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Abstract 
THEORETICAL STUDIES IN TANDEM MIRROR PHYSICS 

Recent developments in six areas of tandem-mirror theory 
are explored. Specifically, FLR terms (including electric-field 
drift) have been added to our 3-D paraxial MHD equilibrium 
code. Our low-frequency MHD stability analysis with FLR, which 
previously included only mQ = 1 rigid perturbations, has 
been extended to incorporate moderate mg, rotational drive, 
finico-bcta effects on wall stabilization, and the well-digging 
effect of energetic electrons by using three computational 
techniques. In addition, we have examined the microstability 
of relativistic electrons with a loss-cone distribution, 
emphasizing the whistler and cyclotron-maser instabilities. We 
have also studied techniques for controlling radial transport, 
including the floating of segmented end plates and the tuning 
of transition-region coils, and have quantified the residual 
transport in a tandem nirror with axisymmetric throttle 
coils. Earlier work on the effect of ECRH on potentials in 
thermal-barrier cells has been extended. The transition 
between the weak- and strong-heating regimes has been examined 
using Fokker-Planck and Monte Carlo codes; an analytic model 
for the potentials relative to the end wall has been 
developed. Finally, our investigation of drift-frequency 
pumping of thermal-barrier ions has demonstrated that pumping 
is optimized when the magnetic fluctuation is perpendicular to 
both the unperturbed field and the thin fan, and that an 
adequate pumping rate is obtainable in future machines. 

1. INTRODUCTION 

In this paper we report on the status of recent 
developments in six areas of tandem mirror theory: magneto-
hydrodynamic (MHD) equilibrium and stability, electron 
microstability, ion radial transport, electron-cyclotron 
resonant heating (ECRH), and drift pumping. 

2. MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY 

2.1 MHD Equilibrium 

In quadrupole tandem mirrors, field lines are nearly 
paraxial and thus MHD equilibrium equations are obtained by 
keeping leading-order corrections to an axisymmetric magnetic 
field. Similarly, FLR effects can also be computed as the 



Jeadinp-order correction to the same axisymmetric field. 
Because both corrections are second-order in their respective 
srnallness parameters, they enter additively. Thus, by 
combining results from Ref. flj, we can construct the energy: 

U = 1/2 / 4 s- ddidO ) Q x 2 + Y x 2 

D 1 ~Z ~0 
( 1 ) 

where Q = B 2 + p - pn (Y= -pu>MWGC) are the MHD(FLR) stresses, 
respectively, and W.,(liw) are the macroscopic and mean 
guiding-center frequency, respectively- The latter expression 
takes this simple form for an isothermal Maxwellian plasma. In 
Eq. (1), jj = (x,y) is the position of the field line and the 
subscripts refer to partials. The first variation of U, 
subject to the Jacobian constraint 1 - [x,y]B = 0, produces the 
current balance equation: 
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where the parallel current per unit flux is 

i = B[(xz,x) + (yz,y)l = B I X ^ X Q - x z Qx^ + (x+y)] , (3a) 

and, analogously, 

i F L R = B([xe,x] + [y e,y]; (3b) 

These equations—in addition to the lowest-order perpendicular 
pressure balance (2p. +B 2 = B^), parallel pressure balance, 
and the boundary conditions—determine the equilibrium. Both Q 
and Y must be positive for well-posed equilibrium. 

The numerical procedure [2] is to assume isorrhopic 
pressure profiles p(\|/,B) , determine mod-B from the 
perpendicular pressure balance, and then analytically solve the 
Jacobian constraint to obtain an initial choice for the field-
line trajectories. Subsequent motion of the field lines is 
incompressible (dx/dt = V<}> x z), and so Eq. (2) is linearized 
and integrated over z to generate an equation for (B<t>)z. 
We solve, with Fourier transforms to eliminate aliases and to 
resolve 6-derivatives, and obtain: 

4>(\l>,6,z) = As: dz(B6) + A O M ) (4) 

The remaining function (A) is determined from the constraint 
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that the line j'nlopral of the ripht side of Eq. (2) nust 
vanish, producing an elliptic equation that is singular on the 
plasma boundary; note that at intermediate stages of this 
iterative procedure the parallel current does not vanish at the 
ends. The fieid lines are moved and the linearization is 
repeated until Eq. (2) is satisfied, the constraint vanishes, 
and the parallel current at the ends is equal to zero. It 
should be pointed out that only A determines the motion of 
the flux surface at the midplane, which is predominately an 
octupole motion. 

For this study we assume that there is no radial electric 
field, consequently Y = -pw*i<tt)yB>, and because u^g = 0(B), 
the FLR term is peaked on axis away from the plasma boundary. 
Thus, we find that the octupole distortion of the flux surface 
is limited more to the plasma surface when the FLR terms are 
included. This is shown in Fig. 1 where we compare the 
octupole moment of the flux surfaces for the Tandem Mirror 
Experiment-Upgrade (TMX-U) and the Mirror Fusion Test Facility 
(MFTF-B).' In this study there are 10 Larmor radii in the 
radial scale length, and the betas of the figure caption are 
peak values. The average beta is 44% of the peak. With FLR 
the overall distortion is smaller, the parallel currents 
flowing through the central cell are reduced, and the 
axisymmetry of the central cell is better preserved. Note that 
the relative octupole distortion in MFTF-B is significantly 
lower than in TMX-U, which was a design goal. 

2.2 MHD Stability 

In three significant computational efforts, the 
low-frequency MHD stability of both quadrupole and axisymmetric 
tandem mirrors has been examined using standard FLR theory fl], 
which combines paraxial and FLR expansions. The ballooning, 
interchange, and rotational stability of TMX-U, MFTF-B, the 
Mirror Advanced Reactor Study (MARS), Phaedrus, TARA, and 
proposed axisymmetric configurations has been addressed. These 
studies have defined beta limits and determined the 
requirements on magnetic curvature, plasma pressure, and 
ambipolar potential profiles for stability. 

The MHD stability studies using the TEBASCO code [3] 
generally are limited to the rigid (mg = 1) displacement 
because it has been shown that, in the absence of E x B rota
tion, FLR terms stabilized all but the lowest mode numbers [4]. 
Recently the theory of other low-mode numbers, including 
rotation, has been added. This theory assumes that the lowest 
radial mode for a given TBQ dominates—again a consequence 
of FLR. However, these studies are limited to sharp-boundary 
pressure profiles, a valid approximation because the modes 
examined are global. In addition, the ballooning equation for 
a rigid displacement has been modified to include an improved 
wall representation and diamagnetic effects; the latter 



introduces an important stabilizing term pointed out by 
Berk (51. These two additions lead to higher central cell beta 
values on the stability boundary in TMX-U as well as in MFTF-B. 

We have also initiated studies of wall stabilization in 
axisymmetric configurations to verify the stability criterion 
8Lg/Lp > 1, where the subscripts refer to vacuum mod-B and 
the plasma scale lengths, respectively [51. Typical results 
are shown in Fig. 2 where stability can be achieved for 
sufficiently high betas. Stability at lower beta requires 
shorter plasmas. However, we expect that adiabaticity and/or 
anisotropy-driven modes may severely limit the possible 
parameter ranges for wall-stabilized axisymmetric mirrors. 

The stability analysis of quadrupole tandems with FLR 
effects has also been addressed with a three-dimensional 
eigenvalue code. The associated Euler-Lagrange equations are 
solved using a Galerkin approach to determine the spectrum of 
complex-valued eigenfrequencies at low and moderate mg. 
However, there is no restriction on the form of the radial 
trial functions to allow the rigid approximation presumed in 
TEBASCO to be checked. 

Growth rates and stability boundaries for ballooning, 
interchange, and rotaticnal modes in the low-beta TARA and 
Phaedrus configurations have been calculated. These results 
verify the strong stabilizing effect of FLR on curvature-
driven ballooning modes: FLR indeed forces the mode to be 
rigid. As the FLR decreases, the mode becomes non-rigid and 
the coupling of higher angular components induced by the 
quadrupole coils becomes important. The mg = 1 rigid mode 
is stable for the TARA and Phaedrus parameters, but the mo = 2, 
n = 0 rotational mode is predicted to be most unstable. There 
is some corroborative evidence of this in Phaedrus experimental 
data (unpublished). 

The FLORA MHD/FLR initial-value stability code integrates 
the Euler-Lagrange equations for the displacement of the 
magnetic field line using finite differences in (\|),z,t) and 
Fourier analyzing in 6. We determine the MHD stability of a 
finite-beta, paraxial, axisymmetric equilibrium without 
restriction on the mode structure. In fact, a rigid, energetic 
electron ring can be located in the anchor cells of the tandem 
to provide a stabilizing magnetic well [6], Electron-ring-
stabilized, generic, axisymmetric, tandem-mirror configurations 
have yielded a central cell beta as large as 70%. Finally, we 
employed FLORA to study rotational modes with axial or radial 
shear in the equilibrium E x B rotation profile. For mQ = 1 
and large FLR, FLORA verifies the rigid mode behavior 
postulated in TEBASCO. 

3. ELECTRON MICROSTABILITY 

We study the linear stability of waves with frequency 
comparable to the electron-cyclotron frequency. The modes have 
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a zero perpendicular wave number, and the plasmas are described 
by a loss-cone distribution f of rulativistic electrons. In 
terms of the kinetic energy E and the pitch angle $, we take 
f = K(E)G(*) with G(<») = 1 for © < $ < TT - 6 and zero other
wise, to allow analytic evaluation of one of the velocity-space 
integrals that appear in the dispersion relation for any F(E). 

For the whistler instability, we agree with previous 
authors [7,8] that relativistic effects weaken the instability 
at mean eiectron energies E > 0.1 mc . Realistic parameter 
regimes exist for which spatial growth of whistler modes are 
negligible in TMX-U and MFTF-B. 

After determining that the cyclotron-maser instability is 
sensitive to the shape of the energy distribution F(E), we 
contrast results obtained with F[(E), which approximates a 
step function (F, = const at low E, zero at high E), to those 
with the Maxwellian F,(E) « exp(-aE). Figure 3 shows the 
temporal growth rated)., normalized to the rest-mass cyclotron 
frequency J2, as a function of U)p/£2 for Fj (solid curve) 
and F2 (dashed curve). Note that F, yields much higher 
growth rates, a higher maximum density, and a very low minimum 
density. Also, we find that the stabilizing effect of cold 
plasma is much stronger for distribution F2 than for F|. 

4. ION RADIAL TRANSPORT 

We examine two techniques for actively controlling ion 
radial transport: adjustment of transition-region coils to 
minimize the radial step and floating segmented end plates to 
control the electric field. In a tandem mirror with 
axisymmetric throttle coils separating the axisymmetric 
solenoid from the quadrupolar transition regions, solenoid ions 
fall down sizable magnetic and potential hills before entering 
the transition regions; consequently, these ions have 
v|| a v « const. We find the radial step per bounce Ar 
varies as Ar <* sin29t /dz Kj(z) cos 266(z), where 9(z) 
= 8 t +(-) <50(z) is the azimuthal angle of an outgoing 
(incoming) ion, 6 t is 0 at the turning point, and 
KJ sin 29 is the geodesic curvature. , A Although MFTF-B was designed to have J KJdz ~ 0 so that 

Ar is near zero if the azimuthal drift in tlv* transition 
regions is negligible, azimuthal urifts defeat this cancellation 
and lead to unacceptably large, stochastic (overlapping drift-
bounce resonances) radial transport for the MFTF-B parameters. 
The above expression for Ar suggests resetting the transition 
coils to make /dz (o cos 269 = 0. This retuning will depend on 
the self-consistent radial electric field E r. 

Another approach to transport control is to electrically 
insulate the field line ends. This forces end loss, and 
therefore radial loss, to be ambipolar. In current designs 
that have small electron diffusion coefficients, radial icn 
losses are reduced: readjustment of E r leads to lower 
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mobility, smaller /dr. K> cos 266, and fewer resonant particles 
experiencing quadrupols fields. 

In TMX-U, insulated field-line ends are approximated by 
segmanted, floating end plates. In our study of these plates 
using the radial transport code TMT, the effect of field-line 
errors is modeled as a finite conductance between adjacent 
plates proportional to the fractional magnetic flux connecting 
them. We simulate TMX-U with two and four concentric end-
plate segments using resonant-plateau ion-radial-transport 
coefficients. In the ideal case (no field-line errors) with 
two segments, the ion-particle confinement time in the central-
cell-core plasma is a factor of 1.6 larger when the plates are 
floating than when they are grounded. Fisld-line errors reduce 
this factor to about 1.3. We note that thes. factors are 
comparable to the experimental values [9]. >..ien four segments 
are used, the factors are slightly larger (1.7 and 1.5, 
respectively). 

Assuming that these control techniques are sufficiently 
successful to avoid stochasticity in MFTF-B, the dominant 
contribution to transport comes from a boundary layer 
separating particles trapped in the solenoid from those passing 
to the nonaxisymmetric cells. A drift-kinetic analysis gives 
the particle diffusion coefficients - 0.39 a 2 (v th u

s/ R L) > 
where a = Ar/sin 26 t , V t^ is the ion pitch-angle scattering 
rate at speed v = v Ch = (2T/m)l' , R is the mirror ratio from 
the solenoid to the peak of the axisymmetric throttle, 
u s = vCh(l-R ) ' , and L is the solenoid length. The implied 
radial lifetime for MFTF-B with zero radial electric field in 
the transition region is about 0.4 s. 

5. ELECTRON-CYCLOTRON RESONANT HEATING 

Electron-cyclotron resonant heating (ECRH) is used in the 
thermal-barrier region of tandem mirrors to enhance the 
ion-confining, or plug, electrostatic potential. We have 
studied this process both analytically and numerically, using 
both a multi-region Fokker-Planck code and a Monte Carlo code. 
Recent calculations [10,11] show a more favorable scaling of 
plug-to-barrier potential $pb when ECRH dominates collisional 
diffusion than in the opposite (weak ECRH) limit. When strong 
ECRH takes place at both the tnermal barrier and the end plug 
but the diffusion at the barrier is stronger than at the plug, 
the following relation is obtained: 

I\ R K - 1 n A 2 ' 3 

$ K = T (l^Hr E exP £) . (5) 
P b S \ 4 R

P b / 
where T g is the solenoid electron temperature; R b is the 
plug-to-barrier mirror ratio; n is the plug density; 
n m = n exp(-e$s|j/Ts); n s is the solenoid density; 
$ s b = « s " *b (where * s and $ b are the potentials 
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of Che solenoid and barrier relative to the end wall), 
e = e^sb/Irs/(Rmb~l)l! a n d Rmb ^ s t n e mirror ratio from the 
solenoid mirror throat to the barrier. 

The power law relation between $p D and np replaces 
the logarithmic relation (12] valid for weak ECRH. The 
numerical solutions to the Fokker-Planck equation show (Fig. 4) 
the transition between Eq. (5) and the weak ECRH limit as the 
level of ECRH is varied. The ECRH power found at this 
transition agrees with the analytic estimate [10]. Therefore, 
the strong ECRH limit should be accessible for power levels 
available in TMX-U. 

In early experiments on TMX-U at low end-cell density 
(n "V 5X10 1 1 c m ) and even lower solenoid density, a 
large plasma potential (M keV) resulted when the plug ECRH 
was applied. We ascribe this potential rise to the increased 
loss caused by plug electrons diffusing rapidly along their 
ECRH characteristics. At higher energy, these characteristics 
come closer together, and a small-angle scattering places 
electrons on characteristics intersecting the loss region, 
causing immediate loss. A physics model of this phenomenon 
illustrates the predicted loss rate V e = V p($ s) + T^f($b^> 
where V is the Pastukhov [13] loss rate and T r f = T e e ^t/ZE^. 
Here T e is the electron angle-scattering rate and Ej_ is the 
hot electron energy. When equating V to the ion loss rate, 
potentials of the order of 1 keV are obtained. 

6. DRIFT PUMPING 

Drift pumping is the use of RF fields to remove 
potential-trapped ions by transporting them radially to the 
plasma halo where they are lost by axial flow and/or by 
increasing their parallel energy so that they are no longer 
trapped. Both heating and transport require that the RF field 
resonate with one of the natural frequencies of ion motion. To 
preserve the ion magnetic moment, the axial bounce frequency 
0) b or the drift frequency oij is preferred. 

We identify the resonant frequencies as CO = kuv ± nu,; 
k,m = 0,1,2... for two RF field configurations—one with the 
magnetic fluctuations perpendicular (B^) and the other parallel 
(B||) to the unperturbed field. For a simplified B^ model, 
we have derived analytically and verified numerically the 
requirement of resonance overlap for producing stochasticity. 
In general, stochasticity depends on the frequency spectrum and 
amplitude of the applied field in combination with properties 
of ion motion in the equilibrium field. For m = 1 and B , the 
diffusion coefficient is optimum when B is perpendicular to 
the thin fan, then scaling as D = [tcyBi (2W|| + W p ^ / A w , 
where K is the curvature normal to the thin fan and Aw is the 
bandwidth of the RF field. The resulting pumping rate is 
marginal for TMX-U but safe for MFTF-B and MARS. 
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Unless B|| can excite a parallel electric field, it 

appears that B|| is less effective than B.. There are 
advantages of applying the RF field at the drift frequency 
resonance; i.e., k = 0:. (1) unwanted trapping can be induced by 
breaking the axial bounce invariant J = /ds vn by the uj, 
resonance, and (2) pumping impurities can be accomplished if 
the drift is predominant lyV electric field drift. 
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FIG. 2. Beta stability diagram for a wall-stabilized, axisyrametric tandem 
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