This equation is valid for determining the burnup in fuel samples from Rod NBD107 as long as the 137 Cs activities given for Rod NBD107 in Appendix D are used. As more fuel rods from ATM-106 are gamma scanned and analyzed for fuel burnup, it will become more apparent how well this relationship will estimate the burnup in other ATM-106 rods based solely on the gamma scan data.

When ATM-106 fuel rods are gamma scanned in the future, a correction for the decay of 137 Cs will be incorporated in comparisons of gamma scan data. The correction is especially important in determining the relationship between burnup and 137 Cs activity. The rate of decrease in 137 Cs activity is indicated by the plot of calculated 137 Cs activity shown in Figure 4.36. At

 $\underline{\text{FIGURE 4.35}}$. Correlation Between ^{137}Cs Gamma Counting and ^{148}Nd Burnup Analyses

the time of gamma scanning (February 1987), Rod NBD107 had been discharged from the reactor for 6.42 years. At the time of the burnup analyses (June 1987), Rod NBD107 had been discharged 6.7 years.

The correlation between 137 Cs activity and burnup values can be used in conjunction with the inventory calculations in Appendix F and the gamma scan in Appendix D to determine the radioisotope inventory for a particular sample that might be used by an experimenter.

4.7.2 Fuel Radiochemistry Analyses and Comparisons with ORIGEN2 Predictions

A total of 11 samples were analyzed for fuel radiochemistry as indicated in Figure 4.34 and Appendix D. For the fuel samples being analyzed for 14 C and 129 I, the burnup was estimated using the gamma scan sectioning diagram in Appendix D and the equation relating 137 Cs activity and fuel burnup in Section 4.7.1. Measured burnup values were used for the remaining samples. The results of the radiochemical analyses for the fuel are provided in Table 4.17 and are compared with the ORIGEN2 predictions.

Most of the radiochemical results agreed with ORIGEN2 predictions within $\pm 15\%$. The agreement between measured and predicted values was less consistent in ATM-106 than it was in ATM-101 (Barner 1985) and ATM-103 (Guenther et al. 1988). The most significant differences occurred in Sample 106-NBD107-Q taken from the peak-burnup region. In that sample, the concentrations of 235 U, 239 Pu, 241 Pu and 241 Am varied considerably more than in previous ATMs. The measured contents of these same radionuclides were closer to predictions in the lower-burnup Samples 106-NBD107-GG and 106-NBD107-MM.

The amount of 234 U measured in the fuel was low for all of the samples; however, the analysis of the standard for 234 U after the fuel measurements were taken was about 68% of the preanalysis value. Thus, the values reported in Table 4.17 for 234 U contents were obtained by correcting for this drift in the measured standard value. The measurement of the 234 U is inherently less accurate than those for other uranium isotopes because the 234 U value is obtained as a ratio from mass spectrometry analysis and there is considerably less 234 U than 238 U in the fuel. A different technique will be used for future samples to improve the accuracy of these measurements.

4.63

Sample ID and <u>Radionuclide</u>	Burnup, ^(a) _MWd/kgM	Analytical Value	ORIGEN2 Value ^(b)	Ratio, Analytical <u>to ORIGEN2</u>
<u>106-NBD107-E</u> C-14	28.89	1.038 x 10 ⁻⁶ Ci/g fuel ^(c)	0.970 x 10 ⁻⁶ Ci/g fuel	1.07
<u>106-NBD107-I</u> C-14	46.36	1.38 x 10 ⁻⁶ Ci/g fuel ^(c)	1.658 x 10 ⁻⁶ Ci/g fuel	0.83
106-NBD107-Q U-234 ^(d) U-235 U-236 U-238 Pu-238 Pu-239 Pu-240 Pu-241 Pu-242 Np-237 Am-241 Cm-243 & 244 Se-79 Sr-90 Tc-99 Sn-126 Cs-135 Cs-137	46.46	7.49 x 10 ⁻⁵ g/g fuel 1.406 x 10 ⁻³ " 3.04 x 10 ⁻³ " 8.272 x 10 ⁻¹ " 2.842 x 10 ⁻⁴ " 3.766 x 10 ⁻³ " 2.599 x 10 ⁻⁴ " 1.169 x 10 ⁻⁷ " 2.66 x 10 ⁻³ " 2.66 x 10 ⁻³ " 9.86 x 10 ⁻³ " 5.99 x 10 ⁻⁸ " 5.99 x 10 ⁻⁵ " 1.09 x 10 ⁻⁷ " 1.09 x 10 ⁻⁷ " 1.09 x 10 ⁻⁷ " 1.12 x 10 ⁻¹ "	9.669 x 10 ⁻⁵ g/g fuel 1.930 x 10 ⁻³ " 2.919 x 10 ⁻³ " 8.236 x 10 ⁻¹ " 3.133 x 10 ⁻⁴ " 4.519 x 10 ⁻³ " 2.543 x 10 ⁻³ " 1.086 x 10 ⁻³ " 0.971 x 10 ⁻⁷ Ci/g fuel 1.657 x 10 ⁻² " 4.819 x 10 ⁻² " 4.819 x 10 ⁻⁷ " 6.028 x 10 ⁻² " 1.486 x 10 ⁻⁵ " 1.122 x 10 ⁻⁶ " 5.137 x 10 ⁻¹ "	0.77 0.73 1.04 1.00 0.91 0.83 1.02 0.82 1.20 0.71 1.32 0.98 0.12 1.00 0.73 0.19 0.93 1.06
<u>106-NBD107-U</u> I-129	46.51	3.83 x 10 ⁻⁸ Ci/g fuel	4.140 x 10 ⁻⁸ Ci/g fuel	0.93
<u>106-NBD107-V</u> C-14	46.83	1.76 x 10 ⁻⁶ Ci/g fuel ^(c)	1.677 x 10 ⁻⁶ Ci/g fuel	1.05
<u>106-NBD107-BB</u> I-129	47.05	4.34 x 10 ⁻⁸ Ci/g fuel	4.187 x 10 ⁻⁸ Ci/g fuel	1.04
<u>106-NBD107-CC</u> C-14	46.63	1.62 x 10 ⁻⁶ Ci/g fuel ^(c)	1.670 x 10 ⁻⁶ Ci/g fuel	0.97
$\begin{array}{c} \underline{106-NBD107-GG}\\ U-234^{(d)}\\ U-235\\ U-236\\ U-238\\ Pu-238\\ Pu-239\\ Pu-240\\ Pu-241\\ Pu-242\\ Np-237\\ Am-241\\ Cm-243 \& 244\\ Se-79\\ Sr-90\\ Tc-99\\ Sn-126\\ Cs-135\\ Cs-135\\ Cs-137\\ \end{array}$	37.27	1.27 x 10 ⁻⁴ g/g fuel 2.71 x 10 ⁻³ " 3.03 x 10 ⁻¹ " 8.438 x 10 ⁻¹ " 1.947 x 10 ⁻³ " 2.321 x 10 ⁻³ " 2.321 x 10 ⁻³ " 2.321 x 10 ⁻⁴ " 7.753 x 10 ⁻⁴ " 2.26 x 10 ⁻⁷ Ci/g fuel 1.46 x 10 ⁻³ " 4.11 x 10 ⁻⁸ " 5.63 x 10 ⁻² " 5.18 x 10 ⁻⁶ " 1.60 x 10 ⁻⁷ " 8.56 x 10 ⁻² "	1.061 x 10 ⁻⁴ g/g fuel 3.334 x 10 ⁻³ " 2.874 x 10 ⁻³ " 8.316 x 10 ⁻¹ " 2.179 x 10 ⁻⁴ " 4.509 x 10 ⁻³ " 2.346 x 10 ⁻³ " 9.449 x 10 ⁻⁴ " 6.731 x 10 ⁻⁷ Ci/g fuel 1.487 x 10 ⁻³ " 4.170 x 10 ⁻⁷ " 3.950 x 10 ⁻² " 1.246 x 10 ⁻⁵ " 8.701 x 10 ⁻⁷ " 4.650 x 10 ⁻⁷ " 8.482 x 10 ⁻² "	1.20 0.81 1.05 1.01 0.89 0.85 0.99 0.86 1.15 0.74 0.98 0.99 0.14 1.00 0.72 0.18 0.89 1.01

TABLE 4.17. Fuel Radiochemical Analyses Results and Comparisons with ORIGEN2-Calculated Radionuclide Inventory

TABLE 4.17. (contd)

Sample ID and <u>Radionuclide</u>	Burnup, ^(a) _MWd/kgM	Analytical Value	ORIGEN2 Value ^(b)	Ratio, Analytical <u>to ORIGEN2</u>
106-NBD107-MM U-234 (d) U-235 U-236 U-238 Pu-238 Pu-239 Pu-240 Pu-241 Pu-241 Pu-242 Np-237 Am-241 Cm-243 & 244 Se-79 Sr-90 Tc-99 Sn-126 Cs-135 Cs-137	31.40	1.53 x 10 ⁻⁴ g/g fuel 3.86 x 10 ⁻³ " 2.86 x 10 ⁻³ " 8.446 x 10 ⁻¹ " 1.426 x 10 ⁻⁴ " 3.814 x 10 ⁻³ " 2.067 x 10 ⁻⁴ " 5.463 x 10 ⁻⁷ Ci/g fuel 1.18 x 10 ⁻³ " 1.87 x 10 ⁻³ " 4.18 x 10 ⁻² " 4.18 x 10 ⁻² " 4.18 x 10 ⁻² " 4.19 x 10 ⁻⁷ " 4.04 x 10 ⁻⁷ " 7.47 x 10 ⁻² "	1.134 x 10 ⁻⁴ g/g fuel 4.660 x 10 ⁻³ " 2.756 x 10 ⁻¹ " 8.366 x 10 ⁻¹ " 1.589 x 10 ⁻³ " 4.462 x 10 ⁻³ " 2.120 x 10 ⁻⁴ " 8.212 x 10 ⁻⁴ " 4.888 x 10 ⁻⁷ " 2.514 x 10 ⁻⁷ Ci/g fuel 1.326 x 10 ⁻³ " 3.378 x 10 ⁻⁷ " 4.561 x 10 ⁻⁵ " 1.083 x 10 ⁻⁷ " 4.347 x 10 ⁻⁷ " 7.141 x 10 ⁻² "	1.35 0.83 1.04 1.01 0.90 0.85 0.98 0.88 1.12 0.73 0.89 0.93 0.12 1.02 0.71 0.20 0.93 1.05
<u>106-NBD107-PP</u> I-129	29.49	2.19 x 10 ⁻⁸ Ci/g fuel	2.602 x 10 ⁻⁸ Ci/g fuel	0.84
<u>106-NBD107-QQ</u> C-14	26.75	5.40 x 10 ⁻⁷ Ci/g fuel ^(c)	8.908 x 10 ⁻⁷ Ci/g fuel	0.61

(a) Burnup values were measured for Samples 106-NBD107-Q, 106-NBD107-GG, and 106-NBD107-MM. All other burnups are estimated using the equation in Section 4.7.1 and ¹³⁷Cs activity in Appendix D for specific samples. Estimated burnups are probably accurate to about

10 Appendix D for specific samples. Estimated burnups are probably accurate to about ±0.5 MWd/kgM.
(b) ORIGEN2 values obtained from Appendix F using burnup derived with equation in Section 4.7.1 and ¹³⁷Cs activity in Appendix D, except for Samples 106-NBD107-Q, 106-NBD107-GG, and 106-NBD107-MM, for which these values were directly calculated using ORIGEN2 and the measured sample burnup. Values in Appendix F were converted from g/gU to g/g UO₂. 1 g of unirradiated UO₂ is equivalent to 1 g of as-irradiated fuel with all fission products.
(c) Average of two measurements that varied within less than 10%

(c) Average of two measurements that varied within less than 10%. (d) Measured values for 234 U were corrected for an apparent drift in measurement systems based on comparisons with standard samples before and after analyses. A new approach is being used for subsequent samples.

The amount of 99 Tc measured in the fuel was also low for all of the fuel samples. In the moderate burnup fuel from ATM-103, the measured values were nearly identical to the predicted values. A possible explanation for some of the discrepancy between the measured and predicted 99 Tc values may be that some of the technetium was not removed from the solution used for this analysis. Unlike previous radiochemical analysis, the solutions made from dissolving this fuel had a residual material that was not completly dissolved. Analysis of the residue indicated that it contains primarily material found in metallic ingots, which includes technetium. The preparation procedure has been revised to completely dissolve the residue and may decrease the discrepancy between the measured and predicted amounts of technetium in this highburnup, high fission gas release fuel.

As in ATM-103 (Guenther et al. 1988), the most significant differences between measured and predicted values occurred for 79 Se and 126 Sn, for which the measured values were about 13% and 19% of their respective ORIGEN2 predictions.

4.7.3 <u>Cladding Radiochemistry Analyses</u>

A total of 10 cladding samples were taken from Rod NBD107 and analyzed by radiochemistry. These analyses included determination of the amount of 135 Cs and 137 Cs on both the interior and exterior cladding surfaces, the 129 I on the interior cladding surface, and the 14 C in the cladding. The analyses of these isotopes on the interior cladding surface can provide useful information on the relationship between fission product release, possible migration and their relationship to fuel and/or cladding temperatures. The levels of 135 Cs and 137 Cs on the exterior cladding surface are of interest to handling operations where large quantities of dispersible radioactivity could be an issue. The 14 C in the cladding, which results primarily from the activation of 14 N, is of interest because 14 C has a relatively long half life (>5000 yr). The 14 C in the cladding contributes about 10% of the total 14 C in the fuel rod.

Radiochemical analyses for cesium and iodine were obtained from 2.5-cm (1.0-in.) cladding sections taken from locations along the length of the rod as indicated in Figure 4.34. The fuel was removed from the cladding with a specially constructed punch, and the interior cladding surface was wiped four

to five times with fresh, dry Q-tips to remove loose particles. The first Q-tip swabs were black-streaked; thus it may be inferred that some "loose" cesium and iodine may have been removed by the swabs. After stoppering the open ends, the cladding was immersed in 8N HNO₃, and the resulting solution was analyzed for 137 Cs and 135 Cs to obtain the exterior surface values for cesium and iodine. Then the stoppers were removed before another 8N HNO₃ treatment was made to obtain the interior surface values for cesium and iodine.

The results of the cladding radiochemical analyses for cesium and iodine are provided in Table 4.18. The 137 Cs concentration on the interior cladding surface ranged from 19.6 μ Ci/cm² to 5,811 μ Ci/cm². The level of 135 Cs on the cladding interior surface followed the trend in 137 Cs but at a much lower level that was roughly equal to the expected 137 Cs/ 135 Cs ratio of about 10⁵. The amounts of these isotopes are somewhat similar in terms of grams, but the shorter half life for 137 Cs results in a much greater activity. As indicated by the data of Table 4.18, the general trend of cesium activity along the interior cladding surface correlates more with the power/burnup of the adjacent fuel, which is highest in the middle of the rod and low at both ends, than with the interior cladding temperature, which increases from the bottom to the top of the fuel rod during irradiation.

The trend in cesium on the interior cladding surface along the fuel rod generally follows the power/burnup profile but also appears to follow the detailed changes in 137 Cs activity measured in the gamma scan. The correspondence between gamma scan data, measured deposits of cesium and iodine on

	Exterior Surface <u>Activity, µ</u> Ci/cm ²				<u>Interior Surface Activity, µCi/cm²</u>			
Sample No.	137 _{Cs}	135 _{Cs}	137 _{Cs}	1	35 _{Cs}	1	29 ₁	
106-NBD107-B	6.2	3.74×10^{-5}	19.6	1.1	2×10^{-4}	1.2	6 x 10 ⁻⁵	
106-NBD107-H	4.9	2.30×10^{-5}	3973	180	x 10 ⁻⁴	950	x 10 ⁻⁵	
106-NBD107-U	9.6	4.32×10^{-5}	1414	64	$\times 10^{-4}$	269	x 10 ⁻⁵	
106-NBD107-BB	16.5	7.39 x 10^{-5}	5811	261	$\times 10^{-4}$	802	$\times 10^{-5}$	
106-NBD107-PP	14.4	8.29 x 10 ⁻⁵	2707	169	x 10 ⁻⁴	284	x 10 ⁻⁵	

<u> TABLE 4.18</u> .	Cladding	Radiochemistry	Analyses	Results
----------------------	----------	----------------	----------	---------

the cladding interior surface, and the movement of beta/gamma emitting fission products is shown in Figure 4.37. There is little apparent cesium release in the gamma scan at the very top (Sample 106-NBD107-C) or near the middle of the fuel column (Sample 106-NBD107-P), but the 137 Cs activity increases from 2 to 10% above the nominal cesium level in parts of the rod that experienced peak burnup/power (Samples 106-NBD107-G and 106-NBD107-Z). Possible cesium release is even indicated at the lower end of the fuel rod (Sample 106-NBD107-LL).

Sample 106-NBD107-B was taken from the upper region of Rod NBD107, where there was apparently no significant cesium release according to the gamma scan, and had only 19.6 Ci/cm² of ¹³⁷Cs on the interior cladding surface. Fission product release was not indicated in the β/γ autoradiograph of adjacent Sample 106-NBD107-C. In contrast, Samples 106-NBD107-H and 106-NBD107-BB taken from peak-power regions had orders of magnitude more cesium on the cladding than measured on the sample from the upper end of the fuel rod. The increase in deposits on the cladding is further evidence of higher fuel temperatures that were indicated by a depleted core and local concentrations of β/γ emitters in the adjacent fuel examined by β/γ autoradiography (Samples 106-NBD107-G and 106-NBD107-Z).

The cesium deposit measured for Sample 106-NBD107-U appears low compared with the other peak-power samples, but examination of the cesium gamma scan data in Figure 4.37 indicates that the deposits of cesium on the interior cladding surface at this location is consistent with the trend in cesium release indicated during gamma scanning and changes in the distribution of β/γ emitters observed in autoradiography. Sample 106-NBD107-PP from the bottom of the rod had more cesium on the cladding than Sample 106-NBD107-U at the peak-power region, but there was as much or more variability in the cesim level at the bottom of the rod (106-NBD107-PP) than at Sample 106-NBD107-U even though the grain growths were somewhat comparable. This suggests that the bottom of the fuel rod was probably hotter than fuel with a comparable burnup in the upper end of the rod. Results of these three types of examinations (axial gamma scanning, interior cladding deposit radiochemistry, and

<u>FIGURE 4.37</u>. Comparison of Fission Product Movement in Rod NBD107 Using Gamma Scanning, Cladding Rdiochemistry, and β/γ Autoradiography Data

 β/γ autoradiography), along with fuel grain growth measurements listed in Table 4.11, are consistent with local variations in fuel temperature and fission gas release.

The values for 129 I on the interior cladding surface indicated a trend that also approximates the variation of the power/burnup in the fuel. Because cesium and iodine form a very stable CsI compound, it is not unexpected that the iodine concentrations follow a pattern similar to the cesium. In Rod NBD107, the 135 Cs, 137 Cs, and 129 I interior surface activities were much higher than in ATM-103 (Guenther et al. 1988). In ATM-103, the 129 I activity was reduced at the lower and upper ends of the rods, but Rod NBD107 had a similar decrease in activity only at the upper end. As indicated in Figure 4.37, Samples 106-NBD107-H and 106-NBD107-BB had peak activities which corresponded to the peak level of activity in the gamma scans. Using data from Tables 4.17 and 4.18, it can be calculated that an average of 8% and 2%, respectively, of 129 I and 137 Cs have been firmly deposited on the inner surface of Rod NBD107.

The 135 Cs concentration on the exterior surface ranged between about 0.1% and 33% of the 135 Cs concentration on the interior surface for the same sample. The ratios between the 135 Cs and 137 Cs on the outer surfaces roughly approximate the expected difference in these isotopes. However, the amount of cesium deposited on the exterior surface of the cladding did not follow any particular profile although it was highest at the lower end. This distribution may result from random amounts of 135 Cs and 137 Cs that can be picked up on the exterior surface during handling operations in the hot cell or deposited during irradiation in the exterior cladding oxide layer.

Analyses of 14 C were also performed on cladding sections taken from five locations along the length of the rod. The fuel was removed from these 1.3-cm (0.50-in) samples, and the cladding was broken into two portions that were analyzed separately. The analytical results are compared with ORIGEN2 predictions in Table 4.19. The analyzed concentrations averaged 120% of the predicted concentrations, but there is wide scatter in the as-analyzed values, possibly as a result of measurement uncertainties for these small quantities or variations in the nitrogen impurity levels assumed to be in the cladding.

	Analyzed Activities, $\mu Ci/g$	Average of Analyzed Activities, _µCi/g	Interpolated ORIGEN2 Activity, µCi/g	Ratio, Average Analytical Activity to
<u>Sample No.</u>	<u>Cladding(a)</u>	<u>Cladding</u>	<u>Cladding(D)</u>	<u>ORIGEN2</u>
106-NBD107-E	1.04, 1.15	1.10	0.8365	1.32
106-NBD107-I	0.966, 0.959	0.962	1.431	0.67
106-NBD107-V	2.55, 2.08	2.32	1.448	1.60
106-NBD107-CC	1.95, 1.74	1.85	1.440	1.28
106-NBD107-QQ	0.990, 0.750	0.870	0.7688	1.13

<u>TABLE 4.19</u> .	Radiochemical Analyses of ¹⁴ C in Cladding and	d
	Comparison with ORIGEN2 Predictions	

(a) Each cladding sample was separated for duplicate analyses.
(b) Interpolated ORIGEN2 values obtained from Appendix F using estimated burnup from equation in Section 4.7 and ¹³⁷Cs activity in Appendix D.

5.0 DISTRIBUTION OF ATM-106 SPENT FUEL

A number of ATM-106 spent fuel samples have been sectioned from Rod NBD107. When Rod NBD107 was sectioned, the Basalt Waste Isolation Project (BWIP) and the Office of Nuclear Waste Isolation (ONWI) projects were actively investigating basalt and salt formations, respectively, as sites for a geologic repository. Therefore, samples of Rod NBD107 were reserved for these projects as shown in Table 5.1 and in Appendix D. After the rod was sectioned, the number of respository sites being investigated was narrowed to the Nevada Nuclear Waste Storage Investigation (NNWSI). In the future, the NNWSI will be the major user of spent fuel ATMs prepared by the MCC. Samples have also been taken for characterization or experimentation by the MCC and Oak Ridge National Laboratory (ORNL). Samples designated in Table 5.1 for ONWI and BWIP were not delivered and are available for redesignation to other experimenters. The small samples are stored in glass vials. Long sections of fuel are stored in argon-filled storage tubes with Swagelok end caps.

<u>Section</u>	Planned <u>Recipient</u>	Approximat Length, cm	e Fuel (in.)
D	ONWI	2.54 (1)
J	ONWI	2.54 (1)
L	NNWSI	13 (5)
М	NNWSI	13 (5)
R	ORNL	0.6 (0	.25)
S	ORNL	0.6 (0	.25)
W	ONWI	2.54 (1)
EE	BWIP	38 (1	5)
HH	ORNL	0.6 (0	.25)
II	ORNL	0.6 (0	.25)
JJ	ONWI	2.54 (1)
NN	ORNL	0.6 (0	.25)
00	ORNL	0.6 (0	.25)

<u>FABLE 5.1</u> .	Initially Planned Distributions	of	ATM-106
	Spent Fuel Rod NBD107		

REFERENCES

- Annual Book of ASTM Standards. 1980. Part II. ASTM E 112, "Standard Method for Estimating the Average Grain Size of Metals", pp. 186-220, Phildelphia, Pennsylvania.
- Barner, J. O. 1984. <u>LWR Spent Fuel Approved Testing Materials for</u> <u>Radionuclide Release Studies</u>. PNL-4686, Pacific Northwest Laboratory, Richland, Washington.
- Barner, J. O. 1985. <u>Characterization of LWR Spent Fuel MCC-Approved Testing</u> <u>Material - ATM-101</u>. PNL-5109, Rev.1, Pacific Northwest Laboratory, Richland, Washington.
- Croff, A. G., et al. 1978. <u>Revised Uranium-Plutonium Cycle PWR and BWR</u> <u>Models for the ORIGEN Computer Code</u>. ORNL/TM-6051, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Croff, A. G., R. L. Haese, and N. B. Gove. 1979. <u>Updated Decay and Photon</u> <u>Libraries for the ORIGEN Code</u>. ORNL/TM-6055, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Croff, A. G. July 1980. <u>ORIGEN2 A Revised and Updated Version of the Oak</u> <u>Ridge Isotope Generation and Depletion Code</u>. ORNL-5621, Oak Ridge National Laboratory, Oak Ridge, TN.
- Croff, A. G. July 1980. <u>A User's Manual for the ORIGEN2 Computer Code</u>. ORNL/TM-7175, Oak Ridge National Laboratory, Oak Ridge, TN.
- Guenther, R. J., D. E. Blahnik, T. K. Campbell, U. P. Jenquin, J. E. Mendel, L. E. Thomas, and C. K. Thornhill. 1988. <u>Characterization of Spent Fuel</u> <u>Approved Testing Material--ATM-103</u>. PNL-5109-103, Pacific Northwest Laboratory, Richland, Washington.
- Johnson, A. B., Jr., and D. D. Lanning. 1985. <u>Assessment of N-Reactor</u> <u>Zircaloy-2 Pressure Tube Corrosion and Hydriding Trends</u>. UNI-3146, Rev. 1, UNC Nuclear Industries, Richland, Washington.
- Lanning, D. D., M. E. Cunningham, R. E. Williford, and A. B. Johnson, Jr. 1984. <u>Interim Assessment of N-Reactor Zircaloy-2 Pressure Tube Corrosion</u> <u>and Hydriding</u>. PNL-5311, Pacific Northwest Laboratory, Richland, Washington.
- Oversby, V. M., and C. N. Wilson. 1985. "Derivation of a Waste Package Source Term for NNWSI from the Results of Laboratory Experiments." In <u>Proceedings of Materials Research Society Symposium</u>, Vol. 50, pp. 337-347.

......

Pati, S. R., A. M. Garde, and L. J. Clink. 1988. "Contribution of Pellet Rim Porosity to Low-Temperature Fission Gas Release at Extended Burnups." In <u>Proceedings of the International Topical Meeting on LWR Fuel Perform-</u> <u>ance</u>, Williamsburg, Virginia, April 17-20, 1988. American Nuclear Society, La Grange Park, Illinois, pp. 204-215. APPENDIX A

٠

.

POWER HISTORY FOR ASSEMBLY BTO3

•

APPENDIX A

POWER HISTORY FOR ASSEMBLY BT03

The 20 ATM-106 fuel rods were obtained from Assembly BT03, which was irradiated in the Calvert Cliffs No. 1 reactor during Cycles 1, 2, 3, and 4. The detailed power history for Rod NBD107 (Figure 4.6 and Table A.1) was used as the basis for generating the irradiation times and power densities for the ORIGEN2 Code. Cycle 1 started on October 7, 1974, and Cycle 4 ended on October 18, 1980. Because the power is very low during initial startup of a reactor, the power history used for the ATM-106 fuel rods assumes that startup actually occurred on January 1, 1975. During Cycle 1, the reactor was down for _33 days, starting on April 10, 1976. During Cycle 3, the reactor was down for approximately 25 days, starting on December 28, 1978. The average burnup for Rod NBD107 is 3660 GJ/kgM (42.7 MWd/kgM) as compared with the assembly average burnup of 3690 GJ/kgM (42.7 MWd/kgM). Both of these burnups were calculated by Combustion Engineering (C-E).

The irradiation history was extracted from data reported by C-E. The detailed data given in Table A.1 have been averaged over periods when the power did not change by more than 30%. The results are given in Table A.1. The power densities given in Table A.2 were then normalized to give burnups of 20, 25, 30, 35, 40, 45, and 50 MWd/kgM at discharge. Normalization is required because some portions of the fuel (such as at the ends of the rod) do not achieve the peak or rod-average burnups. Results of the ORIGEN2 calculations are provided in Appendix F.

A.1
Cyc	<u>le 1</u>	Сус	:le 2	Cyc	: <u>le 3^(a)</u>	Cyc	: <u>le 4</u>
Time Interval, Days	LHGR, kW/m 	Time Interval, Days	LHGR, kW/m 	Time Interval, <u>Days</u>	LHGR, kW/m kw/ft)	Time Interval, Days	LHGR, kW/m (kW/ft)
24.2	19.2 (5.84)	7.2	13.3 (4.06)	10.9	12.6 (3.84)	45.0	13.8 (4.21)
19.6	24.1 (7.36)	31.0	17.1 (5.20)	14.1	12.4 (3.78)	24.1	13.8 (4.20)
39.7	24.1 (7.34)	16.4	19.0 (5.80)	25.3	6.7 (2.03)	22.4	13.9 (4.23)
39.7	23.9 (7.27)	11.4	18.9 (5.77)	12.2	14.0 (4.27)	25.2	14.1 (4.29)
39.4	23.7 (7.22)	12.6	18.9 (5.76)	16.3	14.2 (4.33)	31.0	6.7 (2.05)
39.3	23.6 (7.18)	23.2	18.9 (5.76)	15.1	15.2 (4.63)	44.8	6.3 (1.91)
39.1	23.5 (7.17)	22.7	18.9 (5.76)	38.1	14.3 (4.37)	48.1	7.0 (2.13)
38.9	23.6 (7.18)	23.0	18.9 (5.76)	30.9	14.6 (4.44)	10.9	12.4 (3.78)
39.0	23.6 (7.18)	8.2	18.8 (5.74)	31.4	14.6 (4.45)	10.6	14.9 (4.54)
39.1	23.5 (7.16)	31.0	19.3 (5.88)	31.5	14.6 (4.44)	45.3	15.2 (4.63)
39.1	23.3 (7.11)	33.8	19.4 (5.90)	43.2	14.8 (4.52)	28.7	15.1 (4.59)
39.4	23.1 (7.05)	16.5	19.8 (6.03)	60.0	14.9 (4.53)	27.9	15.6 (4.75)
39.3	22.9 (6.97)	19.1	19.6 (5.97)	28.0	16.1 (4.92)	65.9	15.5 (4.71)
39.3	22.6 (6.90)	12.8	19.8 (6.02)			36.1	15.7 (4.79)
39.3	22.4 (6.82)	35.2	18.4 (5.62)				
39.3	22.2 (6.76)	1.9	18.3 (5.57)				
19.6	22.0 (6.72)						
20.4	21.1 (6.44)						
30.8	14.9 (4.54)						
32.8	12.3 (3.76)						

TABLE A.1. Detailed Power History for Rod NBD107

.

(a) Reactor was shut down for 25 days starting with day 270 of Cycle 3.

A.2

<u>Cycle No.</u>	Time Interval, days	Power Density, W/g
1	465.0	29.66
1	33.0	0
1	168.7	28.33
1	63.3	17.28
down	81.0	0
2	306.0	25.18
down	71.0	0
3	25.0	16.72
3	25.3	8.93
3	218.7	19.32
3	25.0	0
3	88.0	20.98
down	81.0	0
4	116.7	19.44
4	123.9	9.33
4	225.4	21.34

TABLE A.2. ATM-106 Power History Based on Rod NBD107

.

. m

- 146-1

APPENDIX B

.

•

.

-

•

GAMMA SCANNING OF ATM-106

•

APPENDIX B

GAMMA SCANNING OF ATM-106

The Materials Characterization Center (MCC) gamma scanning system consists of three major components: 1) the Data Acquisition (DA) System, 2) the in-cell hardware, and 3) an IBM host computer that supervises and controls the gamma scan process and logs all pertinent data. The DA system and the IBM host system are illustrated in the schematic representation shown in Figure B.1. The in-cell hardware is shown in Figure B.2. The fuel rod is drawn by a motor-driven chuck past the germanium-lithium gamma ray detector, which is located at a wall plug in the front face of the hot cell. The wall plug contains a collimater and normally a 0.254-cm (0.1-in.) slit, although a 0.0254-cm (0.01-in.) slit may be installed. A stepping motor controls the position of the fuel rod relative to the detector and controls the rate at which the fuel rod is stepped past the detector. The available hot cell space was insufficient for gamma scanning full-length PWR and BWR fuel rods from top to bottom. Thus, this system is designed to scan from the center of the fuel rod to one end. The rod is then rotated 180° and the process is repeated to scan the other half. The stepping motors determine the center of the fuel rod from an overall fuel rod length measurement made before scanning started.

The software used to complete gamma scanning operations was written to use a variable counting time at each position. The counting time is set to maintain a fixed statistical uncertainty (set at 1%) until the counting time reaches a maximum preset value. Typically, the counting time is 40 to 60 s in the center of the fuel rod (area of maximum activity) and gradually increases to 5 min (preset maximum value) as the activity decreases near the end of the fuel rod. With this approach, gamma scan results have been obtained for the following isotopes: 134 Cs (0.6 MeV), 137 Cs, and 134 Cs (0.8 MeV). These are the only isotopes present that meet the predetermined statistical requirements. Other isotopes can be selected and counted, but

FIGURE B.1. Data Acquisition System and IBM Host System for Gamma Scanning Spent Fuel Rods

1

the error associated with the resulting values will force the use of maximum counting times. A 60 Co external source is also tracked to identify whether the multichannel analyzer is functioning correctly.

The following procedure is used for each ATM. One rod is designated the reference rod for that ATM (NBD066 for ATM-106). A full-length gamma scan is completed. The data is plotted and the scan accepted or rejected on the basis of the "reasonableness" of the data plot. For example, there should be no sudden shifts in activity; and the activity is normally highest near the middle, decreasing rapidly toward the ends. Subsequent scans of fuel rods are accepted or rejected on the basis of a 5.08 cm (2-in.) scan of the reference rod taken at a preselected location before and after the full-length gamma scan of the subject rod. The variability in the average activity for those 5.08 cm (2-in) scans must be less than 5% for 137 Cs for the rod being scanned to be accepted.

Spectral gamma scan results are presented in this appendix in alphanumeric order for the four rods of ATM-106 that have been examined to date. A summary of the figures for Rods NBD040, NBD066 (reference rod), NBD095, and NBD107 is provided below:

¹³⁷Cs spectral gamma scans - Figures B.3 to B.6 ¹³⁴Cs spectral gamma scans for 0.6 MeV gamma rays - Figures B.7 to B.10 ¹³⁴Cs spectral gamma scans for 0.8 MeV gamma rays - Figures B.11 to B.14.

A portion of the gamma scan data for Rod NBD040 was affected by an electronic shift over a very short length of the fuel rod. For this reason, the gamma activity data over the fuel rod length from 1.878 to 1.853 m (73.950 to 72.950 in.) from the top of Rod NBD040 are omitted in Figures B.3 and B.7.

.

B. 5

No. 198 2 198 198 198

j

1

B.8

B.11

B.12

.

B.14

7

-

٥

-

APPENDIX C

-

•

.

FISSION GAS SAMPLING

APPENDIX C

FISSION GAS SAMPLING

OPERATING PROCEDURE

There are three objectives for fission gas sampling operations. The first objective is to collect the fission gas from the fuel rods for analysis without contaminating the sample. The other two objectives are to determine the volume of fission gas present in the fuel rod and to determine the fuel rod void volume. To accomplish these objectives a system of leak-tight piping, valves, and calibrated flasks connected to vacuum pumps was fabricated. This system (referred to as the fission gas sample cart) is located in the operating gallery or the "cold" side of the hot cell facility. Piping runs from this cart to a wall plug that extends through the wall of the hot cell. All operations of the system are carried out with a partial vacuum using the current procedure. The top of the fuel rod is inserted into the machined "head" with a flange which, when clamped to the other end of the wall plug, makes a leak-tight connection between the fuel rod and the fission gas sample cart (Figure C.1).

The entire system is evacuated by vacuum pumps to the lowest pressure obtainable, as indicated by a Baratron[®] gauge. This pressure is usually less than 10^{-1} mm Hg. The system is purged with argon and re-evacuated to remove residual air or other contaminants. The valve to the vacuum pumps is closed, and the readout on the pressure gauge is observed for at least 1 min to determine whether there are any leaks in the system. If no leaks are indicated, the valves to all of the calibrated flasks are closed and fission gas sampling can be conducted. A laser is used to make a small hole in the fuel rod by focusing the laser to a pinhole-sized beam to breach the cladding. The fission gas flows into the evacuated sample cart system. Valves to the calibrated flasks are opened until the Baratron gauge is on scale. This pressure, referred to as the system pressure P_s, is recorded. Valves are then opened to the evacuated analytical sample flasks (to obtain the samples for analysis). Two samples are taken in case the fission gas analysis needs

C.1

FIGURE C.1. Schematic of Fission Gas Sampling System

to be repeated. The values to these flasks are closed and the entire system is again evacuated to remove residual fission gas in the rod. The sample flasks are removed from the cart and transferred to the analytical lab.

FUEL ROD VOID VOLUME

After the fuel rod gas is collected, the fuel rod void volume is determined. The entire piping system is evacuated. Then, the valves to the evacuated calibrated flasks are closed, and the fission gas system piping and the fuel rod are pressurized with argon. The argon is permitted to flow into the fuel rod until equilibrium is reached (as indicated by no change in pressure on the Baratron gauge). This pressure is recorded, and the valve to one

C.2

of the calibrated flasks is opened. When a second equilibrium is reached, the void volume calculation can be completed. The fuel rod void volume is calculated from Boyles' law

$$V_{p} = \frac{(P_{2}) (V_{s}) + P_{2} (V_{x}) - P_{1} (V_{s})}{P_{1} - P_{2}}$$

where: $P_1 = \text{first pressure reading, mm Hg}$ $P_2 = \text{second pressure reading, mm Hg}$ $V_s = \text{volume of fission gas system piping, cm}^3$ $V_x = \text{volume of selected calibrated flask, cm}^3$ $v_p = \text{fuel rod void volume, cm}^3$.

QUANTITY OF GAS COLLECTED

Once V_p has been determined, the number of moles of gas collected from the fuel rod can be determined according to the ideal gas law.

n =
$$\frac{(P_s) (\Sigma V)_i}{(62360) (273 + T)}$$

Because V_p is a very small value compared with the other volumes used to determine $\Sigma V_i,$ normal errors in V_p have only a minor effect on the values reported for n.

APPENDIX D

•

-

.

SECTIONING DIAGRAM

• •

APPENDIX D

SECTIONING DIAGRAM

The as-cut sectioning diagram for Rod NBD107 is shown in a continuous four-part graph of the 137 Cs gamma scan (Figure D.1). Each letter along the top of the graph identifies a specific section of the rod and is keyed to the detailed section assignment and location description (Table D.1) that follows the graph. It should be noted that the graphs are referenced to the top end of the rod. Also, note that dashed lines represent cuts that have not been made at the time of preparing this report.

Sections were cut from the rod using a circular saw with an aluminum oxide blade; the saw is operated without coolant. Each cut required less than 1 min. After cutting, the small fuel samples were placed in glass vials for transfer to the analytical facilities. The remaining longer segments (for repository testing or MCC spare material) were marked at the top end for orientation purposes and were placed in individual stainless steel storage tubes that were filled with argon before being capped with a Swagelok[®] fitting. Two operators were used during sectioning operations to verify that the sections were cut correctly and placed in the proper prelabeled transfer or storage containers. As the sections longer than 2.5 cm (1.0 in.) were cut, as-cut measurements were made. These as-cut measurements were used to prepare an as-cut sectioning diagram as shown in this appendix.

[®]Swagelok fittings are manufactured by the Crawford Fitting Company, Solon, Ohio.

FIGURE D.1. As-Cut Sectioning Diagram for Rod NBD107

FIGURE D.1. As-Cut Sectioning Diagram for Rod NBD107

Section Identifi- cation	Section Assignment	Distance ^(a) from Top, <u>cm (in.)</u>	Length, ^(b) _cm (in.)	Notes
۸.	MCC Spare Material	Ø-35.433 (Ø-13.95Ø)	35.43 (13.95)	c
B.	MCC I-129 on Cladding ID; MCC Cs-135 and Cs-137 on Cladding ID and OD	35.497-38.037 (13.975-14.975)	2.54 (1.00)	d
C.	MCC Transverse Metallog- raphy-Ceramography	38.100-39.370 (15.000-15.500)	1.27 (Ø.50)	
D.	DNWI Material	39.434-41.974 (15.525-16.525)	2.54 (1.00)	d
Ε.	MCC C-14 in Fuel and Cladding	42.037-43.307 (16.550- 17.050)	1.27 (0.50)	
F.	MCC Spare and Archive Material	43.371-86.360 (17.075-34.000)	42.99 (16.93)	с,е
G.	MCC Transverse Metailog- raphy-Ceramography	86.424-87.655 (34.025-34.510)	1.23 (0.49)	e
Η.	MCC I-129 on Cladding ID; MCC Cs-135 and Cs-137 on Cladding ID and DD	87.719-90.221 (34.535- 35.520)	2.50 (0.99)	e
I.	MCC C-14 in Fuel and Cladding	90.284-91.516 (35.545-36.030)	1.23 (0.49)	e
J.	ONWI Material	91.580-94.082 (36.055-37.040)	2.50 (0.99)	e
К.	MCC Spare Material	94.145-104.305* (37.065-41.065*)	10.16 (4.0)	e,f
L.	NNWSI Material	104.369*-117.069* (41.090*-46.090*)	12.7Ø (5.Ø)	e,f
M.	NNWSI Material	117.132*-129.687 (46.115*-51.050)	12.53 (4.94)	e,f
N.	MCC Spare Material	1 29.731-205.4 33 (51.075-80.879)	75.70 29.80	c,g
0.	MCC Longitudinal Metallog- raphy-Ceramography	205.496-207.386 (80.904-81.648)	1.89 (Ø.74)	g
Ρ.	MCC Transverse Metallog- raphy-Ceramography	207.449-208.704 (81.673- 82.167)	1.25 (Ø.49)	g
Q.	MCC Burnup, Isotopes, and Radionuclides	208.768-210.022 (82.192-82.686)	1.25 (Ø.49)	8
R.	ORNL Spark Source	21 9.585-215 .766 (82.711-82.955)	9.82 (9.24)	9

TABLE D.1. Description of As-Cut Sections of ATM-106, Rod NBD-107 (Keyed to Figure D.1)

-

TABLE D.1.	(contd)
------------	---------

Section Identifi- cation	Section Assignment	Distance From Top,(a) cm (in.)	Length,(b) _cm (in.)	Notes
S.	ORNL Spark Source	210.769-211.389 (82.980-83.224)	0.62 (0.24)	g
Τ.	MCC Transmission Electron Microscopy	211.452-212.707 (83.249-83.743)	0.494 (0.49)	g
U.	MCC I-129 in Fuel and on Cladding ID; MCC Cs-135 and Cs-137 on Cladding ID and OD	212.771-215.295 (83.768-84.762)	2.52 (0.99)	g
۷.	MCC C-14 in Fuel and Cladding	215.359-216.614 (84.787-85.281)	1.25 (0.49)	g
W.	ONWI Material	216.677-219.202 (85.306-86.300)	2.53 (0.99)	g
Χ.	MCC Spare and Archive Material	219.266-231.267 (86.325-91.050)	12.00 (4.73)	c,h
Υ.	MCC Longitudinal Metallog- raphy-Ceramography	231.331-233.172 (91.075-91.800)	1.841 (0.73)	h
Ζ.	MCC Transverse Metallog- raphy-Ceramography	233.236-234.442 (91.825-92.300)	1.21 (0.48)	h
AA.	MCC Transmission Electron Microscopy	234.506-235.712 (92.325-92.800)	1.21 (0.48)	h
BB.	MCC I-129 in Fuel and on Cladding ID; MCC Cs-135 and Cs-137 on Cladding ID and OD	235.776-238.252 (92.825-93.800)	2.48 (0.98)	h
cc.	MCC C-14 in Fuel and Cladding	238.316-239.522 (93.825-94.300)	1.21 (0.48)	h
DD.	MCC Spare Material	239.586-250.381*	10.80	c,h
EE.	BWIP Material	250.444*-288.417 (98.600*-113.550)	37.97 (14.95)	c,h
FF.	MCC Spare and Archive Material	288.481-349.987 (113.575-137.790)	61.51 (24.22)	c
GG.	MCC Burnup, Isotopes, and Radionuclides	350.050-351.320 (137.815-138.315)	1.27 (0.50)	
HH.	ORNL Spark Source	351.384-352.019 (138.340-138.590)	0.64 (0.25)	
II.	ORNL Spark Source	352.082-352.717 (138.615-138.865)	0.25 (0.25)	
JJ.	ONWI Material	352.781-355.321 (138.890-139.890)	2.54 (1.00)	

•.1

.

1.14

,

TABLE	D.1.	(contd)
-------	------	---------

Section Identifi- cation	Section Assignment	Distance From Top, (a) cm (in.)	Length,(b) _cm (in.)	Notes
KK.	MCC Longitudinal Metallog- raphy-Ceramography	355.384-357.289 (139.915-140.665)	1.91 (Ø.75)	
Ш.	MCC Transverse Metallog- raphy-Ceramography	357.353-358.623 (140.690-141.190)	1.27 (Ø.50)	
MM.	MCC Burnup, Isotopes, and Radionuclides	358.686-359.956 (141.215-141.715)	1.27 (Ø.50)	
NN.	ORNL Spark Source	369. #20-3 69.655 (141.740-141.999)	Ø.64 (Ø.25)	
D D .	ORML Spark Source	369.718-361.353 (142.015-142.265)	Ø.64 (Ø.25)	
PP.	MCC I-129 in Fuel and on Cladding ID; MCC Cs-135 and Cs-137 on Cladding ID and OD	361.417-363.957 (142.290-143.290)	2.54 (1.00)	
QQ.	MCC C-14 in Fuel and Cladding	364.020-365.290 (143.315-143.815)	1.27 (Ø.50)	
RR.	MCC Spare Material	365.354-375.51 (143.840-147.84)	10.16 (4.00)	

(a) Distance from top reported to three decimal places to keep account of saw loss between sections only.

- (b) Section lengths reported to two decimal places. Length does not include Ø.084 cm (0.025 in.) saw loss. This is accounted for between sections. Measured lengths are within 0.16 cm (1/16 in.).
- (1) 10 in.).
 (c) Within Ø.16 cm (1/16 in.) of as-measured length.
 (d) Section assignments for B and D exchanged because of a nonrecovered fuel loss from section B during cutting. Section B, originally specified as 0NWI material, is designated as 1291, 135 Cs, 137 Cs analysis on cladding. Section D, originally specified as 1291, 135 Cs, analysis on cladding. Section D, originally specified as 1291, 135 Cs, analysis on cladding. Section D, originally specified as 1291, 135 Cs, analysis on cladding, is designated as 0NWI material.
 (e) Subtracted Ø.038 cm (0.015 in.) from each of the six sections (F-K/L/M) to compensate for
- Ø.223 cm (Ø.088 in.) difference between as-cut length measurements and "theoretical" summation of sections G through K/L/W after accounting for saw loss. Note that K/L/W is currently one section.
- (f) Sections are one section of fuel. Asterisk (*) indicates a theoretical distance from top of
- (r) Sections are determined in the section of the sec sections 0 through W after accounting for saw loss.
- (h) Length decreased by Ø.063 cm (0.025 in.) from each of seven sections (X-DD/EE) to compensate for 0.445 cm (0.175 in.) difference between as-cut length measurements and "theoretical" summation of sections Y through DD/EE after accounting for saw loss. Note that DD/EE is currently one section.

APPENDIX E

.

.

DETAILS OF CERAMOGRAPHY/METALLOGRAPHY

APPENDIX E

DETAILS OF CERAMOGRAPHY/METALLOGRAPHY

This appendix includes the results of all ceramographic and metallographic examinations conducted to date on ATM-106 fuel. Photographs will be added (pending completion of exams) in subsequent updates of this report. Table E.1 gives a summary of specimen locations. Refer to Figure 4.11 and Appendix D (Sectioning Diagrams) for further details.

The organization of the Figures in Appendix E is given below:

Figure E.l.a - E.l.e	Photomacrographs of As-Polished Transverse Samples
Figure E.1.f - E.1.h	Photomacrographs of As-Polished Longitudinal Samples
Figure E.2.a - E.2.e	Photomicrographs of As-Polished Transverse Samples
Figure E.2.f - E.2.h	Photomicrographs of As-Polished Longitudinal Samples
Figure E.3.a - E.3.e	Photomicrographs of Argon Ion-Etched Transverse Samples
Figure E.3.f - E.3.h	Photomicrographs of Argon Ion-Etched Longitudinal Samples
Figure E.4.a - E.4.f	Exterior/Interior Cladding Surfaces of As-Polished Samples
Figure E.5.a - E.5.e	Etched Cladding of Transverse Samples
Figure E.5.f - E.5.h	Etched Cladding of Longitidinal Samples
Figure E.6.a - E.6.j	Alpha and Beta-Gamma Autoradiographs of Transverse Samples
Figure E.6.k – E.6.p	Alpha and Beta-Gamma Áutoradiographs of Longi- tudinal Samples.

Specimen ID	Distance from Top, ^(a) cm (in.)	Туре
106-NBD107-C	38.10-39.37 (15.00-15.50)	Transverse Fuel Sample
106-NBD107-G	86.42-87.66 (34.03-34.51)	Transverse Fuel Sample
106-NBD107-0	205.50-207.39 (80.90-81.65)	Longitudinal Fuel Sample
106-NBD107-P	207.45-208.70 (81.67-82.17)	Transverse Fuel Sample
106-NBD107-Y	231.33-233.17 (91.08-91.80)	Longitudinal Fuel Sample
106-NBD107-Z	233.24-234.44 (91.83-92.30)	Transverse Fuel Sample
106-NBD107-KK	355.38-357.29 (139.92-140.67)	Longitudinal Fuel Sample
106-NBD107-LL	357.35-358.62 (140.69-141.19)	Transverse Fuel Sample

<u>TABLE E.1</u>. Summary of Ceramographic/Metallographic Sections

(a) Rod distance referenced from top end of rod.

FIGURE E.1.a. Photomacrograph of As-Polished Transverse Sample 106-NBD107-C (~10x) (Neg. No. 8704675-26)

FIGURE E.1.b. Photomacrograph of As-Polished Transverse Sample 106-NBD107-G (~10x) (Neg. No. 8704675-7)

.

FIGURE E.1.c. Photomacrograph of As-Polished Transverse Sample 106-NBD107-P (~10x) (Neg. No. 8704675-20)

FIGURE E.1.d. Photomacrograph of As-Polished Transverse Sample 106-NBD107-Z (~10x) (Neg. No. 8704494-16)

FIGURE E.1.e. Photomacrograph of As-Polished Transverse Sample 106-NBD107-LL (~10x) (Neg. No. 8704494-20)

DIGIEC

.

FIGURE C.L.F. Filteracrograph of As-Polisher BUIOV-0 (-10x) (Neg. No

FIGURE E.1.f. Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-0 (~10x) (Neg. No. 8704675-15)

FIGURE E.1.g. Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-Y (~10x) (Neg. No. 8704494-2)

FIGURE E.1.h. Photomacrograph of As-Polished Longitudinal Sample 106-NBD107-KK (~10x) (Neg. No. 8704494-8)

c) 2/3 Radius (Neg. No. P-3054) d) Edge (Neg. No. P-3053) <u>FIGURE E.2.a</u>. Photomicrographs of As-Polished Transverse Sample 106-NBD107-C

c) 2/3 Radius (Neg. No. P-3048) d) Edge (Neg. No. P-3047)

Ī

FIGURE E.2.c. Photomicrographs of As-Polished Transverse Sample 106-NBD107-P

U

٥

D

<u>FIGURE E.2.e</u>. Photomicrographs of As-Polished Transverse Sample 106-NBD107-LL

c) 2/3 Radius (Neg. No. P-2781) d) Edge (Neg. No. P-2780)

ľ

c) 2/3 Radius (Neg. No. P-2998) d) Edge (Neg. No. P-2997) <u>FIGURE E.2.g</u>. Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-Y

c) 2/3 Radius (Neg. No. P-3003) d) Edge (Neg. No. P-3002) <u>FIGURE E.2.h</u>. Photomicrographs of As-Polished Longitudinal Sample 106-NBD107-KK

<u>FIGURE E.3.a</u>. Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-C

c) 2/3 Radius (Neg. No. P-3186) d) Edge (Neg. No. P-3185)

I

c) 2/3 Radius (Neg. No. P-2938) d) Edge (Neg. No. P-2937) <u>FIGURE E.3.c</u>. Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-P

FIGURE E.3.d. Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-Z

FIGURE E.3.e. Photomicrographs of Argon Ion-Etched Transverse Sample 106-NBD107-LL

c) 2/3 Radius (Neg. No. P-2934) d) Edge (Neg. No. P-2933)

FIGURE E.3.f. Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-0

۵

E

1

I

c) 2/3 Raulus (Neg. No. P-3009) u) Euge (Neg. No. P-3008)

FIGURE E.3.g. Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-Y

c) 2/3 Radius (Neg. No. P-3073) d) Edge (Neg. No. P-3072)

FIGURE E.3.h. Photomicrographs of Argon Ion-Etched Longitudinal Sample 106-NBD107-KK

a) Exterior Surface

FIGURE E.4.a. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-G

riace (Heg. No.

a) Exterior Surface (Neg. No. P-2784)

b) Interior Surface (Neg. No. P-2785)

FIGURE E.4.b. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-0

a) Exterior Surface (Neg. No. P-2995)

b) Interior Surface (Neg. No. P-2996)

FIGURE E.4.c. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-Y

E

a) Exterior Surface (Neg. No. P-3036)

(No Examination)

b) Interior Surface

FIGURE E.4.d. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-Z

a) Exterior Surface (Neg. No. P-3006)

b) Interior Surface (Neg. No. P-3007)

FIGURE E.4.e. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-KK

a) Exterior Surface (Neg. No. P-3008)

- b) Interior Surface (Neg. No. P-3013)
- FIGURE E.4.f. Exterior/Interior Cladding Surface of As-Polished Sample 106-NBD107-LL

1

FIGURE E.5.a. Etched Cladding of Transverse Sample 106-NBD107-C (Neg. No. P-3310)

FIGURE E.5.b. Etched Cladding of Transverse Sample 106-NBD107-G (Neg. No. P-3315)

FIGURE E.5.c. Etched Cladding of Transverse Sample 106-NBD107-P (Neg. No. P-3247)

FIGURE E.5.d. Etched Cladding of Transverse Sample 106-NBD107-Z (Neg. No. P-3312)

FIGURE E.5.e. Etched Cladding of Transverse Sample 106-NBD107-LL (Neg. No. P-3309)

FIGURE E.5.f. Etched Cladding of Longitudinal Sample 106-NBD107-0 (Neg. No. P-3273)

FIGURE E.5.g. Etched Cladding of Longitudinal Sample 106-NBD107-Y (Neg. No. P-3311)

FIGURE E.5.h. Etched Cladding of Longitudinal Sample 106-NBD107-KK (Neg. No. P-3318)

(Intentionally left blank to facilitate comparison of alpha and beta-gamma autoradiographs.)

ALC: nadiograph of The

10914

FIGURE E.6.a. Alpha Autoradiograph of Transverse Sample 106-NBD107-C (Neg. No. 5460)

<u>FIGURE E.6.b</u>. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-C (Neg. No. 5461)

I

FIGURE E.6.c. Alpha Autoradiograph of Transverse Sample 106-NBD107-G (Neg. No. 5434)

FIGURE E.6.d. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-G (Neg. No. 5435)

FIGURE E.6.e. Alpha Autoradiograph of Transverse Sample 106-NBD107-P (Neg. No. 5432)

FIGURE E.6.f. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-P (Neg. No. 5433)

FIGURE E.6.g. Alpha Autoradiograph of Transverse Sample 106-NBD107-Z (Neg. No. 5442)

1

FIGURE E.6.h. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-Z (Neg. No. 5443)

FIGURE E.6.i. Alpha Autoradiograph of Transverse Sample 106-NBD107-LL (Neg. No. 5440)

FIGURE E.6.j. Beta-Gamma Autoradiograph of Transverse Sample 106-NBD107-LL (Neg. No. 5441)

1

[

0

FIGURE E.6.k. Alpha Autoradiograph of Longitudinal Sample 106-NBD107-0 (Neg.No. 5430)

Ü

٠

٥

FIGURE E.6.1. Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-0 (Neg. No. 5431)

FIGURE E.6.m. Alpha Autoradiograph of Longitudinal Sample 106-NBD107-Y (Neg.No. 5436)

FIGURE E.6.n. Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-Y (Neg. No. 5437)

FIGURE E.6.0. Alpha Autoradiograph of Longitudinal Sample 106-NBD107-KK (Neg. No. 5444)

1

[

FIGURE E.6.p. Beta-Gamma Autoradiograph of Longitudinal Sample 106-NBD107-KK (Neg. No. 5445)

APPENDIX F

RESULTS OF ORIGEN2 RADIONUCLIDE INVENTORY CALCULATIONS

APPENDIX F

RESULTS OF ORIGEN2 RADIONUCLIDE INVENTORY CALCULATIONS

Appendix F contains input and output from the ORIGEN2 calculations for ATM-106 spent fuel based on data described in Section 4.6 and Appendix A. An example of the ORIGEN2 input for fuel irradiation/decay is shown in Figure F.1. An example of the ORIGEN2 input for cladding irradiation/decay is shown in Figure F.2. The power densities given in Appendix A were normalized to give burnup exposures of 20, 25, 30, 35, 40, 45, and 50 MWd/kgM. Eight tables of output at each of these exposures are given in Appendix F. Their contents are as follows:

Table F.1.a - F.1.g Fission Product Radioactivity by Isotope, Ci/gU Table F.2.a - F.2.g Actinide Radioactivity by Isotope, Ci/gU

Table F.3.a - F.3.g Fission Product Inventory by Isotope, g/gU
Table F.4.a - F.4.g Actinide Inventory by Isotope, g/gU
Table F.5.a - F.5.g Fission Product Inventory by Element, g/gU
Table F.6.a - F.6.g Actinide Inventory by Element, g/gU
Table F.7.a - F.7.g Fuel Activation Product Inventory by Isotope, g/gU
Table F.8.a - F.8.g Cladding Activation Product Inventory by Iso-tope, g/gZr.

Each table contains values for out-of-reactor decay times of 6, 8, 10, 12, 15, 20, and 1000 years.

-1 -1	
-1 TIT	ATM-106 FUEL PWR E=2.453 20.0 GWD/MTU
BAS	GRAM
LIB	0 1 2 3 204 205 206 9 3 0 1 1
PHO	101 102 103 10
LIP	0 0 0
INP	1 1 -1 -1 1 1
RDA	BURNUP TO 20,000 MWD/MTU
BUP	
IRP	116. 14.0169-6 1 2 4 2
IRP	232. 14.0169-6 2 3 4 0
IRP	348. 14.0169-6 3 4 4 0
IRP	465. 14.0169-6 4 5 4 0
DEC	498. 5640
IRP	588. 13.3884-6 6740
IRP	666.7 13.3884-6 7 8 4 0
IRP	730. 8.1663-6 8 9 4 0
DEC	811. 9140
IRP	911. 11.8997-6 1 2 4 0
IRP	1011. 11.8997-6 2 3 4 0
IRP	1117. 11.8997-6 3 4 4 0
DEC	1188. 4 5 4 0
IRP	1213. 7.9016-6 5 6 4 0
IRP	1238.3 4.2202-6 6 7 4 0
IRP	1348.3 9.1304-6 / 8 4 0
IRP	1457. 9.1304-6 8 9 4 0
DEC	
TKL	15/0. 9.9148-6 1 2 4 0
	1/0/./ 9.18/1-0 3 4 4 U
	1091.0 4.4092-0 4 5 4 0 2001 6 10 0950 6 5 6 4 0
	6 8 1 5 0
DEC	8 1 2 5 0
DEC	10. 2 3 5 0
DEC	12. 3 4 5 0
DEC	15. 4 5 5 0
DEC	20. 5 6 5 0
DEC	50. 6 7 5 0
-	

FIGURE F.1. Sample ORIGEN2 Input for ATM-106 Fuel

•

DEC	100.	7	85	0													
DEC	200.	8	95	0													
DEC	500.	91	0 5	0													
DEC	1000.	10	75	0													
BUP																	
HED	1 ' 6	YEAR	S														
HED	2'8	YEAR	S														
HED	3 10	YEARS															
HED	4 12	YEARS	,														
HED	5 15	YEARS	•														
HED	6 20	YEARS															
HED	7 100	O YEA	RS														
ΟΡΤΑ	888	87	87	88	8	88	8	8	8 8	8 8	8	8	8	8	8	8	8
OPTL	888	87	87	88	8	88	8	8	88	8 8	8	8	8	8	8	8	8
OPTF	888	8 7	87	88	_8	88	8	8	8 8	8 8	8	8	8	8	8	8	8
CUT	5 1.0	-15	7 1	.0-1	5	-1											
OUT	71	01															
STP	4												_	_			
2 9223	40.00	0199	9223	350	.02	2453	92	223	80	.9	752	27	0	0.	.0		
4 8000	0.134	52 60	000	21.	6-6	5 7	000	00	49.	9-(5	90	000	00	11	١.3	3-6
4 1700	00 11.	3-6 2	6000) 51	.1-	·6	470	000	0 1	.1	-6	2	200)0()0	45	5.4-6
4 13000	00 45.	4-6	1400	000	45.	4-6	2	280	000	28	3.4	1-6	5	0	0.	.0	
0																	
END																	

i.

.

FIGURE F.1. (contd)

-1	
-1	
	ATM-106 CLAD DWD E=2 453 20 0 GWD/MTH
RAS	
I TR	
PHO	101 102 103 10
ITP	
TNP	1 1 -1 -1 1 1
RDA	BURNUP TO 20.000 MWD/MTU
BUP	
IRP	116. 64.0985-6 1 2 4 2
IRP	232. 64.0985-6 2 3 4 0
IRP	348. 64.0985-6 3 4 4 0
IRP	465. 64.0985-6 4 5 4 0
DEC	498. 5640
IRP	588. 61.2242-6 6740
IRP	666.7 61.2242-6 7 8 4 0
IRP	730. 37.3439-6 8 9 4 0
DEC	811. 9140
IRP	911. 54.4167-6 1 2 4 0
IRP	1011. 54.4167-6 2 3 4 0
IRP	1117. 54.4167-6 3 4 4 0
DEC	1188. 4 5 4 0
IRP	1213. 36.1337-6 5 6 4 0
IRP	1238.3 19.2987-6 6 7 4 0
IRP	1348.3 41.7526-6 7 8 4 0
IRP	1457. 41.7526-6 8 9 4 0
DEC	1482. 9 1 4 0
IRP	1570. 45.3400-6 1 2 4 0
DEC	
IRP	1/6/./ 42.0119-6 3 4 4 0
IRP	1891.6 20.1631-6 4 5 4 0
IRP	
	10 2 3 5 0
	12 3 4 5 0
DEC	15. 4 5 5 0
DEC	20. 5 6 5 0
DEC	50. 6 7 5 0
92V	

FIGURE F.2. Sample ORIGEN2 Input for ATM-106 Cladding

DEC	100. 7 8 5 0
DEC	200. 8 9 5 0
DEC	500. 9 10 5 0
DEC	1000.10 7 5 0
BUP	
HED	1 ' 6 YEARS
HED	2 ' 8 YEARS
HED	3 10 YEARS
HED	4 12 YEARS
HED	5 15 YEARS
HED	6 20 YEARS
HED	7 1000 YEARS
ΟΡΤΑ	888888888888888888888888888888888888888
OPTL	8 8 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
OPTF	888888888888888888888888888888888888888
CUT	5 1.0-15 7 1.0-15 -1
OUT	7 1 0 1
STP	4
2 92234	40 .000910 922350 .11217 922380 4.4598 0 0.0
4 4000	00.9804 500000.015 260000.002 240000.000
4 1300	00 40.0-6 720000 55.0-6 140000 80.0-6 80000 1248.0-6
4 6000	0 146.0-6 70000 42.0-6 10000 12.0-6 0 0.0
0	
END	

FIGURE F.2. (contd)

1.04

. .

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-3	2.146E-04	1.918E-04	1.715E-04	1.532E-04	1.295E-04	9.781E-05	0.00
Be-10	1.760E-12	1.760E-12	1.760E-12	1.760E-12	1.760E-12	1.760E-12	1.759E-12
C-14	7.092E-11	7.090E-11	7.088E-11	7.086E-11	7.084E-11	7.080E-11	6.288E-11
Se-79	2.518E-07	2.518E-07	2.518E-07	2.518E-07	2.518E-07	2.518E-07	2.492E-07
Kr-81	2.336E-13	2.336E-13	2.336E-13	2.336E-13	2.336E-13	2.336E-13	2.328E-13
Kr-85	3.439E-03	3.021E-03	2.655E-03	2.333E-03	1.922E-03	1.391E-03	0.00
Rb-87	1.310E-11	1.310E-11	1.310E-11	1.310E-11	1.310E-11	1.310E-11	1.310E-11
Sr-89	2.078E-14	9.184E-19	4.058E-23	0.00	0.00	0.00	0.00
Sr-90	3.701E-02	3.529E-02	3.365E-02	3.208E-02	2.987E-02	2.652E-02	1.964E-12
Y-90	3.702E-02	3.529E-02	3.365E-02	3.209E-02	2.988E-02	2.653E-02	1.965E-12
Y-91	1.649E-12	2.875E-16	5.013E-20	8.740E-24	0.00	0.00	0.00
Zr-93	1.109E-06	1.109E-06	1.109E-06	1.109E-06	1.109E-06	1.109E-06	1.108E-06
Nb-93m	3.997E-07	4.630E-07	5.202E-07	5.719E-07	6.402E-07	7.331E-07	1.053E-06
Nb-94	8.543E-11	8.543E-11	8.542E-11	8.541E-11	8.541E-11	8.539E-11	8.258E-11
Zr-95	2.107E-11	7.705E-15	2.817E-18	1.030E-21	0.00	0.00	0.00
Nb-95	4.679E-11	1.711E-14	6.254E-18	2.287E-21	0.00	0.00	0.00
Nb-95m	1.563E-13	5.716E-17	2.090E-20	7.641E-24	0.00	0.00	0.00
Tc-98	2.204E-12	2.204E-12	2.204E-12	2.204E-12	2.204E-12	2.204E-12	2.204E-12
Tc-99	8.209E-06	8.209E-06	8.209E-06	8.209E-06	8.209E-06	8.208E-06	8.182E-06
Rh-102	1.019E-07	6.317E-08	3.916E-08	2.428E-08	1.185E-08	3.588E-09	0.00
Ru-106	2.641E-03	6.675E-04	1.687E-04	4.264E-05	5.419E-06	1.741E-07	0.00
Rh-106	2.641E-03	6.675E-04	1.687E-04	4.264E-05	5.419E-06	1.741E-07	0.00
Pd-107	6.470E-08	6.470E-08	6.470E-08	6.470E-08	6.470E-08	6.470E-08	6.469E-08
Ag-108	1.526E-12	1.510E-12	1.493E-12	1.477E-12	1.453E-12	1.414E-12	6.724E-15
Ag-108m	1.715E-11	1.696E-11	1.678E-11	1.660E-11	1.633E-11	1.589E-11	7.555E-14
Ag-109m	9.469E-12	3.180E-12	1.068E-12	3.586E-13	6.977E-14	4.559E-15	0.00
Cd-109	9.469E-12	3.180E-12	1.068E-12	3.586E-13	6.977E-14	4.559E-15	0.00
Ag-110	2.940E-08	3.875E-09	5.108E-10	6.733E-11	3.223E-12	2.033E-14	0.00
Ag-110m	2.210E-06	2.913E-07	3.841E-08	5.063E-09	2.423E-10	1.529E-12	0.00
Cd-113m	2.222E-05	2.020E-05	1.837E-05	1.671E-05	1.449E-05	1.142E-05	6.868E-26
Sn-119m	1.260E-07	1.595E-08	2.020E-09	2.558E-10	1.152E-11	6.577E-14	0.00
Sn-121m	1.113E-07	1.083E-07	1.053E-07	1.024E-07	9.824E-08	9.166E-08	1.145E-13
Sn-123	7.604E-09	1.509E-10	2.993E-12	5.938E-14	1.662E-16	9.212E-21	0.00
Te-123m	6.541E-12	9.509E-14	1.382E-15	2.007E-17	0.00	0.00	0.00
Sb-124	3.015E-15	6.703E-19	1.490E-22	0.00	0.00	0.00	0.00
SD-125	1.388E-03	8.417E-04	5.103E-04	3.093E-04	1.460E-04	4.1/8E-05	0.00
Te-125m	3.388E-04	2.054E-04	1.245E-04	7.550E-05	3.563E-05	1.019E-05	0.00
Sn-126	4.833E-07	4.833E-07	4.833E-07	4.833E-07	4.833E-07	4.832E-07	4.800E-07
Sb-126	6.766E-08	6.766E-08	6.766E-08	6.766E-08	6.766E-08	6.765E-08	6.720E-08
Sb-126m	4.833E-07	4.833E-07	4.833E-07	4.833E-07	4.833E-07	4.832E-07	4.800E-07
Te-127	3.421E-09	3.287E-11	3.158E-13	3.034E-15	2.857E-18	2.586E-23	0.00
Te-127m	3.493E-09	3.356E-11	3.224E-13	3.098E-15	2.917E-18	2.640E-23	0.00
I-129	1.958E-08	1.958E-08	1.958E-08	1.958E-08	1.958E-08	1.958E-08	1.958E-08
Cs-134	6.210E-03	3.170E-03	1.619E-03	8.263E-04	3.014E-04	5.613E-05	0.00
Cs-135	4.095E-07	4.095E-07	4.095E-07	4.095E-07	4.095E-07	4.095E-07	4.094E-07
Cs-137	5.235E-02	4,998E-02	4.773E-02	4.557E-02	4.252E-02	3.788E-02	5.552E-12

TABL	<u>E F.1.a</u> .	Fission Product Radioactivity by Isotope at 20 MWd/kgM, Ci/gU (contd)						
<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>	
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Sm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-154 Eu-155 Tb-160 Ho-166m Tm-170	4.952E-02 1.637E-11 1.451E-03 1.451E-03 1.741E-05 8.785E-16 4.890E-07 1.739E-13 1.565E-02 3.551E-12 1.998E-11 2.418E-04 1.125E-05 7.573E-08 2.678E-03 1.210E-03 1.442E-13 8.303E-10 4.990E-14	4.729E-02 1.637E-11 2.444E-04 2.933E-06 8.790E-16 3.800E-07 1.771E-13 9.226E-03 3.709E-12 1.923E-11 2.381E-04 1.016E-05 9.346E-09 2.280E-03 9.146E-04 1.311E-16 8.293E-10 9.729E-16	4.515E-02 1.637E-11 4.116E-05 4.117E-05 4.940E-07 8.791E-16 2.954E-07 1.795E-13 5.439E-03 3.801E-12 1.850E-11 2.345E-04 9.178E-06 1.153E-09 1.940E-03 6.916E-04 1.192E-19 8.284E-10 1.899E-17	4.311E-02 1.637E-11 6.933E-06 6.933E-06 8.320E-08 8.791E-16 2.296E-07 1.814E-13 3.207E-03 3.856E-12 1.780E-11 2.309E-04 8.288E-06 1.423E-10 1.651E-03 5.229E-04 1.083E-22 8.274E-10 3.331E-19	4.022E-02 1.637E-11 4.792E-07 5.751E-09 8.791E-16 1.573E-07 1.835E-13 1.451E-03 3.899E-12 1.680E-11 2.256E-04 7.113E-06 6.171E-12 1.297E-03 3.438E-04 0.00 8.260E-10 6.973E-20	3.584E-02 1.637E-11 5.578E-09 5.579E-09 6.694E-11 8.791E-16 8.376E-08 1.857E-13 3.873E-04 3.925E-12 1.526E-11 2.171E-04 5.513E-06 3.302E-14 8.666E-04 1.709E-04 0.00 8.236E-10 3.699E-24	5.253E-12 1.637E-11 0.00 0.00 8.791E-16 0.00 1.881E-13 0.00 3.935E-12 9.756E-20 1.144E-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
Tm-171	6.329E-12	3.074E-12	1.493E-12	7.254E-13	2.456E-13	4.039E-14	0.00	

....)

~ a

Total 2.155E-01 1.898E-01 1.740E-01 1.623E-01 1.484E-01 1.300E-01 1.223E-05

		C1/gU					
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-3	2.739E-04	2.448E-04	2.188E-04	1.956E-04	1.653E-04	1.248E-04	0.00
Be-10	2.195E-12	2.195E-12	2.195E-12	2.195E-12	2.195E-12	2.195E-12	2.194E-12
C-14	8.846E-11	8.844E-11	8.842E-11	8.840E-11	8.836E-11	8.831E-11	7.844E-11
Se-79	3.103E-07	3.103E-07	3.103E-07	3.103E-07	3.103E-07	3.103E-07	3.070E-07
Kr-81	3.526E-13	3.526E-13	3.526E-13	3.526E-13	3.526E-13	3.526E-13	3.515E-13
Kr-85	4.137E-03	3.636E-03	3.195E-03	2.807E-03	2.312E-03	1.673E-03	0.00
Rb-87	1.569E-11	1.569E-11	1.569E-11	1.569E-11	1.569E-11	1.569E-11	1.569E-11
Sr-89	2.399E-14	1.060E-18	4.684E-23	0.00	0.00	0.00	0.00
Sr-90	4.420E-02	4.214E-02	4.019E-02	3.832E-02	3.568E-02	3.167E-02	2.346E-12
Y-90	4.421E-02	4.216E-02	4.020E-02	3.833E-02	3.569E-02	3.168E-02	2.347E-12
Y-91	1.927E-12	3.359E-16	5.857E-20	1.021E-23	0.00	0.00	0.00
Zr-93	1.347E-06	1.347E-06	1.347E-06	1.347E-06	1.347E-06	1.347E-06	1.346E-06
Nb-93m	4.865E-07	5.633E-07	6.327E-07	6.953E-07	7.781E-07	8.908E-07	1.279E-06
Nb-94	1.155E-10	1.155E-10	1.155E-10	1.155E-10	1.154E-10	1.154E-10	1.116E-10
Zr-95	2.563E-11	9.372E-15	3.427E-18	1.253E-21	0.00	0.00	0.00
Nb-95	5.691E-11	2.081E-14	7.607E-18	2.781E-21	0.00	0.00	0.00
Nb-95m	1.902E-13	6.952E-17	2.542E-20	9.294E-24	0.00	0.00	0.00
Tc-98	3.480E-12	3.480E-12	3.480E-12	3.480E-12	3.480E-12	3.480E-12	3.480F-12
Tc-99	1.004E-05	1.004E-05	1.004E-05	1.004E-05	1.004E-05	1.004E-05	1.001F-05
Rh-102	1.600E-07	9.917E-08	6.149E-08	3.812E-08	1.861E-08	5.633E-09	0.00
Ru-106	3.668E-03	9.272E-04	2.344E-04	5.924E-05	7.528E-06	2.418E-07	0.00
Rh-106	3.668E-03	9.272E-04	2.344E-04	5.924E-05	7.528E-06	2.418E-07	0.00
Pd-107	9.040E-08	9.040E-08	9.040E-08	9.040E-08	9.040E-08	9.040E-08	9.039E-08
Aa-108	2.187E-12	2.164E-12	2.140E-12	2.117E-12	2.082E-12	2.026E-12	9.636E-15
Aa-108m	2.458E-11	2.431E-11	2.405E-11	2.378E-11	2.340E-11	2.277E-11	1.083E-13
Ag-109m	2.065E-11	6.935E-12	2.329E-12	7.820E-13	1.522E-13	9.942E-15	0.00
Cd-109	2.065E-11	6.935E-12	2.329E-12	7.820E-13	1.522E-13	9.942E-15	0.00
Aa-110	5.095E-08	6.717E-09	8.854E-10	1.167E-10	5.586E-12	3.524E-14	0.00
Aa-110m	3.831E-06	5.050E-07	6.657E-08	8.776E-09	4.200E-10	2.650E-12	0.00
Cd-113m	3.075E-05	2.797E-05	2.543E-05	2.313E-05	2.005E-05	1.581E-05	9.505E-26
Sn-119m	1.694E-07	2.146E-08	2.717E-09	3.440E-10	1.550E-11	8.845E-14	0.00
Sn-121m	1.474E-07	1.434E-07	1.395E-07	1.357E-07	1.301E-07	1.214E-07	1.516E-13
Sn-123	9.748E-09	1.934E-10	3.837E-12	7.613E-14	2.127E-16	1.179E-20	0.00
Te-123m	1.353E-11	1.967E-13	2.859E-15	4.150E-17	1.177E-19	3.000E-24	0.00
Sb-124	4.897E-15	1.089E-18	2.420E-22	5.379E-26	0.00	0.00	0.00
Sb-125	1.798E-03	1.090E-03	6.608E-04	4.006E-04	1.891E-04	5.411E-05	0.00
Te-125m	4.387E-04	2.660E-04	1.613E-04	9.777E-05	4.614E-05	1.320E-05	0.00
Sn-126	6.233E-07	6.233E-07	6.233E-07	6.233E-07	6.232E-07	6.232E-07	6.190E-07
Sb-126	8.726E-08	8.726E-08	8.726E-08	8.726E-08	8.725E-08	8.725E-08	8.666E-08
Sb-126m	6.233E-07	6.233E-07	6.233E-07	6.233E-07	6.232E-07	6.232E-07	6.190E-07
Te-127	4.455E-09	4.280E-11	4.113E-13	3.951E-15	3.721E-18	3.367E-23	0.00
Te-127m	4.548E-09	4.370E-11	4.198E-13	4.034E-15	3.799E-18	3.437E-23	0.00
I-129	2.482E-08	2.482E-08	2.482E-08	2.482E-08	2.482E-08	2.482E-08	2.482E-08
Cs-134	9.553E-03	4.877E-03	2.490E-03	1.271E-03	4.637E-04	8.634E-05	0.00
Cs-135	4.509E-07	4.509E-07	4.509E-07	4.509E-07	4.509E-07	4.509E-07	4.508E-07
Cs-137	6.550E-02	6.254E-02	5.972E-02	5.702E-02	5.320E-02	4.740E-02	6.947E-12

TABL	<u>E F.1.b</u> .	Fission Pu Ci/gU (cor	roduct Radi ntd)	ioactivity	by Isotope	e at 25 MWd	l/kgM,
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years_	1000 Years
$\begin{array}{c} Ba-137m\\ Ce-142\\ Ce-144\\ Pr-144\\ Pr-144m\\ Nd-144\\ Pm-146\\ Sm-146\\ Sm-146\\ Pm-147\\ Eu-150\\ Sm-151\\ Eu-152\\ Gd-153\\ Eu-152\\ Gd-153\\ Eu-154\\ Eu-155\\ Tb-160\\ Ho-166m\\ Tm-170\\ \end{array}$	6.196E-02 2.025E-11 1.770E-03 1.770E-03 2.124E-05 1.127E-15 7.135E-07 2.526E-13 1.736E-02 3.908E-12 2.204E-11 2.637E-04 1.020E-05 9.174E-08 4.168E-03 1.798E-03 2.566E-13 1.639E-09 1.207E-13	5.916E-02 2.025E-11 2.982E-04 3.578E-06 1.128E-15 5.545E-07 2.573E-13 1.023E-02 4.082E-12 2.121E-11 2.597E-04 9.215E-06 1.132E-08 3.548E-03 1.360E-03 2.333E-16 1.637E-09 2.352E-15	5.649E-02 2.025E-11 5.022E-05 5.022E-05 6.026E-07 1.128E-15 4.310E-07 2.609E-13 6.032E-03 4.185E-12 2.041E-11 2.557E-04 8.322E-06 1.397E-09 3.019E-03 1.028E-03 2.121E-19 1.635E-09 4.592E-17	5.394E-02 2.025E-11 8.458E-06 8.458E-06 1.015E-07 1.128E-15 3.350E-07 2.636E-13 3.556E-03 4.246E-12 1.964E-11 2.518E-04 7.516E-06 1.724E-10 2.570E-03 7.774E-04 1.928E-22 1.633E-09 9 189E-19	5.033E-02 2.025E-11 5.846E-07 7.015E-09 1.128E-15 2.295E-07 2.667E-13 1.610E-03 4.294E-12 1.854E-11 2.461E-04 6.450E-06 7.477E-12 2.018E-03 5.111E-04 0.00 1.631E-09 0.00	4.484E-02 2.025E-11 6.806E-09 6.806E-09 8.167E-11 1.128E-15 1.222E-07 2.698E-13 4.295E-04 4.323E-12 1.683E-11 2.368E-04 4.999E-06 4.000E-14 1.349E-03 2.541E-04 0.00 1.626E-09 0.00	6.572E-12 2.025E-11 0.00 0.00 1.128E-15 0.00 2.734E-13 0.00 4.333E-12 1.076E-19 1.248E-07 0.00 0.00 0.00 0.00 0.00 0.00 9.231E-10 0.00
Tm-171	1.974E-11	9.589E-12	4.658E-12	2.263E-12	7.661E-13	1.260E-13	0.00

÷

Total 2.666E-01 2.340E-01 2.143E-01 1.997E-01 1.825E-01 1.598E-01 1.496E-05

F.9

-

		Ci/gU					
Isotope	6 Years	8 Years	<u>10 Years</u>	12 Years	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-3	3.347E-04	2.992E-04	2.674E-04	2.390E-04	2.020E-04	1.525E-04	0.00
Be-10	2.630E-12	2.630E-12	2.630E-12	2.630E-12	2.630E-12	2.630E-12	2.628E-12
C-14	1.060E-10	1.059E-10	1.059E-10	1.059E-10	1.058E-10	1.058E-10	9.395E-11
Se-79	3.674E-07	3.674E-07	3.674E-07	3.674E-07	3.674E-07	3.674E-07	3.635E-07
Kr-81	4.985E-13	4.985E-13	4.984E-13	4.984E-13	4.984E-13	4.984E-13	4.968E-13
Kr-85	4.795E-03	4.213E-03	3.702E-03	3.253E-03	2.680E-03	1.939E-03	0.00
Rb-87	1.810E-11	1.810E-11	1.810E-11	1.810E-11	1.810E-11	1.810E-11	1.810E-11
Sr-89	2.666E-14	1.178E-18	5.205E-23	0.00	0.00	0.00	0.00
Sr-90	5.085E-02	4.849E-02	4.623E-02	4.408E-02	4.104E-02	3.644E-02	2.699E-12
Y-90	5.086E-02	4.850E-02	4.624E-02	4.409E-02	4.106E-02	3.645E-02	2.700E-12
Y-91	2.169E-12	3.782E-16	6.595E-20	1.150E-23	0.00	0.00	0.00
Zr-93	1.573E-06	1.573E-06	1.573E-06	1.573E-06	1.573E-06	1.573E-06	1.572E-06
Nb-93m	5.696E-07	6.592E-07	7.401E-07	8.132E-07	9.098E-07	1.041E-06	1.494E-06
Nb-94	1.469E-10	1.468E-10	1.468E-10	1.468E-10	1.468E-10	1.468E-10	1.420E-10
Zr-95	3.003E-11	1.098E-14	4.014E-18	1.468E-21	0.00	0.00	0.00
Nb-95	6.666E-11	2.437E-14	8.911E-18	3.258E-21	0.00	0.00	0.00
Nb-95m	2.227E-13	8.144E-17	2.978E-20	1.089E-23	0.00	0.00	0.00
Tc-98	5.078E-12	5.078E-12	5.078E-12	5.078E-12	5.078E-12	5.078E-12	5.077E-12
Tc-99	1.178E-05	1.178E-05	1.178E-05	1.178E-05	1.178E-05	1.178E-05	1.174E-05
Rh-102	2.311E-07	1.433E-07	8.885E-08	5.509E-08	2.689E-08	8.140E-09	0.00
Ru-106	4.781E-03	1.208E-03	3.054E-04	7.720E-05	9.811E-06	3.151E-07	0.00
Rh-106	4.781E-03	1.208E-03	3.054E-04	7.720E-05	9.811E-06	3.151E-07	0.00
Pd-107	1.185E-07	1.185E-07	1.185E-07	1.185E-07	1.185E-07	1.185E-07	1.185E-07
Ag-108	2.942E-12	2.910E-12	2.878E-12	2.847E-12	2.801E-12	2.725E-12	1.296E-14
Ag-108m	3.305E-11	3.270E-11	3.234E-11	3.199E-11	3.147E-11	3.062E-11	1.456E-13
Ag-109m	3.932E-11	1.321E-11	4.434E-12	1.489E-12	2.897E-13	1.893E-14	0.00
Cd-109	3.932E-11	1.321E-11	4.434E-12	1.489E-12	2.897E-13	1.893E-14	0.00
Ag-110	8.035E-08	1.059E-08	1.396E-09	1.840E-10	8.808E-12	5.557E-14	0.00
Ag-110m	6.041E-06	7.963E-07	1.050E-07	1.384E-08	6.622E-10	4.179E-12	0.00
Cd-113m	4.069E-05	3.700E-05	3.365E-05	3.060E-05	2.653E-05	2.092E-05	1.258E-25
Sn-119m	2.193E-07	2.777E-08	3.517E-09	4.453E-10	2.007E-11	1.145E-13	0.00
Sn-121m	1.853E-07	1.802E-07	1.753E-07	1.705E-07	1.636E-07	1.526E-07	1.906E-13
Sn-123	1.206E-08	2.392E-10	4.746E-12	9.416E-14	2.633E-16	1.460E-20	0.00
Te-123m	2.523E-11	3.668E-13	5.333E-15	7.756E-17	2.198E-19	5.601E-24	0.00
Sb-124	7.507E-15	1.669E-18	3.710E-22	8.247E-26	0.00	0.00	0.00
Sb-125	2.226E-03	1.349E-03	8.180E-04	4.959E-04	2.341E-04	6.698E-05	0.00
Te-125m	5.431E-04	3.293E-04	1.996E-04	1.210E-04	5.711E-05	1.634E-05	0.00
Sn-126	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.631E-07
Sb-126	1.076E-07	1.076E-07	1.076E-07	1.076E-07	1.076E-07	1.076E-07	1.068E-07
Sb-126m	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.683E-07	7.631E-07
Te-127	5.559E-09	5.341E-11	5.132E-13	4.931E-15	4.644E-18	4.202E-23	0.00
Te-127m	5.675E-09	5.453E-11	5.239E-13	5.034E-15	4.741E-18	4.290E-23	0.00
I-129	3.005E-08	3.005E-08	3.005E-08	3.005E-08	3.005E-08	3.005E-08	3.005E-08
Cs-134	1.358E-02	6.935E-03	3.541E-03	1.808E-03	6.593E-04	1.228E-04	0.00
Cs-135	4.846E-07	4.846E-07	4.846E-07	4.846E-07	4.846E-07	4.846E-07	4.845E-07
Cs-137	7.866E-02	7.510E-02	7.171E-02	6.847E-02	6.389E-02	5.692E-02	8.343E-12

TABLE F.1.c. Fission Product Radioactivity by Isotope at 30 MWd/kgM, Ci/gU

ken

		01/90 (00)	itay				
Isotope	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Sm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-155 Eu-155	7.441E-02 2.407E-11 2.079E-03 2.079E-03 2.495E-05 1.387E-15 9.645E-07 3.395E-13 1.851E-02 4.130E-12 2.388E-11 2.812E-04 9.180E-06 1.068E-07 5.864E-03 2.489E-03 4.211E 13	7.105E-02 2.407E-11 3.501E-04 3.501E-04 4.202E-06 1.388E-15 7.496E-07 3.458E-13 1.091E-02 4.316E-12 2.298E-11 2.769E-04 8.290E-06 1.318E-08 4.991E-03 1.882E-03	6.784E-02 2.407E-11 5.897E-05 5.897E-05 7.076E-07 1.388E-15 5.826E-07 3.506E-13 6.434E-03 4.426E-12 2.211E-11 2.726E-04 7.487E-06 1.627E-09 4.248E-03 1.423E-03	6.478E-02 2.407E-11 9.932E-06 9.932E-06 1.192E-07 1.388E-15 4.528E-07 3.544E-13 3.793E-03 4.490E-12 2.128E-11 2.685E-04 6.761E-06 2.007E-10 3.616E-03 1.076E-03	6.044E-02 2.407E-11 6.865E-07 6.865E-07 8.238E-09 1.388E-15 3.102E-07 3.585E-13 1.717E-03 4.541E-12 2.008E-11 2.623E-04 5.803E-06 8.703E-12 2.839E-03 7.074E-04	5.384E-02 2.407E-11 7.992E-09 7.992E-09 9.591E-11 1.388E-15 1.652E-07 3.628E-13 4.582E-04 4.572E-12 1.824E-11 2.524E-04 4.498E-06 4.659E-14 1.897E-03 3.517E-04	7.892E-12 2.407E-11 0.00 0.00 1.388E-15 0.00 3.676E-13 0.00 4.583E-12 1.165E-19 1.331E-07 0.00 0.00 0.00 0.00
Ho-166m Tm-170 Tm-171	4.211E-13 2.949E-09 2.551E-13 5.113E-11	2.946E-09 4.972E-15 2.484E-11	2.942E-09 9.687E-17 1.206E-11	3.164E-22 2.939E-09 1.939E-18 5.861E-12	2.934E-09 5.829E-20 1.984E-12	2.925E-09 3.092E-24 3.263E-13	1.661E-09 0.00 0.00

TABLE F.1.c. Fission Product Radioactivity by Isotope at 30 MWd/kgM, Ci/gU (contd)

Total 3.172E-01 2.775E-01 2.537E-01 2.363E-01 2.159E-01 1.890E-01 1.757E-05

F.11

TABLE F.1.d.	Fission Product	Radioactivity by	/ Isotope	at	35	MWd/kgM,
	Ci/gU		-			_

-

Isotope	6 Years	<u>8 Years</u>	<u> 10 Years</u>	12 Years	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-3	3.969E-04	3.548E-04	3.171E-04	2.834E-04	2.395E-04	1.809E-04	0.00
Be-10	3.063E-12	3.063E-12	3.063E-12	3.063E-12	3.063E-12	3.063E-12	3.061E-12
C-14	1.234E-10	1.234E-10	1.233E-10	1.233E-10	1.233E-10	1.232E-10	1.094E-10
Se-79	4.232E-07	4.232E-07	4.232E-07	4.232E-07	4.232E-07	4.232E-07	4.188E-07
Kr-81	6.734E-13	6.734E-13	6.734E-13	6.734E-13	6.734E-13	6.734E-13	6.712E-13
Kr-85	5.413E-03	4.757E-03	4.180E-03	3.673E-03	3.025E-03	2.189E-03	0.00
Rb-87	2.033E-11	2.033E-11	2.033E-11	2.033E-11	2.033E-11	2.033E-11	2.033E-11
Sr-89	2.885E-14	1.275E-18	5.633E-23	0.00	0.00	0.00	0.00
Sr-90	5.699E-02	5.434E-02	5.181E-02	4.940E-02	4.600E-02	4.084E-02	3.025E-12
Y-90	5.700E-02	5.435E-02	5.182E-02	4.941E-02	4.601E-02	4.085E-02	3.026E-12
Y-91	2.379E-12	4.147E-16	7.231E-20	1.261E-23	0.00	0.00	0.00
Zr-93	1.789E-06	1.789E-06	1.789E-06	1.789E-06	1.789E-06	1.789E-06	1.788E-06
Nb-93m	6.491E-07	7.509E-07	8.428E-07	9.259E-07	1.036E-06	1.185E-06	1.699E-06
Nb-94	1.792E-10	1.792E-10	1.792E-10	1.792E-10	1.792E-10	1.791E-10	1.732E-10
Zr-95	3.423E-11	1.252E-14	4.576E-18	1.673E-21	0.00	0.00	0.00
Nb-95	7.599E-11	2.779E-14	1.016E-17	3.714E-21	0.00	0.00	0.00
Nb-95m	2.539E-13	9.284E-17	3.395E-20	1.241E-23	0.00	0.00	0.00
Tc-98	7.004E-12	7.004E-12	7.004E-12	7.004E-12	7.004E-12	7.004E-12	7.003E-12
Tc-99	1.343E-05	1.343E-05	1.343E-05	1.343E-05	1.343E-05	1.343E-05	1.338E-05
Rh-102	3.142E-07	1.948E-07	1.208E-07	7.489E-08	3.656E-08	1.107E-08	0.00
Ru-106	5.988E-03	1.514E-03	3.826E-04	9.670E-05	1.229E-05	3.947E-07	0.00
Rh-106	5.988E-03	1.514E-03	3.826E-04	9.670E-05	1.229E-05	3.947E-07	0.00
Pd-107	1.489E-07	1.489E-07	1.489E-07	1.489E-07	1.489E-07	1.489E-07	1.489E-07
Ag-108	3.793E-12	3.752E-12	3.711E-12	3.671E-12	3.611E-12	3.514E-12	1.671E-14
Ag-108m	4.261E-11	4.215E-11	4.169E-11	4.124E-11	4.057E-11	3.948E-11	1.877E-13
Ag-109m	6.764E-11	2.271E-11	7.627E-12	2.561E-12	4.984E-13	3.256E-14	0.00
Cd-109	6.764E-11	2.271E-11	7.627E-12	2.561E-12	4.984E-13	3.256E-14	0.00
Ag-110	1.172E-07	1.545E-08	2.037E-09	2.685E-10	1.285E-11	8.108E-14	0.00
Ag-110m	8.814E-06	1.162E-06	1.532E-07	2.019E-08	9.663E-10	6.095E-12	0.00
Cd-113m	5.219E-05	4.745E-05	4.315E-05	3.924E-05	3.403E-05	2.683E-05	1.613E-25
Sn-119m	2.752E-07	3.485E-08	4.413E-09	5.588E-10	2.518E-11	1.437E-13	0.00
Sn-121m	2.247E-07	2.186E-07	2.126E-07	2.068E-07	1.983E-07	1.850E-07	2.311E-13
Sn-123	1.442E-08	2.861E-10	5.676E-12	1.126E-13	3.146E-16	1.744E-20	0.00
Te-123m	4.284E-11	6.228E-13	9.055E-15	1.317E-16	1.891E-19	4.819E-24	0.00
Sb-124	1.071E-14	2.380E-18	5.292E-22	1.176E-25	0.00	0.00	0.00
Sb-125	2.670E-03	1.618E-03	9.811E-04	5.948E-04	2.807E-04	8.034E-05	0.00
·Te-125m	6.513E-04	3.950E-04	2.394E-04	1.452E-04	6.850E-05	1.960E-05	0.00
Sn-126	9.181E-07	9.180E-07	9.180E-07	9.180E-07	9.180E-07	9.180E-07	9.117E-07
Sb-126	1.285E-07	1.285E-07	1.285E-07	1.285E-07	1.285E-07	1.285E-07	1.276E-07
Sb-126m	9.181E-07	9.180E-0/	9.180E-0/	9.180E-07	9.180E-07	9.180E-0/	9.11/E-0/
Te-127	6.696E-09	6.434E-11	6.181E-13	5.939E-15	5.593E-18	5.061E-23	0.00
re-127m	6.836E-09	6.568E-11	6.311E-13	6.063E-15	5.710E-18	5.16/E-23	0.00
I-129	3.526E-08	3.526E-08	3.526E-08	3.526E-08	3.526E-08	3.526E-08	3.526E-08
CS-134	1.821E-02	9.29/E-03	4./46E-03	2.423E-03	8.839E-04	1.040E-04	
Cs-135	5.144E-07	5.144E-07	5.144E-07	5.144E-07	5.144E-07	5.144E-07	5.142E-0/
Cs-137	9.182E-02	8.768E-02	8.372E-02	/.994E-02	/.458E-02	b. 645E-02	9./40E-12

.

TABLE F.1.d.		Fission Pu Ci/gU (cor	roduct Radi ntd)	ioactivity	by Isotope	e at 35 MWo	i∕kgM,
<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Pm-147 Sm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-154 Eu-155	8.687E-02 2.784E-11 2.376E-03 2.377E-03 2.852E-05 1.657E-15 1.235E-06 4.316E-13 1.928E-02 4.249E-12 2.551E-11 2.996E-04 8.200E-06 1.192E-07 7.665E-03 3.252E-03	8.294E-02 2.784E-11 4.002E-04 4.803E-06 1.657E-15 9.600E-07 4.396E-13 1.137E-02 4.443E-12 2.454E-11 2.950E-04 7.405E-06 1.472E-08 6.524E-03 2.459E-03	7.920E-02 2.784E-11 6.741E-05 6.741E-05 8.089E-07 1.658E-15 7.461E-07 4.458E-13 6.702E-03 4.557E-12 2.362E-11 2.905E-04 6.688E-06 1.816E-09 5.552E-03 1.859E-03	7.562E-02 2.784E-11 1.135E-05 1.135E-05 1.362E-07 1.658E-15 5.799E-07 4.506E-13 3.951E-03 4.625E-12 2.272E-11 2.860E-04 6.040E-06 2.242E-10 4.726E-03 1.406E-03	7.056E-02 2.784E-11 7.847E-07 7.848E-07 9.417E-09 1.658E-15 3.973E-07 4.559E-13 1.788E-03 4.678E-12 2.145E-11 2.795E-04 5.183E-06 9.718E-12 3.711E-03 9.244E-04	6.286E-02 2.784E-11 9.135E-09 9.136E-09 1.096E-10 1.658E-15 2.116E-07 4.613E-13 4.773E-04 4.710E-12 1.948E-11 2.689E-04 4.017E-06 5.200E-14 2.480E-03 4.596E-04	9.214E-12 2.784E-11 0.00 0.00 1.658E-15 0.00 4.675E-13 0.00 4.722E-12 1.245E-19 1.418E-07 0.00 0.00 0.00
Ho-160 Ho-166m Tm-170 Tm-171	6.353E-13 4.966E-09 4.842E-13 1.161E-10	5.776E-16 4.960E-09 9.438E-15 5.641E-11	5.251E-19 4.955E-09 1.839E-16 2.740E-11	4.7/3E-22 4.949E-09 3.561E-18 1.331E-11	4.940E-09 0.00 4.506E-12	4.926E-09 0.00 7.411E-13	0.00 2.797E-09 0.00 0.00

ci ₿

•

Total 3.674E-01 3.203E-01 2.924E-01 2.721E-01 2.484E-01 2.174E-01 2.008E-05

		C1/gU					
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-3	4.603E-04	4.114E-04	3.677E-04	3.287E-04	2.777E-04	2.098E-04	0.00
Be-10	3.495F-12	3.495F-12	3.495F-12	3.495E-12	3.495E-12	3.495E-12	3.493F-12
C-14	1.408E-10	1.408F-10	1.407F-10	1.407E-10	1.406E-10	1.406F-10	1.248F-10
50_70	4 778F-07	4 778F-07	4 777F-07	4 777E-07	4 777E-07	4 777E-07	4 727F-07
Kr_81	8 782F_13	8 782F-13	8 782F-13	8 782F-13	8 782F-13	8 781F-13	8 753F-13
$K_{r} = 01$	5 000F_03	5 271F_03	4 631F_03	4 070E-03	3 352F-03	2 426E-03	0.00
RI -05	2 2/3E-11	2 2/25-11	2 2/3E_11	2 2/3E_11	$2 2/3E_{-11}$	2.720E-03 2.2/3E-11	$2 2/3 E_{-}11$
2 2 20	2.2452-11	1 360E 19	$6 011E_{-23}$	0 00	0 00	0 00	0 00
21-03	5.079E-14	5 077E 02	5 600E 02	5 4345 02	5 060E 02	4 4025 02	2 2275 12
SP-90	6 270F 02	5.9//E-02	5.0996-02	5.434E-02	5.000E-02	4.4926-02	3.32/E = 12
1-90 V 01	0.2/UE-U2	3.9/9E-02	5.701E-02	3.430E-02	5.001E-02	4.4936-02	3.3205-12
1-91	2.5/1E-12	4.483E-10	7.810E-20	1.303E-23	0.00	0.00	0.00
2r-93	1.990E-00	1.990E-00	1.990E-00	1.990E-00	1.9902-00	1.990E-00	1.995E-06
ND-93m	7.255E-0/	8.389E-07	9.414E-0/	1.034E-06	1.156E-06	1.323E-06	1.895E-06
ND-94	2.120E-10	2.120E-10	2.120E-10	2.120E-10	2.120E-10	2.119E-10	2.050E-10
2r-95	3.833E-11	1.401E-14	5.124E-18	1.8/3E-21	0.00	0.00	0.00
Nb-95	8.510E-11	3.111E-14	1.138E-17	4.159E-21	0.00	0.00	0.00
Nb-95m	2.843E-13	1.040E-16	3.801E-20	1.390E-23	0.00	0.00	0.00
Tc-98	9.247E-12	9.247E-12	9.247E-12	9.247E-12	9.247E-12	9.247E-12	9.245E-12
Tc-99	1.498E-05	1.498E-05	1.498E-05	1.498E-05	1.498E-05	1.498E-05	1.493E-05
Rh-102	4.072E-07	2.524E-07	1.565E-07	9.704E-08	4.737E-08	1.434E-08	0.00
Ru-106	7.262E-03	1.836E-03	4.640E-04	1.173E-04	1.490E-05	4.787E-07	0.00
Rh-106	7.262E-03	1.836E-03	4.640E-04	1.173E-04	1.490E-05	4.787E-07	0.00
Pd-107	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07
Ag-108	4.734E-12	4.683E-12	4.632E-12	4.582E-12	4.507E-12	4.386E-12	2.086E-14
Ag-108m	5.319E-11	5.262E-11	5.204E-11	5.148E-11	5.064E-11	4.928E-11	2.344E-13
Aa-109m	1.073E-10	3.604E-11	1.210E-11	4.064E-12	7.908E-13	5.167E-14	0.00
Cd-109	1.073E-10	3.604E-11	1.210E-11	4.064E-12	7.908E-13	5.167E-14	0.00
Ag-110	1.612E-07	2.124E-08	2.800E-09	3.691E-10	1.767E-11	1.115E-13	0.00
Aσ-110m	1.212E-05	1.597E-06	2.105E-07	2.775E-08	1.328E-09	8.381E-12	0.00
Cd = 113m	6.530E-05	5.938E-05	5.400E-05	4.910E-05	4.258E-05	3.358E-05	2.018F-25
Sn-119m	3.361E-07	4.256E-08	5.390E-09	6.825E-10	3.075E-11	1.755E-13	0.00
Sn-121m	2.652E-07	2.580F-07	2.509E-07	2.440F-07	2.341F-07	2.184F-07	2.728F-13
Sn-123	1.680E-08	3.333E-10	6.613E-12	1.312F-13	3.666E-16	2.033E-20	0.00
Te-123m	6.772F-11	9.844F-13	1.431F-14	2.082F-16	2.986F-19	7.611F-24	0.00
Sh-124	1.454F-14	3.231E-18	7.183E-22	1.597E-25	0.00	0.00	0.00
Sh_125	3 124F-03	1 894F-03	1 148F-03	6 960F-04	3 285F-04	9 400F-05	0.00
Te-125m	7 621F-04	4 622F-04	2 802F-04	1 698F-04	8 015E-05	2 294F-05	0.00
Sn_126	1 071E-06	1 071E-06	1 071E-06	1 071E-06	1 071E-06	1 071E-06	1 064F-06
Sh_126	1 500E_07	1 500E_07	1 500E_07	1.0712-00 1.500E-07	1.0712-00 1.500E_07	1.60712-00	1 480E_07
Sb-126m	$1.071E_{-06}$	$1.071E_{-06}$	1.071E-06	1.071E-06	1.071E-06	1 071E_06	1 064E-06
30 - 120	7 9445 00	7 5275 11	7 2/15-12	$6.057E_{-15}$	6 552E_19	5.0205-23	0.00
10-107m	0 000E 00	7 60/E 11	7 2025 12	7 1025 15	6 680E 10	5.523L-23	0.00
T 120	4 041E 00	1 074E-11	1.3925-13	A 041E 00	A 041E 00	A 041E 00	1 0415 09
1-129	4.041E-08	4.041E-08	4.041E-00	3 100E 03	4.041E-00	2 10EE 04	4.04IE-00
Co 125	2.329E-UZ	1.109E-UZ	0.0/1E-03	2.100E-03	I.IJIE~UJ	5 100E-04	5 121E 07
US-133	5.433E-U/	5.433E-U/	5.433E-0/	5.433E-U/	5.433E-U/	J.433E-0/	J.431E-U/
LS-13/	1.050E-01	1.003E-01	9.5/3E-U2	9.14UE-U2	0.020L-U2	1.390L-U2	1.1146-11

TABLE F.1.e. Fission Product Radioactivity by Isotope at 40 MWd/kgM, Ci/gU

TABLE F.1.e.		Fission Pr Ci/gU (cor	roduct Rad [.] ntd)	ioactivity	by Isotope	e at 40 MWo	1/kgM,
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Pm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-154 Eu-155 Tb-160 Ho-166m Tm-170	9.933E-02 3.156E-11 2.667E-03 2.667E-03 3.201E-05 1.934E-15 1.519E-06 5.253E-13 1.982E-02 4.298E-12 2.703E-11 3.178E-04 7.399E-06 1.295E-07 9.469E-03 4.040E-03 9.052E-13 7.918E-09 8.508E-13	9.484E-02 3.156E-11 4.492E-04 5.391E-06 1.935E-15 1.181E-06 5.351E-13 1.169E-02 4.497E-12 2.601E-11 3.130E-04 6.682E-06 1.599E-03 3.055E-03 8.229E-16 7.909E-09	9.056E-02 3.156E-11 7.566E-05 7.566E-05 9.079E-07 1.935E-15 9.177E-07 5.428E-13 6.890E-03 4.615E-12 2.503E-11 3.082E-04 6.034E-06 1.973E-09 6.859E-03 2.310E-03 7.481E-19 7.900E-09	8.647E-02 3.156E-11 1.274E-05 1.274E-05 1.529E-07 1.935E-15 7.132E-07 5.487E-13 4.062E-03 4.684E-12 2.408E-11 3.035E-04 5.450E-06 2.435E-10 5.838E-03 1.747E-03 6.801E-22 7.891E-09 6.260E-18	8.068E-02 3.156E-11 8.808E-07 8.808E-07 1.057E-08 1.935E-15 4.887E-07 5.553E-13 1.839E-03 4.739E-12 2.273E-11 2.965E-04 4.677E-06 1.056E-11 4.584E-03 1.148E-03 0.00 7.877E-09	7.188E-02 3.156E-11 1.025E-08 1.025E-08 1.230E-10 1.935E-15 2.602E-07 5.619E-13 4.906E-04 4.772E-12 2.064E-11 2.853E-04 3.625E-06 5.649E-14 3.064E-03 5.710E-04 0.00 7.855E-09 0.00	1.054E-11 3.156E-11 0.00 0.00 1.935E-15 0.00 5.695E-13 0.00 4.784E-12 1.319E-19 1.504E-07 0.00 0.00 0.00 0.00 0.00 0.00 4.460E-09 0.00
Tm-171	2.377E-10	1.155E-10	5.610E-11	2.725E-11	9.225E-12	1.517E-12	0.00

. .

Total 4.170E-01 3.624E-01 3.303E-01 3.072E-01 2.803E-01 2.451E-01 2.249E-05

TABLE F.1.f.	Fission Product	Radioactivity	by	Isotope	at	45	MWd/kgM,
	Ci/aU	•	•	•			•••

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000	Years
H-3	5.246E-04	4.689E-04	4.191E-04	3.746E-04	3.165E-04	2.391E-04	0.00	
Be-10	3.926E-12	3.926E-12	3.926E-12	3.926E-12	3.926E-12	3.926E-12	3.924	E-12
C-14	1.582E-10	1.581E-10	1.581E-10	1.581E-10	1.580E-10	1.579E-10	1.402	E-10
Se-79	5.313E-07	5.312E-07	5.312E-07	5.312E-07	5.312E-07	5.312E-07	5.257	E-07
Kr-81	1.114E-12	1.114E-12	1.114E-12	1.114E-12	1.114E-12	1.114E-12	1.110	E-12
Kr-85	6.558E-03	5.762E-03	5.063E-03	4.449E-03	3.665E-03	2.652E-03	0.00	
Rb-87	2.440E-11	2.440E-11	2.440E-11	2.440E-11	2.440E-11	2.440E-11	2.440	E-11
Sr-89	3.264E-14	1.442E-18	6.372E-23	0.00	0.00	0.00	0.00	
Sr-90	6.803E-02	6.487E-02	6.185E-02	5.898E-02	5.491E-02	4.875E-02	3.611	E-12
Y-90	6.805E-02	6.489E-02	6.187E-02	5.899E-02	5.493E-02	4.877E-02	3.612	E-12
Y-91	2.758E-12	4.808E-16	8.383E-20	1.462E-23	0.00	0.00	0.00	
Zr-93	2.195E-06	2.195E-06	2.195E-06	2.195E-06	2.195E-06	2.195E-06	2.194	E-06
Nb-93m	7.992E-07	9.238E-07	1.036E-06	1.138E-06	1.272E-06	1.455E-06	2.084	E-06
Nb-94	2.450E-10	2.450E-10	2.450E-10	2.450E-10	2.449E-10	2.449E-10	2.368	E-10
Zr-95	4.240E-11	1.550E-14	5.668E-18	2.072E-21	0.00	0.00	0.00	
Nb-95	9.413E-11	3.441E-14	1.258E-17	4.600E-21	0.00	0.00	0.00	
Nb-95m	3.145E-13	1.150E-16	4.204E-20	1.537E-23	0.00	0.00	0.00	
Tc-98	1.180E-11	1.180E-11	1.180E-11	1.180E-11	1.180E-11	1.180E-11	1.180	E-11
TC-99	1.644E-05	1.644E-05	1.644E-05	1.644E-05	1.644E-05	1.644E-05	1.639	E-05
Rh-102	5.084E-07	3.152E-07	1.954E-07	1.212E-07	5.915E-08	1.790E-08	0.00	
RU-106	8.580E-03	2.169E-03	5.482E-04	1.386E-04	1./61E-05	5.656E-07	0.00	
KN-105	8.580E-03	2.169E-03	5.482E-04	1.386E-04	1./61E-05	5.656E-07	0.00	F 07
Pa-107	2.149E-0/	2.149E-07	2.149E-07	2.149E-0/	2.149E-07	2.149E-0/	2.149	E-0/
Ag-108	5./04E-12	5./UIE-12	5.040E-12	5.5/8E-12	5.488E-12	5.340E-12	2.539	E-14
Ag-108m	0.4/0E-11	5.400E-11	0.33/E-11	0.208E-11	0.100E-11	5.000E-11	2.853	E-13
AG-109m	1.600E-10	5.3/3E-11 5.2725 11	1.804E-11	0.058E-12	1.1/9E-12 1 170E 12	7.703E-14	0.00	
$\lambda_{\alpha} = 110$	2 117E 07	2 700E 09	2 6795 00	0.030E-12 1 9/9E 10	1.1/9E-12 2 220E 11	1 A6AE 12	0.00	
$\Delta q_{m} 110$	$1.501E_{-05}$	2.0985-06	$2.765E_07$	4.040E-10 3.645E-08	$2.320E^{-11}$	1.404E-13 1 101E-11	0.00	
Cd_113m	8 010F-05	7 284F-05	6 623E-05	6 023E-05	5 223E-05	4 119F-05	2 475	F-25
Sn-119m	$4_021F-07$	5.091E-08	6.447E-09	8.164F-10	3.679F-11	2.100E-13	0.00	L-2J
Sn-121m	3.066F-07	2.982F-07	2.901F-07	2.821F-07	2.706F-07	2.525F-07	3,153	F-13
Sn-123	1.920E-08	3.809E-10	7.557E-12	1.499E-13	4.193E-16	2.325E-20	0.00	
Te-123m	1.013E-10	1.472E-12	2.141E-14	3.112E-16	5.716E-19	1.457E-23	0.00	
Sb-124	1.899E-14	4.222E-18	9.386E-22	2.087E-25	0.00	0.00	0.00	
Sb-125	3.585E-03	2.173E-03	1.318E-03	7.987E-04	3.770E-04	1.079E-04	0.00	
Te-125m	8.747E-04	5.304E-04	3.216E-04	1.949E-04	9.199E-05	2.632E-05	0.00	
Sn-126	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.219	E-06
Sb-126	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.706	E-07
Sb-126m	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.227E-06	1.219	E-06
Te-127	8.999E-09	8.647E-11	8.308E-13	7.982E-15	7.518E-18	6.802E-23	0.00	
Te-127m	9.188E-09	8.827E-11	8.482E-13	8.149E-15	7.675E-18	6.945E-23	0.00	
I-129	4.547E-08	4.547E-08	4.547E-08	4.547E-08	4.547E-08	4.547E-08	4.547	E-08
Cs-134	2.874E-02	1.467E-02	7.490E-03	3.824E-03	1.395E-03	2.598E-04	0.00	
Cs-135	5.735E-07	5.735E-07	5.735E-07	5.735E-07	5.735E-07	5.735E-07	5.733	E-07
Cs-137	1.182E-01	1.128E-01	1.077E-01	1.029E-01	9.599E-02	8.551E-02	1.253	E-11

TABLE F.1.f.		Fission P Ci/gU (co	roduct Rad ntd)	ioactivity	by Isotop	e at 45 MWG	i/kgM,
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Sm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-154 Eu-155 Tb-160 Ho-166m Tm-170	1.118E-01 3.525E-11 2.954E-03 2.954E-03 3.545E-05 2.219E-15 1.813E-06 6.185E-13 2.022E-02 4.299E-12 2.845E-11 3.353E-04 6.735E-06 1.385E-07 1.120E-02 4.815E-03 1.235E-12 1.207E-08 1.416E-12	1.067E-01 3.525E-11 4.975E-04 4.975E-04 5.970E-06 2.220E-15 1.409E-06 6.303E-13 1.192E-02 4.503E-12 2.737E-11 3.302E-04 6.082E-06 1.710E-08 9.534E-03 3.641E-03 1.123E-15 1.206E-08 2.760E-14	1.019E-01 3.525E-11 8.379E-05 8.379E-05 1.005E-06 2.220E-15 1.095E-06 6.394E-13 7.028E-03 4.623E-12 2.634E-11 3.251E-04 5.493E-06 2.110E-09 8.115E-03 2.753E-03 1.021E-18 1.204E-08 5.380E-16	9.732E-02 3.525E-11 1.411E-05 1.693E-07 2.220E-15 8.509E-07 6.465E-13 4.143E-03 4.693E-12 2.535E-11 3.202E-04 4.960E-06 2.604E-10 6.907E-03 2.082E-03 9.281E-22 1.203E-08 1.042E-17	9.080E-02 3.525E-11 9.754E-07 9.755E-07 1.171E-08 2.220E-15 5.830E-07 6.543E-13 1.875E-03 4.749E-12 2.392E-11 3.129E-04 4.257E-06 1.129E-11 5.423E-03 1.369E-03 0.00 1.201E-08 5.812E-20	8.090E-02 3.525E-11 1.136E-08 1.363E-10 2.220E-15 3.105E-07 6.622E-13 5.004E-04 4.783E-12 2.173E-11 3.010E-04 3.300E-06 6.044E-14 3.625E-03 6.804E-04 0.00 1.197E-08 3.083E-24	1.186E-11 3.525E-11 0.00 0.00 2.220E-15 0.00 6.712E-13 0.00 4.795E-12 1.389E-19 1.587E-07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
Tm-171	4.505E-10	2.189E-10	1.063E-10	5.164E-11	1.748E-11	2.875E-12	0.00

Total 4.661E-01 4.038E-01 3.676E-01 3.417E-01 3.116E-01 2.724E-01 2.480E-05

		cī/gu					
Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
H-3	5.896E-04	5.270E-04	4.710E-04	4.210E-04	3.557E-04	2.687E-04	0.00
Be-10	4.356E-12	4.356E-12	4.356E-12	4.356E-12	4.356E-12	4.356E-12	4.354E-12
C-14	1.755E-10	1.755E-10	1.754E-10	1.754E-10	1.753E-10	1.752E-10	1.556E-10
Se-79	5.839F-07	5.839F-07	5.839F-07	5.839F-07	5.838F-07	5.838F-07	5.777E-07
Kr-81	1.380F-12	1.380E-12	1.380F-12	1.380F-12	1.380F-12	1.380E-12	1.376E-12
Kr-85	7.098E-03	6.237E-03	5.480E-03	4.815E-03	3.966F-03	2.871F-03	0.00
Rb-87	2.628E-11	2.628E-11	2.628E-11	2.628E-11	2.628E-11	2.628F-11	2.628F-11
Sr-89	3.447F-14	1.523F-18	6.730F-23	0.00	0.00	0.00	0.00
Sr-90	7.310F-02	6.970F-02	6.646F-02	6.337F-02	5.901E-02	5.238F-02	3.880F-12
Y-90	7 312F-02	6.972E-02	6.648F-02	6.339E-02	5.902E-02	5.240F-02	3 881F-12
Y-91	2.943F-12	5.132E-16	8.947F-20	1.560E-23	0.00	0.00	0.00
7r - 93	2.387E-06	2.387E-06	2.387E-06	2.387E-06	2.387E-06	2.387E-06	2.386F-06
Nh-93m	8.707F-07	1.006F-06	1.128E-06	1.239E-06	1.385E-06	1.583E-06	2.267E-06
Nh-94	2.779E-10	2.778E-10	2.778F-10	2.778E-10	2.778F-10	2.777E-10	2 686F-10
7r - 95	4 644F-11	1.698F-14	6 208E-18	2 270F-21	0 00	0 00	0 00
Nh-95	1.031E-10	3.770E-14	1.378F-17	5.039F-21	0.00	0.00	0.00
Nh-95m	3.445E-13	1.260E-16	4.605E-20	1.684F-23	0.00	0.00	0.00
Tc-98	1.465E-11	1.465E-11	1.465E-11	1.465E-11	1.465F-11	1 465F-11	1 464F-11
$T_{C} = 99$	1.783E-05	1.783E-05	1.783E-05	1 783E-05	1 783E-05	1 783E-05	1 777E-05
Rh-102	6 163E-07	3 821F-07	2 369F-07	1 469F-07	7 171E-08	2 171E-08	0 00
Ru-106	9 921E-03	2 508E-03	6 339F-04	1 602F-04	2 036E-05	6 540E-07	0.00
Rh-106	9 921E-03	2.508E-03	6.339E-04	1.602E-04	2 036E-05	6 540E-07	0.00
Pd-107	2.496E-07	2.496F-07	2.496F-07	2.496E-07	2.496F-07	2.496F-07	2 496F-07
Ag-108	6.880F-12	6.805E-12	6.731E-12	6.658F-12	6 550F-12	6 374F-12	3 031F-14
Ag-108m	7 730F-11	7 646F-11	7 563E-11	7 481F-11	7.360F-11	7 162F-11	3 406F-13
Δα_100m	2 269F-10	7 619F-11	2 558F-11	8 591F-12	1 672F-12	1 092E-13	0 00
Cd-109	2 269F-10	7 619E-11	2 558F-11	8 591F-12	1.672E = 12	1 092E-13	0.00
Ag-110	2.681F-07	3 534F-08	4 658F-09	6 141F-10	2 939F-11	1 854F-13	0.00
$\Delta \sigma = 110$ m	2 016E-05	2 657E-06	3 502E-07	4 617E-08	2 210F-09	1 394F-11	0.00
Cd_113m	9 664F-05	8 788F-05	7 991F-05	7 267E-05	6 302E-05	4 969F-05	2 987F-25
Sn = 110m	4 730F-07	5 989F-08	7 584F-09	9 603E-10	4 327F-11	2 469F-13	0 00
Sn-121m	3.487E-07	3.392E-07	3.299F-07	3.209E-07	3.078F-07	2.872F-07	3.587F-13
Sn-123	2.160F-08	4.285F-10	8.502F-12	1.687E-13	4.710F-16	2.611E-20	0.00
Te-123m	1.449E-10	2.106E-12	3.062E-14	4.452E-16	8.190E-19	2.087E-23	0.00
Sb-124	2.407E-14	5.351E-18	1.189E-21	2.644E-25	0.00	0.00	0.00
Sb-125	4.051E-03	2.456E-03	1.489E-03	9.027E-04	4.261E-04	1.219E-04	0.00
Te-125m	9.885E-04	5.994E-04	3.634E-04	2.203E-04	1.040E-04	2.975E-05	0.00
Sn-126	1.385E-06	1.385E-06	1.385E-06	1.385E-06	1.385E-06	1.385E-06	1.376E-06
Sb-126	1.939F-07	1.939E-07	1.939F-07	1.939E-07	1.939E-07	1.939E-07	1.926E-07
Sb-126m	1.385F-06	1.385F-06	1.385E-06	1.385E-06	1.385E-06	1.385E-06	1.376E-06
Te-127	1.015E-08	9.754F-11	9.371E-13	9.003E-15	8.478E-18	7.672E-23	0.00
Te-127m	1.036F-08	9.957F-11	9.566F-13	9.191F-15	8.656F-18	7.832E-23	0.00
T-129	5.043F-08	5.043F-08	5.043F-08	5.043F-08	5.043F-08	5.043E-08	5.042E-08
C_{S-134}	3.445F-02	1.759F-02	8.979F-03	4.584F-03	1.672F-03	3.114F-04	0.00
$C_{S} = 135$	6.064F-07	6.064F-07	6.064F-07	6.064F-07	6.064F-07	6.064F-07	6.062F-07
Cs-137	1.314E-01	1.254E-01	1.198E-01	1.143E-01	1.067E-01	9.505E-02	1.393E-11

TABLE F.1.g.	Fission Product	Radioactivity b	y Isotope	at 5	0 MWd/kgM,
	Ci/aU		•		•

TABLE F.1.g.		Fission P Ci/gU (co	roduct Rad [.] ntd)	ioactivity	by Isotop	e at 50 MWd	d/kgM,
<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ba-137m Ce-142 Ce-144 Pr-144 Pr-144m Nd-144 Pm-146 Sm-146 Sm-146 Pm-147 Sm-147 Eu-150 Sm-151 Eu-152 Gd-153 Eu-154 Eu-155 Tb-160 Ho-166m	1.243E-01 3.890E-11 3.238E-03 3.238E-03 3.886E-05 2.508E-15 2.112E-06 7.097E-13 2.053E-02 4.270E-12 2.985E-11 3.525E-04 6.197E-06 1.468E-07 1.283E-02 5.553E-03 1.630E-12 1.771E-08	1.186E-01 3.890E-11 5.454E-04 5.454E-04 6.545E-06 2.509E-15 1.642E-06 7.233E-13 1.210E-02 4.477E-12 2.872E-11 3.471E-04 5.596E-06 1.812E-08 1.092E-02 4.199E-03 1.482E-15 1.769E-08	1.133E-01 3.890E-11 9.186E-05 9.186E-05 1.102E-06 2.509E-15 1.276E-06 7.340E-13 7.135E-03 4.598E-12 2.764E-11 3.418E-04 5.054E-06 2.236E-09 9.295E-03 3.175E-03 1.347E-18 1.767E-08	1.082E-01 3.890E-11 1.547E-05 1.547E-05 1.857E-07 2.509E-15 9.916E-07 7.422E-13 4.207E-03 4.670E-12 2.659E-11 3.365E-04 4.564E-06 2.760E-10 7.911E-03 2.401E-03 1.225E-21 1.765E-08	1.009E-01 3.890E-11 1.069E-06 1.283E-08 2.509E-15 6.794E-07 7.513E-13 1.904E-03 4.727E-12 2.510E-11 3.289E-04 3.917E-06 1.196E-11 6.212E-03 1.578E-03 0.00 1.762E-08	8.992E-02 3.890E-11 1.245E-08 1.245E-08 1.494E-10 2.509E-15 3.618E-07 7.606E-13 5.081E-04 4.761E-12 2.280E-11 3.164E-04 3.036E-06 6.404E-14 4.152E-03 7.847E-04 0.00 1.757E-08	1.318E-11 3.890E-11 0.00 0.00 2.509E-15 0.00 7.711E-13 0.00 4.773E-12 1.456E-19 1.668E-07 0.00 0.00 0.00 0.00 0.00 9.975E-09
Tm-171	8.050E-10	3.910E-10	1.900E-10	9.227E-11	3.124E-11	5.138E-12	0.00

- - - --

Total 5.148E-01 4.447E-01 4.043E-01 3.755E-01 3.423E-01 2.992E-01 2.703E-05

		Ci/gU					
<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
T1-207	4.132E-12	5.137E-12	6.130E-12	7.118E-12	8.585E-12	1.100E-11	4.568E-10
T1-208	3.634E-09	4.058E-09	4.310E-09	4.444E-09	4.502E-09	4.416E-09	4.393E-13
T1-209	2.659E-15	2.720E-15	2.786E-15	2.859E-15	2.979E-15	3.210E-15	1.688E-12
Pb-209	1.231E-13	1.259E-13	1.290E-13	1.324E-13	1.379E-13	1.486E-13	7.816E-11
Pb-210	2.848E-14	4.406E-14	6.451E-14	9.041E-14	1.407E-13	2.592E-13	2.155E-09
Pb-211	4.144E-12	5.151E-12	6.148E-12	7.138E-12	8.609E-12	1.103E-11	4.581E-10
Ph-212	1.011E-08	1.130E-08	1.199E-08	1.237E-08	1.253E-08	1.229E-08	1.223E-12
Ph-214	2 435F-13	3 327F-13	4.364F-13	5.546E-13	7.594F-13	1.175E-12	2.156F-09
Ri-210	2.848F-14	4.407F-14	6.453F-14	9.045F-14	1 407F-13	2 592F-13	2 155E-09
Bi_{-210}	4 144F-12	5 151F-12	6 148F-12	7 138F-12	8 609F-12	1 103F-11	4 581F-10
Bi - 212	1 011F_08	1 130F_08	1 100F_08	1 237F_08	1 253F_08	1 220F_08	1 223F-12
Bi_213	1 231F-13	1 250F-13	1 200F-13	1 324F-13	1 370F_13	1 486F-13	7 816F-11
R_{1}^{-214}	2 A35E-13	3 327F_13	A 364E-13	5 546F-13	7 504F_13	1 175E_12	2 156F_00
P_{0-210}	2 848F_14	3 028F_1/	5 812F_14	8 220F_1/	1 200F_13	2 502F-13	2.155E_00
P_{0-211}	1 160F-14	1 442F - 14	$1 721F_{14}$	$1 008F_14$	$2 411F_{14}$	3 080F_14	1 283E-12
Po-212	6 /80F_00	7 2375_00	7 685F_00	7 Q2/F_0Q	8 028F_00	7 874F_00	7 8335-13
P_{0-212}	1 205F-13	1 232E_13	$1.262E_{-13}$	1 205E-13	$1 3/0E_{13}$	1 151E-13	7.6/8E_11
Po-214	2 434F-13	3 326E-13	4 363F-13	5 545F-13	7 503F_13	1 174F-12	2 155E_00
P_{0-214}	A = 1/4 = 12	5.520L-13	6 1/8F_12	7 138F_12	8 600F-12	1.174L-12 1 103E_11	4 581E-10
P_{0-215}	$1 011E_08$	1 130E_08	$1 100F_08$	$1 237E_08$	1 253E-08	1 2205-09	1 222E_12
Po-218	2 /35E_13	3 328E_13	1.199L-00	5 5/8E-13	7 506E-12	1 1755-12	1.223L-12 2 156E-00
At _ 217	1 231E-13	1 250E-13	1 200E-13	1.3246-13	1 370E-13	1.175L-12 1.496E-12	7 916E-11
$D_{n} - 210$	1.2312-13	1.239L-13	6 1/9E-12	1.324L-13 7 128E_12	9 600E-12	1.400L-13	1.591E-11
$R_{\rm H} = 219$	1 0110 00	1 1205 00	1 1005 09	1 2275 00	1 2525 00	1 2205 00	4.JOIE-10
RII-220	2 4255 12	1.130E-00	1.1996-00	1.23/E-UO	1.233E-00	1.1755 12	1.2232-12
RII-222	2.433E-13	3.320E-13	4.305E-13	3.340E-13	1.070E-10	1.1/JE-12 1.406E 12	2.130E-09
rr - 221	1.2312-13	1.209E-13	1.2902-13	1.3245-13	1.3/9E-13	1.400E-13	/.010E-11
r_{-223}	3./14E-14	7.090E-14	0.400E-14	9.031E-14	1.100E-13	1.52UE-13	0.3222-12
Rd-223	4.144E-12	5.151E-12	0.148E-12	/.138E-12	8.009E-12	1.103E-11	4.381E-10
Ra-224	1.011E-08	1.130E-08	1.1996-08	1.23/E-08	1.253E-08	1.229E-08	1.223E-12
Ra-225	1.231E-13	1.259E-13	1.2902-13	1.324t-13	1.3/9E-13	1.480E-13	7.810E-11
Ra-220	2.435E-13	3.328E-13	4.305E-13	5.548E-13	7.390E-13	1.1/3E-12	2.100E-09
AC-225	1.231E-13	1.209E-13	1.290E-13	1.3246-13	1.3/9E-13	1.480E-13	/.810E-11
AC-227	4.141E-12	5.142E-12	0.130E - 12	7.124E-12	0.3946-12	1.102E-11	4.001E-10 4.510E 10
	4.08/E-12	5.080E-12	0.003E-12	7.039E-12	8.490E-12	1.088E-11	4.518E-10
IN-228	1.011E-08	1.12/E-08	1.19/E-08	1.234E-08	1.2511-08	1.228E-U8	1.223E-12
IN-229	1.231E-13	1.209E-13	1.290E~13	1.324E-13	1.3/9E-13	1.400E-13	/.010E-11
10-230	9.49/E-11	1.11/E-10	1.20025-10	1.455E~10	1./116-10	2.144E-10	1.1/4E-00
IN-231	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.121E-08
In-232	7.90/E-1/	9.53/E-1/	1.11/E-10	1.280E-16	1.524E-10	1.932E-10	8.43/E-15
In-234	3.226E-0/	3.226E-0/	3.226E-0/	3.226E-0/	3.226E-0/	3.226E-0/	3.226E-07
Pa-231	1.993E-11	2.081E-11	2.1/0E-11	2.259E-11	2.391E-11	2.013E-11	4.580E-10
Pa-233	1.61/E-07	1.623E-07	1.631E-07	1.640E-07	1.050E-07	1.080E-07	0.596E-0/
Pa-234m	3.226E-07	3.226E-07	3.226E-07	3.226E-07	3.226E-07	3.226E-07	3.220E-0/
Pa-234	4.194E-10	4.194E-10	4.194E-10	4.194E-10	4.194E-10	4.194E-10	4.194E-10
U-232	1.210E-08	1.252E-08	1.267E-08	1.268E-08	1.252E-08	1.206E-08	1.188E-12
11-233	1 415F-11	1.565F-11	1.715F-11	1.865F-11	2.089F-11	2.454F-11	2.049E-09

TABLE F.2.a.	Actinide	Radioactivity	by	Isotope	at	20	MWd/	kgM,
	Ci/aU		•					

TABLE F.2.a.	Actinide Radioactivity by Isotope at 20 MWd/kgM,
	Ci/qU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
U-234	9.249E-07	9.317E-07	9.384E-07	9.449E-07	9.546E-07	9.703E-07	1.363E-06
U-235	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.093E-08	2.121E-08
U-236	1.651E-07	1.652E-07	1.652E-07	1.652E-07	1.652E-0/	1.653E-07	1.755E-07
U-237	1.592E-06	1.446E-06	1.313E-06	1.192E-06	1.032E-06	8.113E-07	4./06E-13
U-238	3.226E-07	3.226E-0/	3.226E-07	3.226E-07	3.226E-07	3.226E-07	3.226E-07
U-240	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14
Np-235	4.004E-11	1.115E-11	3.105E-12	8.646E-13	1.2/1E-13	5.199E-15	0.00
Np-236	2.4/4E-12	2.4/4E-12	2.4/4E-12	2.4/4E-12	2.4/3E-12	2.4/3E-12	2.459E-12
Np-237	1.61/E-0/	1.623E-0/	1.631E-0/	1.640E-0/	1.656E-0/	1.686E-07	6.596E-0/
NP-238	6./02E-08	6.641E-08	6.581E-08	6.521E-08	6.433E-08	6.288E-08	7.20/E-10
Np-239	5.314E-06	5.313E-06	5.312E-06	5.311E-06	5.310E-06	5.30/E-06	4.840E-06
Np-240m	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14
Pu-236	4.290E-08	2.638E-08	1.622E-08	9.9/6E-09	4.811E-09	1.42/E-09	2.213E-13
Pu-238	1.209E-03	1.190E-03	1.1/2E-03	1.154E-03	1.12/E-03	1.084E-03	7.423E-0/
Pu-239	2.941E-04	2.941E-04	2.941E-04	2.941E-04	2.941E-04	2.940E-04	2.860E-04
Pu-240	3./22E-04	3./21E-04	3./21E-04	3./21E-04	3.720E-04	3./19E-04	3.35/E-04
Pu-241	6.489E-02	5.893E-02	5.352E-02	4.861E-02	4.20/E-02	3.30/E-02	1.921E-08
Pu-242	7.898E-07	7.898E-07	/.898E-0/	/.898E-0/	7.898E-07	7.898E-07	7.892E-07
Pu-243	4.856E-15	4.856E-15	4.856E-15	4.856E-15	4.856E-15	4.850E-15	4.855E-15
Pu-244	5.2/6E-14	5.2/0E-14	5.2/0E-14	5.2/6E-14	5.2/0E-14	5.2/6E-14	5.2/6E-14
Am-241	9.515E-04	1.14/E-03	1.323E-03	1.482E-03	1.692E-03	1.9//E-03	6.4/4E-04
Am-242m	1.340E-05	1.328E-05	1.310E-05	1.304E-05	1.28/E-05	1.258E-05	1.441E-0/
Am-242	1.334E-05	1.322E-05	1.310E-05	1.298E-05	1.280E-05	1.251E-05	1.434E-0/
Am-243	5.314E-00	5.313E-00	5.312E-06	5.311E-00	5.310E-06	5.30/E-06	4.840E-06
Cm-242	1.393E-05	1.108E-05	1.086E-05	1.0/5E-05	1.001E-05	1.035E-05	1.186E-0/
Cm-243	0.9/2E-00	0.041E-00	0.325E-U0	0.025E-00	5.001E-00	4.900E-00	2.210E-10
Cm-244	2.922E-04	2.705E-04	2.50/E-04	2.322E-04	2.070E-04	1./IUE-04	8./0/E-21
$C_{m} = 245$	2.080E-08	2.0/9E-08	2.0/9E-08	2.0/9E-08	2.0/8E-08	2.0//E-08	1.918E-08
	2.749E-09	2.749E-09	2.748E-09	2./4/E-09	2./40E-09	2./44E-09	2.3//E-U9
	4.830E-15	4.8506-15	4.8306-15	4.830E-15	4.850E-15	4.850E-15	4.8555-15
LM-248	0.921E-15	0.921E-15	0.921E-15	0.921E-15	0.921E-15	0.921E-15	0.90/E-15
BK-249	1.354E-13	2./82E-14	5./18E-15	1.1/3E-13	1.095E-10	2.082E-18	0.00
CT-249	J.U/SE-14	D.UOIE-14	5.UD/E-14	J.U40L-14	D.UIOE-14	4.909E-14	/.133E-13
CT-200	1.33/E-13	1.22IE-13	1.UYOE-13	9.0/0E-14	0.4245-14	0.403E-14	1.439E-23 2 007E 16
CF 252	0.3940-10	0.3010-10	0.300E-10 6 771E 15	0.3332-10	0.3302-10	0.3046-10	2.09/E-10
U1-202	1.93/6-14	1.1490-14	0.//12-15	4.003E-15	1.0202-15	4.0932-10	0.00

Total 6.807E-02 6.227E-02 5.699E-02 5.220E-02 4.582E-02 3.703E-02 1.285E-03

TABLE F.2.b. Actinide Radioactivity by Isotope at 25 MWd/kgM, Ci/gU

<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
T1-207	4.258E-12	5.271E-12	6.260E-12	7.230E-12	8.651E-12	1.094E-11	3.594E-10
T1-208	5.577E-09	6.277E-09	6.698E-09	6.927E-09	7.036E-09	6.914E-09	6.786E-13
T1-209	4.285E-15	4.355E-15	4.434E-15	4.520E-15	4.666E-15	4.947E-15	2.178E-12
Pb-209	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
Pb-210	2.704E-14	4.130E-14	6.005E-14	8.386E-14	1.302E-13	2.399E-13	2.412E-09
Pb-211	4.270E-12	5.286E-12	6.277E-12	7.250E-12	8.675E-12	1.097E-11	3.604E-10
Pb-212	1.552E-08	1.747E-08	1.864E-08	1.928E-08	1.958E-08	1.924E-08	1.889E-12
Pb-214	2.236E-13	3.058E-13	4.015E-13	5.110E-13	7.014E-13	1.090E-12	2.413E-09
Bi-210	2.704E-14	4.131E-14	6.008E-14	8.390E-14	1.303E-13	2.400E-13	2.412E-09
Bi-210	4.270E-12	5.286E-12	6.277E-12	7.250E-12	8.675E-12	1.097E-11	3.604E-10
Bi-212	1.552E-08	1.747E-08	1.864E-08	1.928E-08	1.958E-08	1.924E-08	1.889E-12
Bi-213	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
B1-214	2.236E-13	3.058E-13	4.015E-13	5.110E-13	7.014E-13	1.090E-12	2.413E-09
P0-210	2./04E-14	3.6922-14	5.418E-14	7.639E-14	1.203E-13	2.400E-13	2.412E-09
PO-211	1.196E-14	1.480E-14	1./58E-14	2.030E-14	2.429E-14	3.0/2E-14	1.009E-12
PO-212	9.944E-09	1.119E-08	1.194E-08	1.235E-08	1.2006-08	1.2336-08	1.210E-12
PU-213 Do 214	1.941E-13 2 226E 12	1.9/36-13	2.00000-13	2.048E-13	2.113E-13 7 012E 12	2.2416-13	9.80/E-11
PO-214 Do 215	2.230E-13 A 270E 12	5.007E-13	4.014E-13	7 250E 12	7.013E-13 9.675E 12	1.0096-12	2.412E-09
P_{0-215}	1 552E_08	1 7/7E_08	$1.864E_{-08}$	1 0285-08	$1.058E_08$	1.09/E-11	1 990E-12
P_{0-210}	2 236E-13	3 0585-13	1.004E-00	5 111F_13	7 015E-13	1 000E_12	2 A13E_00
Δ+_217	1 Q84F-13	2 016F-13	2 053E-13	2 003E-13	2 160F-13	2 200F-13	$1.008E_{10}$
Rn_210	4 270F-12	5 286F-12	6 277F-12	7 250F-12	8 675F-12	1 007F-11	3 604F-10
Rn-220	1.552E-08	1.747F-08	1.864F-08	1.928F-08	1.958F-08	1.924F-08	1.889F-12
Rn-222	2.236E-13	3.058E-13	4.016F-13	5.111F-13	7.015E-13	1.090F-12	2.413E-09
Fr-221	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
Fr-223	5.889E-14	7.281E-14	8.647E-14	9.986E-14	1.195E-13	1.512E-13	4.973E-12
Ra-223	4.270E-12	5.286E-12	6.277E-12	7.250E-12	8.675E-12	1.097E-11	3.604E-10
Ra-224	1.552E-08	1.747E-08	1.864E-08	1.928E-08	1.958E-08	1.924E-08	1.889E-12
Ra-225	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
Ra-226	2.236E-13	3.058E-13	4.016E-13	5.111E-13	7.015E-13	1.090E-12	2.413E-09
Ac-225	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
Ac-227	4.267E-12	5.276E-12	6.266E-12	7.236E-12	8.660E-12	1.095E-11	3.604E-10
Th-227	4.212E-12	5.213E-12	6.191E-12	7.150E-12	8.555E-12	1.082E-11	3.554E-10
Th-228	1.551E-08	1.743E-08	1.860E-08	1.923E-08	1.955E-08	1.923E-08	1.889E-12
Th-229	1.984E-13	2.016E-13	2.053E-13	2.093E-13	2.160E-13	2.290E-13	1.008E-10
Th-230	8.728E-11	1.030E-10	1.188E-10	1.349E-10	1.594E-10	2.011E-10	1.332E-08
lh-231	1.621E-08	1.621E-08	1.621E-08	1.621E-08	1.621E-08	1.621E-08	1.650E-08
In-232	8.959E-1/	1.0/9E-16	1.201E-10	1.444E-16	1./18E-16	2.1/5E-10	9.485E-15
In-234	3.212E-0/	3.212E-0/	3.212E-0/	3.212E-07	3.212E-U/	3.212E-U/	3.212E-07
ra-231	2.U28E-11	2.U9/E-11	2.100E-11	2.234t-11	2.33/E-11	2.JU0E-11	3.0U2E-1U
Pa-233	2.158E-U/	2.10/E-U/	2.1//E-U/	2.100L-U/	2.2U0L-U/	2.243E-U/	0.430L-V/ 2 2125 A7
ra-234M	J.212E-U/	J.212E-U/	J.212E-U/	J.212E-U/	J.212E-U/	J.212E-U/	J.212E-U/
ra-234	4.1/3E-10	4.1/3E-10	4.1/3E-10	4.1/3E-10 1 092E 09	4.1/JE-10	+.1/JE-10 1 200E-09	+.1/JE-10 1 9395-12
U-232	1.0/0L-U8	1 9305-08	2 030E 11	1.903E-U8	2 527E_11	3 024F-11	2 634F_00
0-233	1.0305-11	1.0306-11	C.030C-11	2.2375-11	C.JJ/L-II	2.0546-11	

. .

TABLE F.2.b.	Actinide Radioactivity by Isotope at 25 MWd/kgM,
	Ci/gŲ (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
11-23/	8 656E_07	8 766F_07	8 875F_07	8 082F-07	9 140F-07	0 304F-07	1 576F-06
11-235	1 621E-08	1 621E_08	1 621E-08	1 621F_08	1 621F_08	1 621F_08	1.650E-08
U-235	1 851E-07	1 851F_07	1 852F_07	1 852F-07	1 852F_07	1 853F-07	1 070F_07
11-237	2 017E-06	1 832F-06	1 664F_06	1 511F-06	1 308F-06	1 028F-06	1 611F-12
U-238	3.212F-07	3.212F-07	3.212E-07	3.212F-07	3.212E-07	3.212F-07	3.212F-07
11-240	1.526F-13	1.526F-13	1.526F-13	1.526F-13	1.526F-13	1.526F-13	1.526F-13
Np-235	6.379F-11	1.776F-11	4.947F-12	1.377E-12	2.024F-13	8.284E-15	0.00
Np-236	3.612E-12	3.612E-12	3.612E-12	3.612E-12	3.612E-12	3.612E-12	3.591E-12
$N_{p} = 237$	2.158E-07	2.167E-07	2.177E-07	2.188E-07	2.208E-07	2.245E-07	8.438E-07
Np-238	8.512E-08	8.435E-08	8.358E-08	8.282E-08	8.170E-08	7.985E-08	9.153E-10
Np-239	1.133E-05	1.133E-05	1.133E-05	1.133E-05	1.132E-05	1.132E-05	1.032E-05
Np-240m	1.526E-13	1.526E-13	1.526E-13	1.526E-13	1.526E-13	1.526E-13	1.526E-13
Pu-236	7.160E-08	4.403E-08	2.708E-08	1.665E-08	8.029E-09	2.381E-09	3.232E-13
Pu-238	1.965E-03	1.935E-03	1.904E-03	1.875E-03	1.831E-03	1.761E-03	1.110E-06
Pu-239	3.058E-04	3.058E-04	3.058E-04	3.058E-04	3.058E-04	3.057E-04	2.975E-04
Pu-240	4.542E-04	4.543E-04	4.544E-04	4.544E-04	4.545E-04	4.545E-04	4.109E-04
Pu-241	8.221E-02	7.467E-02	6.781E-02	6.159E-02	5.331E-02	4.190E-02	6.575E-08
Pu-242	1.328E-06	1.328E-06	1.328E-06	1.328E-06	1.328E-06	1.328E-06	1.327E-06
Pu-243	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14
Pu-244	1.528E-13	1.528E-13	1.528E-13	1.528E-13	1.528E-13	1.528E-13	1.528E-13
Am-241	1.188E-03	1.435E-03	1.658E-03	1.860E-03	2.126E-03	2.488E-03	8.167E-04
Am-242m	1.702E-05	1.687E-05	1.672E-05	1.656E-05	1.634E-05	1.597E-05	1.830E-07
Am-242	1.694E-05	1.678E-05	1.663E-05	1.648E-05	1.626E-05	1.589E-05	1.821E-07
Am-243	1.133E-05	1.133E-05	1.133E-05	1.133E-05	1.132E-05	1.132E-05	1.032E-05
Cm-242	1.854E-05	1.411E-05	1.379E-05	1.365E-05	1.347E-05	1.315E-05	1.506E-07
Cm-243	1.391E-05	1.325E-05	1.262E-05	1.202E-05	1.118E-05	9.896E-06	4.409E-16
Cm-244	8.337E-04	7.723E-04	7.153E-04	6.626E-04	5.907E-04	4.879E-04	2.501E-20
Cm-245	7.118E-08	7.117E-08	7.116E-08	7.114E-08	7.113E-08	7.110E-08	6.564E-08
Cm-246	1.263E-08	1.263E-08	1.262E-08	1.262E-08	1.261E-08	1.260E-08	1.092E-08
Cm-24/	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14	2.901E-14
Cm-248	5.446E-14	5.44/E-14	5.44/E-14	5.44/E-14	5.44/E-14	5.44/E-14	5.436E-14
BK-249	1.301E-12	2.6/4E-13	5.496E-14	1.130E-14	1.052E-15	2.014E-1/	0.00
LT-249	4.812E-13	4.819E-13	4.806E-13	4./88E-13	4./60E-13	4./13E-13	0./85E-14
LT-200	1.409E-12	1.321E-12	1.188E-12	1.009E-12	9.118E-13	0.995E-13	2.043E-22
LT-201	1.UZZE-14	1.020E-14	1.019E-14	1.UI/E-14	1.0156-14	1.UIIE-14 7 700E 15	4./456-15
LT-252	3.U8/E-13	1.0200-13	1.0/95-13	0.30UE-14	2.9010-14	/./90E-15	0.00

i sali a

Total 8.706E-02 7.966E-02 7.294E-02 6.683E-02 5.870E-02 4.748E-02 1.553E-03
TABLE F.2.c. Actinide Radioactivity by Isotope at 30 MWd/kgM, Ci/gU

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u> 10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
T1 207	A 204E 12	E 200E 12	6 260E 12	7 201E 12	9 5605 12	1 0725 11	2 7055 10
T1-207	4.204E-12 7 002F-00	3.289E-12 8 950E-09	0.20UE-12 0.587E-00	7.204E-12 0 030F_00	0.009E-12	1.0/3E-11 9.954F_09	2./95E-10 9.640F-13
T1-200	6.466E-15	6.544F-15	6.633E-15	6.732E-15	6.899F-15	7.228F-15	2.601E-12
Pb-209	2.993E-13	3.030E-13	3.071E-13	3.117E-13	3.194F-13	3.346E-13	1.204F-10
Pb-210	2.604E-14	3.903E-14	5.617E-14	7.800E-14	1.206E-13	2.222E-13	2.737E-09
Pb-211	4.297E-12	5.304E-12	6.278E-12	7.224E-12	8.593E-12	1.076E-11	2.803E-10
Pb-212	2.199E-08	2.491E-08	2.668E-08	2.766E-08	2.815E-08	2.770E-08	2.683E-12
Pb-214	2.048E-13	2.803E-13	3.687E-13	4.702E-13	6.474E-13	1.011E-12	2.737E-09
Bi-210	2.604E-14	3.904E-14	5.619E-14	7.803E-14	1.207E-13	2.222E-13	2.737E-09
Bi-210	4.297E-12	5.304E-12	6.278E-12	7.224E-12	8.593E-12	1.076E-11	2.803E-10
B1-212	2.199E-08	2.491E-08	2.668E-08	2.766E-08	2.815E-08	2.770E-08	2.683E-12
B1-213	2.993E-13	3.030E-13	3.0/1E-13	3.11/E-13	3.194E-13	3.346E-13	1.204E-10
B1-214	2.048E-13	2.803E-13	3.68/E-13	4./02E-13	6.4/4E-13	1.011E-12	2./3/E-09
PO-210	2.004E-14	3.5U2E-14	5.0/9E-14	7.113E-14	1.115E-13	2.223E-13	2./3/E-09
PO-211	1.203E-14	1.400E-14	1./38E-14	2.UZ3E-14	2.400E-14	3.UI3E-14	/.849E-13
P0-212 Po-213	2 020F-13	2 06/E-13	3 005E-13	1.//2E-08	1.004E-00 3 125E-13	1.//JE-00	1.795-12
Po-213	2.929L-13	2.904L-13	3.686E-13	4 701F-13	6 473E-13	1 011F_12	2 737E_00
Po-214	4 297F-12	5 304F-12	6 278F-12	7 224F-12	8 593E-12	1 0765-11	2.737E-09
Po-216	2.199F-08	2.491F-08	2.668F-08	2.766F-08	2.815F-08	2.770F-08	2.683E-12
Po-218	2.048E-13	2.804E-13	3.688E-13	4.703E-13	6.475E-13	1.012E-12	2.738F-09
At-217	2.993E-13	3.030E-13	3.071E-13	3.117E-13	3.194E-13	3.346E-13	1.204E-10
Rn-219	4.297E-12	5.304E-12	6.278E-12	7.224E-12	8.593E-12	1.076E-11	2.803E-10
Rn-220	2.199E-08	2.491E-08	2.668E-08	2.766E-08	2.815E-08	2.770E-08	2.683E-12
Rn-222	2.048E-13	2.804E-13	3.688E-13	4.703E-13	6.475E-13	1.012E-12	2.738E-09
Fr-221	2.993E-13	3.030E-13	3.071E-13	3.117E-13	3.194E-13	3.346E-13	1.204E-10
Fr-223	5.925E-14	7.306E-14	8.647E-14	9.950E-14	1.184E-13	1.482E-13	3.868E-12
Ra-223	4.297E-12	5.304E-12	6.278E-12	7.224E-12	8.593E-12	1.076E-11	2.803E-10
Ra-224	2.199E-08	2.491E-08	2.668E-08	2.766E-08	2.815E-08	2.770E-08	2.683E-12
Ra-225	2.993E-13	3.030E-13	3.0/1E-13	3.117E-13	3.194E-13	3.346E-13	1.204E-10
Ra-220	2.048E-13	2.804E-13	3.088E-13	4./03E-13	0.4/5E-13	1.012E-12	2./38E-09
AC-225	2.993E-13	3.030E-13	3.0/1E-13	3.11/E-13 7 210E 12	3.194E-13 0 E70E 12	3.340E-13	1.204E-10
AC-227	4.293E-12 1 237E-12	5 231F-12	6 101E-12	7.124F-12	8 A75E-12	1.074E-11	2.003E-10 2.764E-10
Th-228	2 100F-08	2 485F_08	2 662E-08	2 759F_08	2 811F_08	2 768E-08	2.683E-12
Th-220	2.993E-13	3.030F-13	3.071F-13	3.117F-13	3.194E-13	3.346E-13	1.204F-10
Th-230	8.008F-11	9.484F-11	1.099F-10	1.252F-10	1.487F-10	1.893F-10	1.529F-08
Th-231	1.236E-08	1.236F-08	1.236F-08	1.236E-08	1.236E-08	1.236E-08	1.266E-08
Th-234	3.196E-07						
Pa-231	2.026E-11	2.078E-11	2.131E-11	2.183E-11	2.261E-11	2.392E-11	2.802E-10
Pa-233	2.699E-07	2.709E-07	2.720E-07	2.733E-07	2.755E-07	2.799E-07	9.940E-07
Pa-234m	3.196E-07						
Pa-234	4.155E-10						
U-232	2.686E-08	2.797E-08	2.844E-08	2.852E-08	2.821E-08	2.721E-08	2.613E-12
U-233	1.824E-11	2.073E-11	2.323E-11	2.574E-11	2.947E-11	3.554E-11	3.128E-09
U-234	8.122E-07	8.282E-07	8.440E-07	8.595E-07	8.823E-07	9.191E-07	1.838E-06

TABLE F.2.c.	Actinide Radioactivity by Isotope at 30 MWd/kgM,
	Ci/gU (contd)

Isotope	6 Years	8 Years	10 Years	<u>12 Years</u>	15 Years	20 Years	1000 Years
U-235	1.236E-08	1.236E-08	1.236E-08	1.236E-08	1.236E-08	1.236E-08	1.266E-08
U-236	1.994E-07	1.994E-07	1.994E-07	1.995E-07	1.995E-07	1.996E-07	2.143E-07
U-237	2.339E-06	2.125E-06	1.930E-06	1.753E-06	1.517E-06	1.192E-06	4.238E-12
U-238	3.196E-07	3.196E-07	3.196E-07	3.196E-07	3.196E-07	3.196E-07	3.196E-07
U-240	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13
Np-235	9.203E-11	2.563E-11	7.137E-12	1.987E-12	2.920E-13	1.195E-14	0.00
Np-236	4.815E-12	4.815E-12	4.815E-12	4.815E-12	4.815E-12	4.814E-12	4.786E-12
Np-237	2.699E-07	2.709E-07	2.720E-07	2.733E-07	2.755E-07	2.799E-07	9.940E-07
Np-238	9.466E-08	9.380E-08	9.294E-08	9.210E-08	9.085E-08	8.880E-08	1.018E-09
Np-239	2.025E-05	2.025E-05	2.025E-05	2.024E-05	2.024E-05	2.023E-05	1.845E-05
Np-240m	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13
Pu-236	1.080E-07	6.642E-08	4.084E-08	2.512E-08	1.211E-08	3.592E-09	4.308E-13
Pu-238	2.844E-03	2.800E-03	2.756E-03	2.713E-03	2.650E-03	2.548E-03	1.490E-06
Pu-239	3.134E-04	3.133E-04	3.133E-04	3.133E-04	3.133E-04	3.132E-04	3.051E-04
Pu-240	5.307E-04	5.310E-04	5.313E-04	5.315E-04	5.318E-04	5.321E-04	4.824E-04
Pu-241	9.537E-02	8.661E-02	7.866E-02	7.144E-02	6.184E-02	4.861E-02	1.730E-07
Pu-242	1.937E-06	1.937E-06	1.937E-06	1.937E-06	1.937E-06	1.937E-06	1.935E-06
Pu-243	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13
Pu-244	3.560E-13	3.560E-13	3.560E-13	3.560E-13	3.560E-13	3.560E-13	3.560E-13
Am-241	1.351E-03	1.638E-03	1.897E-03	2.131E-03	2.440E-03	2.859E-03	9.420E-04
Am-242m	1.893E-05	1.876E-05	1.859E-05	1.842E-05	1.817E-05	1.776E-05	2.036E-07
Am-242	1.884E-05	1.866E-05	1.850E-05	1.833E-05	1.808E-05	1.767E-05	2.025E-07
Am-243	2.025E-05	2.025E-05	2.025E-05	2.024E-05	2.024E-05	2.023E-05	1.845E-05
Am-245	1.176E-16	2.417E-17	4.967E-18	1.021E-18	9.511E-20	1.821E-21	0.00
Cm-242	2.177E-05	1.574E-05	1.534E-05	1.518E-05	1.498E-05	1.462E-05	1.675E-07
Cm-243	2.325E-05	2.215E-05	2.110E-05	2.010E-05	1.868E-05	1.654E-05	7.371E-16
Cm-244	1.904E-03	1.763E-03	1.633E-03	1.513E-03	1.349E-03	1.114E-03	5.711E-20
Cm-245	1.873E-07	1.872E-07	1.872E-07	1.872E-07	1.871E-07	1.870E-07	1.727E-07
Cm-246	4.260E-08	4.259E-08	4.258E-08	4.256E-08	4.255E-08	4.251E-08	3.683E-08
Cm-247	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13	1.214E-13
Cm-248	2.881E-13	2.881E-13	2.881E-13	2.881E-13	2.881E-13	2.881E-13	2.875E-13
Bk-249	8.107E-12	1.666E-12	3.424E-13	7.038E-14	6.557E-15	1.256E-16	0.00
Cf-249	2.946E-12	2.951E-12	2.942E-12	2.931E-12	2.914E-12	2.885E-12	4.154E-13
Cf-250	9.968E-12	8.966E-12	8.064E-12	7.253E-12	6.187E-12	4.747E-12	1.748E-21
Cf-251	7.562E-14	7.550E-14	7.539E-14	7.527E-14	7.509E-14	7.481E-14	3.511E-14
Cf-252	2.884E-12	1.705E-12	1.008E-12	5.962E-13	2.710E-13	7.286E-14	0.00

Total 1.024E-01 9.378E-02 8.591E-02 7.876E-02 6.924E-02 5.609E-02 1.776E-03

Actinide Radioactivity by Isotope at 35 MWd/kgM, Ci/gU TABLE F.2.d.

) Years	52E-10 87E-12 16E-12	90E-10 38E-09 58E-10	83E-12	19E-09 08E-09	58E-10	96E-10	09E-09	71E-13	96E-12	00E-10	58E-10	33E-12	09E-09	58E-10	33E-12	09E-09	96E-10	92E-12 58E-10	33E-12	96E-10	09E-09	90E-10 58E-10	38E-10	33E-12	54E-08	31E-09	31E-07	57E-10	12E-06	35E-10	91E-12	12E-U9 24E-06
100(3.012	C		з.10 10	2.10	1.30	3.10	6.0	2.2	1 10. 10	2.10	3.5	3•10 2•10	2.10		3.1(20		1.3	3.10	2.10	2.1:		1.7	9.6	3.18	2.16	1.1 1.1	4.1	3.49	2.13
20 Years	1.039E-11 1.346E-08 1.006E-14	4.030E-13 2.060E-13 1 042E-11	3.745E-08	9.390E-13 2.061E-13	1.042E-11	3./43E-00 4.656E-13	9.396E-13 2.061E-13	2.917E-14	2.399E-08	4.000E-13 9.394F-13	1.042E-11	3.745E-08	9.398E-13 4 656E-13	1.042E-11	3.745E-08	9.398E-13	4.656E-13	1.435E-13	3.745E-08	4.656E-13	9.397E-13	4.030E-13 1.040E-11	1.027E-11	3.742E-08	4.0306-13 1.788E-10	9.329E-09	3.181E-07	2.266E-11	3.336E-0/	4.135E-10	3.680E-08	4.043E-11 9.072E-07
15 Years	8.360E-12 1.366E-08 9.685E-15	1.120E-13 8.383E-12	3.802E-08	5.9/3E-13 1.121E-13	8.383E-12	3.002E-00 4.484E-13	5.973E-13 1 036F-13	2.347E-14	2.436E-08	4.38/E-13 5.972E-13	8.383E-12	3.802E-08	5.974E-13 4 484E-13	8.383E-12	3.802E-08	5.974E-13	4.484E-13	I.155E-13 8.383E-12	3.802E-08	4.484E-13	5.974E-13	4.404E-13 8.368E-12	8.268E-12	3.795E-08	4.404E-13 1.391E-10	9.327E-09	3.181E-07	2.168E-11	3.288E-0/ 2 101E 07	3.101L-0/ 4.135E-10	3.813E-08	3.319E-11 8.580E-07
12 Years	7.057E-12 1.340E-08 9.498E-15	7.0775-10	3.729E-08	4.321E-13 7.290E-14	7.077E-12	4.397E-13	4.321E-13 6 657E-14	1.982E-14	2.389E-08	4.320F-13	7.077E-12	3.729E-08	4.322E-13	7.077E-12	3.729E-08	4.322E-13	4.397E-13	9./48E-14 7.077E-12	3.729E-08	4.397E-13	4.322E-13	4.09/E-13 7.064E-12	6.980E-12	3.720E-08	4.39/E-13 1.164E-10	9.326E-09	3.181E-07	2.108E-11	3.263E-0/	4.135E-10	3.852E-08	2.8/4E-11 8.275F-07
10 Years	6.149E-12 1.290E-08 9.388E-15	5.291E-14	3.590E-08	5.293E-14	6.166E-12	3.390E-00 4.346E-13	3.380E-13 4.799F-14	1.726E-14	2.300E-08	4.235E-13 3.380F-13	6.166E-12	3.590E-08	3.381E-13 4 346E-13	6.166E-12	3.590E-08	3.381E-13	4.346E-13	8.493E-14 6.166E-12	3.590E-08	4.346E-13	3.381E-13	4.340E-13 6.155E-12	6.081E-12	3.582E-08	4.340E-13 1.016E-10	9.325E-09	3.181E-07	2.069E-11	3.248E-0/	3.101C-0/ 4.135E-10	3.839E-08	2.5/4E-11 8.067E-07
8 Years	5.206E-12 1.201E-08 9.291E-15	4.301E-13 3.730E-14 5.221E-12	3.342E-08	2.202E-13 3.732E-14	5.221E-12	3.342E-U0 4.301E-13	2.565E-13 3.366E-14	1.462E-14	2.141E-08	4.200E-13 2.564F-13	5.221E-12	3.342E-08	2.565E-13 4 301E-13	5.221E-12	3.342E-08	2.565E-13	4.301E-13	/.192E-14 5.221E-12	3.342E-08	4.301E-13	2.565E-13	4.301E-13 5.212E-12	5.149E-12	3.334E-08	4. JULE-13 8. 731F-11	9.325E-09	3.181E-07	2.030E-11	3.235E-07	3.101E-0/ 4.135E-10	3.770E-08	2.2/6E-11 7.857E-07
6 Years	4.224E-12 1.055E-08 9.206E-15	4.2026-13 2.554E-14 4.236F-12	2.935E-08	1.8/1E-13 2.554E-14	4.236E-12	4.262E-13	1.871E-13 2.554E-14	1.186E-14	1.881E-08	4.1/UE-13 1.871E-13	4.236E-12	2.935E-08	1.871E-13 4 262E-13	4.236E-12	2.935E-08	1.871E-13	4.262E-13	5.842E-14 4.236F-12	2.935E-08	4.262E-13	1.871E-13	4.233E-12	4.178E-12	2.934E-08	4.202E-13 7.336F-11	9.324E-09	3.181E-07	1.990E-11	3.224E-07	3.101E-0/ 4.135E-10	3.611E-08	1.978E-11 7 643F-07
Isotope	T1-207 T1-208 T1-208 T1-209	Pb-210 Pb-210	Pb-212	PD-214 Bi-210	Bi-210	B1-213	B1-214 Pn-210	Po-211	Po-212	P0-213	Po-215	Po-216	Po-218	Rn-219	Rn-220	Rn-222	Fr-221	FF-223 Ra-223	Ra-224	Ra-225	Ra-226	AC-227 AC-227	Th-227	Th-228	Th-230	Th-231	Th-234	Pa-231	Pa-233	ra-234111 Pa-234	U-232	U-233 11-234

.

.

.

. 4

TABLE F.2.d. Actinide Radioactivity by Isotope at 35 MWd/kgM, Ci/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
			-			0.0005.00	0 6015 00
U-235	9.324E-09	9.325E-09	9.325E-09	9.326E-09	9.32/E-09	9.329E-09	9.631E-09
0-236	2.084E-0/	2.084E-07	2.085E-0/	2.085E-07	2.086E-07	2.08/E-0/	2.251E-0/
U-237	2.66/E-06	2.422E-06	2.200E-06	1.998E-06	1./29E-06	1.359E-00	9.216E-12
U-238	3.181E-07	3.181E-0/	3.181E-0/	3.181E-0/	3.181E-0/	3.181E-0/	3.181E-0/
0-240	/.10/E-13	/.10/E-13	/.10/E-13	7.10/E-13	7.10/E-13	/.10/E-13	/.10/E-13
Np-235	1.231E-10	3.429E-11	9.550E-12	2.659E-12	3.908E-13	1.599E-14	0.00
Np-236	6.02/E-12	6.02/E-12	6.02/E-12	6.02/E-12	6.026E-12	6.026E-12	5.991E-12
Np-237	3.224E-07	3.235E-07	3.248E-07	3.263E-07	3.288E-07	3.336E-0/	1.142E-06
Np-238	9.806E-08	9./1/E-08	9.629E-08	9.542E-08	9.412E-08	9.200E-08	1.054E-09
Np-239	3.227E-05	3.226E-05	3.226E-05	3.225E-05	3.224E-05	3.223E-05	2.939E-05
Np-240m	7.107E-13	7.107E-13	7.107E-13	7.107E-13	7.107E-13	7.107E-13	7.107E-13
Pu-236	1.513E-07	9.303E-08	5.721E-08	3.518E-08	1.696E-08	5.031E-09	5.392E-13
Pu-238	3.804E-03	3.745E-03	3.686E-03	3.629E-03	3.544E-03	3.408E-03	1.877E-06
Pu-239	3.173E-04	3.172E-04	3.172E-04	3.172E-04	3.172E-04	3.172E-04	3.092E-04
Pu-240	5.869E-04	5.875E-04	5.881E-04	5.886E-04	5.893E-04	5.903E-04	5.374E-04
Pu-241	1.087E-01	9.873E-02	8.966E-02	8.143E-02	7.048E-02	5.541E-02	3.761E-07
Pu-242	2.602E-06	2.602E-06	2.602E-06	2.602E-06	2.602E-06	2.602E-06	2.599E-06
Pu-243	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13
Pu-244	7.116E-13	7.116E-13	7.116E-13	7.116E-13	7.116E-13	7.116E-13	7.116E-13
Am-241	1.502E-03	1.829E-03	2.125E-03	2.392E-03	2.744E-03	3.222E-03	1.066E-03
'Am-242m	1.961E-05	1.943E-05	1.926E-05	1.908E-05	1.882E-05	1.840E-05	2.109E-07
Am-242	1.951E-05	1.934E-05	1.916E-05	1.899E-05	1.873E-05	1.831E-05	2.098E-07
Am-243	3.227E-05	3.226E-05	3.226E-05	3.225E-05	3.224E-05	3.223E-05	2.939E-05
Am-245	5.381E-16	1.106E-16	2.273E-17	4.671E-18	4.352E-19	8.334E-21	0.00
Cm-242	2.385E-05	1.637E-05	1.589E-05	1.573E-05	1.552E-05	1.515E-05	1.735E-07
Cm-243	3.426E-05	3.263E-05	3.108E-05	2.961E-05	2.752E-05	2.437E-05	1.086E-15
Cm-244	3.705E-03	3.432E-03	3.179E-03	2.945E-03	2.625E-03	2.168E-03	1.112E-19
Cm-245	4.072E-07	4.072E-07	4.071E-07	4.070E-07	4.069E-07	4.068E-07	3.755E-07
Cm-246	1.157E-07	1.157E-07	1.156E-07	1.156E-07	1.156E-07	1.155E-07	1.000E-07
Cm-247	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13	3.972E-13
Cm-248	1.157E-12	1.157E-12	1.157E-12	1.157E-12	1.157E-12	1.157E-12	1.155E-12
Bk-249	3.710E-11	7.625E-12	1.567E-12	3.221E-13	3.001E-14	5.746E-16	0.00
Bk-250	1.871E-16	2.983E-17	4.777E-18	7.705E-19	7.324E-20	3.308E-20	1.063E-20
Cf-249	1.329E-11	1.331E-11	1.327E-11	1.322E-11	1.315E-11	1.302E-11	1.874E-12
Cf-250	4.867E-11	4.378E-11	3.938E-11	3.542E-11	3.021E-11	2.318E-11	1.063E-20
Cf-251	3.945E-13	3.939E-13	3.932E-13	3.926E-13	3.917E-13	3.902E-13	1.832E-13
Cf-252	1.847E-11	1.092E-11	6.458E-12	3.819E-12	1.736E-12	4.667E-13	0.00 ·

Total

أرفقت

1.188E-01 1.088E-01 9.972E-02 9.146E-02 8.046E-02 6.526E-02 1.983E-03

TABLE F.2.e. Actinide Radioactivity by Isotope at 40 MWd/kgM, Ci/gU

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
T1_207	A 002E-12	5 030E-12	5 042E-12	6 808E-12	8 020E-12	0 03/6-12	1 6675-10
T_{-208}	1.340F-08	1.532F-08	1.650F-08	1.716E-08	1.752E-08	1 727F-08	1.634F-12
T1-209	1.245E-14	1.254E-14	1.264F-14	1.276E-14	1.297E-14	1.338E-14	3.386F-12
Pb-209	5.764E-13	5.806E-13	5.854E-13	5.909E-13	6.004E-13	6.193E-13	1.568E-10
Pb-210	2.557E-14	3.618E-14	5.034E-14	6.854E-14	1.045E-13	1.916E-13	3.510E-09
Pb-211	4.104E-12	5.053E-12	5.959E-12	6.827E-12	8.062E-12	9.962E-12	1.672E-10
Pb-212	3.730E-08	4.263E-08	4.592E-08	4.777E-08	4.876E-08	4.808E-08	4.548E-12
Pb-214	1.706E-13	2.344E-13	3.097E-13	3.970E-13	5.515E-13	8.745E-13	3.510E-09
Bi-210	2.558E-14	3.620E-14	5.036E-14	6.857E-14	1.045E-13	1.916E-13	3.510E-09
Bi-210	4.104E-12	5.053E-12	5.959E-12	6.827E-12	8.062E-12	9.962E-12	1.672E-10
Bi-212	3.730E-08	4.263E-08	4.592E-08	4.777E-08	4.876E-08	4.808E-08	4.548E-12
Bi-213	5.764E-13	5.806E-13	5.854E-13	5.909E-13	6.004E-13	6.193E-13	1.568E-10
B1-214	1./06E-13	2.344E-13	3.09/E-13	3.9/0E-13	5.515E-13	8.745E-13	3.510E-09
PO-210	2.558E-14	3.28/E-14	4.585E-14	6.2//E-14	9.6/4E-14	1.916E-13	3.510E-09
PO-211	1.149E-14	1.415E-14	1.008E-14	1.911E-14	2.25/E-14	2./89E-14	4.681E-13
PU-212 Do 212	2.390E-08	2./32E-08	2.942E-00	5.000E-08	3.124E-00	3.080E-08	2.9145-12
PU-213 Do 214	1 706E 12	2.00UE-13	3.720E-13	2.070E 12	5.0/4E-13 5.514E 12	0.0392-13	2 5105 00
P_{0-214}	1.700E-13 4 104E-12	2.343E = 13 5 053E = 12	5.090E-13	6 827F-12	3.514E-13 8.062E-12	0.743E-13 0.062E-12	3.5100-09 1 6720-10
Po-215	3 730F-08	4 263E-08	4 502F-08	4 777E-08	4 876F_08	4 808F_08	1.072L-10 A 548E-12
P_{0-218}	1.707F-13	2 344F-13	3 N97F-13	3 071F-13	5 516F-13	8 747F-13	3 511F-00
At-217	5.764E-13	5.806F-13	5.854E-13	5.909E-13	6.004F-13	6.193F-13	1.568E-10
Rn-219	4.104E-12	5.053F-12	5.959E-12	6.827F-12	8.062F-12	9.962F-12	1.672F-10
Rn-220	3.730E-08	4.263E-08	4.592E-08	4.777E-08	4.876E-08	4.808E-08	4.548E-12
Rn-222	1.707E-13	2.344E-13	3.097E-13	3.971E-13	5.516E-13	8.747E-13	3.511E-09
Fr-221	5.764E-13	5.806E-13	5.854E-13	5.909E-13	6.004E-13	6.193E-13	1.568E-10
Fr-223	5.659E-14	6.961E-14	8.208E-14	9.403E-14	1.111E-13	1.373E-13	2.307E-12
Ra-223	4.104E-12	5.053E-12	5.959E-12	6.827E-12	8.062E-12	9.962E-12	1.672E-10
Ra-224	3.730E-08	4.263E-08	4.592E-08	4.777E-08	4.876E-08	4.808E-08	4.548E-12
Ra-225	5.764E-13	5.806E-13	5.854E-13	5.909E-13	6.004E-13	6.193E-13	1.568E-10
Ra-226	1.707E-13	2.344E-13	3.097E-13	3.971E-13	5.516E-13	8.747E-13	3.511E-09
AC-225	5./64E-13	5.806E-13	5.854E-13	5.909E-13	6.004E-13	6.193E-13	1.568E-10
AC-22/	4.101E-12	5.044E-12	5.948E-12	0.814E-12	8.04/E-12	9.940E-12	1.0/2E-10
111-221 Th 229	4.04/E-12 3 720E 09	4.904E-12	3.0//E-12 1 591E 09	0.733E-12	1.951E-12 1.967E-09	9.020E-12	1.049E-10 1.548E-12
Th-220	5.729E-00	4.234E-00	4.JOIE-00	4.705E-00	4.00/E-00 6 004E-13	4.003E-00	1 568F_10
Th_230	6 718F-11	8 041F-11	9 413F-11	1.083F-10	1.305F-10	1.697F-10	1.996E-08
Th-231	6.970F-09	6.971F-09	6.972F-09	6.972E-09	6.973E-09	6.975E-09	7.279E-09
Th-234	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07
Pa-231	1.925E-11	1.954E-11	1.984E-11	2.013E-11	2.057E-11	2.131E-11	1.671E-10
Pa-233	3.709E-07	3.720E-07	3.734E-07	3.750E-07	3.778E-07	3.831E-07	1.272E-06
Pa-234m	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07	3.164E-07
Pa-234	4.113E-10	4.113E-10	4.113E-10	4.113E-10	4.113E-10	4.113E-10	4.114E-10
U-232	4.616E-08	4.829E-08	4.922E-08	4.942E-08	4.895E-08	4.725E-08	4.434E-12
U-233	2.103E-11	2.445E-11	2.789E-11	3.133E-11	3.644E-11	4.476E-11	4.041E-09
11-234	7.217F-07	7.487F-07	7.753E-07	8.016E-07	8.401E-07	9.024E-07	2.451E-06

TABLE F.2.e.	Actinide Radioactivity by	Isotope	at	40	MWd/kgM,
	Ci/gU (contd)				

U-235 6.970E-09 6.971E-09 6.972E-09 6.972E-09 6.973E-09 6.975E-09 7.279E-09 U-236 2.132E-07 2.132E-07 2.132E-07 2.133E-07 2.133E-07 2.134E-07 2.311E-07 U-237 2.951E-06 2.680E-06 2.434E-06 2.211E-06 1.913E-06 1.504E-06 1.743E-11 U-238 3.164E-07 3.164E-07 3.164E-07 3.164E-07 3.164E-07 3.164E-07 U-240 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 V-235 1.552E-10 4.322E-11 1.203E-11 3.351E-12 4.925E-13 2.015E-14 0.00 Np-236 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.143E-12 Np-237 3.709E-07 3.720E-07 3.734E-07 3.758E-07 3.778E-07 3.831E-07 1.272E-06 Np-238 9.834E-08 9.745E-08 9.657E-08 9.659E-08 9.439E-08 9.2266C-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.185E-04 3.185E-04 3.110E-04 Pu-239 1.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.2270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.185E-05 3.702E-06 3.302E-06 3.302E-07 2.661E-07 2.662E-07	Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
U-236 0.372E-09 0.372E-09 0.372E-09 0.372E-09 0.373E-07 2.132E-07 2.132E-01 4.322E-11 1.202E-11 3.351E-12 4.925E-13 2.015E-14 0.00 Np-236 7.186E-12 7.182E-07 1.272E-06 Np-238 9.834E-08 9.675E-08 9.657E-08 9.659E-08 9.439E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.272E-04 5.922E-04 9.011E-03 2.382E-06 3.302E-06 3.302E	11 005		6 0715 00	6 0705 00	6 0705 00	6 0725 00	6 0755 00	7 9705 90
U-236 2.132E-07 2.132E-07 2.132E-07 2.133E-07 2.133E-07 2.134E-07 2.134E-07 2.134E-07 2.134E-07 2.134E-07 2.134E-07 3.164E-07 1.271E-12 1.272E-06 Np-238 9.384E-08 9.745E-08 9.657E-08 9.569E-08 9.439E-08 9.226E-03 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.272E-04 9.12240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.302E-04 5.302E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.131E-07 Pu-242 3.302E-06 3.298E-06 Pu-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.939E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.104E-07 Am-242 1.957E-05 1.939E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.104E-07 Am-242 1.957E-05 1.939E-05 1.931E-05 1.978E-12 1.075E-12 1.075E-	0-235	0.9/UE-U9	0.9/1E-09	0.9/2E-09	0.9/2E-09	0.9/3E-09	0.9/3E-09	7.2/9E-09
U-238 3.164E-07 3.736E-07 3.726E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.273E-12 1.275E-12 1.075E-12 1.075	U-230	2.132E-0/	2.132E-07	2.132E-07	2.133E-07	2.133E-07	2.134E-07	2.311E-U/
U-240 1.271E-12 1.272E-06 Np-238 9.734E-08 9.745E-08 9.569E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-1	U-237	2.951E-00	2.08UE-00	2.434E-00	2.211E-00	1.913E-00	1.504E-00	1./43E-11
U-240 1.2/1E-12 7.186E-12 7.178E-12 1.271E-12 1.271E-13 3.186E-04 3.302E-06	U-238	3.104E-07	3.104E-0/	3.104E-U/	3.104E-0/	3.104E-0/	3.104E-U/	3.104E-U/
Np-235 1.552E-10 4.322E-11 1.203E-11 3.331E-12 4.925E-13 2.015E-14 0.00 Np-236 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.185E-12 7.143E-12 Np-237 3.709E-07 3.720E-07 3.734E-07 3.750E-07 3.778E-07 3.831E-07 1.272E-06 Np-238 9.834E-08 9.745E-08 9.657E-08 9.569E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.188E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-241 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242 1.967E-05 1.949E-05 1.931E-05 1.944E-05 1.888E-05 1.845E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.268E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.578E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.283E-05 1.464E-15 Cm-244 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 NCTE-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 NCTE-24 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 NCTE-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 NCTE-24 4.738E-11 4.758E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574	U-240	1.2/IE-I2	1.2/1E-12	1.2/1E-12	1.2/1E-12	1.2/1E-12	1.2/1E-12	1.2/1E-12
Np-236 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.186E-12 7.187E-12 Np-237 3.709E-07 3.726E-07 3.734E-07 3.756E-07 3.778E-07 3.831E-07 1.272E-06 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.302E-04 5.330E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.992E-01 9.92E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Pu-244 1.627E-03 1.989E-03 2.136E-03 2.611E-03 3.001E-03 3.531E-05 2.115E-07 Am-242 1.957E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.172E-03 3.071E-03 3.774E-03 1.937E-19 Cm-243 7.701E-07 7.699E-07 7.698E-07 7.695E-07 7.692E-07 7.692E-07 7.140E-07 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 3.774E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.692E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 3.758E-12 3.	Np-235	1.552E-10	4.322E-11	1.203E-11	3.351E-12	4.925E-13	2.015E-14	0.00
Np-237 3.709E-07 3.720E-07 3.734E-07 3.750E-07 3.748E-07 3.831E-07 1.272E-06 Np-238 9.834E-08 9.745E-08 9.657E-08 9.569E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 1.86E-04 3.186E-04 3.302E-06 3.406E-07 2.662E-07 2.661E-07 2.662E-07 2.661E-07 2.	Np-236	7.186E-12	7.186E-12	/.186E-12	7.186E-12	/.186E-12	7.186E-12	/.143E-12
Np-238 9.834E-08 9.745E-08 9.657E-08 9.569E-08 9.439E-08 9.226E-08 1.057E-09 Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.92E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242 1.957E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.885E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 1.886E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 1.551E-03 1.173E-03 Am-244 5.1945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.697E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.669E-07 2.659E-07 2.304E-07 Cm-247 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 L075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-249	Np-237	3./09E-0/	3./20E-0/	3./34E-0/	3./50E-0/	3.//8E-0/	3.831E-0/	1.2/2E-06
Np-239 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.104E-07 Am-242 1.957E-05 1.949E-05 1.931E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-244 4.706E-05 4.395E-05 4.704E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-243 4.615E-05 4.395E-05 4.578E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 3.758E-12	Np-238	9.834E-08	9.745E-08	9.65/E-08	9.569E-08	9.439E-08	9.226E-08	1.05/E-09
Np-240m 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 1.271E-12 Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.185E-04 3.185E-04 4.3185E-04 4.3185E-04 4.3185E-04 4.3185E-04 4.3185E-04 4.3185E-04 4.270E-04 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 9.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.273E-12 1.957E-05 1.998E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242 1.967E-05 1.9949E-05 1.914E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.578E-05 1.577E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.695E-07 7.695E-07 7.695E-07 7.304E-07 Cm-247 1.075E-12 0.00 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 0.00 Ek-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-07 4.993E-20 Cf-249 4.743E-11 4.738E-11 4.738E-11 4.720E-11 4.693E-11 4.645E-11 6.689E-12 Cf-251 1.856E-12 1.576E-12 1.576E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.152E-15 1.854E-1	Np-239	4.706E-05	4.705E-05	4.704E-05	4.703E-05	4.702E-05	4.699E-05	4.286E-05
Pu-236 1.996E-07 1.227E-07 7.547E-08 4.641E-08 2.238E-08 6.636E-09 6.429E-13 Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.932E-05 1.914E-05 1.888E-05 1.845E-05 2.1104E-07 Am-242 1.957E-05 1.949E-05 1.922E-05 1.904E-05 1.878E-05 1.845E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.574E-05 1.577E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-07 7.697E-07 7.692E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-29 1.341E-10 2.756E-11 5.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cf-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.566E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Np-240m	1.271E-12	1.271E-12	1.271E-12	1.271E-12	1.271E-12	1.271E-12	1.271E-12
Pu-238 4.810E-03 4.734E-03 4.660E-03 4.588E-03 4.481E-03 4.308E-03 2.270E-06 Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.774E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 M-34E-05 4.798E-07 4.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 M-249 1.341E-10 2.756E-11 5.663E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 M-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.075E-12 1.075E-12 1.075E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.555E-12 1.559E-12 7.317E-13 Cf-258 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.2740E-19 1.669E-12 7.317E-13 Cf-254 1.1662E-15 1.854E-16 2.959E-17 4.774E-18 3.740E-19 1.669E-12 7.317E-13 Cf-254 1.1662E-15 1.854E-16 2.959E-17 4.774E-18 2.740E-19 1.669E-12 7.317E-13	Pu-236	1.996E-07	1.227E-07	7.547E-08	4.641E-08	2.238E-08	6.636E-09	6.429E-13
Pu-239 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.186E-04 3.185E-04 3.110E-04 Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 M-249 1.341E-10 2.756E-11 5.663E-17 1.678E-10 3.758E-12 3.758E-12 3.758E-12 M-249 1.341E-10 2.756E-11 5.663E-17 1.675E-12 1.075E-12 1.075E-12 M-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 M-249 1.341E-10 2.756E-11 5.663E-17 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.556E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.2740E-19 1.668E-12 0.00	Pu-238	4.810E-03	4.734E-03	4.660E-03	4.588E-03	4.481E-03	4.308E-03	2.270E-06
Pu-240 6.257E-04 6.269E-04 6.280E-04 6.290E-04 6.303E-04 6.322E-04 5.792E-04 Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-244 4.706E-05 4.705E-05 4.704E-05 1.578E-05 1.571E-05 3.283E-05 1.740E-07 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 3.283E-05 1.740E-07 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 3.758E-12 3.758E	Pu-239	3.186E-04	3.186E-04	3.186E-04	3.186E-04	3.186E-04	3.185E-04	3.110E-04
Pu-241 1.203E-01 1.092E-01 9.922E-02 9.011E-02 7.799E-02 6.131E-02 7.113E-07 Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-248 3.758E-12 3.758E-12 3.758E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.574E-12 1.559E-12 1.559E-12 7.317E-13 Cf-254 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 7.317E-13 Cf-254 1.662E-15 1.854E-16 2.959E-17 4.712E-18 3.722E-19 6.799E-20 4.993E-20 Cf-254 1.662E-15 1.854E-16 2.959E-17 4.712E-18 3.758E-12 1.559E-12 7.317E-13 Cf-254 1.662E-15 1.854E-16 2.959E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Pu-240	6.257E-04	6.269E-04	6.280E-04	6.290E-04	6.303E-04	6.322E-04	5.792E-04
Pu-242 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.302E-06 3.298E-06 Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.565E-12 1.559E-12 7.317E-13 Cf-253 8.80E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Pu-241	1.203E-01	1.092E-01	9.922E-02	9.011E-02	7.799E-02	6.131E-02	7.113E-07
Pu-243 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.273E-12 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.575E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.692E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.574E-12 1.574E-12 1.565E-12 1.559E-12 7.317E-13 Cf-258 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Pu-242	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.298E-06
Pu-244 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 1.273E-12 Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.571E-12 1.571E-12 1.551E-12 1.555E-12 1.555E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Pu-243	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12
Am-241 1.627E-03 1.989E-03 2.316E-03 2.611E-03 3.001E-03 3.531E-03 1.173E-03 Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.664E-11 6.689E-12 Cf-251 1.576E-12 1.571E-12 1.075E-12 1.559E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Pu-244	1.273E-12	1.273E-12	1.273E-12	1.273E-12	1.273E-12	1.273E-12	1.273E-12
Am-242m 1.967E-05 1.949E-05 1.931E-05 1.914E-05 1.888E-05 1.845E-05 2.115E-07 Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Am-241	1.627E-03	1.989E-03	2.316E-03	2.611E-03	3.001E-03	3.531E-03	1.173E-03
Am-242 1.957E-05 1.939E-05 1.922E-05 1.904E-05 1.878E-05 1.836E-05 2.104E-07 Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.854E-16 2.959E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Am-242m	1.967E-05	1.949E-05	1.931E-05	1.914E-05	1.888E-05	1.845E-05	2.115E-07
Am-243 4.706E-05 4.705E-05 4.704E-05 4.703E-05 4.702E-05 4.699E-05 4.286E-05 Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Am-242	1.957E-05	1.939E-05	1.922E-05	1.904E-05	1.878E-05	1.836E-05	2.104E-07
Am-245 1.945E-15 3.997E-16 8.214E-17 1.688E-17 1.573E-18 3.012E-20 0.00 Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Am-243	4.706E-05	4.705E-05	4.704E-05	4.703E-05	4.702E-05	4.699E-05	4.286E-05
Cm-242 2.531E-05 1.648E-05 1.594E-05 1.578E-05 1.557E-05 1.519E-05 1.740E-07 Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Am-245	1.945E-15	3.997E-16	8.214E-17	1.688E-17	1.573E-18	3.012E-20	0.00
Cm-243 4.615E-05 4.395E-05 4.187E-05 3.988E-05 3.707E-05 3.283E-05 1.463E-15 Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Cm-248 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00	Cm-242	2.531E-05	1.648E-05	1.594E-05	1.578E-05	1.557E-05	1.519E-05	1.740E-07
Cm-244 6.450E-03 5.975E-03 5.534E-03 5.127E-03 4.570E-03 3.774E-03 1.935E-19 Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-243	4.615E-05	4.395E-05	4.187E-05	3.988E-05	3.707E-05	3.283E-05	1.463E-15
Cm-245 7.701E-07 7.699E-07 7.698E-07 7.697E-07 7.695E-07 7.692E-07 7.101E-07 Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-244	6.450E-03	5.975E-03	5.534E-03	5.127E-03	4.570E-03	3.774E-03	1.935E-19
Cm-246 2.665E-07 2.664E-07 2.663E-07 2.662E-07 2.661E-07 2.659E-07 2.304E-07 Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Fs-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-245	7.701E-07	7.699E-07	7.698E-07	7.697E-07	7.695E-07	7.692E-07	7.101E-07
Cm-247 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 1.075E-12 Cm-248 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-246	2.665E-07	2.664E-07	2.663E-07	2.662E-07	2.661E-07	2.659E-07	2.304E-07
Cm-248 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.758E-12 3.751E-12 Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-247	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12	1.075E-12
Bk-249 1.341E-10 2.756E-11 5.663E-12 1.164E-12 1.084E-13 2.076E-15 0.00 Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cm-248	3.758E-12	3.758E-12	3.758E-12	3.758E-12	3.758E-12	3.758E-12	3.751E-12
Bk-250 1.163E-15 1.854E-16 2.959E-17 4.772E-18 3.522E-19 6.799E-20 4.993E-20 Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Fs-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Bk-249	1.341E-10	2.756E-11	5.663E-12	1.164E-12	1.084E-13	2.076E-15	0.00
Cf-249 4.743E-11 4.751E-11 4.738E-11 4.720E-11 4.693E-11 4.646E-11 6.689E-12 Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Bk-250	1.163E-15	1.854E-16	2.959E-17	4.772E-18	3.522E-19	6.799E-20	4.993E-20
Cf-250 1.848E-10 1.663E-10 1.495E-10 1.345E-10 1.147E-10 8.803E-11 4.993E-20 Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cf-249	4.743E-11	4.751E-11	4.738E-11	4.720E-11	4.693E-11	4.646E-11	6.689E-12
Cf-251 1.576E-12 1.574E-12 1.571E-12 1.569E-12 1.565E-12 1.559E-12 7.317E-13 Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cf-250	1.848E-10	1.663E-10	1.495E-10	1.345E-10	1.147E-10	8.803E-11	4.993E-20
Cf-252 8.850E-11 5.233E-11 3.094E-11 1.829E-11 8.317E-12 2.236E-12 0.00 Es-254 1.162E-15 1.852E-16 2.950E-17 4.718E-18 2.740E-19 1.608E-20 0.00	Cf-251	1.576E-12	1.574E-12	1.571E-12	1.569E-12	1.565E-12	1.559E-12	7.317E-13
Fs-254 1 162F-15 1 852F-16 2 950F-17 4 718F-18 2 740F-19 1 608F-20 0 00	Cf-252	8.850E-11	5.233E-11	3.094E-11	1.829E-11	8.317E-12	2.236E-12	0.00
	Es-254	1.162E-15	1.852E-16	2.950E-17	4.718E-18	2.740E-19	1.608E-20	0.00

en a cal

Total 1.343E-01 1.231E-01 1.129E-01 1.036E-01 9.119E-02 7.406E-02 2.163E-03

TABLE F.2.f. Actinide Radioactivity by Isotope at 45 MWd/kgM, Ci/gU

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
T1-207	3.906E-12	4.808E-12	5.664E-12	6.481E-12	7.637E-12	9.398E-12	1.285E-10
11-208	1.635E-08	1.8/6E-08	2.024E-08	2.108E-08	2.154E-08	2.125E-08	1.992E-12
11-209	1.012E-14	1.622E-14	1.033E-14	1.040E-14	1.66/E-14	1./11E-14	3.695E-12
PD-209	7.405E-13	7.509E-13	7.30UE-13	7.018E-13	/./19E-13	7.923E-13	1./IIE-IU
PD-210 Db 211	2.01/E-14	3.300E-14 A 921E 12	4.04/E-14	6 400E 12	9.004E-14	1./00E-13	3.920E-09 1 290E 10
PD-212	J.91/E-12 1 552E-08	4.021E-12 5.220E-08	5.000E-12	5 867E-08	7.000E-12	9.424E-12 5.016E-09	1.209E-10 5.542E-12
Pb_212	1 555F-13	2 140F-13	2 837F-13	3 650F-13	5 098F-13	3.910E-08	3 926F-00
Ri_210	2 618F-14	3.569F-14	4.849F-14	6 507F-14	9 807F-14	1 789F-13	3 926E-09
Bi-210	3.917F-12	4.821F-12	5.680F-12	6.499F-12	7.658E-12	9.424F-12	1.289F-10
Bi-212	4.552E-08	5.220F-08	5.633E-08	5.867E-08	5.995E-08	5.916E-08	5.543E-12
Bi-213	7.465E-13	7.509E-13	7.560E-13	7.618E-13	7.719E-13	7.923E-13	1.711E-10
Bi-214	1.555E-13	2.140E-13	2.837E-13	3.650E-13	5.098E-13	8.160E-13	3.926E-09
Po-210	2.618E-14	3.267E-14	4.438E-14	5.976E-14	9.088E-14	1.789E-13	3.926E-09
Po-211	1.097E-14	1.350E-14	1.590E-14	1.820E-14	2.144E-14	2.639E-14	3.609E-13
Po-212	2.916E-08	3.344E-08	3.609E-08	3.759E-08	3.841E-08	3.790E-08	3.552E-12
Po-213	7.303E-13	7.346E-13	7.396E-13	7.454E-13	7.552E-13	7.752E-13	1.674E-10
Po-214	1.554E-13	2.140E-13	2.837E-13	3.649E-13	5.097E-13	8.158E-13	3.926E-09
Po-215	3.917E-12	4.821E-12	5.680E-12	6.499E-12	7.658E-12	9.424E-12	1.289E-10
Po-216	4.552E-08	5.220E-08	5.633E-08	5.867E-08	5.995E-08	5.916E-08	5.543E-12
Po-218	1.555E-13	2.141E-13	2.838E-13	3.651E-13	5.099E-13	8.161E-13	3.927E-09
At-21/	7.465E-13	7.509E-13	7.560E-13	7.618E-13	7.719E-13	7.923E-13	1.711E-10
Rn-219	3.91/E-12	4.821E-12	5.680E-12	6.499E-12	7.658E-12	9.424E-12	1.289E-10
Rn-220	4.552E-08	5.220E-08	5.633E-08	5.80/E-08	5.995E-08	5.916E-08	5.543E-12
KN-222	1.555E-13	2.141E-13	2.838E-13	3.051E-13	5.099E-13	8.161E-13	3.92/E-09
FF-221	7.403E-13	7.509E-13	7.00UE-13	7.018E-13	/./19E-13	/.923E-13	1./IIE-IU 1.7705 12
Da-223	3.402E-14	0.042E - 14	5 680E-12	6 100E-12	7 659E-13	1.290E - 13 0 $A2AE - 12$	1.7795-12
$D_{2} - 221$	4 552E_08	5 220E-08	5 633E_08	5 867E_08	5 0055-02	5 0165-08	5 5/3E-12
Ra=227	7.465E-13	7.509E-13	7.560F-13	7.618E-13	7.719F-13	7.923E-13	1.711F-10
Ra-226	1.555E-13	2.141F-13	2.838F-13	3.651F-13	5.099F-13	8.161F-13	3-927F-09
Ac-225	7.465E-13	7.509E-13	7.560E-13	7.618E-13	7.719E-13	7.923E-13	1.711E-10
Ac-227	3.914E-12	4.813E-12	5.670E-12	6.487E-12	7.644E-12	9.409E-12	1.289E-10
Th-227	3.863E-12	4.755E-12	5.602E-12	6.410E-12	7.553E-12	9.294E-12	1.271E-10
Th-228	4.550E-08	5.208E-08	5.620E-08	5.853E-08	5.985E-08	5.910E-08	5.543E-12
Th-229	7.465E-13	7.509E-13	7.560E-13	7.618E-13	7.719E-13	7.923E-13	1.711E-10
Th-230	6.154E-11	7.414E-11	8.734E-11	1.011E-10	1.228E-10	1.618E-10	2.245E-08
Th-231	5.172E-09	5.173E-09	5.173E-09	5.174E-09	5.1/5E-09	5.176E-09	5.481E-09
lh-234	3.148E-0/	3.148E-07	3.148E-07	3.148E-07	3.148E-07	3.148E-07	3.148E-07
Pa-231	1.83/E-11	1.859E-11	1.881E-11	1.903E-11	1.936E-11	1.990E-11	1.288E-10
Pa-233	4.13/E-0/	4.149E-07	4.104E-U/	4.181E-U/	4.21UE-U/	4.200E-U/	1.3//E-U0 2 1495 07
ra-234M	3.148E-U/	3.148E-U/	3.1401-0/	3.140E-U/	3.1405-0/	3.1400-07	3.140E-U/ 1 002E-10
ra-234	4.092E-10	+.UYZE-10	+.U92E-10	+.U32E-10 6 078E-09	+.U72E-10	5 816F_09	5 ANSE-12
U-232 11-233	2 201F-11	2 583F_11	2 966F-11	3 350F_11	3 920F_11	4.846F-11	4.394F-09
U-234	6.840E-07	7.168E-07	7.491E-07	7.808E-07	8.275E-07	9.030E-07	2.778E-06

TABLE F.2.f.	Actinide Radioactivity by Isotope at 45 MWd/kgM,
	Ci/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
	5 1305 00	- 1705 00	5 1705 00	5 1745 00	- 1755 00	5 1765 AA	5 4015 00
U-235	5.1/2E-09	5.1/3E-09	5.1/3E-09	5.1/4E-09	5.1/5E-09	5.1/0E-09	5.481E-09
U-236	2.145E-07	2.145E-07	2.145E-07	2.146E-07	2.146E-07	2.14/E-0/	2.334E-07
U-237	3.1/1E-06	2.880E-06	2.010E-00	2.3/5E-00	2.050E-00	1.010E-00	2.9/4E-11
0-238	3.148E-07	3.148E-07	3.148E-07	3.148E-07	3.148E-07	3.148E-07	3.148E-07
U-240	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12
Np-235	1.865E-10	5.195E-11	1.44/E-11	4.028E-12	5.920E-13	2.422E-14	0.00
Np-236	8.245E-12	8.245E-12	8.245E-12	8.245E-12	8.245E-12	8.245E-12	8.196E-12
Np-237	4.13/E-0/	4.149E-07	4.164E-07	4.181E-0/	4.210E-07	4.200E-07	1.3//E-06
Np-238	9.640E-08	9.552E-08	9.400E-08	9.380E-08	9.252E-08	9.044E-08	1.03/E-09
Np-239	6.415E-05	6.414E-05	6.413E-05	6.412E-05	6.410E-05	6.40/E-05	5.843E-05
Np-240m	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12	2.090E-12
Pu-236	2.509E-07	1.543E-07	9.488E-08	5.835E-08	2.814E-08	8.343E-09	/.3//E-13
Pu-238	5.828E-03	5./3/E-03	5.64/E-03	5.559E-03	5.429E-03	5.219E-03	2.658E-06
Pu-239	3.189E-04	3.188E-04	3.188E-04	3.188E-04	3.188E-04	3.188E-04	3.11/E-04
Pu-240	6.511E-04	6.531E-04	6.549E-04	6.566E-04	6.588E-04	6.620E-04	6.118E-04
Pu-241	1.293E-01	1.1/4E-01	1.066E-01	9.683E-02	8.381E-02	6.588E-02	1.214E-06
Pu-242	4.008E-06	4.008E-06	4.008E-06	4.008E-06	4.008E-06	4.008E-06	4.003E-06
Pu-243	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12
Pu-244	2.093E-12	2.093E-12	2.093E-12	2.093E-12	2.093E-12	2.093E-12	2.093E-12
Am-241	1.717E-03	2.106E-03	2.458E-03	2.775E-03	3.195E-03	3.764E-03	1.254E-03
Am-242m	1.928E-05	1.910E-05	1.893E-05	1.876E-05	1.850E-05	1.809E-05	2.073E-07
Am-242	1.918E-05	1.901E-05	1.884E-05	1.867E-05	1.841E-05	1.800E-05	2.063E-07
Am-243	6.415E-05	6.414E-05	6.413E-05	6.412E-05	6.410E-05	6.407E-05	5.843E-05
Am-245	5.853E-15	1.203E-15	2.472E-16	5.081E-17	4.734E-18	9.065E-20	0.00
Cm-242	2.626E-05	1.621E-05	1.563E-05	1.547E-05	1.526E-05	1.489E-05	1.706E-07
Cm-243	5.845E-05	5.567E-05	5.303E-05	5.051E-05	4.696E-05	4.158E-05	1.853E-15
Cm-244	1.031E-02	9.552E-03	8.848E-03	8.196E-03	7.307E-03	6.034E-03	3.094E-19
Cm-245	1.314E-06	1.314E-06	1.314E-06	1.313E-06	1.313E-06	1.312E-06	1.212E-06
Cm-246	5.415E-07	5.414E-07	5.412E-07	5.411E-07	5.408E-07	5.404E-07	4.681E-07
Cm-247	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12	2.514E-12
Cm-248	1.035E-11	1.035E-11	1.035E-11	1.035E-11	1.035E-11	1.035E-11	1.033E-11
Bk-249	4.035E-10	8.293E-11	1.704E-11	3.503E-12	3.264E-13	6.250E-15	0.00
Bk-250	5.558E-15	8.859E-16	1.414E-16	2.269E-17	1.662E-18	2.145E-19	1.921E-19
Cf-249	1.412E-10	1.414E-10	1.410E-10	1.405E-10	1.397E-10	1.383E-10	1.991E-11
Cf-250	5.783E-10	5.201E-10	4.678E-10	4.208E-10	3.589E-10	2.754E-10	1.921E-19
Cf-251	5.131E-12	5.123E-12	5.115E-12	5.107E-12	5.095E-12	5.076E-12	2.382E-12
Cf-252	3.391E-10	2.005E-10	1.186E-10	7.010E-11	3.187E-11	8.566E-12	0.00
Es-254	5.555E-15	8.852E-16	1.411E-16	2.247E-17	1.461E-18	0.00	0.00

mä

. .

Total 1.483E-01 1.360E-01 1.248E-01 1.146E-01 1.010E-01 8.211E-02 2.312E-03

TABLE F.2.g. Actinide Radioactivity by Isotope at 50 MWd/kgM, Ci/gU

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
T1-207	3.683E-12	4.533E-12	5.338E-12	6.102E-12	7.179E-12	8.807E-12	9.934E-11
T1-208	1.929E-08	2.219E-08	2.398E-08	2.500E-08	2.557E-08	2.525E-08	2.346E-12
T1-209	2.012E-14	2.022E-14	2.033E-14	2.047E-14	2.070E-14	2.116E-14	3.939E-12
Pb-209	9.316E-13	9.361E-13	9.414E-13	9.475E-13	9.581E-13	9.797E-13	1.824E-10
Pb-210	2.733E-14	3.578E-14	4.730E-14	6.234E-14	9.260E-14	1.676E-13	4.336E-09
Pb-211	3.693E-12	4.546E-12	5.353E-12	6.119E-12	7.199E-12	8.832E-12	9.962E-11
Pb-212	5.370E-08	6.175E-08	6.675E-08	6.959E-08	7.117E-08	7.027E-08	6.529E-12
Pb-214	1.415E-13	1.954E-13	2.600E-13	3.359E-13	4.720E-13	7.632E-13	4.336E-09
Bi-210	2.733E-14	3.580E-14	4.732E-14	6.237E-14	9.264E-14	1.677E-13	4.336E-09
Bi-210	3.693E-12	4.546E-12	5.353E-12	6.119E-12	7.199E-12	8.832E-12	9.962E-11
B1-212	5.370E-08	6.175E-08	6.675E-08	6.959E-08	7.117E-08	7.027E-08	6.529E-12
81-213	9.316E-13	9.361E-13	9.414E-13	9.4/5E-13	9.581E-13	9./9/E-13	1.824E-10
B1-214	1.415E-13	1.954E-13	2.00UE-13	3.359E-13	4.720E-13	1.032E-13	4.330E-09
P0-210 Do 211	2./34E-14	3.30/E-14	4.3305-14	3./32E-14	8.000E-14	1.0//E-13 2.472E 14	4.330E-09
P_{0-211}	3 441F-08	1.2/3E - 14 3.056E-08	1.499E-14 4 277E-08	1./13E-14 A A50F_08	2.010E-14 4 560E-08	2.4/3E-14 1 502E_08	2./09E-13 / 193E_12
Po=212	9 114F_13	9.950L-00	9 211F_13	9 270F-13	9.374F_13	9 585F_13	1 784F-10
Po-214	1.415F-13	1.954F-13	2.599F-13	3 358F-13	4.719F-13	7 631F-13	4 336F_09
Po-215	3.693F-12	4.546F-12	5.353E-12	6.119F-12	7.199F-12	8.832F-12	9.962F-11
Po-216	5.370E-08	6.175E-08	6.675E-08	6.959F-08	7.117F-08	7.027F-08	6.529E-12
Po-218	1.416E-13	1.955E-13	2.601E-13	3.359E-13	4.721E-13	7.634E-13	4.337E-09
At-217	9.316E-13	9.361E-13	9.414E-13	9.475E-13	9.581E-13	9.797E-13	1.824E-10
Rn-219	3.693E-12	4.546E-12	5.353E-12	6.119E-12	7.199E-12	8.832E-12	9.962E-11
Rn-220	5.370E-08	6.175E-08	6.675E-08	6.959E-08	7.117E-08	7.027E-08	6.529E-12
Rn-222	1.416E-13	1.955E-13	2.601E-13	3.359E-13	4.721E-13	7.634E-13	4.337E-09
Fr-221	9.316E-13	9.361E-13	9.414E-13	9.475E-13	9.581E-13	9.797E-13	1.824E-10
Fr-223	5.093E-14	6.262E-14	7.373E-14	8.429E-14	9.917E-14	1.217E-13	1.375E-12
Ra-223	3.693E-12	4.546E-12	5.353E-12	6.119E-12	7.199E-12	8.832E-12	9.962E-11
Ra-224	5.370E-08	6.175E-08	6.675E-08	6.959E-08	7.117E-08	7.027E-08	6.529E-12
Ra-225	9.316E-13	9.361E-13	9.414E-13	9.475E-13	9.581E-13	9.797E-13	1.824E-10
Ra-220	1.410E-13	1.955E-13	2.601E-13	3.359E-13	4./21E-13	7.034E-13	4.33/E-09
AC-220	9.310E-13 2 601E 12	9.301E-13	9.414E-13 5 242E 12	9.4/JE-13	9.001E-10 7 196E-10	9./9/2-13	1.024E - 10 0.062E - 11
Th-227	3.643E-12	4.JJOL-12 4.483F-12	5 279F-12	6.035E-12	7.100E-12	8 710E-12	9.902E-11 9.824F-11
Th-228	5.368E-08	6.162F-08	6.659E-08	6.942F-08	7.105E-08	7.020F-08	6.529E-12
Th-229	9.316F-13	9.361F-13	9.414F-13	9.475E-13	9.581E-13	9.797E-13	1.824E-10
Th-230	5.641E-11	6.847E-11	8.121E-11	9.462E-11	1.160E-10	1.548E-10	2.491E-08
Th-231	3.814E-09	3.815E-09	3.815E-09	3.816E-09	3.817E-09	3.818E-09	4.123E-09
Th-234	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07
Pa-231	1.734E-11	1.750E-11	1.766E-11	1.782E-11	1.807E-11	1.847E-11	9.958E-11
Pa-233	4.501E-07	4.513E-07	4.529E-07	4.546E-07	4.577E-07	4.636E-07	1.457E-06
Pa-234m	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07
Pa-234	4.070E-10	4.070E-10	4.070E-10	4.070E-10	4.070E-10	4.070E-10	4.070E-10
U-232	6.703E-08	7.033E-08	7.181E-08	7.217E-08	7.153E-08	6.909E-08	6.366E-12
U-233	2.275E-11	2.690E-11	3.106E-11	3.524E-11	4.144E-11	5.151E-11	4.669E-09
U-234	6.506E-07	6.889E-07	7.267E-07	7.638E-07	8.185E-07	9.068E-07	3.099E-06

TABLE F.2.g.	Actinide Radioactivity by Isotope at 50 MWd/kgM,
	Ci/gU (contd)

1

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
		0 0155 00	a a155 aa	2 01 65 00	2 0175 00	2 0105 00	4 1025 00
0-235	3.814E-09	3.815E-09	3.815E-09	3.816E-09	3.81/E-09	3.818E-09	4.123E-09
0-236	2.132E-07	2.132E-07	2.132E-07	2.133E-07	2.133E-07	2.135E-07	2.330E-07
U-237	3.328E-06	3.022E-06	2./45E-06	2.493E-06	2.158E-06	1.696E-06	4.680E-11
0-238	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-07	3.131E-0/
U-240	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12
Np-235	2.159E-10	6.013E-11	1.6/4E-11	4.663E-12	6.852E-13	2.804E-14	0.00
Np-236	9.173E-12	9.173E-12	9.173E-12	9.173E-12	9.1/3E-12	9.1/3E-12	9.119E-12
Np-237	4.501E-07	4.513E-07	4.529E-07	4.546E-07	4.577E-07	4.636E-07	1.457E-06
Np-238	9.272E-08	9.188E-08	9.104E-08	9.022E-08	8.899E-08	8.698E-08	9.970E-10
Np-239	8.292E-05	8.290E-05	8.289E-05	8.287E-05	8.285E-05	8.281E-05	7.553E-05
Np-240m	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12	3.212E-12
Pu-236	3.032E-07	1.865E-07	1.147E-07	7.051E-08	3.400E-08	1.008E-08	8.207E-13
Pu-238	6.818E-03	6.712E-03	6.607E-03	6.504E-03	6.352E-03	6.106E-03	3.028E-06
Pu-239	3.186E-04	3.186E-04	3.186E-04	3.185E-04	3.185E-04	3.185E-04	3.119E-04
Pu-240	6.682E-04	6.712E-04	6.740E-04	6.765E-04	6.800E-04	6.849E-04	6.398E-04
Pu-241	1.356E-01	1.232E-01	1.119E-01	1.016E-01	8.795E-02	6.914E-02	1.910E-06
Pu-242	4.689E-06	4.689E-06	4.689E-06	4.689E-06	4.689E-06	4.689E-06	4.684E-06
Pu-243	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12
Pu-244	3.216E-12	3.216E-12	3.216E-12	3.216E-12	3.216E-12	3.216E-12	3.216E-12
Am-241	1.775E-03	2.183E-03	2.552E-03	2.886E-03	3.326E-03	3.924E-03	1.311E-03
Am-242m	1.854E-05	1.837E-05	1.821E-05	1.804E-05	1.780E-05	1.740E-05	1.994E-07
Am-242	1.845E-05	1.828E-05	1.812E-05	1.795E-05	1.771E-05	1.731E-05	1.984E-07
Am-243	8.292E-05	8.290E-05	8.289E-05	8.287E-05	8.285E-05	8.281E-05	7.553E-05
Am-245	1.526E-14	3.135E-15	6.444E-16	1.324E-16	1.234E-17	2.363E-19	0.00
Cm-242	2.673E-05	1.566E-05	1.503E-05	1.487E-05	1.468E-05	1.432E-05	1.641E-07
Cm-243	7.048E-05	6.713E-05	6.394E-05	6.091E-05	5.662E-05	5.014E-05	2.234E-15
Cm-244	1.539E-02	1.425E-02	1.320E-02	1.223E-02	1.090E-02	9.005E-03	4.618E-19
Cm-245	2.068E-06	2.068E-06	2.067E-06	2.067E-06	2.066E-06	2.066E-06	1.907E-06
Cm-246	9.984E-07	9.981E-07	9.978E-07	9.975E-07	9.971E-07	9.963E-07	8.631E-07
Cm-247	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12	5.243E-12
Cm-248	2.505E-11	2.505E-11	2.505E-11	2.505E-11	2.505E-11	2.505E-11	2.500E-11
Bk-249	1.052E-09	2.162E-10	4.443E-11	9.131E-12	8.507E-13	1.629E-14	0.00
Bk-250	2.161E-14	3.445E-15	5.495E-16	8.814E-17	6.222E-18	7.407E-19	6.316E-19
Cf-249	3.642E-10	3.648E-10	3.638E-10	3.625E-10	3.603E-10	3.568E-10	5.137E-11
Cf-250	1.554E-09	1.398E-09	1.257E-09	1.131E-09	9.647E-10	7.402E-10	6.316E-19
Cf-251	1.423E-11	1.421E-11	1.419E-11	1.417E-11	1.414E-11	1.408E-11	6.609E-12
Cf-252	1.091E-09	6.450E-10	3.814E-10	2.255E-10	1.025E-10	2.756E-11	0.00
Es-254	2.160E-14	3.443E-15	5.486E-16	8.744E-17	5.534E-18	8.396E-20	0.00

Total 1.609E-01 1.476E-01 1.355E-01 1.245E-01 1.098E-01 8.946E-02 2.434E-03

		g/gV					
Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-3	2.223E-08	1.987E-08	1.776E-08	1,587E-08	1.341E-08	1.013E-08	1.307E-32
li-6	1.407F-10	1.407F-10	1.407E-10	1.407F-10	1.407F-10	1.407F-10	1.407F-10
11-7	6.128F-12	6.128F-12	6.128F-12	6.128F-12	6.128F-12	6.128F-12	6.128E-12
Re-9	1 180F-11	1 180F-11	1.180F-11	1.180F-11	1.180F-11	1 180F-11	1 180F-11
Be-10	7 874F_11	7 874F-11	7 874F_11	7 874F_11	7 873F_11	7 873F_11	7 870F_11
C_{-14}	1 500F_11	1 500F_11	1 500F_11	1 580F_11	1 580F_11	1 588F_11	1 A10F_11
7n-66	2 248F-14	2 248E-14	2 248F_14	2 248E-14	2 248E_14	2 248E_14	2 248F_14
2n - 67	$0.326E_{-16}$	0 326F-16	0 326F-16	0 326F_16	0 326F-16	0 326F_16	0 326F-16
$C_{2} - 71$	5 AD1E-13	5 401E-13	5 A01E-13	5 A01E-13	5 A01E-13	5 401E-13	5 A01E-13
Ga = 72	1 3786-09	1 2795-09	1 279E_09	1 3785-08	1 2795_09	1 2795_09	1 2705_00
Ga = 72	2 9715-09	2 9715 09	2 9715.09	2 971E 00	2 971E 00	2 971E 00	2 0715 00
Ge = 73	6 050E 00	6 050E 09	6 050E 09	6 050E 09	6 050E 00	6 050E 00	2.071E-00
de = 74	1 2665 07	1 2665 07	1 2665 07	1 266E 07	1 2665 07	1 266E 07	1 2665 07
MS-75	2 0005 07	2 0005 07	1.200E-07	2 0005 07	1.200E-07	1.200E-07	1.200E-07
Ge-70	2 202E 00	3.090E-07	3.090E-07	3.090E-07	3.090E-07	3.090E-07	3.090E-0/
Se-70	6 125E 07	2.302E-09	2.302E-09	2.302E-09	2.302E-09	2.JUZE-09	2.JUZE-09
Se-//	0.423E-07	1 4715 06	0.423E-07	0.423E-07	0.4236-07	0.4236-07	0.4236-07
Se-70	1.4/1E-00	1.4/IE-00	1.4/IE-00	1.4/1E-00	1.4/10-00	1.4/1E-U0	1.4/1E-00
Se-/9 Po 70	3.014E-U0 2.610E 10	3.014E-U0	3.014E-00	3.013E-U0	3.013E-U0	3.013E-U0	3.3/0E-00
Dr-/9	3.019E-10	4.390E-10	5.102E-10	3.933E-10	7.089E-10	9.01/E-10	3.849E-08
Se-00	0.102E-U0	0.102E-00	0.102E-U0	0.102E-U0	8.182E-U0	8.182E-00	8.182E-00
Nr-60	1.3/9E-10	1.3/9E-10	1.3/9E-10	1.3/9E-10	1.3/9E-10	1.3/9E-10	1.3/9E-10
Br-81	1.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350E-05
KΓ-81 Se 82	1.110E-11	1.11UE-11	1.11UE-11	1.11UE-11	1.11UE-11	1.110E-11	1.10/E-11
Se-82	2.000E-03	2.000E-03	2.000E-03	2.000E-03	2.000E-05	2.000E-05	2.000E-05
Kr-82	4.281E-07	4.281E-0/	4.281E-0/	4.281E-0/	4.281E-0/	4.281E-07	4.281E-0/
КГ-83	2./05E-05	2./05E-05	2./05E-05	2./05E-05	2.765E-05	2./05E-05	2./05E-05
Kr-84	6./05E-05	0./05E-05	6./05E-05	6./05E-05	6./05E-05	6./05E-05	6./05E-05
Kr-85	8./61E-06	7.698E-06	6./64E-06	5.944E-06	4.896E-06	3.543E-06	1.0/5E-33
RD-85	6.5/8E-05	6.685E-05	6.//8E-05	6.860E-05	6.965E-05	7.100E-05	/.454E-05
Kr-86	1.165E-04	1.165E-04	1.165E-04	1.165E-04	1.165E-04	1.165E-04	1.165E-04
Sr-86	1.680E-0/	1.680E-0/	1.680E-07	1.680E-0/	1.680E-0/	1.680E-0/	1.680E-0/
RD-87	1.496E-04	1.496E-04	1.496E-04	1.496E-04	1.496E-04	1.496E-04	1.496E-04
Sr-8/	1.346E-09	1.346E-09	1.346E-09	1.346E-09	1.346E-09	1.346E-09	1.349E-09
Sr-88	2.14/E-04	2.14/E-04	2.14/E-04	2.14/E-04	2.14/E-04	2.14/E-04	2.14/E-04
1-89	2.805E-04	2.805E-04	2.805E-04	2.805E-04	2.805E-04	2.805E-04	2.805E-04
Sr-90	2./12E-04	2.586E-04	2.400E-04	2.351E-04	2.189E-04	1.943E-04	1.439E-14
Y-90	6.801E-08	0.484E-08	0.183E-08	5.896E-08	5.489E-08	4.8/3E-08	3.01UE-18
2r-90	0.905E-05	8.100E-05	9.309E-05	1.052E-04	1.214E-04	1.459E-04	3.403E-04
Y-91	6./21E-1/	1.1/2E-20	2.043E-24	3.502E-28	8.201E-34		
Zr-91	3.622E-04	3.622E-04	3.022E-04	3.622E-04	3.622E-04	3.022E-04	3.022E-04
2r-92	3.913E-04	3.913E-04	3.913E-04	3.913E-04	3.913E-04	3.913E-04	3.913E-04
2r-93	4.411E-04	4.411E-U4	4.411E-U4	4.411E-U4	4.411E-U4	4.411E-U4	4.4U9E-U4
ND-93	4./84E-10	0.541E-10	0.014E-10	1.UD8E-09	1.42/E-09	2.09/E-09	1.900E-U/
ND-93M	1.413E-09	1.03/E-09	1.84UE-U9	2.UZ3E-U9	2.204E-U9	2.393E-09	3./24E-U9
2r-94	4.490E-04	4.490E-U4	4.490E-U4	4.490E-U4	4.490E-U4	4.490E-U4	4.490L-U4
ND-94	4.558E-10	4.558E-10	4.33/L-10	4.33/L-10	4.33/L-10	4.000E-10	4.4U0L-1U

TABLE F.3.a. Fission Product Inventory by Isotope at 20 MWd/kgM, g/gU

TABLE F.3.a. Fission Product Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000	Years
7r-95	9.806F-16	3.585E-19	1.311E-22	4.793E-26	3.351E-31	0.00	0.00	
Nb-95	1.196E-15	4.373E-19	1.599E-22	5.846E-26	3.054E-33	0.00	0.00	
Mo-95	4.665E-04	4.665E-04	4.665E-04	4.665E-04	4.665E-04	4.665E-04	4.66	5E-04
Zr-96	4.863E-04	4.863E-04	4.863E-04	4.863E-04	4.863E-04	4.863E-04	4.863	3E-04
Mo-96	1.535E-05	1.535E-05	1.535E-05	1.535E-05	1.535E-05	1.535E-05	1.53	5E-05
Mo-97	4.811E-04	4.811E-04	4.811E-04	4.811E-04	4.811E-04	4.811E-04	4.81	1E-04
Mo-98	4.993E-04	4.993E-04	4.993E-04	4.993E-04	4.993E-04	4.993E-04	4.993	3E-04
Tc-98	2.536E-09	2.536E-09	2.536E-09	2.536E-09	2.536E-09	2.536E-09	2.536	5E-09
IC-99	4.840E-04	4.840E-04	4.840E-04	4.840E-04	4.840E-04	4.840E-04	4.824	1E-04
KU-99	1.460E-08	1.//5E-08	2.090E-08	2.405E-08	2.8/8E-08	3.665E-08	1.5/8	SE-06
MO-100	5.029E-04	5.029E-04	5.629E-04	5.029E-04	5.029E-04	5.629E-04	5.029	JE-04
KU-100	3.041E-03	3.041E-U3	3.841E-03	3.841E-03	3.841E-U3	3.841E-05	3.84	
Ru = 101 Du = 102	4.721E-04	4.7216-04	4.721E-04	4.7210-04	4.721E-04	4.721E-04	4.72	15 04
Ru-102 Dh_102	4.304E-04 9.427E-11	4.304E-04	4.304E-04 2.220E_11	4.304E-04	4.304E-04	4.304E-04	4.00	+E-04
Dh_102	3 112F_04	3 1125-04	3 1125-04	3 112F_04	3 112F_04	2.900E-12 3 112F_04	3 113	2E_04
Ru_103	3 208F_04	3 208F_04	3 208F_04	3 208F_04	3 208F_04	3 208F_04	3 209	2E-04
Pd-104	1.002F≏04	1.002F-04	1.002F-04	1 002F-04	1.002F-04	1 002F-04	1 002	2F_04
Pd-105	2.367F-04	2.367F-04	2.367E-04	2.367F-04	2.367F-04	2.367F-04	2.367	7F-04
Ru-106	7.889F-07	1.994F-07	5.040F-08	1.274F-08	1.619F-09	5.200F-11	0.00	
Rh-106	7.415E-13	1.874E-13	4.738E-14	1.198E-14	1.522E-15	4.888E-17	0.00	
Pd-106	1.923E-04	1.929E-04	1.931E-04	1.931E-04	1.931E-04	1.931E-04	1.931	LE-04
Pd-107	1.257E-04	1.257E-04	1.257E-04	1.257E-04	1.257E-04	1.257E-04	1.257	7E-04
Ag-107	1.157E-10	1.425E-10	1.694E-10	1.962E-10	2.364E-10	3.035E-10	1.345	5E-08
Pd-108	8.607E-05	8.607E-05	8.607E-05	8.607E-05	8.607E-05	8.607E-05	8.607	7E-05
Ag-108m	6.577E-13	6.505E-13	6.435E-13	6.365E-13	6.261E-13	6.093E-13	2.897	7E-15
Cd-108	1.588E-10	1.588E-10	1.588E-10	1.588E-10	1.588E-10	1.588E-10	1.589	€-10
Ag-109	4.714E-05	4.714E-05	4.714E-05	4.714E-05	4.714E-05	4.714E-05	4.714	1E-05
Cd-109	3.666E-15	1.231E-15	4.134E-16	1.388E-16	2.701E-17	1.765E-18	0.00	
Pd-110	2.827E-05	2.827E-05	2.827E-05	2.827E-05	2.827E-05	2.827E-05	2.827	7E-05
Ag-110m	4.651E-10	6.131E-11	8.081E-12	1.065E-12	5.098E-14	3.217E-16	0.00	
Cd-110	1.351E-05	1.351E-05	1.351E-05	1.351E-05	1.351E-05	1.351E-05	1.351	LE-05
	1.592E-05	1.592E-05	1.592E-05	1.592E-05	1.592E-05	1.592E-05	1.592	2E-05
	9./33E-00	9./33E-00	9./33E-00	9./33E-00	9./33E-00	9./33E-00	9./5	DE-UD
Cd 112m	1.3/3E-0/	1.3/3E-0/	1.3/3E-0/ 9.460E-09	7 7015-09	1.3/3E-0/	1.3/3E-0/	2 166	+E=07 SE_28
Tn_{113}	1.024E-07	9.313E-00	6 078E_08	7.701E-08	8 767E-08	1 018E_07	1 54/	1E-20
rd_114	1 363E_05	1 363E_05	1 363E-05	1 363E_05	1 363E-05	1 363F_05	1 363	3E-07
Sn_114	1 083E-09	1.083E-09	1.083E-09	1.083E-09	1.083F-09	1.083F-09	1.083	3F-09
In-115	2.092F-06	2.092F-06	2.092F-06	2.092E-06	2.092E-06	2.092E-06	2.092	2E-06
Sn-115	2.032E-07	2.032E-07	2.032E-07	2.032E-07	2.032E-07	2.032E-07	2.032	2E-07
Cd-116	5.193E-06	5.193E-06	5.193E-06	5.193E-06	5.193E-06	5.193E-06	5.193	8E-06
Sn-116	3.976E-06	3.976E-06	3.976E-06	3.976E-06	3.976E-06	3.976E-06	3.976	6E-06
Sn-117	5.267E-06	5.267E-06	5.267E-06	5.267E-06	5.267E-06	5.267E-06	5.267	'E-06
Sn-118	5.304E-06	5.304E-06	5.304E-06	5.304E-06	5.304E-06	5.304E-06	5.304	E-06
Sn-119	5.284E-06	5.284E-06	5.284E-06	5.284E-06	5.284E-06	5.284E-06	5.284	E-06

......

....

......

.

TABLE F.3.a.	Fission Product	Inventory by	Isotope a	t 20	MWd/kgM,
	g/gU (contd)		·		• •

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Sn-119m	2.812E-11	3.560E-12	4.509E-13	5.709E-14	2.572E-15	1.468E-17	0.00
Sn-120	5.390E-06	5.390E-06	5.390E-06	5.390E-06	5.390E-06	5.390E-06	5.390E-06
Sn-121m	1.882E-09	1.830E-09	1.780E-09	1.731E-09	1.661E-09	1.550E-09	1.935E-15
Sb-121	5.374E-06	5.374E-06	5.374E-06	5.374E-06	5.374E-06	5.374E-06	5.375E-06
Sn-122	5.942E-06	5.942E-06	5.942E-06	5.942E-06	5.942E-06	5.942E-06	5.942E-06
Te-122	2.360E-07	2.360E-07	2.360E-07	2.360E-07	2.360E-07	2.360E-07	2.360E-07
Sn-123	9.248E-13	1.835E-14	3.640E-16	7.222E-18	2.021E-20	1.120E-24	0.00
Sb-123	6.561E-06	6.561E-06	6.561E-06	6.561E-06	6.561E-06	6.561E-06	6.561E-06
Te-123	2.504E-09	2.504E-09	2.504E-09	2.504E-09	2.504E-09	2.504E-09	2.504E-09
Te-123m	7.370E-16	1.072E-17	1.558E-19	2.261E-21	0.00	0.00	0.00
Sn-124	8.020E-06	8.020E-06	8.020E-06	8.020E-06	8.020E-06	8.020E-06	8.020E-06
Te-124	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07	1.812E-07
Sb-125	1.344E-06	8.148E-07	4.940E-07	2.995E-07	1.414E-07	4.045E-08	0.00
Te-125	1.049E-05	1.103E-05	1.135E-05	1.155E-05	1.171E-05	1.181E-05	1.185E-05
le-125m	1.880E-08	1.140E-08	6.911E-09	4.190E-09	1.9//E-09	5.658E-10	0.00
Sn-126	1./03E-05	1./03E-05	1./03E-05	1./03E-05	1./03E-05	1./03E-05	1.691E-05
SD-120	8.090E-13	8.090E-13	8.090E-13	8.090E-13	8.089E-13	8.089E-13	8.034E-13
SD-126m	0.151E-15	0.151E-15	0.151E-15	6.150E-15	6.150E-15	0.150E-15	6.109E-15
10-120	4.2/2E-U/	4.2/4E-0/	4.2//E-U/	4.2/9E-0/	4.282E-0/	4.288E-07	5.441E-0/
10-12/ To 127m	1.290E-13	1.245E-1/	1.190E-19	1.149E-21	1.082E-24	9./93E-30	0.00
T 127	3./UZE-13	3.33/E-13	3.41/E-1/	3.283E-19	3.091E-22	2./9/E-2/	
1-12/ To 120	5.44/E-05	3.44/E-U3	3.44/E-05	3.44/E-05	3.44/E-U3	3.44/E-05	3.44/E-U5
Te-120	0,741E-05	0./41E-03	0./41E-03	0./41E-03	0./41E-U3	0.741E-05	0./41E-05
AU-120	1.223E-00	1.223E-00	1.223E-00	1.223E-00	1.223E-00	1.223E-00	1.223E-00
1 - 129 Ye - 120	1.1092-04	1.1092-04	1.1092-04	1.109E-04	1.109E-04	1.109E-04	1.109E-04
$T_{0} = 129$	4.573E-09	4.303E-09	4.595E-09	4.002E-09	4.01/E-09	4.042E-09	9.440E-09
Ye-130	1 063E_06	1 063E_06	1 063E_06	1 063E_06	1 063E_06	1 063E_06	2.14/L-04 1 063E-06
Xe-130 Xe-131	$2 017F_04$	2 Q17F_04	2 017F-04	2 017F-04	2 017F_04	2 Q17F_04	2 017F_04
Xe-131 Xe-132	6 183F-04	6.183F-04	6.183F-04	6.183E-04	6.183F-04	6.183E-04	6 183F-04
Ba-132	7.600F-10	7.600E-10	7.600E-10	7.600E-10	7.600F-10	7.600F-10	7.600E-10
Cs-133	7.166E-04	7.166F-04	7.166F-04	7.166F-04	7.166F-04	7.166F-04	7.166F-04
Xe-134	8.857E-04	8.857E-04	8.857E-04	8.857E-04	8.857E-04	8.857E-04	8.857E-04
Cs-134	4.798E-06	2.449E-06	1.250E-06	6.384E-07	2.329E-07	4.336E-08	0.00
Ba-134	6.342E-05	6.577E-05	6.697E-05	6.758E-05	6.798E-05	6.817E-05	6.822E-05
Cs-135	3.555E-04	3.555E-04	3.555E-04	3.555E-04	3.555E-04	3.555E-04	3.554E-04
Ba-135	1.354E-07	1.356E-07	1.358E-07	1.360E-07	1.363E-07	1.369E-07	2.419E-07
Xe-136	1.227E-03	1.227E-03	1.227E-03	1.227E-03	1.227E-03	1.227E-03	1.227E-03
Ba-136	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05
Cs-137	6.016E-04	5.744E-04	5.485E-04	5.237E-04	4.886E-04	4.353E-04	6.381E-14
Ba-137	1.429E-04	1.701E-04	1.960E-04	2.208E-04	2.559E-04	3.092E-04	7.445E-04
Ba-137m	9.203E-11	8.787E-11	8.391E-11	8.012E-11	7.475E-11	6.660E-11	9.761E-21
Ba-138	7.718E-04	7.718E-04	7.718E-04	7.718E-04	7.718E-04	7.718E-04	7.718E-04
La-138	3.873E-09	3.873E-09	3.873E-09	3.873E-09	3.873E-09	3.873E-09	3.873E-09
La-139	7.399E-04	7.399E-04	7.399E-04	7.399E-04	7.399E-04	7.399E-04	7.399E-04
$C_{0} = 1/10$	7 466E-04	7 466F-04	7 466F-04	7 466F-04	7 466F-04	7.466F-04	7.466F-04

TABLE F.3.a. Fission Product Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

Isotope	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Pr-141	6.828E-04	6.828E-04	6.828E-04	6.828E-04	6.828E-04	6.828E-04	6.828E-04
Ce-142	6.818E-04	6.818E-04	6.818E-04	6.818E-04	6.818E-04	6.818E-04	6.818E-04
Nd-142	1.069E-05	1.069E-05	1.069E-05	1.069E-05	1.069E-05	1.069E-05	1.069E-05
Nd-143	5.296E-04	5.296E-04	5.296E-04	5.296E-04	5.296E-04	5.296E-04	5.296E-04
Ce-144	4.547E-07	7.658E-08	1.290E-08	2.172E-09	1.502E-10	1.748E-12	0.00
Pr-144	1.920E-11	3.234E-12	5.446E-13	9.173E-14	6.340E-15	7.381E-17	0.00
Pr-144m	9.598E-14	1.617E-14	2.723E-15	4.586E-16	3.170E-17	3.690E-19	0.00
Nd-144	7.424E-04	7.428E-04	7.428E-04	7.428E-04	7.428E-04	7.428E-04	7.428E-04
Nd-145	4.251E-04	4.251E-04	4.251E-04	4.251E-04	4.251E-04	4.251E-04	4.251E-04
Nd-146	3.984E-04	3.984E-04	3.984E-04	3.984E-04	3.984E-04	3.984E-04	3.984E-04
Pm-146	1.098E-09	8.533E-10	6.632E-10	5.154E-10	3.531E-10	1.881E-10	0.00
Sm-146	4.969E-09	5.060E-09	5.130E-09	5.185E-09	5.245E-09	5.306E-09	5.375E-09
Pm-14/	1.688E-05	9.949E-06	5.865E-06	3.458E-06	1.565E-06	4.1//E-0/	0.00
Sm-14/	1.562E-04	1.031E-04	1.6/2E-04	1.696E-04	1./15E-04	1./26E-04	1./31E-04
Na-148 Sm 148	2.230E-04	2.230E-04	2.230E-04	2.230E-04	2.230E-04	2.230E-04	2.230E-04
Sm-148	9.031E-05	9.031E-05	9.031E-05	9.031E-05	9.031E-05	9.031E-05	9.031E-05
SM-149 Nd 150	1.009E-00	1.009E-00	1.009E-00	1.009E-00	1.009E-00	1.009E-00	1.009E-00
NU-150	1.000E-04	1.000E-04	1.000E-04	1.000E-04	1.000E-04	1.000E-04	1.000E-04
511-150	1.44JE-04	1.44JE-04	1.443E-04	1.443E-04	1.443E-04	1.443E-04	1.4436-04
Eu-150 Sm. 151	3.01/E-13	2.903E-13	2./936-13	2.000E-13 9.772E.06	2.33/E-13	2.304E-13	1.4/35-21
5m-151 Eu-151	9.100E-00	9.04/E-00	7 270E 07	0.//JE-00	0.J/2E-00	0.240E-00	4.340E-09
Sm_152	4.303E-07	9.907E-07	8 503E-05	8 503E-05	8 50/E_05	2 50/E-00	9.042E-00 8.507E_05
5m-152 Fu-152	6 505F-08	5 874F-08	5 305E-03	4 701F-08	4 112F_08	3 187F_08	6 400E-30
Gd-152	3 877F-08	4 053F-08	4 211F-08	4 355E-08	4 544F_08	4 801F-08	5 680F_08
Eu-153	6.006E-05	6 006E-05	6 006E-05	6 006E+05	6 006E-05	6 006E-05	6 006E-05
Gd-153	2.147F-11	2.649F-12	3.269F-13	4.035F-14	1.749F-15	9.361E-18	
Sm-154	2.153E-05	2.153E-05	2.153E-05	2.153E-05	2.153E-05	2.153E-05	2.153E-05
Eu-154	9.918E-06	8.442E-06	7.185F-06	6.115E-06	4.802F-06	3.209E-06	0.00
Gd-154	8.954E-06	1.043E-05	1.169E-05	1.276E-05	1.407E-05	1.566E-05	1.887E-05
Eu-155	2.600E-06	1.966E-06	1.486E-06	1.124E-06	7.389E-07	3.674E-07	0.00
Gd-155	3.518E-06	4.152E-06	4.631E-06	4.994E-06	5.378E-06	5.750E-06	6.117E-06
Gd-156	2.587E-05	2.587E-05	2.587E-05	2.587E-05	2.587E-05	2.587E-05	2.587E-05
Gd-157	5.132E-08	5.132E-08	5.132E-08	5.132E-08	5.132E-08	5.132E-08	5.132E-08
Gd-158	8.847E-06	8.847E-06	8.847E-06	8.847E-06	8.847E-06	8.847E-06	8.847E-06
Tb-159	1.462E-06	1.462E-06	1.462E-06	1.462E-06	1.462E-06	1.462E-06	1.462E-06
Gd-160	7.183E-07	7.183E-07·	7.183E-07	7.183E-07	7.183E-07	7.183E-07	7.183E-07
Dy-160	1.177E-07	1.177E-07	1.177E-07	1.177E-07	1.177E-07	1.177E-07	1.177E-07
Dy-161	2.507E-07	2.507E-07	2.507E-07	2.507E-07	2.507E-07	2.507E-07	2.507E-07
Dy-162	2.126E-07	2.126E-07	2.126E-07	2.126E-07	2.126E-07	2.126E-0/	2.126E-07
Dy-163	1.439E-07	1.439E-07	1.439E-07	1.439E-0/	1.439E-0/	1.439E-0/	1.439E-0/
UY-164	2.32/E-08	2.32/E-08	2.32/E-08	2.32/E-08	2.32/E-U8	2.32/E-U8	2.32/E-U8
HO-105	0.40UE-08	0.40UE-U8	0.40UE-U8	0.40UE-U8	0.40UE-U8	0.40UE-U8	0.40UL-UX
HU-100M	4.023E-10	4.019E-10	4.0141-10	4.009E-10	4.001E-10	4.JO/E-10	2.003E-10 1 063E 00
EF-100	1.943E-08	1.943E-U8	1.943E-08	1.943E-U8	1.943E-U8	1.943E-U8	1.903E-00
CL-10/	2.UZ/E-U9	2.UZ/E-U9	2.UZ/E-U9	2.UZ/E-U9	2.UZ/E-U9	2.UZ/E-09	2.UZ/E-U9

F.37

-- *

3-49-8

<u>TABLE F.3.a.</u> Fission Product Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Er-168	3.877E-09	3.877E-09	3.877E-09	3.877E-09	3.877E-09	3.877E-09	3.877E-09
Tm-169	1.944E-11	1.944E-11	1.944E-11	1.944E-11	1.944E-11	1.944E-11	1.944E-11
Er-170	6.210E-15	6.210E-15	6.210E-15	6.210E-15	6.210E-15	6.210E-15	6.210E-15
Yb-170	4.172E-12	4.172E-12	4.172E-12	4.172E-12	4.172E-12	4.172E-12	4.172E-12
Tm-171	5.810E-15	2.822E-15	1.371E-15	6.659E-16	2.254E-16	3.708E-17	0.00
Yb-171	1.529E-13	1.559E-13	1.573E-13	1.581E-13	1.585E-13	1.587E-13	1.587E-13
Yb-172	4.291E-15	4.291E-15	4.291E-15	4.291E-15	4.291E-15	4.291E-15	4.291E-15
Total	2 058F-02	2 058F-02	2 058F-02	2 058F-02	2 058F-02	2 058F-02	2 058F-02

		9/90					
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
H-3	2.837E-08	2.536E-08	2.267E-08	2.026E-08	1.712E-08	1.293E-08	1.667E-32
L1-0	1.510E-10	1.510E-10	1.510E-10	1.510E-10	1.510E-10	1.510E-10	1.510E-10
L1-/ Po 0	/.044E-12	/.044E-12	/.044E-12	/.044E-12	/.044E-12	/.044E-12	/.044E-12
Be-9 Po 10	1.4/2E-11 0.921E 11	1.4/2E-11	1.4/2E-11 0.021E 11	1.4/2E-11 0.921E 11	1.4/2E-11 0.921E 11	1.4/2E-11	1.4/2C-11 0.9175 11
C = 10	9.021E = 11 1 09/E - 11	9.021E-11 1 093E-11	9.021E-11 1 093E-11	9.021E-11 1 092E-11	9.021E-11 1 092E-11	9.021E-11	9.01/E-11 1 750E-11
$7n_{-66}$	2 657F-14	2 657F_14	$2.657E_{-11}$	2 657F_14	2 657F-14	2 657E-11	1.759E-11 2 657E-14
Zn=67	1 096E - 15	1 006E-15	1 006F-15	1.096E - 15	1 006E-15	1 006F-15	1.096E-15
Ga-71	6.943E-13	6.943E-13	6.943E-13	6.943E-13	6.943E-13	6.943E-13	6.943E-13
Ge-72	1.764F-08	1.764F-08	1.764F-08	1.764F-08	1.764F-08	1.764F-08	1.764F-08
Ge-73	3.593E-08	3.593E-08	3.593E-08	3.593E-08	3.593E-08	3.593E-08	3.593E-08
Ge-74	7.585E-08	7.585E-08	7.585E-08	7.585E-08	7.585E-08	7.585E-08	7.585E-08
As-75	1.566E-07	1.566E-07	1.566E-07	1.566E-07	1.566E-07	1.566E-07	1.566E-07
Ge-76	3.793E-07	3.793E-07	3.793E-07	3.793E-07	3.793E-07	3.793E-07	3.793E-07
Se-76	3.588E-09	3.588E-09	3.588E-09	3.588E-09	3.588E-09	3.588E-09	3.588E-09
Se-77	7.797E-07	7.797E-07	7.797E-07	7.797E-07	7.797E-07	7.797E-07	7.797E-07
Se-78	1.832E-06	1.832E-06	1.832E-06	1.832E-06	1.832E-06	1.832E-06	1.832E-06
Se-79	4.453E-06	4.452E-06	4.452E-06	4.452E-06	4.452E-06	4.452E-06	4.406E-06
Br-79	4.460E-10	5.410E-10	6.360E-10	7.311E-10	8.736E-10	1.111E-09	4.742E-08
Se-80	1.006E-05	1.006E-05	1.006E-05	1.006E-05	1.006E-05	1.006E-05	1.006E-05
Kr-80 Rm 81	1.845E-10	1.845E-10	1.845E-10	1.845E-10	1.845E-10	1.845E-10	1.845E-10
85-81 Kn 91	1.041E-05	1.041E-05	1.041E-05	1.041E-05	1.041E-05	1.041E-05	1.041E-05
N1-01 Sa-82	2 512E-05	2 512E.05	2 512E 05	2 512E 05	1.0/0E-11 2.512E 05	1.0/0E-11 2.512E 05	1.0/1E-11 2 5125 05
30-02 Kr_82	2.313L-03	6 450F-07	6 450E-07	6 450E-07	6 450E-07	2.515E-05	2.513E-05
Kr = 83	3.192E-05	3.192E-05	3.192F=05	3.192F-05	3.192F-05	3 192F+05	3 192F-05
Kr-84	8.265F-05	8.265E-05	8.265E-05	8.265E-05	8.265E-05	8.265E-05	8.265E-05
Kr-85	1.054E-05	9.263E-06	8.139E-06	7.152E-06	5.891E-06	4.263F-06	1.289E-33
Rb-85	7.911E-05	8.039E-05	8.151E-05	8.250E-05	8.376E-05	8.539E-05	8.965E-05
Kr-86	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04
Sr-86	2.572E-07	2.572E-07	2.572E-07	2.572E-07	2.572E-07	2.572E-07	2.572E-07
Rb-87	1.792E-04	1.792E-04	1.792E-04	1.792E-04	1.792E-04	1.792E-04	1.792E-04
Sr-87	2.113E-09	2.113E-09	2.113E-09	2.113E-09	2.113E-09	2.113E-09	2.115E-09
Sr-88	2.570E-04	2.570E-04	2.570E-04	2.570E-04	2.570E-04	2.570E-04	2.570E-04
Y-89	3.350E-04	3.350E-04	3.350E-04	3.350E-04	3.350E-04	3.350E-04	3.350E-04
Sr-90	3.239E-04	3.088E-04	2.945E-04	2.808E-04	2.014E-04	2.321E-04	1./19E-14
1-90 70 00	8.123E-08	7.745E-08	1 124E 04	7.042E-08	0.000E-08	3.821E-08	4.311E-18
V_01	7 853E-05	1 360F-20	2 387F_24	4 162F-28	0 582F_34	0 00	0 00
7r-91	4.351F-04	4.351F-04	4.351F-04	4.351F-04	4.351F-04	4.351F-04	4.351F-04
7r - 92	4.733E-04	4.733F-04	4.733F-04	4.733E-04	4.733E-04	4.733E-04	4.733E-04
Zr-93	5.357E-04	5.357E-04	5.357E-04	5.357E-04	5.357E-04	5.357E-04	5.354E-04
Nb-93	5.845E-10	7.982E-10	1.038E-09	1.302E-09	1.737E-09	2.552E-09	2.390E-07
Nb-93m	1.720E-09	1.992E-09	2.237E-09	2.459E-09	2.752E-09	3.150E-09	4.522E-09
Zr-94	5.513E-04	5.513E-04	5.513E-04	5.513E-04	5.513E-04	5.513E-04	5.513E-04
Nb-94	6.161E-10	6.161E-10	6.161E-10	6.160E-10	6.159E-10	6.158E-10	5.956E-10

TABLE F.3.b. Fission Product Inventory by Isotope at 25 MWD/kgM, g/gU

e official and

<u>TABLE F.3.b</u> . Fission Product Inventory by Isotope at 25 MWd/kgM, g/gU (contd)	
--	--

Isotope	<u>b fears</u>	8 fears	10 fears	12 Tears	15 fears	20 fears	1000 Years
7- 05	1 1025 15	A 261E 10	1 5045 22	5 0205 26	4 0755 31	0 00	0.00
Zr-95	1.1936-13	4.301E-19	1.0946-22	3.0292-20	4.0/3E-31	0.00	0.00
ND-95	1.400E-10	5.319E-19	1.943E-22	7.1106-20	3./15E-33	0.00	0.00
M0-95	5.683E-04	5.683E-04	5.083E-04	5.683E-04	5.683E-04	5.683E-04	5.683E-04
Zr-96	5.995E-04	5.995E-04	5.995E-04	5.995E-04	5.995E-04	5.995E-04	5.995E-04
Mo-96	2.411E-05	2.411E-05	2.411E-05	2.411E-05	2.411E-05	2.411E-05	2.411E-05
Mo-97	5.965E-04	5.965E-04	5.965E-04	5.965E-04	5.965E-04	5.965E-04	5.965E-04
Mo-98	6.225E-04	6.225E-04	6.225E-04	6.225E-04	6.225E-04	6.225E-04	6.225E-04
Tc-98	4.004E-09	4.004E-09	4.004E-09	4.004E-09	4.004E-09	4.004E-09	4.004E-09
Tc-99	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.902E-04
Ru-99	1.787E-08	2.172E-08	2.558E-08	2.943E-08	3.521E-08	4.484E-08	1.930E-06
Mo-100	7.039E-04	7.039E-04	7.039E-04	7.039E-04	7.039E-04	7.039E-04	7.039E-04
Ru-100	6.057E-05	6.057E-05	6.057E-05	6.057E-05	6.057E-05	6.057E-05	6.057E-05
Ru-101	5.900E-04	5.900E-04	5.900E-04	5.900E-04	5.900E-04	5.900E-04	5.900F-04
Ru-102	5.859E-04	5.859F-04	5.859E-04	5.859E-04	5.859E-04	5.859E-04	5.859F-04
Rh-102	1.323E-10	8.202F-11	5.085E-11	3.153E-11	1.539E-11	4.659E-12	0.00
Rh-103	3 749F-04	3 749F_04	3 749F-04	3 749F_04	3 749F-04	3 740F_04	3 740F_04
$R_{1} = 103$	A 230F_04	A 230F_04	A 230F_0A	A 230F_0A	A 230E_04	1 230F_04	1 230E_04
Pd_104	1 574F-04	$1 574F_04$	1 57/F_0/	1 574F_04	1 57/F_04	1 57/F_04	$1.574E_04$
Pd-105	3 1445-04	2 1445-04	2 1445-04	2 1445-04	2 1445-04	2 1445 04	2 1445 04
Pu-105	1 0065 06	2 770E 07	7 002E 00	1 770E 00	3.144E-04	3.144E-04 7 224E 11	3.144E-04
RU-100	1.0902-00	2.//UE-U/	6 5015 1A	1.//UE-UO	2.2492-09	/.224E-11	0.00
RII-100	1.0306-12	2.004E-13	0.301E-14	1.004E-14	2.114E-13	0./902-1/	0.00
Pa-106	2./UIE-04	2./096-04	2./11E-04	2./12E-04	2./12E-04	2./12E-04	2./12E-04
Pa-107	1./5/E-04	1./5/E-04	1./5/E-04	1./5/E-04	1./5/E-04	1./5/E-04	1./5/E-04
Ag-107	1.011E-10	1.986E-10	2.361E-10	2./36E-10	3.299E-10	4.236E-10	1.8/9E-08
Pd-108	1.211E-04	1.211E-04	1.211E-04	1.211E-04	1.211E-04	1.211E-04	1.211E-04
Ag-108m	9.426E-13	9.323E-13	9.222E-13	9.122E-13	8.974E-13	8.732E-13	4.153E-15
Cd-108	2.779E-10	2.779E-10	2.779E-10	2.779E-10	2.779E-10	2.779E-10	2.780E-10
Ag-109	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.362E-05
Cd-109	7.996E-15	2.685E-15	9.016E-16	3.027E-16	5.891E-17	3.849E-18	0.00
Pd-110	3.963E-05	3.963E-05	3.963E-05	3.963E-05	3.963E-05	3.963E-05	3.963E-05
Ag-110m	8.062E-10	1.063E-10	1.401E-11	1.847E-12	8.838E-14	5.576E-16	0.00
Cd-110	2.358E-05	2.358E-05	2.358E-05	2.358E-05	2.358E-05	2.358E-05	2.358E-05
Cd-111	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.196E-05
Cd-112	1.324E-05	1.324E-05	1.324E-05	1.324E-05	1.324E-05	1.324E-05	1.324E-05
Cd-113	1.449E-07	1.449E-07	1.449E-07	1.449E-07	1.449E-07	1.449E-07	1.450E-07
Cd-113m	1.418E-07	1.289E-07	1.172E-07	1.066E-07	9.244E-08	7.289E-08	4.381E-28
In-113	7.103E-08	8.387E-08	9.554E-08	1.062E-07	1.203E-07	1.398E-07	2.126E-07
Cd-114	1.796E-05	1.796E-05	1.796E-05	1.796E-05	1.796E-05	1.796E-05	1.796E-05
Sn-114	1.835E-09	1.835E-09	1.835E-09	1.835E-09	1.835E-09	1.835E-09	1.835E-09
In_{115}	2 227E-06	2 227E-06	2 227F-06	2 227E-06	2.227E-06	2.227E-06	2.227E-06
Sn_{115}	2 608F_07	2 608E_07	2 608E_07	2 608E-07	2 608E-07	2 608F-07	2 608E-07
Cd 116	6 663E_06	6 663E_06	6 663E_06	6 663E_06	6 663E_06	6 663E-06	6 663E-06
Sn_{116}	5 6325-06	5 6325-06	5 6325-06	5 632E_06	5 6325-06	5 6325-06	5 632F_06
SH-110	5.032E-00	5.032E-00	5.032E-00	5.032E-00	5.032E-00	5.032E-00	5.032E-00
Sh-110	0.740E-U0	0./40E-UD	0./40E-U0	0./40E-00	6 701E 06	6 701E 06	6 701E 06
SU-110	0./91E-00	0./91E-00	0./916-00	0.7916-00	0./912-00	0./916-00	0./910-00
Nn_110	B // [F=06	D // (F-0)	n / / (F - 1)h	n / / i = i h	n.//it-Uh	\mathbf{n} , \mathbf{I} \mathbf{I} \mathbf{F} = Uh	n.//ir-Uh

<u>TABLE F.3.b</u>. Fission Product Inventory by Isotope at 25 MWd/kgM, g/gU (contd)

ona la

- 54-4 28

- 1643

- ----

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Sn-119m	3.782F-11	4.789F-12	6.064F-13	7.679F-14	3.460F-15	1.974F-17	0.00
Sn-120	6.901E-06	6.901E-06	6.901E-06	6.901E-06	6.901E-06	6.901E-06	6.901E-06
Sn-121m	2.493E-09	2.425E-09	2.358E-09	2.294E-09	2.200E-09	2.053E-09	2.564E-15
Sb-121	6.791E-06	6.791E-06	6.791E-06	6.791E-06	6.791E-06	6.792E-06	6.794E-06
Sn-122	7.594E-06	7.594E-06	7.594E-06	7.594E-06	7.594E-06	7.594E-06	7.594E-06
Te-122	3.795E-07	3.795E-07	3.795E-07	3.795E-07	3.795E-07	3.795E-07	3.795E-07
Sn-123	1.186E-12	2.352E-14	4.667E-16	9.258E-18	2.587E-20	1.435E-24	0.00
Sb-123	8.318E-06	8.318E-06	8.318E-06	8.318E-06	8.318E-06	8.318E-06	8.318E-06
1e-123	4.592E-09	4.592E-09	4.592E-09	4.592E-09	4.592E-09	4.592E-09	4.592E-09
1e-123m	1.524E-15	2.210E-1/	3.222E-19	4.0//E-21	1.32/E-23	3.381E-28	0.00
SII-124	2 0225 07	1.022E-03	1.0226-03	1.022E-03	1.022E-03	1.022E-03	1.022E-03
Sh_125	2.933E-07	2.933E-07	2.933E-07	2.933E-07	2.933E-07	2.933E-07	2.9332-07
Te-125	1 354F-05	1 423E-05	1 465E-05	1 491F-05	1 511E-05	1 525E-05	1 530F-05
Te-125m	2.435F-08	1.476F-08	8.950F-09	5.426F-09	2.560F-09	7.327F-10	0.00
Sn-126	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.196E-05	2.181E-05
Sb-126	1.043E-12	1.043E-12	1.043E-12	1.043E-12	1.043E-12	1.043E-12	1.036E-12
Sb-126m	7.932E-15	7.932E-15	7.932E-15	7.932E-15	7.932E-15	7.932E-15	7.878E-15
Te-126	5.826E-07	5.829E-07	5.832E-07	5.835E-07	5.839E-07	5.847E-07	7.333E-07
Te-127	1.687E-15	1.621E-17	1.558E-19	1.497E-21	1.409E-24	1.275E-29	0.00
Te-127m	4.820E-13	4.631E-15	4.449E-17	4.275E-19	4.026E-22	3.643E-27	0.00
I-127	4.437E-05	4.437E-05	4.437E-05	4.437E-05	4.437E-05	4.437E-05	4.437E-05
1e-128	8.629E-05	8.629E-05	8.629E-05	8.629E-05	8.629E-05	8.629E-05	8.629E-05
Xe-128	2.0101-00	2.010E-00	2.010E-00	2.010E-00	2.016E-06	2.016E-06	2.010E-00
1-129 Ye-120	0 424F_00	1.405E-04	1.405E-04	1.405E-04	1.405E-04	1.405E-04 0.511E_00	1.4036-04
Te-130	2 728F-04	2 728F-04	2 728F-04	2 728F-04	2 728F-04	2 728F_04	2 728F-04
Xe-130	8.013E-06	8.013F-06	8.013E-06	8.013E-06	8 013E-06	8 013E-06	8 013E-06
Xe-131	3.454F-04	3.454F-04	3.454E-04	3.454F-04	3.454F-04	3.454F-04	3.454F-04
Xe-132	8.010E-04	8.010E-04	8.010E-04	8.010E-04	8.010E-04	8.010E-04	8.010E-04
Ba-132	1.195E-09	1.195E-09	1.195E-09	1.195E-09	1.195E-09	1.195E-09	1.195E-09
Cs-133	8.715E-04	8.715E-04	8.715E-04	8.715E-04	8.715E-04	8.715E-04	8.715E-04
Xe-134	1.104E-03	1.104E-03	1.104E-03	1.104E-03	1.104E-03	1.104E-03	1.104E-03
Cs-134	7.380E-06	3.768E-06	1.924E-06	9.820E-07	3.582E-07	6.671E-08	0.00
Ba-134	9.761E-05	1.012E-04	1.031E-04	1.040E-04	1.046E-04	1.049E-04	1.050E-04
CS-135	3.915E-04	3.915E-04	3.915E-04	3.915E-04	3.915E-04	3.915E-04	3.914E-04
Ba-135 Vo 126	2.000E-07	2.008E-07	2.0/UE-U/	2.0/3E-0/	2.0/05-0/	2.082E-07	3.838E-U/ 1 505E 02
AC-130 Ba-136	1.595E-05	1.595E-05	1.595E-05	1.595E-05	1.595E-05	1.595E-05	1.595E-05
Cs-137	7 527F-04	7 187F-04	6 862F-04	6552F-04	6.113E-04	5.446F-04	7.983F-14
Ba-137	1.788F-04	2.128F-04	2.452F-04	2.762F-04	3.201F-04	3.868E-04	9.315F-04
Ba-137m	1.151E-10	1.099E-10	1.050E-10	1.002E-10	9.353E-11	8.332E-11	1.221E-20
Ba-138	9.568E-04	9.568E-04	9.568E-04	9.568E-04	9.568E-04	9.568E-04	9.568E-04
La-138	4.300E-09	4.300E-09	4.300E-09	4.300E-09	4.300E-09	4.300E-09	4.300E-09
La-139	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04
Ce-140	9.287E-04	9.287E-04	9.287E-04	9.287E-04	9.287E-04	9.287E-04	9.287E-04

TABLE F.3.b.	Fission Product	Inventory by	Isotope	at 25	MWd/kgM,
	g/gU (contd)		•		• •

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Pr-141	8 430F-04	8 430F-04	8 430F-04	8 430F-04	8 430F-04	8 430F-04	8 430F-04
Ce-142	8.435E-04	8.435F-04	8.435F-04	8.435E-04	8.435E-04	8.435E-04	8.435F-04
Nd-142	1.693E-05	1.693E-05	1.693E-05	1.693E-05	1.693E-05	1.693E-05	1.693E-05
Nd-143	6.124E-04	6.124E-04	6.124E-04	6.124E-04	6.124E-04	6.124E-04	6.124E-04
Ce-144	5.547E-07	9.343E-08	1.574E-08	2.650E-09	1.832E-10	2.133E-12	0.00
Pr-144	2.342E-11	3.945E-12	6.644E-13	1.119E-13	7.735E-15	9.005E-17	0.00
Pr-144m	1.171E-13	1.972E-14	3.321E-15	5.594E-16	3.867E-17	4.502E-19	0.00
Nd-144	9.523E-04	9.528E-04	9.529E-04	9.529E-04	9.529E-04	9.529E-04	9.529E-04
Nd-145	5.142E-04	5.142E-04	5.142E-04	5.142E-04	5.142E-04	5.142E-04	5.142E-04
Nd-146	5.050E-04	5.050E-04	5.050E-04	5.050E-04	5.050E-04	5.050E-04	5.050E-04
Pm-146	1.602E-09	1.245E-09	9.676E-10	7.520E-10	5.153E-10	2.744E-10	0.00
Sm-146	7.219E-09	7.352E-09	7.454E-09	7.534E-09	7.622E-09	7.711E-09	7.812E-09
Pm-14/	1.8/1E-05	1.103E-05	6.504E-06	3.834E-06	1./36E-06	4.632E-0/	0.00
SM-14/	1./191-04	1./95E-04	1.841E-04	1.86/E-04	1.888E-04	1.901E-04	1.906E-04
NG-148	2.7851-04	2.785E-04	2./80E-04	2./85E-04	2./85E-04	2.785E-04	2./85E-04
Sill=140 Sm 140	1.6095.06	1.2/02-04	1.2/05-04	1.2/02-04	1.2/UE-04	1.2/05-04	1.2/UE-U4
Nd-150	1.090E-00	1.090E-00	1.090E-00	1.090E-00	1.0986-00	1.0985-00	1.0986-00
Sm_150	1.3392-04	1.359E-04	1.359E-04	1.3596-04	1.359E+04	1.339E-04	1.359E-04
5m-150 Fu_150	3 328F_13	3 202F_13	3 081E-13	2 065F-13	2 700F-13	2 5/2F-13	1.7376-04
Sm_151	1 002E-05	9 868F-06	9 717F-06	9 569E-06	9 350F-06	8 997F-06	4 742F_00
Fu-151	4.934F-07	6.466F-07	7.974F-07	9.460F-07	1.165E-06	1.518F-06	1.051E-05
Sm-152	1.032E-04	1.032E-04	1.032F-04	1.032F-04	1.032F-04	1.032F-04	1.033E-04
Eu-152	5.898E-08	5.327E-08	4.811E-08	4.344E-08	3.728E-08	2.890E-08	5.886E-30
Gd-152	3.520E-08	3.680E-08	3.823E-08	3.953E-08	4.125E-08	4.359E-08	5.164E-08
Eu-153	8.062E-05	8.062E-05	8.062E-05	8.062E-05	8.062E-05	8.062E-05	8.062E-05
Gd-153	2.600E-11	3.209E-12	3.961E-13	4.888E-14	2.119E-15	1.134E-17	0.00
Sm-154	2.873E-05	2.873E-05	2.873E-05	2.873E-05	2.873E-05	2.873E-05	2.873E-05
Eu-154	1.543E-05	1.314E-05	1.118E-05	9.517E-06	7.473E-06	4.994E-06	0.00
Gd-154	1.395E-05	1.624E-05	1.820E-05	1.986E-05	2.191E-05	2.439E-05	2.938E-05
Eu-155	3.865E-06	2.922E-06	2.210E-06	1.671E-06	1.099E-06	5.462E-07	0.00
Gd-155	5.202E-06	6.144E-06	6.857E-06	7.396E-06	7.968E-06	8.521E-06	9.067E-06
Gd-156	4.200E-05	4.200E-05	4.200E-05	4.200E-05	4.200E-05	4.200E-05	4.200E-05
Gd-15/	6.365E-08	6.365E-08	6.365E-08	0.365E-08	0.305E-08	0.305E-08	0.305E-08
60-158 Th 150	1.283E-05	1.283E-05	1.283E-05	1.283E-05	1.283E-05	1.283E-05	1.283E-05
10-159 cd 160	2.003E-00	2.053E-00	2.0032-00	2.053E-00	2.0532-00	2.053E-00	2.053E-00
Dv -160	1.010E-00	1.0102~00	1 080E-07	1.010E-00	1.010E-00	1 080F_07	1 080F_07
Dy = 100 Dy = 161	3 353E-07	3 353E-07	3 353E_07	3 353E-07	3 353E_07	3 353E_07	3 3535-07
Dy = 101 Dy = 162	2 968E-07	2 968F-07	2 068F_07	2 968F-07	2 968F-07	2 968F-07	2 968E-07
Dv-163	2.199F_07	2.199F-07	2.199F-07	2.199F-07	2.199F-07	2.199F-07	2.199F-07
Dv - 164	3.342F-08	3.342F-08	3.342F-08	3.342F-08	3.342F-08	3.342F-08	3.342F-08
H_{0-165}	1.038F-07	1.038F-07	1.038F-07	1.038F-07	1.038F-07	1.038F-07	1.038F-07
Ho-166m	9.129F-10	9.119F-10	9.108F-10	9.098F-10	9.082F-10	9.056E-10	5.141E-10
Fr-166	3.201F-08	3.201F-08	3.201F-08	3.201F-08	3.201E-08	3.201E-08	3.240E-08
Er = 167	2 557F-00	2 557F_NQ	2.557F-09	2.557E-09	2.557F-09	2.557E-09	2.557E-09

TABLE F.3.b.	Fission Product	Inventory by	Isotope	at	25	MWd/kgM,
	g/gU (contd)	•••				

<u>Isotope</u>	<u>6 Years</u>	<u> 8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Fr-168	6 062F-09	6 062F-09	6 0625-09	6 062F-09	6 062F-09	6 062F-09	6 062E-09
Tm-169	3.674E-11	3.674E-11	3.674E-11	3.674E-11	3.674E-11	3.674E-11	3.674E-11
Er-170	1.502E-14	1.502E-14	1.502E-14	1.502E-14	1.502E-14	1.502E-14	1.502E-14
Yb-170	1.004E-11	1.004E-11	1.004E-11	1.004E-11	1.004E-11	1.004E-11	1.004E-11
Tm-171	1.812E-14	8.803E-15	4.276E-15	2.077E-15	7.032E-16	1.157E-16	0.00
Yb-171	4.704E-13	4.797E-13	4.842E-13	4.864E-13	4.878E-13	4.884E-13	4.885E-13
Yb-172	1.688E-14	1.688E-14	1.688E-14	1.688E-14	1.688E-14	1.688E-14	1.688E-14
Total	2.569E-02	2.569E-02	2.569E-02	2.569E-02	2.569E-02	2.569E-02	2.569E-02

		9/90					
<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
H-3	3.467E-08	3.099E-08	2.770E-08	2.476E-08	2.092E-08	1.580E-08	2.038E-32
L1-6	1.557E-10	1.557E-10	1.557E-10	1.557E-10	1.557E-10	1.557E-10	1.557E-10
L1-7	9.157E-12	9.157E-12	9.157E-12	9.157E-12	9.157E-12	9.157E-12	9.157E-12
Be-9	1.762E-11	1.762E-11	1.762E-11	1.762E-11	1.762E-11	1.762E-11	1.762E-11
Be-10	1.176E-10	1.176E-10	1.176E-10	1.176E-10	1.176E-10	1.176E-10	1.176E-10
C-14	2.376E-11	2.376E-11	2.375E-11	2.374E-11	2.374E-11	2.372E-11	2.107E-11
Zn-66	3.026E-14	3.026E-14	3.026E-14	3.026E-14	3.026E-14	3.026E-14	3.026E-14
Zn-67	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15
Ga-71	8.510E-13	8.510E-13	8.510E-13	8.510E-13	8.510E-13	8.510E-13	8.510E-13
Ge-72	2.165E-08	2.165E-08	2.165E-08	2.165E-08	2.165E-08	2.165E-08	2.165E-08
Ge-73	4.316E-08	4.316E-08	4.316E-08	4.316E-08	4.316E-08	4.316E-08	4.316E-08
Ge-74	9.139E-08	9.139E-08	9.139E-08	9.139E-08	9.139E-08	9.139E-08	9.139E-08
As-75	1.861E-07	1.861E-07	1.861E-07	1.861E-07	1.861E-07	1.861E-07	1.861E-07
Ge-76	4.478E-07	4.478E-07	4.478E-07	4.478E-07	4.478E-07	4.478E-07	4.478E-07
Se-76	5.172E-09	5.172E-09	5.172E-09	5.172E-09	5.172E-09	5.172E-09	5.172E-09
Se-77	9.093E-07	9.093E-07	9.093E-07	9.093E-07	9.093E-07	9.093E-07	9.093E-07
Se-78	2.192E-06	2.192E-06	2.192E-06	2.192E-06	2.192E-06	2.192E-06	2.192E-06
Se-79	5.272E-06	5.272E-06	5.272E-06	5.272E-06	5.272E-06	5.271E-06	5.217E-06
Br-79	5.278E-10	6.403E-10	7.528E-10	8.653E-10	1.034E-09	1.315E-09	5.615E-08
Se-80	1.188E-05	1.188E-05	1.188E-05	1.188E-05	1.188E-05	1.188E-05	1.188E-05
Kr-80	2.331E-10	2.331E-10	2.331E-10	2.331E-10	2.331E-10	2.331E-10	2.331E-10
Br-81	1.916E-05	1.916E-05	1.916E-05	1.916E-05	1.916E-05	1.916E-05	1.916E-05
Kr-81	2.369E-11	2.369E-11	2.369E-11	2.369E-11	2.369E-11	2.369E-11	2.361E-11
Se-82	2.942E-05	2.942E-05	2.942E-05	2.942E-05	2.942E-05	2.942E-05	2.942E-05
Kr-82	9.024E-07	9.024E-07	9.024E-07	9.024E-07	9.024E-07	9.024E-07	9.024E-07
Kr-83	3.537E-05	3.537E-05	3.537E-05	3.537E-05	3.537E-05	3.53/E-05	3.537E-05
Kr-84	9.807E-05	9.807E-05	9.807E-05	9.807E-05	9.807E-05	9.807E-05	9.807E-05
Kr-85	1.222E-05	1.0/3E-05	9.433E-06	8.288E-06	6.82/E-06	4.941E-06	1.49/E-33
KD-85	9.161E-05	9.309E-05	9.439E-05	9.554E-05	9./00E-05	9.888E-05	1.038E-04
Kr-80	1.014E-04	1.0142-04	1.014E-04	1.614E-04	1.014E-04	1.014E-04	1.014E-04
51-00 Dh 07	3.000E-0/	3.000E-0/	3.008E-0/	3.008E-0/	3.0386-0/	3.008E-0/	3.000E-0/
KU-07	2.007E-04	2.00/E-04	2.007E-04	2.00/E-04	2.00/E-04	2.00/E-04	2.00/E-04 2 152E-00
21-01 21-01	2 062E-04	2 062E_04	2 062E-04	2 062E-04	3.149E-09 2 062E-04	2 062E-09	3.152E-09 2 062E-04
V_80	2.902E-04	2.902E-04 3.854E-04	2.902L-04 3.854F_04	2.902L-04	2.902E-04 3.854F_04	2.902L-04	2.902E-04 3.854F-04
00-1 00-22	3 726E-04	3 553E_04	3 388F_04	3.034E-04	3.00940-04	2 670F_04	1 078F_14
V_Q0	0 345F_08	8 Q10F_08	8 406F-08	8 101F-08	7 543F-08	6 607F-08	4 960F-18
7r-90	9.545E 00	1 132F-04	1 298F-04	1 455F-04	1.678F-04	2 015E-04	4 686F-04
Y_01	8 842F-17	1 542F-20	2 688F-24	4.686F-28	1.070E-33	0.00	0.00
7r-91	5.032F-04	5.032F-04	5.032F-04	5.032F-04	5.032E-04	5.032F-04	5.032F-04
7r-92	5.510F-04	5.510F-04	5.510F-04	5.510F-04	5.510E-04	5.510E-04	5.510E-04
7r-93	6.258F-04	6.258F-04	6.258E-04	6.258E-04	6.258E-04	6.258E-04	6.255E-04
Nb-93	6.867E-10	9.368E-10	1.218E-09	1.526E-09	2.035E-09	2.988E-09	2.792E-07
Nb-93m	2.014E-09	2.331E-09	2.618E-09	2.876E-09	3.218E-09	3.683E-09	5.283E-09
Zr-94	6.503E-04	6.503E-04	6.503E-04	6.503E-04	6.503E-04	6.503E-04	6.503E-04
Nb-94	7.835E-10	7.835E-10	7.834E-10	7.834E-10	7.833E-10	7.832E-10	7.574E-10

.-

÷

TABLE F.3.c. Fission Product Inventory by Isotope at 30 MWd/kgM, g/gU

TABLE F.3.c. Fission Product Inventory by Isotope at 30 MWd/kgM, g/gU (contd)

Ú 6

• ••••

-

·•••••

۲đ

ened

64-4

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000</u>	Years
Zr-95	1.397E-15	5.108E-19	1.868E-22	6.828E-26	4.774E-31	0.00	0.00	
Nb-95	1.704E-15	6.230E-19	2.278E-22	8.329E-26	4.352E-33	0.00	0.00	
Mo-95	6.651E-04	6.651E-04	6.651E-04	6.651E-04	6.651E-04	6.651E-04	6.651	LE-04
Zr-96	7.104E-04	7.104E-04	7.104E-04	7.104E-04	7.104E-04	7.104E-04	7.104	1E-04
Mo-96	3.504E-05	3.504E-05	3.504E-05	3.504E-05	3.504E-05	3.504E-05	3.504	1E-05
Mo-97	7.103E-04	7.103E-04	7.103E-04	7.103E-04	7.103E-04	7.103E-04	7.103	3E-04
Mo-98	7.453E-04	7.453E-04	7.453E-04	7.453E-04	7.453E-04	7.453E-04	7.453	3E-04
Tc-98	5.842E-09	5.842E-09	5.842E-09	5.842E-09	5.842E-09	5.842E-09	5.841	LE-09
Tc-99	6.947E-04	6.947E-04	6.947E-04	6.947E-04	6.946E-04	6.946E-04	6.924	1E-04
Ru-99	2.097E-08	2.549E-08	3.002E-08	3.454E-08	4.132E-08	5.262E-08	2.264	IE-06
Mo-100	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448	3E-04
Ru-100	8.825E-05	8.825E-05	8.825E-05	8.825E-05	8.825E-05	8.825E-05	8.825	5E-05
Ru-101	7.071E-04	7.071E-04	7.071E-04	7.071E-04	7.071E-04	7.071E-04	7.071	LE-04
Ru-102	7.178E-04	7.1/8E-04	7.178E-04	7.178E-04	7.178E-04	7.178E-04	7.178	3E-04
Rh-102	1.912E-10	1.185E-10	7.348E-11	4.556E-11	2.224E-11	6./32E-12	0.00	
Rh-103	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303	3E-04
RU-104	5.330E-04	5.330E-04	5.330E-04	5.330E-04	5.330E-04	5.330E-04	5.330)E-04
Pa-104	2.2/3E-04	2.2/3E-04	2.2/3E-04	2.2/3E-04	2.2/3E-04	2.2/3E-04	2.2/3	SE-04
Pa-105 Dw 106	3.955E-04	3.955E-04	3.955E-04	3.955E-04	3.955E-04	3.955E-04	3.955	0E-04
RU-106	1.428E-06	3.010E-07	9.125E-08	2.306E-08	2.931E-09	9.415E-11	0.00	
RU-100	1.342E-12	3.393E-13	8.5//E-14	2.108E-14	2./55E-15	8.849E-1/	0.00	
PG-100	3.3/3E-04	3.380E-04	3.388E-04	3.389E-04	3.589E-04	3.589E-04	3.585	1E-04
Pa-107	2.304E-04	2.304E-04	2.304E-04	2.304E-04	2.304E-04	2.3041-04	2.304	E-04
Ay-107	2.100E-10	2.3992-10	3.091E-10	3.383E-10	4.320E-10	5.5491-10	2.404	
Pu-108	1.390E-04	1.3905-04	1.390E-04	1.0905-04	1.3906-04	1.3906-04	1.090)E-04
AG-100	1.208E-12	1.234E-12	1.24UE-12	1.22/E-12	1.20/E-12	1,1/4E-12	0.000	DE-10
$L_{a} = 108$	4.3995-10	4.399E-10	4.3995-10	4.3995-10	4.3995-10	4.399E-10	4.400	
Ay-109	0.034E-03	6.034E-03	0.034E-03	6.034E-03	0.034E-03	0.034E-03	0.034	E-05
Dd-109	1.JZJE-14	5.113E-15 5.222E-05	1./1/E-10 5 222E-05	5.705E-10 5.222E-05	1.122E-10 5.222E-05	7.330E-10	5 222	PE 05
$A_{q=110}$	1 271E_00	$1.676E_{-10}$	2 200E-11	2 012E-03	1 303E_13	9.702E-16	0.00	E-05
rd_110	3 722E_05	3 722F-05	3 722E-05	3 722E-05	3 722F-05	3 7225-05	3 722	PE_05
Cd-111	2 867F-05	2 867F-05	2 867F-05	2 867F-05	2 867F-05	2.867E-05	2 867	.L-03 /F-05
Cd-112	1.710F-05	1.710F-05	1.710F-05	1.710F-05	1.710F-05	1.710F-05	1.710	E = 0.5
Cd-113	1.484F-07	1.484F-07	1.484F-07	1.485E-07	1.485F-07	1.485E-07	1.486	5E-07
Cd-113m	1.876E-07	1.706E-07	1.551E-07	1.410E-07	1.223E-07	9.645E-08	5.797	E-28
In-113	9.268E-08	1.097E-07	1.251E-07	1.392E-07	1.579E-07	1.837E-07	2.801	E-07
Cd-114	2.263E-05	2.263E-05	2.263E-05	2.263E-05	2.263E-05	2.263E-05	2.263	E-05
Sn-114	2.871E-09	2.871E-09	2.871E-09	2.871E-09	2.871E-09	2.871E-09	2.871	E-09
In-115	2.310E-06	2.310E-06	2.310E-06	2.310E-06	2.310E-06	2.310E-06	2.310)E-06
Sn-115	3.206E-07	3.206E-07	3.206E-07	3.206E-07	3.206E-07	3.206E-07	3.206	5E-07
Cd-116	8.196E-06	8.196E-06	8.196E-06	8.196E-06	8.196E-06	8.196E-06	8.196	5E-06
Sn-116	7.444E-06	7.444E-06	7.444E-06	7.444E-06	7.444E-06	7.444E-06	7.444	E-06
Sn-117	8.286E-06	8.286E-06	8.286E-06	8.286E-06	8.286E-06	8.286E-06	8.286	60-J
Sn-118	8.339E-06	8.339E-06	8.339E-06	8.339E-06	8.339E-06	8.339E-06	8.339	E-06
Sn-119	8.320E-06	8.320E-06	8.320E-06	8.320E-06	8.320E-06	8.320E-06	8.320	E-06

TABLE F.3.c.	Fission Product	Inventory by	Isotope at	; 30 MWd/kgM,
	g/gU (contd)		•	•

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Sn-119m	4.895E-11	6.199E-12	7.849E-13	9.940E-14	4.479E-15	2.555E-17	0.00
Sn-120	8.473E-06	8.473E-06	8.473E-06	8.473E-06	8.473E-06	8.473E-06	8.473E-06
Sn-121m	3.133E-09	3.047E-09	2.964E-09	2.883E-09	2.765E-09	2.580E-09	3.222E-15
Sb-121	8.225E-06	8.225E-06	8.225E-06	8.225E-06	8.226E-06	8.226E-06	8.228E-06
Sn-122	9.306E-06	9.306E-06	9.306E-06	9.306E-06	9.306E-06	9.306E-06	9.306E-06
Te-122	5.635E-07	5.635E-07	5.635E-07	5.635E-07	5.635E-07	5.635E-07	5.635E-07
Sn-123	1.467E-12	2.909E-14	5.772E-16	1.145E-17	3.202E-20	1.775E-24	0.00
Sb-123	1.011E-05	1.011E-05	1.011E-05	1.011E-05	1.011E-05	1.011E-05	1.011E-05
Te-123	7.538E-09	7.538E-09	7.538E-09	7.538E-09	7.538E-09	7.538E-09	7.538E-09
Te-123m	2.843E-15	4.133E-17	6.009E-19	8.740E-21	2.477E-23	6.312E-28	0.00
Sn-124	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05	1.249E-05
Te-124	4.391E-07	4.391E-07	4.391E-07	4.391E-07	4.391E-07	4.391E-07	4.391E-07
Sb-125	2.155E-06	1.306E-06	7.919E-07	4.801E-07	2.266E-07	6.484E-08	0.00
Te-125	1.670E-05	1.756E-05	1.808E-05	1.840E-05	1.865E-05	1.882E-05	1.888E-05
Te-125m	3.014E-08	1.828E-08	1.108E-08	6.717E-09	3.170E-09	9.070E-10	0.00
Sn-126	2.707E-05	2.707E-05	2.707E-05	2.707E-05	2.707E-05	2.707E-05	2.689E-05
SD-126	1.286E-12	1.286E-12	1.286E-12	1.286E-12	1.286E-12	1.286E-12	1.277E-12
SD-126m	9.//9E-15	9.//8E-15	9.//8E-15	9./78E-15	9.//8E-15	9./78E-15	9.711E-15
Te-126	7.570E-07	7.574E-07	7.5/8E-0/	7.581E-0/	7.58/E-0/	7.596E-07	9.429E-07
le-12/	2.105E-15	2.023E-1/	1.944E-19	1.86/E-21	1./59E-24	1.591E-29	0.00
1e-12/m	6.014E-13	5.//9E-15	5.552E-1/	5.335E-19	5.024E-22	4.546E-2/	0.00
1-12/	5.446E-05	5.446E-05	5.446E-05	5.446E-05	5.446E-05	5.446E-05	5.446E-05
1e-128	1.056E-04	1.056E-04	1.056E-04	1.056E-04	1.056E-04	1.056E-04	1.056E-04
Xe-128	3.053E-00	3.053E-00	3.053E-06	3.053E-00	3.053E-00	3.053E-06	3.053E-06
1-129	1.702E-04	1.702E-04	1.702E-04	1.702E-04	1.702E-04	1.702E-04	1./U2E-U4
Ae-129	1.728E-U8	1./3UE-08	1./3IE-08	1./33E-U8	1./35E-U8	1./39E-08	2.4/5E-08
Ve 120	3.32UE-04	3.320E-04	3.320E-04	3.32UE-04	3.320E-04	3.320E-04	3.320E-04
Ye-130	3 0125-03	2 0125-04	2 0125-03	2 012E-04	2 0125-00	2 0125-00	2 0125-03
Xe-131 Ye-132	0 030F_04	0 030F_04	0 030F_04	0 030F_04	0 030F_04	0 030F_04	0 030F_04
Ra_132	1 737F_09	1 737F_09	1 737F-09	1 737F-09	1 737F-09	1 737F-09	1 737F-09
Cs-133	1.016E-03	1.016E-03	1.016E-03	1.016E-03	1.016E-03	1.016E-03	1.016E-03
Xe-134	1.323F-03	1.323F-03	1.323F-03	1.323E-03	1.323E-03	1.323F-03	1.323F-03
Cs-134	1.049E-05	5.358E-06	2.735E-06	1.396E-06	5.094E-07	9.485E-08	0.00
Ba-134	1.386E-04	1.438E-04	1.464E-04	1.477E-04	1.486E-04	1.490E-04	1.491E-04
Cs-135	4.207E-04	4.207E-04	4.207E-04	4.207E-04	4.207E-04	4.207E-04	4.206E-04
Ba-135	4.679E-07	4.682E-07	4.684E-07	4.687E-07	4.690E-07	4.697E-07	5.939E-07
Xe-136	1.973E-03	1.973E-03	1.973E-03	1.973E-03	1.973E-03	1.973E-03	1.973E-03
Ba-136	2.068E-05	2.068E-05	2.068E-05	2.068E-05	2.068E-05	2.068E-05	2.068E-05
Cs-137	9.039E-04	8.631E-04	8.241E-04	7.869E-04	7.342E-04	6.541E-04	9.587E-14
Ba-137	2.147E-04	2.555E-04	2.945E-04	3.317E-04	3.844E-04	4.645E-04	1.119E-03
Ba-137m	1.383E-10	1.320E-10	1.261E-10	1.204E-10	1.123E-10	1.001E-10	1.467E-20
Ba-138	1.140E-03	1.140E-03	1.140E-03	1.140E-03	1.140E-03	1.140E-03	1.140E-03
La-138	4.577E-09	4.577E-09	4.577E-09	4.577E-09	4.577E-09	4.577E-09	4.577E-09
La-139	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03
Ce-140	1.110F-03	1.110E-03	1.110E-03	1.110F-03	1.110E-03	1.110F-03	1.110F-03

TABLE F.3.c.	Fission Product	Inventory by	Isotope at	30 MWd/kgM,
	g/gU (contd)			-

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Pr-141	9.995E-04	9.995E-04	9.995E-04	9.995E-04	9.995E-04	9.995E-04	9.995E-04
Ce-142	1.003E-03	1.003E-03	1.003E-03	1.003E-03	1.003E-03	1.003E-03	1.003E-03
Nd-142	2.478E-05	2.478E-05	2.478E-05	2.478E-05	2.478E-05	2.478E-05	2.478E-05
Nd-143	6.789E-04	6.789E-04	6.789E-04	6.789E-04	6.789E-04	6.789E-04	6.789E-04
Ce-144	6.514E-07	1.097E-07	1.848E-08	3.112E-09	2.151E-10	2.504E-12	0.00
Pr-144	2./5IE-II	4.033E-12	7.802E-13	1.314E-13	9.083E-15	1.05/E-10	0.00
PT-144M	1.3/3E-13	2.310E-14	3.900E-15	0.009E-10	4.041E-1/	3.200E-19	0.00
Nd-144 Nd-145	1.1/2E-03	1.1/2E+U3	1.1/3E-03	1.1/3E-03	1.1/3E-03	1.1/3E-03	1.1/JE-UJ
Nd_{-145}	5.972E-04	5.972E-04	6 153E-04	6 153E-04	6 153E-04	6 153E-04	5.972E-04
Pm-146	2.165E-09	1.683E-09	1.308E-09	1.017F-09	6.966F-10	3.709F-10	0.00
Sm-146	9.702F-09	9.881F-09	1.002F-08	1.013E-08	1.025F-08	1.037E-08	1.050F-08
Pm-147	1.996E-05	1.177E-05	6.938E-06	4.090E-06	1.851E-06	4.940E-07	0.00
Sm-147	1.816E-04	1.898E-04	1.947E-04	1.975E-04	1.997E-04	2.011E-04	2.016E-04
Nd-148	3.339E-04	3.339E-04	3.339E-04	3.339E-04	3.339E-04	3.339E-04	3.339E-04
Sm-148	1.659E-04	1.659E-04	1.659E-04	1.659E-04	1.659E-04	1.659E-04	1.659E-04
Sm-149	1.766E-06	1.766E-06	1.766E-06	1.766E-06	1.766E-06	1.766E-06	1.766E-06
Nd-150	1.660E-04	1.660E-04	1.660E-04	1.660E-04	1.660E-04	1.660E-04	1.660E-04
Sm-150	2.146E-04	2.146E-04	2.146E-04	2.146E-04	2.146E-04	2.146E-04	2.146E-04
Eu-150	3.606E-13	3.470E-13	3.339E-13	3.213E-13	3.033E-13	2.754E-13	1.758E-21
Sm-151	1.068E-05	1.052E-05	1.036E-05	1.020E-05	9.968E-06	9.591E-06	5.056E-09
Eu-151	5.213E-07	6.846E-07	8.454E-07	1.004E-06	1.237E-06	1.613E-06	1.120E-05
Sm-152	1.183E-04	1.183E-04	1.183E-04	1.183E-04	1.183E-04	1.183E-04	1.183E-04
EU-152	5.300E-08	4.792E-08	4.328E-08	3.908E-08	3.354E-08	2.600E-08	5.29/E-30
60-152 Eu 152	3.103E-08	3.300E-08	3.430E-08	3.332E-08	3./U/E-08	3.91/E-08	4.041E-08
Eu~155 Cd153	2 027E-11	2 726E 12	1.011E-04	1.011E-04	1.011E-04	1.011E-04	1.0112-04
Sm_153	3.645E-05	3.730E-12 3.645E_05	4.011E-13	3.6455-05	2.40/E-15	1.321E-17 3.645E-05	0.00 3 6455-05
511-154 Fu-154	2 172F-05	1 848F_05	1 573E-05	1 330F_05	1 051E-05	7 026E-06	0.00
Gd-154	1 965F-05	2 288F-05	2.563E-05	2 797F-05	3 085F-05	3 434F-05	4 136F-05
Fu-155	5.349E-06	4.045E-06	3.058E-06	2.312F-06	1.520E-06	7.559F-07	0.00
Gd-155	7.170E-06	8.474E-06	9.460E-06	1.021E-05	1.100E-05	1.176E-05	1.252E-05
Gd-156	6.435E-05	6.435E-05	6.435E-05	6.435E-05	6.435E-05	6.435E-05	6.435E-05
Gd-157	7.836E-08	7.836E-08	7.836E-08	7.836E-08	7.836E-08	7.836E-08	7.836E-08
Gd-158	1.771E-05	1.771E-05	1.771E-05	1.771E-05	1.771E-05	1.771E-05	1.771E-05
Tb-159	2.709E-06	2.709E-06	2.709E-06	2.709E-06	2.709E-06	2.709E-06	2.709E-06
Gd-160	1.334E-06	1.334E-06	1.334E-06	1.334E-06	1.334E-06	1.334E-06	1.334E-06
Tb-160	3.729E-17	3.390E-20	3.082E-23	2.802E-26	7.680E-31	0.00	0.00
Dy-160	3.048E-07	3.048E-07	3.048E-07	3.048E-07	3.048E-07	3.048E-07	3.048E-07
Dy-161	4.259E-07	4.259E-07	4.259E-07	4.259E-0/	4.259E-0/	4.259E-07	4.259E-07
Dy-162	3.886E-07	3.886E-07	3.886E-07	3.886E-07	3.886E-07	3.886E-0/	3.880E-07
Dy-163	3.120E-U/	3.128E-U/	3.128E-U/	3.128E-U/	3.120E-U/	J.120E-U/	J.120L-U/
UY-104	4.00/E-U8	4.00/E-U8	4.00/L-U8	4.30/L-U8	4.JO/E-U8	4.30/E-U8	4.JO/L-U0 1 5725 07
HO-100	1.5/3E-U/	1.5/3E-U/	1.3/3E-0/	1 6275-00	1 6345-00	1 6205-07	0 251F_10
	1.043E-09	5 0225-09	1.033E-08	5 033E-09	5 033E-09	5 034F_08	5 104F_08

<u>TABLE F.3.c.</u> Fission Product Inventory by Isotope at 30 MWd/kgM, g/gU (contd)

Isotope	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Er-167	3.226E-09	3.226E-09	3.226E-09	3.226E-09	3.226E-09	3.226E-09	3.226E-09
Er-168	8.938E-09	8.938E-09	8.938E-09	8.938E-09	8.938E-09	8.938E-09	8.938E-09
Tm-169	6.241E-11	6.241E-11	6.241E-11	6.241E-11	6.241E-11	6.241E-11	6.241E-11
Er-170	3.122E-14	3.122E-14	3.122E-14	3.122E-14	3.122E-14	3.122E-14	3.122E-14
Tm-170	4.268E-17	8.320E-19	1.621E-20	3.244E-22	9.755E-24	5.175E-28	0.00
Yb-170	2.076E-11	2.076E-11	2.076E-11	2.076E-11	2.076E-11	2.076E-11	2.076E-11
Tm-171	4.694E-14	2.280E-14	1.108E-14	5.380E-15	1.821E-15	2.996E-16	0.00
Yb-171	1.194E-12	1.219E-12	1.230E-12	1.236E-12	1.240E-12	1.241E-12	1.241E-12
Yb-172	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14	5.269E-14
Total	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02

Ī	ABLE F.3.d	. Fission g/gU	Product I	nventory b	y Isotope	at 35 MWd/	kgM,
Isotope	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-3	4.112E-08	3.675E-08	3.285E-08	2.936E-08	2.481E-08	1.874E-08	2.417E-32
L1-6	1.505E-10	1.565E-10	1.505E-10	1.505E-10	1.565E-10	1.505E-10	1.565E-10
L1-/	1.00/E-11	1.06/E-11	1.06/E-11	1.06/E-11	1.06/E-11	1.06/E-11	1.06/E-11
Be-9	2.052E-11	2.052E-11	2.052E-11	2.052E-11	2.052E-11	2.052E-11	2.052E-11
Be-10	1.3/UE-10	1.3/UE-10	1.3/UE-10	1.3/0E-10	1.3/0E-10	1.3/UE-10	1.309E-10
C-14 75 66	2./6/E-11	2./0/E-11	2./00E-11	2./05E-11	2./04E-11	2./03E-11	2.404E-11
Zn-00	3.358E-14	3.308E-14	3.308E-14	3.308E-14	3.3386-14	3.330E-14	3.308E-14
2n-67	1.308E-13	1.308E-15	1.308E-15	1.308E-15	1.308E-15	1.308E-15	1.308E-15
6d-/1	1.009E-12	1.009E-12	1.009E-12	1.009E-12	1,009E-12	1.009E-12	1.009E-12
Ge - 72	2.300E-00	2.300E-00	2.300E-00	2.300E-00	2.300E-00	2.300E-00	Z.360E-06
Ge = 73	1 071E 07	1 071E 07	1 071E-07	1 071E-07	1 071E-07	1 071E 07	3.040E-06
$\Delta e = 74$	2 151E-07	2 151E-07	2 151E-07	2 151E-07	2 151E-07	$2 151E_{-07}$	2 151E-07
Ga-76	5 147F_07	5 147E-07	5 147F_07	5 147F_07	5 147F_07	5 147E-07	$5 147E_07$
Se-76	7.056E-09	7.056F-09	7.056F-09	7.056E-09	7.056F+09	7 056F-09	7 056F-09
Se-77	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06
Se-78	2.549F-06	2.549E-06	2.549F-06	2.549F-06	2.549E-06	2.549F-06	2.549E-06
Se-79	6.073E-06	6.073F-06	6.072F-06	6.072F-06	6.072F-06	6.072F-06	6.009F-06
Br-79	6.073E-10	7.369E-10	8.665E-10	9.961E-10	1.190E-09	1.514F-09	6.468F-08
Se-80	1.365E-05	1.365F-05	1.365F-05	1.365F-05	1.365F-05	1.365F-05	1.365E-05
Kr-80	2.835E-10	2.835E-10	2.835F-10	2.835E-10	2.835E-10	2.835F-10	2.835F-10
Br-81	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.177E-05
Kr-81	3.201E-11	3.201E-11	3.201E-11	3.201E-11	3.201E-11	3.201E-11	3.190E-11
Se-82	3.352E-05	3.352E-05	3.352E-05	3.352E-05	3.352E-05	3.352E-05	3.352E-05
Kr-82	1.198E-06	1.198E-06	1.198E-06	1.198E-06	1.198E-06	1.198E-06	1.198E-06
Kr-83	3.807E-05	3.807E-05	3.807E-05	3.807E-05	3.807E-05	3.807E-05	3.807E-05
Kr-84	1.133E-04	1.133E-04	1.133E-04	1.133E-04	1.133E-04	1.133E-04	1.133E-04
Kr-85	1.379E-05	1.212E-05	1.065E-05	9.357E-06	7.707E-06	5.578E-06	1.693E-33
Rb-85	1.033E-04	1.050E-04	1.065E-04	1.077E-04	1.094E-04	1.115E-04	1.171E-04
Kr-86	1.816E-04	1.816E-04	1.816E-04	1.816E-04	1.816E-04	1.816E-04	1.816E-04
Sr-86	4.940E-07	4.940E-07	4.940E-07	4.940E-07	4.940E-07	4.940E-07	4.940E-07
Rb-87	2.323E-04	2.323E-04	2.323E-04	2.323E-04	2.323E-04	2.323E-04	2.323E-04
Sr-87	4.518E-09	4.518E-09	4.518E-09	4.518E-09	4.518E-09	4.518E-09	4.521E-09
Sr-88	3.326E-04	3.326E-04	3.326E-04	3.326E-04	3.326E-04	3.326E-04	3.326E-04
Y-89	4.319E-04	4.319E-04	4.319E-04	4.319E-04	4.319E-04	4.319E-04	4.319E-04
Sr-90	4.176E-04	3.982E-04	3.797E-04	3.620E-04	3.371E-04	2.993E-04	2.217E-14
Y-90	1.04/E-0/	9.985E-08	9.521E-08	9.0/9E-08	8.453E-08	7.504E-08	5.559E-18
Zr-90	1.081E-04	1.2/5E-04	1.460E-04	1.636E-04	1.886E-04	2.264E-04	5.258E-04
Y-91	9.694E-1/	1.690E-20	2.94/E-24	5.138E-28	1.183E-33		
Zr-91	5.008E-04	5.008E-04	5.008E-04	5.008E-04	5.008E-04	5.008E-04	5.008E-04
25-92	0.249E-04	0.249E-04	0.249E-04	0.249E-04	0.249E-U4	0.249E-04	0.249E-04 7 114E 04
28-93 NG 02	7.11/E-04	1 0705 00	1 2005 00	1 741E 00	2 220E 00	7.11/E-04	/ • 114E-U4 2 1755 07
ND-95	7.001E-10	1.0/01-09	1.3901-09	1./41E-09	2.3201-09	J.403E-09	5.1/JE-U/
ND-95M	2.290E-U9	2.030E-09	2.901E-09	J. 2/4E-U9	3.002E-09	4.191E-09	7 1685 AA
21-94 NG 04	1.400E-04	7.400E-U4	7.400E-04	0 5605 10	0 550E 10	0 557E 10	0 2/3E 10
110-94	9.JOZE-10	A.2016-10	A.2015-10	3-200E-10	2-00AE-10	3.00/E-10	3.24JE-1V

6.00

seent -

.....

- 94-1

TABLE F.3.d.	Fission Product	: Inventory by	Isotope	at	35	MWd/kgM,
	g/gU (contd)		-			•

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u> 12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Zr-95	1.593E-15	5.823E-19	2.129E-22	7.784E-26	5.442E-31	0.00	0.00
Nb-95	1.943E-15	7.103E-19	2.597E-22	9.495E-26	4.961E-33	0.00	0.00
Mo-95	7.572E-04	7.572E-04	7.572E-04	7.572E-04	7.572E-04	7.572E-04	7.572E-04
Zr-96	8.190E-04	8.190E-04	8.190E-04	8.190E-04	8.190E-04	8.190E-04	8.190E-04
Mo-96	4.818E-05	4.818E-05	4.818E-05	4.818E-05	4.818E-05	4.818E-05	4.818E-05
Mo-97	8.226E-04	8.226E-04	8.226E-04	8.226E-04	8.226E-04	8.226E-04	8.226E-04
Mo-98	8.678E-04	8.678E-04	8.678E-04	8.678E-04	8.678E-04	8.678E-04	8.678E-04
Tc-98	8.058E-09	8.058E-09	8.058E-09	8.058E-09	8.058E-09	8.058E-09	8.057E-09
Tc-99	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.891E-04
Ru-99	2.391E-08	2.906E-08	3.421E-08	3.937E-08	4.709E-08	5.997E-08	2.580E-06
Mo-100	9.855E-04	9.855E-04	9.855E-04	9.855E-04	9.855E-04	9.855E-04	9.855E-04
Ru-100	1.216E-04	1.216E-04	1.216E-04	1.216E-04	1.216E-04	1.216E-04	1.216E-04
Ru-101	8.233E-04	8.233E-04	8.233E-04	8.233E-04	8.233E-04	8.233E-04	8.233E-04
Ru-102	8.538E-04	8.538E-04	8.538E-04	8.538E-04	8.538E-04	8.538E-04	8.538E-04
Rh-102	2.599E-10	1.611E-10	9.990E-11	6.194E-11	3.024E-11	9.152E-12	0.00
Rh-103	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04
Ru-104	6.478E-04	6.478E-04	6.478E-04	6.478E-04	6.478E-04	6.478E-04	6.478E-04
Pd-104	3.093E-04	3.093E-04	3.093E-04	3.093E-04	3.093E-04	3.093E-04	3.093E-04
Pd-105	4.794E-04	4.794E-04	4.794E-04	4.794E-04	4.794E-04	4.794E-04	4.794E-04
Ru-106	1.789E-06	4.522E-07	1.143E-07	2.889E-08	3.671E-09	1.179E-10	0.00
Rh-106	1.681E-12	4.250E-13	1.074E-13	2.715E-14	3.451E-15	1.108E-16	0.00
Pd-106	4.546E-04	4.559E-04	4.563E-04	4.564E-04	4.564E-04	4.564E-04	4.564E-04
Pd-107	2.895E-04	2.895E-04	2.895E-04	2.895E-04	2.895E-04	2.895E-04	2.894E-04
Ag-107	2.642E-10	3.259E-10	3.877E-10	4.495E-10	5.422E-10	6.966E-10	3.096E-08
Pd-108	2.012E-04	2.012E-04	2.012E-04	2.012E-04	2.012E-04	2.012E-04	2.012E-04
Ag-108m	1.634E-12	1.617E-12	1.599E-12	1.582E-12	1.556E-12	1.514E-12	7.201E-15
Cd-108	6.483E-10	6.483E-10	6.483E-10	6.483E-10	6.484E-10	6.484E-10	6.485E-10
Ag-109	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.714E-05
Cd-109	2.619E-14	8.794E-15	2.953E-15	9.916E-16	1.930E-16	1.261E-17	0.00
Pd-110	6.598E-05	6.598E-05	6.598E-05	6.598E-05	6.598E-05	6.598E-05	6.598E-05
Ag-110m	1.855E-09	2.445E-10	3.223E-11	4.248E-12	2.033E-13	1.283E-15	0.00
Cd-110	5.468E-05	5.468E-05	5.468E-05	5.468E-05	5.468E-05	5.468E-05	5.468E-05
Cd-111	3.605E-05	3.605E-05	3.605E-05	3.605E-05	3.605E-05	3.605E-05	3.605E-05
Cd-112	2.136E-05	2.136E-05	2.136E-05	2.136E-05	2.136E-05	2.136E-05	2.136E-05
Cd-113	1.534E-07	1.535E-07	1.535E-07	1.535E-07	1.535E-07	1.536E-07	1.537E-07
Cd-113m	2.405E-07	2.187E-07	1.989E-07	1.809E-07	1.569E-07	1.237E-07	7.435E-28
In-113	1.173E-07	1.391E-07	1.589E-07	1.769E-07	2.009E-07	2.340E-07	3.576E-07
Cd-114	2.763E-05	2.763E-05	2.763E-05	2.763E-05	2.763E-05	2.763E-05	2.763E-05
Sn-114	4.237E-09	4.237E-09	4.237E-09	4.237E-09	4.237E-09	4.237E-09	4.237E-09
In-115	2.368E-06	2.368E-06	2.368E-06	2.368E-06	2.368E-06	2.368E-06	2.368E-06
Sn-115	3.825E-07	3.825E-07	3.825E-07	3.825E-07	3.825E-07	3.825E-07	3.825E-07
Cd-116	9.788E-06	9.788E-06	9.788E-06	9.788E-06	9.788E-06	9.788E-06	9.788E-06
Sn-116	9.384E-06	9.384E-06	9.384E-06	9.384E-06	9.384E-06	9.384E-06	9.384E-06
Sn-117	9.883E-06	9.883E-06	9.883E-06	9.883E-06	9.883E-06	9.883E-06	9.883E-06
Sn-118	9.946E-06	9.946E-06	9.946E-06	9.946E-06	9.946E-06	9.946E-06	9.946E-06
Sn_110	0 027F_06	9 927F_06	Q 927F-06	9 927F-06	9.927F-06	9.927E-06	9.927F-06

TABLE F.3.d.	Fission Product	Inventory by	Isotope	at 3	35	MWd/kgM,
	q∕qU (contd)	•••	-			

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Sn-119m	6.143E-11	7.778E-12	9.849E-13	1.247E-13	5.620E-15	3.207E-17	0.00
Sn-120	1.010E-05	1.010E-05	1.010E-05	1.010E-05	1.010E-05	1.010E-05	1.010E-05
Sn-121m	3.799E-09	3.695E-09	3.594E-09	3.496E-09	3.353E-09	3.129E-09	3.907E-15
Sb-121	9.669E-06	9.669E-06	9.670E-06	9.670E-06	9.670E-06	9.670E-06	9.673E-06
Sn-122	1.108E-05	1.108E-05	1.108E-05	1.108E-05	1.108E-05	1.108E-05	1.108E-05
Te-122	7.905E-07	7.905E-07	7.905E-07	7.905E-07	7.905E-07	7.905E-07	7.905E-07
Sn-123	1.754E-12	3.480E-14	6.903E-16	1.370E-17	3.826E-20	2.121E-24	0.00
Sb-123	1.193E-05	1.193E-05	1.193E-05	1.193E-05	1.193E-05	1.193E-05	1.193E-05
Te-123	1.146E-08	1.146E-08	1.146E-08	1.146E-08	1.146E-08	1.146E-08	1.146E-08
Te-123m	4.827E-15	7.019E-17	1.020E-18	1.484E-20	2.131E-23	5.430E-28	0.00
Sn-124	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05
Te-124	6.221E-07	6.221E-07	6.221E-07	6.221E-07	6.221E-07	6.221E-07	6.221E-07
Sb-125	2.584E-06	1.567E-06	9.498E-07	5.758E-07	2.718E-07	7.777E-08	0.00
Te-125	1.996E-05	2.100E-05	2.162E-05	2.200E-05	2.231E-05	2.251E-05	2.258E-05
Te-125m	3.615E-08	2.192E-08	1.329E-08	8.056E-09	3.802E-09	1.088E-09	0.00
Sn-126	3.235E-05	3.235E-05	3.234E-05	3.234E-05	3.234E-05	3.234E-05	3.212E-05
Sb-126	1.537E-12	1.537E-12	1.537E-12	1.537E-12	1.537E-12	1.537E-12	1.526E-12
Sb-126m	1.168E-14	1.168E-14	1.168E-14	1.168E-14	1.168E-14	1.168E-14	1.160E-14
Te-126	9.516E-07	9.520E-07	9.525E-07	9.529E-07	9.536E-07	9.547E-07	1.174E-06
Te-127	2.536E-15	2.437E-17	2.341E-19	2.249E-21	2.118E-24	1.917E-29	0.00
Te-127m	7.245E-13	6.960E-15	6.688E-17	6.425E-19	6.051E-22	5.476E-27	0.00
I-127	6.469E-05	6.469E-05	6.469E-05	6.469E-05	6.469E-05	6.469E-05	6.469E-05
Te-128	1.254E-04	1.254E-04	1.254E-04	1.254E-04	1.254E-04	1.254E-04	1.254E-04
Xe-128	4.357E-06	4.357E-06	4.357E-06	4.357E-06	4.357E-06	4.357E-06	4.357E-06
I-129	1.997E-04	1.997E-04	1.997E-04	1.997E-04	1.997E-04	1.997E-04	1.997E-04
Xe-129	2.913E-08	2.915E-08	2.917E-08	2.918E-08	2.921E-08	2.925E-08	3.789E-08
Te-130	3.921E-04	3.921E-04	3.921E-04	3.921E-04	3.921E-04	3.921E-04	3.921E-04
Xe-130	1.678E-05	1.678E-05	1.678E-05	1.678E-05	1.678E-05	1.678E-05	1.678E-05
Xe-131	4.295E-04	4.295E-04	4.295E-04	4.295E-04	4.295E-04	4.295E-04	4.295E-04
Xe-132	1.196E-03	1.196E-03	1.196E-03	1.196E-03	1.196E-03	1.196E-03	1.196E-03
Ba-132	2.387E-09	2.387E-09	2.387E-09	2.387E-09	2.387E-09	2.387E-09	2.387E-09
Cs-133	1.150E-03	1.150E-03	1.150E-03	1.150E-03	1.150E-03	1.150E-03	1.150E-03
Xe-134	1.540E-03	1.540E-03	1.540E-03	1.540E-03	1.540E-03	1.540E-03	1.540E-03
Cs-134	1.407E-05	7.182E-06	3.667E-06	1.872E-06	6.828E-07	1.272E-07	0.00
Ba-134	1.860E-04	1.929E-04	1.964E-04	1.982E-04	1.994E-04	1.999E-04	2.000E-04
Cs-135	4.466E-04	4.466E-04	4.466E-04	4.466E-04	4.466E-04	4.466E-04	4.464E-04
Ba-135	7.556E-07	7.559E-07	7.561E-07	7.564E-07	7.568E-07	7.575E-07	8.893E-07
Xe-136	2.360E-03	2.360E-03	2.360E-03	2.360E-03	2.360E-03	2.360E-03	2.360E-03
Ba-136	2.593E-05	2.593E-05	2.593E-05	2.593E-05	2.593E-05	2.593E-05	2.593E-05
Cs-137	1.055E-03	1.008E-03	9.620E-04	9.186E-04	8.571E-04	7.636E-04	1.119E-13
Ba-137	2.506E-04	2.982E-04	3.437E-04	3.872E-04	4.487E-04	5.422E-04	1.306E-03
Ba-137m	1.614E-10	1.541E-10	1.472E-10	1.405E-10	1.311E-10	1.168E-10	1.712E-20
Ba-138	1.321E-03	1.321E-03	1.321E-03	1.321E-03	1.321E-03	1.321E-03	1.321E-03
La-138	4.723E-09	4.723E-09	4.723E-09	4.723E-09	4.723E-09	4.723E-09	4.723E-09
La-139	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03
Co 140	1 2015 02	1 2015 02	1 2015 02	1 2015 02	1 2015-03	1 201E_03	1 201E_03

TABLE F.3.d.	Fission Product	Inventory by	Isotope	at	35	MWd/kgM,
	g/gU (contd)		•			

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Pr-141	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03
Ce-142	1.160E-03	1.160E-03	1.160E-03	1.160E-03	1.160E-03	1.160E-03	1.160E-03
Nd-142	3.430E-05	3.430E-05	3.430E-05	3.430E-05	3.430E-05	3.430E-05	3.430E-05
Nd-143	7.306E-04	7.306E-04	7.306E-04	7.306E-04	7.306E-04	7.306E-04	7.306E-04
Ce-144	7.446E-07	1.254E-07	2.112E-08	3.558E-09	2.459E-10	2.863E-12	0.00
Pr-144	3.144E-11	5.296E-12	8.919E-13	1.502E-13	1.038E-14	1.209E-16	0.00
Pr-144m	1.572E-13	2.647E-14	4.459E-15	7.509E-16	5.190E-17	6.042E-19	0.00
Nd-144	1.400E-03	1.401E-03	1.401E-03	1.401E-03	1.401E-03	1.401E-03	1.401E-03
Nd-145	6.743E-04	6.743E-04	6.743E-04	6.743E-04	6.743E-04	6.743E-04	6.743E-04
Nd-146	7.294E-04	7.294E-04	7.294E-04	7.294E-04	7.294E-04	7.294E-04	7.294E-04
Pm-146	2.773E-09	2.156E-09	1.675E-09	1.302E-09	8.921E-10	4.751E-10	0.00
Sm-146	1.233E-08	1.256E-08	1.274E-08	1.288E-08	1.303E-08	1.318E-08	1.336E-08
Pm-147	2.079E-05	1.226E-05	7.227E-06	4.260E-06	1.928E-06	5.146E-07	0.00
Sm-147	1.869E-04	1.954E-04	2.004E-04	2.034E-04	2.057E-04	2.072E-04	2.077E-04
Nd-148	3.893E-04	3.893E-04	3.893E-04	3.893E-04	3.893E-04	3.893E-04	3.893E-04
Sm-148	2.058E-04	2.058E-04	2.058E-04	2.058E-04	2.058E-04	2.058E-04	2.058E-04
Sm-149	1.860E-06	1.860E-06	1.860E-06	1.860E-06	1.860E-06	1.860E-06	1.860E-06
NG-150	1.96/E-04	1.96/E-04	1.96/E-04	1.96/E-04	1.96/E-04	1.96/E-04	1.96/E-04
Sm-150	2.488E-04	2.488E-04	2.488E-04	2.488E-04	2.488E-04	2.488E-04	2.488E-04
EU-150	3.851E-13	3./06E-13	3.566E-13	3.431E-13	3.238E-13	2.941E-13	1.880E-21
Sm-151	1.138E-05	1.121E-05	1.104E-05	1.08/E-05	1.062E-05	1.022E-05	5.386E-09
EU-151	5.522E-0/	1.262E-0/	8.9/5E-0/	1.066E-06	1.314E-06	1./16E-06	1.193E-05
Sm-152	1.313E-04	1.313E-04	1.313E-04	1.314E-04	1.314E-04	1.314E-04	1.314E-04
EU-152	4./40E-08	4.280E-08	3.800E-08	3.491E-08	2.996E-08	2.322E-08	4./32E-30
GG-152	2.818E-08	2.9461-08	3.062E-08	3.1002-08	3.304E-08	3.492E-08	4.139E-08
EU-153	1.20/E-04	1.20/E-04	1.20/E-04	1.20/E-04	1.20/E-04	1.20/E-04	1.20/E-04
GG-103	3.380E-11	4.1/2E-12	5.148E-13	0.304E-14	2./33E-15	1.4/4E-1/	
SM-154	4.408E-03	4.408E-03	4.408E-05	4.408E-05	4.4086-03	4.408E-05	4.408E-05
EU-134	2.8386-05	2.410E-03	2.0302-03	1./JUE-03	1.3/4E-05	9.1846-00	0.00
60-104 Eu 155	2.3/3E-05	2.99/E-03	3.337E-03	3.003E-05	4.039E-03	4.493E-03	5.413E-05
Cd 155	0.9902-00	1 105E 05	1 234E-05	1 221E 05	1.90/E-00	9.0/0E-0/ 1 535E_05	1 633E_05
Gd-155	9.3446-00	0 202E-05	0 202E-05	0 202E-05	0 303E-05	0.303E-05	0 303E-05
Gd-150	9.3932-03	9.393L-03	9.3932-03	9.393E-03	9.3932-03	9.393L-03	9.393L-03
Gd-158	2 372E-05	2 372E_05	2 372F_05	2 372F_05	2 372F-05	2 372F_05	2 372F_05
Th_150	3 431E-06	3 431F_06	3 431F-06	3 431F-06	3 431F-06	3 431F-06	3 431F-06
Cd_160	1 687E-06	1 687F_06	1 687F_06	1 687F_06	1 687F-06	1 687E-06	1 687F_06
Th_160	$5.627E_{-17}$	5 115E-20	4 650F-23	4 227F_26	1 159F-30	0 00	0 00
D_{V-160}	4 354F-07	A 354F_07	4 354F_07	4 354F_07	4 354F-07	4 354F-07	4 354F_07
Dy = 100 Dy = 161	5 254F-07	5 254F_07	5 254F-07	5 254F-07	5 254F-07	5 254E-07	5 254F-07
Dy = 101 Dy = 162	1 870F_07	1 870F_07	4 870F_07	4 870F_07	4 870F-07	4 879F-07	4 879F_07
Dy = 102 Dy = 163	4 222E-07	4.079L-07	4 222F_07	4 222F_07	4 222F-07	4 222F-07	4 222F-07
Dy = 103 Dy = 164	5 074F-09	5 07/F_09		6 074F_09	6 074F_08	6 074F_08	6 074F_08
Ho-165	2 280F_07	2 280F_07	2 280F_07	2 280F_07	2.280F-07	2.280F-07	2.280F-07
Ho_166m	2 766F_00	2 7635-00	2 760F_00	2 756F_00	2.752F-00	2.744F_NQ	1.558F-09
Fr_{-166}	7.651F-08	7.651F-08	7.652F-08	7.652F-08	7.653F-08	7.653F-08	7.772E-08

<u>T/</u>	ABLE F.3.d	. Fission g/gU (co	Product In ontd)	nventory by	y Isotope a	at 35 MWd/I	<gm,< th=""></gm,<>
<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Er-167 Er-168 Tm-169 Er-170 Tm-170 Yb-170	4.136E-09 1.275E-08 9.901E-11 5.858E-14 8.102E-17 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 1.579E-18 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 3.078E-20 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 5.959E-22 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 0.00 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 0.00 3.874E-11	4.136E-09 1.275E-08 9.901E-11 5.858E-14 0.00 3.874E-11
Yb-171 Yb-171 Yb-172	1.066E-13 2.656E-12 1.398E-13	5.178E-14 2.711E-12 1.398E-13	2.515E-14 2.737E-12 1.398E-13 3.589E-02	1.222E-14 2.750E-12 1.398E-13	4.137E-15 2.758E-12 1.398E-13	0.803E-10 2.762E-12 1.398E-13	2.762E-12 1.398E-13

		y/yo					
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-3	4.768E-08	4.262E-08	3.809E-08	3.405E-08	2.877E-08	2.173E-08	2.806E-32
L1-6	1.551E-10	1.551E-10	1.551E-10	1.551E-10	1.551E-10	1.551E-10	1.551E-10
Li-7	1.217E-11	1.217E-11	1.217E-11	1.217E-11	1.217E-11	1.217E-11	1.217E-11
Be-9	2.340E-11	2.340E-11	2.340E-11	2.340E-11	2.340E-11	2.340E-11	2.340E-11
Be-10	1.563E-10	1.563E-10	1.563E-10	1.563E-10	1.563E-10	1.563E-10	1.563E-10
C-14	3.158E-11	3.157E-11	3.156E-11	3.155E-11	3.154E-11	3.152E-11	2.800E-11
Zn-66	3.659E-14	3.659E-14	3.659E-14	3.659E-14	3.659E-14	3.659E-14	3.659E-14
Zn-67	1.480E-15	1.480E-15	1.480E-15	1.480E-15	1.480E-15	1.480E-15	1.480E-15
Ga-71	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12
Ge-72	3.006E-08	3.006E-08	3.006E-08	3.006E-08	3.006E-08	3.006E-08	3.006E-08
Ge-73	5.761E-08	5.761E-08	5.761E-08	5.761E-08	5.761E-08	5.761E-08	5.761E-08
Ge-74	1.230E-07	1.230E-07	1.230E-07	1.230E-07	1.230E-07	1.230E-07	1.230E-07
As-75	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07
Ge-76	5.801E-07	5.801E-07	5.801E-07	5.801E-07	5.801E-07	5.801E-07	5.801E-07
Se-76	9.218E-09	9.218E-09	9.218E-09	9.218E-09	9.218E-09	9.218E-09	9.218E-09
Se-77	1.146E-06	1.146E-06	1.146E-06	1.146E-06	1.146E-06	1.146E-06	1.146E-06
Se-78	2.904E-06	2.904E-06	2.904E-06	2.904E-06	2.904E-06	2.904E-06	2.904E-06
Se-79	6.855E-06	6.855E-06	6.855E-06	6.855E-06	6.855E-06	6.854E-06	6.783E-06
Br-79	6.847E-10	8.309E-10	9.772E-10	1.124E-09	1.343E-09	1.709E-09	7.301E-08
Se-80	1.537E-05	1.537E-05	1.537E-05	1.537E-05	1.537E-05	1.537E-05	1.537E-05
Kr-80	3.349E-10	3.349E-10	3.349E-10	3.349E-10	3.349E-10	3.349E-10	3.349E-10
Br-81	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.424E-05
Kr-81	4.174E-11	4.174E-11	4.174E-11	4.174E-11	4.174E-11	4.174E-11	4.160E-11
Se-82	3.747E-05	3.747E-05	3.747E-05	3.747E-05	3.747E-05	3.747E-05	3.747E-05
Kr-82	1.527E-06	1.527E-06	1.527E-06	1.527E-06	1.527E-06	1.527E-06	1.527E-06
Kr-83	4.015E-05	4.015E-05	4.015E-05	4.015E-05	4.015E-05	4.015E-05	4.015E-05
Kr-84	1.283E-04	1.283E-04	1.283E-04	1.283E-04	1.283E-04	1.283E-04	1.283E-04
Kr-85	1.528E-05	1.343E-05	1.180E-05	1.037E-05	8.540E-06	6.181E-06	1.871E-33
Rb-85	1.143E-04	1.162E-04	1.178E-04	1.193E-04	1.211E-04	1.234E-04	1.296E-04
Kr-86	2.006E-04	2.006E-04	2.006E-04	2.006E-04	2.006E-04	2.006E-04	2.006E-04
Sr-86	6.409E-07	6.409E-07	6.409E-07	6.409E-07	6.409E-07	6.409E-07	6.409E-07
Rb-87	2.562E-04	2.562E-04	2.562E-04	2.562E-04	2.562E-04	2.562E-04	2.562E-04
Sr-87	6.273E-09	6.273E-09	6.273E-09	6.273E-09	6.273E-09	6.273E-09	6.277E-09
Sr-88	3.666E-04	3.666E-04	3.666E-04	3.666E-04	3.666E-04	3.666E-04	3.666E-04
Y-89	4.750E-04	4.750E-04	4.750E-04	4.750E-04	4.750E-04	4.750E-04	4.750E-04
Sr-90	4.594E-04	4.380E-04	4.177E-04	3.982E-04	3.708E-04	3.292E-04	2.438E-14
Y-90	1.152E-07	1.098E-07	1.047E-07	9.987E-08	9.298E-08	8.255E-08	6.115E-18
Zr-90	1.195E-04	1.408E-04	1.612E-04	1.806E-04	2.081E-04	2.497E-04	5.790E-04
Y-91	1.048E-16	1.827E-20	3.186E-24	5.554E-28	1.279E-33	0.00	0.00
Zr-91	6.266E-04	6.266E-04	6.266E-04	6.266E-04	6.266E-04	6.266E-04	6.266E-04
Zr-92	6.953E-04	6.953E-04	6.953E-04	6.953E-04	6.953E-04	6.953E-04	6.953E-04
Zr-93	7.940E-04	7.940E-04	7.940E-04	7.940E-04	7.940E-04	7.940E-04	7.936E-04
Nb-93	8.801E-10	1.198E-09	1.556E-09	1.948E-09	2.595E-09	3.805E-09	3.542E-07
Nb-93m	2.566E-09	2.967E-09	3.329E-09	3.656E-09	4.089E-09	4.677E-09	6.702E-09
Zr-94	8.411E-04	8.411E-04	8.411E-04	8.411E-04	8.411E-04	8.411E-04	8.411E-04
Nb-94	1.131E-09	1.131E-09	1.131E-09	1.131E-09	1.131E-09	1.131E-09	1.094E-09

<u>TABLE F.3.e</u>. Fission Product Inventory by Isotope at 40 MWd/kgM, g/gU

-

AT --

.

TABLE F.3.e.	Fission Product Inventory by Isotope at 40 M	Wd/kgM,
	g/gU (contd)	

<u>Isotope</u>	6 Years	<u>8 Years</u>	10 Years	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Zr-95	1.783E-15	6.521E-19	2.384E-22	8.717E-26	6.094E-31	0.00	0.00
Nb-95	2.175E-15	7.953E-19	2.908E-22	1.063E-25	5.555E-33	0.00	0.00
Mo-95	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448E-04	8.448E-04
Zr-96	9.257E-04	9.257E-04	9.257E-04	9.257E-04	9.257E-04	9.257E-04	9.257E-04
Mo-96	6.344E-05	6.344E-05	6.344E-05	6.344E-05	6.344E-05	6.344E-05	6.344E-05
Mo-97	9.336E-04	9.336E-04	9.336E-04	9.336E-04	9.336E-04	9.336E-04	9.336E-04
Mo-98	9.899E-04	9.899E-04	9.899E-04	9.899E-04	9.899E-04	9.899E-04	9.899E-04
TC-98	1.064E-08	1.064E-08	1.064E-08	1.064E-08	1.064E-08	1.064E-08	1.064E-08
1C-99	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.804E-04
KU-99	2.009E-08	3.243E-08	3.818E-08	4.393E-08	5.255E-08	0.092E-08	2.8/9E-00
MO-100 Du 100	1.120E-U3	1.120E-03	1.1201-03	1.120E-03	1.120E-03	1.120E-U3	1.120E-03
Ru-100	1.002E-04	1.002E-04	1.002E-04	1.0026-04	1.002E-04	1.002E-04	1.0020-04
Ru~101 Du_102	9.304E-04	9.304E-04	9.304E-04	9.304E-04	9.304E-04	9.304E-04	9.304E-04
Ph_102	3 367E-10	2 088F_10	1 204F-10	9.937L-04	3 018F_11	1 186F_11	9.9372-04
Rh-102	5 182F-04	5 182F-04	5 182F-04	5 182F-04	5 182F-04	5 182F_04	5 182F_04
$R_{II} = 103$	7.675E-04	7.675E-04	7.675E-04	7.675F-04	7 675F-04	7.675E-04	7 675F-04
Pd-104	4.016E-04	4.016E-04	4.016E-04	4.016E-04	4.016E-04	4.016F-04	4.016F-04
Pd-105	5.652E-04	5.652E-04	5.652E-04	5.652E-04	5.652E-04	5.652E-04	5.652E-04
Ru-106	2.170E-06	5.484E-07	1.386E-07	3.504E-08	4.452E-09	1.430E-10	0.00
Rh-106	2.039E-12	5.155E-13	1.303E-13	3.293E-14	4.185E-15	1.344E-16	0.00
Pd-106	5.606E-04	5.622E-04	5.626E-04	5.627E-04	5.628E-04	5.628E-04	5.628E-04
Pd-107	3.522E-04	3.522E-04	3.522E-04	3.522E-04	3.522E-04	3.522E-04	3.521E-04
Ag-107	3.206E-10	3.958E-10	4.709E-10	5.461E-10	6.588E-10	8.467E-10	3.767E-08
Pd-108	2.454E-04	2.454E-04	2.454E-04	2.454E-04	2.454E-04	2.454E-04	2.454E-04
Ag-108m	2.040E-12	2.018E-12	1.996E-12	1.974E-12	1.942E-12	1.890E-12	8.988E-15
Cd-108	9.041E-10	9.041E-10	9.041E-10	9.041E-10	9.041E-10	9.041E-10	9.043E-10
Ag-109	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.137E-04
Cd-109	4.155E-14	1.395E-14	4.686E-15	1.573E-15	3.062E-16	2.001E-17	0.00
Pa-110	8.0/5E-05	8.0/5E-05	8.0/5E-05	8.0/5E-05	8.0/5E-05	8.0/5E-05	8.0/5E-05
AG-IIUM	2.549E-09	3.301E-10	4.430E-11	5.84UE-12	2./95E-13	1./04E-15	
Cd_110	7.399E-05	7.599E-05	7.599E-05	7.599E-05	7.599E-05	7.599E-05	/.599E-05
Cd-112	2 598F-05	2 598F-05	2 598F-05	2 598F-05	2 598F-05	2 598F-05	2 598F-05
Cd-112	1.573F-07	1.573F-07	1.573F-07	1.574F-07	1.574F-07	1.574F-07	1.576F-07
Cd-113m	3.010E-07	2.737E-07	2.489E-07	2.263E-07	1.963E-07	1.548E-07	9.302E-28
In-113	1.449E-07	1.722E-07	1.970E-07	2.195E-07	2.496E-07	2.910E-07	4.456E-07
Cd-114	3.286E-05	3.286E-05	3.286E-05	3.286E-05	3.286E-05	3.286E-05	3.286E-05
Sn-114	5.967E-09	5.967E-09	5.967E-09	5.967E-09	5.967E-09	5.967E-09	5.967E-09
In-115	2.416E-06	2.416E-06	2.416E-06	2.416E-06	2.416E-06	2.416E-06	2.416E-06
Sn-115	4.459E-07	4.459E-07	4.459E-07	4.459E-07	4.459E-07	4.459E-07	4.459E-07
Cd-116	1.143E-05	1.143E-05	1.143E-05	1.143E-05	1.143E-05	1.143E-05	1.143E-05
Sn-116	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05	1.142E-05
Sn-117	1.153E-05	1.153E-05	1.153E-05	1.153E-05	1.153E-05	1.153E-05	1.153E-05
Sn-118	1.160E-05	1.160E-05	1.160E-05	1.160E-05	1.160E-05	1.160E-05	1.160E-05
Sn-119	1.158E-05	1.158E-05	1.158E-05	1.158E-05	1.158E-05	1.158E-05	1.158E-05

1.018

<u>T/</u>	ABLE F.3.e	. Fission g/gU (co	Product In ontd)	nventory by	/ Isotope a	at 40 MWd/I	⟨gM,
Isotope	<u>6 Years</u>	8 Years	10 Years	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Sn-119m	7.503E-11	9.500E-12	1.203E-12	1.523E-13	6.864E-15	3.917E-17	0.00
Sn-120	1.1/8E-05	1.1/8E-05	1.1/8E-05	1.1/8E-05	1.1/8E-05	1.1/8E-05	1.1/8E-05
Sn-121m	4.484E-09	4.361E-09	4.242E-09	4.126E-09	3.958E-09	3.692E-09	4.611E-15
Sb-121	1.111E-05	1.111E-05	1.111E-05	1.111E-05	1.111E-05	1.111E-05	1.111E-05
Sn-122	1.289E-05	1.289E-05	1.289E-05	1.289E-05	1.289E-05	1.289E-05	1.289E-05
Te-122	1.061E-06	1.061E-06	1.061E-06	1.061E-06	1.061E-06	1.061E-06	1.061E-06
Sn-123	2.044E-12	4.054E-14	8.043E-16	1.596E-17	4.459E-20	2.472E-24	0.00
Sb-123	1.376E-05	1.376E-05	1.376E-05	1.376E-05	1.376E-05	1.376E-05	1.376E-05
Te-123	1.642E-08	1.642E-08	1.642E-08	1.642E-08	1.642E-08	1.642E-08	1.642E-08
Te-123m	7.631E-15	1.109E-16	1.613E-18	2.346E-20	3.365E-23	8.577E-28	0.00
Sn-124	1.719E-05	1.719E-05	1.719E-05	1.719E-05	1.719E-05	1.719E-05	1.719E-05
Te-124	8.437E-07	8.437E-07	8.437E-07	8.437E-07	8.437E-07	8.437E-07	8.437E-07
Sb-125	3.024E-06	1.833E-06	1.111E-06	6.737E-07	3.180E-07	9.100E-08	0.00
Te-125	2.331E-05	2.452E-05	2.525E-05	2.569E-05	2.605E-05	2.628E-05	2.638E-05
Te-125m	4.230E-08	2.565E-08	1.555E-08	9.426E-09	4.448E-09	1.273E-09	0.00
Sn-126	3.774E-05	3.774E-05	3.774E-05	3.774E-05	3.774E-05	3.774E-05	3.748E-05
Sb-126	1.793E-12	1.793E-12	1.793E-12	1.793E-12	1.793E-12	1.793E-12	1.781E-12
Sb-126m	1.363E-14	1.363E-14	1.363E-14	1.363E-14	1.363E-14	1.363E-14	1.354E-14
Te-126	1.166F-06	1.166F-06	1.167F-06	1.167F-06	1.168F-06	1.170F-06	1.425E-06
Te-127	2.971E-15	2.855F-17	2.743E-19	2.635E-21	2.482F-24	2.245E-29	0.00
Te-127m	8.487E-13	8.154F-15	7.834F-17	7.527E-19	7.089F-22	6.414F-27	0.00
T-127	7.495E-05	7.495E-05	7.495E-05	7.495E-05	7.495E-05	7.495E-05	7.4956-05
Te-128	1.455F-04	1.455E-04	1.455E-04	1.455E-04	1 455F-04	1 455F-04	1 455E-04
Xe-128	5 934F-06	5 934F-06	5 934F-06	5 934F-06	5 934F-06	5 934F-06	5 Q34F-06
T_120	2 288F_04	2 288F_04	2 288F_04	2 288F_0/	2 288F_04	2 288F_0/	2 288E_01
Ye-120	1 502F_08	4 504E-09	A 506F_08	4 508F_08	A 601E-09	A 606E-09	5 506E_08
Te-129	4 520F_04	4.594L-00	4.590L-00	4 520F_0A	4 520F_04	4.520E-00	A 520E-00
Y_{0-130}	2 256E_05	2 256E_05	2 256E_05	2 2565-05	2 2565-05	2 256E_05	2 256E_05
Xe-130	2.2301-03	2.2JUL-0J	2.2JUL-0J	2.2JUL-0J	2.230L-03	2.2JUL-0J	2.250L-05
X_{0-132}	4.014E-04	4.014E-04	4.014E-04	4.014E-04	4.014E-04	4.014E-04	4.014E-04
$R_{2} = 132$	3 138E_00	3 1395_00	3 139E_00	3 138E_00	3 138E_00	2 138E_00	3 139E_00
C_{c-133}	$1.275E_{-02}$	1 275E_03	1 2755-03	$1 275E_{03}$	$1 275E_{03}$	$1 275E_{02}$	$1.275E_{-02}$
$X_{0} = 131$	1 758E_03	1 7585-03	1 758E_03	1.758E_03	1.275E-03	1 758E_03	1.758E_03
$C_{e} = 134$	1 800E-05	0 1885-06	1.730L-03	2 305E_06	8 735E_07	1.730L-03	0.00
$R_{2} = 134$	2 386E-04	2 171E-01	2 510E_0/	2.595L-00	2 557E_0/	$2.564E_04$	2 566E_04
C_{c-135}	2.300L-04	2.4/4L-04 1 717E_01	A 717E_04	2.342L-04	2.JJ/L-04	2.JU4L-04	A 715E-04
CS-135 Ra-125	4.717L=04 1 1/2E_06	1 1/2E_06	1 1/25-06	4.717L-04 1 1/3E-06	4.717L-04	1 1/1/L = 04	1 284E_06
Da = 135 Ya 126	2 7525-03	2 7525-02	2 7525-02	2 7525-03	2 7525-03	2 7525-03	2 7525-03
AC~130	2.7522-05	2.1555 05	2./520-05	2.7522-05	2.7522-05	2.7522-05	2.7522-05
Da-130 Cc-127	1 2075 02	1 1525 02	1 100E 02	1 0505 03	0 800E-03	9 721E_04	1 280E-12
$D_{2} = 127$	2 96/E 0/	3 1005 04	3 0305-04	1.0306-03	5 130E-04	6 1005-04	1 /035-03
Da-13/ Da 127m	1 9/6E 10	1 7625 10	1 6025-10	1 6075-10	1 /005-10	1 3365-14	1 050E-00
Da-13/11	1 5015 02	1 5015-02	1 5015-10	1 5015-02	1 5015-02	1 5015-10	1 5015-02
Da-130	1.3010-03	1.JUIE-03	1.JUIE-UJ	1.3016-03	A 767E 00	1.3010-03	1.JUIE-03
Ld-130	4./0/E-09	4./U/E-U9	+./U/E-U9	4./U/E-U9	1 420E 02	1 1205 02	1 1205 N2
La-139	1.429E-U3	1 479E-U3	1 1795-03	1 1795-03	1 A72E-03	1 A72F-03	1 4725-03
LC=14U	1.4/2E~U3	1.4/ZE=U3	1.4/2E=UJ	1.4/20-03	1.4/20-03	1.4/26-03	1.7/22703

<u>TABLE F.3.e</u>. Fission Product Inventory by Isotope at 40 MWd/kgM, g/gU (contd)

•

. .

المؤلف ا

a.

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Pr-141	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03
Ce-142	1.315E-03	1.315E-03	1.315E-03	1.315E-03	1.315E-03	1.315E-03	1.315E-03
Nd-142	4.548E-05	4.548E-05	4.548E-05	4.548E-05	4.548E-05	4.548E-05	4.548E-05
Nd-143	7.702E-04	7.702E-04	7.702E-04	7.702E-04	7.702E-04	7.702E-04	7.702E-04
Ce-144	8.357E-07	1.408E-07	2.371E-08	3.993E-09	2.760E-10	3.213E-12	0.00
Pr-144	3.529E-11	5.944E-12	1.001E-12	1.686E-13	1.165E-14	1.357E-16	0.00
Pr-144m	1./64E-13	2.9/1E-14	5.004E-15	8.428E-16	5.825E-1/	6./82E-19	0.00
Nd-144	1.635E-03	1.635E-03	1.635E-03	1.635E-03	1.635E-03	1.635E-03	1.635E-03
NG-145	7.401E-04	7.401E-04	7.401E-04	7.401E-04	7.401E-04	7.401E-04	7.401E-04
Nu-140 Dm 146	0.4/UE-U4	8.4/UE-U4	8.4/UE-U4	0.4/UE-U4	0.4/UE-U4	6.4/UE-U4	8.4/UE-U4
P_{m-140} Sm_146	1 501E-09	2.051E-09	2.000E-09	1.001E-09	1.09/2-09	1 606E-09	1 6275-09
$Dm_1/17$	2 138E_05	1.029E-00	7 420E_06	1.300E-00	1.083E-06	5 200E-07	1.02/2-00
Sm_147	1 800F_04	1 078F_04	2 030F-04	2 060F-04	2 084F_04	2 000F_04	2 104F_04
Nd-148	4.446F-04	4.446F-04	4 446F-04	4.446F-04	4 446F-04	4 446F-04	4 446F-04
Sm-148	2.454E-04	2.454F-04	2.454E-04	2.454F-04	2.454E-04	2.454F-04	2.454F-04
Sm-149	1.963E-06	1.963E-06	1.963E-06	1.963E-06	1.963F-06	1.963E-06	1.963E-06
Nd-150	2.280E-04	2.280E-04	2.280E-04	2.280E-04	2.280E-04	2.280E-04	2.280E-04
Sm-150	2.822E-04	2.822E-04	2.822E-04	2.822E-04	2.822E-04	2.822E-04	2.822E-04
Eu-150	4.081E-13	3.927E-13	3.779E-13	3.636E-13	3.432E-13	3.117E-13	1.992E-21
Sm-151	1.208E-05	1.189E-05	1.171E-05	1.153E-05	1.127E-05	1.084E-05	5.715E-09
Eu-151	5.835E-07	7.681E-07	9.499E-07	1.129E-06	1.392E-06	1.818E-06	1.265E-05
Sm-152	1.429E-04	1.429E-04	1.429E-04	1.429E-04	1.429E-04	1.429E-04	1.430E-04
Eu-152	4.277E-08	3.862E-08	3.488E-08	3.150E-08	2.703E-08	2.095E-08	4.269E-30
Gd-152	2.531E-08	2.646E-08	2.751E-08	2.845E-08	2.969E-08	3.139E-08	3.722E-08
Eu-153	1.390E-04	1.390E-04	1.390E-04	1.390E-04	1.390E-04	1.390E-04	1.390E-04
Gd-153	3.671E-11	4.531E-12	5.592E-13	6.901E-14	2.992E-15	1.601E-17	0.00
Sm-154	5.336E-05	5.336E-05	5.336E-05	5.336E-05	5.336E-05	5.336E-05	5.336E-05
Eu-154	3.506E-05	2.984E-05	2.540E-05	2.162E-05	1.698E-05	1.135E-05	0.00
GG-154	3.193E-05	3./15E-05	4.159E-05	4.53/E-05	5.002E-05	5.565E-05	6.699E-05
EU-155	8.084E-00	0.500E-00	4.965E-06	3./54E-06	2.468E-06	1.22/E-06	0.00
60-100 Cd 156	1.139E-03	1.3/UE-U5	1.53UE-05	1.052E-05	1.780E-05	1.904E-05	2.02/E-05
GU-150 Cd_157	1.311E-04	1.311E-04 1 207E-07	1.311E-04 1.207E-07	1.311E-04 1.207E_07	1.311E-04	1.311E-04	1.311E-04 1.207E-07
Gd_158	3 100F_05	3 100F_05	3 100F_05	3 100F_05	3 109F-05	3 109E-05	3 109F-05
Th_150	4 218F_06	4 218F_06	4 218F-06	4 218F-06	4 218F-06	4 218F+06	4 218F-06
Gd-160	2.066F-06	2.066F-06	2.066F-06	2.066F-06	2.066F-06	2.066F-06	2.066F-06
Th-160	8.017F-17	7.288E-20	6.625E-23	6.023E-26	1.651E-30	0.00	0.00
Dv-160	5.896E-07	5.896E-07	5.896E-07	5.896E-07	5.896E-07	5.896E-07	5.896E-07
Dv-161	6.353E-07	6.353E-07	6.353E-07	6.353E-07	6.353E-07	6.353E-07	6.353E-07
Dy-162	5.944E-07	5.944E-07	5.944E-07	5.944E-07	5.944E-07	5.944E-07	5.944E-07
Dy-163	5.470E-07	5.470E-07	5.470E-07	5.470E-07	5.470E-07	5.470E-07	5.470E-07
Dy-164	7.788E-08	7.788E-08	7.788E-08	7.788E-08	7.788E-08	7.788E-08	7.788E-08
Ho-165	3.178E-07	3.178E-07	3.178E-07	3.178E-07	3.178E-07	3.178E-07	3.178E-07
Ho-166m	4.410E-09	4.405E-09	4.400E-09	4.395E-09	4.388E-09	4.375E-09	2.484E-09
Er-166	1.129E-07	1.129E-07	1.129E-07	1.129E-07	1.129E-07	1.129E-07	1.148E-07

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Fr-167	5-385E-09	5.385E-09	5.385E-09	5.385E-09	5.385F-09	5.385F-09	5.385E-09
Er-168	1.784E-08	1.784E-08	1.784E-08	1.784E-08	1.784E-08	1.784E-08	1.784E-08
Tm-169	1.498E-10	1.498E-10	1.498E-10	1.498E-10	1.498E-10	1.498E-10	1.498E-10
Er-170	1.018E-13	1.018E-13	1.018E-13	1.018E-13	1.018E-13	1.018E-13	1.018E-13
Tm-170	1.424E-16	2.775E-18	5.410E-20	1.048E-21	0.00	0.00	0.00
Yb-170	6.698E-11	6.698E-11	6.698E-11	6.698E-11	6.698E-11	6.698E-11	6.698E-11
Tm-171	2.182E-13	1.060E-13	5.149E-14	2.501E-14	8.469E-15	1.393E-15	0.00
Yb-171	5.333E-12	5.446E-12	5.500E-12	5.527E-12	5.543E-12	5.550E-12	5.552E-12
Yb-172	3.271E-13	3.271E-13	3.271E-13	3.271E-13	3.271E-13	3.271E-13	3.271E-13
Total	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02

		g/gU					
Isotope	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-3	5.434E-08	4.857E-08	4.341E-08	3.880E-08	3.279E-08	2.476E-08	3.192E-32
L1-6	1.527E-10	1.527E-10	1.527E-10	1.527E-10	1.527E-10	1.527E-10	1.527E-10
L1-7	1.367E-11	1.367E-11	1.367E-11	1.367E-11	1.367E-11	1.367E-11	1.367E-11
Be-9	2.628E-11	2.628E-11	2.628E-11	2.628E-11	2.628E-11	2.628E-11	2.628E-11
Be-10	1.756E-10	1.756E-10	1.756E-10	1.756E-10	1.756E-10	1.756E-10	1.755E-10
C-14	3.547E-11	3.546E-11	3.546E-11	3.545E-11	3.543E-11	3.541E-11	3.145E-11
Zn-66	3.934E-14	3.934E-14	3.934E-14	3.934E-14	3.934E-14	3.934E-14	3.934E-14
Zn-67	1.581E-15	1.581E-15	1.581E-15	1.581E-15	1.581E-15	1.581E-15	1.581E-15
Ga-71	1.327E-12	1.327E-12	1.327E-12	1.327E-12	1.327E-12	1.327E-12	1.327E-12
Ge-72	3.440E-08	3.440E-08	3.440E-08	3.440E-08	3.440E-08	3.440E-08	3.440E-08
Ge-73	6.476E-08	6.476E-08	6.476E-08	6.476E-08	6.476E-08	6.476E-08	6.476E-08
Ge-74	1.390E-07	1.390E-07	1.390E-07	1.390E-07	1.390E-07	1.390E-07	1.390E-07
As-75	2.714E-07	2.714E-07	2.714E-07	2.714E-07	2.714E-07	2.714E-07	2.714E-07
Ge-76	6.442E-07	6.442E-07	6.442E-07	6.442E-07	6.442E-07	6.442E-07	6.442E-07
Se-76	1.164E-08	1.164E-08	1.164E-08	1.164E-08	1.164E-08	1.164E-08	1.164E-08
Se-77	1.255E-06	1.255E-06	1.255E-06	1.255E-06	1.255E-06	1.255E-06	1.255E-06
Se-78	3.258E-06	3.258E-06	3.258E-06	3.258E-06	3.258E-06	3.258E-06	3.258E-06
Se-79	7.623E-06	7.623E-06	7.623E-06	7.623E-06	7.622E-06	7.622E-06	7.543E-06
Br-79	7.600E-10	9.227E-10	1.085E-09	1.248E-09	1.492E-09	1.899E-09	8.118E-08
Se-80	1.706E-05	1.706E-05	1.706E-05	1.706E-05	1.706E-05	1.706E-05	1.706E-05
Kr-80	3.869E-10	3.869E-10	3.869E-10	3.869E-10	3.869E-10	3.869E-10	3.869E-10
Br-81	2.658E-05	2.658E-05	2.658E-05	2.658E-05	2.658E-05	2.658E-05	2.658E-05
Kr-81	5.293E-11	5.293E-11	5.293E-11	5.293E-11	5.293E-11	5.293E-11	5.2/6E-11
Se-82	4.129E-05	4.129E-05	4.129E-05	4.129E-05	4.129E-05	4.129E-05	4.129E-05
Kr-82	1.885E-06	1.885E-06	1.885E-06	1.885E-06	1.885E-06	1.885E-06	1.885E-06
Kr-83	4.1/1E-05	4.1/1E-05	4.1/1E-05	4.1/1E-05	4.1/1E-05	4.1/1E-05	4.1/1E-05
Kr-84	1.433E-04	1.433E-04	1.433E-04	1.433E-04	1.433E-04	1.433E-04	1.433E-04
Kr-85	1.0/1E-05	1.468E-05	1.290E-05	1.134E-05	9.33/E-06	0./58E-00	2.045E-33
KD-85	1.248E-04	1.208E-04	1.280E-04	1.302E-04	1.322E-04	1.348E-04	1.415E-04
Kr-80	2.185E-04	2.185E-04	2.185E-04	2.185E-04	2.185E-04	2.185E-04	2.185E-04
55-00 DF 07	8.U30E-U/	8.000E-0/	8.U30E-U/	0.UD0E-U/	8.030E-0/	8.030E-0/	8.U30E-U/
KD-0/ S∽ 07	2.700E-04	2./00E-04	2./00E-04	2./88E-04	2.788E-04	2.7000-04	2./00E-04
21-01 21-01	3 086E-04	3 086E-04	3 086E-04	3 086E-04	3 086E_04	3 086E-04	3 086E-04
V_80	5 155E_04	5.900E-04	5 155E-04	5.900L-04	5.960E-04	5 155E_04	5 155E_04
00-1 00-22	A 986F-04	3.155E-04	4 533E-04	4 322F-04	4 024F-04	3 573E-04	2 646F-14
V_QN	1 250E-07	1 102F-07	1 137F-07	1 084F-07	1 009F-07	8 959F-08	6.636F-18
7 - 90	1.303E-04	1.535F-04	1.756E-04	1.967E-04	2.265E-04	2.716F-04	6.290E-04
Y-91	1.124F-16	1.960F-20	3.417F-24	5.957E-28	1.371E-33	0.00	0.00
7r - 91	6.833F-04	6.833F-04	6.833E-04	6.833F-04	6.833E-04	6.833E-04	6.833E-04
Zr-92	7.630F-04	7.630E-04	7.630E-04	7.630E-04	7.630E-04	7.630E-04	7.630E-04
Zr-93	8.731E-04	8.731E-04	8.731E-04	8.731E-04	8.731E-04	8.731E-04	8.727E-04
Nb-93	9.721E-10	1.323E-09	1.716E-09	2.148E-09	2.859E-09	4.191E-09	3.895E-07
Nb-93m	2.827E-09	3.267E-09	3.665E-09	4.024E-09	4.499E-09	5.146E-09	7.370E-09
Zr-94	9.337E-04	9.337E-04	9.337E-04	9.337E-04	9.337E-04	9.337E-04	9.337E-04
Nb-94	1.307E-09	1.307E-09	1.307E-09	1.307E-09	1.307E-09	1.307E-09	1.264E-09

6.8.10

-1

TABLE F.3.f. Fission Product Inventory by Isotope at 45 MWd/kgM, g/gU
			-				
Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Zr-95	1.973E-15	7.213E-19	2.637E-22	9.642E-26	6.741E-31	0.00	0.00
Nb-95	2.406E-15	8.797E-19	3.216E-22	1.176E-25	6.145E-33	0.00	0.00
Mo-95	9.285E-04	9.285E-04	9.285E-04	9.285E-04	9.285E-04	9.285E-04	9.285E-04
Zr-96	1.031E-03	1.031E-03	1.031E-03	1.031E-03	1.031E-03	1.031E-03	1.031E-03
Mo-96	8.077E-05	8.077E-05	8.077E-05	8.077E-05	8.077E-05	8.077E-05	8.077E-05
Mo-97	1.043E-03	1.043E-03	1.043E-03	1.043E-03	1.043E-03	1.043E-03	1.043E-03
Mo-98	1.112E-03	1.112E-03	1.112E-03	1.112E-03	1.112E-03	1.112E-03	1.112E-03
Tc-98	1.357E-08	1.357E-08	1.357E-08	1.357E-08	1.357E-08	1.357E-08	1.357E-08
Tc-99	9.696E-04	9.696E-04	9.696E-04	9.696E-04	9.696E-04	9.696E-04	9.665E-04
Ru-99	2.930E-08	3.562E-08	4.193E-08	4.824E-08	5.770E-08	7.348E-08	3.161E-06
Mo-100	1.266E-03	1.266E-03	1.266E-03	1.266E-03	1.266E-03	1.266E-03	1.266E-03
Ru-100	2.042E-04	2.042E-04	2.042E-04	2.042E-04	2.042E-04	2.042E-04	2.042E-04
Ru-101	1.052E-03	1.052E-03	1.052E-03	1.052E-03	1.052E-03	1.052E-03	1.052E-03
Ru-102	1.137E-03	1.137E-03	1.137E-03	1.137E-03	1.137E-03	1.137E-03	1.137E-03
Rh-102	4.205E-10	2.607E-10	1.616E-10	1.002E-10	4.892E-11	1.481E-11	0.00
Rh-103	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04
Ru-104	8.911E-04	8.911E-04	8.911E-04	8.911E-04	8.911E-04	8.911E-04	8.911E-04
Pd-104	5.030E-04	5.030E-04	5.030E-04	5.030E-04	5.030E-04	5.030E-04	5.030E-04
Pd-105	6.51/E-04	6.51/E-04	6.51/E-04	6.51/E-04	6.51/E-04	6.51/E-04	6.517E-04
RU-106	2.503E-00	6.4/9E-0/	1.638E-0/	4.140E-08	5.261E-09	1.690E-10	0.00
RN-106	2.410E-12	6.090E-13	1.539E-13	3.891E-14	4.945E-15	1.588E-16	0.00
Pa-100	0./48E-04	6./6/E-04	0.//2E-04	0.//3E-04	0.//4E-04	6.//4E-04	6.//4E-04
Pa-107	4.1//E-U4	4.1//E-04	4.1//E-04	4.1//E-04	4.1//E-04	4.1//E-04	4.1/6E-04
AG-107	3./95E-10 2.015E.04	4.080E-10	3.3/8E-10 2.015E 04	0.409E-10	7.800E-10	1.003E-09	4.408E~U8
Pu = 100	2.913E-04 2 AQAE 12	2.910E-04	2.9100-04	2.9106-04	2.910E-04	2.9156-04	2.9156-04
AG-100	2.404E-12 1 209E 00	2.43/6-12	1 2095 00	2.404E-12	2.303E-12	2.301E-12	1.0946-14
Δa_{-100}	1 200E-09	1.200E-09	1 2005-04	1.200E-09	1.200E-09	1 2005-09	1.2005-09
Cd_109	6 105E_14	2 080F_14	6 085E - 15	$2 316E_{-}15$	1.299L-04	$2.082E_{-17}$	0 00
Pd_110	9 637E-05	9.637E-05	9.637E-05	9 637E-05	9 637E-05	9 637E-05	9 637F-05
Ag-110	5.075E-17	6.689F-18	8.817F-19	1.162E-19	5.563E-21	3.510F-23	0.00
Ag-110m	3.348F-09	4.414E-10	5.818E-11	7.670F-12	3.671E-13	2.316E-15	0.00
Cd-110	1.011E-04	1.011E-04	1.011E-04	1.011E-04	1.011E-04	1.011E-04	1.011E-04
Cd-111	5.274E-05	5.274E-05	5.274E-05	5.274E-05	5.274E-05	5.274E-05	5.274E-05
Cd-112	3.096E-05	3.096E-05	3.096E-05	3.096E-05	3.096E-05	3.096E-05	3.096E-05
Cd-113	1.605E-07	1.605E-07	1.606E-07	1.606E-07	1.606E-07	1.607E-07	1.609E-07
Cd-113m	3.692E-07	3.357E-07	3.053E-07	2.776E-07	2.407E-07	1.898E-07	1.141E-27
In-113	1.758E-07	2.092E-07	2.396E-07	2.673E-07	3.041E-07	3.550E-07	5.446E-07
Cd-114	3.827E-05	3.827E-05	3.827E-05	3.827E-05	3.827E-05	3.827E-05	3.827E-05
Sn-114	8.102E-09	8.102E-09	8.102E-09	8.102E-09	8.102E-09	8.102E-09	8.102E-09
In-115	2.456E-06	2.456E-06	2.456E-06	2.456E-06	2.456E-06	2.456E-06	2.456E-06
Sn-115	5.104E-07	5.104E-07	5.104E-07	5.104E-07	5.104E-07	5.104E-07	5.104E-07
Cd-116	1.311E-05	1.311E-05	1.311E-05	1.311E-05	1.311E-05	1.311E-05	1.311E-05
Sn-116	1.354E-05	1.354E-05	1.354E-05	1.354E-05	1.354E-05	1.354E-05	1.354E-05
Sn-117	1.321E-05	1.321E-05	1.321E-05	1.321E-05	1.321E-05	1.321E-05	1.321E-05
Sn-118	1.329E-05	1.329E-05	1.329E-05	1.329E-05	1.329E-05	1.329E-05	1.329E-05

TABLE F.3.f.	Fission Product	Inventory by	Isotope	at	45 MWd/kgM,
	g/gU (contd)		-		-

TABLE F.3.f.	Fission Product	Inventory by	Isotope	at	45	MWd/kgM,
	a/aU (contd)	•••	•			

<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000	<u>Years</u>
Sn-119 1	L.327E-05	1.327E-05	1.327E-05	1.327E-05	1.327E-05	1.327E-05	1.327	E-05
Sn-119m 8	3.975E-11	1.136E-11	1.439E-12	1.822E-13	8.211E-15	4.686E-17	0.00	
Sn-120 1	L.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350E-05	1.350	E-05
Sn-121m 5	5.184E-09	5.042E-09	4.904E-09	4.770E-09	4.575E-09	4.269E-09	5.331	E-15
Sb-121 1	L.254E-05	1.254E-05	1.254E-05	1.254E-05	1.254E-05	1.254E-05	1.254	E-05
Sn-122 1	L.475E-05	1.475E-05	1.475E-05	1.475E-05	1.475E-05	1.475E-05	1.475	E-05
Te-122 1	1.374E-06	1.374E-06	1.374E-06	1.374E-06	1.374E-06	1.374E-06	1.374	E-06
Sn-123 2	2.335E-12	4.633E-14	9.191E-16	1.824E-17	5.100E-20	2.827E-24	0.00	
Sb-123 1	L.559E-05	1.559E-05	1.559E-05	1.559E-05	1.559E-05	1.559E-05	1.559	E-05
Te-123 2	2.247E-08	2.247E-08	2.247E-08	2.247E-08	2.247E-08	2.247E-08	2.247	E-08
Te-123m 1	L.141E-14	1.659E-16	2.412E-18	3.507E-20	6.441E-23	1.642E-27	0.00	
Sn-124 1	L.961E-05	1.961E-05	1.961E-05	1.961E-05	1.961E-05	1.961E-05	1.961	E-05
le-124 1	L.106E-06	1.106E-06	1.106E-06	1.106E-06	1.106E-06	1.106E-06	1.106	E-06
SD-125 3	3.4/1E-06	2.104E-06	1.2/5E-06	7./32E-0/	3.650E-0/	1.044E-0/	0.00	
Te-125 2	2.0/2E-05	2.810E-05	2.894E-05	2.945E-05	2.986E-05	3.013E-05	3.023	E-05
1e-125m 4	4.854E-08	2.944E-08	1./85E-08	1.082E-08	5.105E-09	1.4016-09	0.00	- 0-
SN-120 4	+.324E-U3	4.324E-05	4.324E-U3	4.324E-U3	4.323E-05	4.323E-05	4.294	E-05
SD-120 2	2.034E - 12	2.004E-12	2.034E-12	2.004E-12	2.034E-12	2.034E-12	2.040	E-12
SD-120m 1	1.3026-14	1.3026-14	1.302E-14	1.302E-14	1.302E-14	1.302E-14	1.001	E-14
Te-120 1	1.400E-00	1.401E-00	1.401E-00	1.402E-00	1.403E-00	1.404E-00	1.09/	E-00
To 127m 0	-409E-13	3.2/3E-1/ 0.254E 15	3.14/E-19 9.090E 17	3.UZ3E-21	2.04/E-24	2.3/0E-29	0.00	
T-127 9	9./3/E-13 2 510E_05	9.354E-15 9.510E_05	0.909E-1/ 9 510E_05	8 510E-05	8 510E 05	7.300E-27	9 510	E 05
T_{0} 1-12/ C	650E_04	1 659E-05	1 650E_04	1 650E-03	1 650E-05	1 650E-04	1 650	E-05
Ye 128 7	7 780F_06	7 7805-06	7 780F_06	7 780E_06	7 7895-04	7 7805-04	7 780	E-04 E-06
I_120 2	7.7092-00	2 575E-04	2 575E_04	2 575E-04	2 575E-04	2 575E_04	2 574	E-00 F_04
Ye-129 6	5 864F_08	6 866E_08	6 868E_08	6 870E-08	6 874F_08	6 880F_08	7 004	E-04 F-08
Te-130 5	5 142F-04	5 142F-04	5 142F-04	5 142F-04	5 142F-04	5 142F-04	5 142	E=00 F=04
Xe-130 2	2.927F-05	2.927E-05	2.927F-05	2.927E-05	2.927E-05	2 927F-05	2 927	E-04 F-05
Xe-131 4	875F-04	4.875F-04	4.875F-04	4.875E-04	4.875F-04	4.875F-04	4.875	F = 0.04
Xe-132 1	.625E-03	1.625E-03	1.625E-03	1.625E-03	1.625E-03	1.625E-03	1.625	F=03
Ba-132 3	3.986E-09	3,986E-09	3.986E-09	3.986F-09	3.986F-09	3.986E-09	3.986	F-09
Cs-133 1	.390E-03	1.390E-03	1.390E-03	1.390E-03	1.390E-03	1.390E-03	1.390	E-03
Xe-134 1	.975E-03	1.975E-03	1.975E-03	1.975E-03	1.975E-03	1.975E-03	1.975	E-03
Cs-134 2	2.220E-05	1.133E-05	5.787E-06	2.954E-06	1.078E-06	2.007E-07	0.00	
Ba-134 2	2.957E-04	3.065E-04	3.121E-04	3.149E-04	3.168E-04	3.177E-04	3.179	E-04
Cs-135 4	.979E-04	4.979E-04	4.979E-04	4.979E-04	4.979E-04	4.979E-04	4.977	E-04
Ba-135 1	.640E-06	1.641E-06	1.641E-06	1.641E-06	1.642E-06	1.642E-06	1.789	E-06
Xe-136 3	.148E-03	3.148E-03	3.148E-03	3.148E-03	3.148E-03	3.148E-03	3.148	E-03
Ba-136 3	.755E-05	3.755E-05	3.755E-05	3.755E-05	3.755E-05	3.755E-05	3.755	E-05
Cs-137 1	.358E-03	1.297E-03	1.238E-03	1.182E-03	1.103E-03	9.827E-04	1.440	E-13
Ba-137 3	.223E-04	3.836E-04	4.422E-04	4.981E-04	5.773E-04	6.976E-04	1.680	E-03
Ba-137m 2	.078E-10	1.984E-10	1.894E-10	1.809E-10	1.687E-10	1.503E-10	2.204	E-20
Ba-138 1	.679E-03	1.679E-03	1.679E-03	1.679E-03	1.679E-03	1.679E-03	1.679	E-03
La-138 4	.737E-09	4.737E-09	4.737E-09	4.737E-09	4.737E-09	4.737E-09	4.737	E-09
la-130 1	595E-03	1 595E-03	1.595E-03	1.595E-03	1.595E-03	1.595E-03	1.595	F-03

TABLE F.3.f.	Fission Product	Inventory by	Isotope a	t 45	MWd/kgM,
	g/gU (contd)	•••	-		•••

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Ce-140	1.652E-03	1.652E-03	1.652E-03	1.652E-03	1.652E-03	1.652E-03	1.652E-03
Pr-141	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03
Ce-142	1.468E-03	1.468E-03	1.468E-03	1.468E-03	1.468E-03	1.468E-03	1.468E-03
Nd-142	5.829E-05	5.829E-05	5.829E-05	5.829E-05	5.829E-05	5.829E-05	5.829E-05
Nd-143	8.000E-04	8.000E-04	8.000E-04	8.000E-04	8.000E-04	8.000E-04	8.000E-04
Ce-144	9.256E-07	1.559E-07	2.626E-08	4.422E-09	3.057E-10	3.558E-12	0.00
Pr-144	3.908E-11	6.582E-12	1.109E-12	1.867E-13	1.291E-14	1.502E-16	0.00
Pr-144m	1.954E-13	3.291E-14	5.542E-15	9.334E-16	6.452E-17	7.511E-19	0.00
Nd-144	1.875E-03	1.876E-03	1.876E-03	1.876E-03	1.876E-03	1.876E-03	1.876E-03
Nd-145	8.130E-04	8.130E-04	8.130E-04	8.130E-04	8.130E-04	8.130E-04	8.130E-04
Nd-146	9.683E-04	9.683E-04	9.683E-04	9.683E-04	9.683E-04	9.683E-04	9.683E-04
Pm-146	4.069E-09	3.163E-09	2.458E-09	1.910E-09	1.309E-09	6.9/1E-10	0.00
Sm-146	1./6/E-08	1.801E-08	1.82/E-08	1.84/E-08	1.8/0E-08	1.892E-08	1.918E-08
Pm-14/	2.180E-05	1.285E-05	7.5/8E-06	4.46/E-06	2.022E-06	5.396E-07	0.00
Sm-147	1.891E-04	1.980E-04	2.033E-04	2.064E-04	2.089E-04	2.104E-04	2.109E-04
NG-148	4.998E-04	4.998E-04	4.998E-04	4.998E-04	4.998E-04	4.998E-04	4.998E-04
Sm-148	2.841E-04	2.841E-04	2.841E-04	2.841E-04	2.841E-04	2.841E-04	2.841E-04
Sm-149	2.0/4E-06	2.0/4E-06	2.0/4E-06	2.0/4E-06	2.0/4E-06	2.0/4E-06	2.074E-06
NG-150	2.596E-04	2.596E-04	2.596E-04	2.596E-04	2.596E-04	2.596E-04	2.596E-04
Sm-150	3.140E-04	3.140E-04	3.140E-04	3.140E-04	3.140E-04	3.140E-04	3.140E-04
EU-150	4.295E-13	4.133E-13	3.9//E-13	3.82/E-13	3.012E-13	3.281E-13	2.098E-21
5M-151	1.2/4E-05	1.255E-05	1.235E-U5	1.210E-05	1.189E-05	1.144E-05	0.029E-09
EU-151	6.138E-0/	8.086E-0/	1.000E-06	1.189E-06	1.40/E-06	1.916E-06	1.335E-05
SM-152	1.531E-04	1.531E-04	1.531E-04	1.531E-04	1.531E-04	1.531E-04	1.531E-04
EU-152	3.893E-08	3.516E-08	3.1/5E-08	2.86/E-08	2.461E-08	1.90/E-08	3.885E-30
GG-152	2.291E-08	2.396E-08	2.491E-08	2.5/6E-08	2.690E-08	2.844E-08	3.3/5E-08
EU-153	1.556E-04	1.556E-04	1.550E-04	1.556E-04	1.556E-04	1.556E-04	1.556E-04
60-153 S- 154	3.920E-11	4.840E-12	5.980E-13	7.381E-14	3.200E-15	1./13E-1/	
SM~154	0.242E-05	0.242E-05	0.242E-05	0.242E-05	0.242E-05	0.242E-05	0.242E-05
EU-154	4.148E-05	3.531E-05	3.005E-05	2.338E-03	2.008E-05	1.342E-05	
60-154	3./94E-05	4.411E-05	4.93/E-05	3.384E-03	5.934E-05	0.000E-05	7.942E-05
cd 155	1.0356-05	1 6225 05	J.91/E-00	4.4/42-00	2.9415-00	2 2695 05	2 4145 05
GU-155 Cd 156	1.300E-05	1.052E=05	1.0236-05	1.9076-05	2.120E-05	2.200E-05	2.414E-03
GU-150	1./01E-04	1./010-04	1./010-04	1./010-04	1./010-04	1.7010-04	1./010-04
GU-157	1.400E-07	1.4000-07	1.400E-07	1.4002-07	1.4006-07	1.4002-07	1.400E-07
GU-150	4.000E-05	4.000E-05	4.000E-05	4.000E-05	5 073E-06	5.073E-06	5.073E-06
Cd 160	2 467E-06	2 467E-06	2 467E_06	$2.467E_{-00}$	2 467E-06	2 467E-06	$2.467E_{-06}$
GU-100	2.40/E-00	0.045E.20	2.407E-00	2.407E-00	2.407L-00	0 00	0.00
10-100	7 6665 07	7 666E_07	7 6665-07	7 6665-07	7 666E_07	7 666F_07	7 666F_07
Dy - 100	7.000E-07	7.5655.07	7.5655.07	7.5655-07	7.565E_07	7.565E_07	7.565E_07
Dy 140	7 0000-07	7 0965 07	7 0865-07	7 0865-07	7 0865-07	7 086F_07	7 086F_07
Dy-102	6 962E-07	6 862E-07	6 862E-07	6 862F-07	6 862F-07	6 862F_07	6 862F-07
Dy 164	0.0020-07	0.0020-07	0.002E=0/	0.0022-07	0.0021-07	0.002L-07	0.002L-07
Uy-104	3./13E-00	3./13E-VO	7./13E-00	7./1JE=00	3./13E-00 A 285E_07	A 286F-07	A 285F_07
Ho_166m	+.200E-07	4.200E-07	4.203L-07	6 700F_00	6.688F-00	6.669F-09	3.786F-00

TABLE F.3.f.	Fission Product Inventory by Isotope at 45 MWd/kg	Μ,
	g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Er-166	1.619E-07	1.619E-07	1.620E-07	1.620E-07	1.620E-07	1.620E-07	1.649E-07
Er-167 Er-168	2.468E-08						
Tm-169 Er-170	2.195E-10 1.672E-13						
Tm-170	2.369E-16	4.618E-18	9.002E-20	1.743E-21	9.726E-24	5.160E-28	0.00 1.094E_10
Tm-171	4.136E-13	2.009E-13	9.759E-14	4.741E-14	1.605E-14	2.640E-15	0.00
Yb-171 Yb-172	9.912E-12 6.947E-13	1.012E-11 6.947E-13	1.023E-11 6.947E-13	1.028E-11 6.947E-13	1.031E-11 6.947E-13	1.032E-11 6.947E-13	1.033E-11 6.947E-13
Total	4.607E-02						

F.63

55-9**4**

٠

		g/gU					
<u>Isotope</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
H-3	6.107E-08	5.458E-08	4.879E-08	4.361E-08	3.685E-08	2.783E-08	3.590E-32
Li-6	1.497E-10	1.497E-10	1.497E-10	1.497E-10	1.497E-10	1.497E-10	1.497E-10
Li-7	1.517E-11	1.517E-11	1.517E-11	1.517E-11	1.517E-11	1.517E-11	1.517E-11
Be-9	2.915E-11	2.915E-11	2.915E-11	2.915E-11	2.915E-11	2.915E-11	2.915E-11
Be-10	1.949F-10	1.949F-10	1.949E-10	1.949E-10	1.949F-10	1.949F-10	1.948F-10
C-14	3.936E-11	3.935F-11	3.934E-11	3.933E-11	3.932F-11	3.929F~11	3.490F-11
7n-66	4.190F-14	4.190F-14	4.190F-14	4.190F-14	4.190F-14	4.190F-14	4.190F-14
7n-67	1.672E-15	1.672F-15	1.672E-15	1.672E-15	1.672E-15	1.672E-15	1.672E-15
Zn-68	5.209E-17	5.209E-17	5.209E-17	5.209E-17	5.209E-17	5.209F-17	5.209E-17
Ga-71	1.486F-12	1.486F-12	1.486F-12	1.486F-12	1.486F-12	1.486F-12	1.486F-12
Ge-72	3.882F-08	3.882F-08	3.882F-08	3.882F-08	3.882F-08	3.882F-08	3.882F-08
Ge-73	7.183E-08	7.183E-08	7.183E-08	7.183F-08	7.183E-08	7.183E-08	7.183E-08
Ge-74	1.551F-07	1.551E-07	1.551E-07	1.551E-07	1.551E-07	1.551F-07	1.551E-07
As-75	2.989E-07	2.989F-07	2.989E-07	2.989F-07	2.989F-07	2.989F-07	2.989E-07
Ge-76	7.074F-07	7.074F-07	7.074F-07	7.074F-07	7.074F-07	7.074F-07	7.074F-07
Se-76	1.432E-08	1.432E-08	1.432E-08	1.432E-08	1.432E-08	1.432E-08	1.432E-08
Se-77	1.358E-06	1.358E-06	1.358E-06	1.358E-06	1.358E-06	1.358E-06	1.358E-06
Se-78	3.611E-06	3.611E-06	3.611E-06	3.611E-06	3.611E-06	3.611E-06	3.611E-06
Se-79	8.378E-06	8.378E-06	8.378E-06	8.378E-06	8.378E-06	8.377E-06	8.290E-06
Br-79	8.336E-10	1.012E-09	1.191E-09	1.370E-09	1.638E-09	2.085E-09	8,923E-08
Se-80	1.871E-05	1.871E-05	1.871E-05	1.871E-05	1.871E-05	1.871E-05	1.871E-05
Kr-80	4.392E-10	4.392E-10	4.392E-10	4.392E-10	4.392E-10	4.392E-10	4.392E-10
Br-81	2.882E-05	2.882E-05	2.882E-05	2.882E-05	2.882E-05	2.882F-05	2.882E-05
Kr-81	6.561E-11	6.561E-11	6.561E-11	6.561E-11	6.561E-11	6.560E-11	6.539E-11
Se-82	4.501E-05	4.501E-05	4.501E-05	4.501E-05	4.501E-05	4.501E-05	4.501E-05
Kr-82	2.268E-06	2.268E-06	2.268E-06	2.268E-06	2.268E-06	2.268E-06	2.268E-06
Kr-83	4.288E-05	4.288E-05	4.288E-05	4.288E-05	4.288E-05	4.288F-05	4.288E-05
Kr-84	1.580E-04	1.580E-04	1.580E-04	1.580E-04	1.580E-04	1.580E-04	1.580E-04
Kr-85	1.808E-05	1.589E-05	1.396E-05	1.227E-05	1.011E-05	7.314E-06	2.216E-33
Rb-85	1.349E-04	1.370E-04	1.390E-04	1.407E-04	1.428E-04	1.456E-04	1.529E-04
Kr-86	2.357E-04	2.357E-04	2.357E-04	2.357E-04	2.357E-04	2.357E-04	2.357E-04
Sr-86	9.876E-07	9.876E-07	9.876E-07	9.876E-07	9.876E-07	9.876E-07	9.876E-07
Rb-87	3.003E-04	3.003E-04	3.003E-04	3.003E-04	3.003E-04	3.003E-04	3.003E-04
Sr-87	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08
Sr-88	4.291E-04	4.291E-04	4.291E-04	4.291E-04	4.291E-04	4.291E-04	4.291E-04
Y-89	5.538E-04	5.538E-04	5.538E-04	5.538E-04	5.538E-04	5.538E-04	5.538E-04
Sr-90	5.357E-04	5.108E-04	4.871E-04	4.644E-04	4.324E-04	3.839E-04	2.844E-14
Y-90	1.343E-07	1.281E-07	1.221E-07	1.165E-07	1.084E-07	9.627E-08	7.131E-18
Zr-90	1.406E-04	1.656E-04	1.893E-04	2.120E-04	2.440E-04	2.925E-04	6.765E-04
Y-91	1.200E-16	2.091E-20	3.647E-24	6.358E-28	1.464E-33	0.00	0.00
Zr-91	7.375E-04	7.375E-04	7.375E-04	7.375E-04	7.375E-04	7.375E-04	7.375E-04
Zr-92	8.286E-04	8.286E-04	8.286E-04	8.286E-04	8.286E-04	8.286E-04	8.286E-04
Zr-93	9.497E-04	9.497E-04	9.497E-04	9.497E-04	9.497E-04	9.497E-04	9.492E-04
Nb-93	1.062E-09	1.443E-09	1.871E-09	2.341E-09	3.116E-09	4.565E-09	4.237E-07
Nb-93m	3.079E-09	3.558E-09	3.990E-09	4.381E-09	4.897E-09	5.599E-09	8.017E-09
Zr-94	1.025E-03	1.025E-03	1.025E-03	1.025E-03	1.025E-03	1.025E-03	1.025E-03

TABLE F.3.g. Fission Product Inventory by Isotope at 50 MWd/kgM,

TABLE F.3.g.	Fission Product	Inventory by	Isotope at	50 MWd/kgM,
T	g/gU (contd)		•	• •

Isotope	e <u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Nb-94	1.482E-09	1.482E-09	1.482E-09	1.482E-09	1.482E-09	1.482E-09	1.433E-09
Zr-95	2.161E-15	7.901E-19	2.889E-22	1.056E-25	7.383E-31	0.00	0.00
Nb-95	2.636E-15	9.636E-19	3.523E-22	1.288E-25	6.731E-33	0.00	0.00
Mo-95	1.009E-03	1.009E-03	1.009E-03	1.009E-03	1.009E-03	1.009E-03	1.009E-03
Zr-96	1.135E-03	1.135E-03	1.135E-03	1.135E-03	1.135E-03	1.135E-03	1.135E-03
Mo-96	1.001E-04	1.001E-04	1.001E-04	1.001E-04	1.001E-04	1.001E-04	1.001E-04
Mo-97	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03
Mo-98	1.234E-03	1.234E-03	1.234E-03	1.234E-03	1.234E-03	1.234E-03	1.234E-03
Tc-98	1.685E-08	1.685E-08	1.685E-08	1.685E-08	1.685E-08	1.685E-08	1.685E-08
Tc-99	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.048E-03
Ru-99	3.177E-08	3.862E-08	4.546E-08	5.230E-08	6.256E-08	7.966E-08	3.426E-06
Mo-100	1.406E-03	1.406E-03	1.406E-03	1.406E-03	1.406E-03	1.406E-03	1.406E-03
Ru-100	2.530E-04	2.530E-04	2.530E-04	2.530E-04	2.530E-04	2.530E-04	2.530E-04
RU-101	1.165E-03	1.165E-03	1.165E-03	1.165E-03	1.165E-03	1.165E-03	1.165E-03
RU-102	1.284E-03	1.284E-03	1.284E-03	1.284E-03	1.284E-03	1.284E-03	1.284E-03
RN-102	5.098E-10	3.160E-10	1.960E-10	1.215E-10	5.931E-11	1./95E-11	0.00
KI-103	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04
RU-104	1.018E-03	1.018E-03	1.018E-03	1.018E-03	1.018E-03	1.018E-03	1.018E-03
PG-104	0.121E-04	0.121E-04	0.121E-04	0.121E-04	0.121E-04	0.121E-04	0.121E-04
Pu-105	7.301E-04	7.381E-04	1 904E 07	7.301E-04	7.381E-04	7.381E-04	7.381E-04
RU-100	2.904E-00 2.706E 12	7.492E-07	1.094E-07	4./00E-U0	5 717E 15	1.934E-10	0.00
Dd 106	Z.700E-12	7.042E-13	1./OUE-13	4.499E-14	5./1/E-15	1.03/E-10 7.0025.04	7 0025 04
Pd-107	A 852E_04	1 952E-04	1 991E-04	1 993E-04	1 993E-04	1 993E-04	/ 993E-04
$A_{a} = 107$	4.032E-04	4.052E-04 5.436E-10	4.052E-04	7 507E-10	4.052E-04	4.052E-04	4.001E-04
Dd_108	3 300F_04	3 300F-04	3 300E_04	3 300F-04	3 300E-04	3 300E-04	3 300E-04
Δα=108	3.330E=07	2 033F_12	2 001F-12	2 860F-12	2 823F-12	$2.747E_{-12}$	$1 306E_{-14}$
rd-108	1 559F-09	1 559F_00	1 550F_00	1.559E-12	1 550F_00	1 550F_00	1 550E-14
P01-D0	1 454F-04	1 454F-04	1 454F-04	1 454F-04	1 454F-04	1 454F_04	1 454F-04
Cd-109	8 785F-14	2 950F-14	9 905F-15	3 326F-15	6 472F-16	4 229F-17	0 00
Pd-110	1.126E-04	1.126F-04	1 126F-04	1.126F-04	1.126F-04	1 126F-04	1 126F-04
Ag-110	6.427F-17	8.473F-18	1.117F-18	1.472F-19	7.046F-21	4.445E-23	0.00
Ag-110n	4.241E-09	5.591E-10	7.370E-11	9.715E-12	4.650E-13	2.933E-15	0.00
Cd-110	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04
Cd-111	6.195E-05	6.195E-05	6.195E-05	6.195E-05	6.195E-05	6.195E-05	6.195E-05
Cd-112	3.625E-05	3.625E-05	3.625E-05	3.625E-05	3.625E-05	3.625E-05	3.625E-05
Cd-113	1.630E-07	1.630E-07	1.631E-07	1.631E-07	1.632E-07	1.632E-07	1.634E-07
Cd-113n	4.455E-07	4.051E-07	3.684E-07	3.350E-07	2.905E-07	2.291E-07	1.377E-27
In-113	2.099E-07	2.503E-07	2.869E-07	3.203E-07	3.647E-07	4.261E-07	6.549E-07
Cd-114	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05
Sn-114	1.068E-08	1.068E-08	1.068E-08	1.068E-08	1.068E-08	1.068E-08	1.068E-08
In-115	2.492E-06	2.492E-06	2.492E-06	2.492E-06	2.492E-06	2.492E-06	2.492E-06
Sn-115	5.756E-07	5.756E-07	5.756E-07	5.756E-07	5.756E-07	5.756E-07	5.756E-07
Cd-116	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05	1.482E-05
Sn-116	1.574E-05	1.574E-05	1.574E-05	1.574E-05	1.574E-05	1.574E-05	1.574E-05
Sn_117	1 402F-05	1 402F_05	1 402F_05	1 402F_05	1 492F - 05	1.492F-05	1.492F-05

TABLE F.3.g.	Fission Product	Inventory by	Isotope at	50 MWd/kgM,
	g/gU (contd)		•	•

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Sn-118	1.502E-05	1.502E-05	1.502E-05	1.502E-05	1.502E-05	1.502E-05	1.502E-05
Sn-119	1.500E-05	1.500E-05	1.500E-05	1.500E-05	1.500E-05	1.500E-05	1.500E-05
Sn-119m	1.056E-10	1.337E-11	1.693E-12	2.144E-13	9.658E-15	5.512E-17	0.00
Sn-120	1.524E-05	1.524E-05	1.524E-05	1.524E-05	1.524E-05	1.524E-05	1.524E-05
Sn-121m	5.896E-09	5.735E-09	5.578E-09	5.425E-09	5.204E-09	4.855E-09	6.064E-15
Sb-121	1.395E-05	1.395E-05	1.395E-05	1.395E-05	1.395E-05	1.395E-05	1.396E-05
Sn-122	1.663E-05	1.663E-05	1.663E-05	1.663E-05	1.663E-05	1.663E-05	1.663E-05
Te-122	1.730E-06	1.730E-06	1.730E-06	1.730E-06	1.730E-06	1.730E-06	1.730E-06
Sn-123	2.627E-12	5.212E-14	1.034E-15	2.051E-17	5.728E-20	3.176E-24	0.00
Sb-123	1.742E-05	1.742E-05	1.742E-05	1.742E-05	1.742E-05	1.742E-05	1.742E-05
Te-123	2.96/E-08	2.96/E-08	2.96/E-08	2.96/E-08	2.96/E-08	2.967E-08	2.967E-08
Te-123m	1.632E-14	2.3/4E-16	3.451E-18	5.01/E-20	9.229E-23	2.352E-2/	0.00
Sn-124	2.205E-05	2.205E-05	2.205E-05	2.205E-05	2.205E-05	2.205E-05	2.205E-05
10-124	1.409E-06	1.409E-06	1.409E-06	1.409E-06	1.409E-06	1.409E-06	1.409E-06
SD-125	3.922E-00	2.3/8E-U0	1.441E-00	8./38E-U/	4.125E-07	1.180E-07	
Te 125	3.U1/E-U3	3.1/4E-U3	3.209E-U3	3.320E-U3	3.3/3E-05	3.403E-05	3.415E-05
10-120iii	3.400E-08	3.32/E-UO	2.01/E-08	1.223E-00	3./09E-09	1.031E-09	
Sh 126	4.001E-05	4.001E-00 2 210E 12	4.001E-00	4.001E-03	4.001E-U3	4.001E-03	4.04/E-U3
Sb-126m	$1.763E_{1}$	2.319E - 12 1 762E - 14	2.319E-12 1 763E-14	2.319E-12 1 763E 14	2.319E-12 1 762E 1A	2.3196-12	2.303E-12 1 751E 14
$T_{\Delta} = 120$	1.703E-14	1.6555-06	1.703E-14	1.703E-14	1.6595-06	1.703E-14	1.0005.06
Te-120	3 845E-15	3 604E-17	3 540E-10	3 410E_21	3 2115-24	2 0065-20	1.9902-00
$T_{0} = 127$	1 008F-12	$1 055E_{14}$	$1 014F_{-16}$	0 740F_10	Q 173E_22	2.900E-29 8 300F-27	0.00
T-127	9 533F-05	9.533E-05	9 533F-05	9.740L-19	9.173E-22	9 533F-05	9 533F-05
Te-128	1.864F-04	1.864F-04	1.864F-04	1.864F-04	1.864F-04	1.864F-04	1.864F-04
Xe-128	9.926F-06	9,926F-06	9.926F-06	9.926F-06	9,926F-06	9,926F-06	9.926E-06
I-129	2.855E-04	2.855E-04	2.855F-04	2.855E-04	2.855E-04	2.855E-04	2.855E-04
Xe-129	9.824E-08	9.826E-08	9.829E-08	9.831E-08	9.835E-08	9.841E-08	1.108E-07
Te-130	5.759E-04	5.759E-04	5.759E-04	5.759E-04	5.759E-04	5.759E-04	5.759E-04
Xe-130	3.692E-05	3.692E-05	3.692E-05	3.692E-05	3.692E-05	3.692E-05	3.692E-05
Xe-131	5.088E-04	5.088E-04	5.088E-04	5.088E-04	5.088E-04	5.088E-04	5.088E-04
Xe-132	1.849E-03	1.849E-03	1.849E-03	1.849E-03	1.849E-03	1.849E-03	1.849E-03
Ba-132	4.927E-09	4.927E-09	4.927E-09	4.927E-09	4.927E-09	4.927E-09	4.927E-09
Cs-133	1.496E-03	1.496E-03	1.496E-03	1.496E-03	1.496E-03	1.496E-03	1.496E-03
Xe-134	2.192E-03	2.192E-03	2.192E-03	2.192E-03	2.192E-03	2.192E-03	2.192E-03
Cs-134	2.661E-05	1.359E-05	6.936E-06	3.541E-06	1.292E-06	2.405E-07	0.00
Ba-134	3.564E-04	3.694E-04	3.760E-04	3.794E-04	3.817E-04	3.827E-04	3.830E-04
Cs-135	5.264E-04	5.264E-04	5.264E-04	5.264E-04	5.264E-04	5.264E-04	5.263E-04
Ba-135	2.259E-06	2.259E-06	2.259E-06	2.260E-06	2.260E-06	2.261E-06	2.417E-06
Xe-136	3.548E-03	3.548E-03	3.548E-03	3.548E-03	3.548E-03	3.548E-03	3.548E-03
Ba-136	4.397E-05	4.397E-05	4.397E-05	4.397E-05	4.397E-05	4.397E-05	4.397E-05
Cs-137	1.509E-03	1.441E-03	1.376E-03	1.314E-03	1.226E-03	1.092E-03	1.601E-13
Ba-137	3.582E-04	4.264E-04	4.914E-04	5.536E-04	6.416E-04	1.754E-04	1.868E-03
Ba-137m	2.309E-10	2.205E-10	2.105E-10	2.010E-10	1.876E-10	1.671E-10	2.449E-20
Ba-138	1.857E-03	1.857E-03	1.857E-03	1.857E-03	1.857E-03	1.857E-03	1.85/E-03
12-138	4 654F-09	4 654F-09	4 654F-09	4 654F-09	4.654F-09	4.6541-09	4.6541-09

TABLE F.3.g. Fission Product Inventory by Isotope at 50 MWd/kgM, g/gU (contd)

<u>Isotope</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000	Years
La-139	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760	E-03
Ce-140	1.833E-03	1.833E-03	1.833E-03	1.833E-03	1.833E-03	1.833E-03	1.833	E-03
Pr-141	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592	E-03
Ce-142	1.621E-03	1.621E-03	1.621E-03	1.621E-03	1.621E-03	1.621E-03	1.621	E-03
Nd-142	7.270E-05	7.270E-05	7.270E-05	7.270E-05	7.270E-05	7.270E-05	7.270	E-05
Nd-143	8.218E-04	8.218E-04	8.218E-04	8.218E-04	8.218E-04	8.218E-04	8.218	E-04
Ce-144	1.015E-06	1.709E-07	2.878E-08	4.848E-09	3.351E-10	3.901E-12	0.00	
Pr-144	4.285E-11	7.216E-12	1.215E-12	2.047E-13	1.415E-14	1.647E-16	0.00	
Pr-144m	2.142E-13	3.607E-14	6.076E-15	1.023E-15	7.073E-17	8.234E-19	0.00	
Nd-144	2.119E-03	2.120E-03	2.120E-03	2.120E-03	2.120E-03	2.120E-03	2.120	E-03
Nd-145	8.755E-04	8.755E-04	8.755E-04	8.755E-04	8.755E-04	8.755E-04	8.755	E-04
Nd-146	1.093E-03	1.093E-03	1.093E-03	1.093E-03	1.093E-03	1.093E-03	1.093	E-03
Pm-146	4.742E-09	3.686E-09	2.865E-09	2.226E-09	1.525E-09	8.124E-10	0.00	
Sm-146	2.028E-08	2.067E-08	2.097E-08	2.121E-08	2.147E-08	2.173E-08	2.203	E-08
Pm-147	2.214E-05	1.305E-05	7.694E-06	4.536E-06	2.053E-06	5.479E-07	0.00	
Sm-147	1.878E-04	1.969E-04	2.023E-04	2.054E-04	2.079E-04	2.094E-04	2.099	E-04
Nd-148	5.549E-04	5.549E-04	5.549E-04	5.549E-04	5.549E-04	5.549E-04	5.549	E-04
Sm-148	3.215E-04	3.215E-04	3.215E-04	3.215E-04	3.215E-04	3.215E-04	3.215	E-04
Sm-149	2.188E-06	2.188E-06	2.188E-06	2.188E-06	2.188E-06	2.188E-06	2.188	E-06
Nd-150	2.916E-04	2.916E-04	2.916E-04	2.916E-04	2.916E-04	2.916E-04	2.916	E-04
Sm-150	3.453E-04	3.453E-04	3.453E-04	3.453E-04	3.453E-04	3.453E-04	3.453	E-04
Eu-150	4.507E-13	4.336E-13	4.173E-13	4.015E-13	3.790E-13	3.442E-13	2.199	E-21
Sm-151	1.339E-05	1.319E-05	1.299E-05	1.279E-05	1.250E-05	1.202E-05	6.338	E-09
Eu-151	6.438E-07	8.485E-07	1.050E-06	1.249E-06	1.541E-06	2.013E-06	1.403	E-05
Sm-152	1.624E-04	1.624E-04	1.624E-04	1.624E-04	1.624E-04	1.624E-04	1.624	E-04
Eu-152	3.582E-08	3.235E-08	2.921E-08	2.638E-08	2.264E-08	1.755E-08	3.575	E-30
Gd-152	2.095E-08	2.191E-08	2.279E-08	2.358E-08	2.462E-08	2.604E-08	3.093	E-08
Eu-153	1.706E-04	1.706E-04	1.706E-04	1.706E-04	1.706E-04	1.706E-04	1.706	E-04
Gd-153	4.161E-11	5.136E-12	6.338E-13	7.822E-14	3.391E-15	1.815E-17	0.00	
Sm-154	7.181E-05	7.181E-05	7.181E-05	7.181E-05	7.181E-05	7.181E-05	7.181	E-05
Eu-154	4.751E-05	4.044E-05	3.442E-05	2.930E-05	2.300E-05	1.53/E-05	0.00	
Gd-154	4.364E-05	5.0/2E-05	5.6/4E-05	6.186E-05	6.815E-05	7.5/8E-05	9.116	E-05
Eu-155	1.193E-05	9.024E-06	6.824E-06	5.160E-06	3.392E-06	1.08/E-06	0.00	- 05
GC-155	1.589E-05	1.880E-05	2.100E-05	2.26/E-05	2.443E-05	2.014E-05	2./831	L-U5
GG-156	2.283E-04	2.283E-04	2.283E-04	2.283E-04	2.283E-04	2.283E-04	2.2031	L-04
GQ-15/	1./89E-0/	1./89E-0/	1./89E-0/	1./89E-0/	1./89E-0/	1./89E-0/	5 0061	
GQ-158	5.080E-05	5.080E-05	5.0802-05	5.0802-05	5.0000-05	5.000E-05	5.000	
ID-159	5.998E-00	5.998E-00	5.998E-00	3.998E-00	J.990E-00	3.990E-00	2.990	
GQ-100	2.004E-U0	2.004E-U0	2.004E-U0	2.004E-00	2.0040-00	2.004E-00	0 0041	L-00
10-100 Dv 160	1.4431-10	1.312E-19	1.1930-22	1.0046-23	2.9/3E-30	0.00	0.00	F_07
Dy-100	9.03/E-U/	9.03/E-0/	9.03/E-0/	9.03/E-0/	9.03/E-0/	9.05/E-0/	9.00/I	E-07
Dy-101	0.093E-U/	0.090E-U/	0.093E-U/	0.0931-0/	0.090E-U/ 9 212E 07	0.090E-0/	0.090 9 212	E-07
Dy 162	0.313E-U/	0.313E-U/	0.313E-U/	0.313E-0/	0.313E-0/	8 30/E_07	0.313	E_07
Dy-103	0.394E-U/	0.394E-0/	0.394E-U/	0.394E-0/	0.394E-0/ 1 18/E_07	1 18/15-07	1 19/1	E-07
Uy-164	1.104E-0/	1.104E-U/	1.104E-U/	1.104E-U/	1.104E-U/	5 6125 07	5 612	
HO-102	5.013E-U/	J.013E-0/	J.013E-0/	3.013E-0/	2.013E-01	0.013E-0/	2.012	L-07

mit

TABLE F.3.g.	Fission Product	Inventory by	Isotope	at	50	MWd/kgM,
	g/gU (contd)		•			•••

<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ho-166m	9.865E-09	9.854E-09	9.842E-09	9.831E-09	9.814E-09	9.785E-09	5.556E-09
Er-166	2.265E-07	2.265E-07	2.265E-07	2.265E-07	2.265E-07	2.266E-07	2.308E-07
Er-167	9.331E-09	9.331E-09	9.331E-09	9.331E-09	9.331E-09	9.331E-09	9.331E-09
Er-168	3.391E-08	3.391E-08	3.391E-08	3.391E-08	3.391E-08	3.391E-08	3.391E-08
Tm-169	3.148E-10	3.148E-10	3.148E-10	3.148E-10	3.148E-10	3.148E-10	3.148E-10
Er-170	2.632E-13	2.632E-13	2.632E-13	2.632E-13	2.632E-13	2.632E-13	2.632E-13
Tm-170	3.788E-16	7.383E-18	1.439E-19	2.810E-21	1.569E-23	8.324E-28	0.00
Yb-170	1.714E-10	1.714E-10	1.714E-10	1.714E-10	1.714E-10	1.714E-10	1.714E-10
Tm-171	7.390E-13	3.590E-13	1.744E-13	8.471E-14	2.868E-14	4.716E-15	0.00
Yb-171	1.735E-11	1.773E-11	1.792E-11	1.801E-11	1.806E-11	1.809E-11	1.809E-11
Yb-172	1.366E-12	1.366E-12	1.366E-12	1.366E-12	1.366E-12	1.366E-12	1.366E-12
Total	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02

÷

TABLE F.4.a. Actinide Inventory by Isotope at 20 MWd/kgM, g/gU

.

· a =

• •••

w.4

Cm-243

<u>Isotope</u> 6	Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
He-4 7.	128E-07 7	.628E-07	8.151E-07	8.694E-07	9.540E-07	1.102E-06	1.894E-05
Pb-207 7.0	077E-15 1	.078E-14	1.529E-14	2.060E-14	3.004E-14	4.969E-14	9.192E-11
Pb-208 1.8	882E-11 2	2.749E-11	3.690E-11	4.674E-11	6.184E-11	8.694E-11	6.081E-10
Pb-212 7.2	276E-15 8	3.126E-15	8.629E-15	8.897E-15	9.014E-15	8.841E-15	8.795E-19
Ra-224 6.3	347E-14 7	.088E-14	7.527E-14	7.761E-14	7.863E-14	7.712E-14	7.672E-18
Ra-226 2.4	462E-13 3	.364E-13	4.413E-13	5.609E-13	7.680E-13	1.188E-12	2.180E-09
Ac-227 5.2	722E-14 7	.106E-14	8.480E-14	9.845E-14	1.188E-13	1.522E-13	6.331E-12
Th-228 1.2	233E-11 1	.374E-11	1.459E-11	1.505E-11	1.525E-11	1.497E-11	1.491E-15
Th-229 5.	785E-13 5	.916E-13	6.061E-13	6.219E-13	6.481E-13	6.983E-13	3.673E-10
Th-230 4.	703E-09 5	.530E-09	6.364E-09	7.203E-09	8.473E-09	1.062E-08	5.812E-07
Th-231 3.9	935E-14 3	.935E-14	3.935E-14	3.935E-14	3.935E-14	3.936E-14	3.988E-14
Th-232 7.2	207E-10 8	3.692E-10	1.018E-09	1.166E-09	1.389E-09	1.761E-09	7.689E-08
In-234 1.3	393E-11 1	.393E-11	1.393E-11	1.393E-11	1.393E-11	1.393E-11	1.393E-11
Pa-231 4.2	21/E-10 4	.405E-10	4.592E-10	4./80E-10	5.061E-10	5.529E-10	9.692E-09
Pa-233 /	/86E-12 /	-818E-12	7.85/E-12	7.901E-12	7.975E-12	8.119E-12	3.1//E-11
U-232 5.0	550E-10 5	.845E-10	5.919E-10	5.921E-10	5.846E-10	5.632E-10	5.54/E-14
U-233 1.4	402E-09 1		1.//UE-09	1.926E-09	2.15/E-09	2.534E-09	2.115E-0/
U-234 1.4	480E-04 1	490E-04	1.501E-04	1.512E-04	1.52/E-04	1.552E-04	2.180E-04
0-235 9.0	5//E-U3 9	0.0/8E-03	9.0/8E-03	9.0/8E-03	9.0/9E-03	9.0/9E-03	9.809E-03
	DDIE-03 2	2.552E-U3	2.552E-03	2.552E-U3	2.553E-U3	2.554E-03	2./12E-03
	949E-11 1 5025 01 0	//UE-II	1.008E-11	1.40UE-11	1.204E-11	9.930E-12	5./04E-18
U=230 9.3	992E-UI 9 9595 14 7	0445 15	9.392E-UI	9.592E-UI	9.592E-UI	9.592E-UI	9.592E-UI
$N_{\rm P} = 235 - 2.6$	277E_10 1	.944E-13 877E-10	2.212E-13 1 977E-10	$1.977E_{-10}$	9.053E-17	3.705E = 10 1 977E = 10	1 9665 10
$N_{\rm D} = 230 - 1.0$	202E-04 2	202E-04	2 2125 04	2 2265-04	2 2405 04	2 200E 04	0 2525 04
Np-238 2 4	585E_13 2	561E_13	2.5150-04	2.5202-04	2.3400-04	2.3900-04	2 7005-15
Nn=230 2.1	200E-13 2	200F-11	2.00E-10	2.010E-13	2.401E-13 2.288E-11	2.42JE-13 2.287E-11	2.700E-15
Du-236 8 (171E_11 A	063F_11	2.209E-11 3.052E-11	1 9775_11	2.200E - 11	2.20/E = 11 2.68/E = 12	1 163E-11
Pu-238 7 ()61E-11 4	051F_05	6 8/3E_05	6 737E-05	6 581E_05	$6.328E_{05}$	4.103E-10 1 335E-08
Pu-230 / 7	730E-03 4	7305-03	1 720E_03	1 720E_03	1 720E_03	1 728E-03	4.3332-08
$P_{11} = 239 + 17$	33E-03 1	633E_03	1 632F_03	1 632F_03	1 632F_03	1 632F_03	1 472F-03
Pu-241 6 2	296F-04 5	718F-04	5 193F-04	4 717F-04	4 082F-04	3 209F-04	1 864F-10
$P_{11} = 241 + 0.2$	168F-04 2	068F-04	2 068F-04	2 068F-04	2 068F-04	2 068F-04	2 066F-04
Pu-244 2.9	973E-09 2	973F-09	2.973E-09	2.973F-09	2.973E-09	2.973F-09	2.973E-09
Am-241 2.7	71E-04 3	.339E-04	3.853E-04	4.316E-04	4.928E-04	5.758E-04	1.886E-04
Am-242m 1.3	379E-06 1	.366E-06	1.354E-06	1.341E-06	1.323E-06	1.293E-06	1.482E-08
Am-242 1.6	549E-11 1	.634E-11	1.619E-11	1.605E-11	1.583E-11	1.547E-11	1.773E-13
Am-243 2.6	65E-05 2	.664E-05	2.664E-05	2.663E-05	2.662E-05	2.661E-05	2.427E-05
Cm-242 4.2	212E-09 3	.349E-09	3.282E-09	3.251E-09	3.207E-09	3.130E-09	3.586E-11
1.350E-07 1	.286E-07	1.225E-0	7 1.167E-0	7 1.085E-0	7 9.604E-0	8 4.279E-1	8
Cm-244 3.6	510E-06 3	.344E-06	3.097E-06	2.869E-06	2.558E-06	2.112E-06	1.083E-22
Cm-245 1.2	211E-07 1	.211E-07	1.210E-07	1.210E-07	1.210E-07	1.209E-07	1.117E-07
Cm-246 8.9	947E-09 8	.944E-09	8.942E-09	8.939E-09	8.935E-09	8.929E-09	7.735E-09
Cm-247 5.2	231E-11 5	.231E-11	5.231E-11	5.231E-11	5.231E-11	5.231E-11	5.231E-11
Cm-248 1.6	527E-12 1	.627E-12	1.627E-12	1.627E-12	1.627E-12	1.627E-12	1.624E-12

TABLE F.4.a. Actinide Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

<u>Isotope 6 Years 8 Years 10 Years 12 Years 15 Years 20 Years 1000 Years</u> Cf-249 1.238E-14 1.240E-14 1.236E-14 1.232E-14 1.224E-14 1.212E-14 1.745E-15 Cf-250 1.241E-15 1.116E-15 1.004E-15 9.030E-16 7.703E-16 5.910E-16 1.316E-25

Total 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01

<u>TABLE F.4.b</u>. Actinide Inventory by Isotope at 25 MWd/kgM, g/gU

. . . d

.

e æ

• 4

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ho-4	1 152F-06	1 227F-06	1 305E-06	1 385F-06	1 507F-06	1 718F-06	2 411F-05
Pb-207	7.306E-15	1.112E-14	1.573E-14	2.114E-14	3.069E-14	5.036E-14	7.317E-11
Pb-208	2.803E-11	4.140E-11	5.599E-11	7.131E-11	9.488E-11	1.342E-10	9.509E-10
Pb-212	1.117E-14	1.257E-14	1.341E-14	1.387E-14	1.409E-14	1.384E-14	1.359E-18
Bi-212	1.059E-15	1.192E-15	1.272E-15	1.316E-15	1.336E-15	1.313E-15	1.289E-19
Ra-224	9.740E-14	1.096E-13	1.170E-13	1.210E-13	1.229E-13	1.208E-13	1.185E-17
Ra-226	2.261E-13	3.092E-13	4.060E-13	5.168E-13	7.093E-13	1.102E-12	2.440E-09
Ac-227	5.897E-14	7.292E-14	8.659E-14	1.000E-13	1.197E-13	1.514E-13	4.980E-12
Th-228	1.892E-11	2.126E-11	2.268E-11	2.345E-11	2.384E-11	2.345E-11	2.303E-15
Th-229	9.322E-13	9.475E-13	9.646E-13	9.834E-13	1.015E-12	1.076E-12	4.739E-10
Th-230	4.322E-09	5.099E-09	5.885E-09	6.681E-09	7.892E-09	9.958E-09	6.596E-07
Th-231	3.048E-14	3.048E-14	3.048E-14	3.048E-14	3.048E-14	3.048E-14	3.103E-14
Th-232	8.165E-10	9.830E-10	1.150E-09	1.316E-09	1.566E-09	1.982E-09	8.645E-08
1h-234	1.386E-11	1.386E-11	1.386E-11	1.386E-11	1.386E-11	1.386E-11	1.386E-11
Pa-231	4.292E-10	4.43/E-10	4.582E-10	4./28E-10	4.945E-10	5.308E-10	7.624E-09
Pa-233	1.040E-11	1.044E-11	1.049E-11	1.054E-11	1.063E-11	1.081E-11	4.064E-11
U-232	8.//IE-IU	9.108E-10	9.245E-10	9.259E-10	9.152E-10	8.824E-10	8.582E-14
U-233	1.092E-09	1.89/E-09	2.104E-09	2.312E-09	2.02UE-09	3.122E-09	2./2UE-U/
U-234	1.305E-04	1.402E-04	1.42UE-04	1.43/E-04	1.402E-04	1.503E-04	2.521E-04
U-235	7.490E-03	7.490E-03	7.490E-U3	7.490E-03	7.49/E-U3	7.490E-U3	7.032E-03
U-230 U-237	2.000E-03	2.000E-03	2.001E-03	2.001E-03	2.002E-03	2.003E-03	3.037E-03 1.072E-17
11-238	9 549F_01	9 549F_01	9 549F_01	9 549F_01	0 540F_01	0 540F_01	0 5/0F_01
Nn-235	4 545F - 14	1 266F-14	3 524F-15	9.349L-01	1 442F-16	5 902F-18	0 00
Nn-236	2.741F-10	2.741F-10	2.741F-10	2.741F-10	2.741F-10	2.741F-10	2.725F-10
Np-237	3.061F-04	3.073F-04	3.087F-04	3.103E-04	3.131F-04	3.184F-04	1.197F-03
Np-238	3.283E-13	3.253E-13	3.224E-13	3.194E-13	3.151F-13	3.080F-13	3.530E-15
Np-239	4.883E-11	4.883E-11	4.882E-11	4.881E-11	4.879E-11	4.877E-11	4.448F-11
Pu-236	1.347E-10	8.283E-11	5.094E-11	3.132E-11	1.510E-11	4.479E-12	6.080E-16
Pu-238	1.147E-04	1.130E-04	1.112E-04	1.095E-04	1.069E-04	1.028E-04	6.480E-08
Pu-239	4.918E-03	4.918E-03	4.918E-03	4.918E-03	4.917E-03	4.916E-03	4.785E-03
Pu-240	1.993E-03	1.993E-03	1.993E-03	1.993E-03	1.994E-03	1.994E-03	1.802E-03
Pu-241	7.977E-04	7.245E-04	6.580E-04	5.976E-04	5.172E-04	4.066E-04	6.379E-10
Pu-242	3.477E-04	3.477E-04	3.477E-04	3.477E-04	3.477E-04	3.477E-04	3.474E-04
Pu-244	8.609E-09	8.609E-09	8.609E-09	8.609E-09	8.609E-09	8.609E-09	8.609E-09
Am-241	3.459E-04	4.179E-04	4.830E-04	5.417E-04	6.193E-04	7.245E-04	2.379E-04
Am-242m	1.751E-06	1.735E-06	1.719E-06	1.704E-06	1.680E-06	1.643E-06	1.883E-08
Am-242	2.094E-11	2.0/5E-11	2.057E-11	2.038E-11	2.010E-11	1.965E-11	2.252E-13
Am-243	5.683E-05	5.681E-05	5.680E-05	5.6/9E-05	5.6/8E-05	5.6/5E-05	5.1/0E-05
UM-242	5.604E-09	4.205E-09	4.109E-09	4.128E-09	4.0/3E-09	3.9/5E-09	4.334E-11
Cm-243	2.094E-0/	2.500E-0/	2.444E-0/	2.320E-0/	2.104E-U/	1.910E-0/	0.030L-10
LM-244	1.030E-05	9.041E-00	0.030E-UD	0.10/E-U0	1.299E-U0	0.U2/E-U0	3.091E-22
UIII-243	4.144E-U/	4.143E-U/	4.143E-U/	4.142E-U/	4.1410-07	4.139E-U/	3.021E-U/
UIII-240 Cm 247	4.11UE-U8	4.109E-08	4.10/E-08	4.100E-08	4.104E-00 2 12EE 10	4.101E-U0 3 125E 10	3.333E-00 3.125E-10
UII-24/	3.123E-1U	J. 120E-10	3.120E-1U	J.120E-10	J.12JE+10	1 2016-11	1 2725-11
UIII-240	1.2010-11	1.2010-11	1.4016-11	1.2016-11	1.2010-11	1.2010-11	1.2/05-11

TABLE F.4.b. Actinide Inventory by Isotope at 25 MWd/kgM, g/gU (contd)

Isotope6 Years8 Years10 Years12 Years15 Years20 Years1000 YearsCf-2491.174E-131.176E-131.173E-131.168E-131.161E-131.150E-131.655E-14Cf-2501.343E-141.208E-141.087E-149.773E-158.337E-156.396E-151.870E-24Cf-2516.441E-156.431E-156.422E-156.412E-156.397E-156.372E-152.991E-15

Total 9.743E-01 9.743E-01 9.743E-01 9.743E-01 9.743E-01 9.743E-01 9.743E-01

TABLE F.4.c. Actinide Inventory by Isotope at 30 MWd/kgM, g/gU

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
He-4	1.665E-06	1.775E-06	1.886E-06	1.998E-06	2.168E-06	2.454E-06	2.873E-05
Pb-207	7.353E-15	1.118E-14	1.581E-14	2.120E-14	3.070E-14	5.008E-14	5.774E-11
Pb-208	3.880E-11	5.781E-11	7.867E-11	1.006E-10	1.345E-10	1.910E-10	1.368E-09
Pb-212	1.582E-14	1.792E-14	1.920E-14	1.990E-14	2.025E-14	1.993E-14	1.930E-18
Bi-209	1.142E-15	1.386E-15	1.633E-15	1.884E-15	2.267E-15	2.929E-15	1.462E-11
Bi-212	1.501E-15	1.700E-15	1.821E-15	1.888E-15	1.921E-15	1.891E-15	1.831E-19
Ra-224	1.380E-13	1.563E-13	1.674E-13	1.736E-13	1.767E-13	1.739E-13	1.684E-17
Ra-226	2.071E-13	2.835E-13	3.729E-13	4.755E-13	6.547E-13	1.023E-12	2.768E-09
Ac-227	5.933E-14	7.317E-14	8.659E-14	9.964E-14	1.185E-13	1.484E-13	3.874E-12
Th-228	2.681E-11	3.031E-11	3.246E-11	3.365E-11	3.428E-11	3.376E-11	3.272E-15
Th-229	1.407E-12	1.424E-12	1.443E-12	1.465E-12	1.501E-12	1.572E-12	5.659E-10
Th-230	3.965E-09	4.697E-09	5.442E-09	6.201E-09	7.366E-09	9.373E-09	7.573E-07
Th-231	2.324E-14	2.324E-14	2.324E-14	2.324E-14	2.325E-14	2.325E-14	2.381E-14
Th-232	8.893E-10	1.069E-09	1.248E-09	1.427E-09	1.696E-09	2.145E-09	9.340E-08
Th-234	1.380E-11	1.380E-11	1.380E-11	1.380E-11	1.380E-11	1.380E-11	1.380E-11
Pa-231	4.287E-10	4.398E-10	4.509E-10	4.619E-10	4.785E-10	5.062E-10	5.930E-09
Pa-233	1.300E-11	1.305E-11	1.310E-11	1.316E-11	1.327E-11	1.348E-11	4.788E-11
U-232	1.254E-09	1.306E-09	1.328E-09	1.332E-09	1.318E-09	1.271E-09	1.220E-13
U-233	1.883E-09	2.140E-09	2.399E-09	2.658E-09	3.043E-09	3.669E-09	3.230E-07
U-234	1.299E-04	1.325E-04	1.350E-04	1.375E-04	1.411E-04	1.470E-04	2.940E-04
U-235	5.716E-03	5.716E-03	5.716E-03	5.717E-03	5.717E-03	5.718E-03	5.856E-03
U-236	3.080E-03	3.081E-03	3.081E-03	3.082E-03	3.083E-03	3.084E-03	3.312E-03
U-237	2.865E-11	2.602E-11	2.363E-11	2.146E-11	1.858E-11	1.460E-11	5.190E-17
U-238	9.504E-01	9.504E-01	9.504E-01	9.504E-01	9.504E-01	9.504E-01	9.504E-01
Np-235	6.557E-14	1.826E-14	5.085E-15	1.416E-15	2.081E-16	8.515E-18	0.00
Np-236	3.654E-10	3.654E-10	3.653E-10	3.653E-10	3.653E-10	3.653E-10	3.632E-10
Np-237	3.827E-04	3.841E-04	3.857E-04	3.876E-04	3.907E-04	3.968E-04	1.410E-03
Np-238	3.651E-13	3.618E-13	3.585E-13	3.552E-13	3.504E-13	3.425E-13	3.926E-15
Np-239	8.728E-11	8.727E-11	8.725E-11	8.723E-11	8.721E-11	8.717E-11	7.950E-11
Pu-236	2.032E-10	1.250E-10	/.684E-11	4./25E-11	2.2/8E-11	6./5/E-12	8.104E-16
Pu-238	1.661E-04	1.635E-04	1.609E-04	1.584E-04	1.54/E-04	1.488E-04	8./02E-08
Pu-239	5.039E-03	5.039E-03	5.039E-03	5.038E-03	5.038E-03	5.03/E-03	4.906E-03
Pu-240	2.328E-03	2.329E-03	2.331E-03	2.331E-03	2.333E-03	2.334E-03	2.116E-03
Pu-241	9.253E-04	8.404E-04	7.032E-04	0.932E-04	5.000E-04	4./10E-U4	1.0/8E-09
PU-242	5.0/2E-04	5.0/2E-04	5.072E-04	5.0/2E-04	5.072E-04	3.0/2E-04	3.00/E-04
Pu-244	2.0000-08	2.000E-08	2.000E-08	2.000E-08	2.000E-00	2.000E-00	2.0000-00
A = 241	3.935E-04	4.//UE-U4	3.323E-04	0.207E-04	1 9605 06	0.320E-04	2.7446-04
AIII-242III	2 2205 11	2 2005 11	2 2075 11	2 266E 11	2 225E-11	2 195E-11	2.0940-00
AIII-242 Am-242	2.3292-11	1 0155-04	2.20/E-11 1 015E-04	2.2002-11	2.235E-11	1 014E_04	2.504E-15 0.251E_05
miii=243 Cm212	6 5815-04	1.0102-04	1.010E-04	1.0152-04	A 530F-00	A A20F-04	5 064F_11
Cm_2/2	1 503E-09	A 280F_07	4 086F_07	3 802F_07	3 618F_07	3 204F_07	$1 427F_17$
Cm_243	2 3525-05	2 170F_05	2 0185-05	1 8605-05	1 666F-05	1 376F_05	7 057F_22
$C_{m} = 244$	1 0005 05	1 0005-05	1 0005-05	1 0005-05	1 080F_06	1 080F_06	1 0055-06
CIII-243 Cm_246	1 3965 07	1 3865-07	1 3865-07	1 385F_07	1 3855-07	1 383F_07	1 198F_07
Cm 240	1 2005-07	1 2095-00	1 3095-00	1 3085-00	1 3085-00	1 308F_00	1 3085-00
∪#=∠47	T.200E-03	T*200E-08	T*200E-03	T+200E-03	1.JUUL-03	1.3001-03	1.JUUL-03

÷

TABLE F.4.c. Actinide Inventory by Isotope at 30 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Cm-248 Bk-249	6.773E-11 4.946E-15	6.774E-11 1.016E-15	6.774E-11 2.089E-16	6.774E-11 4.293E-17	6.774E-11 4.000E-18	6.774E-11 7.660E-20	6.760E-11 0.00
Cf-249 Cf-250 Cf-251 Cf-252	7.189E-13 9.115E-14 4.766E-14 5.361E-15	7.199E-13 8.198E-14 4.759E-14 3.170E-15	7.179E-13 7.374E-14 4.751E-14 1.874E-15	7.152E-13 6.632E-14 4.744E-14	7.110E-13 5.657E-14 4.733E-14 5.038E-16	7.040E-13 4.341E-14 4.715E-14 1.354E-16	1.014E-13 1.598E-23 2.213E-14
Total	9.692E-01	9.692E-01	9.692E-01	9.692E-01	9.692E-01	9.692E-01	9.692E-01

TABLE F.4.d. Actinide Inventory by Isotope at 35 MWd/kgM, g/gU

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
He-4	2.239E-06	2.394E-06	2.549E-06	2.704E-06	2.935E-06	3.316E-06	3.347E-05
Pb-207	7.248E-15	1.102E-14	1.557E-14	2.086E-14	3.014E-14	4.898E-14	4.545E-11
Pb-208	5.082E-11	7.626E-11	1.043E-10	1.339E-10	1.795E-10	2.559E-10	1.847E-09
Pb-212	2.112E-14	2.404E-14	2.583E-14	2.683E-14	2.735E-14	2.694E-14	2.578E-18
Bi-209	1.653E-15	1.999E-15	2.349E-15	2.703E-15	3.243E-15	4.167E-15	1.702E-11
Bi-212	2.003E-15	2.280E-15	2.450E-15	2.545E-15	2.594E-15	2.556E-15	2.445E-19
Ra-224	1.842E-13	2.097E-13	2.253E-13	2.340E-13	2.386E-13	2.350E-13	2.248E-17
Ra-226	1.892E-13	2.593E-13	3.418E-13	4.369E-13	6.040E-13	9.501E-13	3.143E-09
AC-22/	5.850E-14	7.202E-14	8.505E-14	9./01E-14	1.100E-13	1.43/E-13	2.990E-12
10-220	3.3/9E-11	4.000E-11	4.308E-11	4.03/E-11	4.020E-11	4.303E-11	4.309E-13
111-229 Th 220	2.003E-12	2.UZIE~12	2.042E-12	2.000E-12	2.10/E-12	2.100E-12	0.3010-10
TH-230	1 753E-14	4.324E-09	1 752E-14	1 754E-14	1 754E-14	1 754E 14	0.005E-07
Th-232	0 A12F_10	1 120F_00	1 316E_00	1.754E-14 1.504E-00	1.734L-14	2 254E-00	0 788E_08
Th-232	1 373F-11	1 373F-11	1 373F-11	1 373F-11	1 373F-11	1 373F_11	1 373F_11
Pa-231	4.212E-10	4.295E-10	4.379E-10	4.462E-10	4.587E-10	4.796F-10	4.587F-09
Pa-233	1.553E-11	1.558E-11	1.564E-11	1.571E-11	1.583E-11	1.607E-11	5.499E-11
U-232	1.686E-09	1.761E-09	1.793E-09	1.799E-09	1.781E-09	1.719E-09	1.631E-13
U-233	2.043E-09	2.350E-09	2.658E-09	2.968E-09	3.427E-09	4.175E-09	3.730E-07
U-234	1.223E-04	1.257E-04	1.291E-04	1.324E-04	1.373E-04	1.451E-04	3.414E-04
U-235	4.312E-03	4.312E-03	4.312E-03	4.313E-03	4.313E-03	4.314E-03	4.454E-03
U-236	3.220E-03	3.221E-03	3.221E-03	3.222E-03	3.222E-03	3.224E-03	3.478E-03
U-237	3.266E-11	2.966E-11	2.694E-11	2.446E-11	2.117E-11	1.665E-11	1.129E-16
U-238	9.457E-01	9.457E-01	9.457E-01	9.457E-01	9.457E-01	9.457E-01	9.457E-01
Np-235	8.774E-14	2.443E-14	6.804E-15	1.895E-15	2.784E-16	1.139E-17	0.00
Np-236	4.573E-10	4.573E-10	4.573E-10	4.573E-10	4.573E-10	4.573E-10	4.546E-10
Np-23/	4.572E-04	4.588E-04	4.606E-04	4.627E-04	4.662E-04	4.731E-04	1.619E-03
Np-238	3./82E-13	3./48E-13	3./14E-13	3.680E-13	3.630E-13	3.548E-13	4.06/E-15
NP-239	1.391E-10	1.390E-10	1.390E-10	1.390E-10	1.389E-10	1.389E-10	1.26/E-10
Pu-230	2.840E-10	1./5UE-10	1.0/0E-10 2.1525.04	0.018E-11	3.191E-11	9.404E-12	1.014E-15
Pu-230	2.22IE-04	2.10/E-04	2.102E-04	Z.119E-04	2.009E-04	1.990E-04	1.090E-07
Pu-239	2 574E-03	2 577E-03	2 580E-03	2 582E-03	2 585E_03	2 580E_03	4.9/2E-03
Pu-241	1.055E-03	9.579E-04	8.700F-04	7.901F-04	6.839F-04	5.376E-04	3.650E-09
Pu-242	6.812F-04	6.812F-04	6.812F-04	6.812E-04	6.812E-04	6.812E-04	6.804E-04
Pu-244	4.010E-08	4.010E-08	4.010E-08	4.010E-08	4.010E-08	4.010E-08	4.010E-08
Am-241	4.375E-04	5.328E-04	6.189E-04	6.966E-04	7.993E-04	9.386E-04	3.105E-04
Am-242m	2.017E-06	1.999E-06	1.981E-06	1.963E-06	1.936E-06	1.892E-06	2.169E-08
Am-242	2.413E-11	2.391E-11	2.369E-11	2.348E-11	2.316E-11	2.264E-11	2.595E-13
Am-243	1.618E-04	1.618E-04	1.618E-04	1.617E-04	1.617E-04	1.616E-04	1.474E-04
Cm-242	7.212E-09	4.948E-09	4.804E-09	4.756E-09	4.693E-09	4.579E-09	5.246E-11
Cm-243	6.634E-07	6.319E-07	6.019E-07	5.733E-07	5.330E-07	4.720E-07	2.103E-17
Cm-244	4.578E-05	4.240E-05	3.928E-05	3.639E-05	3.244E-05	2.679E-05	1.374E-21
Cm-245	2.371E-06	2.370E-06	2.370E-06	2.370E-06	2.369E-06	2.368E-06	2.186E-06
Cm-246	3.765E-07	3.764E-07	3.763E-07	3.762E-07	3.761E-07	3./58E-07	3.255E-07
Cm-247	4.279E-09	4.279E-09	4.279E-09	4.2/9E-09	4.2/9E-09	4.2/9E-09	4.2/9E-09

•

<u>TABLE F.4.d</u>. Actinide Inventory by Isotope at 35 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Cm-248	2.720E-10	2.720E-10	2.720E-10	2.720E-10	2.720E-10	2.720E-10	2.715E-10
Bk-249	2.263E-14	4.651E-15	9.559E-16	1.965E-16	1.830E-17	3.505E-19	0.00
Cf-249	3.243E-12	3.248E-12	3.239E-12	3.227E-12	3.208E-12	3.176E-12	4.573E-13
Cf-250	4.450E-13	4.003E-13	3.600E-13	3.238E-13	2.762E-13	2.119E-13	9.718E-23
Cf-251	2.486E-13	2.482E-13	2.478E-13	2.475E-13	2.469E-13	2.459E-13	1.154E-13
Cf-252	3.434E-14	2.030E-14	1.200E-14	7.098E-15	3.227E-15	8.674E-16	0.00
				· · · · · · · · · ·			

Total 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01

.

TABLE F.4.e. Actinide Inventory by Isotope at 40 MWd/kgM, g/gU

<u>Isotope 6 Years 8 Years 10 Years 12 Years 15 Years 20 Years 1</u>	1000 Years
He-4 2.872F-06 3.087F-06 3.299F-06 3.508F-06 3.816F-06 4.315F-06 3	8.807F-05
Pb-207 7.019E-15 1.067E-14 1.507E-14 2.018E-14 2.912E-14 4.719E-14 3	3.576E-11
Pb-208 6.362E-11 9.601E-11 1.318E-10 1.697E-10 2.282E-10 3.262E-10 2	2.370E-09
Pb-212 2.683E-14 3.067E-14 3.303E-14 3.436E-14 3.508E-14 3.459E-14 3	3.272E-18
Bi-209 2.269E-15 2.737E-15 3.209E-15 3.686E-15 4.409E-15 5.643E-15 1	.918E-11
Bi-212 2.545E-15 2.909E-15 3.134E-15 3.260E-15 3.327E-15 3.281E-15 3	3.104E-19
Ra-224 2.341E-13 2.676E-13 2.882E-13 2.998E-13 3.060E-13 3.017E-13 2	2.854E-17
Ra-226 1./25E-13 2.3/0E-13 3.132E-13 4.015E-13 5.5//E-13 8.843E-13 3	3.550E-09
AC-22/ 5.00/E-14 0.9/1E-14 8.219E-14 9.410E-14 1.112E-13 1.3/5E-13 2	2.310E-12
- IΠ-228 4.048E-II 0.188E-II 0.08/E-II 0.811E-II 0.930E-II 0.808E-II 0 Th 220 - 2 709E 12 2 729E-12 2 751E-12 2 777E-12 2 921E-12 2 010E-12 7).34/E-13 7 267E-10
Th= 230 3 327F= 10 3 082F= 10 4 661F= 10 5 364F= 10 6 462F= 10 8 404F= 10 0	307E-10
Th= $231 + 3.11F=14 + $	369F-14
Th-232 9.753F-10 1.167F-09 1.359F-09 1.550F-09 1.838F-09 2.318F-09 1	.003E-07
Th-234 1.366E-11 1.366E-11 1.366E-11 1.366E-11 1.366E-11 1.366E-11 1	.366E-11
Pa-231 4.073E-10 4.136E-10 4.198E-10 4.261E-10 4.354E-10 4.510E-10 3	3.537E-09
Pa-233 1.786E-11 1.792E-11 1.799E-11 1.806E-11 1.819E-11 1.845E-11 6	5.126E-11
U-232 2.156E-09 2.255E-09 2.299E-09 2.308E-09 2.286E-09 2.207E-09 2	2.071E-13
U-233 2.172E-09 2.525E-09 2.880E-09 3.235E-09 3.763E-09 4.622E-09 4	↓.173E-07
U-234 1.154E-04 1.198E-04 1.240E-04 1.282E-04 1.344E-04 1.444E-04 3	3.922E-04
U-235 3.223E-03 3.224E-03 3.224E-03 3.224E-03 3.225E-03 3.225E-03 3	366E-03
U-236 3.293E-03 3.294E-03 3.294E-03 3.295E-03 3.296E-03 3.297E-03 3	3.571E-03
U-237 3.614E-11 3.282E-11 2.981E-11 2.707E-11 2.343E-11 1.842E-11 2	2.134E-16
U-238 9.408E-01 9.408E-01 9.408E-01 9.408E-01 9.408E-01 9.408E-01 9	1.408E-01
NP-235 1.106E-13 3.0/9E-14 8.5/4E-15 2.388E-15 3.509E-16 1.436E-1/ 0	
Np-230 $3.453E-10$ $5.453E-10$ $5.452E-10$	0.421E-10
Np-239 3 703E-12 3 758E-12 3 724E-12 3 601E-12 3 640E-12 3 558E-12 4	804E-03
$N_{p} = 230 = 2.028E_{-10} = 2.027E_{-10} = 2.027E_{-10} = 2.027E_{-10} = 2.026E_{-10} = 2.025E_{-10} = 1.02025E_{-10} = 2.025E_{-10} = 2.0$	847E-10
Pu=236 = 3.755F=10 = 2.309F=10 = 1.420F=10 = 8.731F=11 = 4.210F=11 = 1.248F=11 = 1	210F-15
Pu-238 2.808F-04 2.764F-04 2.721F-04 2.679F-04 2.616F-04 2.515F-04 1	.325E-07
Pu-239 5.124E-03 5.124E-03 5.123E-03 5.123E-03 5.123E-03 5.122E-03 5	001E-03
Pu-240 2.745E-03 2.750E-03 2.755E-03 2.759E-03 2.765E-03 2.773E-03 2	2.541E-03
Pu-241 1.167E-03 1.060E-03 9.627E-04 8.743E-04 7.568E-04 5.949E-04 6	.902E-09
Pu-242 8.644E-04 8.644E-04 8.644E-04 8.644E-04 8.644E-04 8.644E-04 8	634E-04
Pu-244 7.173E-08 7.173E-08 7.173E-08 7.173E-08 7.173E-08 7.173E-08 7	.173E-08
Am-241 4.738E-04 5.792E-04 6.745E-04 7.605E-04 8.742E-04 1.028E-03 3	.416E-04
Am-242m 2.023E-06 2.005E-06 1.986E-06 1.968E-06 1.942E-06 1.898E-06 2	175E-08
Am-242 2.420E-11 2.398E-11 2.376E-11 2.355E-11 2.323E-11 2.270E-11 2	
Am-243 2.300E-04 2.359E-04 2.359E-04 2.358E-04 2.358E-0400000000000000000000000000000000000	261E 11
UNI-242 /.003E-09 4.90IE-09 4.0I9E-09 4.//UE-09 4./00E-09 4.092E-09 0 Cm 242 9 026E 07 9 511E 07 9 107E 07 7 722E 07 7 170E 07 6 257E 07 2	9.2010-11
CHI-243 0.930E-07 0.311E-07 0.107E-07 7.722E-07 7.179E-07 0.337E-07 2 Cm_214 7 060E_05 7 382E_05 6 838E_05 6 334E_05 5 647E_05 4 663E_05 2	,.0326-17 301F_21
Cm_245 A A83F_06 A A83F_06 A A82F_06 A A82F_06 A A81F_06 A A80F_06 A A78F_06 A	134F_06
Cm-246 8 671F-07 8 669F-07 8 666F-07 8 664F-07 8 660F-07 8 653F-07 7	496F-07
Cm-247 1.158E-08 1.158E-08 1.158E-08 1.158E-08 1.158E-08 1.158E-08 1	.158E-08

<u>TABLE F.4.e.</u> Actinide Inventory by Isotope at 40 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Cm-248 Bk-249 Cf-249 Cf-250 Cf-251	8.835E-10 8.179E-14 1.157E-11 1.690E-12 9.933E-13	8.836E-10 1.681E-14 1.159E-11 1.520E-12 9.917E-13	8.836E-10 3.455E-15 1.156E-11 1.367E-12 9.902E-13	8.836E-10 7.100E-16 1.152E-11 1.230E-12 9.887E-13	8.836E-10 6.615E-17 1.145E-11 1.049E-12 9.864E-13	8.836E-10 1.267E-18 1.134E-11 8.049E-13 9.826E-13	8.819E-10 0.00 1.632E-12 4.565E-22 4.612E-13
Cf-252	1.645E-13	9.727E-14	5.751E-14	3.400E-14	1.546E-14	4.156E-15	0.00
Total	9.590E-01	9.590E-01	9.590E-01	9.590E-01	9.590E-01	9.590E-01	9.590E-01

*

1490 -

1654 A

اين

414

123.64

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
He-4	3.572E-06	3.862E-06	4.146E-06	4.423E-06	4.826E-06	5.468E-06	4.245E-05
Pb-207	6.699E-15	1.019E-14	1.438E-14	1.925E-14	2.775E-14	4.487E-14	2.822E-11
Pb-208	7.672E-11	1.163E-10	1.602E-10	2.067E-10	2.786E-10	3.992E-10	2.915E-09
Pb-212	3.275E-14	3.755E-14	4.053E-14	4.221E-14	4.313E-14	4.256E-14	3.988E-18
Bi-209	2.981E-15	3.588E-15	4.198E-15	4.812E-15	5.744E-15	7.327E-15	2.100E-11
Bi-212	3.106E-15	3.562E-15	3.844E-15	4.004E-15	4.091E-15	4.037E-15	3.783E-19
Ra-224	2.857E-13	3.276E-13	3.535E-13	3.682E-13	3.762E-13	3.712E-13	3.479E-17
Ra-226	1.572E-13	2.164E-13	2.869E-13	3.691E-13	5.155E-13	8.251E-13	3.970E-09
Ac-227	5.409E-14	6.651E-14	7.835E-14	8.964E-14	1.056E-13	1.300E-13	1.781E-12
Th-228	5.549E-11	6.352E-11	6.854E-11	7.138E-11	7.299E-11	7.208E-11	6.760E-15
Th-229	3.508E-12	3.528E-12	3.552E-12	3.580E-12	3.627E-12	3.723E-12	8.038E-10
Th-230	3.047E-09	3.672E-09	4.325E-09	5.007E-09	6.082E-09	8.011E-09	1.112E-06
Th-231	9.725E-15	9.726E-15	9./2/E-15	9.728E-15	9.730E-15	9.733E-15	1.031E-14
Th-232	9.948E-10	1.188E-09	1.381E-09	1.5/4E-09	1.863E-09	2.346E-09	1.012E-0/
In-234	1.359E-11	1.359E-11	1.359E-11	1.359E-11	1.359E-11	1.359E-11	1.359E-11
Pa-231	3.888E-10	3.934E-10	3.980E-10	4.02/E-10	4.096E-10	4.212E-10	2./2/E-09
Pa-233	1.992E-11	1.998E-11	2.005E-11	2.014E-11	2.028E-11	2.055E-11	0.032E-11
U-232	2.043E-09	2.//UE-U9	2.820E-09	2.839E-09	2.813E-09	2./16E-09	2.524E-13
U-233	2.2/3E-09	2.00/E-U9	3.002E-09	3.459E-09	4.048E-09	5.004E-09	4.538E-07
0-234	1.0946-04	1.14/6-04	1.1985-04	1.249E-04	1.324E-04	1.445E-04	4.444E-04
U-230	2.392E-03	2.392E-U3	2.392E-03	2.393E-03	2.3935-03	2.394E-03	2.534E-U3
0-230	3.314E-03	3.314E-U3	3.313E-U3	3.315E-U3	3.310E-03	3.318E-03	3.00/E-03
U-237	3.003E-11	3.52/E-11	3.203E-11	2.909E-11	2.318E-11	1.9/9E-11	3.042E-10
0-230	9.339E-UI	9.339E-UI	9.339E-UI	9.339E-UI	9.339E-UI	9.339E-UI	9.3596-01
Np-235	1.329E-13 6 257E 10	5.701E-14	1.031E-14	2.0/UE-15	4.210E-10	1./20E-1/	6 210E 10
Np = 230	5 866E-04	5 9925-04	5 004E-04	5 0295-04	5.0705-04	6 050E-10	0.2192-10 1 0525.02
Np-238	3.000E-04	3.68/E_13	3.904E-04	3.920E-04	3.9/0E-04	3 /99E-12	2 0095-15
Np = 230	$2.764E_{-10}$	2.004E - 13	2 763E-10	2 763E-10	2 762E-10	2 761E-10	2 5195 10
NP-239	4 720F_10	2 003E-10	1.785E-10	$1.008E_{10}$	5 203E_11	1 570E_11	1 3885-15
Pu-230	3 403F_04	3 350F-04	3 207E_04	3 246E-04	3 170F_04	3.047E-04	1.560E-15
Pu-230	5 128F_03	5 127F_03	5 127F_03	5 127F_03	5 127F_03	5 126E_03	5 012E-07
Pu-240	2.856E-03	2.865E-03	2.873E-03	2.880F-03	2.890F-03	2.904F-03	2.684F-03
Pu-241	1.254E-03	1.139E-03	1.035E-03	9.396F-04	8.132F-04	6.393F-04	1.178F-08
Pu-242	1 049F-03	1 049F-03	1.049F-03	1.049E-03	1.049F-03	1.049E-03	1.048F-03
Pu-244	1.179E-07	1.179E-07	1.179F-07	1.179F-07	1.179F-07	1.179F-07	1.179E-07
Am-241	5.001E-04	6.134F-04	7.159E-04	8.084F-04	9.305F-04	1.096E-03	3.654E-04
Am-242m	1.983E-06	1.965E-06	1.947E-06	1.929E-06	1.903E-06	1.860E-06	2.132E-08
Am-242	2.372E-11	2.351E-11	2.329E-11	2.308E-11	2.277E-11	2.225E-11	2.551E-13
Am-243	3.217E-04	3.216E-04	3.216E-04	3.215E-04	3.214E-04	3.213E-04	2.930E-04
Cm-242	7.939E-09	4.902E-09	4.724E-09	4.676E-09	4.613E-09	4.502E-09	5.157E-11
Cm-243	1.132E-06	1.078E-06	1.027E-06	9.781E-07	9.093E-07	8.052E-07	3.587E-17
Cm-244	1.274E-04	1.180E-04	1.093E-04	1.013E-04	9.027E-05	7.455E-05	3.823E-21
Cm-245	7.650E-06	7.649E-06	7.647E-06	7.646E-06	7.644E-06	7.641E-06	7.054E-06
Cm-246	1.762E-06	1.762E-06	1.761E-06	1.761E-06	1.760E-06	1.759E-06	1.523E-06
Cm-247	2.708E-08	2.708E-08	2.708E-08	2.708E-08	2.708E-08	2.708E-08	2.709E-08

TABLE F.4.f. Actinide Inventory by Isotope at 45 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Cm-248 Bk-249 Cf-249 Cf-250 Cf-251	2.434E-09 2.462E-13 3.444E-11 5.288E-12 3.234E-12	2.434E-09 5.059E-14 3.450E-11 4.756E-12 3.229E-12	2.434E-09 1.040E-14 3.441E-11 4.278E-12 3.224E-12	2.434E-09 2.137E-15 3.428E-11 3.847E-12 3.219E-12	2.434E-09 1.991E-16 3.408E-11 3.282E-12 3.211E-12	2.434E-09 3.812E-18 3.374E-11 2.518E-12 3.199E-12	2.429E-09 0.00 4.858E-12 1.756E-21 1.501E-12
Total	9.539E-01	3.727E-13 9.539E-01	2.204E-13 9.539E-01	9.539E-01	5.924E-14 9.539E-01	1.592E-14 9.539E-01	0.00 9.539E-01

TABLE F.4.g. Actinide Inventory by Isotope at 50 MWd/kgM, g/gU

He-44.331E-064.714E-065.085E-065.444E-065.962E-066.774E-064.663E-0Pb-2076.315E-159.605E-151.356E-141.815E-142.614E-144.222E-142.238E-1Pb-2088.965E-111.364E-101.884E-102.435E-103.289E-104.720E-103.461E-0	5 1 9 8 1
Pb-207 6.315E-15 9.605E-15 1.356E-14 1.815E-14 2.614E-14 4.222E-14 2.238E-1 Pb-208 8.965E-11 1.364E-10 1.884E-10 2.435E-10 3.289E-10 4.720E-10 3.461E-0	1 9 8 1
Pb-208 8.965E-11 1.364E-10 1.884E-10 2.435E-10 3.289E-10 4.720E-10 3.461E-0	9 8 1
	8 1
Pb-212 3.863E-14 4.443E-14 4.802E-14 5.006E-14 5.120E-14 5.055E-14 4.697E-1	1
Bi-209 3.775E-15 4.532E-15 5.292E-15 6.057E-15 7.214E-15 9.176E-15 2.247E-1	-
Bi-212 3.664E-15 4.214E-15 4.555E-15 4.749E-15 4.857E-15 4.795E-15 4.455E-1	9
Ra-224 3.370E-13 3.875E-13 4.189E-13 4.367E-13 4.466E-13 4.410E-13 4.097E-1	7
Ra-226 1.431E-13 1.976E-13 2.629E-13 3.396E-13 4.773E-13 7.718E-13 4.385E-0	9
Ac-227 5.100E-14 6.271E-14 7.383E-14 8.440E-14 9.931E-14 1.219E-13 1.377E-1	2
Th-228 6.547E-11 7.514E-11 8.121E-11 8.466E-11 8.665E-11 8.562E-11 7.962E-1	5
Th-229 4.377E-12 4.399E-12 4.424E-12 4.452E-12 4.502E-12 4.604E-12 8.570E-1	0
Th-230 2./93E-09 3.390E-09 4.021E-09 4.686E-09 5./44E-09 /.66/E-09 1.234E-0	6
In-231 /.1/1E-15 /.1/3E-15 /.1/4E-15 /.1/5E-15 /.1//E-15 /.180E-15 /./52E-1	5
IN-232 I.003E-09 I.194E-09 I.386E-09 I.578E-09 I.866E-09 2.345E-09 I.008E-0	/
IN+234 I.331E-11	0
Pa-231 $3.0/0E-10$ $3./04E-10$ $3./30E-10$ $3.//2E-10$ $3.023E-10$ $3.900E-10$ $2.10/E-0$ Da 232 $2.169E$ 11 $2.174E$ 11 $2.191E$ 11 $2.100E$ 11 $2.204E$ 11 $2.222E$ 11 $7.016E$ 1	9 1
H_232 3 131F_00 3 285E_00 3 353E_00 3 370E_00 3 341E_00 3 227E_00 2 072E_1	2 T
II_233 2 349F_09 2 778F_09 3 208F_09 3 639F_09 4 279F_09 5 319F_09 4 821F_0	5 7
$II_{-234} = 1$ 041F_04 1 102F_04 1 162F_04 1 222F_04 1 309F_04 1 451F_04 4 957F_0	/ 1
II-235 1.764F-03 1.764F-03 1.764F-03 1.765F-03 1.765F-03 1.765F-03 1.766F-03 1.906F-0	т २
U-236 3.294F-03 3.294F-03 3.295F-03 3.295F-03 3.296F-03 3.298F-03 3.600F-0	3
U-237 4.075F-11 3.701F-11 3.361F-11 3.053F-11 2.642F-11 2.077F-11 5.731F-1	6
U-238 9.308E-01 9.308E-01 9.308E-01 9.308E-01 9.308E-01 9.308E-01 9.308E-01 9.308E-01	ī
Np-235 1.538E-13 4.284E-14 1.193E-14 3.322E-15 4.882E-16 1.998E-17 0.00	-
Np-236 6.961E-10 6.961E-10 6.961E-10 6.961E-10 6.961E-10 6.960E-10 6.919E-1	0
Np-237 6.382E-04 6.400E-04 6.422E-04 6.447E-04 6.490E-04 6.574E-04 2.066E-0	3
Np-238 3.576E-13 3.543E-13 3.511E-13 3.479E-13 3.432E-13 3.355E-13 3.845E-1	5
Np-239 3.573E-10 3.573E-10 3.572E-10 3.571E-10 3.570E-10 3.568E-10 3.255E-1	0
Pu-236 5.705E-10 3.508E-10 2.157E-10 1.326E-10 6.397E-11 1.897E-11 1.544E-1	5
Pu-238 3.981E-04 3.919E-04 3.858E-04 3.797E-04 3.709E-04 3.565E-04 1.768E-0	7
Pu-239 5.123E-03 5.123E-03 5.123E-03 5.122E-03 5.122E-03 5.122E-03 5.016E-0	3
Pu-240 2.931E-03 2.944E-03 2.957E-03 2.968E-03 2.983E-03 3.004E-03 2.807E-0	3
Pu-241 1.316E-03 1.195E-03 1.086E-03 9.860E-04 8.534E-04 6.708E-04 1.853E-0	B B
PU-242 1.228E-03 1.228E-038E-038E-038E-038E-038E-038E-038E-03	37
PU-244 I.813E-0/ I.818E-0/ I	/
Am 242m 1 007E 06 1 000E 06 1 072E 06 1 056E 06 1 021E 06 1 700E 06 2 051E 0	4 0
Am 242 2 2915 11 2 2615 11 2 2405-11 2 2205-11 2 1005-11 2 1405-11 2 4525-1	2 0
Am = 242 2.2012-11 2.2012-11 2.2402-11 2.2202-11 2.1902-11 2.1402-11 2.4332-1 Am = 243 A 1585 A 1585 A 1575 A A 1565 A A 1555 A A 1545 A A 1525 A 3 7875 A	5 1
Cm_242 8 081F_00 4 735F_00 4 545F_00 4 407F_00 4 437F_00 4 330F_00 4 060F_1	1
Cm-243 1 365F-06 1 300F-06 1 238F-06 1 179F-06 1 096F-06 9 709F-07 4 326F-1	- 7
Cm-244 1 901F-04 1 761F-04 1 631F-04 1 511F-04 1 347F-04 1 113F-04 5 705F-2	, 1
Cm-245 1.204F-05 1.204F-05 1.203F-05 1.203F-05 1.203F-05 1.203F-05 1.110F-0	5
Cm-246 3.249F-06 3.248F-06 3.247F-06 3.246F-06 3.245E-06 3.242F-06 2.809F-0	6
Cm-247 5.649E-08 5.649E-08 5.649E-08 5.649E-08 5.649E-08 5.649E-08 5.649E-08 5.649E-08	B

są ra

5444

A.9.4

~...

TABLE F.4.g. Actinide Inventory by Isotope at 50 MWd/kgM, g/gU (contd)

Isotope6 Years8 Years10 Years12 Years15 Years20 Years1000 YearsCm-2485.888E-095.889E-095.890E-095.890E-095.890E-095.890E-095.890E-095.890E-095.890E-09Bk-2496.416E-131.319E-132.710E-145.570E-155.189E-169.937E-180.00Cf-2498.886E-118.902E-118.877E-118.844E-118.792E-118.706E-111.253E-11Cf-2501.421E-111.278E-111.150E-111.034E-118.821E-126.768E-125.775E-21Cf-2518.971E-128.957E-128.943E-128.930E-128.909E-128.875E-124.165E-12Cf-2522.028E-121.199E-127.089E-134.191E-131.906E-135.122E-140.00

Total 9.488E-01 9.488E-01 9.488E-01 9.488E-01 9.488E-01 9.488E-01 9.488E-01 9.488E-01

						,	1 3, 3-
<u>Element</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
н	2.223E-08	1 987F-08	1 776F-08	1.587F-08	1.341F-08	1.013E-08	1.307F-32
 	1 468F_10	1 468F_10	1 468F_10	1 468F_10	1 468F_10	1 468F_10	1 468F_10
Ro	0 054F-11	0 054F_11	0 053F_11	0 053F_11	0 053F_11	0 053F_11	9 050F-11
о С	1 590F-11	1 500F-11	1 500F-11	1 580F-11	1 589F-11	1 588F_11	1 410F_11
7n	2 343F-14	2 343F_14	2 343F-14	2 343F-14	2 343E-14	2 343F-14	$2 343F_{14}$
Ga ·	5 401F-13	5 401F-13	5 401F-13	5 401F-13	5 401F-13	5 401F-13	5 401F-13
Ge	4 120F-07	4 120F-07	4 120F-07	4 120F-07	4 120F-07	4 120F-07	4 120F-07
Δc	1 266F_07	1 266F_07	1 266F_07	1 266F_07	1 266F_07	1 266F_07	1 266F_07
50	3 457F-05	3 457F-05	3 457E-05	3 457F-05	3 457E-05	3 457F_05	3 454E_05
Br	1 350E_05	1 350F_05	1 350E_05	1 350E_05	1 350E_05	1 350E_05	1 354E-05
UT Kn	2 204 E_04	2 103E_04	2 19/E_0/	2 176E_04	2 165E_04	2 1525-04	2 1165-04
	2.2040-04	2.1950-04	2.104L-04	2.1700-04	2.103E-04	2.1520-04	2.1100-04
۲D ۲D	2.154E-04	A 735E-04	2.1/4E-04 1 614E-04	A 500E-04	2.193E-04	2.200E-04	2.2426-04
SI V	2 2055-04	2 205E 04	2 2055 04	2 2055 04	2 2055 04	2 2055 04	2.1490-04
י 7 א	2.00JL-04	2.00000-04	2.00000-04	2.00000-04	2.00000-04	2.005E-04	2.00000-04
Nb	2.2002-03	2.2120-03	2.2240-03	2.2302-03	2.252E-03	2.2/0E-03	2.4/1E-03
Mo	2.3405-09	2.7472-09	2 0255 02	2 0255 02	4.140E-09	2 0255 02	2.0096-07
	2.023E+03	2.025E-03	2.023E-03	2.0292+03	2.025E-03	2.023E-03	2.025E-03
	4.040E-04	1 200E-02	4.040E-04	4.040E-04	4.040E-04	4.040E-04	4.024E-04
RU Dh	2 1125 04	2 1125 04	2 1125 04	1.290E-03	1.290E-03	2 1125 04	2 1125 04
	7 6025 04	7 6005 04	7 7015 04	7 7015 04	7 701E 04	7 7015 04	J .112E-04
Pu Ag	7.093E-04	1.099E+04	1.701E-04	7.701E-04	/ ./UIE-04	/ ./UIE-04	/ ./UIE-04
AQ Cd	4./14E-00	4./14E-03	4./14E-05	4./14E-03	4./14E-03	4./14E-00	4./13E-05
tu Tr	3.024E-U3	3.0232-03	J.022E-UJ	3.022E-U3	3.021E-03	3.019E-03	3.014E-05
10	2.144E-00	2.133E-00	2.102E-00	2.109E-00	2.10UE-U0	2.194E-00	2.240E-00
311 Sh	J.042E-05	3.042E-03	1 242E-05	3.042E-03	3.042E-05	3.041E-05	1 104E 05
30 To	2 0245 04	2 0405 04	2 0425 04	1.223E-03	1.2002-00	1.1902-03	1.1946-03
T	2.9346-04	2.9402-04	2.943E-04	2.9432-04	2.940E-04	2.94/2-04	2.9492-04
Yo	1.404E-04	1.434E-04	1.434E-04	1.434E-04	1.434E-04	1.434E-04	1.404E-04
Xe Co	1 670E 02	3.029E-03	3.029E-03	3.029E-03	3.029E-03	3.029E-03	3.0292-03
	1.0/96-03	1.0492-03	1.0222-03	1.070E-03	1.3012-03	1.50000-03	1.0/2E-03
Da	9.09/E-04	7 2005 04	7 2005 04	7 2005 04	1.10/E-03	1.101E-03	1.390E-03
La	1 4205 02	1 420E 02	1 4205 02	1 4205 02	1 4205 02	1 4205 02	1 4295 02
Le Do	1.429E-03	1.420E-U3	1.420E-U3	1.420E-U3	1.420E-U3	1.420E-03	1.420E-U3
Nd	2 136E-03	2 136E-03	0.020E-04	0.020E-04	2 136E-03	2 136E-03	2 4365-04
Dm	1 6885-05	0 040E_06	5 966E_06	2.430L-03	$1.565E_{00}$	178E_07	0 00
riii Sm	5 003E-04	5.9492-00	5 200E-00	5 223E-04	5 240E_04	5 248E_04	5 170F_04
511	$7 310E_{-}05$	$7 112E_{-05}$	5.2001-04	5.223L-04	5.240L-04	5.2402-04	5.1702-04
Cd	1 700E-05	$5.011E_{-05}$	5 184E-05	5 328E-05	5 408E-05	5 604E-05	6 053E-05
ТЬ	1 162E-06	1 462E_06	$1.462E_{-06}$	1.462E-05	$1.462E_06$	$1.462F_06$	1 462E_06
Dv	7 482F_07	7 482F_07	7 482F-07	7 482F_07	7.482F-07	7.482F-07	7.482F-07
Ho	6 507F_02	6 506F_08	6 506F_08	6 506F-08	6.506F-08	6.506E-08	6.486F-08
Fr	2 533F_09	2 5335-02	2 533F_08	2 533F_08	2 533F_08	2 533F_08	2.553F_08
Li Tm	1 QARF_11	1 045F_11	1 Q44F_11	1 Q44F_11	1 Q44F_11	1.944F-11	1.944F-11
Yh	4 320F-12	Δ 332F-12	4 333F-12	4 334F_12	4.334F_12	4.335F-12	4.335F-12
עו	Ŧ , J <u>C</u> JL ⁻ IC	T.JJ2L-12	T.JJJL-12	T.JJTL-12	1.0076 16	11339L IL	
Total	2.058E-02	2.058E-02	2.058E-02	2.058E-02	2.058E-02	2.058E-02	2.058E-02

. e #1 - -

~ ∵¥∈at

۰., ۰

 $e \cdot 0$

- 198

,400

* 1881

क्रे**स**सी ... •×. •>३₽

- 100-4

5 BAN

TABLE F.5.a. Fission Product Inventory by Element at 20 MWd/kgM. g/gU

Element	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
н	2.837E-08	2.536F-08	2.267F-08	2.026E-08	1.712E-08	1.293E-08	1.667E-32
11	1.586F-10	1.586F-10	1.586F-10	1.586F-10	1.586F-10	1.586F-10	1.586F-10
Be	1,129F-10	1.129F-10	1.129F-10	1.129F-10	1.129F-10	1.129F-10	1,129E-10
C C	1.984F-11	1.983F-11	1.983F-11	1.982F-11	1.982F-11	1.980F-11	1.759E-11
7n	2 768F-14	2 768F-14	2 768F-14	2.768F-14	2.768F-14	2.768F-14	2 768F-14
Ga	6 043F - 13	6 043E - 13	6 043F-13	6 043F-13	6 Q43F_13	6 Q43E-13	6 043F_13
Ce	5 087E-07	5 087E_07	5 087E-07	5 087F_07	5 087F_07	5 087E-07	5 087E-07
Δe	$1.566E_07$	1 566F_07	1 566F_07	1 566F_07	1 566F_07	1 566F_07	1 566E-07
Π3 5 Δ	1.300L-07	1.300L-07	1.300E=07	1.300L-07	1.300L-07	1.300E-07	1.300E-07
B~	1 6/1E_05	1 6/1E-05	$1.6/1E_05$	1 6/15-05	$1.6/1E_05$	4.2201-03	1 6465-05
UT K∽	2 6555-04	2 6425-04	2 6315-04	2 6215-04	2 6095-04	2 5025-04	2 5405-04
Dh	2.0331-04	2.0421-04	2.0310-04	2.0210-04	2.00000-04	2.5920-04	2.5490-04
KU Sm	2.JOJE-04	2.390E-04	2.00/E-04	2.01/E-04	2.030E-04	2.040E-04	2.0092-04
Sr V	2 2515 04	3.001E-04	3.31/E-04	3.30UE-04	3.10/E-04	4.093E-04	2.3722-04
1	3.301E-04	3.301E-04	3.350E-04	3.330E-04	3.33UE-04	3.350E-04	3.350E-04
	2.0/85-03	2.093E-03	2./U/E-U3	2./2IE-U3	2.740E-03	2.//UE-U3	3.001E-03
ND	2.921E-09	3.400E-09	3.892E-09	4.3//E-U9	5.105E-09	0.319E-09	2.441E-07
MO T -	2.515E-03	2.515E-03	2.515E-03	2.5152-03	2.515E-03	2.515E-03	2.515E-03
	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.921E-04	5.902E-04
RU	1.001E-03	1.001E-03	1.00UE-03	1.00UE-03	1.660E-03	1.00UE-03	1.002E-03
Rn	3./49E-04	3./49E-04	3./49E-04	3./49E-04	3./49E-04	3./49E-04	3./49E-04
Pd	1.0/8E-03	1.0/9E-03	1.079E-03	1.079E-03	1.079E-03	1.079E-03	1.079E-03
Ag	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.362E-05	6.363E-05
Cd	8.369E-05	8.368E-05	8.367E-05	8.366E-05	8.365E-05	8.363E-05	8.355E-05
In	2.298E-06	2.311E-06	2.322E-06	2.333E-06	2.347E-06	2.367E-06	2.439E-06
Sn	7.288E-05	7.288E-05	7.288E-05	7.288E-05	7.288E-05	7.288E-05	7.273E-05
Sb	1.685E-05	1.616E-05	1.575E-05	1.550E-05	1.529E-05	1.516E-05	1.511E-05
Те	3.739E-04	3.746E-04	3.750E-04	3.753E-04	3.755E-04	3.756E-04	3.758E-04
I	1.849E-04	1.849E-04	1.849E-04	1.849E-04	1.849E-04	1.849E-04	1.849E-04
Xe	3.856E-03	3.856E-03	3.856E-03	3.856E-03	3.856E-03	3.856E-03	3.856E-03
Cs	2.023E-03	1.985E-03	1.951E-03	1.919E-03	1.875E-03	1.808E-03	1.263E-03
Ba	1.249E-03	1.287E-03	1.321E-03	1.353E-03	1.398E-03	1.465E-03	2.009E-03
La	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04	9.160E-04
Ce	1.773E-03	1.772E-03	1.772E-03	1.772E-03	1.772E-03	1.772E-03	1.772E-03
Pr	8.430E-04	8.430E-04	8.430E-04	8.430E-04	8.430E-04	8.430E-04	8.430E-04
Nd	3.015E-03	3.016E-03	3.016E-03	3.016E-03	3.016E-03	3.016E-03	3.016E-03
Pm	1.872E-05	1.103E-05	6.505E-06	3.835E-06	1.736E-06	4.634E-07	0.00
Sm	6.223E-04	6.298E-04	6.342E-04	6.367E-04	6.386E-04	6.395E-04	6.310E-04
Eu	1.005E-04	9.738E-05	9.486E-05	9.280E-05	9.039E-05	8.771E-05	9.113E-05
Gd	7.509E-05	7.833E-05	8.100E-05	8.321E-05	8.582E-05	8.886E-05	9.441E-05
Tb	2.053E-06	2.053E-06	2.053E-06	2.053E-06	2.053E-06	2.053E-06	2.053E-06
Dy	1.084E-06	1.084E-06	1.084E-06	1.084E-06	1.084E-06	1.084E-06	1.084E-06
Hō	1.048E-07	1.048E-07	1.048E-07	1.048E-07	1.048E-07	1.048E-07	1.044E-07
Er	4.062E-08	4.063E-08	4.063E-08	4.063E-08	4.063E-08	4.063E-08	4.102E-08
Tm	3.676E-11	3.675E-11	3.674E-11	3.674E-11	3.674E-11	3.674E-11	3.674E-11
Yb	1.052E-11	1.053E-11	1.054E-11	1.054E-11	1.054E-11	1.054E-11	1.054E-11
T. 4 . 1	0 5605 00	0 5605 00	0 5605 00	2 5605 02	2 5605 02	2 5605 02	2 5605 02
Iotal	2.569E-02	2.509E-02	2.509E-02	2.509E-02	2.309E-02	2.309E-02	2.009E-02

TABLE F.S.D. FISSION Product Inventory by Element at 25 MWd/KdM.	/kaM. a/a	MWd/kaM.	25 MWd	at 25	: a1	v Element	bγ	Inventory	Product	Fission	F.5.b.	TABLE
--	-----------	----------	--------	-------	------	-----------	----	-----------	---------	---------	--------	-------

F.84

. .

<u>Element</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	15 Years	20 Years	<u>1000 Years</u>
н	3.467F-08	3.099F-08	2.770F-08	2.476F-08	2.092F-08	1.580F-08	2.038F-32
i	1 648E-10	1 648F_10	1 648F-10	1 648F-10	1 648F-10	1 648F-10	1 648F-10
Ro	1 353E-10	1 353F_10	1 353F_10	1 353F_10	1 353F-10	1 353F_10	1 352F-10
De C	2 276E_11	2 276E-11	2 275E-11	2 27/E_11	2 27/E_11	2 3725-11	1.332L-10 2 107E-11
7n	2.370E-11	2.3702-11	2.37JE-11 2.152E 14	2.3/40-11	2.3/4L-11	2.1525 14	2.10/2-11
211	0 510E 12	5.152E-14 0 5105 12	5.152E=14	0 E10E 12	0 E10E 12	9 E10E 12	0 E10E 12
Ga	6.010E-13	6.010E-13	6.010E-13	6.010E-13	6.010E-13	6.510E-13	6.010E-13
de Ac	0.040E-07	0.040E-07	0.040E-07	0.040E-07	0.040E-07	0.040E-07	0.040E-07
AS	1.001E-07	1.0016-07	1.001E-07	1.001E-07	1.0010-07	1.0012-07	1.0010-07
Se	4.90/E-05	4.90/E-05	4.90/E-05	4.90/E-03	4.90/E-05	4.90/E-05	4.902E-05
BL	1.910E-US	1.91/E-05	1.91/E-05	1.91/E-05	1.91/E-05	1.91/E-05	1.922E-05
Kr	3.0/9E-04	3.065E-04	3.052E-04	3.040E-04	3.026E-04	3.00/E-04	2.95/E-04
RD	2.983E-04	2.998E-04	3.011E-04	3.023E-04	3.03/E-04	3.056E-04	3.106E-04
sr	6.692E-04	6.519E-04	6.354E-04	6.196E-04	5.9/3E-04	5.636E-04	2.966E-04
_Y	3.855E-04	3.855E-04	3.855E-04	3.854E-04	3.854E-04	3.854E-04	3.854E-04
Zr	3.13/E-03	3.154E-03	3.170E-03	3.186E-03	3.208E-03	3.242E-03	3.509E-03
ND	3.484E-09	4.051E-09	4.618E-09	5.186E-09	6.036E-09	7.454E-09	2.852E-07
Mo	3.001E-03	3.001E-03	3.001E-03	3.001E-03	3.001E-03	3.001E-03	3.001E-03
Tc	6.947E-04	6.947E-04	6.947E-04	6.947E-04	6.947E-04	6.946E-04	6.924E-04
Ru	2.048E-03	2.047E-03	2.046E-03	2.046E-03	2.046E-03	2.046E-03	2.048E-03
Rh	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303E-04	4.303E-04
Pd	1.422E-03	1.424E-03	1.424E-03	1.424E-03	1.424E-03	1.424E-03	1.424E-03
Ag	8.034E-05	8.034E-05	8.034E-05	8.034E-05	8.034E-05	8.034E-05	8.036E-05
Cd	1.142E-04	1.141E-04	1.141E-04	1.141E-04	1.141E-04	1.141E-04	1.140E-04
In	2.403E-06	2.419E-06	2.435E-06	2.449E-06	2.468E-06	2.494E-06	2.590E-06
Sn	9.005E-05	9.005E-05	9.005E-05	9.005E-05	9.005E-05	9.005E-05	8.986E-05
Sb	2.049E-05	1.964E-05	1.913E-05	1.881E-05	1.856E-05	1.840E-05	1.834E-05
Те	4.561E-04	4.570E-04	4.575E-04	4.578E-04	4.581E-04	4.582E-04	4.585E-04
I	2.246E-04	2.246E-04	2.246E-04	2.246E-04	2.246E-04	2.246E-04	2.246E-04
Хе	4.696E-03	4.696E-03	4.696E-03	4.696E-03	4.696E-03	4.696E-03	4.696E-03
Cs	2.351E-03	2.305E-03	2.263E-03	2.225E-03	2.171E-03	2.091E-03	1.437E-03
Ba	1.514E-03	1.560E-03	1.602E-03	1.640E-03	1.694E-03	1.774E-03	2.429E-03
La	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03	1.089E-03
Če	2.114E-03	2.113E-03	2.113E-03	2.113E-03	2.113F-03	2.113E-03	2.113F-03
Pr	9.995E-04	9,995E-04	9.995E-04	9.995E-04	9.995E-04	9,995E-04	9.995E-04
Nd	3.588F-03	3.589F-03	3.589F-03	3.589E-03	3.589F-03	3.589F-03	3.589F-03
Pm	1,996F-05	1.177E-05	6.939F-06	4.091E-06	1.852E-06	4.944F-07	0.00
Sm	7.293F-04	7.373E-04	7.420F-04	7.447F-04	7.467F-04	7.477F-04	7.386F-04
Fu	1.287F-04	1.243E-04	1.208E-04	1.178F-04	1.144F-04	1.105E-04	1.123E-04
6d	1 103F_04	1 149F-04	1 186F_04	1 217F-04	1.254F-04	1.296E-04	1.374F-04
Th	2 709F-06	2 709E-06	2 709F-06	2 709F-06	2.709E-06	2.709E-06	2.709E-06
	1 478F-06	1 478F-06	1 478F-06	1 478F-06	1.478E-06	1.478E-06	1.478F-06
Ho	1 500F_07	1.590F-07	1.590F-07	1.590F-07	1.590F-07	1.590F-07	1.583F-07
۲ю Fr	6 2/0E_02	6 240F_02	6 240F_02	6 240F_02	6 240F-09	6 250F-02	6 320F-08
Li Tm	6 2/6E_11	6 2/25-11	6 2/2F-11	6 241F_11	6 241F_11	6 241F_11	6 241F_11
THI VH	2 201E 11	0.24JE-11	2 20/E 11	2 2055 11	2 205E 11	2 205E 11	2 2055-11
TU I	2.2010-11	2.2035-11	2.2045-11	2.2090-11	2.205C-11	2.2095-11	2.2036-11
Total	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02	3.080E-02

a.

1-4-

......

TABLE F.5.c. Fission Product Inventory by Element at 30 MWd/kgM, g/gU

						•	
<u>Element</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
н	4.112E-08	3.675E-08	3.285E-08	2.936E-08	2.481E-08	1.874E-08	2.417E-32
Li	1.671E-10	1.671E-10	1.671E-10	1.671E-10	1.671E-10	1.671E-10	1.671E-10
Ве	1.575E-10	1.575E-10	1.575E-10	1.575E-10	1.575E-10	1.575E-10	1.575E-10
С	2.767E-11	2.767E-11	2.766E-11	2.765E-11	2.764E-11	2.763E-11	2.454E-11
Zn	3.497E-14	3.497E-14	3.497E-14	3.497E-14	3.497E-14	3.497E-14	3.497E-14
Ga	1.009E-12	1.009E-12	1.009E-12	1.009E-12	1.009E-12	1.009E-12	1.009E-12
Ge	6.980E-07	6.980E-07	6.980E-07	6.980E-07	6.980E-07	6.980E-07	6.980E-07
As	2.151E-07	2.151E-07	2.151E-07	2.151E-07	2.151E-07	2.151E-07	2.151E-07
Se	5.683E-05	5.683E-05	5.683E-05	5.683E-05	5.683E-05	5.683E-05	5.677E-05
Br	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.177E-05	2.183E-05
Kr	3.480E-04	3.463E-04	3.448E-04	3.435E-04	3.419E-04	3.397E-04	3.342E-04
Rb	3.356E-04	3.373E-04	3.387E-04	3.400E-04	3.417E-04	3.438E-04	3.494E-04
Sr	7.507E-04	7.313E-04	7.128E-04	6.951E-04	6.702E-04	6.323E-04	3.331E-04
Y	4.320E-04	4.320E-04	4.320E-04	4.319E-04	4.319E-04	4.319E-04	4.319E-04
Zr	3.577E-03	3.597E-03	3.615E-03	3.633E-03	3.658E-03	3.696E-03	3.995E-03
Nb	4.037E-09	4.682E-09	5.327E-09	5.971E-09	6.939E-09	8.551E-09	3.245E-07
Мо	3.481E-03	3.481E-03	3.481E-03	3.481E-03	3.481E-03	3.481E-03	3.481E-03
Тс	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.916E-04	7.891E-04
Ru	2.448E-03	2.447E-03	2.447E-03	2.447E-03	2.447E-03	2.447E-03	2.449E-03
Rh	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04	4.778E-04
Pd	1.800E-03	1.801E-03	1.802E-03	1.802E-03	1.802E-03	1.802E-03	1.802E-03
Ag	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.714E-05	9.717E-05
Cď	1.499E-04	1.499E-04	1.499E-04	1.499E-04	1.498E-04	1.498E-04	1.497E-04
In	2.486E-06	2.507E-06	2.527E-06	2.545E-06	2.569E-06	2.602E-06	2.726E-06
Sn	1.079E-04	1.079E-04	1.079E-04	1.079E-04	1.079E-04	1.079E-04	1.076E-04
Sb	2.418E-05	2.316E-05	2.255E-05	2.217E-05	2.187E-05	2.167E-05	2.160E-05
Те	5.399E-04	5.409E-04	5.415E-04	5.419E-04	5.422E-04	5.424E-04	5.427E-04
I	2.644E-04	2.644E-04	2.644E-04	2.644E-04	2.644E-04	2.644E-04	2.643E-04
Хе	5.547E-03	5.547E-03	5.547E-03	5.547E-03	5.547E-03	5.547E-03	5.548E-03
Cs	2.666E-03	2.611E-03	2.562E-03	2.517E-03	2.454E-03	2.360E-03	1.597E-03
Ba	1.784E-03	1.839E-03	1.888E-03	1.933E-03	1.996E-03	2.090E-03	2.854E-03
La	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03	1.260E-03
Ce	2.452E-03	2.451E-03	2.451E-03	2.451E-03	2.451E-03	2.451E-03	2.451E-03
Pr	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03	1.152E-03
Nd	4.155E-03	4.155E-03	4.155E-03	4.155E-03	4.155E-03	4.155E-03	4.155E-03
Pm	2.080E-05	1.226E-05	7.228E-06	4.262E-06	1.929E-06	5.151E-07	0.00
Sm	8.307E-04	8.391E-04	8.439E-04	8.467E-04	8.488E-04	8.499E-04	8.402E-04
Eu	1.567E-04	1.509E-04	1.462E-04	1.423E-04	1.378E-04	1.326E-04	1.326E-04
Gd	1.546E-04	1.605E-04	1.654E-04	1.694E-04	1.742E-04	1.798E-04	1.899E-04
Tb	3.431E-06	3.431E-06	3.431E-06	3.431E-06	3.431E-06	3.431E-06	3.431E-06
Dy	1.932E-06	1.932E-06	1.932E-06	1.932E-06	1.932E-06	1.932E-06	1.932E-06
Но	2.307E-07	2.307E-07	2.307E-07	2.307E-07	2.307E-07	2.307E-07	2.295E-07
Er	9.340E-08	9.340E-08	9.341E-08	9.341E-08	9.341E-08	9.342E-08	9.461E-08
Tm	9.911E-11	9.906E-11	9.903E-11	9.902E-11	9.901E-11	9.901E-11	9.901E-11
Yb	4.154E-11	4.159E-11	4.162E-11	4.163E-11	4.164E-11	4.165E-11	4.165E-11
Total	3.589E-02	3.589E-02	3.589E-02	3.589E-02	3.589E-02	3.589E-02	3.589E-02

TABLE F.5.d. F	ission	Product	Inventory	bγ	Element	at	35	MWd/kaM.	a/	άι
----------------	--------	---------	-----------	----	---------	----	----	----------	----	----

	TABLE F.5.e.	Fission	Product	Inventory	bν	Element	at	40	MWd/kaM.	a/aU
--	--------------	---------	---------	-----------	----	---------	----	----	----------	------

Element	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
н	4.768E-08	4.262E-08	3.809E-08	3.405E-08	2.877E-08	2.173E-08	2.806E-32
Li	1.673E-10	1.673E-10	1.673E-10	1.673E-10	1.673E-10	1.673E-10	1.673E-10
Ве	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10
С	3.158E-11	3.157E-11	3.156E-11	3.155E-11	3.154E-11	3.152E-11	2.800E-11
Zn	3.810E-14	3.810E-14	3.810E-14	3.810E-14	3.810E-14	3.810E-14	3.810E-14
Ga	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12	1.168E-12
Ge	7.907E-07	7.907E-07	7.907E-07	7.907E-07	7.907E-07	7.907E-07	7.907E-07
As	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07	2.435E-07
Se	6.376E-05	6.376E-05	6.376E-05	6.376E-05	6.376E-05	6.376E-05	6.369E-05
Br	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.424E-05	2.431E-05
Kr	3.859E-04	3.840E-04	3.824E-04	3.810E-04	3.791E-04	3.768E-04	3.706E-04
Rb	3.706E-04	3.724E-04	3.740E-04	3.755E-04	3.773E-04	3.797E-04	3.858E-04
Sr	8.266E-04	8.052E-04	7.849E-04	7.655E-04	7.380E-04	6.964E-04	3.672E-04
Y	4.752E-04	4.751E-04	4.751E-04	4.751E-04	4.751E-04	4.751E-04	4.750E-04
Zr	4.002E-03	4.024E-03	4.044E-03	4.063E-03	4.091E-03	4.132E-03	4.461E-03
Nb	4.577E-09	5.297E-09	6.016E-09	6.735E-09	7.814E-09	9.613E-09	3.620E-07
Мо	3.958E-03	3.958E-03	3.958E-03	3.958E-03	3.958E-03	3.958E-03	3.958E-03
Тс	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.832E-04	8.804E-04
Ru	2.862E-03	2.861E-03	2.860E-03	2.860E-03	2.860E-03	2.860E-03	2.863E-03
Rh	5.182E-04	5.182E-04	5.182E-04	5.182E-04	5.182E-04	5.182E-04	5.182E-04
Pd	2.206E-03	2.207E-03	2.208E-03	2.208E-03	2.208E-03	2.208E-03	2.208E-03
Ag	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.137E-04	1.138E-04
Cd	1.908E-04	1.908E-04	1.908E-04	1.907E-04	1.907E-04	1.907E-04	1.905E-04
In	2.561E-06	2.588E-06	2.613E-06	2.635E-06	2.665E-06	2.707E-06	2.861E-06
Sn	1.262E-04	1.262E-04	1.262E-04	1.262E-04	1.262E-04	1.262E-04	1.259E-04
Sb	2.789E-05	2.670E-05	2.598E-05	2.554E-05	2.519E-05	2.496E-05	2.487E-05
Te	6.248E-04	6.260E-04	6.267E-04	6.272E-04	6.275E-04	6.278E-04	6.281E-04
I	3.038E-04	3.038E-04	3.038E-04	3.038E-04	3.038E-04	3.038E-04	3.037E-04
Xe	6.407E-03	6.407E-03	6.407E-03	6.407E-03	6.407E-03	6.407E-03	6.407E-03
Cs	2.971E-03	2.907E-03	2.851E-03	2.799E-03	2.727E-03	2.619E-03	1.746E-03
Ba	2.058E-03	2.122E-03	2.178E-03	2.230E-03	2.302E-03	2.410E-03	3.283E-03
La	1.429E-03	1.429E-03	1.429E-03	1.429E-03	1.429E-03	1.429E-03	1.429E-03
Ce	2.787E-03	2.786E-03	2.786E-03	2.786E-03	2.786E-03	2.786E-03	2.786E-03
Pr	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03	1.302E-03
Na	4.716E-03	4.717E-03	4.717E-03	4.71/E-03	4.717E-03	4.71/E-03	4.717E-03
Pm	2.138E-05	1.260E-05	7.431E-06	4.381E-06	1.984E-06	5.296E-0/	0.00
Sm	9.269E-04	9.355E-04	9.405E-04	9.434E-04	9.455E-04	9.466E-04	9.303E-04
Eu	1.833E-04	1./62E-04	1./03E-04	1.655E-04	1.598E-04	1.534E-04	1.516E-04
Gđ	2.080E-04	2.153E-04	2.213E-04	2.263E-04	2.323E-04	2.391E-04	2.51/E-04
d	4.218E-06	4.218E-06	4.218E-06	4.218E-06	4.218E-06	4.218E-06	4.218E-06
UY	2.444E-06	2.444E-06	2.444E-06	2.444E-UD	2.444E-UD	2.444E-UD	2.444E-UD
HO Fue	3.222E-0/	3.222E-0/	3.222E-0/	3.222E-0/	3.222E-U/	3.222E-U/	3.203E-0/
Er T	1.3011-0/	1.301E-U/	1.301E-U/	1.301E-U/	1.301E-U/	1.301E-U/	1.38UE-U/
l m	1.500E-10	1.499E-10	1.498E-10	1.498E-10	1.498E-10	1.498E-10	1.498E-10
YD	/.264E-11	/.2/5E-11	/.280E-11	/.283E-11	/.285E-11	7.285E-11	7.285E-11
Total	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02	4.098E-02

1.40

2.16

 $\cdot \mathbf{d}$

si d

Element	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
н	5.434E-08	4.857F-08	4-341E-08	3-880F-08	3.279F-08	2.476F-08	3-192F-32
11	1.663F-10	1.663F-10	1.663F-10	1.663F-10	1.663F-10	1.663F-10	1.663F-10
Re	2 019F-10	2 019F-10	2 019F-10	2 019F-10	2 019F-10	2 019F-10	2 018F-10
C C	3 547F-11	3 546F-11	3.546F-11	3 545F-11	3 543F-11	3.541F-11	3 145F-11
7n	4 007F_14	4 007F_14	4 007F_14	4 007F-14	4 007F_14	4 007F-14	1 007F_14
Ca	$1 327F_{-12}$	1 327F_12	$1 327F_{12}$	$1 327F_{-12}$	1 327F_12	$1 327E_{-12}$	1 327F_12
Ge	8 824F_07	8 82/F_07	8 824F_07	8 824F_07	8 824F_07	8 82/F_07	8 82/F_07
de As	2 71/E_07	2 71/E_07	2 71/F_07	2 71/F_07	2 71/E_07	2 71/5-07	2 71/E_07
50	7 050E_05	7 050E_05	7 050E_05	7 050E-05	7 0/0E_05	7 0/05_05	7 042E-05
Je	2 6595 05	2 6595-05	2 659E 05	2 6585 05	2 659E 05	2 6595 05	7.042E-05
DI' Ko	2.000E-00	2.000E-00	2.000E-00	2.000E-00	2.0JOE-0J	2.000E-00	
	4.2216-04	4.201E-04	4.103E-04	4.10/E-04	4.14/E-04	4.1216-04	4.034E-04
KD Sm	4.030E-04	4.030E-04	4.0/4E-04	4.090E-04	4.110E-04	4.1332-04	4.2036-04
ST V	6.90UE-04	0./40E-04	0.JZ/E-04	0.310E-04	0.010E-04	7.30/E-04	3.994E-04 5 1555 04
1	3.130E-04	3.130E-04	3.130E-04	5.150E-04	3.130E-04	3.130E-04	5.155E-04
	4.414E-03	4.43/E-03	4.40UE-03	4.481E-03	4.510E-03	4.550E-03	4.913E-03
ND	5.100E-09	5.89/E-09	0.088E-09	7.4/9E-09	8.000E-09	1.064E-08	3.982E-07
MO	4.431E-03	4.431E-03	4.431E-03	4.431E-03	4.431E-03	4.431E-03	4.431E-03
	9.090E-04	9.696E-04	9.096E-04	9.696E-04	9.696E-04	9.696E-04	9.005E-04
кu	3.28/E-03	3.285E-03	3.285E-03	3.285E-03	3.285E-03	3.285E-03	3.288E-03
Rh	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04	5.522E-04
Pa	2.635E-03	2.637E-03	2.63/E-03	2.638E-03	2.638E-03	2.638E-03	2.638E-03
Ag	1.299E-04	1.299E-04	1.299E-04	1.299E-04	1.299E-04	1.299E-04	1.299E-04
Cd	2.367E-04	2.367E-04	2.367E-04	2.366E-04	2.366E-04	2.366E-04	2.364E-04
In	2.632E-06	2.666E-06	2.696E-06	2.724E-06	2.760E-06	2.811E-06	3.001E-06
Sn	1.449E-04	1.449E-04	1.449E-04	1.449E-04	1.449E-04	1.449E-04	1.446E-04
Sb	3.160E-05	3.023E-05	2.940E-05	2.890E-05	2.849E-05	2.823E-05	2.813E-05
Те	7.107E-04	7.121E-04	7.129E-04	7.134E-04	7.138E-04	7.141E-04	7.145E-04
I	3.426E-04	3.426E-04	3.426E-04	3.426E-04	3.426E-04	3.426E-04	3.426E-04
Xe	7.273E-03	7.273E-03	7.273E-03	7.273E-03	7.273E-03	7.273E-03	7.273E-03
Cs	3.268E-03	3.196E-03	3.131E-03	3.073E-03	2.992E-03	2.870E-03	1.887E-03
Ba	2.336E-03	2.408E-03	2.473E-03	2.531E-03	2.612E-03	2.734E-03	3.717E-03
La	1.595E-03	1.595E-03	1.595E-03	1.595E-03	1.595E-03	1.595E-03	1.595E-03
Ce	3.121E-03	3.121E-03	3.120E-03	3.120E-03	3.120E-03	3.120E-03	3.120E-03
Pr	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03	1.448E-03
Nd	5.274E-03	5.275E-03	5.275E-03	5.275E-03	5.275E-03	5.275E-03	5.275E-03
Pm	2.181E-05	1.286E-05	7.580E-06	4.469E-06	2.023E-06	5.403E-07	0.00
Sm	1.018E-03	1.026E-03	1.031E-03	1.034E-03	1.036E-03	1.038E-03	1.027E-03
Eu	2.080E-04	1.995E-04	1.926E-04	1.868E-04	1.801E-04	1.724E-04	1.689E-04
Gd	2.705E-04	2.792E-04	2.864E-04	2.923E-04	2.993E-04	3.075E-04	3.223E-04
Tb	5.073E-06	5.073E-06	5.073E-06	5.073E-06	5.073E-06	5.073E-06	5.073E-06
Dv	3.015E-06	3.015E-06	3.015E-06	3.015E-06	3.015E-06	3.015E-06	3.015E-06
Ho	4.353F-07	4.353F-07	4.352E-07	4.352E-07	4.352E-07	4.352E-07	4.323E-07
Fr	1.937F-07	1.937F-07	1.937F-07	1.937E-07	1.937E-07	1.938F-07	1.966E-07
Tm	2.199F-10	2.197F-10	2.196F-10	2.196F-10	2.195F-10	2.195F-10	2.195F-10
Yh	1.200F-10	1.202F-10	1.204F-10	1.204F-10	1.204F-10	1.204F-10	1.204F-10
	T. 5005-10	I COLL IV					
Total	4.607E-02	4.607E-02	4.607E-02	4.607E-02	4.607E-02	4.607E-02	4.607E-02

TABLE F.5.f.	Fission	Product	Inventory	by	Element	at	45	MWd/kgM,	g/gU
--------------	---------	---------	-----------	----	---------	----	----	----------	------

						•	
Element	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
н	6.107E-08	5.458E-08	4.879E-08	4.361E-08	3.685E-08	2.783E-08	3.590E-32
Li	1.649E-10	1.649E-10	1.649E-10	1.649E-10	1.649E-10	1.649E-10	1.649E-10
Be	2.240E-10	2.240E-10	2.240E-10	2.240E-10	2.240E-10	2.240E-10	2.239E-10
Ċ	3.936E-11	3.935E-11	3.934E-11	3.933E-11	3.932E-11	3.929E-11	3.490E-11
Zn	4.362E-14	4.362E-14	4.362E-14	4.362E-14	4.362E-14	4.362E-14	4.362E-14
Ga	1.486E-12	1.486E-12	1.486E-12	1.486E-12	1.486E-12	1.486E-12	1.486E-12
Ge	9.732E-07	9.732E-07	9.732E-07	9.732E-07	9.732E-07	9.732E-07	9.732E-07
As	2.989E-07	2.989E-07	2.989E-07	2.989E-07	2.989E-07	2.989E-07	2.989E-07
Se	7.708E-05	7.708E-05	7.708E-05	7.708E-05	7.708E-05	7.708E-05	7.699E-05
Br	2.882E-05	2.882E-05	2.882E-05	2.882E-05	2.882E-05	2.882E-05	2.891E-05
Kr	4.570E-04	4.548E-04	4.528E-04	4.511E-04	4.490E-04	4.462E-04	4.389E-04
Rb	4.351E-04	4.373E-04	4.392E-04	4.409E-04	4.431E-04	4.459E-04	4.532E-04
Sr	9.658E-04	9.409E-04	9.171E-04	8.945E-04	8.625E-04	8.139E-04	4.301E-04
Y	5.540E-04	5.539E-04	5.539E-04	5.539E-04	5.539E-04	5.539E-04	5.538E-04
Zr	4.816E-03	4.841E-03	4.865E-03	4.887E-03	4.919E-03	4.968E-03	5.351E-03
Nb	5.623E-09	6.484E-09	7.344E-09	8.204E-09	9.495E-09	1.165E-08	4.332E-07
Мо	4.901E-03	4.901E-03	4.901E-03	4.901E-03	4.901E-03	4.901E-03	4.901E-03
Тс	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.051E-03	1.048E-03
Ru	3.723E-03	3.720E-03	3.720E-03	3.720E-03	3.720E-03	3.720E-03	3.723E-03
Rh	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04	5.805E-04
Pd	3.083E-03	3.086E-03	3.086E-03	3.086E-03	3.086E-03	3.086E-03	3.086E-03
Ag	1.454E-04	1.454E-04	1.454E-04	1.454E-04	1.454E-04	1.454E-04	1.455E-04
Cd	2.875E-04	2.874E-04	2.874E-04	2.873E-04	2.873E-04	2.872E-04	2.870E-04
In	2.702E-06	2.742E-06	2.779E-06	2.812E-06	2.857E-06	2.918E-06	3.147E-06
Sn	1.640E-04	1.640E-04	1.640E-04	1.640E-04	1.640E-04	1.640E-04	1.637E-04
Sb	3.529E-05	3.374E-05	3.281E-05	3.224E-05	3.178E-05	3.148E-05	3.137E-05
Те	7.974E-04	7.989E-04	7.999E-04	8.004E-04	8.009E-04	8.012E-04	8.016E-04
I	3.809E-04	3.809E-04	3.809E-04	3.809E-04	3.809E-04	3.809E-04	3.808E-04
Хе	8.145E-03	8.145E-03	8.145E-03	8.145E-03	8.145E-03	8.145E-03	8.145E-03
Cs	3.559E-03	3.477E-03	3.406E-03	3.340E-03	3.250E-03	3.115E-03	2.022E-03
Ba	2.617E-03	2.698E-03	2.770E-03	2.836E-03	2.926E-03	3.061E-03	4.153E-03
La	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760E-03	1.760E-03
Ce	3.454E-03	3.453E-03	3.453E-03	3.453E-03	3.453E-03	3.453E-03	3.453E-03
Pr	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592E-03	1.592E-03
Nd	5.829E-03	5.830E-03	5.830E-03	5.830E-03	5.830E-03	5.830E-03	5.830E-03
Pm	2.214E-05	1.305E-05	/.69/E-06	4.538E-06	2.055E-06	5.48/E-0/	0.00
5 m	1.104E-03	1.113E-03	1.118E-03	1.121E-03	1.124E-03	1.125E-U3	1.113E-U3
EU	2.30/E-04	2.210E-04	2.129E-04	2.003E-04	1.980E-04	1.89/E-04	1.840E-04
60 TL	3.41/E-04	3.51/E-04	3.399E-04	3.00/E-04	3.748E-04	3.841E-04	4.012E-04
	3.990E-00	3.990E-00	3.998E-00	3.990E-00	2 644E 06	3.990E-00	3.990E-00
Dy	3.044E-00	3.044E-00	3.044E-00	5.044E-00	5.044E-00	5.044E-00	5.044E-00
nu Ev	J./IZE-U/	2 607E 07	2 609E 07	2 6085 07	2 608E 07	2 608E_07	2 740F-07
ET. Tm	2.09/E-U/ 2 1555 10	2.09/E-0/ 2 1525 10	2.0900-0/	2.0900-0/	2.0900-0/	2.050E-07	3 1485-10
i III Vb	1 001E 10	1 0055 10	1 0075 10	1 000E-10	1 0095-10	1 000F_10	1 Q0QF_10
1 J	1.9015-10	1.9036-10	1.90/6-10	1.9005+10	1.9000-10	1.9096-10	1.3036-10
Total	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02	5.115E-02

TABLE F.5.g. Fission Product Inventory by Element at 50 MWd/kgM, g/gU

TADLE I .U.a. ACCITITUE ITVETICUTY DY LIEMETIC AC ZU MWU/NUM, U/U	TABLE F.6.a.	Actinide	Inventory	bγ	Element	at	20	MWd/kaM.	_a/(al
---	--------------	----------	-----------	----	---------	----	----	----------	------	----

<u>Element</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Не	7.128E-07	7.628E-07	8.151E-07	8.694E-07	9.540E-07	1.102E-06	1.894E-05
Pb	1.883E-11	2.751E-11	3.693E-11	4.677E-11	6.188E-11	8.700E-11	1.007E-09
Bi	1.141E-15	1.323E-15	1.474E-15	1.605E-15	1.781E-15	2.055E-15	9.433E-12
Ra	3.097E-13	4.074E-13	5.167E-13	6.386E-13	8.468E-13	1.265E-12	2.180E-09
Ac	5.722E-14	7.106E-14	8.480E-14	9.845E-14	1.188E-13	1.522E-13	6.332E-12
Th	5.450E-09	6.428E-09	7.411E-09	8.399E-09	9.892E-09	1.241E-08	6.585E-07
Pa	4.295E-10	4.483E-10	4.671E-10	4.859E-10	5.141E-10	5.610E-10	9.723E-09
U	9.716E-01	9.716E-01	9.716E-01	9.716E-01	9.716E-01	9.716E-01	9.719E-01
Np	2.292E-04	2.302E-04	2.313E-04	2.326E-04	2.348E-04	2.390E-04	9.353E-04
Pu	7.269E-03	7.210E-03	7.156E-03	7.107E-03	7.042E-03	6.951E-03	6.278E-03
Am	3.052E-04	3.620E-04	4.133E-04	4.596E-04	5.208E-04	6.038E-04	2.129E-04
Cm	3.879E-06	3.606E-06	3.353E-06	3.119E-06	2.799E-06	2.341E-06	1.195E-07
Cf	1.419E-14	1.406E-14	1.391E-14	1.375E-14	1.354E-14	1.324E-14	1.991E-15

Total 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01 9.794E-01

TABLE F.6.b. Actinide Inventory by Element at 25 MWd/kgM, g/gU

Element	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
He Pb	1.152E-06 2.805E-11	1.227E-06 4.142E-11	1.305E-06 5.602E-11	1.385E-06 7.135E-11	1.507E-06 9.492E-11	1.718E-06 1.342E-10	2.411E-05 1.363E-09
Ra	3.236E-13	4.189E-13	2.343E-15 5.231E-13	2.555E-15 6.379E-13	2.834E-15 8.323E-13	1.223E-12	2.440E-09
Ac	5.897E-14	7.292E-14	8.659E-14	1.000E-13	1.197E-13	1.514E-13	4.982E-12
Th	5.172E-09	6.118E-09	7.072E-09	8.035E-09	9.497E-09	1.198E-08	7.465E-07
Pa	4.396E-10	4.541E-10	4.687E-10	4.833E-10	5.052E-10	5.416E-10	7.664E-09
U	9.654E-01	9.654E-01	9.654E-01	9.654E-01	9.654E-01	9.654E-01	9.658E-01
Np	3.061E-04	3.073E-04	3.087E-04	3.103E-04	3.131E-04	3.184E-04	1.197E-03
Pu	8.171E-03	8.096E-03	8.028E-03	7.966E-03	7.883E-03	7.767E-03	6.935E-03
Am	4.045E-04	4.765E-04	5.415E-04	6.002E-04	6.777E-04	7.829E-04	2.896E-04
Cm	1.103E-05	1.026E-05	9.542E-06	8.879E-06	7.975E-06	6.678E-06	4.180E-07
Cf	1.379E-13	1.364E-13	1.347E-13	1.331E-13	1.309E-13	1.278E-13	1.955E-14
Total	9.743E-01						

TABLE F.6.c.	Actinide	Inventorv	bγ	Element	at	30	MWd/kaM.	a/aU	
								3, 3-	

<u>Element</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
He Pb Bi Ra Ac Th Pa U Np Pu Am	1.665E-06 3.883E-11 2.644E-15 3.452E-13 5.933E-14 4.897E-09 4.417E-10 9.593E-01 3.827E-04 8.966E-03 4.970E-04	1.775E-06 5.784E-11 3.087E-15 4.399E-13 7.317E-14 5.811E-09 4.528E-10 9.593E-01 3.841E-04 8.879E-03 5.805E-04	1.886E-06 7.871E-11 3.455E-15 5.404E-13 8.660E-14 6.738E-09 4.640E-10 9.593E-01 3.857E-04 8.800E-03 6.559E-04	1.998E-06 1.007E-10 3.772E-15 6.492E-13 9.964E-14 7.678E-09 4.751E-10 9.593E-01 3.876E-04 8.729E-03 7.241E-04	2.168E-06 1.345E-10 4.189E-15 8.315E-13 1.185E-13 9.112E-09 4.918E-10 9.593E-01 3.907E-04 8.633E-03 8.140E-04	2.454E-06 1.911E-10 4.821E-15 1.197E-12 1.485E-13 1.157E-08 5.197E-10 9.593E-01 3.968E-04 8.499E-03 9.361E-04	2.873E-05 1.805E-09 1.465E-11 2.768E-09 3.876E-12 8.513E-07 5.978E-09 9.598E-01 1.410E-03 7.529E-03 3.669E-04
Cm	2.521E-05	2.345E-05	2.182E-05	2.032E-05	1.826E-05	1.532E-05	1.127E-06
Bk	4.946E-15 8.630E-13	1.016E-15	2.089E-16	4.293E-17 8.201E-12	4.000E-18 8.154E-13	7.660E-20	4.490E-28
Total	9.692E-01	9.692E-01 . Actinid	9.692E-01 e Inventor	9.692E-01 y by Eleme	9.692E-01 nt at 35 M	9.692E-01 Wd/kgM, g/	9.692E-01 gU
<u>Element</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
He Pb Bi Ra Ac Th	2.239E-06 5.085E-11 3.656E-15 3.735E-13 5.851E-14 4.625E-09	2.394E-06 7.629E-11 4.280E-15 4.692E-13 7.203E-14 5.509E-09	2.549E-06 1.043E-10 4.800E-15 5.673E-13 8.506E-14 6.409E-09	2.704E-06 1.339E-10 5.249E-15 6.711E-13 9.762E-14 7.326E-09	2.935E-06 1.796E-10 5.838E-15 8.428E-13 1.156E-13 8.736E-09	3.316E-06 2.560E-10 6.725E-15 1.185E-12 1.437E-13 1.117E-08	3.347E-05 2.320E-09 1.705E-11 3.143E-09 2.999E-12 9.671E-07
Pa	4.367E-10	4.451E-10	4.535E-10	4.619E-10	4.746E-10	4.956E-10	4.642E-09

414

	· · · ·						
Pa	4.367E	-10 4.451E-10	4.535E-10	4.619E-10	4.746E-10	4.956E-10	4.642E-09
L	9.533E	-01 9.533E-01	9.533E-01	9.533E-01	9.533E-01	9.533E-01	9.539E-01
Np	4.572E	-04 4.588E-04	4.606E-04	4.627E-04	4.662E-04	4.731E-04	1.619E-03
Pu	9.634E	-03 9.537E-03	9.448E-03	9.367E-03	9.258E-03	9.107E-03	8.011E-03
Аπ	6.014E	-04 6.966E-04	7.826E-04	8.603E-04	9.629E-04	1.102E-03	4.580E-04
Сп	1 4.9 20E	-05 4.579E-05	4.264E-05	3.971E-05	3.573E-05	3.001E-05	2.516E-06
Bk	2.263E	-14 4.651E-15	9.559E-16	1.965E-16	1.830E-17	3.505E-19	2.731E-27
Cf	3.971E	-12 3.917E-12	3.859E-12	3.805E-12	3.734E-12	3.635E-12	5.727E-13

Total 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01 9.641E-01

TABLE F.6.e. Actinide Inventory by Element at 40 MWd/kgM, g/gU

<u>Element</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Не	2.872E-06	3.087E-06	3.299E-06	3.508E-06	3.816E-06	4.315E-06	3.807E-05
Pb	6.365E-11	9.606E-11	1.319E-10	1.697E-10	2.283E-10	3.263E-10	2.885E-09
Bi	4.814E-15	5.647E-15	6.343E-15	6.946E-15	7.737E-15	8.925E-15	1.921E-11
Ra	4.067E-13	5.046E-13	6.015E-13	7.014E-13	8.638E-13	1.186E-12	3.550E-09
Ac	5.668E-14	6.972E-14	8.220E-14	9.417E-14	1.112E-13	1.375E-13	2.313E-12
Th	4.364E-09	5.217E-09	6.092E-09	6.989E-09	8.376E-09	1.080E-08	1.089E-06
Pa	4.252E-10	4.315E-10	4.378E-10	4.441E-10	4.536E-10	4.694E-10	3.598E-09
U	9.474E-01	9.475E-01	9.475E-01	9.475E-01	9.475E-01	9.475E-01	9.481E-01
Np	5.259E-04	5.276E-04	5.295E-04	5.318E-04	5.357E-04	5.432E-04	1.804E-03
Pu	1.018E-02	1.007E-02	9.978E-03	9.889E-03	9.771E-03	9.607E-03	8.405E-03
Am	7.118E-04	8.171E-04	9.123E-04	9.983E-04	1.112E-03	1.266E-03	5.565E-04
Cm	8.596E-05	8.004E-05	7.455E-05	6.948E-05	6.255E-05	5.263E-05	4.896E-06
Bk	8.179E-14	1.681E-14	3.455E-15	7.100E-16	6.615E-17	1.267E-18	1.283E-26
Cf	1.442E-11	1.420E-11	1.398E-11	1.377E-11	1.350E-11	1.313E-11	2.093E-12

Total 9.590E-01 9.590E-01 9.590E-01 9.590E-01 9.590E-01 9.590E-01 9.590E-01

TABLE F.6.f. Actinide Inventory by Element at 45 MWd/kgM, g/gU

<u>Element</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
He	3.572E-06	3.862E-06	4.146E-06	4.423E-06	4.826E-06	5.468E-06	4.245E-05
Pb	7.676E-11	1.164E-10	1.603E-10	2.067E-10	2.787E-10	3.993E-10	3.476E-09
Bi	6.088E-15	7.150E-15	8.043E-15	8.817E-15	9.836E-15	1.137E-14	2.103E-11
Ra	4.429E-13	5.441E-13	6.405E-13	7.374E-13	8.919E-13	1.197E-12	3.970E-09
Ac	5.410E-14	6.652E-14	7.836E-14	8.966E-14	1.057E-13	1.300E-13	1.784E-12
Th	4.115E-09	4.940E-09	5.791E-09	6.669E-09	8.036E-09	1.045E-08	1.214E-06
Pa	4.087E-10	4.134E-10	4.181E-10	4.228E-10	4.299E-10	4.417E-10	2.793E-09
U	9.417E-01	9.417E-01	9.417E-01	9.417E-01	9.417E-01	9.417E-01	9.425E-01
Np	5.866E-04	5.883E-04	5.904E-04	5.928E-04	5.970E-04	6.050E-04	1.953E-03
Pu	1.063E-02	1.052E-02	1.041E-02	1.032E-02	1.020E-02	1.002E-02	8.744E-03
Am	8.238E-04	9.370E-04	1.039E-03	1.132E-03	1.254E-03	1.419E-03	6.584E-04
Ст	1.380E-04	1.285E-04	1.198E-04	1.117E-04	1.006E-04	8.479E-05	8.607E-06
Bk	2.462E-13	5.059E-14	1.040E-14	2.137E-15	1.991E-16	3.812E-18	4.935E-26
Cf	4.359E-11	4.286E-11	4.213E-11	4.147E-11	4.063E-11	3.948E-11	6.359E-12
Total	9.539E-01	9.539E-01	9.539E-01	9.539E-01	9.539E-01	9.539E-01	9.539E-01

<u>Element</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Не	4.331E-06	4.714E-06	5.085E-06	5.444E-06	5.962E-06	6.774E-06	4.663E-05
Pb	8.969E-11	1.365E-10	1.885E-10	2.436E-10	3.290E-10	4.721E-10	4.069E-09
Bi	7.440E-15	8.746E-15	9.848E-15	1.081E-14	1.207E-14	1.397E-14	2.251E-11
Ra	4.802E-13	5.852E-13	6.819E-13	7.765E-13	9.241E-13	1.213E-12	4.385E-09
Ac	5.102E-14	6.273E-14	7.385E-14	8.442E-14	9.932E-14	1.219E-13	1.380E-12
Th	3.879E-09	4.678E-09	5.507E-09	6.366E-09	7.714E-09	1.012E-08	1.335E-06
Pa	3.887E-10	3.921E-10	3.956E-10	3.991E-10	4.044E-10	4.132E-10	2.178E-09
U	9.360E-01	9.360E-01	9.360E-01	9.360E-01	9.360E-01	9.360E-01	9.368E-01
Np	6.382E-04	6.400E-04	6.422E-04	6.447E-04	6.490E-04	6.574E-04	2.066E-03
Pu	1.100E-02	1.088E-02	1.078E-02	1.068E-02	1.056E-02	1.038E-02	9.049E-03
Am	9.346E-04	1.053E-03	1.161E-03	1.258E-03	1.386E-03	1.560E-03	7.607E-04
Cm	2.069E-04	1.928E-04	1.797E-04	1.676E-04	1.512E-04	1.276E-04	1.397E-05
Bk	6.416E-13	1.319E-13	2.710E-14	5.570E-15	5.189E-16	9.937E-18	1.623E-25
Cf	1.141E-10	1.120E-10	1.099E-10	1.081E-10	1.058E-10	1.028E-10	1.670E-11
Total	9.488E-01	9.488E-01	9.488E-01	9.488E-01	9.488E-01	9.488E-01	9.488E-01

TABLE F.6.g. Actinide Inventory by Element at 50 MWd/kgM, g/gU

κ. .

TABLE F.7.a.	Fuel Activation Product	Inventory by	Isotope	at
	20 MWd/kgM, g/gU	•		

<u>Isotope</u>	<u>6 Years</u>	<u> 8 Years </u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
ц 1	1 21/15 00	1 2145 00	1 2145-09	1 21/6-09	1 21/6-09	1 2145 00	1 2145-09
	7 0255 12	7 025E 12	7 0255 12	7 0255 12	7 0255 12	7 0255 12	7 0255 12
n-2 L 2	2 077E 11	2 661E 11	2 279E 11	2 126E 11	1 706E 11	1 257E 11	1 7405 25
	2.977E = 11 1 2525.11	2.001E-11	2.3/0E-11 1 0515 11	2.120E-11 2.204E 11	2 5225-11	2 0725-11	1.749E-33
	1.333E-11	1.009E-11	1.901E-11 5.262E 05	2.204E-11	2.333E-11 5.262E 05	2.9/3E-11 5.2625 05	4.330E-11
	3.203E-03	3.203E-03	3.203E-U3	3.203E-03	3.203E-03	3.203E-U3	3.203E-03
L1-0	1.459E-14	1.459E-14	1.459E-14	1.4596-14	1.459E-14	1.459E-14	1.459E-14
Be-9	1.036E-10	1.030E-10	1.036E-10	1.036E-10	1.036E-10	1.036E-10	1.030E-10
Re-10	2./9IE-II	2./9IE-II	2./9IE-II	2./9IE-II	2./9IE-II	2./91E-11	2./90E-11
B-11	1./06E-08	1./06E-08	1./06E-08	1./06E-08	1./06E-08	1./06E-08	1./06E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	5.20/E-06	5.20/E-06	5.20/E-06	5.20/E-06	5.207E-06	5.20/E-06	5.207E-06
C-14	1.656E-07	1.656E-07	1.656E-07	1.655E-07	1.655E-07	1.654E-07	1.469E-07
N-14	4.953E-05	4.953E-05	4.953E-05	4.953E-05	4.953E-05	4.953E-05	4.955E-05
N-15	2.037E-07	2.037E-07	2.037E-07	2.037E-07	2.037E-07	2.037E-07	2.037E-07
0-16	1.342E-01	1.342E-01	1.342E-01	1.342E-01	1.342E-01	1.342E-01	1.342E-01
0-17	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	2.381E-10	2.381E-10	2.381E-10	2.381E-10	2.381E-10	2.381E-10	2.381E-10
Ne-21	7.525E-15	7.525E-15	7.525E-15	7.525E-15	7.525E-15	7.525E-15	7.525E-15
Ne-22	5.370E-15	5.370E-15	5.370E-15	5.370E-15	5.370E-15	5.370E-15	5.370E-15
Na-23	4.346E-16	4.346E-16	4.346E-16	4.346E-16	4.346E-16	4.346E-16	4.346E-16
Mg-24	1.336E-10	1.336E-10	1.336E-10	1.336E-10	1.336E-10	1.336E-10	1.336E-10
Mg-25	1.406E-10	1.406E-10	1.406E-10	1.406E-10	1.406E-10	1.406E-10	1.406E-10
Mg-26	6.423E-11	6.423E-11	6.423E-11	6.423E-11	6.423E-11	6.423E-11	6.423E-11
AĪ-27	4.538E-05	4.538E-05	4.538E-05	4.538E-05	4.538E-05	4.538E-05	4.538E-05
Si-28	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05
Si-29	2.198E-06	2.198E-06	2.198E-06	2.198E-06	2.198E-06	2.198E-06	2.198E-06
Si-30	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06
P-31	2.911E-10	2.911E-10	2.911E-10	2.911E-10	2.911E-10	2.911E-10	2.911E-10
S-32	2.337E-10	2.337E-10	2.337E-10	2.337E-10	2.337E-10	2.337E-10	2.337E-10
S-33	9.690E-14	9.690E-14	9.690E-14	9.690E-14	9.690E-14	9.690E-14	9.690E-14
S-34	1.608E-11	1.608E-11	1.608E-11	1.608E-11	1.608E-11	1.608E-11	1.608E-11
S-36	2.197E-13	2.671E-13	3.145E-13	3.619E-13	4.330E-13	5.515E-13	2.375E-11
C1-35	7.914E-06	7.914E-06	7.914E-06	7.914E-06	7.914E-06	7.914E-06	7.914E-06
C1-36	5.417E-07	5.417E-07	5.417E-07	5.417E-07	5.417E-07	5.417E-07	5.404E-07
C1-37	2.859E-06	2.859E-06	2.859E-06	2.859E-06	2.859E-06	2.859E-06	2.859E-06
Ar-36	1.133E-11	1.378E-11	1.623E-11	1.868E-11	2.235E-11	2.846E-11	1.226E-09
Ar-38	2.063E-09	2.063E-09	2.063E-09	2.063E-09	2.063E-09	2.063E-09	2.063E-09
Ar-39	2.329E-11	2.317E-11	2.305E-11	2.294E-11	2.276E-11	2.247E-11	1.798E-12
Ar-40	5.000E-11	5.000E-11	5.000E-11	5.000E-11	5.000E-11	5.000E-11	5.000E-11
K-39	5.842E-13	7.039E-13	8.230E-13	9.416E-13	1.118E-12	1.410E-12	2.208E-11
K-40	1.025E-08	1.025E-08	1.025E-08	1.025E-08	1.025E-08	1.025E-08	1.025E-08
K-41	2.456E-10	2.461E-10	2.466E-10	2.471E-10	2.478E-10	2.489E-10	4.790E-10
Ca-40	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05	4.384E-05
Ca-41	2.755E-08	2.755E-08	2.755E-08	2.755E-08	2.755E-08	2.755E-08	2.732E-08
Ca-42	3 070F-07	3 070F-07	3 070F-07	3.070F-07	3.070F-07	3 070F-07	3.070F-07

TABLE F.7.a. Fuel Activation Product Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

...)

• •

. .

.....

•

1 1

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
C> 12	6 200E 00	6 2005 09	6 200E 08	6 200E 00	6 200E 08	5 200E 08	6 200E 08
Ca-43 Ca-44	1 040E-06	1 040E-06	1 0405-06	1 040F-06	1 040F-06	1 040E=06	1 040F-06
Ca=44	1 579F-14	7 063E-16	3 159F-17	1 413F-18	1 337F-20	5 657F-24	0 00
Ca-46	1.820F-09	1.820F-09	1.820F-09	1.820F-09	1.820F-09	1.820F-09	1.820F-09
Ca-48	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07
Sc-45	1.651E-09	1.651E-09	1.651E-09	1.651E-09	1.651E-09	1.651E-09	1.651E-09
Ti-46	2.734E-11	2.734E-11	2.734E-11	2.734E-11	2.734E-11	2.734E-11	2.734E-11
Ti-47	2.019E-12	2.019E-12	2.019E-12	2.019E-12	2.019E-12	2.019E-12	2.019E-12
Ti-48	3.075E-15	3.075E-15	3.075E-15	3.075E-15	3.075E-15	3.075E-15	3.075E-15
Ti-49	1.771E-10	1.771E-10	1.771E-10	1.771E-10	1.771E-10	1.771E-10	1.771E-10
Ti-50	3.237E-13	3.237E-13	3.237E-13	3.237E-13	3.237E-13	3.237E-13	3.237E-13
Cr-53	6.033E-16	6.033E-16	6.033E-16	6.033E-16	6.033E-16	6.033E-16	6.033E-16
Cr-54	2.608E-16	2.608E-16	2.608E-16	2.608E-16	2.608E-16	2.608E-16	2.608E-16
Mn-55	3.714E-10	3.877E-10	3.972E-10	4.028E-10	4.0/2E-10	4.098E-10	4.108E-10
Fe-55	3.936E-11	2.309E-11	1.355E-11	7.950E-12	3.5/3E-12	9.422E-13	0.00
re-30	1.28/E-09	1.28/E-09	1.28/E-09	1.28/E-09	1.28/E-U9	1.28/E-09	1.28/E-U9
re-57 Fo-58	3.12/E-11 5.311E-00	3.12/E-11 5.211E-00	3.12/E-11 5.311E-00	3.12/E-11 5.311E-00	5.12/E-11	5.12/E-11	3.12/E-11 5.2115.00
re-50 Co-50	1 354F_09	1 356F_00	1 350F_00	1 361E-09	1 365E_00	1 371E-09	2.575E-09
Co-60	4 359F_11	3 351F_11	2 576F_11	1 980F-11	1 334F_11	6 013F_12	
Ni-58	1.898F-05	1.898F-05	1.898F-05	1.898F-05	1.898E-05	1.898F-05	1.898F-05
Ni-59	1.425F-07	1.425F-07	1.425E-07	1.425E-07	1.424F-07	1.424F-07	1.412F-07
N1-60	7.550E-06	7.550E-06	7.550E-06	7.550E-06	7.550E-06	7.550E-06	7.550E-06
Ni-61	3.655E-07	3.655E-07	3.655E-07	3.655E-07	3.655E-07	3.655E-07	3.655E-07
Ni-62	1.054E-06	1.054E-06	1.054E-06	1.054E-06	1.054E-06	1.054E-06	1.054E-06
Ni-63	2.174E-08	2.142E-08	2.110E-08	2.078E-08	2.032E-08	1.957E-08	1.216E-11
Ni-64	2.812E-07	2.812E-07	2.812E-07	2.812E-07	2.812E-07	2.812E-07	2.812E-07
Cu-63	1.567E-09	1.892E-09	2.213E-09	2.528E-09	2.993E-09	3.744E-09	2.330E-08
Cu-65	7.010E-10	7.010E-10	7.010E-10	7.010E-10	7.010E-10	7.010E-10	7.010E-10
Zn-64	5.383E-13	5.383E-13	5.383E-13	5.383E-13	5.383E-13	5.383E-13	5.383E-13
Zn-66	1.393E-12	1.393E-12	1.393E-12	1.393E-12	1.393E-12	1.393E-12	1.393E-12
Zn-67	6.926E-16	6.926E-16	6.926E-16	6.926E-16	6.926E-16	6.926E-16	6.926E-16
RU-104	8.903E-10	8.903E-10	8.903E-10	8.903E-10	8.903E-10	8.903E-10	8.903E-10
Pd-104 Pd-105	1.970E-13	1.970E-13 1.075E-15	1.970E-13 1.075E_15	1.970E - 13 1 075E - 15	1.970E-13 1.075E-15	1.970E-13 1.075E-15	1.9/0E-13 1 075E_15
Pd-105	1.073L-13 4 177F-12	4 177F-12	1.07JL=13	1.07JL=13	4 177F-12	4 177F-12	1.07JL-13
Pd-107	1.961F-13	1.961F-13	1.961F-13	1.961F-13	1.961E-13	1.961F-13	1.961F-13
Pd-108	1.415E-09	1.451E-09	1.487E-09	1.523E-09	1.575E-09	1.661E-09	4.747E-09
Pd-110	7.587E-10	7.587E-10	7.587E-10	7.587E-10	7.587E-10	7.587E-10	7.587E-10
Ag-107	5.055E-07	5.055E-07	5.055E-07	5.055E-07	5.055E-07	5.055E-07	5.055E-07
Ag-108m	3.665E-09	3.626E-09	3.586E-09	3.547E-09	3.490E-09	3.396E-09	1.615E-11
Ag-109	2.706E-07	2.706E-07	2.706E-07	2.706E-07	2.706E-07	2.706E-07	2.706E-07
Ag-110m	3.540E-12	4.667E-13	6.152E-14	8.110E-15	3.881E-16	2.449E-18	0.00
Cd-108	5.478E-08	5.478E-08	5.479E-08	5.479E-08	5.480E-08	5.480E-08	5.510E-08
Cd-109	1.601E-12	5.374E-13	1.805E-13	6.060E-14	1.179E-14	7.705E-16	0.00
Cd-110	2.604E-07	2.604E-07	2.604E-07	2.604E-07	2.604E-07	2.604E-07	2.604E-07
Cd-111	5.596E-09	5.596E-09	5.596E-09	5.596E-09	5.596E-09	5.596E-09	5.596E-09
TABLE F.7.a. Fuel Activation Product Inventory by Isotope at 20 MWd/kgM, g/gU (contd)

Isotope6 Years8 Years10 Years12 Years15 Years20 Years1000 YearsCd-1121.198E-101.198E-101.198E-101.198E-101.198E-101.198E-101.198E-10Cd-1131.817E-141.817E-141.817E-141.817E-141.817E-141.817E-14Cd-1143.186E-133.186E-133.186E-133.186E-133.186E-13Total1.348E-011.348E-011.348E-011.348E-011.348E-01

TABLE F.7.b. Fuel Activation Product Inventory by Isotope at 25 MWd/kgM, g/gU

an -

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H_1	1 543E_08	1 543E_08	1 543E-08	1 543E-08	1 543E-08	1 543E-08	1 543F-08
H_2	1 135F_11	1 135F_11	1 135F_11	1 135F_11	1 135F-11	1 135F_11	1 135F_11
H_3	4 803F-15	4 374F-15	3 Q0QF-15	3 404F-15	2 953F-15	2 230F-15	0 00
He-3	2.111F-15	2.630E-15	3.095E-15	3.510F-15	4.051F-15	4.774F-15	7.004F-15
He-4	1.949F-06	1.949F-06	1.949F-06	1.949F-06	1.949F-06	1.949F-06	1.949F-06
11-6	2.138F-14	2.138F-14	2.138F-14	2.138F-14	2.138F-14	2.138F-14	2.138F-14
Be-9	1.316E-10	1.316E-10	1.316E-10	1.316F-10	1.316E-10	1.316F-10	1.316E-10
Be-10	4.410E-11	4.410E-11	4.410E-11	4.410E-11	4.410E-11	4.410E-11	4.409E-11
B-10	1.591E-16	1.973E-16	2.356E-16	2.738E-16	3.311E-16	4.266E-16	1.915E-14
B-11	2.166E-08	2.166E-08	2.166E-08	2.166E-08	2.166E-08	2.166E-08	2.166E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	6.543E-06	6.543E-06	6.543E-06	6.543E-06	6.543E-06	6.543E-06	6.543E-06
C-14	2.103E-07	2.102E-07	2.102E-07	2.101E-07	2.101E-07	2.099E-07	1.865E-07
N-14	4.948E-05	4.948E-05	4.948E-05	4.948E-05	4.948E-05	4.948E-05	4.950E-05
N-15	2.059E-07	2.059E-07	2.059E-07	2.059E-07	2.059E-07	2.059E-07	2.059E-07
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-17	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05	5.432E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10
Ne-21	1.213E-14	1.213E-14	1.213E-14	1.213E-14	1.213E-14	1.213E-14	1.213E-14
Ne-22	8.661E-15	8.661E-15	8.661E-15	8.661E-15	8.661E-15	8.661E-15	8.661E-15
Na-23	7.013E-16	7.013E-16	7.013E-16	7.013E-16	7.013E-16	7.013E-16	7.013E-16
Mg-24	1.69/E-10	1.69/E-10	1.69/E-10	1.69/E-10	1.69/E-10	1.69/E-10	1.69/E-10
Mg-25	1./85E-10	1./85E-10	1./85E-10	1./85E-10	1./85E-10	1./85E-10	1./85E-10
Mg-26	8.102E-11	8.162E-11	8.102E-11	8.162E-11	8.162E-11	8.162E-11	8.162E-11
AI-2/	4.0386-00	4.038E-00	4.0386-00	4.038E-00	4.0386-00	4.338E-03	4.038E-00
SI-28	4.1/2E-U3	4.1/2E-05	4.1/2E-05	4.1/2E-05	4.1/2E-03	4.1/2E-03	4.1/2E-05
51-29	2.200E-00	2.200E-00	2.200E-00	2.200E-00	2.200E-00	2.200E-00	2.200E-00
D-31	3 608E_10	3 608E-10	2 608E-10	3 608E_10	2 609E-10	3 609E-10	2 608E-10
5-32 5-32	2 0/2E-10	3.090E-10 2.042E-10	3.090E-10 2 042E-10	3.090E-10 2.042E-10	2 042E-10	2 042E-10	2 042E-10
5-32	2.942L-10 1 554F-13	1.554E-13	1 554F-13	2.9420-10 1 554F-13	2.942L-10 1 554F-13	1 55/F_13	1 554E-13
5-34	2.042F-11	2.042F-11	2.042F-11	2.042F-11	2 042F-11	2 042F-11	2.042F-11
S-36	2.756F-13	3.351F-13	3.947F-13	4.542E-13	5.436F-13	6.924F-13	2.984F-11
C1-35	7.777E-06	7.777E-06	7.777E-06	7.777E-06	7.777E-06	7.777E-06	7.777E-06
C1-36	6.805E-07	6.805E-07	6.805E-07	6.805E-07	6.805E-07	6.805E-07	6.790E-07
C1-37	2.861E-06	2.861E-06	2.861E-06	2.861E-06	2.861E-06	2.861E-06	2.861E-06
Ar-36	1.421E-11	1.729E-11	2.036E-11	2.344E-11	2.805E-11	3.574E-11	1.541E-09
Ar-38	2.620E-09	2.620E-09	2.620E-09	2.620E-09	2.620E-09	2.620E-09	2.620E-09
Ar-39	2.704E-11	2.690E-11	2.677E-11	2.663E-11	2.642E-11	2.608E-11	2.088E-12
Ar-40	7.827E-11	7.827E-11	7.827E-11	7.827E-11	7.827E-11	7.827E-11	7.827E-11
K-39	6.831E-13	8.221E-13	9.604E-13	1.098E-12	1.303E-12	1.641E-12	2.564E-11
K-40	1.292E-08	1.292E-08	1.292E-08	1.292E-08	1.292E-08	1.292E-08	1.292E-08
K-41	3.934E-10	3.940E-10	3.946E-10	3.952E-10	3.961E-10	3.976E-10	6.897E-10
Ca-40	4.383E-05	4.383E-05	4.383E-05	4.383E-05	4.383E-05	4.383E-05	4.383E-05
Ca-41	3.498E-08	3.498E-08	3.498E-08	3.498E-08	3.498E-08	3.498E-08	3.469E-08

TABLE F.7.b.	Fuel Activation Product Inventory by Isotope at	
	25 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ca-42	3.069E-07	3.069E-07	3.069E-07	3.069E-07	3.069E-07	3.069E-07	3.069E-07
Ca-43	6.281E-08	6.281E-08	6.281E-08	6.281E-08	6.281E-08	6.281E-08	6.281E-08
Ca-44	1.040E-06	1.040E-06	1.040E-06	1.040E-06	1.040E-06	1.040E-06	1.040E-06
Ca-45	2.034E-14	9.100E-16	4.071E-17	1.821E-18	1.723E-20	7.290E-24	0.00
Ca-46	1.820E-09	1.820E-09	1.820E-09	1.820E-09	1.820E-09	1.820E-09	1.820E-09
Ca-48	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07	1.030E-07
Sc-45	2.087E-09	2.087E-09	2.087E-09	2.087E-09	2.087E-09	2.087E-09	2.087E-09
Ti-46	4.399E-11	4.399E-11	4.399E-11	4.399E-11	4.399E-11	4.399E-11	4.399E-11
Ti-47	2.580E-12	2.580E-12	2.580E-12	2.580E-12	2.580E-12	2.580E-12	2.580E-12
Ti-48	4.971E-15	4.971E-15	4.971E-15	4.971E-15	4.971E-15	4.971E-15	4.971E-15
Ti-49	2.248E-10	2.248E-10	2.248E-10	2.248E-10	2.248E-10	2.248E-10	2.248E-10
T1-50	5.226E-13	5.226E-13	5.226E-13	5.226E-13	5.226E-13	5.226E-13	5.226E-13
V-51	4.179E-11	4.179E-11	4.179E-11	4.179E-11	4.179E-11	4.179E-11	4.179E-11
Cr-52	2.023E-13	2.023E-13	2.023E-13	2.023E-13	2.023E-13	2.023E-13	2.023E-13
Cr-53	8.132E-11	8.132E-11	8.132E-11	8.132E-11	8.132E-11	8.132E-11	8.132E-11
Cr-54	1.248E-09	1.250E-09	1.250E-09	1.250E-09	1.250E-09	1.250E-09	1.250E-09
Mn-54	1.805E-12	3.571E-13	7.064E-14	1.398E-14	1.230E-15	2.141E-17	0.00
Mn-55	1.218E-08	1.272E-08	1.303E-08	1.322E-08	1.336E-08	1.345E-08	1.348E-08
Fe-54	2.853E-06	2.853E-06	2.853E-06	2.853E-06	2.853E-06	2.853E-06	2.853E-06
Fe-55	1.302E-09	7.640E-10	4.483E-10	2.630E-10	1.182E-10	3.117E-11	0.00
Fe-56	4.670E-05	4.670E-05	4.670E-05	4.670E-05	4.670E-05	4.670E-05	4.670E-05
Fe-57	1.384E-06	1.384E-06	1.384E-06	1.384E-06	1.384E-06	1.384E-06	1.384E-06
Fe-58	1.660E-07	1.660E-07	1.660E-07	1.660E-07	1.660E-07	1.660E-07	1.660E-07
Co-59	2.426E-09	2.429E-09	2.432E-09	2.435E-09	2.439E-09	2.447E-09	3.936E-09
Co-60	7.504E-11	5.768E-11	4.434E-11	3.408E-11	2.297E-11	1.190E-11	0.00
N1-58	1.893E-05	1.893E-05	1.893E-05	1.893E-05	1.893E-05	1.893E-05	1.893E-05
N1-59	1.761E-07	1.761E-07	1.761E-07	1.761E-07	1.761E-07	1.761E-07	1.746E-07
N1-60	7.549E-06	7.549E-06	7.549E-06	7.549E-06	7.549E-06	7.549E-06	7.549E-06
Ni-61	3./41E-07	3.741E-07	3./41E-07	3./41E-07	3.741E-07	3.741E-07	3.741E-07
Ni-62	1.048E-06	1.048E-06	1.048E-06	1.048E-06	1.048E-06	1.048E-06	1.048E-06
N1-63	2.741E-08	2.700E-08	2.660E-08	2.620E-08	2.561E-08	2.467E-08	1.533E-11
N1-64	2.813E-0/	2.813E-0/	2.813E-0/	2.813E-0/	2.813E-0/	2.813E-0/	2.813E-0/
CU-63	1.9/1E-09	2.381E-09	2./85E-09	3.183E-09	3./68E-09	4./15E-09	2.93/E-08
Cu~65	8.898E-10	8.898E-10	8.898E-10	8.898E-10	8.898E-10	8.898E-10	8.898E-10
Zn-64	8.050E-13	8.656E-13	8.656E-13	8.050E-13	8.656E-13	8.056E-13	8.050E-13
ZN-00	2.240E-12	2.240E-12	2.240E-12	2.240E-12	2.2402-12	2.2401-12	2.2401-12
	1.410E-15	1.410E-15	1.410E-15	1.410E-15	1.4105-15	1.410E-15	1.410E-15
RU-104	1.121E-15	1.121E-15	1.121E-15	1.121E-15	1.121E-15	1.1212-15	1.121E-15
PG-104	2.4/0E-13	2.4/UE-13	2.4/UE-13	2.4/UE-13	2.4/UE-13	2.4/UE-13	2.4/UE-13
Pd-105	1./U5E-15	1./U5E-15	1./05E-15	1./U5E-15	1./U5E-15	1./USE-15	1./USE-15
PG-106	5.214E-12	5.214E-12	5.214E-12	5.214E-12	J.214E-12	J.214E-12	J.214E-12
PG-10/	2.4/2E-13	2.4/2E-13	2.4/2E-13	2.4/2E-13	2.4/2E-13	2.4/2E-13	2.4/2E-13
Pd-108	1./44E-09	1./90E-09	1.835E-09	1.8/9E-09	1.945E-09	2.U52E-U9	3.914E-U9
Pa-110	8.885E-10	8.885E-10	8.885E-10	8.885E-10	8.885E-10	0.000E-10	0.000E-1U
AG-10/	4.900E-0/	4.900E-0/	4.9UDE-U/	4.9UDE-U/	4.900E-0/	4.900E-0/	4.900E-0/
Ag-108m	4.58/E-09	4.538E-09	4.488E-09	4.44UE-09	4.308E-09	4.250E-09	2.UZIE-11
P(1) = DA	7.7516-0/	2.251F-0/	/./h/h+U/	Z.Z3/E-U/	Z.Z3ZE-U/	/./J/L-U/	Z.ZJZĽ-U/

<u>TABLE F.7.b</u>. Fuel Activation Product Inventory by Isotope at 25 MWd/kgM, g/gU (contd)

4

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ag-110m Cd-108 Cd-109 Cd-110 Cd-111 Cd-112 Cd-113	3.868E-12 6.851E-08 2.466E-12 3.031E-07 8.461E-09 2.334E-10 3.572E-14	5.099E-13 6.852E-08 8.282E-13 3.031E-07 8.461E-09 2.334E-10 3.572E-14	6.721E-14 6.852E-08 2.781E-13 3.031E-07 8.461E-09 2.334E-10 3.572E-14	8.859E-15 6.853E-08 9.339E-14 3.031E-07 8.461E-09 2.334E-10 3.572E-14	4.240E-16 6.853E-08 1.817E-14 3.031E-07 8.461E-09 2.334E-10 3.572E-14	2.675E-18 6.854E-08 1.187E-15 3.031E-07 8.461E-09 2.334E-10 3.572E-14	0.00 6.891E-08 0.00 3.031E-07 8.461E-09 2.334E-10 3.572E-14
Cd-114	8.047E-13	8.047E-13	8.047E-13	8.047E-13	8.047E-13	8.047E-13	8.047E-13
Total	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01

F.99

1, if

· • · · z

.

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	1.885E-08	1.885E-08	1.885E-08	1.885E-08	1.885E-08	1.885E-08	1.885E-08
H-2	1.696E-11	1.696E-11	1.696E-11	1.696E-11	1.696E-11	1.696E-11	1.696E-11
H-3	8.336E-15	7.451E-15	6.660E-15	5.952E-15	5.030E-15	3.799E-15	0.00
He-3	3.545E-15	4.430E-15	5.221E-15	5.928E-15	6.851E-15	8.082E-15	1.188E-14
He-4	2.382E-06	2.382E-06	2.382E-06	2.382E-06	2.382E-06	2.382E-06	2.382E-06
Li-6	2.909E-14	2.909E-14	2.909E-14	2.909E-14	2.909E-14	2.909E-14	2.909E-14
Li-7	1.759E-16	1.759E-16	1.759E-16	1.759E-16	1.759E-16	1.759E-16	1.759E-16
Be-9	1.608E-10	1.608E-10	1.608E-10	1.608E-10	1.608E-10	1.608E-10	1.608E-10
Be-10	6.499E-11	6.499E-11	6.499E-11	6.499E-11	6.499E-11	6.499E-11	6.496E-11
B-10	2.239E-16	2.802E-16	3.365E-16	3.928E-16	4.773E-16	6.180E-16	2.820E-14
B-11	2.647E-08	2.647E-08	2.647E-08	2.647E-08	2.647E-08	2.647E-08	2.647E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	7.940E-06	7.940E-06	7.940E-06	7.940E-06	7.940E-06	7.940E-06	7.940E-06
C-14	2.569E-07	2.569E-07	2.568E-07	2.568E-07	2.567E-07	2.565E-07	2.278E-07
N-14	4.943E-05	4.943E-05	4.943E-05	4.943E-05	4.943E-05	4.943E-05	4.946E-05
N-15	2.082E-07	2.082E-07	2.082E-07	2.082E-07	2.082E-07	2.082E-07	2.082E-07
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-17	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	3.696E-10	3.696E-10	3.696E-10	3.696E-10	3.696E-10	3.696E-10	3.696E-10
Ne-21	1.812E-14	1.812E-14	1.812E-14	1.812E-14	1.812E-14	1.812E-14	1.812E-14
Ne-22	1.294E-14	1.294E-14	1.294E-14	1.294E-14	1.294E-14	1.294E-14	1.294E-14
Na-23	1.048E-15	1.048E-15	1.048E-15	1.048E-15	1.048E-15	1.048E-15	1.048E-15
Mg-24	2.074E-10	2.074E-10	2.074E-10	2.074E-10	2.074E-10	2.074E-10	2.074E-10
Mg-25	2.182E-10	2.182E-10	2.182E-10	2.182E-10	2.182E-10	2.182E-10	2.182E-10
Mg-26	9.985E-11	9.985E-11	9.985E-11	9.985E-11	9.985E-11	9.985E-11	9.985E-11
A1-27	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05
S1-28	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05
S1-29	2.203E-06	2.203E-06	2.203E-06	2.203E-06	2.203E-06	2.203E-06	2.203E-06
51-30	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06
P-31	4.520E-10	4.520E-10	4.520E-10	4.520E-10	4.520E-10	4.520E-10	4.520E-10
5-32	3.503E-10	3.503E-10	3.503E-10	3.503E-10	3.503E-10	3.503E-10	3.503E-10
5-33	2.3085-13	2.308E-13	2.308E-13	2.308E-13	2.308E-13	2.308E-13	2.300E-13
5-34	2.49/E-11	2.49/E-11	2.49/E-11	2.49/E-11	2.49/E-11	2.49/E-11	2.49/E-11
3-30	3.3255-13	4.0402-13	4./00E-13	3.400E-13	0.304E-13	0.304E-13	3.00/E-11
(1-35)	7.0332-00	7.033E-00	7.033E-00	7.033E-00	7.035E-00	7.035E-00	7.033E-00
C1 - 30	0.220E-07	0.220E-07	0.220E-07	0.220E-07	0.220E-07	0.225E-07	0.20/E-0/
LI-3/	2.004E-00	2.004E-00	2.004E-00	2.004E-00	2.0046-00	2.004E-00	2.004E-00
Ar-30	1./14E-11 2 204E 00	2.000E-11	2.4JOE-11	2.029E-11	3.30/E-11	4.310E-11 2 204E 00	2 204E-09
Ar-30	3.204E-09	3.204E-09	2 006E 11	2 000E 11	2 057E 11	2 010E 11	2 227E 12
Ar-39 Av 10	J.UZ/E-II	1 120E 10	1 1205 10	1 1205 10	2.95/E-11 1 120E-10	1 1205-10	2.33/E*12 1 130F_10
AT-40 V 20	1.139C-10 7 607C 12	1.1395-10	1 0005 10	1 22/5-10	1 1625-10	1 8/25-10	2 870F_11
K-33	1 5675-09	J. 2020-13	1 5675-09	1 5675-02	1 5675-02	1 5675-09	1 567F_08
K=40 K_/11	5 8/0E-10	5 847E-10	5 85/E-10	5 862F_10	5 873F_10	5 801F_10	9 461F_10
Ca=41	4 382F_05	4 382F_05	4.382F_05	4.382F-05	4.382F-05	4.382F-05	4.382F-05

TABLE F.7.c.	Fuel Activation Product Inventory by Isotope at
	30 MWd/kgM, g/gU (contd)

1.1

. ++- 41

ani e 1814 (1

• •

ң и

e e

• •

• •

~ *

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Ca-41	4.276E-08	4.276E-08	4.276E-08	4.276E-08	4.275E-08	4.275E-08	4.240E-08
Ca-42	3.068E-07	3.068E-07	3.068E-07	3.068E-07	3.068E-07	3.068E-07	3.068E-07
Ca-43	6.271E-08	6.271E-08	6.271E-08	6.271E-08	6.271E-08	6.271E-08	6.271E-08
Ca-44	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06
Ca-45	2.552E-14	1.141E-15	5.106E-17	2.284E-18	2.160E-20	9.142E-24	0.00
Ca-46	1.819E-09	1.819E-09	1.819E-09	1.819E-09	1.819E-09	1.819E-09	1.819E-09
Ca-48	1.029E-07	1.029E-07	1.029E-07	1.029E-07	1.029E-07	1.029E-07	1.029E-07
Sc-45	2.540E-09	2.540E-09	2.540E-09	2.540E-09	2.540E-09	2.540E-09	2.540E-09
T1-46	6.556E-11	6.556E-11	6.556E-11	6.556E-11	6.556E-11	6.556E-11	6.556E-11
T1-4/	3.181E-12	3.181E-12	3.181E-12	3.181E-12	3.181E-12	3.181E-12	3.181E-12
T1-48	7.454E-15	7.454E-15	7.454E-15	7.454E-15	7.454E-15	7.454E-15	7.454E-15
T1-49	2./46E-10	2.746E-10	2.746E-10	2.746E-10	2.746E-10	2.746E-10	2.746E-10
11-50	7.806E-13	7.806E-13	7.806E-13	7.806E-13	7.806E-13	7.806E-13	7.806E-13
V-51	5.100E-11	5.100E-11	5.100E-11	5.100E-11	5.100E-11	5.100E-11	5.100E-11
Cr-52	3.018E-13	3.018E-13	3.018E-13	3.018E-13	3.018E-13	3.018E-13	3.018E-13
Cr-53	9.896E-11	9.896E-11	9.896E-11	9.896E-11	9.896E-11	9.896E-11	9.896E-11
Ur-54	1.525E-09	1.52/E-09	1.52/E-09	1.52/E-09	1.52/E-09	1.52/E-09	1.52/E-09
Mn-54	2.244E-12	4.440E-13	8./84E-14	1./38E-14	1.529E-15	2.662E-1/	0.00
Mn-55	1.485E-08	1.551E-08	1.590E-08	1.613E-08	1.630E-08	1.641E-08	1.645E-08
Fe-54	2.850E-06	2.850E-06	2.850E-06	2.850E-06	2.850E-06	2.850E-06	2.850E-06
Fe-55	1.602E-09	9.402E-10	5.51/E-10	3.23/E-10	1.455E-10	3.836E-11	0.00
re-30	4.004E-05	4.004E-05	4.004E-05	4.004E-05	4.004E-05	4.004E-05	4.004E-05
re-5/	1.443E-00	1.443E-00	1.443E-00	1.443E-00	1.443E-00	1.443E-00	1.443E-00
re-50	1.085E-07	1.085E-07	1.085E-U/	1.085E-07	1.085E-0/	1.085E-0/	1.085E-07
10-39	3.311E-09	3.314E-09	5.318E-09	3.322E-09	3.32/E-U9	3.330E-09	5.100E-09
LU-00 Ni. 50	1 9905 05	1 0005 05	1 990E 0E	1 990E 0E	1 990E 0E	1 0005 05	1 9905 05
N1-50	2 002E-03	2 0025 07	2 0025 07	1.009E-05	2 002E 07	2 002E 07	2 0755 07
Ni-60	7 550E-06	7 5505 06	7 550E-06	Z.093E-07	2.093E-07	7 5505-06	7 5505 06
Ni_61	2 922E_07	2 932E-07	2 922E-07	2 922E-07	2 932E-07	2 922E_07	2 922E 07
Ni_62	1.042E-06	1 042E-06	1 0/2E-06	1 042E-06	1 0425-06	1 042E-06	1 042E-06
N1-02 N1-63	3 325E_08	3 275E-08	3 226E_08	3 178E_08	3 107E_08	2 002E_08	1 850F_11
N1-64	2 814F_07	2 814F-07	2 814F-07	2 814F_07	2 814F_07	2 814F_07	2 814F_07
CU-63	2.385F-09	2.883F-09	3 373F-09	3.855E-09	4.565E-09	5.714F-09	3.562F-08
Cu-65	1.087E-09	1.087E-09	1.087F-09	1.087E-09	1.087F-09	1.087F-09	1.087F-09
7n-64	1.291F-12	1.291F-12	1.201F-12	1.291F-12	1.291F-12	1.291F-12	1.291F-12
7n-66	3.354F-12	3.354F-12	3.354F-12	3.354F-12	3.354F-12	3.354F-12	3.354F-12
7n-67	2.583E-15	2.583E-15	2.583E-15	2.583E-15	2.583E-15	2.583E-15	2.583E-15
Ru-104	1.349F-15	1.349F-15	1.349E-15	1.349F-15	1.349F-15	1.349E-15	1.349E-15
Pd-104	2.968F-13	2.968F-13	2.968E-13	2.968E-13	2.968E-13	2.968E-13	2.968E-13
Pd-105	2.504E-15	2.504E-15	2.504E-15	2.504E-15	2.504E-15	2.504E-15	2.504E-15
Pd-106	6.261F-12	6.261F-12	6.261E-12	6.261E-12	6.261E-12	6.261E-12	6.261E-12
Pd-107	2.999E-13	2.999E-13	2.999E-13	2.999E-13	2.999E-13	2.999E-13	2.998E-13
Pd-108	2.067F-09	2.121E-09	2.175E-09	2.229E-09	2.308E-09	2.438E-09	7.087E-09
Pd-110	1.001F-09	1.001E-09	1.001E-09	1.001E-09	1.001E-09	1.001E-09	1.001E-09
Ag-107	4.754E-07	4.754E-07	4.754E-07	4.754E-07	4.754E-07	4.754E-07	4.754E-07
Ag-108m	5.523E-09	5.463E-09	5.404E-09	5.345E-09	5.258E-09	5.117E-09	2.433E-11
						-	

 $\alpha \neq \beta$

TABLE F.7.c.	Fuel Activation Product Inventory by Isotope at
	30 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20</u> Years	<u>1000 Years</u>
Ag-109	1.858E-07	1.858E-07	1.858E-07	1.858E-07	1.858E-07	1.858E-07	1.858E-07
Ag-110m	4.064E-12	5.357E-13	7.062E-14	9.309E-15	4.455E-16	2.812E-18	0.00
Cd-108	8.243E-08	8.243E-08	8.244E-08	8.244E-08	8.245E-08	8.246E-08	8.290E-08
Cd-109	3.528E-12	1.185E-12	3.978E-13	1.336E-13	2.599E-14	1.698E-15	0.00
Cd-110	3.392E-07	3.392E-07	3.392E-07	3.392E-07	3.392E-07	3.392E-07	3.392E-07
Cd-111	1.183E-08	1.183E-08	1.183E-08	1.183E-08	1.183E-08	1.183E-08	1.183E-08
Cd-112	4.049E-10	4.049E-10	4.049E-10	4.049E-10	4.049E-10	4.049E-10	4.049E-10
Cd-113	6.235E-14	6.235E-14	6.235E-14	6.235E-14	6.235E-14	6.235E-14	6.235E-14
Cd-114	1.737E-12	1.737E-12	1.737E-12	1.737E-12	1.737E-12	1.737E-12	1.737E-12
In-115	3.192E-16	3.192E-16	3.192E-16	3.192E-16	3.192E-16	3.192E-16	3.192E-16
Sn-116	2.037E-16	2.037E-16	2.037E-16	2.037E-16	2.037E-16	2.037E-16	2.037E-16
Total	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01

TABLE F.7.d.	Fuel Activation Product Inventory by Isotope a	t
	35 MWd/kgM, g/gU	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	2.242E-08	2.242E-08	2.242E-08	2.242E-08	2.242E-08	2.242E-08	2.242E-08
H-2	2.400E-11	2.400E-11	2.400E-11	2.400E-11	2.400E-11	2.400E-11	2.400E-11
H-3	1.309E-14	1.170E-14	1.046E-14	9.349E-15	7.900E-15	5.967E-15	0.00
He-3	5.512E-15	6.903E-15	8.146E-15	9.256E-15	1.071E-14	1.264E-14	1.861E-14
He-4	2.834E-06	2.834E-06	2.834E-06	2.834E-06	2.834E-06	2.834E-06	2.834E-06
Li-6	3.756E-14	3.756E-14	3.756E-14	3.756E-14	3.756E-14	3.756E-14	3.756E-14
Li-7	2.559E-16	2.559E-16	2.559E-16	2.559E-16	2.559E-16	2.559E-16	2.559E-16
Be-9	1.913E-10	1.913E-10	1.913E-10	1.913E-10	1.913E-10	1.913E-10	1.913E-10
Be-10	9.108E-11	9.108E-11	9.108E-11	9.108E-11	9.108E-11	9.108E-11	9.104E-11
B-10	3.025E-16	3.814E-16	4.603E-16	5.392E-16	6.576E-16	8.549E-16	3.952E-14
B-11	3.147E-08	3.147E-08	3.147E-08	3.147E-08	3.147E-08	3.147E-08	3.147E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	9.398E-06	9.398E-06	9.398E-06	9.398E-06	9.398E-06	9.398E-06	9.398E-06
C-14	3.056E-07	3.055E-07	3.054E-07	3.054E-07	3.053E-07	3.051E-07	2.710E-07
N-14	4.938E-05	4.938E-05	4.938E-05	4.938E-05	4.938E-05	4.938E-05	4.941E-05
N-15	2.105E-07	2.105E-07	2.105E-07	2.105E-07	2.105E-07	2.105E-07	2.105E-07
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-17	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05	5.433E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	4.398E-10	4.398E-10	4.398E-10	4.398E-10	4.398E-10	4.398E-10	4.398E-10
Ne-21	2.565E-14	2.565E-14	2.565E-14	2.565E-14	2.565E-14	2.565E-14	2.565E-14
Ne-22	1.833E-14	1.833E-14	1.833E-14	1.833E-14	1.833E-14	1.833E-14	1.833E-14
Na-23	1.485E-15	1.485E-15	1.485E-15	1.485E-15	1.485E-15	1.485E-15	1.485E-15
Mg-24	2.467E-10	2.467E-10	2.467E-10	2.467E-10	2.467E-10	2.467E-10	2.467E-10
Mg-25	2.596E-10	2.596E-10	2.596E-10	2.596E-10	2.596E-10	2.596E-10	2.596E-10
Mg-26	1.189E-10	1.189E-10	1.189E-10	1.189E-10	1.189E-10	1.189E-10	1.189E-10
A1-27	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05	4.537E-05
Si-28	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05	4.172E-05
Si-29	2.206E-06	2.206E-06	2.206E-06	2.206E-06	2.206E-06	2.206E-06	2.206E-06
S1-30	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06	1.503E-06
P-31	5.378E-10	5.378E-10	5.378E-10	5.378E-10	5.378E-10	5.378E-10	5.378E-10
S-32	4.200E-10	4.200E-10	4.200E-10	4.200E-10	4.200E-10	4.200E-10	4.200E-10
5-33	3.248E-13	3.248E-13	3.248E-13	3.248E-13	3.248E-13	3.248E-13	3.248E-13
5-34	2.9/2E-11	2.9/2E-11	2.9/2E-11	2.9/2E-11	2.9/2E-11	2.9/2E-11	2.9/2E-11
5-30	3.905E-13	4./51E-13	5.598E-13	0.444E-13	7./14E-13	9.830E-13	4.241E-11
(1-35)	7.490E-00	7.490E-00	7.490E-00	7.490E-00	7.490E-00	7.490E-00	7.490E-00
C1 27	9.0/3E-0/	9.0/JE-0/	9.0/3E-0/	9.0/3E-0/	9.0/JE-0/	9.0/3E-0/	9.001E-07
LI-37 Am 26	2.000E-00	2.000E-00 2.450E-11	2.000E-00 2.997E_11	2.000E-00	2.000E-00	2.000E-00	2.000E-00
$A_{n} = 30$	2.013E-11	2.4502-11	$2.00/E^{-11}$	3.324E-11 3.912E-00	$3.9/9E^{-11}$	3 813E_00	2.190E-09 3.813E_00
Ar-30	2 204E 11	2 297E.11	2 270E_11	3 2525-11	3 229E-11	3 187E_11	2 551E-12
Ar-39	1 575E_10	1 575E_10	3.270L-11	$1.575E_{-10}$	$1.575E_{10}$	$1.575E_{-10}$	1 575E-10
K_20	8 457F-12	1 0165-10	1 185F_12	1 353F_12	1 603F-12	2 016F_12	3 134F_11
K-10 K-33	1 8505-00	1 8505-12	1 8505-12	1 8505-12	1 8505-12	1 850F_02	1 850F_08
K-40 K_/11	2 215E_10	8 223E_10	8 2325-10	8 241F_10	8 254F_10	8 276F_10	1 252F_00
Ca-41	A 381E-05	1 381E_05	4 381F_05	4 381F_05	4 381F_05	4 381F_05	4 381F-05

4-14

TABLE <u>F.7.d</u> .	Fuel Activation Product Inventory by Isotope at	C
	35 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u> 10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Ca-41	5.087E-08	5.087E-08	5.087E-08	5.087E-08	5.087E-08	5.086E-08	5.044E-08
Ca-42	3.067E-07						
Ca-43	6.260E-08						
Ca-44	1.039E-06						
Ca-45	3.092E-14	1.383E-15	6.187E-17	2.767E-18	2.618E-20	1.108E-23	0.00
Ca-46	1.818E-09						
Ca-48	1.029E-07						
Sc-45	3.007E-09						
Ti-46	9.255E-11						
Ti-47	3.825E-12						
Ti-48	1.060E-14						
T1-49	3.265E-10						
T1-50	1.105E-12						
V-51	6.058E-11						
Cr-52	4.266E-13						
Cr-53	1.172E-10						
Cr-54	1.814E-09	1.816E-09	1.816E-09	1.816E-09	1.816E-09	1.816E-09	1.816E-09
Mn-54	2.708E-12	5.357E-13	1.060E-13	2.097E-14	1.845E-15	3.212E-17	0.00
Mn-55	1.762E-08	1.841E-08	1.887E-08	1.915E-08	1.936E-08	1.949E-08	1.953E-08
Fe-54	2.847E-06						
Fe-55	1.918E-09	1.126E-09	6.604E-10	3.875E-10	1.741E-10	4.592E-11	0.00
Fe-56	4.658E-05						
Fe-57	1.504E-06						
Fe-58	1.710E-07						
Co-59	4.310E-09	4.314E-09	4.318E-09	4.323E-09	4.329E-09	4.339E-09	6.384E-09
Co-60	1.611E-10	1.238E-10	9.518E-11	7.317E-11	4.931E-11	2.555E-11	0.00
N1-58	1.884E-05						
N1-59	2.419E-0/	2.419E-0/	2.419E-0/	2.419E-0/	2.419E-07	2.419E-07	2.398E-07
N1-60	7.552E-06						
N1-61	3.92/E-0/						
N1-62	1.036E-06						
N1-03	3.925E-08	3.800E-08	3.809E-08	3./52E-08	3.008E-08	3.532E-08	2.195E-11
NI-04 Cu 62	2.0100-07	2.0100-07	2.810E-0/	2.0100-07	2.010E-U/	2.010E-U/	2.010E-U/
Cu 65	2.809E-09	3.390E-09	3.9/3E-09	4.344E-09	1 202E 00	0./39E-09	4.2046-00
CU-00 7n 64	1.293E-09	1 0215 12	1 0215 12	1 0215 12	1 0215 12	1 0215 12	1 0215 12
Z11-04	1.0210-12	1.0215-12	1.0210-12	1.0215-12	1.0215-12	1.021E-12 A 747E 12	1.0215-12
ZII-00	4./4/5-12	4./4/E-12 1 217E 15	4./4/L-12 1 217E 15	4.7475-12	4.7470-12	4.747E-12	4.7470-12
ZII-07	4.34/5-13	4.34/2-13	4.34/E-13	4.34/E-15	4.3472-15 1 5795-15	1 5796-15	4.5472-15 1 578E_15
RU-104	1.J/OE-1J 2 471E 12	1.J/OE=13	1.J/OE-1J 2 471E 12	2 4716 12	2 4715-12	2 A71E 12	2 A71E-12
Pd 105	J.4/10-13	3.4/1E-13 2 /Q1E 1E	3.4/1C-13 3 /Q1E 1E	3 /015-15	3 1810-12	3 1010-15	3 4815-15
Dd_106	J.401E-1J	7 21/C-17	7 31/C_12	7 31/15-12	7 31/5_12	7 3145-12	7 3145-12
Pd_100	2 520E-12	2 520E_12	3 5305-12	7.JIHE-12 3.530F_12	3 530F_12	7.514L-12 7.570F-12	3 530F_12
Dd 100	3 38UE UU	2.339E-13	2 508E-10	2 5715-00	2 66/F_00	2 815F_00	8 261F_00
Dd 110	1 0065 00	1 0065-00	1 006F_09	1 0065-00	1 006F_00	1 NQ6F_NQ	1 0065-00
$\Lambda \alpha = 107$	A 600E-07	1.050E-05	A 600F_07	4 600F-07	4 600F-07	4 600F_07	4.600F-07
Ag_108m		6 398F_00	6.329F-09	6.260F-09	6.158F-09	5.992F-09	2.850E-11

TABLE F.7.d.	Fuel Activation Product Inventory by Isotope a	t
	35 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Ag-109	1.521E-07	1.521E-07	1.521E-07	1.521E-07	1.521E-07	1.521E-07	1.521E-07
Ag-110m	4.115E-12	5.425E-13	7.151E-14	9.427E-15	4.512E-16	2.847E-18	0.00
Cd-108	9.646E-08	9.647E-08	9.648E-08	9.648E-08	9.649E-08	9.650E-08	9.702E-08
Cd-109	4.764E-12	1.600E-12	5.372E-13	1.804E-13	3.510E-14	2.293E-15	0.00
Cd-110	3.691E-07	3.691E-07	3.691E-07	3.691E-07	3.691E-07	3.691E-07	3.691E-07
Cd-111	1.567E-08	1.567E-08	1.567E-08	1.567E-08	1.567E-08	1.567E-08	1.567E-08
Cd-112	6.471E-10	6.471E-10	6.471E-10	6.471E-10	6.471E-10	6.471E-10	6.471E-10
Cd-113	1.023E-13	1.023E-13	1.023E-13	1.023E-13	1.023E-13	1.023E-13	1.023E-13
Cd-114	3.383E-12	3.383E-12	3.383E-12	3.383E-12	3.383E-12	3.383E-12	3.383E-12
In-115	7.046E-16	7.046E-16	7.046E-16	7.046E-16	7.046E-16	7.046E-16	7.046E-16
Sn-116	5.302E-16	5.302E-16	5.302E-16	5.302E-16	5.302E-16	5.302E-16	5.302E-16
Total	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348F-01	1.348F-01

F.105

٢

TABLE F.7.e.	Fuel Activation Product Inventory by Isotope at	
	40 MWd/kgM, g/gU	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	2.609E-08	2.609E-08	2.609E-08	2.609E-08	2.609E-08	2.609E-08	2.609E-08
H-2	3.255E-11	3.255E-11	3.255E-11	3.255E-11	3.255E-11	3.255E-11	3.255E-11
H-3	1.931E-14	1.726E-14	1.543E-14	1.379E-14	1.165E-14	8.802E-15	1.135E-38
He-3	8.073E-15	1.012E-14	1.196E-14	1.360E-14	1.573E-14	1.858E-14	2.739E-14
He-4	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.302E-06	3.302E-06
Li-6	4.663E-14	4.663E-14	4.663E-14	4.663E-14	4.663E-14	4.663E-14	4.663E-14
Li-7	3.541E-16	3.541E-16	3.541E-16	3.541E-16	3.541E-16	3.541E-16	3.541E-16
Be-9	2.227E-10	2.227E-10	2.227E-10	2.227E-10	2.227E-10	2.227E-10	2.227E-10
Be-10	1.227E-10	1.227E-10	1.227E-10	1.227E-10	1.227E-10	1.227E-10	1.226E-10
B-10	3.957E-16	5.020E-16	6.083E-16	7.146E-16	8.740E-16	1.140E-15	5.320E-14
B-11	3.664E-08	3.664E-08	3.664E-08	3.664E-08	3.664E-08	3.664E-08	3.664E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	1.091E-05	1.091E-05	1.091E-05	1.091E-05	1.091E-05	1.091E-05	1.091E-05
C-14	3.558E-07	3.557E-07	3.556E-07	3.556E-07	3.554E-07	3.552E-07	3.155E-07
N-14	4.932E-05	4.932E-05	4.932E-05	4.932E-05	4.932E-05	4.932E-05	4.936E-05
N-15	2.130E-07	2.130E-07	2.130E-07	2.130E-07	2.130E-07	2.130E-07	2.130E-07
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-17	5.434E-05	5.434E-05	5.434E-05	5.434E-05	5.434E-05	5.434E-05	5.434E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	5.123E-10	5.123E-10	5.123E-10	5.123E-10	5.123E-10	5.123E-10	5.123E-10
Ne-21	3.480E-14	3.480E-14	3.480E-14	3.480E-14	3.480E-14	3.480E-14	3.480E-14
Ne-22	2.488E-14	2.488E-14	2.488E-14	2.488E-14	2.488E-14	2.488E-14	2.488E-14
Na-23	2.016E-15	2.016E-15	2.016E-15	2.016E-15	2.016E-15	2.016E-15	2.016E-15
Mg-24	2.874E-10	2.874E-10	2.874E-10	2.874E-10	2.874E-10	2.874E-10	2.874E-10
Mg-25	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10	3.024E-10
Mg-26	1.386E-10	1.386E-10	1.386E-10	1.386E-10	1.386E-10	1.386E-10	1.386E-10
AI-27	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05
S1-28	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05
S1-29	2.209E-06	2.209E-06	2.209E-06	2.209E-06	2.209E-06	2.209E-06	2.209E-06
S1-30	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06
P-31	6.265E-10	6.265E-10	6.265E-10	6.265E-10	6.265E-10	6.265E-10	6.265E-10
5-32	4.845E-10	4.845E-10	4.845E-10	4.845E-10	4.845E-10	4.845E-10	4.845E~10
5-33	4.380E-13	4.380E-13	4.380E-13	4.380E-13	4.380E-13	4.380E-13	4.380E-13
5-34	3.404E-11	3.404E-11	3.404E-11	3.404E-11	3.404E-11	3.404E-11	3.404E-11
5-30	4.49UE-13	5.404E-13	D.438E-13	7.412E-13	8.8/3E-13	1.131E-12	4.001E-11
C1-35	7.344E-00	7.344E-00	7.344E-00	7.344E-00	7.344E-00	7.344E-00	/.344E-00
C1-30	1.113E-U0	1.113E-00	1.113E-VO	1.113E-00	1.113E-00	1.113E-00	1.111E-00
LI=37	2.8/3E-00	2.8/3E-U0	2.8/3E-UD	2.8/3E-00	2.8/3E-U0	2.8/3E-U0	2.8/3E-00
AL-20	2.313E-11	2.0102-11	3.319E-11	3.022E-11	4.3//E-11	J.034E-11	2.32UE-U9
Ar-38	4.444E-09	4.444E-09	4.444E-09	4.444E-09	4.444E-09	4.444E-09	4.444E-U9
Ar-39	3.043E-11	3.524E-11	3.5U0E-11	3.400E-11	3.401E-11	3.41/E-11	2./30E-12
Ar-40	2.092E-10	2.092E-10	2.092E-10	2.092E-10	2.U92E-10	2.U92E-10	2.UY2E-1U
K-39	9.126E-13	1.095E-12	1.2/6E-12	1.450E-12	1./25E-12	2.108E-12	3.30UE-11
K-40	2.138E-08	2.138E-08	2.138E-08	2.130E-08	2.138E-08	2.138E-U8	2.130E-UO
K-41	1.108E-09	1.109E-09	1.11UE-09	1.111E-U9	1.112E-U9	1.1136-09	1 300E 0E

<u>TABLE F.7.e</u>. Fuel Activation Product Inventory by Isotope at 40 MWd/kgM, g/gU (contd)

4411

4e41

1194

-

,

<u>Isotope</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20</u> Years	<u>1000 Years</u>
Ca-41	5.925E-08	5.925E-08	5.925E-08	5.925E-08	5.925E-08	5.924E-08	5.875E-08
Ca-42	3.066E-07	3.066E-07	3.066E-07	3.066E-07	3.066E-07	3.066E-07	3.066E-07
Ca-43	6.249E-08	6.249E-08	6.249E-08	6.249E-08	6.249E-08	6.249E-08	6.249E-08
Ca-44	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06	1.039E-06
Ca-45	3.644E-14	1.630E-15	7.291E-17	3.261E-18	3.084E-20	1.305E-23	0.00
Ca-46	1.818E-09	1.818E-09	1.818E-09	1.818E-09	1.818E-09	1.818E-09	1.818E-09
Ca-48	1.028E-07	1.028E-07	1.028E-07	1.028E-07	1.028E-07	1.028E-07	1.028E-07
Sc-45	3.486E-09	3.486E-09	3.486E-09	3.486E-09	3.486E-09	3.486E-09	3.486E-09
Ti-46	1.252E-10	1.252E-10	1.252E-10	1.252E-10	1.252E-10	1.252E-10	1.252E-10
T1-47	4.514E-12	4.514E-12	4.514E-12	4.514E-12	4.514E-12	4.514E-12	4.514E-12
T1-48	1.447E-14	1.447E-14	1.447E-14	1.447E-14	1.447E-14	1.447E-14	1.447E-14
Ti-49	3.800E-10	3.800E-10	3.800E-10	3.800E-10	3.800E-10	3.800E-10	3.800E-10
Ti-50	1.498E-12	1.498E-12	1.498E-12	1.498E-12	1.498E-12	1.498E-12	1.498E-12
V-51	7.045E-11	7.045E-11	7.045E-11	7.045E-11	7.045E-11	7.045E-11	7.045E-11
Cr-52	5.780E-13	5.780E-13	5.780E-13	5.780E-13	5.780E-13	5.780E-13	5.780E-13
Cr-53	1.358E-10	1.358E-10	1.358E-10	1.358E-10	1.358E-10	1.358E-10	1.358E-10
Cr-54	2.111E-09	2.114E-09	2.114E-09	2.115E-09	2.115E-09	2.115E-09	2.115E-09
Mn-54	3.183E-12	6.296E-13	1.246E-13	2.464E-14	2.169E-15	3.775E-17	0.00
Mn-55	2.047E-08	2.139E-08	2.194E-08	2.226E-08	2.251E-08	2.266E-08	2.271E-08
Fe-54	2.844E-06	2.844E-06	2.844E-06	2.844E-06	2.844E-06	2.844E-06	2.844E-06
Fe-55	2.245E-09	1.31/E-09	/./2/E-10	4.534E-10	2.038E-10	5.3/3E-11	0.00
Fe-56	4.651E-05	4.651E-05	4.651E-05	4.651E-05	4.651E-05	4.651E-05	4.651E-05
Fe-5/	1.500E-U0	1.500E-U0	1.500E-00	1.500E-00	1.500E-00	1.500E-00	1.500E-00
re-58	1./3/E-U/	1./3/E-U/	1./3/E-U/	1./3/E-U/	1./3/E-U/	1./3/E-U/	1./3/E-U/
10-59	5.40/E-09	5.412E-09	5.41/E-09	5.421E-09	5.428E-09	5.440E-09	7.753E-09
LU-DU N3 EQ	2.230E-10	1./14E-10	1.318E-10	1.013E-10	0.02/E-11	3.33/E-11	0.00
NI-50	1.0/9E-03	1.0/9E-03	1.0/9E-03	1.0/9E-03	1.0/9E-03	1.0/9E-03	1.0/9E-03
N1-39	2./30E-0/	Z./35E-0/	Z./35E-0/	2./35E-0/	2./35E-0/	2./33E-0/	Z./12E-U/
NI-00 Ni-61	1.024E-07	1.001E-00	1.024E-00	1.024E-07	1.024E-07	1.024E-00	1.001E-00
N1-01 N1-62	4.024L-07	4.024E-07	4.024E-07	4.024E-07	4.0242-07	1 020E-06	4.024E-07
N1-02	1.0291-00	1.029E-00	1.029E-00	1.029L-00	$4 237 E_{-08}$	1.029L-00	2 536E-11
N1-05	2 810F-07	2 819F_07	2 819F_07	2 819F-07	2 819F_07	2 810F-07	2.330L-11 2.819F_07
Cu-63	3.240F-09	3.918F-09	4.586F-09	5.244F-09	6.213E-09	7.779F-09	4.856F-08
Cu-65	1.506E-09	1.506E-09	1.506E-09	1.506F-09	1.506F-09	1.506E-09	1.506F-09
Zn-64	2.459E-12	2.459E-12	2.459E-12	2.459E-12	2.459E-12	2.459E-12	2.459E-12
Zn-66	6.438E-12	6.438E-12	6.438E-12	6.438E-12	6.438E-12	6.438E-12	6.438E-12
Zn-67	6.861E-15	6.861E-15	6.861E-15	6.861E-15	6.861E-15	6.861E-15	6.861E-15
Ru-104	1.808E-15	1.808E-15	1.808E-15	1.808E-15	1.808E-15	1.808E-15	1.808E-15
Pd-104	3.970E-13	3.970E-13	3.970E-13	3.970E-13	3.970E-13	3.970E-13	3.970E-13
Pd-105	4.637E-15	4.637E-15	4.637E-15	4.637E-15	4.637E-15	4.637E-15	4.637E-15
Pd-106	8.362E-12	8.362E-12	8.362E-12	8.362E-12	8.362E-12	8.362E-12	8.362E-12
Pd-107	4.089E-13	4.089E-13	4.089E-13	4.089E-13	4.089E-13	4.089E-13	4.088E-13
Pd-108	2.682E-09	2.755E-09	2.828E-09	2.900E-09	3.006E-09	3.180E-09	9.421E-09
Pd-110	1.177E-09	1.177E-09	1.177E-09	1.177E-09	1.177E-09	1.177E-09	1.177E-09
Ag-107	4.447E-07	4.447E-07	4.447E-07	4.447E-07	4.447E-07	4.447E-07	4.447E-07
Ag-108m	7.413E-09	7.333E-09	7.253E-09	7.174E-09	7.058E-09	6.868E-09	3.266E-11

TABLE F.7.e.	Fuel Activation Product Inventory by Isotope a	t
	40 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Ag-109	1.238E-07	1.238E-07	1.238E-07	1.238E-07	1.238E-07	1.238E-07	1.238E-07
Ag-110m	4.035E-12	5.319E-13	7.011E-14	9.242E-15	4.423E-16	2.791E-18	0.00
Cd-108	1.105E-07	1.105E-07	1.105E-07	1.105E-07	1.105E-07	1.105E-07	1.111E-07
Cd-109	6.141E-12	2.062E-12	6.924E-13	2.325E-13	4.524E-14	2.956E-15	0.00
Cd-110	3.932E-07	3.932E-07	3.932E-07	3.932E-07	3.932E-07	3.932E-07	3.932E-07
Cd-111	1.986E-08	1.986E-08	1.986E-08	1.986E-08	1.986E-08	1.986E-08	1.986E-08
Cd-112	9.700E-10	9.700E-10	9.700E-10	9.700E-10	9.700E-10	9.700E-10	9.700E-10
Cd-113	1.533E-13	1.533E-13	1.533E-13	1.533E-13	1.533E-13	1.533E-13	1.533E-13
Cd-114	5.994E-12	5.994E-12	5.994E-12	5.994E-12	5.994E-12	5.994E-12	5.994E-12
In-115	1.373E-15	1.373E-15	1.373E-15	1.373E-15	1.373E-15	1.373E-15	1.373E-15
Sn-116	1.196E-15	1.196E-15	1.196E-15	1.196E-15	1.196E-15	1.196E-15	1.196E-15
Total	1.348F-01	1.348E-01	1.348E-01	1.348F-01	1.348E-01	1.348F-01	1.348F-01

TABLE F.7.f.	Fuel Activation Product Inventory by Isotope	at
	45 MWd/kgM, g/gU	

-196) ···

-1990 - 1990

-

.....

. 545

· •

10 m

196-69

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-1	2.987F-08	2.987F-08	2.987F-08	2.987F-08	2.987F-08	2.987F-08	2.987F-08
H-2	4.269F-11	4.269F-11	4.269F-11	4.269F-11	4.269F-11	4.269F-11	4.269F-11
H-3	2.713E-14	2.425E-14	2.168E-14	1.937E-14	1.637E-14	1.237E-14	1.596E-38
He-3	1.128E-14	1.416E-14	1.673E-14	1.904E-14	2.204E-14	2.604E-14	3.841E-14
He-4	3.782E-06	3.782E-06	3.782E-06	3.782E-06	3.782E-06	3.782E-06	3.782E-06
L1-6	5.617E-14	5.617E-14	5.617E-14	5.617E-14	5.617E-14	5.617E-14	5.617E-14
Li-7	4.718E-16	4.718E-16	4.718E-16	4.718E-16	4.718E-16	4.718E-16	4.718E-16
Be-9	2.551E-10	2.551E-10	2.551E-10	2.551E-10	2.551E-10	2.551E-10	2.551E-10
Be-10	1.600E-10	1.600E-10	1.600E-10	1.600E-10	1.600E-10	1.600E-10	1.599E-10
B-10	5.043E-16	6.429E-16	7.816E-16	9.202E-16	1.128E-15	1.475E-15	6.939E-14
B-11	4.195E-08	4.195E-08	4.195E-08	4.195E-08	4.195E-08	4.195E-08	4.195E-08
C-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
C-13	1.245E-05	1.245E-05	1.245E-05	1.245E-05	1.245E-05	1.245E-05	1.245E-05
C-14	4.074E-07	4.073E-07	4.072E-07	4.071E-07	4.070E-07	4.067E-07	3.612E-07
N-14	4.927E-05	4.927E-05	4.927E-05	4.927E-05	4.927E-05	4.927E-05	4.932E-05
N-15	2.155E-07	2.155E-07	2.155E-07	2.155E-07	2.155E-07	2.155E-07	2.155E-07
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-17	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne-20	5.868E-10	5.868E-10	5.868E-10	5.868E-10	5.868E-10	5.868E-10	5.868E-10
Ne-21	4.564E-14	4.564E-14	4.564E-14	4.564E-14	4.564E-14	4.564E-14	4.564E-14
Ne-22	3.265E-14	3.265E-14	3.265E-14	3.265E-14	3.265E-14	3.265E-14	3.265E-14
Na-23	2.647E-15	2.647E-15	2.647E-15	2.647E-15	2.647E-15	2.647E-15	2.647E-15
Mg-24	3.292E-10	3.292E-10	3.292E-10	3.292E-10	3.292E-10	3.292E-10	3.292E-10
Mg-25	3.464E-10	3.464E-10	3.464E-10	3.464E-10	3.464E-10	3.464E-10	3.464E-10
Mg-26	1.589E-10	1.589E-10	1.589E-10	1.589E-10	1.589E-10	1.589E-10	1.589E-10
AI-27	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05	4.536E-05
S1-28	4.1/3E-05	4.1/3E-05	4.173E-05	4.1/3E-05	4.1/3E-05	4.173E-05	4.1/3E-05
S1-29	2.213E-06	2.213E-06	2.213E-06	2.213E-06	2.213E-06	2.213E-06	2.213E-06
51-30	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06
P-31	7.17/E-10	7.1//E-10	/.1//E-10	/.1//E-10	7.1//E-10	7.1//E-10	/.1//E-10
5-32	5.494E-10	5.494E-10	5.494E-10	5.494E-10	5.494E-10	5.494E-10	5.494E-10
5-33	2.071E.11	2 071E 11	2.071E-11	2.071E-11	2 071E_11	3.709E-13 2.071E_11	3./09E-13 2 071E_11
5-34	5 078E-13	6 180F-13	7 282F-13	2 38/F_13	$1 004F_{-12}$	1 270F-12	5 522F-11
	7 196E-06	7 106F_06	7.196F-06	7 106F_06	7 196E-06	7 196E-06	7 196F-06
C1-36	1 260E-06	1 260E-06	1 260E=00	1 260F-06	1 260E-06	1 260F-06	1 257F-06
C1 - 37	2.879F-06	2.879F-06	2.879F-06	2.879F-06	2.879E-06	2.879F-06	2.879F-06
Ar=36	2.616F-11	3.185F-11	3.754F-11	4.323F-11	5.176F-11	6.599F-11	2.851E-09
Ar-38	5.093F-09	5.093E-09	5.093F-09	5.093E-09	5.093E-09	5.093E-09	5.093E-09
Ar-39	3.749F-11	3.730E-11	3.711E-11	3.691E-11	3.663E-11	3.616E-11	2.894E-12
Ar-40	2.690E-10	2.690E-10	2.690E-10	2.690E-10	2.690E-10	2.690E-10	2.690E-10
K-39	9.717E-13	1.164E-12	1.356E-12	1.547E-12	1.831E-12	2.300E-12	3.557E-11
K-40	2.429E-08	2.429E-08	2.429E-08	2.429E-08	2.429E-08	2.429E-08	2.429E-08
K-41	1.444E-09	1.445E-09	1.447E-09	1.448E-09	1.449E-09	1.452E-09	2.019E-09
Ca-40	4.379E-05	4.379E-05	4.379E-05	4.379E-05	4.379E-05	4.379E-05	4.379E-05

TABLE F <u>.7.f</u> .	Fuel Activation Product Inventory by Isotope at	t
	45 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Ca-41	6.786E-08	6.786E-08	6.786E-08	6.786E-08	6.786E-08	6.786E-08	6.729E-08
Ca-42	3.065E-07						
Ca-43	6.238E-08						
Ca-44	1.038E-06						
Ca-45	4.207E-14	1.882E-15	8.416E-17	3.765E-18	3.561E-20	1.507E-23	0.00
Ca-46	1.817E-09						
Ca-48	1.028E-07						
Sc-45	3.972E-09	3.973E-09	3.973E-09	3.973E-09	3.973E-09	3.973E-09	3.973E-09
Ti-46	1.636E-10						
Ti-47	5.250E-12						
Ti-48	1.913E-14						
T1-49	4.350E-10						
T1-50	1.965E-12						
V-51	8.056E-11						
Cr-52	7.573E-13						
Cr-53	1.548E-10						
Cr-54	2.417E-09	2.420E-09	2.421E-09	2.421E-09	2.421E-09	2.421E-09	2.421E-09
Mn-54	3.666E-12	7.253E-13	1.435E-13	2.839E-14	2.498E-15	4.349E-17	0.00
Mn-55	2.338E-08	2.445E-08	2.508E-08	2.544E-08	2.573E-08	2.590E-08	2.596E-08
Fe-54	2.840E-06						
Fe-55	2.579E-09	1.513E-09	8.879E-10	5.210E-10	2.341E-10	6.174E-11	0.00
Fe-56	4.645E-05						
Fe-57	1.631E-06						
Fe-58	1.764E-07						
Co-59	6.588E-09	6.593E-09	6.598E-09	6.604E-09	6.612E-09	6.625E-09	9.195E-09
Co-60	2.993E-10	2.300E-10	1.768E-10	1.359E-10	9.161E-11	4.746E-11	0.00
N1-58	1.874E-05						
N1-59	3.040E-07	3.040E-07	3.040E-07	3.040E-07	3.040E-07	3.039E-07	3.014E-07
N1-60	7.563E-06						
N1-61	4.125E-0/	4.125E-0/	4.125E-0/	4.125E-0/	4.125E-07	4.125E-0/	4.125E-07
N1-62	1.023E-06						
N1-63	5.150E-08	5.0/3E-08	4.99/E-08	4.923E-08	4.813E-08	4.035E-08	2.880E-11
N1-04	2.823E-U/						
	3.0/0E-09	4.440E-09	5.205E-09	5.952E-09	1 724E 00	0.031E-09	3.313E-08
CU~05	1./24E-U9	1./24E-U9	1./24E-09	1./24E-09 2 207E 12	1./24E-09 2 207E 12	1./24E-09 2 207E 12	1./24E-09 2 207E 12
20-04 7n 66	3.20/E-12	3.20/E-12 9 444E 12	3.20/E-12	3.20/E-12 9 444E 12	3.20/E-12	J.ZU/E-12	3.20/E-12 9 444E 12
LII-00	0.444E-12	0.444E-12 1 020E 14	0.444E-12	0.444E-12	0.444E-12 1 020E 14	0.444E-12 1 020E 14	0.444E-12 1 020E 14
LI-0/	1.030E-14	1.030E-14	2 0255 15	2 0255 15	2 025E 15	2 0255 15	2 025E 15
RU-104	2.035E-15	2.035E-13	2.035E-15	2.035E-13	2.035E-15	2.035E-15	2.035E=15
PU-104	4.405E*13	4.405E-15	4.405E-15	4.405E-15	4.405E-15	5 070E-15	4.403E-13 5.070E-15
PU-105	0.400E 12	0.400E 12	0.400E-12	0 400E-12	0.400E-12	0 100E-12	0 400E-12
PU-100	9.400E-12	9.400E-12 1 612E-12	9.400E-12 1 6/3E-13	A 643E-12	A 643E-13	A 643E-13	A 643E-13
Dd_100	2 0605-00	3 0515-00	3 1335-00	3 2145-00	3 334F-00	3 530F_00	1 056F_08
Dd_110	1 2435-09	1 243F_00					
Δa_{-107}	1.273E-09 1 205F_07	1 205F_07	1 205F_07	4 205F_07	4 295F_07	4 295F_07	4.295F-07
Δα-108m	8.351F-00	8.261F-09	8.171F-09	8.082F-09	7.951F-09	7.737F-09	3.679F-11

TABLE F.7.f. Fuel Activation Product Inventory by Isotope at 45 MWd/kgM, g/gU (contd)

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Ag-109	1.002E-07	1.002E-07	1.002E-07	1.002E-07	1.002E-07	1.002E-07	1.002E-07
Ag-110m	3.857E-12	5.084E-13	6.702E-14	8.834E-15	4.228E-16	2.667E-18	0.00
Cd-108	1.244E-07	1.244E-07	1.244E-07	1.244E-07	1.244E-07	1.244E-07	1.251E-07
Cd-109	7.637E-12	2.564E-12	8.611E-13	2.892E-13	5.627E-14	3.677E-15	0.00
Cd-110	4.122E-07	4.122E-07	4.122E-07	4.122E-07	4.122E-07	4.122E-07	4.122E-07
Cd-111	2.436E-08	2.436E-08	2.436E-08	2.436E-08	2.436E-08	2.436E-08	2.436E-08
Cd-112	1.382E-09	1.382E-09	1.382E-09	1.382E-09	1.382E-09	1.382E-09	1.382E-09
Cd-113	2.185E-13	2.185E-13	2.185E-13	2.185E-13	2.185E-13	2.185E-13	2.185E-13
Cd-114	9.902E-12	9.902E-12	9.902E-12	9.902E-12	9.902E-12	9.902E-12	9.902E-12
In-115	2.459E-15	2.459E-15	2.459E-15	2.459E-15	2.459E-15	2.459E-15	2.459E-15
Sn-116	2.430E-15	2.430E-15	2.430E-15	2.430E-15	2.430E-15	2.430E-15	2.430E-15
Total	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01	1.348E-01

-

4

.

.

<u>s</u> 8

Isotope	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H_1	3 373F-08	3 373E-08	3 373E-08	3 373F-08	3 373F-08	3 373F-08	3 373E-08
H_2	5 448F_11	5 448F-11	5 448F-11	5 448F-11	5 448F-11	5 448F-11	5 448F-11
H_3	3 666F-14	3 276F_14	2 Q2QF_14	2 618F_14	2 212F-14	$1.671E_{-14}$	2 155F-38
Ho_3	$1 517E_{14}$	$1 007E_{14}$	$2.323L^{-14}$	2.010L-14 2.565E-14	2.212L-14 2 071F_1A	$3512E_14$	5 183F_14
	1.31/L-14 1.27/E-06	1.9071-14	2.234L-14 1 271E-06	2.303L-14 1 271E-06	2.9/1L-14 1 27/E_06	1 27/E_06	1 274E_06
	4.2/4L-00	4.2/4L-00	4.2/4L-00	4.2/4L-00	4.2/4L-00	6 609E-14	4.2/4E-00
	6 009E 16	6 009E 16	6 009E 16	6 009E 16	6 009E 16	6 009E 16	6 009E 16
	2 992E-10	2 9925 10	2 992E 10	2 992E10	2 992E-10	2 9925 10	2 9925 10
De-9 Po 10	2.0022-10	2.0026-10	2.002E-10 2.034E-10	2.002E-10	2.002E-10	2.0020-10	2.002E-10 2.022E 10
De-10 P 10	2.034E-10	2.0346-10	2.034E-10	2.034E-10 1 1575 15	2.0346-10	2.034E-10 1 062E 1E	2.033E-10
B-10 D 11	0.2000-10	8.050E-10	9.012E-10	1.13/E-13	1.422E-13	1.802E-15	8.819E-14
D-11 C 12	4./38E-08	4./38E-08	4./38E-08	4./38E-08	4./38E-08	4./38E-08	4./38E-08
1-12	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05	2.134E-05
0-13	1.404E-05	1.404E-05	1.404E-05	1.404E-05	1.404E-05	1.404E-05	1.404E-05
C-14	4.601E-07	4.600E-0/	4.599E-0/	4.598E-07	4.596E-0/	4.594E-0/	4.080E-07
N-14	4.921E-05	4.921E-05	4.921E-05	4.921E-05	4.921E-05	4.921E-05	4.92/E-05
N-15	2.181E-0/	2.181E-0/	2.181E-0/	2.181E-0/	2.181E-0/	2.181E-0/	2.181E-0/
0-16	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01	1.341E-01
0-1/	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05	5.435E-05
0-18	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04	3.086E-04
F-19	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05	1.130E-05
Ne~20	6.631E-10	6.631E-10	6.631E-10	6.631E-10	6.631E-10	6.631E-10	6.631E-10
Ne-21	5.827E-14	5.827E-14	5.827E-14	5.827E-14	5.827E-14	5.827E-14	5.827E-14
Ne-22	4.170E-14	4.170E-14	4.170E-14	4.170E-14	4.170E-14	4.170E-14	4.170E-14
Na-23	3.382E-15	3.382E-15	3.382E-15	3.382E-15	3.382E-15	3.382E-15	3.382E-15
Mg-24	3.720E-10	3.720E-10	3.720E-10	3.720E-10	3.720E-10	3.720E-10	3.720E-10
Mg-25	3.915E-10	3.915E-10	3.915E-10	3.915E-10	3.915E-10	3.915E-10	3.915E-10
Mg-26	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10	1.797E-10
A1-27	4.535E-05	4.535E-05	4.535E-05	4.535E-05	4.535E-05	4.535E-05	4.535E-05
Si-28	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05	4.173E-05
Si-29	2.216E-06	2.216E-06	2.216E-06	2.216E-06	2.216E-06	2.216E-06	2.216E-06
Si-30	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06	1.504E-06
Si-32	1.523E-16	1.520E-16	1.517E-16	1.514E-16	1.509E-16	1.501E-16	5.278E-17
P-31	8.111E-10	8.111E-10	8.111E-10	8.111E-10	8.111E-10	8.111E-10	8.111E-10
S-32	6.146E-10	6.146E-10	6.146E-10	6.146E-10	6.146E-10	6.146E-10	6.146E-10
S-33	7.242E-13	7.242E-13	7.242E-13	7.242E-13	7.242E-13	7.242E-13	7.242E-13
S-34	4.490E-11	4.490E-11	4.490E-11	4.490E-11	4.490E-11	4.490E-11	4.490E-11
S-36	5.666E-13	6.896E-13	8.125E-13	9.355E-13	1.120E-12	1.427E-12	6.162E-11
C1-35	7.048E-06	7.048E-06	7.048E-06	7.048E-06	7.048E-06	7.048E-06	7.048E-06
C1-36	1.405E-06	1.405E-06	1.405E-06	1.405E-06	1.405E-06	1.405E-06	1.402E-06
C1-37	2.886E-06	2.886E-06	2.886E-06	2.886E-06	2.886E-06	2.886E-06	2.886E-06
Ar-36	2.918E-11	3.553E-11	4.188E-11	4.823E-11	5.775E-11	7.362E-11	3.181E-09
Ar-38	5.758E-09	5.758E-09	5.758E-09	5.758E-09	5.758E-09	5.758E-09	5.758E-09
Ar-39	3.930E-11	3.910E-11	3.889E-11	3.869E-11	3.840E-11	3.791E-11	3.034E-12
Ar-40	3.371E-10	3.371E-10	3.371E-10	3.371E-10	3.371E-10	3.371E-10	3.371E-10
K-39	1.024E-12	1.226E-12	1.427E-12	1.627E-12	1.925E-12	2.417E-12	3.729E-11
K-40	2.721E-08	2.721E-08	2.721E-08	2.721E-08	2.721E-08	2.721E-08	2.721E-08
K-41	1.833E-09	1.834E-09	1.835E-09	1.837E-09	1.839E-09	1.842E-09	2.482E-09

TABLE F.7.g. Fuel Activation Product Inventory by Isotope at 50 MWd/kgM, g/gU

TABLE F.7.g.	Fuel Activation Product Inventory by Isotope a	t
	50 MWd/kgM, g/gU (contd)	

ê 7

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Co. 40	A 2775 OF	A 2775 OF	A 2775 OF	A 2775 OF	A 2775 OF	A 3775 OF	4 2775 05
Ca-40	4.3//E-03	4.3//E-U3	4.3//E-U5	4.3//E-05	4.3//E-03	4.3//E-03	4.3//E-03
Ca=41	7.000E=00	7.000E-00	2 063E-07	7.000E-00	3 063E-07	7.007E-08	7.003E-08
Ca=42	6 227E-08	6 227E-08	6 227E-08	6 227E-08	6 227E-08	6 227E-08	6 227E-08
Ca=45	1 038F-06	1 038F-06	1 038F-06	1 038F-06	1 038F-06	1 038F-06	1 038F-06
Ca-45	4.776F-14	2.136F-15	9.556F-17	4.274F-18	4.044F-20	1.711F-23	0.00
Ca-46	1.817E-09	1.817E-09	1.817E-09	1.817E-09	1.817E-09	1.817E-09	1.817E-09
Ca-48	1.027E-07	1.027E-07	1.027E-07	1.027E-07	1.027E-07	1.027E-07	1.027E-07
Sc-45	4.466E-09	4.466E-09	4.466E-09	4.466E-09	4.466E-09	4.466E-09	4.466E-09
Ti-46	2.081E-10	2.081E-10	2.081E-10	2.081E-10	2.081E-10	2.081E-10	2.081E-10
T1-47	6.037E-12	6.037E-12	6.037E-12	6.037E-12	6.037E-12	6.037E-12	6.037E-12
Ti-48	2.463E-14	2.463E-14	2.463E-14	2.463E-14	2.463E-14	2.463E-14	2.463E-14
T1-49	4.911E-10	4.911E-10	4.911E-10	4.911E-10	4.911E-10	4.911E-10	4.911E-10
Ti-50	2.507E-12	2.507E-12	2.507E-12	2.507E-12	2.507E-12	2.507E-12	2.507E-12
V-51	9.088E-11	9.088E-11	9.088E-11	9.088E-11	9.088E-11	9.088E-11	9.088E-11
Cr-52	9.653E-13	9.653E-13	9.653E-13	9.653E-13	9.653E-13	9.653E-13	9.653E-13
Cr-53	1.741E-10	1.741E-10	1.741E-10	1.741E-10	1.741E-10	1.741E-10	1.741E-10
Cr-54	2.730E-09	2.733E-09	2.734E-09	2.734E-09	2.734E-09	2.734E-09	2.734E-09
Mn-54	4.156E-12	8.223E-13	1.627E-13	3.218E-14	2.832E-15	4.931E-17	0.00
Mn-55	2.636E-08	2.757E-08	2.827E-08	2.869E-08	2.901E-08	2.921E-08	2.928E-08
Fe-54	2.837E-06	2.837E-06	2.837E-06	2.837E-06	2.837E-06	2.837E-06	2.837E-06
Fe-55	2.921E-09	1./14E-09	1.005E-09	5.899E-10	2.651E-10	6.991E-11	0.00
Fe-50	4.039E-05	4.039E-05	4.039E-05	4.639E-05	4.639E-05	4.639E-05	4.639E-05
re-5/	1.090E-00	1.090E-00	1.090E-00	1.090E-00	1.090E-00	1.090E-00	1.090E-00
re-58	1./91E-0/	1./91E-0/	1./91E-0/	1./9IE-U/	1./9IE-0/	1./91E-0/	1./91E-0/
10-59	7.039E-09	7.845E-09	7.801E-09	1.7755 10	1 107E 10	/.8/9E-09	1.0/0E-08
LU-DU Ni 59	3.909E-10	1 960E 05	2.310E-10	1.775E-10	1.19/E-10	0.199E-11 1 960E 05	1 9605 05
N1-50	2 221E_07	2 221E-07	2 221E-07	2 2215-07	1.009E-03	1.009E-03	1.009E-03
N1-59	7 571E-06	7 571E-06	7 571E-06	7 571E-06	7 571E-06	7 571E-06	7 572E-06
Ni-61	A 227E_07	A 227F_07	A 227E-07	A 227E_07	4 227E_07	1.371E-00	A 227E-07
N1-01	1 016E_06	1 016E-06	1 016E_06	1 016E_06	1 016E_06	1 016F_06	1 016E-06
Ni -63	5 769F-08	5 683E-08	5 598F_08	5.514E-08	5 301F-08	5 192F-08	3 226F-11
N1-64	2.827F-07	2.827F-07	2.827F-07	2.827F-07	2.827F-07	2.827F-07	2.827F-07
Cu-63	4.115F-09	4.977F-09	5.827F-09	6.664E-09	7.897F-09	9.890E-09	6.177E-08
Cu-65	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09
Zn-64	4.069E-12	4.069E-12	4.069E-12	4.069E-12	4.069E-12	4.069E-12	4.069E-12
Zn-66	1.078E-11	1.078E-11	1.078E-11	1.078E-11	1.078E-11	1.078E-11	1.078E-11
Zn-67	1.483E-14	1.483E-14	1.483E-14	1.483E-14	1.483E-14	1.483E-14	1.483E-14
Zn-68	1.839E-16	1.839E-16	1.839E-16	1.839E-16	1.839E-16	1.839E-16	1.839E-16
Ru-104	2.259E-15	2.259E-15	2.259E-15	2.259E-15	2.259E-15	2.259E-15	2.259E-15
Pd-104	4.951E-13	4.951E-13	4.951E-13	4.951E-13	4.951E-13	4.951E-13	4.951E-13
Pd-105	7.476E-15	7.476E-15	7.476E-15	7.476E-15	7.476E-15	7.476E-15	7.476E-15
Pd-106	1.042E-11	1.042E-11	1.042E-11	1.042E-11	1.042E-11	1.042E-11	1.042E-11
Pd-107	5.201E-13	5.201E-13	5.201E-13	5.201E-13	5.201E-13	5.201E-13	5.201E-13
Pd-108	3.240E-09	3.332E-09	3.422E-09	3.512E-09	3.646E-09	3.863E-09	1.167E-08
Pd-110	1.298E-09	1.298E-09	1.298E-09	1.298E-09	1.298E-09	1.298E-09	1.298E-09

. ..

TABLE F.7.g.	Fuel Activation Product Inventory by Isotope at	t
	50 MWd/kgM, g/gU (contd)	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
Ag-107 Ag-108m Ag-109 Ag-110m Cd-108 Cd-109	4.144E-07 9.278E-09 8.073E-08 3.617E-12 1.381E-07 9.228E-12 4.267E-07	4.144E-07 9.178E-09 8.074E-08 4.767E-13 1.381E-07 3.099E-12 4.267E.07	4.144E-07 9.078E-09 8.074E-08 6.284E-14 1.381E-07 1.041E-12 4.267E-07	4.144E-07 8.980E-09 8.074E-08 8.284E-15 1.381E-07 3.494E-13 4.267E-07	4.144E-07 8.834E-09 8.074E-08 3.965E-16 1.381E-07 6.799E-14 4.267E-07	4.144E-07 8.596E-09 8.074E-08 2.502E-18 1.381E-07 4.443E-15 4.267E 07	4.144E-07 4.088E-11 8.074E-08 0.00 1.389E-07 0.00 4.267E.07
Cd-110 Cd-111 Cd-112 Cd-113 Cd-114 In-115 Sn-116	4.287E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.207E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.207E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.207E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.207E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.207E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15	4.267E-07 2.907E-08 1.891E-09 2.989E-13 1.547E-11 4.121E-15 4.546E-15

Total 1.348E-01 1.348E-01 1.348E-01 1.348E-01 1.348E-01 1.348E-01 1.348E-01

		ZU MWQ/I	kgM, g∕g∠r				
<u>Isotope</u>	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
H-1	1.203E-05	1.203E-05	1.203E-05	1.203E-05	1.203E-05	1.203E-05	1.203E-05
H-2	1.750F-08	1.750F-08	1.750F-08	1.750F-08	1.750F-08	1.750F-08	1.750F-08
H-3	2.609F-14	2.332F-14	2.084F-14	1.863E-14	1.574E-14	1.189F-14	1.533E-38
He-3	1.150F-14	1.427F-14	1.674F-14	1.896F-14	2.184F-14	2.570F-14	3.759F-14
He-4	6.088F-08	6.088F-08	6.088F-08	6.088F-08	6.088F-08	6.088F-08	6.088F-08
li-6	9.863F-14	9.863F-14	9.863F-14	9.863E-14	9.863F-14	9.863E-14	9.863E-14
Be-9	7.004E-10	7.004E-10	7.004E-10	7.004E-10	7.004E-10	7.004E-10	7.004E-10
Be-10	1.815E-11	1.815E-11	1.815E-11	1.815E-11	1.815E-11	1.815E-11	1.815E-11
B-11	1.436E-08	1.436E-08	1.436E-08	1.436E-08	1.436E-08	1.436E-08	1.436E-08
C-12	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04
C-13	1.801E-06	1.801E-06	1.801E-06	1.801E-06	1.801E-06	1.801E-06	1.801E-06
C-14	1.261E-07	1.260E-07	1.260E-07	1.260E-07	1.259E-07	1.258E-07	1.118E-07
N-14	4.169E-05	4.169E-05	4.169E-05	4.169E-05	4.169E-05	4.169E-05	4.170E-05
N-15	1.698E-07	1.698E-07	1.698E-07	1.698E-07	1.698E-07	1.698E-07	1.698E-07
0-16	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03
0-17	5.039E-07	5.039E-07	5.039E-07	5.039E-07	5.039E-07	5.039E-07	5.039E-07
0-18	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06
F-19	1.655E-12	1.655E-12	1.655E-12	1.655E-12	1.655E-12	1.655E-12	1.655E-12
Ne-22	9.457E-15	9.457E-15	9.457E-15	9.457E-15	9.457E-15	9.457E-15	9.457E-15
Mq-24	1.177E-10	1.177E-10	1.177E-10	1.177E-10	1.177E-10	1.177E-10	1.177E-10
Mg-25	2.476E-10	2.476E-10	2.476E-10	2.476E-10	2.476E-10	2.476E-10	2.476E-10
Mg-26	1.132E-10	1.132E-10	1.132E-10	1.132E-10	1.132E-10	1.132E-10	1.132E-10
AĨ-27	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05
S1-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
Si-29	3.873E-06	3.873E-06	3.873E-06	3.873E-06	3.873E-06	3.873E-06	3.873E-06
Si-30	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06
P-31	5.130E-10	5.130E-10	5.130E-10	5.130E-10	5.130E-10	5.130E-10	5.130E-10
S-32	7.288E-14	7.288E-14	7.288E-14	7.288E-14	7.288E-14	7.288E-14	7.290E-14
Ca-44	1.696E-15	1.696E-15	1.696E-15	1.696E-15	1.696E-15	1.696E-15	1.696E-15
T1-47	1.285E-10	1.285E-10	1.285E-10	1.285E-10	1.285E-10	1.285E-10	1.285E-10
Ti-48	2.073E-13	2.073E-13	2.073E-13	2.073E-13	2.073E-13	2.073E-13	2.073E-13
Ti-49	3.510E-10	3.510E-10	3.510E-10	3.510E-10	3.510E-10	3.510E-10	3.510E-10
T1-50	1.413E-09	1.413E-09	1.413E-09	1.413E-09	1.413E-09	1.413E-09	1.413E-09
V-50	5.028E-09	5.028E-09	5.028E-09	5.028E-09	5.028E-09	5.028E-09	5.028E-09
V-51	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06	1.031E-06
Cr-50	4.076E-05	4.076E-05	4.076E-05	4.076E-05	4.076E-05	4.076E-05	4.076E-05
Cr-52	8.324E-04	8.324E-04	8.324E-04	8.324E-04	8.324E-04	8.324E-04	8.324E-04
Cr-53	9.8/2E-05	9.8/2E-05	9.8/2E-05	9.8/2E-05	9.8/2E-05	9.8/2E-05	9.8/2E-05
Cr-54	2./31E-05	2./31E-05	2./31E-05	2./31E-05	2./31E-05	2./31E-05	2./31E-05
Mn-54	5.494E-11	1.08/E-11	2.150E-12	4.254E-13	3./44E-14	0.51/E-10	
Mn-55	3./03E-0/	3.922E-0/	4.015E-07	4.069E-07	4.112E-U/	4.138E-U/	4.14/E-U/
re-54	1.1186-04	1.1185-04	1.1185-04	1.110E-U4	1.110E-U4	1.1102-04	1.118E-04
ге-33 Го Бб	J.035E-U8	2.20UE-U8	1.3201-08	1 9205 02	3.402E-U9	9.101E-1U	U.UU 1 920E 02
re-30	1.03UE-U3	1.03UE-U3	1.03UL-U3	1.03UE-U3	1.03UE-U3	1.03UE-U3	1.03UE-U3
re-3/	5.199E-U5	5.199E-05	2.137E-02	2.137E-02	5.199E-05	5.199E-05	5.199E-05
16-20 Co E0	U.193E-UD	U.193E-UD	U.193E-00	1 2105 00	1 2195 00	1 2105 00	1 2195-00
CO-37	1.2105-00	1.2105-00	1.2105-00	1.2105-00	1.2105-00	1.410E-00	T. CIOE-00

. 195

r 0-

TABLE F.8.a. Cladding Activation Product Inventory by Isotope at 20 MWd/kgM, g/gZr

TABLE F.8.a.	Cladding A	ctivation	Product	Inventory	by	Isotope	at
	20 MWd/kgM	, g/gZr (contd)	-	-		

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Co-60	1.640E-10	1.261E-10	9.692E-11	7.451E-11	5.021E-11	2.601E-11	0.00
N1-60	3.064E-10	3.444E-10	3.735E-10	3.960E-10	4.203E-10	4.445E-10	4.705E-10
Ni-61	6.814E-13	6.814E-13	6.814E-13	6.814E-13	6.814E-13	6.814E-13	6.814E-13
Sr-87	8.565E-09	8.565E-09	8.565E-09	8.565E-09	8.565E-09	8.565E-09	8.565E-09
Sr-88	8.102E-07	8.102E-07	8.102E-07	8.102E-07	8.102E-07	8.102E-07	8.102E-07
Sr-90	1.718E-11	1.638E-11	1.562E-11	1.489E-11	1.387E-11	1.231E-11	9.118E-22
Y-89	6.168E-08	6.168E-08	6.168E-08	6.168E-08	6.168E-08	6.168E-08	6.168E-08
Y-90	4.308E-15	4.107E-15	3.916E-15	3.734E-15	3.477E-15	3.087E-15	2.286E-25
Zr-90	4.974E-01	4.974E-01	4.974E-01	4.974E-01	4.974E-01	4.974E-01	4.974E-01
Zr-91	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01
Zr-92	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01
Zr-93	1.534E-04	1.534E-04	1.534E-04	1.534E-04	1.534E-04	1.534E-04	1.533E-04
Zr-94	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01
Zr-96	2.877E-02	2.877E-02	2.877E-02	2.877E-02	2.877E-02	2.877E-02	2.877E-02
Nb-93	1.587E-10	2.190E-10	2.868E-10	3.616E-10	4.853E-10	7.172E-10	6.839E-08
Nb-93m	4.830E-10	5.617E-10	6.328E-10	6.970E-10	7.818E-10	8.973E-10	1.295E-09
Nb-94	5.696E-14	5.695E-14	5.695E-14	5.695E-14	5.694E-14	5.693E-14	5.506E-14
Mo-95	5.570E-05	5.570E-05	5.570E-05	5.570E-05	5.570E-05	5.570E-05	5.570E-05
Mo-96	1.741E-06	1.741E-06	1.741E-06	1.741E-06	1.741E-06	1.741E-06	1.741E-06
Mo-97	8.526E-05	8.526E-05	8.526E-05	8.526E-05	8.526E-05	8.526E-05	8.526E-05
Mo-98	4.976E-07	4.976E-07	4.976E-07	4.976E-07	4.976E-07	4.976E-07	4.976E-07
Mo-100	2.232E-14	2.232E-14	2.232E-14	2.232E-14	2.232E-14	2.232E-14	2.232E-14
Tc-99	7.970E-11	7.970E-11	7.970E-11	7.970E-11	7.970E-11	7.970E-11	7.944E-11
Ru-99	1.987E-15	2.506E-15	3.025E-15	3.544E-15	4.322E-15	5.618E-15	2.594E-13
Ru-100	3.071E-12	3.071E-12	3.071E-12	3.071E-12	3.071E-12	3.071E-12	3.071E-12
Ru-101	8.052E-15	8.052E-15	8.052E-15	8.052E-15	8.052E-15	8.052E-15	8.052E-15
Cd-111	8.911E-12	8.911E-12	8.911E-12	8.911E-12	8.911E-12	8.911E-12	8.911E-12
Cd-112	7.641E-11	7.641E-11	7.641E-11	7.641E-11	7.641E-11	7.641E-11	7.641E-11
Cd-113	3.405E-13	3.405E-13	3.405E-13	3.405E-13	3.405E-13	3.405E-13	3.405E-13
Cd-114	8.252E-09	8.252E-09	8.252E-09	8.252E-09	8.252E-09	8.252E-09	8.252E-09
Cd-116	5.619E-11	5.619E-11	5.619E-11	5.619E-11	5.619E-11	5.619E-11	5.619E-11
In-113	1.635E-06	1.635E-06	1.635E-06	1.635E-06	1.635E-06	1.635E-06	1.635E-06
In-115	2.781E-11	2.781E-11	2.781E-11	2.781E-11	2.781E-11	2.781E-11	2.781E-11
Sn-112	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04	1.397E-04
Sn-113	1.799E-13	2.211E-15	2.717E-17	3.339E-19	4.581E-22	7.670E-27	0.00
Sn-114	9.654E-05	9.654E-05	9.654E-05	9.654E-05	9.654E-05	9.654E-05	9.654E-05
Sn-115	5.121E-05	5.121E-05	5.121E-05	5.121E-05	5.121E-05	5.121E-05	5.121E-05
Sn-116	2.135E-03	2.135E-03	2.135E-03	2.135E-03	2.135E-03	2.135E-03	2.135E-03
Sn-117	1.153E-03	1.153E-03	1.153E-03	1.153E-03	1.153E-03	1.153E-03	1.153E-03
Sn-118	3.612E-03	3.612E-03	3.612E-03	3.612E-03	3.612E-03	3.612E-03	3.612E-03
Sn-119	1.310E-03	1.310E-03	1.310E-03	1.310E-03	1.310E-03	1.310E-03	1.310E-03
Sn-119m	3.222E-09	4.079E-10	5.166E-11	6.541E-12	2.947E-13	1.682E-15	0.00
Sn-120	4.912E-03	4.912E-03	4.912E-03	4.912E-03	4.912E-03	4.912E-03	4.912E-03
Sn-121m	2.490E-08	2.422E-08	2.355E-08	2.291E-08	2.198E-08	2.050E-08	2.561E-14
Sn-122	7.082E-04	7.082E-04	7.082E-04	7.082E-04	7.082E-04	/.082E-04	/.082E-04
Sn-123	3.385E-13	6.715E-15	1.332E-16	2.643E-18	7.383E-21	4.093E-25	0.00
Sn_124	8 711F-04	8.711F-04	8.711F-04	8.711F-04	8.711F-04	8.711F-04	8.711E-04

TABLE F.8.a.	Cladding Activation Product Inventory by Isotope a	t
· · · · ·	20 MWd/kgM, g/gZr (contd)	

.

Isotope	6 Years	8 Years	10 Years	12 Years	15 Years	20 Years	1000 Years
Sb-121	4.633E-06	4.633E-06	4.634E-06	4.635E-06	4.636E-06	4.637E-06	4.658E-06
Sb-123	4.926E-07						
Sb-125	6.370E-07	3.862E-07	2.341E-07	1.419E-07	6.699E-08	1.917E-08	0.00
Te-122	2.078E-07						
Te-123	2.226E-09						
Te-124	1.324E-08						
Te-125	5.142E-06	5.397E-06	5.551E-06	5.644E-06	5.720E-06	5.769E-06	5.788E-06
Te-125m	8.910E-09	5.403E-09	3.275E-09	1.986E-09	9.370E-10	2.681E-10	0.00
Te-126	3.890E-08						
Te-128	1.139E-13						
I-127	9.709E-11						
Xe-128	1.781E-12						
Xe-129	4.027E-15						
Yb-172	1.807E-15						
Yb-173	1.198E-15						
Lu-175	3.628E-08						
Lu-176	9.776E-10						
Hf-174	4.191E-08						
Hf-176	2.016E-06						
Hf-177	5.264E-07						
Hf-178	1.149E-05						
Hf-179	1.747E-05						
Hf-180	2.286E-05						
Hf-182	1.357E-09						
Ta-181	6.310E-07						
Ta-182	1.482E-14	2.283E-16	4.968E-17	4.749E-17	4.747E-17	4.747E-17	4.746E-17
W-182	5.275E-08						
W-183	4.348E-08						
W-184	2.157E-09						
W-186	3.124E-14						
Re-185	3.754E-12						
Re-187	1.206E-15						
0s-186	4.671E-13						

Total 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

Isotope	6 Years	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-1	1.204E-05	1.204E-05	1.204E-05	1.204E-05	1.204E-05	1.204E-05	1.204E-05
H-2	2.126E-08	2.126E-08	2.126E-08	2.126E-08	2.126E-08	2.126E-08	2.126E-08
H-3	4.629E-14	4.137E-14	3.698E-14	3.305E-14	2.793E-14	2.110E-14	2.721E-38
He-3	2.000E-14	2.492E-14	2.931E-14	3.324E-14	3.836E-14	4.520E-14	6.629E-14
He-4	7.731E-08	7.731E-08	7.731E-08	7.731E-08	7.731E-08	7.731E-08	7.731E-08
Li-6	1.445E-13	1.445E-13	1.445E-13	1.445E-13	1.445E-13	1.445E-13	1.445E-13
Be-9	8.893E-10	8.893E-10	8.893E-10	8.893E-10	8.893E-10	8.893E-10	8.893E-10
Be-10	2.314E-11	2.314E-11	2.314E-11	2.314E-11	2.314E-11	2.314E-11	2.313E-11
B-11	1.823E-08	1.823E-08	1.823E-08	1.823E-08	1.823E-08	1.823E-08	1.823E-08
C-12	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04
C-13	1.813E-06	1.813E-06	1.813E-06	1.813E-06	1.813E-06	1.813E-06	1.813E-06
C-14	1.600E-07	1.600E-07	1.599E-07	1.599E-07	1.598E-07	1.597E-07	1.419E-07
N-14	4.165E-05	4.165E-05	4.165E-05	4.165E-05	4.165E-05	4.165E-05	4.166E-05
N-15	1.712E-07	1.712E-07	1.712E-07	1.712E-07	1.712E-07	1.712E-07	1.712E-07
0-16	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03
0-17	5.040E-07	5.040E-07	5.040E-07	5.040E-07	5.040E-07	5.040E-07	5.040E-07
0-18	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06
F-19	2.101E-12	2.101E-12	2.101E-12	2.101E-12	2.101E-12	2.101E-12	2.101E-12
Ne-22	1.525E-14	1.525E-14	1.525E-14	1.525E-14	1.525E-14	1.525E-14	1.525E-14
Na-23	1.236E-15	1.236E-15	1.236E-15	1.236E-15	1.236E-15	1.236E-15	1.236E-15
Mg-24	1.495E-10	1.495E-10	1.495E-10	1.495E-10	1.495E-10	1.495E-10	1.495E-10
Mg-25	3.145E-10	3.145E-10	3.145E-10	3.145E-10	3.145E-10	3.145E-10	3.145E-10
Mg-26	1.438E-10	1.438E-10	1.438E-10	1.438E-10	1.438E-10	1.438E-10	1.438E-10
A1-27	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05	3.998E-05
S1-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
Si-29	3.877E-06	3.877E-06	3.877E-06	3.877E-06	3.877E-06	3.877E-06	3.877E-06
Si-30	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06	2.648E-06
P-31	6.516E-10	6.516E-10	6.516E-10	6.516E-10	6.516E-10	6.516E-10	6.516E-10
S-32	1.175E-13	1.175E-13	1.175E-13	1.175E-13	1.175E-13	1.175E-13	1.176E-13
Ca-44	2.729E-15	2.729E-15	2.729E-15	2.729E-15	2.729E-15	2.729E-15	2.729E-15
Ca-46	1.097E-15	1.09/E-15	1.09/E-15	1.09/E-15	1.09/E-15	1.097E-15	1.097E-15
1-4/	1.626E-10	1.626E-10	1.626E-10	1.626E-10	1.626E-10	1.626E-10	1.626E-10
11-48	3.331E-13	3.331E-13	3.331E-13	3.331E-13	3.331E-13	3.331E-13	3.331E-13
11-49 Ti 50	4.452E-10	4.452E-10	4.452E-10	4.452E-10	4.452E-10	4.452E-10	4.452E-10
11-50	1.800E-09	1.800E-09	1.800E-09	1.800E-09	1.800E-09	1.800E-09	1.800E-09
V-30 V 51	0.202E-09	0.202E-09	0.202E-09	0.202E-09	0.202E-09	0.202E-09	0.202E-09
1C-V	1.3046-00	1.304E-00	1.304E-00	1.304E-00	1.304E-00	1.304E-00	1.304E-00
Cm 52	4.049E-03	4.049E-03	4.049E-03	4.049E-05	4.049E-03	4.049E-05	4.049E-05
Cr = 52	0.3116-04	0.311E-04	0.3116-04	0.311E-04	0.021E-04	0.0245 05	0.3112-04
Cn=53	9.924E-05	9.924E-03	9.924E-05	2 2025 05	2 200E 05	2 2025 05	2 2025 05
Ur=34 Mn:54	7 064E-11	1 209E_11	2.000E-0J	5 470E-13	2.000E-0J	2.000L-0J	0.00
Mn_55	/ 00+E-11	1.390E-11 A 072E_07	5 001F_07	5 1615-07	5 2155-14	5 218E-10	5 260F-07
FA_5/	4.//UE-U/	4.3/2C-V/	7.031E-0/	J. 1016-0/	J.21JE-0/	J. 240E-0/	J. 2006-0/
Fa_55	1 117F_04	1 117F_04	1 117F_04	1 1176-04	1 11/6-04		
	1.117E-04	1.117E-04 2 875E-09	1.117E-04	1.117E-04 9 897F-09	1.11/E-04 4.448F-00	1.173F_00	1.11/E-04
Fe-56	1.117E-04 4.900E-08 1.828E-03	1.117E-04 2.875E-08 1.828E-03	1.117E-04 1.687E-08 1.828E-03	1.117E-04 9.897E-09 1.828E-03	1.11/E-04 4.448E-09 1.828E-03	1.173E-09 1.828E-03	1.11/E-04 0.00 1.828F-03

TABLE F.8.b.	Cladding Activation Product Inventory by Isotope a	it
	25 MWd/kgM, g/gZr (contd)	

2 s

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Fe-58	6.246E-06	6.246E-06	6.246E-06	6.246E-06	6.246E-06	6.246E-06	6.246E-06
Co-59	1.537E-08	1.537E-08	1.537E-08	1.537E-08	1.537E-08	1.537E-08	1.537E-08
Co-60	2.642E-10	2.031E-10	1.561E-10	1.200E-10	8.086E-11	4.189E-11	0.00
Ni-60	4.913E-10	5.524E-10	5.994E-10	6.355E-10	6.746E-10	7.136E-10	7.555E-10
N1-61	1.392E-12	1.392E-12	1.392E-12	1.392E-12	1.392E-12	1.392E-12	1.392E-12
N1-62	1.732E-15	1.732E-15	1.732E-15	1.732E-15	1.732E-15	1.732E-15	1.732E-15
Sr-87	1.077E-08	1.077E-08	1.077E-08	1.077E-08	1.077E-08	1.077E-08	1.077E-08
Sr-88	1.029E-06	1.029E-06	1.029E-06	1.029E-06	1.029E-06	1.029E-06	1.029E-06
Sr-90	2.767E-11	2.639E-11	2.516E-11	2.399E-11	2.234E-11	1.983E-11	1.469E-21
Y-89	7.834E-08	7.834E-08	7.834E-08	7.834E-08	7.834E-08	7.834E-08	7.834E-08
Y-90	6.939E-15	6.61/E-15	6.309E-15	6.016E-15	5.601E-15	4.9/3E-15	3.683E-25
Zr-90	4.9/4E-01	4.9/4E-01	4.9/4E-01	4.9/4E-01	4.9/4E-01	4.9/4E-01	4.9/4E-01
Zr-91	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01	1.091E-01
Zr-92	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01	1.693E-01
Zr-93	1.944E-04	1.944E-04	1.944E-04	1.944E-04	1.944E-04	1.944E-04	1.943E-04
Zr-94	1./55E-01	1./55E-01	1./55E-01	1./55E-01	1./55E-01	1./55E-01	1./55E-01
2r-96	2.8/5E-02	2.8/5E-02	2.8/5E-02	2.8/5E-02	2.8/5E-02	2.8/5E-02	2.8/5E-02
ND-93	2.003E-10	2./65E-10	3.625E-10	4.5/1E-10	6.13/E-10	9.0/5E-10	8.668E-08
ND-93m	6.110E-10	7.108E-10	8.010E-10	8.825E-10	9.901E-10	1.13/E-09	1.641E-09
ND-94	9.150E-14	9.149E-14	9.149E-14	9.148E-14	9.14/E-14	9.146E-14	8.845E-14
MO-95	7.015E-05	7.015E-05	7.015E-05	/.015E-05	/.015E-05	7.015E-05	7.015E-05
MO-96	2./91E-06	2./91E-06	2./91E-06	2./91E-06	2./91E-06	2./91E-06	2.791E-06
MO-97	1.081E-04	1.081E-04	1.081E-04	1.081E-04	1.081E-04	1.081E-04	1.081E-04
Mo-98	8.013E-0/	8.013E-07	8.013E-07	8.013E-07	8.013E-07	8.013E-07	8.013E-07
Mo-100	5.852E-14	5.852E-14	5.852E-14	5.852E-14	5.852E-14	5.852E-14	5.852E-14
1C-99	1.614E-10	1.614E-10	1.614E-10	1.614E-10	1.614E-10	1.614E-10	1.609E-10
Ru-99	4.011E-15	5.062E-15	6.113E-15	7.163E-15	8.739E-15	1.137E-14	5.253E-13
Ru-100	7.910E-12	7.910E-12	7.910E-12	7.910E-12	7.910E-12	7.910E-12	7.910E-12
Ru-101	2.633E-14	2.633E-14	2.633E-14	2.633E-14	2.633E-14	2.633E-14	2.633E-14
Cd-111	1.123E-11	1.123E-11	1.123E-11	1.123E-11	1.123E-11	1.123E-11	1.123E-11
Cd-112	9.596E-11	9.596E-11	9.596E-11	9.596E-11	9.596E-11	9.596E-11	9.596E-11
Cd-113	3.428E-13	3.428E-13	3.428E-13	3.428E-13	3.428E-13	3.428E-13	3.428E-13
	1.29/E-08	1.29/E-08	1.29/E-08	1.29/E-08	1.29/E-08	1.29/E-08	1.29/E-08
	/.146E-11	/.146E-11	/.146E-11	/.146E-11	/.146E-11	/.146E-11	/.146E-11
IN-113	2.024E-06	2.024E-06	2.024E-06	2.024E-06	2.024E-00	2.024E-00	2.024E-06
1 n- 115	2.934E-11	2.934E-11	2.934E-11	2.934E-11	2.934E-11	2.934E-11	2.934E-11
Sn-112	1.392E-04	1.392E-04	1.392E-04	1.392E-04	1.392E-04	1.392E-04	1.392E-04
Sn-113	2.309E-13	2.83/E-15	3.48/E-1/	4.285E-19	5.8/8E-22	9.841E-27	0.00
Sn-114	9.001E-05	9.001E-05	9.001E-05	9.001E-05	9.001E-05	9.001E-05	9.001E-05
Sn-115	5.019E-05	5.019E-05	5.019E-05	5.019E-05	5.019E-05	5.019E-05	5.019E-05
Sn-110	2.131E-03	2.131E-03	2.131E-03	2.131E-03	2.131E-03	2.131E-03	2.131E-U3
Sn-11/	1.100E-U3	1.100E-03	1.100E-03	1.1000-00	1.100E-03	1.100E-03	1.133E-U3
SH-110	3.009E-03	3.009E-03	3.009E-03	3.009E-03	3.009E-03	3.009E-03	3.009E-03
SN-119	1.315E-03	1.313E-U3	1.313E-U3	1.313E-U3	1.313E-U3	1.313E-U3	1.313E-U3
2U-112W	4.149E-09	J.254E-10	0.003E-11	0.423E-12	3./90E-13	2.100E-13	0.00 1 0125 02
SN-120	4.912E-03	4.912E-03	4.912E-03	4.912E-U3	4.912E-U3	4.9126-03	4.912E-U3
2N-121M	3.103E-08	3.U//E-U8	2.993E-08	2.911F-08	2./92E-08	2.0U3E-U8	3.2332-14

		ZJ MWU/I	kyn, y/y21	(contu)			
<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Sn-122	7.081E-04	7.081E-04	7.081E-04	7.081E-04	7.081E-04	7.081E-04	7.081E-04
Sn-123	4.359E-13	8.648E-15	1.716E-16	3.404E-18	9.524E-21	5.280E-25	0.00
Sn-124	8.696E-04	8.696E-04	8.696E-04	8.696E-04	8.696E-04	8.696E-04	8.696E-04
Sb-121	5.813E-06	5.814E-06	5.815E-06	5.816E-06	5.817E-06	5.819E-06	5.845E-06
Sb-123	6.216E-07	6.216E-07	6.216E-07	6.216E-07	6.216E-07	6.216E-07	6.216E-07
Sb-125	8.121E-07	4.923E-07	2.985E-07	1.809E-07	8.540E-08	2.444E-08	0.00
Te-122	3.309E-07	3.309E-07	3.309E-07	3.309E-07	3.309E-07	3.309E-07	3.309E-07
Te-123	4.035E-09	4.035E-09	4.035E-09	4.035E-09	4.035E-09	4.035E-09	4.035E-09
Te-123m	1.332E-15	1.937E-17	2.816E-19	4.088E-21	1.160E-23	2.956E-28	0.00
Te-124	2.243E-08	2.243E-08	2.243E-08	2.243E-08	2.243E-08	2.243E-08	2.243E-08
Te-125	6.508E-06	6.832E-06	7.029E-06	7.148E-06	7.245E-06	7.307E-06	7.331E-06
Te-125m	1.136E-08	6.888E-09	4.176E-09	2.531E-09	1.195E-09	3.418E-10	0.00
Te-126	6.258E-08	6.258E-08	6.258E-08	6.258E-08	6.258E-08	6.258E-08	6.258E-08
Te-128	2.947E-13	2.947E-13	2.947E-13	2.947E-13	2.947E-13	2.947E-13	2.947E-13
I-127	1.976E-10	1.976E-10	1.976E-10	1.976E-10	1.976E-10	1.976E-10	1.976E-10
Xe-128	4.607E-12	4.607E-12	4.607E-12	4.607E-12	4.607E-12	4.607E-12	4.607E-12
Xe-129	1.317E-14	1.317E-14	1.317E-14	1.317E-14	1.317E-14	1.317E-14	1.317E-14
Yb-172	2.662E-15	2.662E-15	2.662E-15	2.662E-15	2.662E-15	2.662E-15	2.662E-15
Yb-173	1.960E-15	1.960E-15	1.960E-15	1.960E-15	1.960E-15	1.960E-15	1.960E-15
Lu-175	3.996E-08	3.996E-08	3.996E-08	3.996E-08	3.996E-08	3.996E-08	3.996E-08
Lu-176	1.186E-09	1.186E-09	1.186E-09	1.186E-09	1.186E-09	1.186E-09	1.186E-09
Hf-174	3.454E-08	3.454E-08	3.454E-08	3.454E-08	3.454E-08	3.454E-08	3.454E-08
Hf-176	1.842E-06	1.842E-06	1.842E-06	1.842E-06	1.842E-06	1.842E-06	1.842E-06
Hf-177	3.212E-07	3.212E-07	3.212E-07	3.212E-07	3.212E-07	3.212E-07	3.212E-07
Hf-178	9.314E-06	9.314E-06	9.314E-06	9.314E-06	9.314E-06	9.314E-06	9.314E-06
Hf-179	1.855E-05	1.855E-05	1.855E-05	1.855E-05	1.855E-05	1.855E-05	1.855E-05
Hf-180	2.414E-05	2.414E-05	2.414E-05	2.414E-05	2.414E-05	2.414E-05	2.414E-05
Hf-182	2.224E-09	2.224E-09	2.224E-09	2.224E-09	2.224E-09	2.224E-09	2.224E-09
Ta-181	7.935E-07	7.935E-07	7.935E-07	7.935E-07	7.935E-07	7.935E-07	7.935E-07
Ta-182	2.113E-14	3.354E-16	8.096E-17	7.785E-17	7.781E-17	7.781E-17	7.780E-17
W-182	7.404E-08	7.404E-08	7.404E-08	7.404E-08	7.404E-08	7.404E-08	7.404E-08
W-183	7.874E-08	7.874E-08	7.874E-08	7.874E-08	7.874E-08	7.874E-08	7.874E-08
W-184	4.966E-09	4.966E-09	4.966E-09	4.966E-09	4.966E-09	4.966E-09	4.966E-09
W-186	1.116E-13	1.116E-13	1.116E-13	1.116E-13	1.116E-13	1.116E-13	1.116E-13
Re-185	1.067E-11	1.067E-11	1.067E-11	1.067E-11	1.067E-11	1.067E-11	1.067E-11
Re-187	5.485E-15	5.485E-15	5.485E-15	5.485E-15	5.485E-15	5.485E-15	5.485E-15
0s-186	1.686E-12	1.686E-12	1.686E-12	1.686E-12	1.686E-12	1.686E-12	1.686E-12
Total	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00

TABLE F.8.b. Cladding Activation Product Inventory by Isotope at 25 MWd/kgM, g/gZr (contd)

TABLE F.8.c.	Cladding Activation Product Inventory by Isotope	at
	30 MWd/kgM, g/gZr	

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	1.205E-05						
H-2	2.520E-08						
H-3	7.513E-14	6.716E-14	6.002E-14	5.365E-14	4.534E-14	3.424E-14	4.417E-38
He-3	3.198E-14	3.996E-14	4.709E-14	5.347E-14	6.178E-14	7.287E-14	1.071E-13
He-4	9.449E-08						
Li-6	1.966E-13						
Be-9	1.087E-09						
Be-10	2.839E-11	2.839E-11	2.839E-11	2.839E-11	2.839E-11	2.839E-11	2.838E-11
B-11	2.228E-08						
C-12	1.442E-04						
C-13	1.826E-06						
C-14	1.955E-07	1.955E-07	1.954E-07	1.954E-07	1.953E-07	1.952E-07	1.733E-07
N-14	4.160E-05	4.160E-05	4.160E-05	4.160E-05	4.160E-05	4.160E-05	4.163E-05
N-15	1.727E-07						
0-16	1.245E-03						
0-17	5.040E-07						
0-18	2.863E-06						
F-19	2.569E-12						
Ne-22	2.279E-14						
Na-23	1.847E-15	1.847E-15	1.847E-15	1.847E-15	1.847E-15	1.847F-15	1.847E-15
Ma-24	1.827F-10						
Mg-25	3.844F-10						
Mg-26	1.760F-10	1.760F-10	1.760F-10	1.760F-10	1.760F-10	1.760E-10	1.760F-10
A1-27	3.998E-05	3.998F-05	3 998F-05	3.998E-05	3 998F-05	3 998F-05	3 998F-05
Si-28	7 349F-05	7 349F_05					
S1-29	3 883F-06	3 883E-06	3 883F-06	3 883E-06	3 883E-06	3 883E-06	3 883E-06
Si_30	2 649F-06	2 649F-06	2 649F_06	2 649F-06	2 649E-06	2 649F_06	2 649F_06
P_31	7 965F-10	7 965F-10	7 065F-10	7 965F-10	7 965F_10	7 965F-10	7 065E-10
5-32	1 756F-13	1 756F_13	1 756E_13	1 756F_13	1 756F_13	1 756F-13	1 757E-13
$C_{a} = 44$	4 067F-15	4 067E-15	4 067F_15	4 067F-15	4 067F-15	4 067E-15	4 067E-15
Ca=44	$1.638E_{15}$	$1.638E_{-15}$	$1.638E_{15}$	$1.638E_{-15}$	$1.639E_{-15}$	1 638E-15	1 639E_15
T1_47	1 080F_10	1 080F_10	1 080E-10	1 080F_10	1 080F_10	1 080F_10	1 080F-10
T1_48	1.900L-10 1.950F_13	1.900L-10 A 050F_13	1.900L-10 A 050F_13	1.900L-10 A 050F-13	1.900L-10 A 050F_13	1.900L-10 A 050F_13	1.900L-10 A 050F-13
T1-40	5 435E-10	5 435F-10	5 435F-10	5 435F-10	5 435E-10	5 435F-10	5 435F-10
Ti_50	2 206F_00	2 206F-00	2 206F_00	2 206F_00	2 206F-09	2 206F_00	2 206F-09
V-50	7 500E-09	7 500E-09	7 500E-09	7 500E-09	7.500E-09	7.500E-09	7 500E-09
V-51	1 587E-06	1 587E-06	1 587E-06	1 587F_06	1 587F_06	1 587F_06	1 587E-06
r = 51	4 021E-05	4 021F-05	4 021E-05	4 021E-05	4 021E-05	4 021F-05	4 021F-05
Cr_{-52}	8 208F_04	8 298F_04	8 208F_04				
Cr=52	0.230L-04	0.230L-04	0.230L-04	0.230L-04	0.290L-04	9 979F-05	0 070F_05
Cr_53	2 880F_05	2 889F_05					
Mn_5/	8 78/E-11	$1 738E_{-11}$	3 A38F_12	6 802F-12	5 Q85F_1/	1 042F - 15	0 00
Mn_55	5 8185-07	6 067F_07	6 213F_07	6 200F_07	6 366F_07	6 406F_07	6 421F-07
Fo_5/	1 1165_04	1 1165-04	1 1165-04	1 116F_04	1 116F_04	1 116F_04	1 116F_04
1 C-04	6 030E 00	2 5205 00	2 0765-04	1 2185-02	5 <u>474</u> F_00	1 4435-00	0 00
Fe-55	1 9255 02	1 9255 02	1 9255-02	1 9255-02	1 8255-02	1 8255-02	1 825F_03
Fo 57	5 647E 05	1.02JE-03	5 647E_05	5 6475-05	5 6475-05	5 647F_05	5 647F_05

.

		00 ma,	9.1 9,9-	(
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Fe-58	6.304F-06	6.304F-06	6.304E-06	6.304F-06	6.304F-06	6.304E-06	6.304F-06
Co-59	1 867F-08	1 867F-08	1.867F-08	1.867E-08	1.867E-08	1.867F-08	1.867E-08
Co-60	3 942E-10	3 030E-10	2 329F-10	1 701F-10	1 207E-10	6 252F-11	0 00
Ni-60	7 205F_10	8 207F_10	8 Q08F_10	$9.447F_{-10}$	1 003E-00	1 061F_00	1 124F_00
Ni_61	2 537E-12	2 537E-12	2 537F_12	2 537E-12	2 537E-12	$2537E_{-12}$	2 537E_12
Ni-62	2.JJ/L-12 2.950E_15	2.337L-12 2.850E-15	2.337L-12 2.850E_15	2.JJ/L-12	2.337L-12 3.850E-15	2.337L-12 3.850E-15	2.JJ/L-12 3.950E-15
Sn 97	1 2045 09	1 2045 09	1 20/E 09	1 20/E 09	1 2045 09	1 20/E 00	1 20/E 00
51-07	1.304E-00	1.3046-00	1.304E-00	1.304E-00	1.304E-00	1.304E-00	1.3046-00
51-00	1.23/E-00	1.23/E-00	1.23/E-00	1.23/E-00 2 5015 11	1.23/E-00	1.257E-00	1.23/E-00
3r-90	4.13UE-11	3.9300-11	3./33E-11	3.301E-11	3.334E-11	2.90UE-11	2.192E-21
1-89	9.5/6E-08	9.5/6E-08	9.5/6E-08	9.5/6E-08	9.5/6E-08	9.5/0E-08	9.5/6E-08
Y-90	1.036E-14	9.8/6E-15	9.41/E-15	8.980E-15	8.301E-15	7.423E-15	5.498E-25
Zr-90	4.9/3E-01						
Zr-91	1.090E-01						
Zr-92	1.694E-01						
Zr-93	2.371E-04	2.371E-04	2.371E-04	2.371E-04	2.371E-04	2.371E-04	2.370E-04
Zr-94	1.755E-01						
Zr-96	2.873E-02						
Nb-93	2.432E-10	3.360E-10	4.407E-10	5.561E-10	7.469E-10	1.105E-09	1.057E-07
Nb-93m	7.436E-10	8.656E-10	9.758E-10	1.075E-09	1.207E-09	1.386E-09	2.001E-09
Nb-94	1.364E-13	1.364E-13	1.364E-13	1.364E-13	1.363E-13	1.363E-13	1.318E-13
Mo-95	8.502E-05						
Mo-96	4.145E-06						
Mo-97	1.318E-04						
Mo-98	1.195E-06						
Mo-100	1.322E-13						
Tc-98	1.154E-15						
Tc-99	2.915E-10	2.915E-10	2.915E-10	2.915E-10	2.915E-10	2.914E-10	2.905E-10
Ru-99	7.212E-15	9.109E-15	1.101E-14	1.290E-14	1.575E-14	2.049E-14	9.484E-13
Ru-100	1.748E-11						
Ru-101	7.109E-14						
Cd-111	1.362E-11						
Cd-112	1.159E-10						
Cd-113	3.452E-13						
Cd-114	1.891E-08						
Cd-116	8.747E-11						
In-113	2.410E-06						
In-115	3.085E-11						
Sn-112	1.387E-04						
Sn-113	2.896E-13	3.559E-15	4.374E-17	5.376E-19	7.390E-22	1.237E-26	0.00
Sn-114	9.670E-05						
Sn-115	4.914E-05						
Sn-116	2.125E-03						
Sn-117	1.157F-03	1.157E-03	1.157E-03	1.157E-03	1.157E-03	1.157E-03	1.157E-03
Sn-118	3.606F-03	3.606E-03	3,606F-03	3.606F-03	3.606E-03	3.606E-03	3.606E-03
Sn-119	1.320F-03	1.320F-03	1.320F-03	1.320F-03	1.320E-03	1.320E-03	1.320E-03
Sn-119m	5.181F-09	6.560F-10	8.307F-11	1.052F-11	4.740F-13	2.704F-15	0.00
Sn-120	4.913E-03						

TABLE F.8.c. Cladding Activation Product Inventory by Isotope at 30 MWd/kgM, g/gZr (contd)

<u>TABLE F.8.c.</u> Cladding Activation Product Inventory by Isotope at 30 MWd/kgM, g/gZr (contd)

Isotope	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Sn-121m	3.868E-08	3.763E-08	3.660E-08	3.560E-08	3.414E-08	3.186E-08	3.978E-14
Sn-122	7.079E-04	7.079E-04	7.079E-04	7.079E-04	7.079E-04	7.079E-04	7.0/9E-04
Sn-123	5.479E-13	1.087E-14	2.157E-16	4.279E-18	1.198E-20	6.639E-25	0.00
Sn-124	8.679E-04	8.679E-04	8.679E-04	8.679E-04	8.679E-04	8.679E-04	8.679E-04
Sb-121	7.017E-06	7.018E-06	7.019E-06	7.020E-06	7.022E-06	7.024E-06	7.056E-06
Sb-123	7.548E-07	7.548E-07	7.548E-07	7.548E-07	7.548E-07	7.548E-07	7.548E-07
Sb-125	9.972E-07	6.045E-07	3.665E-07	2.222E-07	1.049E-07	3.001E-08	0.00
Te-122	4.877E-07	4.877E-07	4.877E-07	4.877E-07	4.877E-07	4.877E-07	4.877E-07
Te-123	6.564E-09	6.564E-09	6.564E-09	6.564E-09	6.564E-09	6.564E-09	6.564E-09
Te-123m	2.466E-15	3.585E-17	5.213E-19	7.581E-21	2.151E-23	5.481E-28	0.00
Te-124	3.529E-08	3.529E-08	3.529E-08	3.529E-08	3.529E-08	3.529E-08	3.529E-08
Te-125	7.926E-06	8.324E-06	8.565E-06	8.712E-06	8.831E-06	8.906E-06	8.937E-06
Te-125m	1.395E-08	8.458E-09	5.127E-09	3.108E-09	1.467E-09	4.197E-10	0.00
Te-126	9.328E-08	9.328E-08	9.328E-08	9.328E-08	9.328E-08	9.328E-08	9.328E-08
Te-128	6.545E-13	6.545E-13	6.545E-13	6.545E-13	6.545E-13	6.545E-13	6.545E-13
I-127	3.583E-10	3.583E-10	3.583E-10	3.583E-10	3.583E-10	3.583E-10	3.583E-10
Xe-128	1.022E-11	1.022E-11	1.022E-11	1.022E-11	1.022E-11	1.022E-11	1.022E-11
Xe-129	3.555E-14	3.555E-14	3.555E-14	3.555E-14	3.555E-14	3.555E-14	3.555E-14
Xe-130	1.291E-15	1.291E-15	1.291E-15	1.291E-15	1.291E-15	1.291E-15	1.291E-15
Yb-172	3.625E-15	3.625E-15	3.625E-15	3.625E-15	3.625E-15	3.625E-15	3.625E-15
Yb-173	2.864E-15	2.864E-15	2.864E-15	2.864E-15	2.864E-15	2.864E-15	2.864E-15
Lu-175	4.213E-08	4.213E-08	4.213E-08	4.213E-08	4.213E-08	4.213E-08	4.213E-08
Lu-176	1.336E-09	1.336E-09	1.336E-09	1.336E-09	1.336E-09	1.336E-09	1.336E-09
Hf-174	2.822E-08	2.822E-08	2.822E-08	2.822E-08	2.822E-08	2.822E-08	2.822E-08
Hf-176	1.678E-06	1.678E-06	1.678E-06	1.678E-06	1.678E-06	1.678E-06	1.678E-06
Hf-177	2.283E-07	2.283E-07	2.283E-07	2.283E-07	2.283E-07	2.283E-07	2.283E-07
Hf-178	7.424E-06	7.424E-06	7.424E-06	7.424E-06	7.424E-06	7.424E-06	7.424E-06
Hf-179	1.909E-05	1.909E-05	1.909E-05	1.909E-05	1.909E-05	1.909E-05	1.909E-05
Hf-180	2.554E-05	2.554E-05	2.554E-05	2.554E-05	2.554E-05	2.554E-05	2.554E-05
Hf-182	3.392E-09	3.392E-09	3.392E-09	3.392E-09	3.392E-09	3.392E-09	3.391E-09
Ta-181	9.628E-07	9.628E-07	9.628E-07	9.628E-07	9.628E-07	9.628E-07	9.628E-07
Ta-182	2.833E-14	4.640E-16	1.229E-16	1.187E-16	1.187E-16	1.187E-16	1.186E-16
W-182	9.675E-08	9.675E-08	9.675E-08	9.675E-08	9.675E-08	9.675E-08	9.675E-08
W-183	1.279E-07	1.279E-07	1.279E-07	1.279E-07	1.279E-07	1.279E-07	1.279E-07
W-184	9.872E-09	9.872E-09	9.872E-09	9.872E-09	9.872E-09	9.872E-09	9.872E-09
W-186	3.180E-13	3.180E-13	3.180E-13	3.180E-13	3.180E-13	3.180E-13	3.180E-13
Re-185	2.522E-11	2.522E-11	2.522E-11	2.522E-11	2.522E-11	2.522E-11	2.522E-11
Re-187	1.919E-14	1.919E-14	1.919E-14	1.919E-14	1.919E-14	1.919E-14	1.919E-14
0s-186	4.862E-12	4.862E-12	4.862E-12	4.862E-12	4.862E-12	4.862E-12	4.862E-12

Total

gers a

.....

: arival

1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

TABLE F.8.d.	Cladding Activation Product Inventory by Isotope at
	35 MWd/kgM, g/gZr

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
H-1	1.206E-05	1.206E-05	1.206E-05	1.206E-05	1.206E-05	1.206E-05	1.206E-05
H-2	2.931E-08	2.931E-08	2.931E-08	2.931E-08	2.931E-08	2.931E-08	2.931E-08
H-3	1.141E-13	1.020E-13	9.117E-14	8.149E-14	6.886E-14	5.201E-14	6.702E-38
He-3	4.807E-14	6.019E-14	7.102E-14	8.070E-14	9.333E-14	1.102E-13	1.622E-13
He-4	1.124E-07	1.124E-07	1.124E-07	1.124E-07	1.124E-07	1.124E-07	1.124E-07
Li-6	2.539E-13	2.539E-13	2.539E-13	2.539E-13	2.539E-13	2.539E-13	2.539E-13
Be-9	1.293E-09	1.293E-09	1.293E-09	1.293E-09	1.293E-09	1.293E-09	1.293E-09
Be-10	3.391E-11	3.391E-11	3.391E-11	3.391E-11	3.391E-11	3.391E-11	3.390E-11
B-11	2.649E-08	2.649E-08	2.649E-08	2.649E-08	2.649E-08	2.649E-08	2.649E-08
C-12	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04
C-13	1.840E-06	1.840E-06	1.840E-06	1.840E-06	1.840E-06	1.840E-06	1.840E-06
C-14	2.325E-07	2.324E-07	2.324E-07	2.323E-07	2.322E-07	2.321E-07	2.062E-07
N-14	4.156E-05	4.156E-05	4.156E-05	4.156E-05	4.156E-05	4.156E-05	4.159E-05
N-15	1.742E-07	1.742E-07	1.742E-07	1.742E-07	1.742E-07	1.742E-07	1.742E-07
0-16	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03	1.245E-03
0-17	5.041E-07	5.041E-07	5.041E-07	5.041E-07	5.041E-07	5.041E-07	5.041E-07
0-18	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06
F-19	3.056E-12	3.056E-12	3.056E-12	3.056E-12	3.056E-12	3.056E-12	3.056E-12
Ne-21	1.343E-15	1.343E-15	1.343E-15	1.343E-15	1.343E-15	1.343E-15	1.343E-15
Ne-22	3.226E-14	3.226E-14	3.226E-14	3.226E-14	3.226E-14	3.226E-14	3.226E-14
Na-23	2.617E-15	2.617E-15	2.617E-15	2.617E-15	2.617E-15	2.617E-15	2.617E-15
Mg-24	2.174E-10	2.174E-10	2.174E-10	2.174E-10	2.174E-10	2.174E-10	2.174E-10
Mg-25	4.574E-10	4.574E-10	4.574E-10	4.574E-10	4.574E-10	4.574E-10	4.574E-10
Mg-26	2.095E-10	2.095E-10	2.095E-10	2.095E-10	2.095E-10	2.095E-10	2.095E-10
A1 - 27	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05
Si-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
Si-29	3.888E-06	3.888E-06	3.888E-06	3.888E-06	3.888E-06	3.888E-06	3.888E-06
Si-30	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649E-06
P-31	9.477E-10	9.477E-10	9.477E-10	9.477E-10	9.477E-10	9.477E-10	9.477E-10
S-32	2.486E-13	2.486E-13	2.486E-13	2.486E-13	2.486E-13	2.486E-13	2.487E-13
Ca-44	5./41E-15	5./41E-15	5./41E-15	5./41E-15	5./41E-15	5.741E-15	5.741E-15
Ca-46	2.316E-15	2.316E-15	2.316E-15	2.316E-15	2.316E-15	2.316E-15	2.316E-15
11-4/	2.34/E-10	2.34/E-10	2.34/E-10	2.34/E-10	2.34/E-10	2.34/E-10	2.34/E-10
11-48	6.994E-13	6.994E-13	6.994E-13	6.994E-13	6.994E-13	6.994E-13	6.994E-13
11-49	6.459E-10	6.459E-10	6.459E-10	6.459E-10	6.459E-10	6.459E-10	6.459E-10
11-50	2.033E-09	2.033E-09	2.033E-09	2.033E-09	2.033E-09	2.033E-09	2.033E-09
V-50	8./3/E-09	8./3/E-09	8./3/E-09	8./3/E-09	8./3/E-09	8./3/E-09	8./3/E-09
V-51	1.8/9E-06	1.8/9E-06	1.8/91-06	1.8/9E-06	1.8/9E-06	1.8/9E-06	1.8/9E-00
Cr-50	3.992E-05	3.992E-05	3.992E-05	3.992E-05	3.992E-05	3.992E-05	3.992E~05
Cr-52	8.284E-04	8.284E-04	8.284E-04	8.284E-04	8.284E-04	8.284E-04	8.284E-04
LT-33	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04
UT-54	2.9/5E-05	2.9/3E-05	2.9/3E-05	2.9/3E-05	2.9/3E-05	2.9/3E-05	2.9/JE-UD
Mn-54	1.UDUE-10	2.09/E-11	4.140L-12	0.20/E-13	1.221E-14	1.23/E-13	
MN-55	0.90/E-0/	/.2U0E-0/	/.301E-U/	/.404E-U/	/.J04E-U/	/.012E-U/	/.029E-U/
re-54	1.114E-04	1.114E-04	1.114E-U4	1.1146-04	1.1146-04	1.1146-04	1.114E-04
F8-33	1 9225 02	4.2301-08	2.400E-U8	1 9225-02	1 8235-09	1 8235-03	1 8235-03

TABLE F.8.d.	Cladding Activation Product Inventory by Isotope at
	35 MWd/kgM, g/gZr (contd)

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Fe-57	5.885E-05	5.885E-05	5.885E-05	5.885E-05	5.885E-05	5.885E-05	5.885E-05
Fe-58	6.367E-06	6.367E-06	6.367E-06	6.367E-06	6.367E-06	6.367E-06	6.367E-06
Co-59	2.208E-08	2.208E-08	2.208E-08	2.208E-08	2.208E-08	2.208E-08	2.208E-08
Co-60	5.572E-10	4.283E-10	3.292E-10	2.531E-10	1.706E-10	8.836E-11	0.00
Ni-60	1.026E-09	1.155E-09	1.254E-09	1.330E-09	1.413E-09	1.495E-09	1.584E-09
Ni-61	4.262E-12	4.262E-12	4.262E-12	4.262E-12	4.262E-12	4.262E-12	4.262E-12
Ni-62	7.717E-15	7.717E-15	7.717E-15	7.717E-15	7.717E-15	7.717E-15	7.717E-15
Sr-87	1.535E-08	1.535E-08	1.535E-08	1.535E-08	1.535E-08	1.535E-08	1.535E-08
Sr-88	1.495E-06	1.495E-06	1.495E-06	1.495E-06	1.495E-06	1.495E-06	1.495E-06
Sr-90	5.841E-11	5.569E-11	5.310E-11	5.064E-11	4.715E-11	4.186E-11	3.100E-21
Y-89	1.139E-07	1.139E-07	1.139E-07	1.139E-07	1.139E-07	1.139E-07	1.139E-07
Y-90	1.465E-14	1.397E-14	1.332E-14	1.270E-14	1.182E-14	1.050E-14	7.775E-25
Zr-90	4.972E-01	4.972E-01	4.972E-01	4.972E-01	4.972E-01	4.972E-01	4.972E-01
Zr-91	1.089E-01	1.089E-01	1.089E-01	1.089E-01	1.089E-01	1.089E-01	1.089E-01
Zr-92	1.696E-01	1.696E-01	1.696E-01	1.696E-01	1.696E-01	1.696E-01	1.696E-01
Zr-93	2.815E-04	2.815E-04	2.815E-04	2.815E-04	2.815E-04	2.815E-04	2.814E-04
Zr-94	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01
Zr-96	2.870E-02	2.870E-02	2.870E-02	2.870E-02	2.870E-02	2.870E-02	2.870E-02
Nb-93	2.875E-10	3.975E-10	5.217E-10	6.585E-10	8.848E-10	1.310E-09	1.255E-07
Nb-93m	8.811E-10	1.026E-09	1.157E-09	1.275E-09	1.431E-09	1.644E-09	2.376E-09
Nb-94	1.923E-13	1.923E-13	1.923E-13	1.922E-13	1.922E-13	1.922E-13	1.859E-13
Mo-95	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04	1.003E-04
Mo-96	5.828E-06	5.828E-06	5.828E-06	5.828E-06	5.828E-06	5.828E-06	5.828E-06
Mo-97	1.566E-04	1.566E-04	1.566E-04	1.566E-04	1.566E-04	1.566E-04	1.566E-04
Mo-98	1.689E-06	1.689E-06	1.689E-06	1.689E-06	1.689E-06	1.689E-06	1.689E-06
Mo-100	2.675E-13	2.675E-13	2.675E-13	2.675E-13	2.675E-13	2.675E-13	2.675E-13
Tc-98	2.291E-15	2.291E-15	2.291E-15	2.291E-15	2.291E-15	2.291E-15	2.291E-15
Tc-99	4.851E-10	4.851E-10	4.851E-10	4.851E-10	4.851E-10	4.851E-10	4.835E-10
Ru-99	1.196E-14	1.512E-14	1.827E-14	2.143E-14	2.617E-14	3.406E-14	1.579E-12
Ru-100	3.467E-11	3.467E-11	3.467E-11	3.467E-11	3.467E-11	3.467E-11	3.467E-11
Ru-101	1.6//E-13	1.677E-13	1.677E-13	1.677E-13	1.677E-13	1.6//E-13	1.677E-13
Ru-102	2.585E-15	2.585E-15	2.585E-15	2.585E-15	2.585E-15	2.585E-15	2.585E-15
	1.60/E-11	1.60/E-11	1.60/E-11	1.60/E-11	1.60/E-11	1.60/E-11	1.60/E-11
	1.303E-10	1.303E-10	1.303E-10	1.303E-10	1.303E-10	1.303E-10	1.303E-10
	3.4/9E-13	3.4/9E-13	3.4/9E-13	3.4/9E-13	3.4/9E-13	3.4/9E-13	3.4/9E-13
Cd - 114	2.014E-U8	2.014E-08	2.014E-08	2.0146-08	2.014E-08	2.014E-08	2.014E-U8
Lu = 110	1.042E-10	1.042E-10	1.042E-10	1.042E-10 2 700E 06	2 7005 06	2 7005 06	2 700E 06
10-113	2./9UE-00	2.790E-00 2.264E 11	2.7902-00	2.790E-00	2.790E-00 2.264E-11	2.790E-00 2.264E-11	2./90E-00 3 26/E-11
10-110	3.204E~II 1 292E_04	3.204E-11 1 202E 04	1 202E-04	3.204E-11 1 292E-04	1 3925-04	1 292E_0A	1 382E_04
Sn = 112 Sn = 112	3 /00E-13	1.302E-04	5 285E_17	6 /05E_10	8 836F-22	1.302L-04	0 00
S_{n-114}	$0.682E_{-05}$	4.300L-13	$0.682E_{0.00}$	0.49JL-19	0.030L-22	0 682F_05	0.00 0.682F_05
Sn_115	A 808F_05	A 8085-05	4 8085-05	4 808F_05	4 808F_05	4 808F_05	4 808F_05
Sn_115	7.000E=03	2 1205-03	2 120F_02	2 1205-03	2 120F_02	2 120F_02	2 1205-03
Sn_117	1 1505-03	1 1505-03	1 1505-03	1 1505-03	1 150F_02	1 150F_03	1 150F_03
Sn_110	3 6045-03	3 604F-03	3 6015-03	3 6045-03	3 604F-03	3 604F_03	3 604F_03
Sn_110	1 325F_03	1 325F-03	1 325F-03	1 325F-03	1 325F-03	1.325F-03	1.325E-03

TABLE F.8.d.	Cladding Act	tivation	Product	Inventory	by	Isotope	at
	35 MWd/kgM,	g/gZr (d	contd)	-	-	-	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Sn-119m	6.269F-09	7.938E-10	1.005E-10	1.273E-11	5.735F-13	3.272E-15	0.00
Sn-120	4.913E-03	4.913E-03	4.913E-03	4.913E-03	4.913E-03	4.913E-03	4.913E-03
Sn~121m	4.605E-08	4.479E-08	4.356E-08	4.237E-08	4.064E-08	3.792E-08	4.736E-14
Sn-122	7.078E-04	7.078E-04	7.078E-04	7.078E-04	7.078E-04	7.078E-04	7.078E-04
Sn-123	6.641E-13	1.318E-14	2.614E-16	5.186E-18	1.448E-20	8.026E-25	0.00
Sn-124	8.662E-04	8.662E-04	8.662E-04	8.662E-04	8.662E-04	8.662E-04	8.662E-04
Sb-121	8.241E-06	8.243E-06	8.244E-06	8.245E-06	8.247E-06	8.249E-06	8.287E-06
Sb-123	8.919E-07	8.919E-07	8.919E-07	8.919E-07	8.919E-07	8.919E-07	8.919E-07
Sb-125	1.191E-06	7.220E-07	4.377E-07	2.654E-07	1.253E-07	3.584E-08	0.00
Te-122	6.809E-07	6.809E-07	6.809E-07	6.809E-07	6.809E-07	6.809E-07	6.809E-07
Te-123	9.912E-09	9.913E-09	9.913E-09	9.913E-09	9.913E-09	9.913E-09	9.913E-09
Te-123m	4.165E-15	6.056E-17	8.804E-19	1.280E-20	1.846E-23	4.704E-28	0.00
Te-124	5.268E-08	5.268E-08	5.268E-08	5.268E-08	5.268E-08	5.268E-08	5.268E-08
Te-125	9.395E-06	9.870E-06	1.016E-05	1.033E-05	1.048E-05	1.057E-05	1.060E-05
Te-125m	1.666E-08	1.010E-08	6.124E-09	3.713E-09	1.752E-09	5.013E-10	0.00
Te-126	1.317E-07	1.317E-07	1.317E-07	1.317E-07	1.317E-07	1.317E-07	1.317E-07
Te-128	1.304E-12	1.304E-12	1.304E-12	1.304E-12	1.304E-12	1.304E-12	1.304E-12
I-127	5.992E-10	5.992E-10	5.992E-10	5.992E-10	5.992E-10	5.992E-10	5.992E-10
Xe-128	2.036E-11	2.036E-11	2.036E-11	2.036E-11	2.036E-11	2.036E-11	2.036E-11
Xe-129	8.383E-14	8.383E-14	8.383E-14	8.383E-14	8.383E-14	8.383E-14	8.383E-14
Xe-130	3.628E-15	3.628E-15	3.628E-15	3.628E-15	3.628E-15	3.628E-15	3.628E-15
Yb-172	4.664E-15	4.664E-15	4.664E-15	4.664E-15	4.664E-15	4.664E-15	4.664E-15
Yb-173	3.864E-15	3.864E-15	3.864E-15	3.864E-15	3.864E-15	3.864E-15	3.864E-15
Lu-175	4.298E-08	4.298E-08	4.298E-08	4.298E-08	4.298E-08	4.298E-08	4.298E-08
Lu-176	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09
Hf-174	2.285E-08	2.285E-08	2.285E-08	2.285E-08	2.285E-08	2.285E-08	2.285E-08
Hf-176	1.522E-06	1.522E-06	1.522E-06	1.522E-06	1.522E-06	1.522E-06	1.522E-06
Hf-177	1.825E-07	1.825E-07	1.825E-07	1.825E-07	1.825E-07	1.825E-07	1.825E-07
Hf-178	5.850E-06	5.850E-06	5.850E-06	5.850E-06	5.850E-06	5.850E-06	5.850E-06
Hf-179	1.915E-05	1.915E-05	1.915E-05	1.915E-05	1.915E-05	1.915E-05	1.915E-05
HT-180	2./01E-05	2./UIE-05	2./01E-05	2./01E-05	2./UIE-05	2./01E-05	2./UIE-05
HT-182	4.910E-09	4.910E-09	4.910E-09	4.910E-09	4.910E-09	4.910E-09	4.910E-09
1a-181	1.1396-00	1.139E-06	1.139E-00	1.139E-06	1.139E-06	1.139E-00	1.139E-06
10-102 V 102	3.390E-14	0.099E-10	1.//IE-10	1.7186-10	1.7186-10	1./186-10	1.7186-10
₩~18Z	1.204E-07	1.204E-07	1.204E-07	1.204E-07	1.2046-07	1.204E-07	1.204E-07
W-103 W 104	1.9200-07	1.9200-07	1.9206-07	1.9205-07	1.9205-07	1.9200-07	1.9200-07
W-104	7 7475 12	7 7475-12	7 7475-12	7 7476-12	7 7475-13	7 7475-13	7 7/75-12
W-100 Do-195	5 226E_11	5 226E_11	7.747E=13 5.226E_11	5 226E_11	5 226E_11	5 236E_11	5 236E-11
RC-100 Pa_197	5 578F_1A	5 5785-11	5 578F_14	5 578F_14	5 5785-14	5 578F_14	5 578F_14
Ne=107	1 108F_11	1 108F_11	1 108F_11	1 108F_11	1 108F_11	1 198F_11	1 108F-11
0s-188	3 165F_15	3 165F_15	3 165F_15	3 165F-15	3.165F-15	3.165F-15	3.165F-15
05 100	3.10JL-1J	J.1076-13	J.100E 1J	J. I J	J. IVE IJ		
Total	1 000F+00	1 000F+00	1 000F+00	1.000F+00	1.000F+00	1.000F+00	1.000F+00

			5 1 5 5				
<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	1.207E-05	1.207F-05	1.207F-05	1.207E-05	1.207F-05	1.207F-05	1.207F-05
H-2	3.356F-08	3.356F-08	3.356E-08	3.356F-08	3.356F-08	3.356E-08	3.356E-08
H-3	1.643E-13	1.468E-13	1.313E-13	1.173E-13	9.914E-14	7.488E-14	9.655E-38
He-3	6.869E-14	8.614E-14	1.017E-13	1.157E-13	1.339E-13	1.581E-13	2.330E-13
He-4	1.310E-07	1.310F-07	1.310F-07	1.310E-07	1.310E-07	1.310E-07	1.310E-07
li-6	3.152E-13	3.152E-13	3.152E-13	3.152E-13	3.152E-13	3.152E-13	3.152E-13
Be-9	1.506E-09	1.506E-09	1.506E-09	1.506E-09	1.506E-09	1.506E-09	1.506E-09
Be-10	3.967E-11	3.967F-11	3.967E-11	3.967F-11	3.967F-11	3.967E-11	3.965E-11
B-11	3.084E-08	3.084E-08	3.084E-08	3.084E-08	3.084E-08	3.084E-08	3.084E-08
C-12	1.442F-04	1.442E-04	1.442F-04	1.442E-04	1.442E-04	1.442E-04	1.442F-04
C-13	1.854E-06	1.854F-06	1.854F-06	1.854F-06	1.854F-06	1.854F-06	1.854F-06
C-14	2.707E-07	2.706F-07	2.706E-07	2.705E-07	2.704F-07	2.702F-07	2.400F-07
N-14	4.152E-05	4.152E-05	4.152E-05	4.152E-05	4.152E-05	4.152E-05	4.155E-05
N-15	1.757E-07	1.757E-07	1.757E-07	1.757E-07	1.757E-07	1.757E-07	1.757E-07
0-16	1.245E-03	1.245E-03	1.245E-03	1.245F-03	1.245E-03	1.245E-03	1.245E-03
0-17	5.041F-07	5.041E-07	5.041F-07	5.041F-07	5.041F-07	5.041F-07	5.041F-07
0-18	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863F-06	2.863E-06
F-19	3.560E-12	3.560E-12	3.560E-12	3.560E-12	3.560E-12	3.560E-12	3.560E-12
Ne-21	1.822F-15	1.822F-15	1.822F-15	1.822F-15	1.822F-15	1.822E-15	1.822F-15
Ne-22	4.378E-14	4.378E-14	4.378E-14	4.378E-14	4.378F-14	4.378E-14	4.378F-14
Na-23	3.553F-15	3.553E-15	3.553E-15	3.553E-15	3.553E-15	3.553E-15	3.553E-15
Ma-24	2.532E-10	2.532E-10	2.532E-10	2.532E-10	2.532E-10	2.532E-10	2.532F-10
Ma-25	5.328E-10	5.328E-10	5.328E-10	5.328E-10	5.328E-10	5.328E-10	5.328F-10
Ma-26	2.443E-10	2.443E-10	2.443E-10	2.443E-10	2.443E-10	2.443E-10	2.443E-10
A1-27	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05	3.997E-05
Si-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
Si-29	3.893E-06	3.893E-06	3.893E-06	3.893E-06	3.893E-06	3.893E-06	3.893E-06
Si-30	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649E-06	2.649F-06
P-31	1.104E-09	1.104E-09	1.104E-09	1.104E-09	1.104E-09	1.104E-09	1.104F-09
S-32	3.374E-13	3.374E-13	3.374E-13	3.374E-13	3.374E-13	3.374E-13	3.375E-13
Ca-44	7.768E-15	7.768E-15	7.768E-15	7.768E-15	7.768E-15	7.768F-15	7.768F-15
Ca-46	3.140E-15	3.140E-15	3.140E-15	3.140E-15	3.140E-15	3.140E-15	3.140E-15
T1-47	2.722E-10	2.722E-10	2.722E-10	2.722E-10	2.722E-10	2.722E-10	2.722E-10
Ti-48	9.453E-13	9.453E-13	9.453E-13	9.453E-13	9.453E-13	9.453E-13	9.453E-13
T1-49	7.513E-10	7.513E-10	7.513E-10	7.513E-10	7.513E-10	7.513E-10	7.513E-10
Ti-50	3.076E-09	3.076E-09	3.076E-09	3.076E-09	3.076E-09	3.076E-09	3.076E-09
V-50	9.958E-09	9.958E-09	9.958E-09	9.958E-09	9.958E-09	9.958E-09	9.958E-09
V-51	2.179E-06	2.179E-06	2.179E-06	2.179E-06	2.179E-06	2.179E-06	2.179E-06
Cr-50	3.962E-05	3.962E-05	3.962E-05	3.962E-05	3.962E-05	3.962E-05	3.962E-05
Cr-52	8.270E-04	8.270E-04	8.270E-04	8.270E-04	8.270E-04	8.270E-04	8.270E-04
Cr-53	1.009E-04	1.009E-04	1.009E-04	1.009E-04	1.009E-04	1.009E-04	1.009E-04
Cr-54	3.063E-05	3.063E-05	3.063E-05	3.063E-05	3.063E-05	3.063E-05	3.063E-05
Mn-54	1.246E-10	2.464E-11	4.875E-12	9.645E-13	8.488E-14	1.478E-15	0.00
Mn-55	8.030E-07	8.379E-07	8.584E-07	8.704E-07	8.798E-07	8.855E-07	8.875E-07
Fe-54	1.113E-04	1.113E-04	1.113E-04	1.113E-04	1.113E-04	1.113E-04	1.113E-04
Fe-55	8.447E-08	4.956E-08	2.908E-08	1.706E-08	7.668E-09	2.022E-09	0.00
Fe-56	1.820E-03	1.820E-03	1.820E-03	1.820E-03	1.820E-03	1.820E-03	1.820E-03

.

<u>Isotope</u>	6 Years	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Fe-57	6.130E-05	6.130E-05	6.130E-05	6.130E-05	6.130E-05	6.130E-05	6.130E-05
Fe-58	6.436F-06	6.436F-06	6.436F-06	6.436F-06	6.436E-06	6.436F-06	6.436F-06
$C_{0}-59$	2.557E-08	2.557E-08	2.557E-08	2.557F-08	2.557F-08	2.557E-08	2.557E-08
$C_{0} - 60$	7.540F-10	5.796F-10	4.455E-10	3.425E-10	2.308F-10	1,196F-10	0.00
Ni-60	1 384F-09	1 559F-09	1 693E-09	1 796F-09	1 908F-09	2 019F-09	2 138F-09
Ni-61	6.716F-12	6.716F-12	6.716F-12	6.716F-12	6.716F-12	6.716F-12	6.716F-12
Ni-62	1.417F-14	1.417F-14	1.417F-14	1.417F-14	1.417F-14	1.417F-14	1.417F-14
Sr-87	1.770F-08	1.770F-08	1.770E-08	1.770F-08	1.770F-08	1.770E-08	1.770F-08
Sr-88	1.741F-06	1.741F-06	1.741F-06	1.741F-06	1.741F-06	1.741F-06	1.741F-06
Sr = 90	7.916F-11	7.548F-11	7.197F-11	6.862F-11	6.389F-11	5.672F-11	4.202F-21
Y-89	1.327F-07	1.327F-07	1.327F-07	1.327F-07	1.327F-07	1.327E-07	1.327E-07
Y-90	1.985E-14	1.893F-14	1.805F-14	1.721F-14	1.602F-14	1.422F-14	1.054F-24
7r - 90	4.972F-01	4.972F-01	4.972F-01	4.972F-01	4.972F-01	4.972F-01	4.972F-01
Zr-91	1.088F-01	1.088F-01	1.088F-01	1.088F-01	1.088F-01	1.088F-01	1.088F-01
7r-92	1.697F-01	1.697F-01	1.697F-01	1.697F-01	1.697F-01	1.697F-01	1.697F-01
Zr-93	3.272E-04	3.272E-04	3.272E-04	3.272E-04	3.272E-04	3.272E-04	3.270E-04
Zr-94	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01
Zr-96	2.868E-02	2.868E-02	2.868E-02	2.868E-02	2.868E-02	2.868E-02	2.868E-02
Nb-93	3.329E-10	4.607E-10	6.048E-10	7.637E-10	1.027E-09	1.520E-09	1.459E-07
Nb-93m	1.022E-09	1.191E-09	1.343E-09	1.481E-09	1.663E-09	1.910E-09	2.762E-09
Nb-94	2.592E-13	2.592E-13	2.592E-13	2.591E-13	2.591E-13	2.591E-13	2.505E-13
Mo-95	1.157E-04	1.157E-04	1.157E-04	1.157E-04	1.157E-04	1.157E-04	1.157E-04
Mo-96	7.852E-06	7.852E-06	7.852E-06	7.852E-06	7.852E-06	7.852E-06	7.852E-06
Mo-97	1.820E-04	1.820E-04	1.820E-04	1.820E-04	1.820E-04	1.820E-04	1.820E-04
Mo-98	2.288E-06	2.288E-06	2.288E-06	2.288E-06	2.288E-06	2.288E-06	2.288E-06
Mo-100	4.959E-13	4.959E-13	4.959E-13	4.959E-13	4.959E-13	4.959E-13	4.959E-13
Tc-98	4.176E-15	4.176E-15	4.176E-15	4.176E-15	4.176E-15	4.176E-15	4.176E-15
Tc-99	7.574E-10	7.573E-10	7.573E-10	7.573E-10	7.573E-10	7.573E-10	7.549E-10
Ru-99	1.862E-14	2.355E-14	2.847E-14	3.340E-14	4.080E-14	5.312E-14	2.464E-12
Ru-100	6.316E-11	6.316E-11	6.316E-11	6.316E-11	6.316E-11	6.316E-11	6.316E-11
Ru-101	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13	3.555E-13
Ru-102	6.393E-15	6.393E-15	6.393E-15	6.393E-15	6.393E-15	6.393E-15	6.393E-15
Cd-111	1.857E-11	1.857E-11	1.857E-11	1.857E-11	1.857E-11	1.857E-11	1.857E-11
Cd-112	1.568E-10	1.568E-10	1.568E-10	1.568E-10	1.568E-10	1.568E-10	1.568E-10
Cd-113	3.502E-13	3.502E-13	3.502E-13	3.502E-13	3.502E-13	3.502E-13	3.502E-13
Cd-114	3.465E-08	3.465E-08	3.465E-08	3.465E-08	3.465E-08	3.465E-08	3.465E-08
Cd-116	1.216E-10	1.216E-10	1.216E-10	1.216E-10	1.216E-10	1.216E-10	1.216E-10
In-113	3.161E-06	3.161E-06	3.161E-06	3.161E-06	3.161E-06	3.161E-06	3.161E-06
In-115	3.489E-11	3.489E-11	3.489E-11	3.489E-11	3.489E-11	3.489E-11	3.489E-11
Sn-112	1.376E-04	1.376E-04	1.376E-04	1.376E-04	1.376E-04	1.376E-04	1.376E-04
Sn-113	4.109E-13	5.050E-15	6.206E-17	7.627E-19	1.037E-21	1.737E-26	0.00
Sn-114	9.695E-05	9.695E-05	9.695E-05	9.695E-05	9.695E-05	9.695E-05	9.695E-05
Sn-115	4.700E-05	4.700E-05	4.700E-05	4.700E-05	4.700E-05	4.700E-05	4.700E-05
Sn-116	2.115E-03	2.115E-03	2.115E-03	2.115E-03	2.115E-03	2.115E-03	2.115E-03
Sn-117	1.161E-03	1.161E-03	1.161E-03	1.161E-03	1.161E-03	1.161E-03	1.161E-03
Sn-118	3.601E-03	3.601E-03	3.601E-03	3.601E-03	3.601E-03	3.601E-03	3.601E-03
Sn-119	1.330E-03	1.330E-03	1.330E-03	1.330E-03	1.330E-03	1.330E-03	1.330E-03

TABLE F.8.e.	Cladding Activation P	roduct Inventory	by	Isotope	at
	40 MWd/kgM, g/gZr (co	ntd)	•	·	

~ . -

\$13×8

.....

.

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Sn-119m	7.380E-09	9.345E-10	1.183E-10	1.498E-11	6.752E-13	3.852E-15	0.00
Sn-120	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03
Sn-121m	5.366E-08	5.219E-08	5.077E-08	4.938E-08	4.736E-08	4.419E-08	5.519E-14
Sn-122	7.076E-04	7.076E-04	7.076E-04	7.076E-04	7.076E-04	7.076E-04	7.076E-04
Sn-123	7.825E-13	1.553E-14	3.080E-16	6.111E-18	1.709E-20	9.473E-25	0.00
Sn-124	8.645E-04	8.645E-04	8.645E-04	8.645E-04	8.645E-04	8.645E-04	8.645E-04
Sb-121	9.472E-06	9.474E-06	9.475E-06	9.477E-06	9.479E-06	9.482E-06	9.526E-06
Sb-123	1.032E-06	1.032E-06	1.032E-06	1.032E-06	1.032E-06	1.032E-06	1.032E-06
Sb-125	1.391E-06	8.430E-07	5.110E-07	3.098E-07	1.462E-07	4.184E-08	0.00
Te-122	9.106E-07	9.106E-07	9.106E-07	9.106E-07	9.106E-07	9.106E-07	9.106E-07
T e-123	1.414E-08	1.414E-08	1.414E-08	1.414E-08	1.414E-08	1.414E-08	1.414E-08
Te-123m	6.560E-15	9.537E-17	1.387E-18	2.017E-20	2.901E-23	7.394E-28	0.00
Te-124	7.533E-08	7.533E-08	7.533E-08	7.533E-08	7.533E-08	7.533E-08	7.533E-08
Te-125	1.090E-05	1.146E-05	1.180E-05	1.200E-05	1.217E-05	1.227E-05	1.231E-05
Te-125m	1.945E-08	1.179E-08	7.150E-09	4.334E-09	2.045E-09	5.853E-10	0.00
Te-126	1.782E-07	1.782E-07	1.782E-07	1.782E-07	1.782E-07	1.782E-07	1.782E-07
Te-128	2.387E-12	2.387E-12	2.387E-12	2.387E-12	2.387E-12	2.387E-12	2.387E-12
I-127	9.399E-10	9.399E-10	9.399E-10	9.399E-10	9.399E-10	9.399E-10	9.399E-10
I-129	1.958E-15	1.958E-15	1.958E-15	1.958E-15	1.958E-15	1.958E-15	1.958E-15
Xe-128	3.724E-11	3.724E-11	3.724E-11	3.724E-11	3.724E-11	3.724E-11	3.724E-11
Xe-129	1.777E-13	1.777E-13	1.777E-13	1.777E-13	1.777E-13	1.777E-13	1.777E-13
Xe-130	8.972E-15	8.972E-15	8.972E-15	8.972E-15	8.972E-15	8.972E-15	8.972E-15
Yb-172	5.744E-15	5.744E-15	5.744E-15	5.744E-15	5.744E-15	5.744E-15	5.744E-15
YD-173	4.906E-15	4.906E-15	4.906E-15	4.906E-15	4.906E-15	4.906E-15	4.906E-15
Lu-175	4.275E-08	4.275E-08	4.275E-08	4.275E-08	4.275E-08	4.275E-08	4.275E-08
Lu-176	1.4/2E-09	1.472E-09	1.472E-09	1.472E-09	1.472E-09	1.472E-09	1.4/2E-09
Ht-174	1.837E-08	1.837E-08	1.837E-08	1.837E-08	1.837E-08	1.837E-08	1.837E-08
HT-1/6	1.3/6E-06	1.3/6E-06	1.3/6E-06	1.3/6E-06	1.3/6E-06	1.3/6E-06	1.3/6E-06
HT-1//	1.562E-0/	1.562E-0/	1.562E-0/	1.562E-0/	1.562E-0/	1.562E-0/	1.562E-0/
HT-1/8	4.582E-06	4.582E-06	4.582E-06	4.582E-06	4.582E-06	4.582E-06	4.582E-06
HT-1/9	1.883E-05	1.883E-05	1.883E-05	1.883E-05	1.883E-05	1.883E-05	1.883E-05
HT-180	2.850E-05	2.850E-05	2.850E-05	2.850E-05	2.850E-05	2.850E-05	2.850E-05
HT-182	0.828E-09	0.828E-09	0.828E-09	0.828E-09	0.828E-09	0.828E-09	0.82/E-09
1d-101	1.3216-00	1.321E-UD	1.321E-U0	1.321E-00	1.321E-00	1.321E-00	1.321E-00
1d-102 W 102	4.39/E-14	1 445E 07	2.404E-10	2.3092-10	2.309E-10	2.3092-10	2.300E-10
W-102 W 192	1.4436-07	1.443E-0/ 2 722E 07	1.443E-07	1.443E-07	1.443E-07	1.443E-07	1.443E-07
W-103	2./33E-0/	2./332-0/	2.733E-07	2./33E-0/	2.7336-07	2.733E-07	2./JJE-0/
W-104 W 196	2.939E-00	2.939E-00	2.939E-00	2.939E-00	2.939E-00	2.939E-00	2.939E-00 1 671E 12
W-100 Do-105	1.0/IE-IZ	1.0/IE~IZ	1.0/1E-12 0 927E 11	1.0/1E-12 0 937E-11	1.0/IC-IZ	1.0/10-12	1.0/1E-12 0.937E_11
RE-100 Do-107	3.03/E-11	3.03/E-11	3.03/E-11	3.03/E-11	3.03/E-11	3.03/E-11	5.03/E-11 1 /03E 12
RE-10/	1.403E-13	1.4U3E~13 2 610F 11	1.4U3E-13	1.4U3E-13	1.4UJE-13	1.4UJE-13	1.4UJE-13 2 610E 11
US-100	2.010E-11	2.010E-11	2.010E-11	2.010E-11	2.010E-11	2.010E-11	2.010E-11
05-100	9.332E-13	9.332E-13	A.327E-12	A.927E-12	9.33ZE-13	A'907E-10	3.3346-13
Total	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	<u>1000 Years</u>
H_1	1 208F-05	1.208E-05	1 208E-05	1 208E-05	1.208F-05	1.208E-05	1 208F-05
H-2	3.794F-08	3.794F-08	3.794F-08	3.794F-08	3.794F-08	3.794F-08	3.794F-08
H-3	2 266F-13	2 026F-13	1 811F-13	1 618F-13	1 368F-13	1 033E-13	1 331F-37
He-3	9 423F-14	1 183F-13	1.398F-13	1.590F-13	1.841F-13	2 176F-13	3 209F-13
He_4	1 500F-07	1 500F-07	1 500E-13	1 500E-07	1 500F-07	1 500F-07	1 500F-07
	3 707F-13	3 707F_13	3 707F-13	3 707F-13	3 707F-13	3 707F-13	3 707F_13
Re-Q	$1 724F_{-}09$	1 724F-09	1 724F-09	1 724F-09	1 724F-09	1 724F_00	1 724F_09
	4 563F_11	4 563F_11	4 563F-11	4 563E-11	4 563E_11	4 563F_11	4 561F_11
B_11	3 531E-08	3 531F-08	3 531E-08	3 531F-08	3 531F-08	3 531F-08	3 531E-08
C_{-12}	1 442F-04	1 442F-04	1 442F-04	1 442F-04	1 442F-04	1 442F-04	1 442F-04
C-13	1.869E-06	1.869E-06	1 869F-06	1.869E-06	1.869E-06	1 869F-06	1 869F-06
C-14	3.099F-07	3.098F-07	3.098F-07	3.097F-07	3.096F-07	3.094F-07	2 748F-07
N-14	4.147F-05	4.147E-05	4.147F-05	4.147F-05	4.147E-05	4.147F-05	4.150F-05
N-15	1.773F-07	1.773E-07	1.773E-07	1.773E-07	1.773E-07	1.773E-07	1.773E-07
0-16	1.244F-03	1.244F-03	1.244E-03	1.244F-03	1.244F-03	1.244F-03	1.244F-03
0-17	5.042F-07	5.042F-07	5.042F-07	5.042F-07	5.042F-07	5.042E-07	5.042F-07
0-18	2.863F-06	2.863E-06	2.863E-06	2.863F-06	2.863E-06	2.863F-06	2.863E-06
F-19	4.078E-12	4.078E-12	4.078E-12	4.078E-12	4.078F-12	4.078E-12	4.078F-12
Ne-21	2.390E-15	2.390E-15	2.390E-15	2.390E-15	2.390E-15	2.390E-15	2.390E-15
Ne-22	5.745E-14	5.745E-14	5.745E-14	5.745E-14	5.745E-14	5.745E-14	5.745E-14
Na-23	4.664E-15	4.664E-15	4.664E-15	4.664E-15	4.664E-15	4.664F-15	4.664F-15
Ma-24	2.901E-10	2.901E-10	2.901E-10	2.901E-10	2.901E-10	2.901E-10	2.901F-10
Ma-25	6.103E-10	6.103E-10	6.103E-10	6.103E-10	6.103E-10	6.103E-10	6.103E-10
Ma-26	2.800E-10	2.800E-10	2.800E-10	2.800E-10	2.800E-10	2.800E-10	2.800E-10
A1-27	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05
Si-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
Si-29	3.899E-06	3.899E-06	3.899E-06	3.899E-06	3.899E-06	3.899E-06	3.899E-06
S1-30	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06
P-31	1.265E-09	1.265E-09	1.265E-09	1.265E-09	1.265E-09	1.265E-09	1.265E-09
S-32	4.427E-13	4.427E-13	4.427E-13	4.427E-13	4.427E-13	4.427E-13	4.428E-13
Ca-44	1.016E-14	1.016E-14	1.016E-14	1.016E-14	1.016E-14	1.016E-14	1.016E-14
Ca-46	4.116E-15	4.116E-15	4.116E-15	4.116E-15	4.116E-15	4.116E-15	4.116E-15
T1-47	3.105E-10	3.105E-10	3.105E-10	3.105E-10	3.105E-10	3.105E-10	3.105E-10
Ti-48	1.235E-12	1.235E-12	1.235E-12	1.235E-12	1.235E-12	1.235E-12	1.235E-12
Ti-49	8.594E-10	8.594E-10	8.594E-10	8.594E-10	8.594E-10	8.594E-10	8.594E-10
T i-50	3.535E-09	3.535E-09	3.535E-09	3.535E-09	3.535E-09	3.535E-09	3.535E-09
V-50	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08	1.116E-08
V-51	2.484E-06	2.484E-06	2.484E-06	2.484E-06	2.484E-06	2.484E-06	2.484E-06
Cr-50	3.932E-05	3.932E-05	3.932E-05	3.932E-05	3.932E-05	3.932E-05	3.932E-05
Cr-52	8.256E-04	8.256E-04	8.256E-04	8.256E-04	8.256E-04	8.256E-04	8.256E-04
Cr-53	1.015E-04	1.015E-04	1.015E-04	1.015E-04	1.015E-04	1.015E-04	1.015E-04
Cr-54	3.155E-05	3.155E-05	3.155E-05	3.155E-05	3.155E-05	3.155E-05	3.155E-05
Mn-54	1.435E-10	2.839E-11	5.617E-12	1.111E-12	9.779E-14	1.702E-15	0.00
Mn-55	9.181E-07	9.582E-07	9.817E-07	9.955E-07	1.006E-06	1.013E-06	1.015E-06
Fe-54	1.112E-04	1.112E-04	1.112E-04	1.112E-04	1.112E-04	1.112E-04	1.112E-04
Fe-55	9.707E-08	5.695E-08	3.342E-08	1.961E-08	8.812E-09	2.324E-09	0.00
Fe-56	1.818E-03	1.818E-03	1.818E-03	1.818E-03	1.818E-03	1.818E-03	1.818E-03

TABLE F.8.f.	Cladding	Activation	Product	Inventory	by	Isotope	at
	45 MWd/kg	ıM, g∕gZr		-	•	-	

Isotope 6 Years 10 Years 12 Years 15 Years 20 Years 1000 Years Fe-57 6.382E-05 6.392E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-06 6.509E-07 9.31E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.92E-09 0.005E-08 2.005E-08 2.005E-08 2.005E-08 2.005E-08 2.005E-08 2.005E-08 2.005E-08 2.005E-08 2.982E-01 1.087E-01 1.087E-01 1.087E-01 1.994E-06 1.994E-06 <t< th=""><th></th><th></th><th></th><th>.9.1 9,9</th><th>(</th><th></th><th></th><th></th></t<>				.9.1 9,9	(
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	1000 Years
Fe-58 6.509E-06 7.91E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.911E-08 2.921E-07 1.506E-11 1.006E-11 1.008E-01 1.0	Fe-57	6.382F-05	6.382F-05	6.382E-05	6.382F-05	6.382F-05	6.382F-05	6.382F-05
Co-59 2.911E-08 2.912E-09 2.922E-09 2.922E-09 2.922E-09 2.922E-09 2.922E-09 2.922E-09 2.922E-09 2.932E-04 2.932E-14 2.432E-14	Fe-58	6.509F-06	6.509E-06	6.509F-06	6.509E-06	509F-06	5.509E-06	6.509F-06
Society Search	Co-59	2.911F-08	2.911F-08	2.911F-08	2.911F-08	2.911F-08	2.911F-08	2.911F-08
N1-60 1.806E-09 2.314E-09 2.490E-09 2.636E-09 2.792E-09 N1-61 1.006E-11 1.006E-11 1.006E-11 1.006E-11 1.006E-11 N1-62 2.432E-14	Co-60	9 860F-10	7 579F-10	5 826F-10	4 479F-10	3.018F-10	1 564F - 10	0 00
 Ni-61 1.006E-11 1.007E-01 1.007E-01 1.007E-01 1.521E-07 1.521E-07 1.521E-07 1.521E-07 1.521E-07 1.521E-07 1.521E-07 1.087E-01 1.755E-01 1.756E-01<td>Ni_60</td><td>1 806F-09</td><td>2 034F-09</td><td>2 210F-00</td><td>2 344F-09</td><td>2 490F-09</td><td>2 636F-09</td><td>2 792F+09</td>	Ni_60	1 806F-09	2 034F-09	2 210F-00	2 344F-09	2 490F-09	2 636F-09	2 792F+09
N1-62 2.432E-14	Ni-61	1 006F-11	1 006F-11	1 006F-11	1 006F-11	1 006F-11	1 006F-11	1 006F-11
Sr-87 2.005E-08 2.005E-02 2.305E-01 1.521E-07	Ni = 62	2 432F-14	2 432F-14	2 432F-14	2 432F-14	2 432F-14	2 432F-14	2 432F-14
Sin Bit 1.994E-06 1.994E-	Sr-87	2 005F-08	2 005F_08	2 005E-08	2 0055-08	2 005E-08	2 005F-08	2 005E-08
Sir-90 1.037E-10 1.937E-01 1.937E-04 3.739E-04 3.739E-04 3.739E-04 3.739E-04 3.739E-04 3.739E-04 3.737E-04 3.739E-04 3.737E-04 3.739E-04 3.737E-04	Sr-88	1 QQ4F_06	1 004F_06	1 QQ4F_06	1 QQ4F_06	1 004F_06	1 004F_06	1 QQ4F_06
 Y-89 1.521E-07 1.698E-01 1.087E-01 1.087E-01 1.087E-01 1.087E-01 1.087E-01 1.755E-01 1.752E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05	00-1C	1 037F_10	0 800F_11	9 430F-11	8 QQ2F_11	8 372F_11	7 433F_11	5 506F-21
 Y-90 2.601E-14 2.480E-14 2.36E-14 2.25E-14 2.10E-14 1.28E-14 2.36E-14 2.36E-10 2.37E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.373E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.374E-13 	V_80	1.037E = 10 1.521E - 07	1 521F_07	1 521F_07	1 521F_07	1 521F-07	1 521F_07	1 521F_07
21:00 21:0010 4:971E-01 4:971E-01 4:971E-01 1:007E-01	V_Q0	2 601F-14	2 480F_14	2 365F_14	2 255E_14	2 100F_14	1 864F_14	1 381F_24
21-30 1.087E-01 1.755E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.756E-01 1.766E-01 1.036E-01 1.318E-04 1.318E-04 1.318E-04 1.318E-04 1.318E-04 1.318E-04 1.313E-04 1.318E-04 1.318E-04	7 - 90	A 071F_01	1 071F_01	4 071F_01	A 071F_01	$4 071E_01$	1.004L-14	1.301E-24
21-31 1.607L=01 1.755L=01	2r = 90 $7r_{-}01$	$1.087E_01$	1 087E_01	$1.097E_01$	1 087E_01	1 0975-01	1 087E-01	4.9710-01
Zr-93 3.739E-04 3.739E-01 1.755E-01	2r - 91 7r - 92	1 608F_01	1 608F_01	1 608F_01	$1.608E_{-01}$	1 608F_01	1 608F_01	1.007 L=01
21-33 3.732E-04 3.732E-01 1.755E-01	2r - 92 7r - 03	3 730F_0/	3 730F_0/	3 730E_0/	3 730E-01	3 730E_01	3 730E_01	3 7375-04
2r-96 2.865E-02	2r = 93 7r = 94	1 755E-01	$1 755E_01$	$1 755E_{-01}$	1 755E-01	1 755E-01	1 755E_01	3.7371-04
hb-93 3.795E-10 5.253E-10 6.899E-10 8.714E-10 1.172E-09 1.363E-02 2.663E-02 3.75E-13 3.73E-13 3.75E-13 3.52E-13 3.52E-13<	$7r_{-}96$	2 865E-02	2 865E_02	2 865E-02	$2.865E_{-02}$	2.865E-02	2 865E-02	2 865E-02
Nb-93 1.67E-10 3.23E-10 0.63E-10 1.69E-10 1.32E-04 1.30E-04 Nb-94 3.374E-13 3.374E-13 3.374E-13 3.373E-13 3.373E-13 3.373E-13 3.262E-13 Mo-95 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 Mo-96 1.023E-05 1.026	NH-03	3 705E_10	5 253E_10	6 800F-10	2.0032-02 8 71/F-10	$1 172E_{-00}$	1 7365-00	1 6675-07
Nb-94 3.374E-13 3.374E-13 3.374E-13 3.374E-13 3.373E-13 3.373E-13 3.373E-13 3.373E-13 3.372E-13 3.262E-13 Mo-95 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 1.313E-04 Mo-96 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 1.023E-05 Mo-97 2.080E-04 2.080E-04 2.080E-04 2.080E-04 2.080E-04 2.080E-04 Mo-98 2.997E-06 2.997E-06 2.997E-06 2.997E-06 2.997E-06 2.997E-06 Mo-100 8.581E-13 8.581E-13 8.581E-13 8.581E-13 8.581E-13 8.581E-13 Tc-98 7.118E-15 7.118E-15 7.118E-15 7.118E-15 7.118E-15 7.118E-15 7.117E-15 Tc-99 1.124E-09 1.124E-09 1.124E-09 1.124E-09 1.124E-09 1.124E-09 1.120E-09 Ru-99 2.757E-14 3.489E-14 4.220E-14 4.952E-14 6.049E-14 7.878E-14 3.658E-12 Ru-100 1.076E-10 1.076E-10 1.076E-10 1.076E-10 1.076E-10 1.076E-10 d.029E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 Ru-102 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 Cd-111 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 Cd-113 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 d.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 Cd-114 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 J.1212 1.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 S.771E-11 3.771E-01 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.109E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-0	Nb_03m	$1 167E_00$	1 360F_00	$1.534E_{-00}$	$1.601E_{-00}$	1 800F_00	2 182E_00	3 156E_00
No-97 1.317E-04 1.313E-04 1.33E-04		3 374F-13	3 374E_13	3 374E-13	3 373F_13	3 373F_13	3 373E_13	3 262E-13
No-96 1.032E-05 1.032E-05 1.032E-05 1.032E-05 1.032E-05 1.032E-05 Mo-97 2.080E-04 2.08	Mo-95	1 313F_04	1 313E_04	$1 313E_04$	$1 313E_04$	1 313F_04	1 313F_04	1 313E_04
No-97 2.080E-04	Mo-96	1 023E-05	1 023E-05	1 023E-05	1 023E-05	1 023E-05	1 023E-05	1 023E-05
Mo-98 2.997E-06 3.692E-13 3.652E-13 3.652E-13 3.692E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 6.929E-13 8.92E-14 1.430E-14	Mo-97	2 080F-04	2 080F-04	2 080F-04	2 080F-04	2 080F-04	2 080F-04	2 080F_04
Mo-100 8.581E-13	Mo-98	2.000E-04	2 997F-06	2 997F-06	2 997F-06	2.000L=04	2 997F-06	2 QQ7F_06
Tc-98 7.118E-15	Mo+100	8 581F-13	8 581F-13	8 581F-13	8 581F-13	8 581F-13	8 581F-13	8 581F-13
Tc-991.124E-031.124E-031.124E-03	Tc-98	7.118F-15	7 118F-15	7.118F-15	7.118F-15	7.118F-15	7 118F-15	7 117F-15
Ru-992.757E-143.489E-144.220E-144.952E-146.049E-147.878E-143.658E-12Ru-1001.076E-101.076E-101.076E-101.076E-101.076E-101.076E-10Ru-1016.929E-136.929E-136.929E-136.929E-136.929E-136.929E-13Ru-1021.430E-141.430E-141.430E-141.430E-141.430E-141.430E-141.430E-14Cd-1112.109E-112.109E-112.109E-112.109E-112.109E-112.109E-11Cd-1121.773E-101.773E-101.773E-101.773E-101.773E-10Cd-1133.525E-133.525E-133.525E-133.525E-133.525E-13Cd-1144.443E-084.443E-084.443E-084.443E-084.443E-08Cd-1144.443E-084.443E-084.443E-084.443E-084.443E-08Cd-1143.519E-063.519E-063.519E-063.519E-063.519E-06In-1133.519E-063.519E-063.519E-063.519E-063.519E-06In-1133.771E-113.771E-113.771E-113.771E-113.771E-11In-1121.371E-041.371E-041.371E-041.371E-041.371E-04In-1134.727E-135.809E-157.139E-178.774E-191.190E-21In-1134.727E-135.809E-157.139E-178.774E-191.90E-21In-1144.727E-135.809E-157.139E-178.774E-191.90E-21In-1153.711E-041.371E-043.711E-041.371E-04	Tc-99	1.124F-09	1.124F-09	1.124F-09	1.124F-09	1 124F-09	1 124F-09	1 120F-09
Ru-100 1.076E-10 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 1.073E-10 1.773E-10 1.3525E-13 3.525E-13 3.525E-10 1.395E-10 1.371E-04 1.371E-05 3.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-0	Ru-99	2 757F-14	3 489F-14	4 220F-14	4 952F-14	6 049F-14	7 878F-14	3 658F-12
Ru-1016.929E-136.929E-136.929E-136.929E-136.929E-136.929E-136.929E-13Ru-1021.430E-141.430E-141.430E-141.430E-141.430E-141.430E-141.430E-14Cd-1112.109E-112.109E-112.109E-112.109E-112.109E-112.109E-11Cd-1121.773E-101.773E-101.773E-101.773E-101.773E-10Cd-1133.525E-133.525E-133.525E-133.525E-133.525E-13Cd-1144.443E-084.443E-084.443E-084.443E-084.443E-08Cd-1144.443E-084.443E-084.443E-084.443E-084.443E-08Cd-1141.395E-101.395E-101.395E-101.395E-101.395E-10In-1133.519E-063.519E-063.519E-063.519E-063.519E-06In-1153.771E-113.771E-113.771E-113.771E-113.771E-11Sn-1121.371E-041.371E-041.371E-041.371E-041.371E-04Sn-1134.727E-135.809E-157.139E-178.774E-191.190E-211.992E-260.00Sn-1149.712E-059.712E-059.712E-059.712E-059.712E-059.712E-059.712E-05Sn-1154.591E-054.591E-054.591E-054.591E-054.591E-054.591E-05Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-03 <t< td=""><td>Ru = 100</td><td>1.076E-10</td><td>1.076F-10</td><td>1.076F-10</td><td>1.076F-10</td><td>1.076E-10</td><td>1.076E-10</td><td>1.076F-10</td></t<>	Ru = 100	1.076E-10	1.076F-10	1.076F-10	1.076F-10	1.076E-10	1.076E-10	1.076F-10
Ru-102 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 1.430E-14 Cd-111 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 Cd-112 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 Cd-113 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 Cd-114 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.33	$R_{\rm H} = 100$	6.929F-13	6 929F-13	6 929F-13	6 929F-13	6.929F-13	6 929F-13	6 929F-13
Cd-111 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 2.109E-11 Cd-112 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 Cd-113 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 Cd-114 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	$R_{\rm H} = 102$	1.430F-14	1.430F-14	1.430F-14	1.430F-14	1.430F-14	1.430F-14	1 430F-14
Cd-112 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 1.773E-10 Cd-113 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 Cd-114 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.63E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	Cd-111	2.109E-11	2.109F-11	2.109F-11	2.109E-11	2.109F-11	2.109F-11	2.109E-11
Cd-113 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 3.525E-13 Cd-114 4.443E-08 1.395E-10 1.371E-04 1.371E-05 1.591E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 1.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.36E-03 1.336E-03 1.3	Cd-112	1.773E-10	1.773E-10	1.773E-10	1.773E-10	1.773E-10	1.773E-10	1.773E-10
Cd-114 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 4.443E-08 Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	Cd-113	3.525E-13	3.525E-13	3.525E-13	3.525E-13	3.525E-13	3.525E-13	3.525F-13
Cd-116 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 1.395E-10 In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 1n-115 3.771E-11 3.771	Cd-114	4.443E-08	4.443E-08	4.443E-08	4.443F-08	4.443F-08	4.443E-08	4.443F-08
In-113 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 3.519E-06 In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	Cd-116	1.395E-10	1.395E-10	1.395E-10	1.395E-10	1.395E-10	1.395E-10	1.395F-10
In-115 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 3.771E-11 Sn-112 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 1.371E-04 Sn-113 4.727E-13 5.809E-15 7.139E-17 8.774E-19 1.190E-21 1.992E-26 0.00 Sn-114 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 9.712E-05 Sn-115 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 4.591E-05 Sn-116 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 2.109E-03 Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	In-113	3.519F-06	3.519F-06	3.519E-06	3.519E-06	3.519E-06	3.519E-06	3.519E-06
Sn-1121.371E-041.371E-041.371E-041.371E-041.371E-041.371E-04Sn-1134.727E-135.809E-157.139E-178.774E-191.190E-211.992E-260.00Sn-1149.712E-059.712E-059.712E-059.712E-059.712E-059.712E-05Sn-1154.591E-054.591E-054.591E-054.591E-054.591E-054.591E-05Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-033.598E-033.598E-033.598E-033.598E-03Sn-1191.336E-031.336E-031.336E-031.336E-031.336E-03	In-115	3.771F-11	3.771E-11	3.771F-11	3.771F-11	3.771F-11	3.771F-11	3.771E-11
Sn-1134.727E-135.809E-157.139E-178.774E-191.190E-211.992E-260.00Sn-1149.712E-059.712E-059.712E-059.712E-059.712E-059.712E-05Sn-1154.591E-054.591E-054.591E-054.591E-054.591E-054.591E-05Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-033.598E-033.598E-033.598E-033.598E-033.598E-03Sn-1191.336E-031.336E-031.336E-031.336E-031.336E-03	Sn-112	1.371E-04	1.371E-04	1.371F-04	1.371F-04	1.371F-04	1.371E-04	1.371F-04
Sn-1149.712E-059.712E-059.712E-059.712E-059.712E-059.712E-05Sn-1154.591E-054.591E-054.591E-054.591E-054.591E-054.591E-054.591E-05Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-033.598E-033.598E-033.598E-033.598E-03Sn-1191.336E-031.336E-031.336E-031.336E-03	Sn-113	4.727F-13	5.809E-15	7.139E-17	8.774F-19	1.190E-21	1.992E-26	0.00
Sn-1154.591E-054.591E-054.591E-054.591E-054.591E-054.591E-05Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-033.598E-033.598E-033.598E-033.598E-03Sn-1191.336E-031.336E-031.336E-031.336E-031.336E-03	Sn-114	9.712F-05	9.712F-05	9.712F-05	9.712F-05	9.712E-05	9.712E-05	9.712E-05
Sn-1162.109E-032.109E-032.109E-032.109E-032.109E-032.109E-03Sn-1171.163E-031.163E-031.163E-031.163E-031.163E-031.163E-03Sn-1183.598E-033.598E-033.598E-033.598E-033.598E-033.598E-03Sn-1191.336E-031.336E-031.336E-031.336E-031.336E-03	Sn-115	4.591E-05	4.591E-05	4.591E-05	4.591F-05	4.591E-05	4.591E-05	4.591E-05
Sn-117 1.163E-03 1.163E-03 1.163E-03 1.163E-03 1.163E-03 Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	Sn-116	2.109F-03	2.109F-03	2.109F-03	2.109E-03	2.109E-03	2.109E-03	2.109E-03
Sn-118 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 3.598E-03 Sn-119 1.336E-03 1.	Sn-117	1.163E-03	1.163E-03	1.163F-03	1.163F-03	1.163F-03	1.163F-03	1.163F-03
Sn-119 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03 1.336E-03	Sn-118	3.598F-03	3,598F-03	3,598F-03	3.598E-03	3.598E-03	3.598E-03	3.598E-03
	Sn-119	1.336E-03	1.336E-03	1.336E-03	1.336E-03	1.336E-03	1.336E-03	1.336E-03

موري.

8.0

124

i.

TABLE F.8.f. Cladding Activation Product Inventory by Isotope at 45 MWd/kgM, g/gZr (contd)
TABLE F.8.f.	Cladding Activa	tion Product	Inventory	by	Isotope	at
	45 MWd/kgM, g/g	Zr (contd)	-	•	-	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	20 Years	1000 Years
Sn-119m	8.515E-09	1.078E-09	1.365E-10	1.729E-11	7.790E-13	4.445E-15	0.00
Sn-120	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03	4.914E-03
Sn-121m	6.149E-08	5.981E-08	5.817E-08	5.658E-08	5.427E-08	5.064E-08	6.324E-14
Sn-122	7.075E-04	7.075E-04	7.075E-04	7.075E-04	7.075E-04	7.075E-04	7.075E-04
Sn-123	9.033E-13	1.792E-14	3.555E-16	7.053E-18	1.971E-20	1.093E-24	0.00
Sn-124	8.627E-04	8.627E-04	8.627E-04	8.627E-04	8.627E-04	8.627E-04	8.627E-04
Sb-121	1.070E-05	1.070E-05	1.071E-05	1.071E-05	1.071E-05	1.071E-05	1.076E-05
Sb-123	1.173E-06	1.173E-06	1.173E-06	1.173E-06	1.173E-06	1.173E-06	1.173E-06
Sb-125	1.594E-06	9.665E-07	5.859E-07	3.552E-07	1.677E-07	4.798E-08	0.00
Te-122	1.177E-06	1.177E-06	1.177E-06	1.177E-06	1.177E-06	1.177E-06	1.177E-06
Te-123	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08
Te-123m	9.789E-15	1.423E-16	2.069E-18	3.008E-20	4.313E-23	1.099E-27	0.00
Te-124	1.041E-07	1.041E-07	1.041E-07	1.041E-07	1.041E-07	1.041E-07	1.041E-07
Te-125	1.245E-05	1.308E-05	1.347E-05	1.370E-05	1.389E-05	1.401E-05	1.406E-05
Te-125m	2.230E-08	1.352E-08	8.198E-09	4.970E-09	2.345E-09	6.711E-10	0.00
Te-126	2.332E-07	2.332E-07	2.332E-07	2.332E-07	2.332E-07	2.332E-07	2.332E-07
Te-128	4.084E-12	4.084E-12	4.084E-12	4.084E-12	4.084E-12	4.084E-12	4.084E-12
I-127	1.402E-09	1.402E-09	1.402E-09	1.402E-09	1.402E-09	1.402E-09	1.402E-09
I-129	3.825E-15	3.825E-15	3.825E-15	3.825E-15	3.825E-15	3.825E-15	3.825E-15
Xe-128	6.367E-11	6.367E-11	6.367E-11	6.367E-11	6.367E-11	6.367E-11	6.367E-11
Xe-129	3.460E-13	3.460E-13	3.460E-13	3.460E-13	3.460E-13	3.460E-13	3.460E-13
Xe-130	2.005E-14	2.005E-14	2.005E-14	2.005E-14	2.005E-14	2.005E-14	2.005E-14
Yb-172	6.834E-15	6.834E-15	6.834E-15	6.834E-15	6.834E-15	6.834E-15	6.834E-15
Yb-173	5.944E-15	5.944E-15	5.944E-15	5.944E-15	5.944E-15	5.944E-15	5.944E-15
Lu-175	4.166E-08	4.166E-08	4.166E-08	4.166E-08	4.166E-08	4.166E-08	4.166E-08
Lu-176	1.473E-09	1.473E-09	1.473E-09	1.473E-09	1.473E-09	1.473E-09	1.473E-09
Hf-174	1.468E-08	1.468E-08	1.468E-08	1.468E-08	1.468E-08	1.468E-08	1.468E-08
Hf-176	1.241E-06	1.241E-06	1.241E-06	1.241E-06	1.241E-06	1.241E-06	1.241E-06
Hf-177	1.378E-07	1.378E-07	1.378E-07	1.378E-07	1.378E-07	1.378E-07	1.378E-07
Hf-178	3.579E-06	3.579E-06	3.579E-06	3.579E-06	3.579E-06	3.579E-06	3.579E-06
Hf-179	1.822E-05	1.822E-05	1.822E-05	1.822E-05	1.822E-05	1.822E-05	1.822E-05
Hf-180	2.998E-05	2.998E-05	2.998E-05	2.998E-05	2.998E-05	2.998E-05	2.998E-05
Hf-182	9.194E-09	9.194E-09	9.194E-09	9.194E-09	9.194E-09	9.194E-09	9.193E-09
Ta-181	1.506E-06	1.506E-06	1.506E-06	1.506E-06	1.506E-06	1.506E-06	1.506E-06
Ta-182	5.226E-14	9.574E-16	3.294E-16	3.217E-16	3.216E-16	3.216E-16	3.216E-16
W-182	1.687E-07	1.687E-07	1.687E-07	1.687E-07	1.687E-07	1.687E-07	1.687E-07
W-183	3.705E-07	3.705E-07	3.705E-07	3.705E-07	3.705E-07	3.705E-07	3.705E-07
W-184	4.582E-08	4.582E-08	4.582E-08	4.582E-08	4.582E-08	4.582E-08	4.582E-08
W-186	3.278E-12	3.278E-12	3.278E-12	3.278E-12	3.278E-12	3.278E-12	3.278E-12
Re-185	1.709E-10	1.709E-10	1.709E-10	1.709E-10	1.709E-10	1.709E-10	1.709E-10
Re-187	3.154E-13	3.154E-13	3.154E-13	3.154E-13	3.154E-13	3.154E-13	3.154E-13
0s-186	5.200E-11	5.200E-11	5.200E-11	5.200E-11	5.200E-11	5.200E-11	5.200E-11
0s-188	2.425E-14	2.425E-14	2.425E-14	2.425E-14	2.425E-14	2.425E-14	2.425E-14
Total	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00	1.000E+00

TABLE F.8.g.	Cladding Activation Product Inventory by Isotope a	t
	50 MWd/kgM, g/gZr	

Isotope	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
H-1	1.209E-05	1.209F-05	1.209F-05	1,209F-05	1.209F-05	1.209F-05	1.209E-05
H-2	4.242E-08	4.242E-08	4.242E-08	4.242E-08	4.242E-08	4.242E-08	4.242E-08
H-3	3.020E-13	2.699E-13	2.412E-13	2.156E-13	1.822E-13	1.376E-13	1.775E-37
He-3	1.250E-13	1.571E-13	1.857E-13	2.113E-13	2.448E-13	2.893E-13	4.270E-13
He-4	1.695E-07	1.695E-07	1.695E-07	1.695E-07	1.695E-07	1.695E-07	1.695E-07
Li-6	4.466E-13	4.466E-13	4.466E-13	4.466E-13	4.466E-13	4.466E-13	4.466E-13
Be-9	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09	1.948E-09
Be-10	5.178E-11	5.178E-11	5.178E-11	5.178E-11	5.178E-11	5.178E-11	5.176E-11
B-11	3.988E-08	3.988E-08	3.988E-08	3.988E-08	3.988E-08	3.988E-08	3.988E-08
C-12	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04	1.442E-04
C-13	1.884E-06	1.884E-06	1.884E-06	1.884E-06	1.884E-06	1.884E-06	1.884E-06
C-14	3.500E-07	3.499E-07	3.499E-07	3.498E-07	3.496E-07	3.494E-07	3.104E-07
N-14	4.142E-05	4.142E-05	4.142E-05	4.142E-05	4.142E-05	4.142E-05	4.146E-05
N-15	1.790E-07	1.790E-07	1.790E-07	1.790E-07	1.790E-07	1.790E-07	1.790E-07
0-16	1.244E-03	1.244E-03	1.244E-03	1.244E-03	1.244E-03	1.244E-03	1.244E-03
0-17	5.042E-07	5.042E-07	5.042E-07	5.042E-07	5.042E-07	5.042E-07	5.042E-07
0-18	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06	2.863E-06
F-19	4.609E-12	4.609E-12	4.609E-12	4.609E-12	4.609E-12	4.609E-12	4.609E-12
Ne-21	3.051E-15	3.051E-15	3.051E-15	3.051E-15	3.051E-15	3.051E-15	3.051E-15
Ne-22	7.336E-14	7.336E-14	7.336E-14	7.336E-14	7.336E-14	7.336E-14	7.336E-14
Na-23	5.959E-15	5.959E-15	5.959E-15	5.959E-15	5.959E-15	5.959E-15	5.959E-15
Mg-24	3.277E-10	3.277E-10	3.277E-10	3.277E-10	3.277E-10	3.277E-10	3.277E-10
Mg-25	6.896E-10	6.896E-10	6.896E-10	6.896E-10	6.896E-10	6.896E-10	6.896E-10
Mg-26	3.167E-10	3.167E-10	3.167E-10	3.167E-10	3.167E-10	3.167E-10	3.167E-10
AI-27	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05	3.996E-05
S1-28	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05	7.349E-05
51-29	3.905E-06	3.905E-06	3.905E-06	3.905E-06	3.905E-06	3.905E-06	3.905E-06
51-30	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06	2.650E-06
P-31	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09	1.429E-09
5-32	5.052E-13	5.052E-13	5.652E-13	5.652E-13	5.052E-13	5.052E-13	5.054E-13
	1.294E-14	1.2946-14	1.294E-14	1.294E-14	1.294E-14	1.294E-14	1.294E-14
	3.231E-13	3.231E-13	5.251E-15	3.231E-13	3.231E-13	5.251E-15	3.251E-15
11-4/	3.493E-10 1 571E-12	3.493E-10 1 571E-12	3.493E-10 1 571E-12	3.493E-10 1 571E-12	3.493E-10 1 571E_12	3.493E-10 1 571E-12	3.493E-10 1 571E_12
T1_40	1.5712-12 0.608E-10	1.571E - 12 0.608E - 10	1.5712-12	1.571E-12	1.5712-12	0 608E-10	1.5712-12
T1-50	4 008F_00	4 008E_00	4 008F_00	4 008E_00	4 008F_00	4 008F-00	1 008E-00
V-50	1 232F-08	1 232F - 08	1 232F-08	1 232F-08	1 232F-08	1 232E-08	1 232E-08
V-51	2 793E-06	2 793E-06	2 793E-06	2 793E-06	2.793E-06	2.793E-06	2 793E-06
Cr - 50	3.901E-05	3.901E-05	3.901E-05	3.901E-05	3.901E-05	3.901E-05	3.901E-05
Cr-52	8.241F-04	8.241F-04	8.241F-04	8.241E-04	8.241F-04	8.241F-04	8.241F-04
Cr-53	1.021F-04	1.021F-04	1.021F-04	1.021E-04	1.021E-04	1.021E-04	1.021E-04
Cr-54	3.249F-05	3.249F-05	3.249E-05	3.249E-05	3.249E-05	3.249E-05	3.249E-05
Mn-54	1.627F-10	3.218E-11	6.367E-12	1.260E-12	1.108E-13	1.930E-15	0.00
Mn-55	1.036E-06	1.081E-06	1.108E-06	1.123E-06	1.136E-06	1.143E-06	1.145E-06
Fe-54	1.110E-04	1.110E-04	1.110E-04	1.110E-04	1.110E-04	1.110E-04	1.110E-04
Fe-55	1.099E-07	6.449E-08	3.784E-08	2.220E-08	9.978E-09	2.631E-09	0.00
Fe-56	1 815E_03	1 815E_03	1 815E_03	1 815E-03	1 815F-03	1 815F-03	1 815E-03

<u>Isotope</u>	<u>6 Years</u>	8 Years	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Fe-57	6.638E-05	6.638E-05	6.638E-05	6.638E-05	6.638E-05	6.638E-05	6.638E-05
Fe-58	6.587E-06	6.587E-06	6.587E-06	6.587E-06	6.587E-06	6.587E-06	6.587E-06
Co-59	3.270E-08	3.270E-08	3.270E-08	3.270E-08	3.270E-08	3.270E-08	3.270E-08
Co-60	1.254E-09	9.640E-10	7.410E-10	5.696E-10	3.839E-10	1.989E-10	0.00
N1-60	2.294E-09	2.584E-09	2.807E-09	2.978E-09	3.164E-09	3.349E-09	3.548E-09
Ni-61	1.447E-11	1.447E-11	1.447E-11	1.447E-11	1.447E-11	1.447E-11	1.447E-11
Ni-62	3.952E-14	3.952E-14	3.952E-14	3.952E-14	3.952E-14	3.952E-14	3.952E-14
Sr-87	2.240E-08	2.240E-08	2.240E-08	2.240E-08	2.240E-08	2.240E-08	2.240E-08
Sr-88	2.253E-06	2.253E-06	2.253E-06	2.253E-06	2.253E-06	2.253E-06	2.253E-06
Sr-90	1.323E-10	1.261E-10	1.203E-10	1.147E-10	1.068E-10	9.478E-11	7.021E-21
Y-89	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.718E-07	1.718E-07
Y-90	3.317E-14	3.163E-14	3.016E-14	2.875E-14	2.677E-14	2.377E-14	1.761E-24
Zr-90	4.970E-01	4.970E-01	4.970E-01	4.970E-01	4.970E-01	4.970E-01	4.970E-01
Zr-91	1.086E-01	1.086E-01	1.086E-01	1.086E-01	1.086E-01	1.086E-01	1.086E-01
Zr-92	1.699E-01	1.699E-01	1.699E-01	1.699E-01	1.699E-01	1.699E-01	1.699E-01
Zr-93	4.215E-04	4.215E-04	4.215E-04	4.215E-04	4.215E-04	4.215E-04	4.213E-04
Zr-94	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01	1.755E-01
Zr-96	2.862E-02	2.862E-02	2.862E-02	2.862E-02	2.862E-02	2.862E-02	2.862E-02
Nb-93	4.269E-10	5.913E-10	7.767E-10	9.812E-10	1.320E-09	1.955E-09	1.880E-07
Nb-93m	1.315E-09	1.532E-09	1.729E-09	1.906E-09	2.141E-09	2.460E-09	3.558E-09
Nb-94	4.271E-13	4.271E-13	4.271E-13	4.271E-13	4.270E-13	4.269E-13	4.129E-13
Mo-95	1.469E-04	1.469E-04	1.469E-04	1.469E-04	1.469E-04	1.469E-04	1.469E-04
Mo-96	1.296E-05	1.296E-05	1.296E-05	1.296E-05	1.296E-05	1.296E-05	1.296E-05
Mo-97	2.346E-04	2.346E-04	2.346E-04	2.346E-04	2.346E-04	2.346E-04	2.346E-04
Mo-98	3.820E-06	3.820E-06	3.820E-06	3.820E-06	3.820E-06	3.820E-06	3.820E-06
Mo-100	1.404E-12	1.404E-12	1.404E-12	1.404E-12	1.404E-12	1.404E-12	1.404E-12
Tc-98	1.149E-14	1.149E-14	1.149E-14	1.149E-14	1.149E-14	1.149E-14	1.149E-14
Tc-99	1.601E-09	1.601E-09	1.601E-09	1.601E-09	1.601E-09	1.601E-09	1.596E-09
Ru-99	3.921E-14	4.963E-14	6.005E-14	7.048E-14	8.611E-14	1.122E-13	5.210E-12
Ru-100	1.734E-10	1.734E-10	1.734E-10	1.734E-10	1.734E-10	1.734E-10	1.734E-10
Ru-101	1.262E-12	1.262E-12	1.262E-12	1.262E-12	1.262E-12	1.262E-12	1.262E-12
Ru-102	2.946E-14	2.946E-14	2.946E-14	2.946E-14	2.946E-14	2.946E-14	2.946E-14
Cd-111	2.363E-11	2.363E-11	2.363E-11	2.363E-11	2.363E-11	2.363E-11	2.363E-11
Cd-112	1.9/8E-10	1.9/8E-10	1.9/8E-10	1.9/8E-10	1.9/8E-10	1.9/8E-10	1.9/8E-10
Cd-113	3.549E-13	3.549E-13	3.549E-13	3.549E-13	3.549E-13	3.549E-13	3.549E-13
Cd-114	5.543E-08	5.543E-08	5.543E-08	5.543E-08	5.543E-08	5.543E-08	5.543E-08
	1.5/9E-10	1.5/9E-10	1.5/9E-10	1.5/9E-10	1.5/9E-10	1.5/9E-10	1.5/9E-10
IN-113	3.804E-00	3.804E-00	3.804E-00	3.804E-U0	3.804E-U0	3.804E-U0	3.804E-00
10-115	4.115E-11	4.115E-11	4.115E-11	4.115E-11	4.110E-11	4.115E-11	4.110E-11
Sn-112	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04	1.300E-04
Sn-113	5.34/E-13	0.5/1E-15	8.0/5E-1/	9.924E-19	1.340E-21	2.233E-20	0.00
Sn-114	9./3UE-05	9./3UE-05	9./3UE-05	9./3UE-05	9./3UE-05	9./3UE-05	9./3UE-05
ST-115	4.483E-05	4.403E-05	4.403E-05	4.403E-05	4.403E-U3	4.403E-03	4.403E-U3
011-110 Cm 117	2.103E-03	2.103E-03	2.103E-03	2.1U3E-U3	2.1U3E-U3	2.103E-03	2.1U3E-U3
SN-11/	1.100L-U3	1.100E-U3	1.100E-U3	1.100E-U3	1.100L-U3	1.100E-U3	1.100E-U3
30-110 Sn 110	3.3932-03	3.393E-U3	3.393E-U3	3.393E-U3	3.393E-U3	3.393E-03	1 312E-03
211-112	1.3425-03	1.J42C-UJ	1.3425403	1.3465-03	1.3426-03	I.JTLETUJ	1.JTLLUJ

.

TABLE F.8.g.	Cladding Activation Product Inventory by Isotope -	at
	50 MWd/kgM, g/gZr (contd)	

<u>Isotope</u>	<u>6 Years</u>	<u>8 Years</u>	<u>10 Years</u>	<u>12 Years</u>	<u>15 Years</u>	<u>20 Years</u>	<u>1000 Years</u>
Sn 110	0 6655 00	1 2245 00	1 5505 10	1 0625 11	9 9425 12	5 044E 15	0.00
Sn=119 Sn=120	9.005E-09	4 915F-03	4.915E-03	4.915F-03	4.915F-03	4.915E-03	4.915E-03
Sn-121m	6.950E-08	6.760E-08	6.575E-08	6.395E-08	6.134E-08	5.723E-08	7.148E-14
Sn-122	7.073E-04	7.073E-04	7.073E-04	7.073E-04	7.073E-04	7.073E-04	7.073E-04
Sn-123	1.025E-12	2.034E-14	4.036E-16	8.007E-18	2.239E-20	1.241E-24	0.00
Sn-124	8.609E-04	8.609E-04	8.609E-04	8.609E-04	8.609E-04	8.609E-04	8.609E-04
Sb-121	1.193E-05	1.193E-05	1.193E-05	1.193E-05	1.194E-05	1.194E-05	1.200E-05
Sb-123	1.316E-06	1.316E-06	1.316E-06	1.316E-06	1.316E-06	1.316E-06	1.316E-06
Sb-125	1.801E-06	1.092E-06	6.620E-07	4.013E-07	1.894E-07	5.421E-08	0.00
Te-122	1.481E-06	1.481E-06	1.481E-06	1.481E-06	1.481E-06	1.481E-06	1.481E-06
1e-123	2.543E-08	2.543E-08	2.543E-08	2.543E-08	2.543E-08	2.543E-08	2.543E-08
Te-123m	1.398E-14	2.033E-10	2.955E-10	4.29/E-20	1 207E 07	2.015E-2/	0.00
To-124	1.397E-07	1.397E-07	1.397E-07	1.397E-07	1.397E-07	1.397E-07	1.597E-07
Te-125	2 520F-08	1 528F-08	9 262F-09	5 615E-09	2 650F-09	7 582F-10	0 00
Te-126	2.969F-07	2.969F-07	2.969F-07	2.969F-07	2.969F-07	2.969F-07	2.969F-07
Te-128	6.614E-12	6.614E-12	6.614E-12	6.614E-12	6.614E-12	6.614E-12	6.614E-12
I-127	2.006E-09	2.006E-09	2.006E-09	2.006E-09	2.006E-09	2.006E-09	2.006E-09
I-129	6.979E-15	6.979E-15	6.979E-15	6.979E-15	6.979E-15	6.979E-15	6.979E-15
Xe-128	1.031E-10	1.031E-10	1.031E-10	1.031E-10	1.031E-10	1.031E-10	1.031E-10
Xe-129	6.294E-13	6.294E-13	6.294E-13	6.294E-13	6.294E-13	6.294E-13	6.294E-13
Xe-130	4.128E-14	4.128E-14	4.128E-14	4.128E-14	4.128E-14	4.128E-14	4.128E-14
Yb-172	7.909E-15	7.909E-15	7.909E-15	7.909E-15	7.909E-15	7.909E-15	7.909E-15
Yb-173	6.939E-15	6.939E-15	6.939E-15	6.939E-15	6.939E-15	6.939E-15	6.939E-15
Yb-174	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15	1.240E-15
Lu-175	3.994E-08	3.994E-08	3.994E-08	3.994E-08	3.994E-08	3.994E-08	3.994E-08
LU-1/0	1.442E-09	1.442E-09	1.442E-09	1.442E-09	1.442E-09	1.442E-09	1.442E-09
HT-1/4	1.10/E-08	1.10/E-08	1.10/E-08	1.10/E-08	1.10/E-08	1.10/E-08	1.10/E-08
HT-1/0	1.11/E-U0	1.11/E-U0	1.11/E-U0	1.11/E-U0	1.11/E-U0	1.11/E-U0	1.11/E-U0
∏ -1// ⊔f_170	2 7055-06	2 7055-06	2 7055-06	2 7055 06	2 7055-06	2 7055-06	2 7055-06
Hf_170	1 740E_05	1 740F_05	1 740E-05	1 740E-05	1 740F-05	1 740E-05	1 740F-05
Hf-180	3.140E-05	3.140E-05	3.140F+05	3.140E-05	3.140E-05	3.140E-05	3.140E-05
Hf-182	1.206E-08	1.206E-08	1.206E-08	1.206E-08	1.206E-08	1.206E-08	1.206E-08
Ta-181	1.695E-06	1.695E-06	1.695E-06	1.695E-06	1.695E-06	1.695E-06	1.695E-06
Ta-182	6.075E-14	1.160E-15	4.310E-16	4.220E-16	4.219E-16	4.219E-16	4.219E-16
W-182	1.928E-07	1.928E-07	1.928E-07	1.928E-07	1.928E-07	1.928E-07	1.928E-07
W-183	4.841E-07	4.841E-07	4.841E-07	4.841E-07	4.841E-07	4.841E-07	4.841E-07
W-184	6.798E-08	6.798E-08	6.798E-08	6.798E-08	6.798E-08	6.798E-08	6.798E-08
W-186	5.955E-12	5.955E-12	5.955E-12	5.955E-12	5.955E-12	5.955E-12	5.955E-12
Re-185	2.788E-10	2.788E-10	2.788E-10	2.788E-10	2.788E-10	2.788E-10	2.788E-10
Ke-187	6.4/3E-13	6.4/3E-13	6.4/3E-13	6.4/3E-13	6.4/3E-13	6.4/3E-13	0.4/3E-13
US-186	9.5/0E-11	9.5/0E-11	9.5/0E-11	9.5/0E-11	9.5/0E-11	9.5/UE-11	9.5/UE-11
US-188	5.00UE-14	5.00UE-14	5.00UE-14	5.00UE-14	J.00UL-14	J.DOUL-14	J.00UL-14
02-193	1.043E-15	1.043E-15	1.043E-15	1.043E-13	1.043E-13	1.043E-13	1.0435-13

ger E

Total 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

DISTRIBUTION

No. of Copies

<u>OFFSITE</u>

DOE Headquarters RW-231 Washington, DC 20545 ATTN: A. I. Berusch M. W. Frei N. A. Moon W. Stringfield

- 10 DOE/Office of Scientific and Technical Information
- 2 Advanced Nuclear Fuels 2101 Horn Rapids Road Richland, WA 99352 ATTN: K. W. Woods G. M. Bain
- 3 Combustion Engineering, Inc. Power Systems 5327-1202 1000 Prospect Hill Road Windsor, CT 06085-6500 ATTN: M. G. Andrews R. N. Duncan M. A. Shubert
- 2 Electric Power Research Institute 3412 Hillview Ave. Palo Alto, CA 94303 ATTN: A. J. Machiels R. Yang

A. C. Fraker B266 Building 223 National Bureau of Standards Gaithersburg, MD 20899

J. C. Haugen DOE Chicago Operations Office 9800 South Coco Avenue Argonne, IL 60439 No. of <u>Copies</u>

- 2 Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550 ATTN: V. M. Oversby H. F. Shaw
- 3 Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555 ATTN: S. L. Wu - 8E23 D. Fieno - 8E23 R. Lobel - 11E-22

J. W. Roddy Oak Ridge National Laboratory P. O. Box X Oak Ridge, TN 37831

S. Vogler Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

<u>ONSITE</u>

- 2 <u>DOE Richland Operations Office</u>
 - G. W. Rosenwald
 - D. C. Langstaff/E. C. Norman
- 43 <u>Pacific Northwest Laboratory</u>
 - M. J. Apted
 - J. O. Barner
 - C. E. Beyer
 - D. E. Blahnik (2)
 - T. K. Campbell (2)
 - M. E. Cunningham
 - R. E. Einziger
 - M. D. Freshley
 - R. J. Guenter (10)
 - E. R. Gilbert

No. of <u>Copies</u>

- W. J. Gray D. K. Hilliard
- U. P. Jenquin (2) D. D. Lanning A. T. Luksic G. B. Mellinger

- J. E. Mendel (5)

No. of <u>Copies</u>

> H. D. Smith C. K. Thornhill (2) L. E. Thomas N. J. Wildung C. N. Wilson Publishing Coordination Technical Report Files (3)