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PHYSICS BASIS FOR AH AXICELL DESIGN FOR THE END PLUGS OF HFTF-B 

1. INTRODUCTION AND PHYSICS SUMMARY 

The primary motivation for conversion of MFTF-B to an axicell 
configuration lies in its engineering promise as a reactor geometry based on 
circular high-magnetic-field coils (see Ref. 1.1). In comparing this 
configuration to the previous A-cell geometry, we find a number of differences 
that might significantly affect the physics performance. The purpose of the 
present document is to examine those features and to assess their iirpact on 
the performance of the axicell, as compared to the A-cell configuration, for 
MFTF-B. In so doing, we address only those issues thought to be affected by 

i ? the change in geometry and refer to the original report "Physics Basis 
for MFTF-B," for discussion of those issues thought not be affected. 

In Sec. 1, we summarize these physics issues. In Sec. Z, we describe 
operating scenarios in the new configuration. In the Appendices, we discuss 
those physics issues that require more detailed treatment. 

1.1. PHYSICS OVERVIEW 

The magnet set for the axicell version of MFTF-B is shown in Fig. 1-1. 
The central cell is terminated at either end by an axisynmetric mirror cell 
called the axicell. This configuration was inspired by the geometry of TARA, 
which is under construction at MIT. * However, to accommodate the MFTF-B 
reference mode of operation, the axicell in MFTF-B has a lower mirror ratio 
and a different B profile from TARA. 

In the plasma configuration that forms the reference mode (MARS mode) 
for MFTF-B, the axicell throttles the flow of ions to the end cell. This is 
done by a combination of magnetic constriction and reflection from a potential 
peak formed by ions mirror-trapped in the axicell. The final and higher 
plugging potential peak and the associated thermal barrier are found in the 
minimum-B anchor, as shown in Fig. 1-2. Those ions confined to the central 
cell by the axicell see only axisymmetric magnetic and electrostatic fields. 

Situated outside of the axicells and separated by transition sections, 
the MFTF ying-yang magnets act as magnetohydrodynamic (MHD) anchors to the 
whole system. Electrical contact between the axicell/central-cell combination 
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Fig. 1-1. Comparison of A-cell and axicell designs for HFTF-B. 
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Fig. 1-2. Field, density, and potential profiles for the MARS-mode reference 
case of the MFTF-B Axicell design. 



and the minimum-B anchor cell is maintained through the transition region by a 
plasma of relatively low density and pressure. Model axial profiles for the 
density and potential are also shown in Fig. 1-2. 

In assessing the physics performance of this configuration, we have 
identified three critical parameters. Their significance is discussed in the 
following sections, and more detail is given in the Appendices. 

One parameter 1s set by the degree of coupling of the curvature-driven 
trapped-particle mode in the central cell to a drift wave. A minimum coupling 
is required for stability. At high azimuthal-mode numbers this comes about by 
finite ion Lartnor radius effects. For low-mode numbers, there is a coupling 
induced by details of the charge-particle confinement by the end cells. This 
sets a minimum for the fraction of central-cell ions that are confined by the 
end cell. This constraint is met in the HFTF-B design and is less restrictive 
in reactor extrapolations. For MFTF-B, about 2% of the central-cell ions are 
confined by the outer potential peak in the reference design. With this 
fraction, MFTF-B is calculated to be marginally stable to the trapped-particle 
mode. 

Another critical parameter is the achievable B-value in the central 
cell as determined by both equilibrium and stability considerations. An 
important new element in determining the central-cell & limit is the density 
(and therefore 8) in the transition between the yin yang and axicell regions 
that is required to stabilize the trapped-particle mode. The final 
magnetic-design is not yet complete, particularly regarding the minimization 
of the parallel currents in the equilibrium. Even so, with an intermediate 
design we find that central-cell 6-values ranging from 36X in the equilibrium 
field to 53% in the vacuum field can be sustained and are consistent with an 
anchor 8 of 55X and axicell 0 of 20%. 

The third critical parameter is the ratio of the density of warm ions 
that penetrate into the midplane of the yin-yang anchor to the density of 
energetic sloshing ions that possess a loss cone. Such a coexistence of warm 
and hot ions is necessary for stability of the latter to loss-cone modes. We 
find that a warm-ion midplane-density fraction >0.6 at a T r m/T. t ratio 
>0.3 should be nominally stable, as compared to the reference-case design 
parameters where n ^ / n ^ - 0.8 and T ^ / T ^ = 0.32. 
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1.2. CENTRAL-CELL CONFINEMENT 

From the point of view of confinement physics, a primary advantage of the 
axicell configuration is the reduction of radial transport in the central 
cell. The dominant radial-loss mechanism in the original HFTF-B central cell 
was a resonant transport of ions having half-integer-related axial bounce and 
azimuthal-drift frequencies and suffering radial displacements because of the 
nonsymmetric field components. In the axicell geometry, only the passing 
particles experience nonsymmetric fields. Most of the central-cell ions see 
symmetric fields so that their transport is classical in the absence of 
symmetry-breaking field errors or fluctuations. Ions entering the end regions 
suffer radial steps because of the same geodesic curvature that drives 
parallel currents. Once the parallel current is largely eliminated (a design 
constraint), the overall transport will be reduced compared to the A-cell. 
Details of this improvement are given in Appendix K. 

1.3. MAGNET0HY0R0DYNAM1C (MHD) EQUILIBRIUM 

Finite-g equilibria in nonaxisymmetric mirror qeomstries are dominated 
by the currents parallel to B, which are generated by the nonvanishing 
divergence of the diamagnetic current. These currents are analogous to the 
Pf irsch-Schluter currents in tokamaks and produce closed plasma-curren'. loops 
that can roughly image the external yin-yang or baseball magnet currents. In 
a multicell system such as a tandem geometry, these loops can internally close 
over either the full axial extent of the system as a whole or separately in 
each cell. 

A tandem-mirror system with a long central cell must have small 
quadrupole axial current in the central cell. Otherwise it would generate 
Bg, B p, and large flux-tube distortions proportional to the central-cell 
length. An important constraint on a magnet-set design is that all current 
loops must at least close in each end region. Our reference design satisfies 
this condition. A much preferred solution has current loops closing separately 
in each mirror cell of an end region, which avoids a required balancing of 
adjacent cell properties, particularly pressures, and permits a wider parameter 
space of central-cell axial-current-free operation. He also have an 
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in-principle solution that meets the latter more stringent condition but do 
not as yet have a satisfactory design from the engineering point of view. 

Our design code for this problem is TEBASCO, which solves for plasma 
equilibrium to linear order in 0, using magnet fields generated by our 
engineering magnet design code EFFI. TEBASCO is routinely used by the magnet 
design team to iterate magnet designs to adjust the central-cell axial current 
to zero while satisfying acceptable flute-stability criteria 
[8 (central-cell) > 8 (plug)]. Details of the theory and examples of the code 
results are given in Appendix A. 

1.4. LOW-FREQUENCY STABILITY - MHD 

Modes in the drift-frequency range are conveniently distinguished by 
(1) whether the parallel electric field E n vanishes by virture of an 
inductive vector potential A„, cancelling the longitudinal field a$/3s B or 
(2) whether E,, = - 3$/9s can exist in spite of the pressure plasma. The first 
is characteristic of MHD behavior, with or without finite Larmor radius (FLR) 
corrections. The second is characteristic of electrostatic ballooning 
behavior, which is very similar to that of trapped-particle modes in tokamaks. 

When calculated by pure KHD theory, the axicell configuration has a 
central-cell 3 limit even below that of the A-cell configuration. The worst 
modes in this description are highly localized, bending the thin dimensions of 
the fan-shaped region between the plug and anchor with little expenditure of 
bending energy. In the long solenoid, FLR has a strong stabilizing effect on 
such highly localized modes. When the worst modes have large enough azimuthal 
variation to justify an eikonal approximation, the full 3-D FLR stability 
problems can be analyzed using the procedures described in Appendix B. 
However, these calculations show such a strong FLR stabilization that, for 
most parameters of interest, only very low azimuthal-mode numbers could be 
unstable; these, of course, lie outside the validity of the theory. 

A proper treatment of this problem requires a full 3-D stability 
analysis, including the nonsymmetric anchors and rotation in the central cell. 
This theoretical capability is currently under development at LLNL. Lacking 
this tool to date, we neglected the high-m modes and used the flute-interchange 
stability condition as a figure of merit in magnetic-field design. 
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Recent PHAEDRUS results support our neglect of high-m modes " . In 
that experiment, only m = 1 was observed, and the stability limits agreed with 
those of the flute condition. Beta values were too low to expect ballooning 
in PHAEDRUS, but finite B experiments in the Wisconsin octupole 
demonstrated increased ballooning & limits consistent with FLR theory. 

The low-m stability nrob1em is complicated by several features, in 
addition to the 3-0 character of the equilibrium, namely: 

• A powerful energy principle, as in MHO, is no longer available so 
that eigenmodes and frequencies must be calculated. 

• An eikonal treatment is no longer valid. 
t The rotation drive in the central cell occurs in the same order as 

FLR. 
• The mode structure is richer, particularly in the presence of hot 

electrons as described in the following. 
As just discussed, our analysis so far has been eikonal, and the 

curvature-driven response has been treated in the high-frequency limit, as in 
MHO. in a number of important circumstances, this analysis remains valid in 
the presence of fast drifting hot electrons if the curvature-driven response 
is properly modified. This procedure is outlined in the following and 
detailed in Appendix C. 

1 3 Following the idea developed for the TARA tandem mirror at NIT"'', the 
anchor cells in MFTF-B will derive most of their pressure from an anisotropic 
population of hot electrons. Ample experience in the Elmo Bumpy Torus (EBT), 
ELMO, and INTEREM experiments demonstrates that local B-values of several tens 
of percent can be generated with relatively low-power electron-cyclotron-
resonance heating (ECRH) and a considerable parameter space of (electron) 
microstable operation. 

Because of their fast precessional drift frequencies, these electrons do 
not behave as an MHD fluid and, therefore, would not by themselves contribute 
a positive pressure weighting to, for example, a flute-stability integral. 
These electrons also should be "rigid" in a minimum-B anchor and not contribute 
to stability under conditions similar to those where electron rings in E8T are 
"rigid" (i.e., do not have an unstable MHD response in a simple mirror). 
However, consistent with EBT results, the warm (or slow-drifting) plasma 
coexisting with the hot electrons has an MHD-like response in the well that is 
dug (or enhanced) by the hot electrons. The anchor B value is divided 
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between a hot component Bu and a lower pressure warm component g ("hot" and 
"warm" being defined by frequencies of species' drift relative to the 
central-cell HHD frequencies). The contribution to flute stability is given by 

where r n > 0 is the density scale length, and k is the component of curvature 
normal to the pressure-level surfaces. For B w » 2r nk, this expression becomes 

which is the appropriate weighting when all species are treated as having an 
MHD response. For finite &/2r k, the region containing hot electrons can 
still be treated as if it had an MHD response, provided the local 8-value is 
degraded by a factor fiw(3w + 2r nk)~ . (In this example flute perturbation is 
assumed, but a similar result would hold for a ballooning perturbation.) Thus, 
by this replacement, eikonal balloon-code results, including FLR as the only 
kinetic effect, can describe tandem systems that have anchors containing 
fast-drifting electrons. 

This change in behavior with ft. compared to 2r_k is directly analogous 
16 to the Van Dam-Lee-calculated limit * on the core B in EBT. There k < 0, SJ 

the denominator and, therefore, the sign of the response changes as ft exceeds 
'2rnki. The emergence of an HHD response for the hot electrons in a 
negative-curvature well, therefore, implies instability; whereas in a positive 
curvature well it implies increased anchoring. 

Our picture of low-frequency stability can be summarized as follows. 
Finite Larmor radius in the central cell stabilizes all but very low-in modes. 
A proper three-dimensional theory for these has not yet been developed. In 
our magnet design, the flute-interchange condition is being used as a figure 
of merit with experimental support. If appropriate effective 3 values are 
used, and even with hot electrons in the anchor, ballooning and flute-average 
calculations can be carried out. 
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1.5. LOW-FREQUENCY STABILITY - ELECTROSTATIC 

The electrostatic ballooning modes, first identified by Berk arm 
Rosenbluth , are closely related to trapped-particle modes in tokamaks. 
Because of their recent arrival to the tandem-mirror scene, we give more 
detail to their properties in this overview. 

In such an instability, particles trapped in regions of bad curvature 
can drive an electrostatic perturbation that excludes good-curvature regions. 
Particles passing between the two regions can Debye-shield the perturbed 
potential, but this is a fairly weak effect if only a small fraction of 
particles are passing. 

When the electron-bounce frequency throughout the machine length greatly 
exceeds the wave frequency, the resulting nonvanishing E*|( loes not drive a 
parallel electron current, as it would do in an infinite medium. 

Because all tandem mirrors only have good magnetic curvature in a 
line-averaged sense, they are predicted to be susceptible to such modes, as 
are tokamaks. The tandem-miror central cells are separated from the end cells 
by large mirror ratios—10 or more for experiments and about 5 for a 
reactor—and the passing-particle fraction is small by at least the inverse of 
these mirror ratios. For such passing fractions, the calculated 
electrostatic-mode growth rates are relatively small, the azimuthal m-values 
relatively large, and the modes are perhaps benign. However, thermal-barrier 
efficiency can be increased by further decreasing the passing-particle 
fraction. Berk and Rosenbluth showed that, in the extreme of such cases, 
the electrostatic mode growth rate can rise to that of the MHO value of the 
central cell alone, and the m-value can drop to »T?ity = in such a 
circumstance, the central cell would be expected to tear loose from the 
anchors until limited by a nonlinear process. The severity of this worst-case 
scenerio for electrostatic modes warrants paying close attention to their 
properties to find means of stabilization. 

The stability of the electrostatic ballooning mode can be modelled by 
the quadratic equation, as shown in Appendix D, " ' ' 
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where m is an azimuthal mode number, lô . is the ion-diamagnetic-drift 
frequency, and iz is the MHO flute-averaged pressure-weighted growth rate 
including all regions except the minimum-B anchors. The (ro-1) term is the 
familiar FLR-stabilizing effect. The coefficients A, - are <:onfiguration-
and geometry-dependent: A-| measures the Debye-shielding because of particles 
passing between regions of vanishing and nonvanishing perturbed potential; A 2 

measures the difference between the bounce-averaged, perturbed E x B drift of 
ions and electrons and takes the sign of the charge having the lowest such 
drift speed. This difference does not occur in tokamaks but does in tandem 
mirrors where there is an important electrostatic aspect to parallel 
confinement separating the turning points of positive and negative charges. 
The coefficient A ? can support or cancel the FLR term, depending on its sign. 
Cancellation when Ag < 0 leads to electrostatic instability at some value 
or range of m. Preferred designs use A 2 > 0. When this is the case, the 
worst mode is usually m = 1, and stability then requires 

u£i 4(1 + A ^ 
(1.3) 2 2 

*c A 2 

In the axicell design, 

2 
A = /U \%- " p a s s 2 

l P , c c TT <La + L 

a 
t )] , 

where rc/p^ is the number of ion Larmor radii in the central cell; L_, U , 
and L a are, respectively, the central-cell, transition, and anchor lengths. 
For L c = 16 m, L t = 5 m, L a = 2.5 m in the HFTF-B axicell design, and 

.2 . 
A -n RK _ £ _ P a 5 S 
Al,2 " ° - 5 6 ^ n^T 

Thus, taking values for MARS-mode of HFTF-B described in Sec. 2, r c/p i * 13, a 
r ->° "nacc/fr > 5* i s stable for w L » y^, whereas n„„ e/n /. > 1.6% is 

K a 3 3 pL o • c pass C 
stable for «*. « 2Y£. The parameter A-j 2 is the important physics parameter 
determining the coupling to the anchor. In the MFTF-B Axicell design, this 
ratio can be varied by about 100 through variation of r„/p,- and n„„ /n,.. 

C l paSS C 
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In the original A-cell design, the worst perturbation is one that 
eliminates only the yin yang. Both ions and electrons have access to the yin 
yang, although the ions are depressed by a potential Aq> resulting from 
neutral-beam injected ions trapped in the yin yang. The coefficient A, 
takes the form 

when R is the central-cell mirror ratio, T i c and T the central-cell 
temperatures, and L a is the effective yin-yang (anchor) length. The 
coefficient fy i s negative because of the free penetration of the 
central-cell electrons into the anchor, 

A 1 (l c - V T i c ) rc *<La « lA> 
2 R c " ' p2 Lc 

If we use L c = 32 m, R c = 4, T- /T = 1.7, L A = 4 m, and 09 » T i c , and the 
parameters above, we find A-j « 38 and A 2 ~ -12. Thus, by Eq. 1.2, we would 
expect an instability with m * 3. 

In the absence ->f charge-separation effects, obtained by setting <*+• = 0 
in Eq. 1.2, all magnet designs would yield an unstable mode with growth rates 
differing only by Aj ' for fixed m. This is analogous to the situation in 
tokamaks, except A] is usually much larger in tokamaks if only because of the 
increased number of Larmor radii in the cross section. 

In summary, as in other average-minimum-B-stabilized systems, localized 
electrostatic ballooning, resulting from particles trapped in regions of 
unfavorable curvature, appears to be » distinct possibility. In a tandem 
mirror, there is a charge-separation mechanism that couples the basic ..iode to 
a drift wave. By this means, the mode can be stabilized with parameter 
constraints compatible Kith good confinement. 

1.6. MICROSTABIUTY 

Instabilities near the icn-cyclotron frequency or its multiples have 
been a predominant feature of all neutral-beam-heated mirror machines. 
Control of these instabilities in the plugs and anchors must be considered the 
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primary physics challenge in the development of a tandem-mirror fusion reactor. 
As the tandem-mirror concept has come to employ a magnetically trapped 
subpopulation of energetic electrons, the microstability of this group becones 
equally important. However, the relatively increased stability of electrons 
(as opposed to ions) observed in the EBT experiment lends hope that this 
latter problem may be easier to solve. 

We identify two possible drives for instability: first, the "loss-cone" 
drive due to an inverted perpendicular energy (E.) population; and second, 
anisotropy, the excess of perpendicular energy over parallel energy (E..) 
(directions are measured relative toJ3). Although there are similarities of 
treatment, it is convenient to discuss ion and electron modes separately. 

As regards the ion microstability issue in MFTF-B, we find little 
difference between the original A-cell design and the axicell design if the 
yin yang is stretched to produce a vacuum mirror ratio of three. In both 
cases, the barrier and plugging potentials exist in the same mirror cell. The 
outer lobe of the sloshing-ion distribution has hotter electrons and 
consequently a higher potential peak. Ions from the central cell that are 
confined by this outer peak will supply more than enough warm ions to 
stabilize the sloshing hot ions at the cell midplane to loss-cone modes. Only 
near the potential peak does an energy inversion appear, and any modes that 
might appear are resonant there. A description of Fokker-Planck studies of 
sloshing-ion distribution is given in Appendix E. 

The most sensitive region for ion modes is the yin-yang anchor. As 
discussed in Appendix F, we find that stability to loss-cone modes can be 
achieved within the range of operating parameters. However, an extreme 
sensitivity of calculated stability boundaries to axial equilibrium profiles 
is indicative of the theoretical uncertainty. The axicell also contains hot 
ions, but the distribution is always made monotonic in perpendicular energy 
because of the passing ions confined by the outer potential peak. 

The principal anisotropy-driven mode, the Alfven ion-cyclotron mode 
(AIC), has been fairly firmly identified in TMX. Its presence there is well 
explained theoretically by the extreme anisotropy induced by the normal 
injection. As described in Appendix F, we find the low 6 value and sloshing 
nature of the ions in the anchor to be very stabilizing. The most susceptible 
regions for this mode are the axicell and the central cell under intense 
neutral-beam heating. Maintenance of low 3 in the axicell and the very large 
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mirror ratio of the central cell are both stabilizing, but detailed stability 
analyses of Fokker-Planck solutions remain to be done. This problem is 
virtually unchanged by the magnet-design change. 

We identify two modes of concern in the electron-cyclotron-frequency 
range: first, the upper hybrid mode of the bulk electrons, driven by a 
nonmonotonic hot-electron population (essentially a 1oss-cone mode); and, 
second, the whistler mode, driven by the anisotropy. Our analysis (described 
in Appendix G) has to date been nonrelativistic, care being taken in matching 
Fokker-Planck solutions by a series of analytic functions. We find a rather 
small parameter span for stability, and we calculate fairly short 
convective-growth lengths in typical Fokker-Planck profiles. At issue is the 
narrowness of the hot-electron distribution, relative to that of the sloshing 
ions, that is required to assure good barrier formation. This problem holds 
for both axicell and A-cell configurations. Relativistic effects are known to 
be stabilizing and need to be included in the description. 
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2. SCENARIOS FOR MFTF-B AXICELL OPERATION 

B. G. Logan, R. A. Jong, D. L. Correll, and A. w. Molvik 

2.1. INTRODUCTION AND SUMMARY 

The primary motivation for the proposed modification of MFTF-B to the 
axicell-plug-magnet configuration (shown in Fig. 2.1-1) is that, compared 
to the A-cell, this configuration when scaled to a reactor 2 - 2 is expected to 
improve performance in terms of higher Q, lower plug-magnet capital cost, and 
reduced radial transport. These reactor improvements are reviewed briefly in 
Sec. 2.2.2. Using essentially the same plasma models described in the 
original MFTF-B propr^-? hut updated where needed (Sec. ",), we estimate 
that operation with thermal barriers (Sec. 2.2 following) in the modified 
axicell magnet set would achieve the same physics objectives and equivalent 
performance as the original A-cell design. Specifically, we can do the 
following: 

(1) Generate maximum center-cell ion-confining potentials ($_ *»» 30 kV) 
sufficient for confinement, <nt) c t 5 x 10 cm"°«s, equivalent to 
achieving Q T-0.5 with D-T. 

(2) Achieve sufficiently high plasma temperatures (T. **> 15 keV, 
Tec ^ 9 k e V ) t 0 t e s t P n y s i c s o f thermal barriers and radial 
transport in appropriate collisionless reactor regimes. 

(3) Demonstrate high beta MHD equilibrium and stability (6 ^ 0.5). 
(4) Design for microstable sloshing ions and thermal barriers in the 

MFTF-B yin yangs, using theoretical models developed for the A-cell 
design and TMX-U. 

In addition to the above physics-design criteria, we also require the 
operating scenarios for the MFTF-B Axicell to satisfy presently understood 
theoretical criteria for trapped-particle stability and to insure riHD 
response of hot electrons (Lee-Van Dam constraints) , even though these 
theoretical criteria are still evolving and, therefore, are not yet 
quantitative. Indeed, consideration of trapped-particie stability led to 
designing the thermal barrier in the yin yang rather than in the axicell, so 
that more central-cell passing ions can reach the stabilizing yin-yang 
region. We bilieve this is the best mode of operating the MFTF-B Axicell in 
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Fifl. 2.1-1. Magnet set for HFTF-B Axicell. 
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the on-going Mirror Advanced Reactor Study (MARS), so we can refer to it 
simply as the thermal-barrier MAk~-mode of HFTF-B. This reference-case 
operating mode is discussed in detail in Sec. 2.2. Description of the plasma 
model used for this mode is detailed in Sec. 2.4. In Figs. 2.1-2 and 2.1-3 we 
compare axial profiles of field, density, and potential for the MARS-mode of 
MFTF-B and for the MARS reactor, respectively. 

In a two-component mode of operation, one can achieve an equivalent 
Q > 0.5 with lower confining potentials and, therefore, with relaxed 
beam-species-mix requirements. This alternative-operation mode uses the same 
magnet coils with 0.5-s beams, mostly injected into the central cell. The 
thermal-barrier potentials are one-half of those in the reference-case MARS 
mode (Sec. 2.3.1). Figure 2.3-1 of that section shows the axial profiles of 
fie;d, potential, and density for this case, which are very similar to those 
used in the present design of the Technology Demonstration Facility (TDF) 
engineering-test reactor. The plugs only augment the basic mirror confinement 
in the central cell, as originally suggested by Kelley. Thus, we refer 
to this case as the Kelley-TDF-like mode. 

To allow for uncertainties in low-frequency stability {particularly the 
trapped-particle stability), we have also considered (in Sec. 2.3.2) a backup 
mode of running the axicell HFTF-B magnet set without injecting the axicell or 
pumping the transition region, so that a plasma configuration very similar to 
the TMX-U can be obtained (see Fig. 2.3-3). With respect to ballooning MHD 
and trapped-particle stability, this mode of operation (naturally called 
TMX-U-like mode) is probably at least as stable as the original A-cell design 
of MFTF-B. In fact, one can operate MFTF-8 almost continuously between the 
TMX-U and the MARS modes and obtain increasing central-cell density, 
increasing Q, and decreasing margin of MHD and trapped-particle stability when 
going toward the MARS-mode. This continuum of operating points is discussed 
further in Sec. 2.2. A summary of key parameters comparing these various 
operation modes of MFTF-B is given in Table 2.VI. 

Finally, in Sec. 2.3.3, we discuss the option of operating MFTF-B with 
thermal barriers in the axicell if the axicell coils are spread apart to 
obtain a larger mirror ratio. This would generate a plasma configuration (see 2 1 Fig. 2.3-4) similar to the original proposed TARA experiment. Operation 
in this mode is possible only if trapped-particle stability is much better 
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Fig. 2.1-2. Thermal-barrier MARS-mode reference case for MFTF-B Axicell. 
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TABLE 2.1-1. Key parameters for operating modes of HFTF-B with thermal 
barriers. 

Node 
Parameter MARS--l ike TDF- like THX-U l ike 

Q {overa l l ) 3 0.40 0.6 0.06 

T ihC < k e V > - 35 -

TiwC ( f c e V > 15 10 15 

T e C (keV) 9 6 9 

B C ( T ) 1.0 1-6 1.0 

6C 0.5 0.54 0.12 

n c (cm ) 4.8 x 1 0 1 3 9.1 x I D 1 3 1.2 x 1 0 1 3 

(nT)p(cm s) 5 x 10 ,13 1.4 x 1 0 1 3 5 x 1 0 1 3 

Pfus < k W> 830 4200 80 

Equivalent for 0-T. 
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than we now estimate. The magnet set for use with thermal barriers in the yin 
yang (MARS mode) is designed so that the HFTF-B can be operated in a TARA mode 
with only a 3-month turnaround (during which the axicell coils are spread and 
beams and ECRH rearranged). 
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2.2. AXICELL REFERENCE-CASE OPERATION (MARS MODE) 

2.2.1. DESCRIPTION OF REFERENCE-CASE MARS MODE 

Me require a thermal-barrier mode of operation that satisfies the 
physics and stability constraints mentioned in Sec. 2.1 and that can be scaled 
to a high-performance reactor. The key features required are the following: 

• A high-field circular coll between the central cell and plug to 
obtain a sufficiently high central-cell density relative to plug 
density (high Q). 

• A moderately high (R >, 3), outward mirror ratio to make thermal 
barriers and confine sloshing ions, wherever the plug is located. 

• Trapped-particle stability, obtained by charge separation. This 
last feature requires a significant number of ions (orders of 
magnitude above the end-leakage streaming density), which pass from 
the central cell through the good curvature regions of the yin-yang 
anchors. 

These requirements are met by the following: 
• Adding a high-field circular coil at each end of the central cell 

(see Fig. 2.1-1). 
• Increasing the MFTF-B yin-yang separation to raise its vacuum mirror 

ratio from 2 to 3. 
• Putting the thermal-barrier plugs into the extended yin yangs. 

The high-field circular coil will produce a field of 12 T, using Nb,Sn 
inserts. The thermal-barrier plugs will include sloshing ions, with the 
ion-confining potential produced by ECRH applied to the outermost sloshing-ion 
density peaks. These features are included in the axial field, potential, and 
density profiles shown in Fig. 2.1-2. 

To make this scheme adequate for pumping the transition to a desirable 
low density, axicells are created by adding another circular coil (but low 
field) inboard of the high-field circular coils, with beams injected 
perpendicularly into the axicells to create local density and potential bumps 
there. The axicells thus serve as electrostatic attenuators, aiding the 
high-field circular coils in reducing the passing-ion density, relative to the 
central-cell density, by an additional factor of roughly exp (- A+ /T. . ) . 
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Therefore, the amount of collisional trapping and pump-beam power in the 
transition and barrier regions is reduced. In this role the axicells perform 
the same function as the density and potential bumps of the yin yangs in the 
original MFTF-B A-cell design and can be used as experimental "valves" to vary 
the passing-ion fraction. 

Fokker-Planck calculations, recently performed by Archer Futch, for 
cases without axicells and with axicells having equal central-cell densities 
and 12-tesla mirrors, Indicates that axicells reduce barrier-filling rates by 
about a factor of 2 to 3. This reduction leads to an important reduction in 
pumping in MFTF-B and in reactors. In addition, the passing-ion pressure is 
reduced 1n the transitions, easing MHD Interchange and parallel-current drives 
there. With respect to trapped-particle stability, raising the central-cell 
density by exp ( A* Dc' TiwC^ f a c t o r s *W°*S t n e u s e o f smaller plasma 
radius for the same fusion power; the smaller plasma radius in turn increases 
U^/YMUQI thus enhancing drift stabilization of trapped-particle modes. 

2.2.2. SUITABILITY OF REFERENCE CASE FCR REACTOR OPERATION 

By comparing Figs. 2.1-2 and 2.1-3, one can envision a tandem reactor 
with fields, potentials, and densities that follow in nearly constant ratios 
to those of MFTF-B. The reactor fields would be higher everywhere by about a 
factor of two, except for the being four times higher central-cell field. The 
reactor potentials are all about four times higher (likewise beam voltages), 
and the reactor densities about ten times higher in the central cell, and five 
times higher in the transitions and anchors. The plasma radial dimensions, 
however, would only be slightly larger in the reactor because of high 
density. Thus the end plug magnets, especially the yin yangs, need only be a 
little larger than in MFTF-B. 

We have already examined the impact of trapped-particle stability on the 
mode of operation (e.g., location of the thermal barriers) in the 
axicell-magnet configuration and have shown that the same regime of 
trapped-particle stability (id* > Y^HD f o r n i 9 n density, small radius) 
can be achieved in axicell reactors as well as in the axicell MFTF-B 
(Table 2.2-1). The following question naturally arises, however: Why use 
axicells for reactors, rather than A-cells or other plug configurations, since 
reactor suitability is a key motivating issue for MFTF-B. We addressed this 
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TABLE 2.2-1. Plasma parameters for reactor types. 

Hodified-
Axicell 
with EBT 

A-Cell Cusp Axicell Stabilization 
PFUSI0N 3500 MW 3500 3500 3500 
Q 10.3 19.7 22.3 12.2 
rfw 2.3 MW/m2 2.3 2.3 2.2 

Central Cell 
rc 1.0 m 1.0 1.0 1.0 
rc,inner 
rfw 1.3 m 

0.5 m 
1.3 1.3 1.3 

Lc 150 m 150 150 150 
»c 
"ic 

0.56 
1.6xl014cm"3 

0.7 
2.2xlf-14 

0.7 
1.6xl0 1 4 

0.7 
1.6x10 1 4 

Tic 40 keV 40 40 40 
Tec 36 keV 33 32 33 
*e 270 keV 260 240 240 

Barrier/Pluq 
LB 8 m 7 8.6 8.6 

"pass 
0.63 
5.0xl0 1 2cm" 3 

0.61 
5.5xl0 1 2 

0.71 
3.4xl0 1 2 

0.36 
4.4xl0 1 2 

Einj,B 
Eeh 

350 keV 
520 keV 

300 
390 

250 
750 

250 
240 

ew 93 keV 110 82 150 
*B 230 keV 190 210 170 
*c 150 keV 150 140 140 

Anchor 
rA 0.84 m 1.2 

"iA 
0.7 
1.7xl014cm"3 

0 3 
1.5xl0 1 3 

inj.A 
EiA 

200 keV 
310 keV 

150 
150 

TeA — 32 keV 
*A „ 160 keV 
*pc 19 keV — 

29 



question in a recently completed comparative study (Ref. 2.2 Sec. 2.1) at LLNL 
of four plug configurations: A-cell (Fig. 2.2-1), axicell (Fig. 2.2-2), 
modified-cusp (Fig. 2.2-3), and hot-electron-ring (EBT) stabilized axicell 
(Fig. 2.2-2., but without the yin-yang anchor). While these four 
configurations do not constitute an exhaustive list of possible plug 
configurations, their physics characteristics are probably generic to the 
three known means of providing minimum-B for MHO stability in open systems: 
quadruples, cusps, and diamagnetic wells created by fast-drifting electrons. 
The basic results of that study are summarized in Tables 2.2-2 to 2.2-4. 
These tables show significantly lower plug-magnet cost and higher Q (less plug 
beams and ECRH) for the axicell and modified-cusp plugs compared to the A-cell 
design. The axicell with EBT stabilization had the smallest plug-magnet cost, 
but the additional ECRH required to maintain the EBT rings still gave it a 
higher overall capital cost per kilowatt. The main reason for the lower 
plug-magnet cost and higher Q of both axicell (with yin-yang anchors) and 
modified-cusp plugs (compared to the A-cell) was that higher fields could be 
designed in the circular mirror coils and could be augmented by normal copper 
coils to permit fields even above superconducting limits with modest 
electric-power consumption. The high mirror fields, together with barrier 
pumping, increased the allowed ratio of central-cell density to plug density, 
thus increasing Q and lowering other plug magnetic fields and costs. An 
additional advantage of the circular mirror coils can be expected in the 
reduction of radial transport in the central cell (although credit for this 
was not taken in the study comparisons). Although the magnet cost and Q of 
the modified-cusp was comparable to the axicell, the axicell with quadrupole 
anchors was chosen as the favored-candidate reactor configuration for the 
ongoing Mirror-Advanced-Reactor Study (WARS). This was primarily because of 
greater confidence in the MHD stability of quadrupoles employed in many past 
and present mirror experiments and because of the forthcoming data base that 
will be provided by THJC-U at LLNL, TARA at MIT, Gamma-lC in Japan, and AMBAL-7 
in the USSR. 

Since the comparative study, the MARS axicell-reactor design has been 
further developed in four important areas: 

(1) Preliminary engineering analyses by General Dynamics, LLNL, and the 
University of Wisconsin on the neutron damage, water cooling, power 
consumption, and stress-analysis of the normal coil inserts 
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Fig. 2.2-1. A-cell Tandem-Mirror Reactor (TMR). 
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TABLE 2.2-2. Reactor power balance (all powers in megawatts). 

Modified-
Axicell 
with EBT 

A-Cel1 cusp Axicell stabilization 
Trapped powers: 

ECRH 97 60 47 154 
Pump beams 148 98 93 97 
Sloshing beams 66 20 12 35 
Anchor beams 29 — 5 — 

TOTAL 340 178 157 286 

Injected powers: 
ECRH 108 67 52 171 
Pump beams 177 118 115 105 
Sloshing beams 122 83 52 159 
Anchor beams 30 ~ 15 — 

TOTAL 437 268 234 435 

Recirculated powers: 
ECRH 216 134 104 342 
Pump beams 354 236 230 210 
Sloshing beams 244 166 104 318 
Anchor beams 60 ~ 30 — 
Copper coils — 72 72 72 

TOTAL 874 608 540 942 

Thermal converter output 1176 1176 1176 1176 
Direct converter output 520 439 429 493 

TOTAL (Gross electrical) 1696 1615 1605 1669 
, _ Recirculated power 
REC Gross electrical 0.52 0.38 0.34 0.56 
Net electrical power 822 1007 1065 727 
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TABLE 2.2-3. Reactor costs in millions of dollars ($M). 

Hodified-
Axicell 
with EBT 

A-Cel1 Cusp Axicell Stabilization 
Beams §J2/W Injected 65S 402 364 528 
ECRH 0J5/H injected 540 335 260 855 
Plug magnets 628 251 302 175 
Direct converter 158 83 152 127 
Central cell 450 450 450 450 
Reactor bldg. 165 154 162 149 
BOP 470 470 4/0 470 

TOTAL 3069 2145 2160 2754 

TABLE 2.2-4. Reactor costs in dollars per kilowatt-electric (5/kKe). 

A-Cell 
Modified-

Cusp Axicell 
Axicell 
with EBT 

Stabilization 
Beams §}2/H injected 800 399 342 639 
ECRH @$5/W injected 657 333 244 1176 
Plug magnets 764 249 284 212 
Direct converter 192 82 143 152 
Central cell 547 447 423 545 
Reactor bldg. 201 153 152 180 
BOP 572 467 441 569 

TOTAL 3733 2130 2029 3473 
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TABLE 2.2-5. Key parameters of axicell tandem reactors. 

FY81 Study UCID 19271 
(TARA Mode) 

(no thermal alphas) 
Higher Field Axicell 

(TARA Mode) 
(with thermal alphas ' ) ! 

1982 MARS Study 
New Operating Mode) 
with thermal alphas) 

pFUSI0N 3500 MM 3500 3500 

Lc 150 m 150 150 

ktarrier 8.6 m 8.0 7.0 

Be 3.0 T 4.7 4.7 

Bfliirror 20 T 24 24 

rc 1.0 m 0.38 0.38 

rFW 1.3 m 0.56 0.56 

nic 1.6 x 10 1 4cm" 3 4.6 x 1 0 1 4 4.6 x 1 0 1 4 

"pass 3.4 x 10 1 2cirT 3 1.0 x 1 0 1 3 3.6 x 1 0 1 2 

Q 22.3 16.8 17.0 

rFM 2.3 MW/m2 5.3 5.3 
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indicates that high field mirror coils as high as 28 T are probably 
feasible, with the cost-effectiveness optimum being about 24 T. 

(2) Blanket modules capable of operating at 5 MW/nr of neutron wall 
loading permit us to raise the central-cell field and density, 
shrinking the plasma size down to the point where the yin-yang 
anchor need be only slightly larger than the HFTF-B coil, using NbTi 
conductor. 

(3) Equilibrium concentrations of thermalized alphas were included in 
the plasma model (resulting in reduced Q by nearly a third) with 
provision being made for dc grad-6 radial transport (akin to an 
optimized resonant transport in the central cell). On the plus 
side, the ignited central cell now provides 50 to 100 MM of power to 
sustain a halo dense enough to shield the plasma core from gas and 
impurities and provides a handle on reducing the central-cell radial 
electric field and associated E x B rotation, 

(4) Conversion of the axicell-plug operating mode, from the TARA-like 
mode of the previous year to the more stable regime (with respect to 
trapped-particle instabilities) of thermal-barrier operation in the 
yin yang, has been successfully completed. Minimal perturbation 
occurred with respect to the central-cell design and plug magnets 
(with the single exception being the transition coil design, which 
is still being optimized to null parallel current). For comparison, 
key parameters of the FY81 axicell design [the first (TARA-mode) 
MARS design] and the recently modified axicell MARS design are given 
in Table 2.2-5, Note that conversion to the modified axicell MARS 
design made very little difference in the performance. The drop in 
q from FV81 axicell to the MARS design was a consequence of properly 
including thermal alphas in the plasma model and power balance. 

2.2.3. OPERATING SCENARIO FOR MARS MODE AT STEADY STATE 

We now examine the plasma parameters and power balances for the MARS 
mode, using plasma models described in detail in Sec. 2.4, and will shortly 
consider the stability aspects of this case. Parameters for the central-cell, 
axicell, transition, and anchor plugs (Table 2.2-6) are consistent with the 
following key engineering choices for MFTF-B: 
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TABLE 2.2-6. Plasma parameters for the MARS mode of the HFTF-B Axicell. 

Region 
Central-cell 

Parameter Value 
1$ keV 
9 keV 

4.8 x 1 0 1 3 cm" 3 

0.5 
30 kV 
50 kV 
5 x 1 0 1 3 cm" 3 s 
0.6 
0.4 
16.5 m 

'iwC 
TeC 
niwC 

•c 
•e 
(nT) Pastukhov 

"tot 

Yin-yang n 1 A(b) 

Leh 

ew 
'•a 
nihA< a> 

3.4 x 1 0 1 2 cm" 3 

51 kV 
470 keV 
0.55 
80 kV 
72 keV 
72 kV 
5.6 x 1 0 1 2 cm" 3 

Transition •T 
n T 
»T 

26 kV 
2 x 1 0 1 2 cm" 3 

0.05 (0.01 perpendicular, 
and 0.09 parallel) 

Axicell MX 
4* pc 
H 'pb 

1.2 x 10 
9.0 kV 
10 kV 
0.20 

14 
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TABLE 2,2-6 (continued) 

Trapped current and rf power: 

Neutral Seams Trapped current (A) 
Each axlcell (80 kV) 3.4 
Each transition (30 kV) 6.0 
Each anchor (80 kV) 0.30 
Each pump beam (60 kV) 2.4 

JCRH Absorbed power (fcW) 
Anchor (28, 35, 56 GHz) 610 

ICRH 
Central cell (15-17 MHz) 210 
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• 12-T maximum high-field circular coils (limited by the 
superconducting Nb,Sn insert). 

• to Rvac = 3 y i n y a n 9 w i t h Bmirror = 3 T ( T- the maximum 
separation manageable with the MFTF-B structure). 

• An 80-kV max, 30-s beam with 90JS atomic-species fraction, and 28-, 
35-, and 56-GHz gyrotrflns. 

The parameters in Table 2.2-6 are also consistent with the performance 
levels of the previous A-cell design, namely: (nx) c

 a 5 x 10 3 cm" 3 s, 
T i c - 15 keV, T e c » 9 keV, *c * 30 keV, Q ̂  0.5 and P f u s i o n ^ 1 MW (equivalent 
for D-T). Using definitions in the previous A-cell proposal (Refs. 2 and 3 of 
Sec. 2.1), we find: 

p 
ft _ fusion _ ft , 
q c ~ T—~—~, (* • * + T. + T ) " ° ' 6 » 

pastukhov loss % r c T e I C ec' 
p 

__rf „ - fusion ~ r\ A 
a n d Overall = X all beams, ECKH and lCkH " °- 4 • 

trapped in the plasma 
for this axicell MARS mode of operation of MFTF-B. The fusion power 
pfusion = 6 4 ° k W f r 0 f f l t h e c e n t r a l c e 1 1 a n d 1 9 0 k W f r o m t n e t w 0 dense axicells. 
The fact that similar Q's and fusion power obtain for this case in spite of 
shorter central-cell length (L c (eff) = 16.5 m versus 32 m for the A-cell 
design) and smaller central-cell radius (rc * 0.3 m, max allowed by 12-T 
insert, versus r « 0.56 m for the A-cell design) is due to higher 
central-cell density (nQ = 4.8 x 10' 3 cm" 3 versus 2 x 1 0 1 3 cm" 3 in the A-cell 
design). The higher central-cell density is made possible by the higher 12-T 
circular coil compared to the previous 4-T yin-yang mirror which played the 
same role. Mapping of densities in thermal-barrier machines leads one to 
expect higher central-cell/plug density ratios in proportion to the maximum 
mirror field. However, the central-cell density is not exactly three times 
higher than in the A-cell design because of the effect of the outer potential 
drop A$ b in the axicell (see Fig. 2.1-2) which accelerates the passing 
ions through the high-field mirror (see Eq. 14 in Sec. 2.4 for details). 

Figures 2.2-4 to 2.2-6 illustrate schematically the central-cell 
ion-particle flows, central-cell ion-power balance, and central-cell 
electron-power balance, respectively, for the MARS-mode of MFTF-B. These 
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Fig. 2 .2 -4 . Typical cent ra l -ce l l p a r t i c l e balance for MARS mode of HFTF-B. 
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Fig. 2.2-6. Typical central-cell electron-energy balance for MARS mode of 
MFTF-B. 
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values correspond to the parameters in Table 2.2-6. Essentially, Fig. 2.2-4 
shows that the central cell is fueled by the axicell beams {since the lowest 
axicell mirror is towards the central cell) and by the 30-kV pump beams of the 
transition regions, which have enough energy to pass deposited ions over the 
axicell-potential hill and into the central cell but not over the ij>c 
potential peaks at the extreme ends of the plugs, .ne axicell-beam power can 
be varied by a factor of at least two to control the amount of central-cell 
fueling and heating. 

Figure 2.2-5 shows that the central-cell-ion power input from the 
axicells must ie supplemented by ICRH, because an 80-fcV beam-voltage limit 
does not provide enough energy per ion lost. 

Figure ' 2-6 shows a simplified electron-power balance (leaving out many 
of the details) that involve the major parts of the power flow. Input power 
to the central-cell electron is dominated by the ECRH in the anchors. Hot and 
warm ECRH electrons in the plugs/anchors originate from the passing central 
cell electrons reaching the ECRH resonance zones. Furthermore, the 
electron-confining potential is maximum at the outermost yin-yang mirror. 
Therefore, scattering and drag losses of these heated electrons, for the most 
part, ends up rethermalizing back into either the transition or central cell 
by conduction and convection. 

Stability Considerations 
Having described the reference-case MARS-mode of MFTF-B, which is 

consistent wi h power balance and engineering constraints, we now show it is 
reasonably consistent with nominal theoretical criteria for plug 
microstability, trapped-particle stability, and MHO stability for interchange 
beta limits and MHO-response of hot electrons. Indeed the stability criteria 
described by ialdwin (Sec. 1 of this report) were used to guide the evolution 
of this design. We are still in the process of solving MHO stability, 
including ballooning at low mode numbers, with finite Larmor radius (FLR) and 
conditions for null parallel current in the transitions and anchors. However, 
we believe we still have flexibility to lower the beta in the axicell to 10 to 
15%, if needsd for ballooning (by lowering axicell beam voltage somewhat and 
raising ICRH power in the central cell), and to further modify the 
transition-ceil design, if needed to reduce the equilibrium parallel currents 
in the ends. 
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With respect to plug/anchor microstability, we note that this design for 
MFTF-B, which puts the thermal barrier in the yin yang with a larger mirror 
ratio, is very similar to the TMX-U, which is designed stable with respect to 
present theory for drift-cyclotron-loss-cone (DCLC), axial-loss-cone, and 
Alfven-ion-cyclotron modes. Data from testing these predictions will be 
available in time to guide the location of beams and ECRH in the MFTF-B yin 
yangs. For the reference-case thermal-barrier MARS mode of MFTF-B, the 
microstability analysis of Appendix F in this report indicates 
that e midplane warm-ion fraction, n w a r m / n h o t = 0.75 at T w a r i n / T h o t > 0.3, 
should be nominally stable. This is consistent with the parameters in 
Table 2.2-6: n w a r n / n h o t = g b n p a s s (B f lJ/n s l o s h (B^) - 0.6, and 

Twarm / Thot = W (f Einj S K ) = °" 3 2- A s " ° t e d i n A p p e n d i X F' t h e 

stability boundary varies with the hot-electron axial profile, which can in 
principle be controlled by the location of the ECRH resonances. AlsOj to add 
flexibility, the sloshing-ion density can be decreased some 20% with respect 
to the passing-ion density. 

The stability criteria of Baldwin for conversion of trapped-particle 
modes to stable drift waves by charge separation in the anchors (see £.q. 1.2 
in Sec. 1) can be written for the m = 1 mode as: 

w * i > 4 4 D ( I + V / A ? - < 2- 2- !> 
where 

is the Rosenbluth paranrater; g h n _ a s s is the effective passing-ion density into 
the anchor minus the passing-electron density, averaged over the good curvature 
regions of the anchors of effective length L.(eff). The effective length 
depends in part on the assumed shape of the trapped-particle mode <j>(z), which 
has not yet been precisely determined, so therefore L A(eff) and g b n 
cannot be precisely determined. 12 -3 Figure 2.2-7 indicates that gfa n s would be about 2 x 10 cm J in the 
MFTF-B yin yang, over a characteristic length of about 2.5 m, if the worst 
trapped-particle eigen mode rolls off just where the pressure-weighted good 
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Fig. 2.2-7. Comparison of passing ions and electrons in MFTF-B yin-yang 
anchor. 
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curvature in the yin yang begins to rise. Since the trapped cold ions of 
density (g^ - 1) nn ass t u r n w e l 1 D e y ° n d t n e mode's roll off (in fact way back 
near the 12-T high-field mirror) they also contribute to the charge separation 
[although somewhat (~30X) less effectively than strictly passing ions from the 
central cell] for yin-yang transition lengths only a few times longer than 
LA(eff) {according to Baldwin's analysis using a coupled, three-square-well 
region model). 

The actual effective g b to use in Eqs. 2.2.1 and 2.2.2 is uncertain to 
the extent it still depends on the actual "worst" eigenmode shape. Given 
these uncertainties, we cannot make firm statements now regarding the "margin 
of safety" for the particular reference case we have chosen for MFTF-B. 
However, we will shortly indicate how we can vary the operating parameters of 
MFTF-B to accommodate, up to a factor of four or so, a "worseH-stability 
boundary than that represented by Eq. 2.2.1. In Eq. 2.2.1, Y H H Q is the 
average HHD growth rate (without anchors), averaged over all the bad NHD 
drives of the central cell, axicell, and yin-yang transition regions. Since 
all three regions have comparable drives at present, but the axicell and 
transition drives might be reduced relative to the center cell by future 
design optimization, we can characterize y ^ n ™ terms of the irreducible 
central-cell drive « R~ = rc"-tran^ c c' # l i e n z e 

2Tic (£)(£) W«> 
%D E D *cc = D H. r c kc L c » ( Z - 2 - 3 > 

where the proportionality constant D depends on the aggregate bad-curvature 
regions (being unity in the limiting case of central-cell drive only) and 
where k (ex) is the characteristic central-cell (axisymmetric) transition 
length. Then using 

'.. fe) (£) a* = ^ • ( 2 ' 2 - 4 ) 

q £ c f c 

where (r /p )(dp /dr) is the pressure-gradient length normalized to 
central-cell radius, Eq. 2.2.1 can be solved to estimate the required passing 
density (times the effective g b ) : 
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2 
g b "pass 8 D / r c \ / BA\ . ? ,. 

The interesting feature exhibited by Eq. 2.2.5 is that the required 
passing-ion-density fraction for trapped-particle stability actually decreases 2 2 with plasma radius r., in spite of the fact that A„ « r~yp. would be 

c g a " ? c 

reduced. This is because a^ i> 1/r overpowers the r dependence of A . 
Thus smaller radius plasmas, relative to axial scale lengths, allow smaller 
g bn s / n c and hence higher tandem-mirror Q: 

p« -^(central cell) n „ fusion 
injection 

ral cell) / n \Z 

One caution is that r Q cannot be made too small relative to p^ c or else other 
instabilities such as iow hybrid drift waves might become dominant. 

Table 2.2-7 presents key stability-related parameters for MFTF-B and 
also for reactors to show that the high «*/YJI|HD > 1 r e9'"' e f o r MFTF-B can 
also be utilized in reactors. Note in Table 2.2-7 that r c / p i c **< 13 in HFTF-B, 
while r

c / P j c
 x 40 still allows % > Y^HD i n r G a c t o r s (because Y M H D is small 

in long, thin aspect-ratio plasmas). 
Some flexibility exists in the MFTF-B operation to accommodate a larger 

passing-ion fraction than is estimated by Eq. 2.2.5, by means other than 
simply reducing the plasma radius further {which would begin to limit 
r /p- < 10). In the event n

o a s s / n c needs to be increased by more than a 
factor of two, it would have to be done in part by reducing n c, since n s 

could not be increased more than twice in the anchor without exceeding 
available ECRH power or, just beyond that limit, exceeding the cutoff density 
for microwave penetration. Thus, n would be limited beyond that which 
could otherwise be supported by the combination of axicell-potential bump and 
the 12-T mirror. The limiting case in which the axicell beam and the 
transition pump beam are turned off, allowing the transition to fill to a 
Maxwellian ion distribution, is the THX-U mode described in Sec. 2.3.2 
(Fig. 2.3-3). By varying the amounts of transition pump beams and axicell 
beams, one could vary n over a range of four while keeping the anchor/plug 
parameters essentially constant (see Fig. 2.2-8). If the central-cell ICRH 
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TABLE 2.2-7. Trapped-particle stability parameters for HFTF-B and for axicell 
tandem-mirror reactors. 

Parameter 
MFTF-B 

(reference case 
thermal barriers) 

Mirror-Advanced 
Reactor Study 

(MARS) 
(candidate) 

Original Axicell Reactor 
(FY81 report UCID 19271) 

re (m) 0.3 0.4 1.0 
T 1 W C (k«v) 15 35 40 
B C (T) 1 4.7 3.0 
rC/Pic 13 40 60 
nc (cm - 3) 4.5 x 1 0 1 3 4.5 x 1 0 1 4 1.6 x 1 0 1 4 

B A (T) 1 2 1.4 

9b "pass CBA) 2 x 1 0 1 2 1 x 1 0 1 3 ^ 1 x 10 1 1 

r dp 
p 3r 
(gradient parameter) 

2.8 3.0 3.0 

D E I H H D A C C 3 6 9 

^i/TdMHD 1.6 1.0 0.21 
Ltran( c c) ("0 5 12 12 
LA(eff) (m) 2.5 4 3 
Lc(eff) (m) 16.5 150 150 
Ap 2.3 
(Rosenbluth Parameter) 

4.5 0.2 

9b npass/"c 4 x 10-2 2.2 x 10" 2 

0. 
6.3 x 10" 4 vs 

.3 required for stability 

•w 



Increase pump Increase axicell 
(Axiceljoff) I KPump at 360 kW) 

0 200 400 600 800 
Axicell + transition pump-beam power (kl/V) 

F i g . 2 .2 -8 . Var iat ion of overa l l Q and of ion f r a c t i o n passing i n to the 
yin-yang anchor as a func t ion of a x i c e l l - and pump-beam power. 
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heating is also varied appropriately, T- and (n-r) could also be kept nearly 
constant. 

We turn now to MHO-interchange stability. Figure 2.2-9 shows an example 
of a flute interchange calculation using TEBASCO (see Appendix 6) for the 
vacuum magnetic fields of the coil set of Fig. 2.2-4, with pressure models 
appropriate for the reference-case thermal barrier (MARS) mode of MFTF-B 
operation. Although the flute beta limits would change with finite beta 
fields and for coils readjusted to null parallel current, Fig. 2.2-9 indicates 
that overall flute interchange stability is roughly consistent with the betas 
required in the reference case (see Table 2.2-6). These betas (B c = 0.5 in 
the central cell, 0 X = 0.2 in the axicell, and 8 T = 0.05) give rise to 
comparable contributions to bad curvature drive (weighted with pressure) from 
each of those three regions, as can be seen in Fig. 2.2-9. Thus, 
MHD-interchange stability requires a nominal anchor beta gft = 0.5. In order 
for this anchor beta to count as good NHD pressure (as assumed in the flute 
interchange calculation of Fig. 2.2-9), the local midplane sloshing-ion beta 
must well exceed the Lee-Van Dam criterion so that the hot electrons, which 
make up most of the B» = 0.5, will have an MHD response: 

ŝlosh " T-f ' • (2'2'1] 

For the reference case, 3 s l o s n - 0.05, r n = 0.15 m (for a parabolic radial 
density profile) and r f t = 0.3 m anchor radius. The TEBASCO code calculates 
a radius of normal curvature R A = 0.5 rA/(YAH) = 15 m at the anchor midplane. 
Thus, the Van-Dam limit (Eq. 2.2.7) is exceeded by a factor of about 2.5. 
Thus, according to Eq. 1.1 in Sec. 1, the effective hot-electron beta is 
degraded by a factor of about 0.7, and the effective anchor beta is 
0.5 (0.7) + 0.05 = 0.4. That may still be sufficient for interchange stability 
at B c - 0.5, since Fig. 2.2-9 shows marginal stability at & c = 0.6. 
Otherwise, the hot-electron beta could be increased above 0.5 to compensate, 
provided ion adiabaticity is maintained. 
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Fig. 2.2-9. MARS-mode (vacuum) flute interchange. 
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2.2.4. START-UP SCENARIO FOR THE MARS MODE 

Evaluation of start up of HFTF-B with thermal barriers shows that the 
scenario planned for TMX-U is also appropriate to HFTF-B. Therefore, for 
MFTF-B, we will be able to take advantage of the testing and further 
developing of these ideas in TMX-U. The start-up of MFTF-B with thermal 
barriers in an improved axicell mode differs from start-up scenarios for 
MFTF-B in an A-cell mode in one major way. Rather than build up to high 
density as rapidly as possible in a tandem mode and then form the thermal 
barrier in an outboard A-cell, we must form thermal barriers at a low density 

12 3 (< 10 cm ), then continue the buildup in a thermal-barrier mode. The reason 
is that the hot-electron power balance requires heating electrons to 
mirror-confined energies ( » 10 eV) at low densities; otherwise, collisional 

2 7 losses will clamp *he electron energy below a few kiloelectron volts. With 
an A-cell outboard from the MHD anchor, the hot-electron A-cell could start up 
at low density after the anchors and central cell were at high density. With 
the axicell, hot electrons for the thermal barrier are in the anchor; MHD 
stability then requires that the beta (throughout MFTF-B) be within an order 
of magnitude of the plug betas; hence, the plasma density must build up slowly 
throughout. 

We examine start up from the viewpoint of satisfying the following set 
of physics constraints: 

• Particle and power balance for each species in each cell. 
• MHD stability. 
• Microstability for both hot ions and hot electrons, and 

trapped-particle modes. 
For two reasons the most difficult period in which to satisfy these 

constraints is before thermal-barrier formation. 
• First, more power is required at this time, because the plasma is 

confined only by magnetic mirrors, with little enhancement by 
electrostatic plugging. 

• Second, more power is required because absolute microstability is 
not assured without substantial electrostatic confinement of warm 
ions. 

We have evaluated several of these constraints at times before barrier 
formation and find that, even then, they define an operating window in 
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Fig. 2.2-10. Operating window during start-up of HFTF-B. 
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temperature-density space, as shown in Fig. 2.2-10; the central-cell 
ion-particle and power balance will limit the maximum density t o n - irj^2 cnf^, 
similar to the initial limit from hot-electron power balance. The requirements 
for pumping the barriers provide a lower bound on the ion temperature. Hot-ion 
DCLC stability, because of streaming ions alone, provides a soft upper limit 
to the ion temperature. 

We are continuing to evaluate the other constraints; until these 
evaluations are complete, we will use qualitative arguments. The MHO 
stability was satisfactory and was less restrictive than stream stabilization 
of DCLC on THX-U, and we expect similar results for MFTF-B. Stability to 
tfapped-particle modes is less restrictive during start up than at design 
level, as discussed in the next paragraph. We expect the microstability of 
the plugs to be substantially enhanced by sloshing ions and by mirrors-confined 
electrons, thus increasing the upper T i c limit above that resulting from 
microstability by streaming ions alone (see Fig. 2.2-10). 

Stability to trapped-particle modes requires maintaining an adequate 
fqtio of passing to central-cell ions. This, as well as MHD stability, will 
he improved during start up by keeping the central-cell density low 4ntil the 
arichor-plasma parameters are near design level. Then the central-cell density 
cqn be increased to its limits. The greatest susceptibility to 
tr-apped-particle modes will occur before thermal-barrier formation, when the 
Pqssing-ion density will be lower because of the lack of a potential peak to 
reflect these ions. But, because the planned ICRH power of 400 kW into the 
Plasma is four times the computed power losses during this time, we can 
tolerate a substantial degradation of the confinement because of instabilities 
without impairing our ability to start up MFTF-B. 

The plasma parameters will be kept in the operating window by controlling 
the timing and the power or current of the following "knobs" as indicated in 
Fig. 2.2-11: 

• Plasma streaming guns. 
• Gas boxes, 
t ECRH. 
• Central-cell ICRH. 
• 0.5- and 30-s, 80-keV, sloshing-ion neutral beams in the anchors. 
• 0.5- and 30-s axicell, 80-keV neutral beams. 
• Axial and axicell pump neutral beams. 
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Fig. 2 .2 -11 . Start-up of MFTF-B Axicell with thermal barr iers . 
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We expect the knobs to be used as follows: Plasma streaming guns will 
provide a seed plasma of minimum density. The ECRH will be used at maximum 
power to build up the hot-electron density as fast as possible. The hot 
electrons provide several benefits: they aid MHD stability and hot-ion 
microstability; they improve the operation of the thermal barriers; and they 
prevent the plug plasma from being destroyed by incident gas. It i«. the ions 
associated with the hot electrons that provide sufficient trapping of sloshing 
beams to balance charge exchange losses on gas and pump beams. In previous 
scenarios that lacked hot electrons, a rapid buildup to high density was 
required to allow the trapping rate to exceed the charge-exchange loss rate. 

Central-cell ICRH will be turned on near full power before the 
12 -3 central-cell density exceeds 10 cm in order to heat the central-cell 

and passing ions to a low collisionality. The power level will then be 
programmed down to keep T. . below the DCLC and MHD boundaries. 

Sloshing-ion beams must be turned on at full power soon after the ICRH 
in order to maintain MHD stability. 

The gas boxes will be turned on to fuel the plasma after the plasma 
streaming guns are turned off. They will be programmed initially to keep the 
density within the window just discussed. After a thermal barrier is formed 
at low density, the gas will be programmed to maintain the plug density 
sufficiently higher than the hot-electron density to achieve hot-electron 
microstability. 

In steady state, most of the fueling and power for the central cell will 
come from the axicell and pump beams. But, the gas box and central-cell ICRH 
are available during buildup so that operational flexibility is not restricted 
by both the pumping and the central-cell heating being tied to these beams. 
Pump neutral beams will be off until the other conditions for establishing a 
thermal barrier are either established or are within a pumping time constant 
(a few milliseconds) of being established. The axicell beams provide a small 
potential peak to reduce the fraction of the central-cell ions that become 
passing ions. The passing ions are further reduced by the pump beams. The 
pump beams must be turned on to form the thermal barrier. The axicell beams 
enhance the performance of the thermal barrier, so are turned on when required 
by the particle or power balance. 
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The transition from 0.5- to 30-s-duration neutral beams can be staged to 
avoid a sudden decrease in the beam current without a simultaneous decrease in 
the gas associated with the 0.5-s beams. The gas incident on the plasma will 
decrease along with the beam current if one beam is turned off at a time and 
one gas-pumping time (approximately 50 to 100 ms) is allowed before turning 
off another. 

An approximate central-cell power balance used for start up analysis is 
shown in Fig. 2.2-12, both before and after thermal-barrier formation. The 
maximum power requirement is 600 kW at design level. However, the axicell 
beaios contribute about 200 kW to the central cell, leaving 400 kU to be 
supplied by the ICRH system. We plan to use the fundamental resonance, 
a ., for start up and initial heating because that directly heats the bulk 
of the ion distribution, as required to minimize colli siona! filling of the 
thermal barrier. Evanescent fast-wave heating at <oci has been 
demonstrated on the Phaedrus tandem mirror (see discussion and references in 
Ref. 2.8) to couple sufficient power to meet the requirements shown in 

2.2-12. After the density increases sufficiently for a fast wave to 
n to propagate, we expect that the fundamental resonance will no longer 

heat effectively. We will then use 2<o . heating. At these high densities 
lO 9 CI 

(> 2 x 10 cm ), heating the tail of the ion distribution will not be a 
problem because collisions will transfer sufficient power from the tail to the 
bulk. An attractive way to accomplish this heating using one transmitter and 
an antenna is to place the antenna near the 2-T field of the central cell and 
operate the transmitter near 15 MHz. This provides heating at to - in the near 
field of the antenna until the density exceeds *v> 2 x 10 cm , at which point 
the wave will propagate to the midplane where heating will cccur at 2w c i. We 
will continue to evaluate whether a more flexible two-frequency system might be 
more effective. The ICRH experiments in THX-U, as well as in other tandem 
mirrors, will provide additional data on which to base a decision. 

Operation outside tne desired window can be corrected in the following 
ways. Too collisional a barrier can be corrected by increasing the ICRH power 
or varying its timing to increase T- , by decreasing the gas-feed rate or 
start-up-gun power, or by varying their timing to decrease the density. The 
HHD stability can be regained by increasing the sloshing neutral-beam current, 
decreasing the pump-beam current, or by decreasing the current of neutral gas 
incident on the plasma cere, all of which will increase the density of 
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sloshing ions. MHO stability can also be increased by decreasing the axicell 
beam current. Control of the neutral gas current reaching the plasma core may 
require controlling the plasma boundary density and temperature. Both MHD and 
DCLC stability can be regained by programming the ICRH power downwards. 
Programming the density would have no effect if the ICRH power coupled into 
the plasma were exactly proportional to the density, but since the 
proportionality is only approximate, some control over T- c is available by 
varying the gas-box input. Operation at too high a density can be corrected 
by reducing the start up gun power or duration and by reducing the gas-box 
current. 

REFERENCES 

2.7. B. W. Stallard, Y. Matsuda, and W. M. Nevins, "Fokker-Planck 
Calculations of Electron Cyclotron Resonant Heating (ECRH) in Mirror 
Geometry", in Proc. of Second Workshop on Hot Electron Ring Physics. 
San Diego, CA, December 1981, LLNL Report, UCRL-86826 (1981). 

2.8. A. U. Molvik and S. Falabella, Use of ICRH for Start-Up and Initial 
Heating of the TMX-U Central Cell, LLNL Report, UC10-19342 (1982). 

60 



CI 

; i ^i?W , , Sf f c f 



62 



2.3. ALTERNATE OPERATING MOOES 

2.3.1. KELLEY TDF-LIKE MODE 

The Kelley TDF-like mode differs from the thermal-barrier MARS mode 
mainly by the introduction in the central cell of a neutral-beam injected, hot 
component that is predominantly mirror confined. The hot component dominates 
the neutron production because of its higher temperature and density compared 
to the central-cell warm component, which is potentially confined and 
Maxwellian. The warm component is required for microstability of the hot 
component. Axial profiles of 6, <t>, and n are given in Fig. 2.3-1, and the 
parameters are given in Table 2.3-1. The axicell is eliminated (see MHD 
discussion) in the Kelley-TDF mode. Although the Kelley-TDF mode has a higher 
physics Q c than the thermal-barrier MARS mode (0.7 compared to 0.6), the 
scaling associated with mirror confinement, compared to potential confinement, 
reverses the ordering for reactor conditions. However, as pointed out by 
Fowler and Logan, the physics associated with the TDF mode indicates that 
a tandem-mirror machine about the size of TMX could provide fusion 
nuclear-engineering data. The lower T value (0.16 s for the TDF mode 
compared to 1 s for the MARS mode) allows equilibrium to be reached with 0.5 s 
beams without the aid of 30 s duration beams. Here we describe for the 
TDF-mode the physics constraints involving microstability, MHD, 
thermal-barrier formation, the trapped-particle instability suggested by Berk 

9 10 
and Rosenbluth, and power flow. 
Microstability 

As with the thermal-barrier MARS mode, the microstability requirements 
of the anchor are satisfied by passing ions, which become potentially trapped 
in the anchor. The warm component within the central cell has a density level 
high enough to establish a monotonic distribution. 

Magnetohydrodynamics (MHD) 
The predicted experimental value of B c, at a fixed B c value for the 

Kelley-TDF mode, is higher than in the thermal-barrier MARS mode because of the 
mirror-confined hot ions. By increasing the central-cell magnetic field from 
1.0 to 1.6 T, lowering the transition beta, and eliminating the unstable drive 
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Table 2.3-1. Central-cell plasma parameters. 

Central cel l (C) 
Thermal 

barrier-MARS Kelley-TDF TMX-U 

Bc (T) 1 1.6 1 

4»e (kV) 50 34 50 

+ c (kV) 30 11 30 

n e C ( 1 0 1 3 c n f 3 ) 4.8 9.1 1.3 

n i w C ( 10 1 3 cnf 3 ) 4.4 1.6 1.2 

"ihc no 1 3 ™" 3 ) 0.4 7.5 0.1 

T e C (kV) 9 6 9 

TiwC < k V > 15 15(1), 10(11) 15 

T ihC ( k V > 35 35 35 

( n x ) e C (10 1 3 cm- 3 • s) 4 1.9 5 

( n T ) i w C ( 10 1 3 cnf 3 • s) 5 0.6 5 

( n x ) 1 h C ( 1 0 1 3 c m _ 3 • s) 2 1.4 2 

P j u s i 0 n (kW) 640 a 4200 SO 

PC trapped ^ k W ' 
pBeam f k u ) 
rC trapped W 

210 

0 

0 

5600 

60 

0 

BC 0.5 0.54 0.12 

r c (cm) 30 24 30 

Strapped ( A t o m * » s > 1.3 0 1.3 

"c 0.6 0.7 0.6 

QTotal 
.effective , „ , L

c (cm) 

0.4 

1650 

0.6 

2060 

0.06 

2810 

aAn additional 190 kW of fusion power are generated by the axicells. 
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from the axicell, we find the theoretically predicted &Q limit is higher than 
the experimental value required. The "6-T" coil is energized at a current 
level equal to one-third the full value. Any less current results in a dip in 
the magnitude of B before it reaches the axicell, which could lead to 
potential MHD problems. The "12-T" coil remains energized at full current to 
allow the plasma column to clear its smaller internal-diameter-coil case. 

Thermal-Barrier Formation 
The potential depth of the thermal barrier 6"$a, with respect to the 

peak confining potential, is approximately half as large in the Kelley-TOF mode 
as in the thermal-barrier MARS mode (40 kV compared to 70 kV). Therefore, 
less ECRH power is required for the former. For 6$a, the temperature of the 
potentially trapped warm electrons within the anchor is the controlling factor 
along with the sloshing-ion density. The neutral-beam pumping requirements 
are approximately the same because the sloshing-ion density depression (3 to 1 
between its turning point and midplane value] does not change between the 
operating modes and because the passing ion density is the same. 

Trapped-Particle Instability 
The physics constraints imposed by the trapped particle instability are 

evaluated in terms of the required passing density, n„ a s s» normalized to the 
central-cell density, n^. The requirement is given by Eq. 2.2.5, except 
that in the TDF mode the required value of n

p a s s / n c i s increased by the 
ratio of the mirror-confined ion energy to the warm potentially confined ion 
temperature of the central cell. On the other hand, changes in other plasma 
parameters (e.g., central-cell radius and magnetic field), along with a 
smaller value of the transition beta, lowers the value of n ,,/n r that is 
necessary for stability in the TDF mode to about half the value required in 
the MARS mode. 

Power Flow 
The physics model developed in Sec. 2.4 can be simplified when applied 

to the alternate modes of KFTF-B (Kelley TPF-like and TMX-U-like). All the 
terms involving the axiceil are eliminated and the power and particle inputs 
from the P2B2 pumping beams are either absent or extremely small compared to 
the remaining terms. A generalized power-flow diagram of the central cell, 
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derived from Eq. 2.4.42 is given in Fig. 2.3-2. A hot-ion component is added 
to allow a beam-driven or ICRH-produced tail in the ion distribution to be 
present. In Table 2.3-1 the central-cell plasma parameters for the alternate 
modes are compared with those for the thermal-barrier MARS-mode reference. 

The anchor beam and ECRH requirements for the Kelley-TDF can easily be 
scaled from the numbers for the thermal-barrier mode (Sec. 2.2.3), using the 
equations of Sec. 2.4. The hardware requirements never exceed those of the 
thermal-barrier mode. 

The central-cell plasma Q value, Q , 1s given by 

Qr = 

^Fusion \ „2 *-,Jn . „2 ^„,^w . , „ _ ^_,^hw 
ED-T ) n i h C <ov> + n i w C < o v > + 2n i h C n. w C <ffv> 

C T 
nihC ... . . . , , . niwC 

•, .mirror ( EihC + *e + TeC> + , .Pastukhov <*C + TiwC + V TeC> ( n x ) i h C ( n x ) 1 w C 

(2.3.1) 
where a 50:50 mix of D-T is assumed for both the hot and warm species and 
EFusion = 1 7 6 fey. For 1-. * 35 keV and Tt„ = 15 kev, we used 
D-T. • , inc ,, IWC . <ov>n = 7.4 x 10""\ <ov>w = 2.6 x 10" l 0, and <ov> n w 

ifi ^ i = 3.2 x 10" , v cm «s~ . The value of Q-rot,i is calculated by adding the 
fusion power and the power losses from the other cells. 

The central-cell magnetic-field strength for the Kelley-TDF mode is at 
the maximum value of 1.6 T rather than at 1 T, as in the thermal-barrier mode, 
to allow n-.p = 3CB£ to reach a maximum level. Given that the hot-ion 
component is generated from neutral-beam injection, the value of £ihr can be 

? n derived from the Logan-Mirin-Rensink model. The MHD-limited value of 
S c gives in turn n i h C , with n^ w C determined from Fokker-Planck studies of the 
central-cell ion distribution. 

The $_ value was chosen high enough to minimize the power flow through 
the warm-ion channel l ] ^ s = l / ( n - r ) ^ t u k h o v but low enough to keep 
(•e + *C^ D s l o w t n e thermal-barrier mode. After determining (*e/TeQ) from 
equating electron- and ion-Pastukhov-particle losses, the values of T.-^ and 
T„£ can be determined from the power-balance equations described in Fig. 2.3-2. 
The trapped neutral-beam power must support the power losses associated with 
both the ion- and electron-particle losses. 
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The pumping requirements in the transition are no greater than the 
thermal-barrier numbers because the warm-ion losses are less in the Kelley-TDF 
mode. The ECRH heating is also less since (* + $_) is approximately 
half the thermal-barrier value. No gas-current feed is required because of the 
large amount of trapped neutral-beam current that eventually joins the 
warm-ion distribution. 

2.3.2. TMX-U-LIKE MODE 

The TMX-U-11ke mode is very similar to the thermal-barrier MARS mode in 
terms of B, $ e, fy., and ( n t ) i w C but operates at lower n - w C (1.2 x 10' 3 

compared to 4.4 x 10 ) . The axial profiles of B, $, and n are given in 
Fig. 2.3-3, and the parameters are given in Table 2.3-1 of Sec. 2.3.1. The 
TMX-U mode differs from the previously discussed MARS and TOF modes by the 
absence of neutral-beam pumping within the transition region between the 
central cell and the anchor. The only neutral beams required are those 
associated with the anchor. Because of the long particle lifetimes 
(approximately 4 s), the 0.5-s beams are not able to support this experiment 
alone. Long pulse (30-s) beams and ECRH and ICRH are required but at no 
larger power levels than for the thermal-barrier mode. 

Microstability 
The plasma parameters within the anchor that are associated with the 

sloshing ions and ECRH electrons are identical in the TMX-U and MARS modes. 
The passing-ion density, however, at the inside 3-T mirror of the anchor is 
four times greater for the TMX-D mode (1.2 x 10 cm" 3 compared to 
0.3 x 10 3 c m - 3 ) . All microstability requirements of the anchor are, 
therefore, easily satisfied. The central cell has only a small percentage of 
hot ions (less than 10%). This amount does not perturb the inherent 
microstability of the Maxwellian distribution, which is potentially confined. 

Magnetohydrodynamics (MHD) 
The theoretically predicted limit of B c is lower in the TMX-U mode 

(12% compared to 50X in the MARS mode) because of the increase in the 
destabilizing drive associated with having the transition density, n^, equal 
to the central-cell density, n c. 
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Thermal-Barrier Formation 
Because the anchor parameters are the iame for the TMX-U and MARS modes, 

the barrier formation will be the same in terms of ECRH power. The increased 
passing density mentioned in the microstability discussion might require 
additional neutral-beam pumping. 

Trapped-Particle Instability 
Because the "worst picture" of this instability allows the amplitude of 

the fluctuations to locate where the growth rate is maximized and because the 
anchor parameters are the same in the TMX-U mode, the minimum n„,„ 0/n r 

pass w 
required for stability (and hence maximum n^) is the same in the TMX-U and 
MARS modes. However, since barrier pumping only occurs in the yin yang, the 
12-T coil does not affect n c, which is limited to a value four times lower 
in the TMX-U mode compared to the MARS mode. Thus, trapped-particle stability 
is satisfied by a margin of four. 
Power Flow 

The long particle lifetime (•»-4 s) requires the duration cf power 
input into the central cell to exceed the 0.5-s-duration beams. The ICRH 
power available {see Sec. 2.2.3) for the thermal-barrier MARS mode more than 
satisfies the needs of the TMX-U mode. The amount of trapper ICRH power, 
PC traooed* n e c e s s a r J r *° support T- c of 15 keV is estimate by using the 
Logan-Mirin-Rensink model (Ref. 2.11) to calculate E i n C am by using the power 
flow in the warm-ion channel (see Fig. 2.3-1). Central-ceJ1 particle losses 
from charge-exchange, with the high-energy pump beam and from passing particles 
trapped within the anchor have been ignored. Enough ICRH power is available 
so that additional power losses can be met if these che ge-exchange losses 
become important or if the E..r estimate is inappropriate for ICRH heated 

TCRH 2 
plasmas. The value of pc traoDed d o e s n o t s c a 1 e w i t h niwC D e c a u s e a 

large fraction of the power input into the central call in the thermal-barrier 
case came from the axicell beam and the transition jumping beam (see Eq. 2.4.42 
in Sec. 2.4). 

The effective central-cell length, | _ e f f e c t l v e , includes the B T / -jjl 
contribution to B f $-, because the density is uniform from the central cell 
through the transition (see Fig. 2.3-3), as is the case for the present TMX-U 
experiment. 
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2.3.3. TARA-LIKE MODE 

In the event some as-yet undiscovered effect other than charge 
separation can stabilize the trapped particle mode, it would be Prudent to 
design the axicell in MFTF-B in such a way as to allow conversion to the 
TARA-like configuration (see Ref. 2,1), to hove the thermal barrier generated 
in a larger mirror ratio axicell, and to require a minimum of conversion time 
and cost. At present, we require the 6-T and 1Z-T axicell coils for the 
MARS-mode to be usable in a TARA-mode; we switch their order along the z-axis 
and spreading them apart from 2 to 4 m to allow ECRH at 1 T and sloshing-ion 
inject ?&>? ?#£s> £ larger winter ratto* Figure 2,3-b sbms s» ewty MF7F-B 
design for a TARA-configuration magnet set, along with the appropriate axial 
profiles of field, density, and potential. Corresponding plasma parameters 
for this early TARA-mode set are given in Table 2.3-2. 

The only differences between this early TARA-mode design and one 
suitable with the present magnet set converted to the TARA-configuration would 
be that the yin yang would have a mirror ratio of 3:1 instead of 2:1, and a 
lon'JGr length of 5.2 m instead of 3.4 m, as well as a slightly shorter central 
cflll (with 14 solenoid coils as planned). Since the midplane yin.yang field 
(Bft = 1 T) and beta value (B A = 0.5) would be the same, anchor parameters 
might be similar to those given in Table 2.3-2. 

In the conversion to the TARA-mode, the perpendicular axicen beam of 
the MARS-mode is expected to remain approximately in place and serve as a 
sloshing-ion beam when the inner axicell mirrors are moved further toward the 

centra) cell to get the desired mirror ratio. The axicell beams thus would 
hit perpendicularly at a mirror ratio of 1.5 to 2 to make sloshing ions. The 
30-kV pump beams (P2B2), however, would have to be translated about 4 m 
towards the central cell (still at about 30° angle) to pump the a*icell. 
Moving ECRH from the yin yangs to the axicells would then mostly complete the 
conversion to the TARA-mode. Present best estimates are that it vnill take a 
few months and about two million dollars to make the conversion. 

Because the estimated achievable plasma parameters and performance 
levels (Q) of this early design for the TARA-configuration (Table 2.3-2) are 
roughly comparable to the reference-case MARS-mode (Table 2.2-6), what would 
be the advantages of the TARA-mode compared to the MARS-mode? 0n^ advantage 
would be that radial transport of central-cell ions that are due to the 
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TABLE 2.3-2. Parameters for MFTF-B Axicell in the TARA-like mode (for an 
earlier design), Q = 0.37, Q c " 1, P f u S i o n = 330 kW. 

Central cel l : 

BC = 1T n i h = 1.95 x 1 0 , Z T i c = 20 keV 
L c = 12.5 m 
r c = 30 
n i c = 2.78 x 10 1 3 

6C = .356 
* c = 33.7 
* e - 44.1 

T„c = 12 keV 
(n i ) c = 5 x 10 1 3 

Axicell barrier: 

B b = l T T e w = 60 keV n i a = 6.89 x 1012cm"3 

B x i = 6T Bb = 0.11 • b = 38.1 kV 
Bx0 * 6 T 

L x = 4m 
Fec = 0 - 1 3 

n b = 3.59 x I01 2cm"3 

6* a = 71.8 kV 
I t r a p = 0.670 A 

Eeh = 8 8 k « v 

Beam requirements: 

I l o s s = 2.93 A I s l o s h (abs) = 0.470 A 1 ^ ^ (abs) = 0.4 A 
I c Cion) = 0.776 A 

Microwave power: 

Pfl = 81.9 kU P C C(ICRH) = 47.3 kU Pfc = 86.1 kW 
PANCH0R = 3 9 , 4 k H 
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quadrupole anchor would be negligible in the TARA-mode but still be 
sigriif icant in the MARS-mode. On the other hand, some radial transport is 
beneficial for impurity removal. Pertaps the main advantage of the TARA-mode 
would be to test the idea that MHD anchors might still work even though 
isolated from the confined axicell plasma, thus permitting evolution of rouCi. 
simpler and lower field anchors. This, after all, was one of the main 
attractions of the original TARA concept. 
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1A. PHYSICS MODELS FOR CALCULATIONS OF PARAMETERS 

The plasma parameters for the axicell version of HFTF-B shown in 
Table 2.3-2 were calculated using the following physics models, which are 
similar to those used in determining the operating scenario for the A-cell 
version of MFTF-B. 2*' 2 Where further model developments and Fokker-Planck. 
calculations occurred, we incorporated the improvements in the present 
calculation. The models were developed for the MARS-like mode but can be used 
with suitable modifications for the other modes, 

2.4.1. CENTRAL-CELL PARAMETERS 

2 12 As in the earlier calculation, * we chose a design point based on a 
set of central-cell parameters that are near the limit of HHD stability for 

2 13 our magnet design.'" In this case, *e choose a central cell B~ of 0.5 with 
an axicell R x of 0.20. To maximize the fusion power achievable from a 50:50 
D-T mix, we chose the thermal-ion temperature in the central cell to be 
T, c = 15 k&V. The electron temperature is estimated to be about 60% of 
this value (as in Ref. 2.12), and hence T e C = 9 keV. The desired ion 
Pastukhov confinement parameter is chosen as ( nf)i wr = 5 x 10 , and this 
determines the required ion-confining potential <frc. This value of 4>c 

is near the maximum that can be generated with 80-kV beams and ECRH. 
The electron-confining potential d> is initially chosen to give an 

electron Pastukhov (nt) equal to the ion value. This tends to give an 
overestimate of $ e because the presence of secondary electrons flowing in 
from the end walls would produce an electron-confinement time that is less 
than the ion Pastukhpv-confinement time. However, this estimate for <£e is 
a satisfactory starting value that can be easily refined in one iteration, as 
will be shown later. The nomenclature used in this report is similar to that 
used in Ref. 2.12 and follows the axicell system shown in Fig. 2.1-2. 

2.4.2. AXICELL PARAMETERS 

The plasma density and potential profile in the axicell as well as the 
neutral beam required are calculated in a manner similar to that of Ref. 2.12. 
The potential rise from the central cell to the axicell midplane, A$ , is 
calculated from 
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%c - TeC '• (£) • <"•'> 
where the electron density at the axicell midplane is determined from, 

neX " niwX + nihX ' { 2 A ' 2 ) 

The warm-ion density is assumed to be nearly Maxwellian. Hence, 
-A* /T. „ 

The hot ions are determined by assuming the perpendicular B in the axicell 
is given by the MHD-stability limit. Then 

2.5 x 1 0 1 5 fr B* - n. w ( T 1 M C 4 T e C ) 
"ihX (0-5 E i h x + T e c ) ' < 2' 4' 4> 

The solution of Eqs. 2.4.1 to 2.4.4 gives A* and the plasma density in 
the axicell. 

The potential drop from the axicell midplane to the outboard mirror is 
calculated from 

*V> • T e c 1 n [^r]. (2-4-5) 

where ney(m) is the electron density at the outboard axicel l mirror. This 
density is taken as a factor g^m) tiroes the cold-passing-ion density at the 
mirror given by n^ s s (m) where, 

,fi»(.) • "« *"%/Tl" K V T i W ^ [fig) ' ' I 
( R n . l , V 2 . A A 1/2. 

+ 2 M °k$H) ]}• (2-'-6) 

where 

R 0 " BmXo / BX • " " h • 
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and Dawson's integral is 
..2 /-x .2 0(x) = e- x f eu' du 0 

The plasma lifetime is calculated using the Logan-Rensink model as in 
Ref, 2.12. Assuming that the hot-ion lifetime is determined by scattering 
^sses and electron drag and also that charge-exchange losses are negligible, 
the hot-ion-confinement parameter is given by 

( m ) p » { (nt ) ; 1 + | (nr) D In ( E ^ / E ^ ] - 1 } , (2.4.7) 

where 

3.9 x 10 1 Z ( E 4 B , ) 3 / Z 

("T>s In A.. 1 n j 1»9 1 0 (R e f f ) 

0 W B X 
K eff " 

v i n j ' 
6 X n j ' 

and L , is the beam-injection energy. The average energy of the ion% escaping 
from the yin yang is Ê  and is obtained from, 

^ T 7 ^ 1 + V T0 ' (Z'4'8) 

3/2 

V T ^ ' ln(E i n A) 1" Aii ' ( 2- 4' 9 ) 

wh^re " is the ion mass in amu and 

E = B P c 

Of)- 1 
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The calculation of A$ and A* . required a value of E..„, the hot-ion 
energy. This energy can be calculated by balancing the drag losses of the ions 
on the electrons with the net energy injected by the axicell beams. Neglecting 
charge exchange, the hot-ion energy is given by 

EihX = <Einj - \) -fnlTf1 + EeC • (2-«-W) 
Since the hot-piasma-confineroent parameter {ni) p and hence E i h X depends 

on A^ p c, and because A $ p c depends on the value of E ^ h X , it is clear that an 
Iterative procedure is required to solve for the potential profile and 
plasma-confinement parameter (ntL. 

The axicell beam current required to maintain the axicell is given by 
balancing the scattering losses, 

T - „ ihX eX X , . , 
TX ion " q — ( n T ) p * < 2 - 4 - " ) 

2.4.3. BARRIER PARAMETERS 

With our choice of B b, the beta in the mi dp lane of the anchor, and 41 , 
we can solve for the barrier potential 4^ as a function of the traction F of 
the cold electrons at the barrier midplane by applying a quasi-neutrality 
relation at the barrier midplane. As in Ref. 2.12, the warm-pa<;sing-ion 
density is mapped from the central-cell value, accounting for th.e variation in 
magnetic field and the change in potential. The cold-electron-cjensity 
distribution in tt\e barrier mi'dprane region is assumed to for To* a cut-off 
distribution, 

»b - % b 

T e c " * / T e c \ 
W*b> = 9b<m> n i M X (m1r ro r ) ^ - ^ S - ) , (2.4.12) 

* 
where 

* = +e + **pc " 6*pb • 
The density thus equals the electron density at the 12-T mirror when 
*b = A*pb* a n d i s z e r o * h e n *b = *e + A*pc* 
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The quasi-neutrality relation, which is solved for the barrier potential, 
then is 

- „ P a s s 

W * b > - "i <b> Gb Fec • 
where the passing-ion density n^ a s s(b) is scaled from the central-cell 
density by 

(2.4.13) 

npass, 
niwC 
n? a"(b) - A+. 

— = e ' P C /^wc| e V T iwC e r f c | ( *b_) 1 / 2 j 

vT^~Rj{e {< erfc 
* 1 / 2 

|(Tiwct lb- f toj) 1 

* K + * ' 

e 1 w C erfc (K^HI 

where 

/ l - R e 
m 

• b - £* + •* 
TiwC 

erfc ml] (2.4.14) 

R

 B b / n r \ 
m " Bn,Xo 

c . _ V b - V » b - W 
E V R n, 

ib* =. e * + 
Rn,<*b - * W 

T^X 
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•• 
R 0 * b •• R 0 - l 

R0 +b 
" 1 - IL 

e* 

and erfc (x) is the complementary error function of x. Here, B b is the 
magnetic field at the barrier (anchor) midplane, B x is the field at the 
axicell midplane, and B m X o is the outer (12-T) mirror of the axicell. 

Equation 2.4.13 is solved for the barrier potential <tb. Then the 
passing density at the barrier midplane is given by Eq. 2.4.14 while the 
trapped- and total-ion densities at the barrier midplane are obtained from 

n f a p ( b ) « (% - 1) n* a s s(b) , (2.4.15) 

n i A(b) = ̂  n? a S S(b) , (2.4.16) 

where g. is the ratio of total warm-ion to passing-ion density, and G b is 
the ratio of total ion density to passing-ion density. 

The hot-electron energy is determined by assuming that the ions and hot 
electrons at the barrier midplane supply a known value for B. Hence, for 
energy in keV, 

B t 

EehA = ( 2 ' 5 * l f l 1 5 VE " Ma> i / r 7 K nihA "A 

Tiw " ft " " %W »i-*|/CnH«(b) (1 - F 0 J ] , (2.4.17) %M "iwAJ/^i/ mAi 
where B is in tesla and the density is per cubic centimeter. 

2.4.4. WARM-ELECTRON AND CONFINING-POTENTIAL PARAMETERS 

The peak in the potential profile for the anchor occurs at the position 
shown as â  in Fig. 2.1-2. The potential and density peak are produced by 
9(P injection of the sloshing ions at the 1.2 tesla point in the vacuum 
field. Fokker-Planck calculations " indicate that the potential and 
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density peak occur inboard of the injection point. The potential peak is 
enhanced by auxiliary electron heating by microwave power applied near the 
1.2-T position. 

As in Ref. 2.12, the warm-electron density at _a is obtained from a 
quasi-neutrality condition, 

% A ( a > * niA<a> " W a ) " necA<a> • < 2' 4- 1 8 ) 

The hot-ion density at £ is taken to be a factor R s times the density at the 
barrier midplane. As shown in Figs. 2.4.1 and 2.4.2, Fokker-Planck 
calculations indicate that a value of R s * 2.8 can readily be achieved. The 
hot- and cold-electron densities at a_ are mapped from the known values at t>, 
using 

and 
B a / TecA V 2 

B b VecA + * V 
necA<a> = necA<b) r U T U * 1 • (2-*-20) 

E . |( is the parallel component of the hot electron energy at b̂  and is 
assumed to be about 20X of the total hot-electrcn energy. 

The confining potential for the warm electrons, 6o 9, is defined as 
a 

If we use the model of Ref. 2.1, the warm-electron temperature can then be 
determined from 

6*a / 1 + JAB \ 
T " 5 - * l n (Ncw ~) • (2.4.22) 
TewA \ « 1 • N c w J A B / 

as a function of the cold-electron ionization source J g. In Eq. 2.4.22, 
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Fig. 2.4-1. Loss boundary and distribution-function contours for sloshing-ion 
injection in yin-yang anchor. 
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8.19 x 109 Tg / 2(keV) 
Tee - L % A l a ) • n e c A ( a ) j In ^ • < 2 ' 4 ^ > 

H - V ! / M ^ f2 4 25l fe) 
The cold-electron-source results from the ionization of the sloshing-ion 

beam and the axial high-energy pump beam at the position a. Since the value 
of J will be determined subsequently, we can find the warm-electron 
temperature that 1s consistent with the neutral-beam requirements and the 
required potential profile. 

2.4.5. ANCHOR-CELL BEAM REQUIREMENTS 

The neutral beams injected into the barrier region in the anchor include 
the high-energy sloshing-ion beam, incident at 90° at the 1.2-T outboard 
position, and an axial high-energy pump beam (HEPB). The HEPB is designed to 
pump out the warm trapped ions, which would otherwise build up in the 
potential well in the barrier. In addition, the HEPB pumps the hot sloshing 
ions and maintains the appropriate ratio of peak to minimum sloshing-ion 
density in the anchor (R ). 

The potentially trapped ion current in the anchor and transition regions 
2 IS 

is determined using a bounce-averaged Fokker-Planck calculation with the 
loss boundaries and distribution functions shown in Fig. 2.4-3. The 
magnetically trapped current is calculated as in Ref. 2.1 with a correction 
factor (D 
given by 

2 lfi factor (Devoto ) included. The magnetically trapped current then is 

q 9„(»*) n 2 (b*) V* 
X" ~ 2.5 x 10» i f * (20V1O 2 0 ' ( 2' 4' 2 6 ) 

IW 

where the Devoto correction factor for the HFTF-B Axicell geometry is 

D * 8 , 

and 

B. + B • $ > 
s i n e * * , ! 2. h + _ S _ \ (2.4.27) 

" m A o \ iX\v' 
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Fig. 2.4-3. Loss boundary and distribution-function contours for passing and 
trapped ions In the transition region. 

89 



The position b_* is the point where the potential on the outboard side of the 
barrier rises back to the value in the central cell; V b is the effective 
volume in this region; and g b(b*) = 2.75. The value of I is generally quite 
small and equal to about 10X of the potentially trapped ions. The total 
trapped current is then taken to be the sum of the potentially and magnetically 
trapped currents. 

The magnitude of the HEPB is determined by the requirement that the 
charge-exchange pumping rate in the bottom of the barrier matches the pumping 
rate necessary to maintain the sloshing-ion-density distribution with the 
required ratio of peak density to minimum density as determined by 
bounce-averaged Fokker-Planck2'17 calculations of the anchor. Since the 
HEPB is absorbed and also pumps in the other regions of the barrier and 
transition regions, the total pumping by the HEPB is about 15% of l t r aP. 
The remaining 85X is to be pumped by the passing-particle barrier beam (P2B2). 

The ionization current of the sloshing-ion beam in the anchor balances 
the scattering losses of the hot sloshing ions and the charge-exchange losses 
off the HEPB. If, in addition, the one-half and one-third energy components 
of the sloshing beam were not confined when injected at the 1.2-tesla point, 
they would act as a charge-exchange pump removing the hot sloshing ions that 
are confined. The ionization current would then be written 

I + l H E P B 

T(ion) _ scat ex „ . ,;,, 
^slosh r=J-2 - (2.4.28) 

scat ? 1ft 
Here I is the scattering-loss current obtained by Logan from 

modeling Fokker-Planck calculations of the scattering loss of the sloshing 
ions, 

.scat . q n i h A ( b ) "slosh . 
1 TnrT ' (2.4.29) 

i n T , s losh 
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and 

<">slosh = 2' 2 3 « 1 o l° < ^ 3 / Z 1 o 9 1 o ( B ^ n - » i n j ' ) ' l 2- 4- 3 0 ; 

(<OV> 4 4 <0V> < 1 

— J 5 = ^ — 3 1 , (5.4.31] r _ j*1,1/2,1/3 1 TJ 
t _ < g V > i J f 

j-1,1/2,1/3 V j j 

<DV>. 
1 1 f, E, 

cin y » <ov> i j ' l«.«.d<i; 

j=1,l/2,l/3 V j ° 
When the one-half and one-third beam-energy components are not confined, 

the terrn f is the ratio of the charge-exchange rate of the one-half and 
one-thii-d beam-energy components to the ionization rate of the full-energy 
component of the sloshing beam. For our standard case, all the beam-energy 

HFPB 
components are confined, and F~ is zero; I — ' s t h e charge-exchange 
loss cu»-rent resulting from charge-exchange interactions between the sloshing 
ions antj the HEPB ions as they traverse the anchor. For the reference-cas$ 
parameters, the scattering loss of the sloshing ions is comparable to the 
charge-t-xchange losses of the HEPB. 

fite ttmtstTCas- frttffcjted1 frr £cp>. £.4.3? md £.4.32 ere aver tJte fa??, 

the one-vhalf, and the one-third beam-energy components of the beam; 
<ov>-i ^nd <ov> . are the total ionization and charge-exchange 

1J CX J 
rates ft,r beam component j. Similarly, E^ and f, are the energy and 
atomic fraction for each beam component; and v- is the velocity of beam 

J 
component j, corresponding to the energy E^; ($ m - <t>-jnj) is the 
potential difference between the outer mirror and the point of beam injection. 

The ionization current from the sloshing beam and the ionization current 
of the N£PB deposited in the region of the potential peak provide the cold 
electrons that form the cold-electron source J in Eq. 2.4.23. This value 

e 
of <L places a limit on the maximum sloshing-ion current and HEPB current 91 



that can be used in the axicell. When 0 becomes too large, the model 
Eq. 2.4.22 only has solutions for T e w A > 6ta, a regime where the model 
becomes inaccurate. In practice, the value of 0fi is limited to several 
microamps per cubic centimeter. 

2.4.6. MICROWAVE POWER REQUIREMENTS 

The microwave power supplied to the potential peak region .a and the 
thermal barrier region b. in the axicell 1s calculated in a manner similar to 
that in fief. 2.11. The power per unit volume at a is given by 

B B 
Pa " Jin ̂  <TewA " TecA> + Je (*. + ^ Tew A) + I Jin <TewA ' W • < 2- 4' 3 3> 

This is the so-called "weak ECRH" limit of Ref. 2-11, where 

J<n ' ; J — T ^ e (2.4.34) Jin UnT 
f'ewA\ 
^ecA' 

and 

™ * T (• + £ ) "«*<•> Tee i**'1'*" - 1) ' (*.4.35> 
The dominant term in Eq. 2.4.33 is the one involving J . Hence, the power 
at â  is controlled by the magnitude of the cold-electron source at a_. 

The microwave power needed to produce the hot electrons is modeled as 
the sum of scattering and synchrotron radiation losses. The scattering loss 
per unit volume is 

_ q n*fl(b) (1-Fec) (E e h A/2) 
PSCATT - m » (2.4.36) 

where 
nr= 1.6Sx 1 0 8 E 3 ^ log (R e f f) . (2.4.37) 

The numerical coefficient of Eq. 2.4,38 is low by comparison with recent 
9 1Q 

electron Fokker-Planck calculations in this geometry, which are best 
p fitted with the coefficient 2.8 x 10 . However, those calculations include 
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only the hot-electron population and neglect drag effects between the hot 
electrons and the other electron populations whose spatial distributions 
overlap. Depending on the details of the spatial distribution, the drag 
effects might add as much as 50 to 60* to the power estimate for the hot 
electrons at b. Thus, retaining the lower coefficient in Eq. 2.4.38 is 
tantamount to correcting for these drag effects, giving a more realistic 
modeling of the total microwave power needed at b_. However, because some of 
this drag power is transferred to the warm electrons at a_, we would expect the 
power estimate P, given by Eq. 2.4.33 to be higher than necessary. 

a 
The value of R e ff is taken as the smaller of R f i f f for losses to the 

inner-mirror point or the outer-mirror point, where 
8mm/ Bh (' " 8 J 1 / Z 

fi... (inner) - * ' • ? . « b , (2.4.38) 
e T f l * VShA 
R e f f (outer) - B m A o / B b (1 - B b ) 1 / 2 . (2.4.39) 

Here we assume that the potential at the outer-mirror point is the same as that 
at the bottom of the thermal barrier. In general, because B .. is so much 
larger than B ^ , R e f f - R e f f(outer). 

2.4.7. CENTRAL-CELL ION-PARTICLE AND ENERGY BALANCE 

This model assumes all the central-cell ions are thermal ions with a 
temperature T..,. In the most general case, some of these ions are supplied 
by ionization of gas and by a neutral beam in the central cell. In addition, 
some of the ions produced by charge exchange and ionization of the 
passing-particle barrier beam (P2B2) in the transition region become trapped 
in the central cell. A third source of ions for the central cell is the 
ionization current from the axicells adjacent to the central cell. The 
balance equation for the thermal ions then becomes 

.loss . ,.trap . , TP2B2 ,P2B2 !i * Z 1 + 2 Iabs fcx 

" ft. * " P Z B 2 S * k ion * «x ion • 12.4.40) 
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The axial loss current I ^ 0 " of the warm central-cell ions is given 
by 

>r-<fe. «•••«) 
where (nT) 4 u, r is the ion Pastukhov confinement parameter for the warm ions; P2B2 K " „ is the fraction of ions from the passing-particle barrier beam that trap P?R? 
are eventually confined in the central cell; f ^ is the fraction of the 
absorbed P2B2 that charge-exchanges on the passing ions in the transition 
region; i t r a P 1s the current of ions from the central cell that traps 1n the P2B2 transition and anchor regions; I-jjc is the total passing-particle 
barrier-beam current absorbed in the transition region; l^fon* 
*c ion* a n d ^x ion a r e t h e i ° n ' z * t i o n currents for the central-cell gas 
and neutral beams and the axicell neutral beam, respectively. The factors of 
two in Eq. 2.4.40 account for the particle losses and inputs from each end of 
the system. 

The ion-energy equation is obtained by balancing the energy carried out 
by each ion with the energy input of each source ion. The difference in 
potential between the point of production of the ion and the central cell is 
also considered in the energy bookkeeping. The equation is 

'C ion 'ii Ftrap + 'c** + 2 I a b ? ^?2B2 ' *L + %J f5J 
+ 2 I X ion <Eloss + *W 

< f l V > cx " i x " 
X ion *uloss "Tpc *Mc' <ov>. n. v 

ion iX 

- A ™ <TiwC + *c> + 2 l t r a P *i iwC 

<«>?" . " cx ,gas E ? fP2B2 TP2B2 F 

<ov> g a s C i o n i w C c x a b s i w C 

ion 

+ T n ^ ~ (Ei«C - EeC> • < 2 ' 4 - 4 2 > 
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where E* - is the mean beam energy trapped per beam neutral ionized, and f.. 
is the fraction of this energy deposited in the ions. The values of tt r a [ > and 
f ^ are calculated with the formulism of Ref. 2.12 using the atomic fractions, 

f 1 = 0.833 , 

f 1 ,2 = 0.075 , 

f 1 / 3 • 0.092 , 

calculated for the 80-kV neutral beams with a 90:5:5 molecular mix in the arc 
chamber. 

The absorbed fraction of trie P2B2 supplies to the central cell an energy 
per particle, ( E p 2 B 2 " **|_ + A*pc^' w n e r e Ep2B2 i s t h e a v e r a 9 e b e a m energy and 
<Sij>L is the average potential drop between the potential peak in the axicell and 
the location where the P2B2 ion is born. The neutral beam in the axicell 
contributes energy equal to U s loss energy (calculated in Eqs. 2.4.8 and 
2.4.9 from the axicell plus the change in potential A i p c . Moreover, 
because the passing ions from the central cell can charge-exchange with the 
axiceTl beam, there is a second term in the energy balance that depends on the 
axicell ionization current. 

The loss terms in the energy balance include the axial energy carried out 
by the ions, the energy lost by ion trapping in the transition and anchor 
regions, the charge exchange losses by passing ions in the transition and by 
interactions with gas in the central cell, and also the energy lost by 
electron drag. 

In the general problem of particle and energy balance, we solve (2.4.40) 
for the gas current (for a given ion-confining potential) and substitute into 
Eq. 2.4.42. This gives the rf power, p I C R " , as a function of the 
central-cell-beam ionization current, L. . , or vice versa. However, to 
find the optimum (m)i /. for the system, we solve the balance equations with 
the restriction that lf*\m ' 0. In addition, we set the central-eel I-beam 
current to zero and obtain the maximum ( n r ) i w C that can be achieved with the 
other given beam inputs. With the gas and central-cell beams set to zero, we 
solve Eq. 2.4.40 for I o s s (and hence $ r) to give particle balance, and 
then use Eq. 2.4.42 to solve for the value of p""*", which gives energy 
balance. 
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2.4.8. CENTRAL-CELL ELECTRON-PARTICLE AND ENERGY BALANCE 

The electron-particle losses are all assumed to be axial losses, so that 
the electron-loss current is written as 

2 
.Loss _ q neC c ,„ A ._, 
e " < n T)eC * (Z.4.*3) 

Here, (nx) e C is the Pastukhov confinement for electrons in the confining 
potential 4>e. 

The electron sources result from the ionization of the gas, the central 
cell and axicell beams, as well as the HEPB, P2B2 and sloshing-ion beams in 
the anchor and transition regions. In addition, a source of secondary 
electrons I.„ flow in from the end walls. This current is given in terms 

2 20 
of the primary electron loss current by 

jsec . k jLoss f { Z A M ) 

where A is the secondary-emission coefficient. In terms of the total ion 
loss out the ends of the system, l t o t , 

X" s e c ^ t o t » < 2 - * ' 4 5 > 

where 

i"" + r 

q n ? r V„ .tot _ H "iwC 'c . , /.slosh . .HEPB . TP2B2 . t \ 
" ( r r r ) iwC V A i o n i o n i o n x 1 o n ) ' 

The electron-particle balance then becomes 

2 
.sec , ,gas ? /.slosh .HEPB . .P2B2 . T \_ q neC VC 
1 + *C ion + l + 2 [h ion + ^on + ^on + h ion)" ( n T ) e C • 

(2.4.46) 
In the central-cell electron energy balance, the position of ionization 

is taken into consideration. The potential change between this point and the 
central cell is then added or subtracted appropriately, depending on whether 
the electron is a net energy source or sink to the central-cell electron 
population. The rate equation then is 

96 



T n t T ^ < EiwC * Ee C5 + I " ' *e * P C + 2 < P a + pb> 

+ h ion H " fii> ftrap + 2 [»5? * + ! 1 ? <*L - A4>pc>] 

In this model, the secondary electrons carry in the energy $ obtained 
from the potential drop from the wall to the central cell. Me assume that all 
the microwave power that produces the thermal barrier at b_ and the potential 
peak at a. eventually ends up in the central cell. This tends to overestimate 
the central-cell power input, since some of the hot, magnetically confined 
electrons that form the thermal barrier are lost to the <?nd walls, rather than 
to the central cell. 

The term P. allows us to introduce power for direct electron heating of 
the central-cell electrons. A portion (1 - f^.) of the trapped energy from 
the central-cell neutral beams goes directly into the electrons. The 
electrons produced by ionization of the HEPB and P2B2 in the anchor and 
transition carry in energy obtained from their change in potential in entering 
the central cell. The electrons produced by ionization of the sloshing-ion 
beam in the anchor must climb a potential approximately equal to $ to 
reach the central cell, and hence appear as an energy-loss term in the central 
cell. Similarly, the axicell electrons must climb the potential A* to 

pc 
reach the central cell. 

The solution of the two rate Eos. 2.4.46 and 2.4.47 gives us the 
secondary-electron current and a new value for the electron-confining 
potential 4 . Recall that we initially set $_ by requiring that the 
ion and electron Pastukhov-confinement parameters be equal. Now when we 
introduce the secondary electrons, the electron-confinement parameter and 
$ e are appropriately smaller. This new value of $ is then used to 
recalculate the barrier parameters, beam requirements, and microwave power 
needs. Using the electron-balance equations with these revised parameters 
gives the next iteration value for # . Experience has shown that $ 
converges to better than 1J! in one iteration. 
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Along with the secondary-electron current, we can calculate the 
secondary-emission coefficient using Eq. 2.4.45 and compare it to the value of 
the coefficient when the secondary-electron current is assumed to be limited 
by space-charge effects. The space-charge limited value of the 
secondary-emission coefficient has been approximated by Logan*-"" as 

T 1 / 4 

A s c l - [0.15 in (>e + ̂  T J + °- 6 5 6] ' (Z-*-48> 
If X < A s e c , then clearly some suppression scheme would have to be invoked to 
get 1 below the space-charge limited value. 

The ECRH power necessary to achieve the electron-particle and energy 
balance is larger than the ECRH power required to maintain the hot-electron 
and warm-electron populations against the mainly classical loss processes 
modeled by Eqs. 2.4.33 to 2.4.39. While this extra power cannot be directly 
fed to the electrons in the central-cell region, the energy can be supplied to 
the central-cell electrons by an appropriately designed microwave system in 
the barrier region. The design Mould be flexible enough so that we would 
supply the power necessary to maintain the hot and warm electrons as well as 
heat some of the cold electrons that pass to the central cell. This extra 
power capability in the barrier region could also be used to supply more 
energy to the hot and warm electrons in the event that non-classical processes 
enhance the electron losses in the barrier region. 
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APPENDIX A 

Analytic equilibria with quadrupole symmetry in the 
paraxial limit 

L. 0. Pearlstein, T. B. Kaiser, and William A. Newcomb 
Lawnnce Livermore National Laboratory. University of California. Livermore. California 04550 
(Received 15 December 1980; accepted 1! March 19811 

Mirror equilibria Tor arbitrary mirror ratio and flux-tube eccentricity are obtained to leading order in the 
plasma pressure (beta expansion) in the paraxial limit |axtal scale lengths long compared with radial scale 
Icngihsl. The solutions are given in terms or quadratures over known functions The theory is applied to a 
tandem-mirror configuration. 

I. INTRODUCTION 
Adlabatic confinement In conventional mirrors Is 

controlled primarily by the z component of the axl-
symmetrlc part of the applied magnetic field. How­
ever, to create a stable configuration (Interchange mo­
tion being the problem) it is necessary to generate a 
"mlnimum-fl well." This Is usually done by adding a 
quadrupole (sometimes even a higher order multipole) 
component to the main field. This addition, of course, 
makes the guiding-center equilibrium problem three-
dimensional. In general, the solution of this equi­
librium set of equations requires large sophisticated 
codes and state-of-the-art digital computers.1'' Even 
then results tend to be relatively crude, because of the 
limitations of computer memory capacity and speed. 
However, because the symmetry breaking field is weak 
compared with the main axisymmetric field, and be­
cause the radius of curvature of the main axisymmetric 
field is large compared with other characteristic 
lengths, an important simplification can be made. 
This simplication in the equilibrium model has been 
called the "long-thin" or paraxial approximation. 
Specifically, if we identify the small parameter \ as 
the ratio of radial scale length to axial scale length, 
then it can be systematically seen that: the perpendicu­
lar components of the magnetic field are of order \ 
compared with the main ^ component; the radius of cur­
vature is of order \~' compared with the radial scale 
length; and the local parallel current i s of order A 
compared with the local perpendicular current. 

Using this ordering, we generate a reduced set of 
equations in flux coordinates for the equilibrium in 
Sec. n. These equations are nonetheless a formidable 
set, and solving them is still an extensive numerical 
problem, even though they have the further advantage 
that z is a time-like coordinate in the partial differ­
ential equation determining the flux-line geometry. 
That is, the equation can be formally integrated from 
one plane of constant e to the next and then information 
from the original plane can be discarded. Hence, in 
principle, the required computer storage becomes that 
of a two-dimensional problem. Unfortunately, the ax­
ial boundary conditions come from both ends. 

To make further progress, we look for a self-con­
sistent equilibrium to first order in the plasma pres­
sure. That is , we expand the equilibrium equations 
treating the ratio of plasma to magnetic field pressure 

(beta) as a small expansion parameter, but large com­
pared with »'. This expansion Is carric.1 out for quad­
rupole symmetry in Sees. Ill and IV; in Stc. ID we de­
velop the general perturbation scheme and in Sec. IV 
we obtain explicit solutions. The solutions are given 
as quadratures over known vacuum-magnetic-field 
quantities (functions of 2) and over prescribed pressure 
profiles (functions of mod-B and the principal flux). 
We emphasize that, given the natural smallness param­
eter A, we need only assume low beta to obtain analy­
tic solutions; the mirror ratio minus one and llux-tube 
eccentricity are arbitrary differing from zero by terms 
of order unity. 

Section V gives our results. There are two features 
of the equilibrium which we indicate here. We find, as 
Stupakov did,3 that there is a breakdown in the pertur­
bation expansion, an apparent bifurcation point when 
the flute instability criterion is marginal. This we be­
lieve to be an interesting point; whether there is, in 
fact, another equilibrium we are not able to say at this 
time. The other feature, which is very favorable, is 
that the sell-consistent equilibrium reduces the strong 
ellipticity in the transition regions of tandem mirrors. 
This is contrary to the results in Ref. 3. The reasons 
for this difference are discussed in Sec. V. 

The Heavislde-Lorentz system of units, in which t 0 

= li0 = l, is used throughout. 

II. EQUILIBRIUM EQUATIONS IN THE PAHAXIAL 
APPROXIMATION 

Our starting point is the general tensor-pressure 
magnetostatic equilibrium conditions,* 

( W > ) J = Q K U) 
and 

dB~"dB\Bt' 
where 

P = ff/Z+pt, 
Q = B>+pl-p., 

(2) 

(3) 
(*) 

B is the magnetic flux density, K is the curvature vec­
tor, andp1 and J), are the pressure components per­
pendicular and parallel to B. The derivatives djdB In 
Eq. (2) should be understood as directional derivatives 
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in the parallel direction, i .e . , 

d 
d£ = (B*VB)- 'B-V. ;5) 

Here and elsewhere, |B | i s abbreviated as B and 6 de­
notes the unit vector parallel to B. Then 

K = i ' V o = - * x ( V X * ) . (6) 

Apply the operator 1 * 7 X 1 0 Eq. (6) to obtain 

B-Vjca =Bl'V{i/B), (7) 

where i, the parallel current per unit magnetic flux, i s 

i = b-Vxh. (S) 

Next, apply the same operator to Eq. (1) and obtain 

i ' V x QK° -tB%-V{Q/B). 

Then, with Eq. (7) we have the usual parallel current 
equation 

(9) 

These equations, given the requisite conditions for 
welL-pogednegs> (or local stability) 

-== > 0 (mirror mode) do 

and 

Q > 0 (firehose mode), 

determine the equilibrium. 

We now introduce flux coordinates a, 0 with the 
property that 

B = VaxV$, 

o"Va = t - V 0 = O . 

(10) 

(11) 

The pressure distribution is assumed to be of the spe ­
cial form 

^ , . =*«,.<«.-5)- (12) 

That Is, aside from its dependence on B, It i s a func­
tion of only one flux coordinate, the sn-called principal 
flux coordinate. We trill say more about this later. 

FromEq. (2), [remember d/dB = d/iB)mJt\ we obtain 
the usual relationship between pt and p„. 

*~*m- (13) 

so that only p„(a,B) need be specified. 

Henceforth, we assume a large-aspect-rstlo system 
so that we make the paraxial (or long-thin) approxima­
tion." That i s , lengths in the x ,y plane are small (of 
order \) compared with the axial scale length (In the z 
direction), and the field components 8,,B, are s imi lar­
ly small, of order x, compared with B4, and B4 van­
ishes nowhere. In all calculations henceforth, all 
terms of relative order X3 are systematically dropped. 
If we take the unit of length to be on the order of the 
transverse scale length, then all gradients in the z di­
rection are of order X, and because of this x i s of or­

der A2. With ds denoting the element of arc length 
along a flux line (constant a, 8 ) , we have 

ds = dz. (14) 

Furthermore, to this order 

B, = B. (15) 

From Eq, (1) It follows that 

P = PU> =!**;(*), (16) 

where B„ denotes the vacuum field. Given P( i ) and 
p^ia.B), only a functional inversion is required to de­
termine B,p„pl3s functions of a,:. All are Indepen­
dent of 9. 

To complete the description of the equilibrium re­
quires a determination of the coordinate transforma­
tion [arOrz> to Cr,y,2). It Is thus necessary to deter­
mine the (lux-line geometry -(CT, g , ; ) , y (a , fl,s). 

One equation In the two unknowns x,y is immediately 
obtainable from the definition of a, & as flux coordi­
nates, viz. . 

d{x,y) I 
i(a,e) B (11) 

(see Appendix A), where B !s a known function of a and 
z . (The standard notation Is used here to denote the 
Jacobian of x and y with respect to or and 0.) To obtain 
a second relation, we first define the covariant curva­
ture components H (normal curvature), » (geodes ic 
curvature) s o that 

*=/tVor + » V S . (18) 

Thus (primes are used to denote partial derivatives 
wl'h respect to z for fixed a, 0), 

Be da (19) 

» = *"%>?'%• UO) 

Furthermore, the definition Eq. f8l reduces to 

'"Kdia.B) 3 < a , « y < 2 V 

(see Appendix A), and finally, from Eq. (9), we obtain 
the desired second equation in x and y of the form 

» % - * $ ) ' • 
(22) 

where again <? is a known function of or, z. (The partial 
aQ/ao is taken for fixed z.) Presumably Eqs. (17)-
(22), in Cunjunction with the appropriate boundary con­
ditions, would suffice to determine the unknown coor­
dinates t{a ,B,z) and y(ar ,0 ,z) . In the next section we 
linearize these equations about their vacuum values to 
obtain the equations which define the flux line geometry 
to leading order in beta (the ratio of the plasma energy 
density to field energy density). 
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I I I . FLUX-UNE GEOMETRY (LEADINGORDER 
IN BETA) 

To lowest order the flux-line geometry is determined 
by the vadium fields. For quadrupole symmetry in the 
paraxial approximation, the field line trajectories can 
be written 

where o and T satisfy 

(23) 

(24) 

(25) 
and where * 0 and y„ are the coordinates of the field 
lines at the mldplane (i = 0) of the configuration, and 
£„= B{0). i n What follows, wc assume the type of sym­
metry defined by the two conditions 

B,(t)=U„{.i), 

and 
<rft/ = TC-if, 

(26) 

cm 
This, of course, is the symmetry of the standard 
minimum-/} mirror (with the fans rotated through an 
angle of 90' relative to each other) and of tandem mir­
rors such as TMX, Ambol, and Phaedrus. We also 
identify the transverse vacuum-field components 

B, = r ' f l = i i S „ o \ 

B,=y*B = y 0B„T', (28) 

where the first equality is valid for any field In the 
paraxial limit, and the second is valid for the vacuum 
field only. The components B„ B,, as such, wilt not 
appear explicitly in further calculations but are written 
down here lor completeness. 

Next, we identify the principal flux coordinate to this 
order. Fro,m the parallel-current constraint (22), we 
force 

/ : (29) 

in order that the parallel current will vanish at the ends 
of the device (a necessary condition for a plasma to be 
CDnSisaei ami jsola&d trios (Jhe sttrrpswiisg ssriTOB-
ment). Since 

it* 3a ' (30) 

where p = (p J +p„)/2, i s already of order beta, we need 
only the vacuum values of the remaining quantities in 
(29). If we now make the identification of 

« = ^ = HjJ„<0)/2, r* = xl + y*, 

9 = S = t * j r 1 < y 0 / x 0 ) , 

(31) 

(32) 
we see that constraint (29) is satisfied by symmetry, 
since 

10= -r*(oo" -TT")sin 6cose (33) 

is antisymmetric. Thus, the leading-order expression 
for the parallel current is 

i = r ! sin 20 fL —(oo" - TT*) 2 £ . 
j - Ft a^ 3* 

(34) 

To next order, we set 

v = y , + 1 . 

and obtain, after linearizing Eq, (17), 

?(£,.'') ^ ( r . 1 > . 

(35) 

(361 

dU.S) ?(i/,fi) >&) 
but, now let us change coordinates from i, 6 to x0, \ 
Using Eq. (3), we obtain 

• 1 1 g? </>,-«>). (37) 

In Eq. (37) 6P is the change in the vacuum solution flue 
to the presence of plasma currents. If there is a 
boundary where the flux is fixed (a perfectly conducting 
shell at some boundary denoted by if»), then 

BP. 
/„' dt'PJ& 

(38) 

Henceforth, all quantities refer to their vacuum values 
(in the absence of plasma) unless otherwise stated. 
Since the right-hand side of Eq. (37) is independent 41 
6, we can immediately construct the general solution to 
this equation, viz., 

>J = * T } 0 - T 

(39) 

(40) 

(41) 

where, at this stage, 

is an arbitrary stream function, and the particular 
solution satisfies 

so that 

Te deteetniBxi ihe H\Ce&.us ktociian amqaeiy, we as? attr 
second equation for the fiux-Iine coordinates, Eq. (22), 
and the definition of «", Eq. (21). Linearizing these 
equations generates 

afr' .t) , 3 ( y f , l ) , 3(*,t ') ,.8(.v.il') < 
BU.S) dbi>,e) Htl>,e) a^.fl) B' 

Again, let us put it in terms of xa,yt: 

3v0 3y 0 **<• 3*o B 

If we now substitute Eqs. (34), (39), and (40), we fi­
nally obtain 

(43) 

(44) 

T » ? £ + c * § f = 28ina«#£s<fc«J. TxT' 
with 

S(U, Z) = g f ' ^-piOO- - TT") -1(<7* - T ' ) * ' . 

(45) 

(46) 
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At this point, several remarks are in order. First, 
all Held quantities refer to their vacuum values. Sec­
ond, Eq. (45) is an elliptic equation for ^*ix0,y0]2) in 
which the coefficients are functions only of 2 (i.e.. only 
of a parameter, at this level). Consequently, to solve 
for <fr we first solve Eq. (45) subject to the lateral 
boundary condition that #' vanish at some $ = ip* for all 
x and 6. We then construct 

<&(*c,yo»*>~/ '̂Croryo.z'Jrfz' + tfotro.yo). (47) 

That is, having solved for <£', we know $ to within an 
arbitrary function of .ra,vQ (or equivalent!}'f of the flux 
coordinates). 

To determine 4>0 we demand that the parallel current 
still vanish at the ends to this order In the flux-line 
geometry. Thus, we once again apply Eq. (22) so that 

Again, the first term vanishes by symmetry. Thus, we 
need only compute the correction to the geodesic curva­
ture 

6 M ^ + , "§ i + n- f^ - !2 . as »» as 
(49) 

Let us write this as &v>l 4 6I0 a , wherein the two terras 
represent the contributions of k and i> in the formulas 
for i and rf. We first have 

6M, = x 0y 0[-(o*)'o+ (T*)*T -koo" + krrm\. (50) 
Now, since 610, is an odd function of 2, it too does not 
contribute to Eq. (48). Finally, the remaining piece is 

After rearranging, 

or, in polar coordinates, 

+ ( r c o s 2 * £ - S l „ 2 e A ) ( ^ « . ) \ <«> 

Finally, making use of symmetry, we obtain the defin­
ing equation for <f>0 

I T 3 " * " - T (52) 

*{rcosli± - stole-^Uu' -t'W\\ , (53) 

and 

*•£*&•* + <" '• (54) 
J.L B dp 

This same Integral, n, appears in the familiar low-fl 
flute-insUuwlity criterion: fT>0. 

At this stage several points need to be made. For 
one, we see that the perturbation procedure breaks 
down when the flute-instability parameter, D, Is 
actually equal to zero. Thus, ti^re is apparently a bi­
furcation in the equilibrium at U.e marginal point, A 
second point Is that the parallel current constraint is 
trivially satisfied beyond the lateral boundary of the 
plasma since the pressure vanishes. Consequently, 
there is not a unique value of <*>0 in the vacuum region, 
any one wilt do. Different 60's only correspond to dif­
ferent positions In the vacuum. With a conducting 
shell, d>„ Is chosen to force ty - $* on the boundary. In 
general, our only interest is in the flux-line geometry 
within the confined plasma; consequently, we do not 
examine the exterior region. 

Thus, we see that Eqs, (45) and (52), along with the 
appropriate definitions, completely determine the 
equilibrium. AH that remains is to solve the elliptic 
differential equation (45), which is done in the next 
section. From this point on, we consider onLy the case 
in which the boundary is at infinity, where <p' must be 
well-behaved. 

fV. SOLUTION FOR 0 

We solve Eq. (45) by transforming It to Polsson's 
equation in the stretched coordinates (T"IX0,C-"I>,<|)» 
which we then Invert by means of the appropriate 
Green's function. In terms of the coordinates it, P) 
defined in (31) and (32J, the Green's function is 

G(rt 9\r\ »') = jj In \ , 

A = -, (rcosfi -r'cose') 2 + —= (rsin$ - r* sine')', 

and $' Is 

(55) 

1329 Phys. Fluids, Vol. 24, No. 7, July 1981 

where we have again used (31) to express r' in terms 
of* ' . 

Next, we integrate by parts with respect to tj>' to ob-

Pearlstern, Kaiser, and Newcomb 1329 

106 



,/cosficosf slnSslnS'Yll 
- " • ^ — ? — + o' m-

We then transform the logarithmic term by integrating 
1 

£[(l/T 3H{'-2pt<=ose-

by parts on 6' and obtain, after some algebraic reduc­
tion, 

2OTTB 0 ^ J 0 A 

tcosfi' .sine' r /cose .sintfY] 

We evaluate the integral over 6' by converting it to a 
contour integral over the unit circle: e,B' - C, 

^ 1 • r^'Qti* I T / rrCUl/T'Hr-Zprcose-
* = ^ I m J 0 ^ s { ^ a U J d c o / T - K t * - 2 p : c o 8 ^ 

where pa r/r'. The £ integrand has (our poles. Two 
are roots o! 

and two are roots of 

£ J-2pY*£-n* = 0, 

where 

V-ite"-^-"), < 5 7 > 
and 

H*3(r*o) / (7 io> . (58) 

We henceforth assume that Tiff , Implying that u" * I, 
«" < ! . The final answer will be independent of this 
choice. We write the roots as 

£,' = p>f + r ; , j = i . 2 . < 5 9* 

where 

r; = »<-irV<x')J + n T " . j = i,2- (6") 
It i s then possible to show that the residue at each of 
the poles i s given by the general formula 

«i = ( i / « i i W / r ; » i i . <si) 
With Eq. (61), Eq. (56) reduces to 

1) + (1 /» ' ) ( { ' - 2ia£ sm« - U | 
U , - ( l /<F»)<C'-2fpts in8- l ) ' ' 

(5SI 

1 1 f ^ u*v* 
ZOT fl„ J, „ , „ I , 

(62) 

the sum including only those poles lying inside the unit 
circle. 

All that remains is to locatethe poles. Consider those 
at £ = £). We note that at p = 1, I £/l is independent of 
8, [n particular, 

ie;il... = i . I R I L I ^ * . 
We also observe that 

lt;llc=a=^r*. 
independent of e. Now consider \l',\ for 6 = 0. We see 
that 

|Sj lU= -(-D'ipH - u'l+lip'd - V'f * u'f", 
a n: notonic function of p. For 0 = n/2, there are two 
possi--ilities, depending on the value of p. Ifp<2V7T*/ 

(1 + n.'), r ; is real, and 

If p > 2V u*/(l + p"), on the other hand, TJ is purely 
Imaginary, and we find 

ICl lo../. = lpU * u->M-II'|ip'(l • „-f - n'l'". 

again, a mono tonic function of p. Finally, it can be 
shown that rf|c;| *d9= 0 If, and only \U 9= 0 or a'2, or 
if p = 0 or 1. The net result of the foregoing considera­
tions is tHat all possible values of \ Jj| are confined to 
the shaded region of Fig. 1. 

A similar diagram could be constructed for )z'f I by 
recognising that 

it;)* * -»•*; , 

| j ; ! - ^ j y ) l t ; l - (63) 

From Fig. 1 and Eq. (63) we conclude that for p < J, 
i .e. , &'>4; the contributing poles are ij. Referring 
to Eq, (62}, we see that in this case the sum over the 
poles i s proportional to (r;)" 1 + ( r j ) ' 1 = 0 . The effect 
is to restrict the y integration to the range [0,$>\. 
Again referring to Fig. 1 and Eq. (63), we see that, 
for p^-1 Gi'<iM, only the poles at C- £\ contribute. 

2y£ 1 

PrG. 1. Sketch showing the Location of the poles t = K*f relative 
to the boundary of the unit circle 1 t 1 = 1. 
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Thus, from Eq. (62), 

We can simplify further by noting that (x'/T J)* = x'/V \. 
Therefore, finally, 

In Eq. (64) and henceforth we define 
ja a u". (65) 

After considerable algebra this solution has been shown 
to satisfy Eq. (45) by direct substitution. It can easily 
be shown that if S Is a polynomial In $ of order .V, then, 
{or i<i/t, $' has harmonics up to sin2(Af+ 1)6, Onthc 
other hand, for i > i-B, all harmonics arc generated (al­
though, of course, falling off as <!'""). To complete the 
solution, the stream function itself is given by 

"Jf * = J 4>'(M,2')aV +4,(0,9), (66) 

where #„((>, fi) is obtained from Eqs. (52) through (54). 

In Appendix B we write down the explicit equations 
for the equilibrium inside the plasma source for the 
following pressure profiles: 

/>„ = (1 - */*,)p,(B), 

and 

(67) 

(68) 

where p„(B) is chosen to fit the various tandem mirror 
configurations, and the C dependence is assumed to be 
the same in different regions of the system. Although 
configurations in which the weighting function varies 
from one region to another are conceivable, we do not 
consider such complications. 

V. DISCUSSION 

It should be emphasized that equilibrium based on the 
anisotropic magnetohydrodynamlc equations does not in 
itself guarantee long time equilibrium. These equa­
tions only assume <ji, J) invariance. To ensure equi­
librium on a drift time scale, the particle distribution 
must satisfy the drift kinetic equation 

St e\ 
Mf 5F _ PJC S£ 
w ee as a* ) " • (69) 

where the partial derivatives imply in,J) held constant; 
K is the Hamiltonian defined in terms of the action as 

J= fds[2(K- iiB-&t)/m]l/*; (70) 

and its derivatives are proportional to the respective 
VB drifts. Now, the VB drifts due to finite pare 
large (of order X~2) compared with the curvature drifts 
and since £ is a function of ip only (<3 dependence is of 
order A3), the drift kinetic equation is automatically 
satisfied to the lowest order in \ since F is not a func­
tion of 0. 

Next, before we present a detailed equilibrium, the 
following points should be made. We note that the 0 
correction to the flux surface defined by p{sii,B), is in­
versely proportional to the instability criterion {note 
the definition of IT, Eq. (54)]. At the marginal point 
the perturbation expansion breaks down, i.e., £ 0 — » t 

which implies a bifurcation in the equilibrium. Wheth­
er the other equilibrium is physical or not we cannot 
say ai this time. 

Another observation regarding this term is that the 
signs of £ 0 and n are the same. The numerator on the 
right side of Eq. (52) for the tandem mirror configura­
tion is positive definite; to see this consider Eq* (B9). 
Given that the central cell is generally axisymmetric 
over most of Its length, only the second term propor­
tional to &, in Eq. (B7) Is scaled with this longest 
length. All other terms in the Integrand are zero in 
the axlsymmetric region and can be dropped. Then, 
for this term we have 

16 iv* Cl it 
r - - « & " i » " j [ > § * m * - T T , ' ) 

*J. 55TT7F J..* B{°" " " '• 
Now define t -- ±1 as the boundary of the axisymmetric 
region such that I/{L -l)"»\ and consequently, 

and finally we have 

^-'12 3 ^ 1 B lidEptou-rTrn/B S i a q 6 ' { 1 V 

The form of Eq. (71) is the same as that derived by 
Stupakov3 who considered only the case where I was 
very large. 

Now the flux surface at the midplane is easily seen to 
be, Eqs. (3d) and (40), 

|MOP*lO)|=*(l+2ft> + tf«2g«. (72) 

Hence if n <0 (denominator >0), which it must be for a 
stable configuration, the octupole distortion squares off 
the surface. With the other sign the surface exhibits 
a diamond-shaped distortion. 

This property explains the difference between our 
results and those of Stupakov3 that led to a diamond-
shaped distortion. He argued that a proper boundary 
condition was /„ - 0 at the mirror peak separating the 
central cell from the plug, thus discarding any influ­
ence of the plug on the central cell. In general, the 
flute-instability criterion [Eq, (54)] is positive (un­
stable) for the central-cell alone. Because of this 
change in sign, he was led to the constraint that the 
central cell could not be too long or else field lines 
would migrate to the walls because of the finite distor-
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\'l(h 2, Held strength and plasma beta on axis, (at .SI/) on 
nxis, both in i-ttcuv Washed curve) and with plasma present 
(solid curvet, normalized to iBtlu. (W Plasma beta on axis. 
Pt *2pltB\\B ehofrn dashed and 0 s \pt ^pJ/Bl solid. Ver­
tical dotted lines mark the inboard mirror neafcs and mM-
pUnes oi the end cells, 

tlon of the flux. As we will subsequently show we ob ­
tain the opposite effect, that ts, because beta is finite. 
Held l ines reduce their maximum excursion from the 
axis in the centra l -cel l region. 

Now, which boundary condition is c o r r e c t ? Obvious­
ly, if we assume that the m i r r o r i s isolated from the 
outside world, j'„ = 0 at the axial *dge of the confined 
p lasma. This boundary condition, along with the l a ­
tera l boundary condition, completely determines the 
equilibrium. The re is no freedom to specify the p a r a l ­
lel current at the interface of the central cell and the 
plug. We, of course , find that it is not simultaneously 
ze ro at both interfaces. 

We now present resul t s based on the l inear flux d e ­
pendence of the p re s su re profile for a standard tandem 

t / ' i n 
\ /' ; A. : 

A - / ' : V ~ 

50-

I 30-

1 0 -

Fic. 4- The * coordinate of the Held line-<> *'•!„, 4 = "/4, 
in vacuo (dashed curve! and uitii plasma present f solid curv*0. 
Vertical dotted lines arc as in Fig. 2. 

m i r r o r configuration (the TMX Upgrade) for which Ul0)„ 
- 3 x 10 s C, and ^ - 1.35 x 10* G -cm 3 . The computer 
code BFFV ns>d the experimental coil caaftguralton 
Were used to generate the vacuum field functions B{z)t 

cUi on a Cine grid ftypicatty 2W)-4G0 points). Cubic 
spline interpolation was used between grid points so 
that the quadratures arising in the calculation of <j» 
could be evaluated using the Gear method. * In Fig. 2 
we show the dependence of mod-B and pressure on t-
[n Fig. 3 , we plot the paral lel current pe r unit flux as 
a function of t in both the total field and the vacuum 
field. In Fig. 4 , we compare a field-line trajectory 
at finite beta with its trajectory in the vacuum for the 
same flux coordinates . In Figs. 5 and 6, we have s im­
ilar comparisons for the normal and geodesic curva­
tures . Note that although (he OU1) quantity 2#fl ap­
proaches unity in the transition regions for the extreme 
case shown (<t = 3>a), it is small over the bulk of the 
plasma because it s ca l e s a s r 2

4 In Fig* 7, we compare 
flux surfaces in the finite-beta field with those in the 
vacuum field at the midplane of the machine, the m i r ­
ror peaks, and the midplane of the plug. We see 
squaring off of the flux surface at the midplane of the 
machine (octupole distortion). We also note the r e ­
duced eccentricity at the inboard m i r r o r , the plasma 
currents a r e attempting to reciccular ize . Conversely, 
,iie eccentricity at (he outboard mi r ro r i s increased . 

~ 0.5 ^ 'tl-% -1-0 *Y\/T\n-
.A /--.. . 

V 
1 

: t -. 0 
b 

Is 1.0 

FIG. 3. Parallel current per unit magnetic flux calculated 
from E<3- <22* on the field line £= # a . fl-r/4. fa (*J the equi­
librium magnetic field was used In the calculation, while in 
<b) the vacuum field was used. Vertical dotted lines are as 
in Fig, 2. 
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FIG, 5. The quantity 2(91 on the field line l~=t>g, » = */*. in 
both the equilibrium magnetic field (a) and in vacuo <b). Ver­
tical dotted Itafts *re Vt. Fig, 1. 
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f IG. 6. The geodesic curvature on the WcW JJnr *» $#, 9*n/4, 
l(i both the equilibrium magnetic field (a» and in vacuo (b). 
Vertical dotted Hues are as in Fig. 2. 



To 0{\), however, Eq. (14) implies that 

with which Eq. (A3) becomes 

Ho,® " • 
i .e. , Eq. (17). 

To obtain Eq. (21) we note that in the large-aspocl-
ratio limit, the components of tlie unit vector i are 
[see Eqs. (15), (28)] 

&„=*'. ft, -?', o,= l . (A5) 

Inserting Eqs. (A6) In Eq. (8J gives 

, = I • V * b = -x'v" + v V + 5 l l - 5£l 
3r av (A6> 

Tte tiret tvm terms on tne right sftfo of Eq. CAB) are 
OW) relative to the last two, leaving 

K we now use Eqs. (A4) in Eqs. ( A U t o evaluate the 
necessary partial derivatives, we find that Eq. (A7) 
becomes 

W 53 30 Sor da 30 30 3 o / 

- R(^1^1 + !klv)\ 
U(o,ffl 3<cr,»/' 

which i s Eq. (21). 

APPENDIX 6. LINEAR AND QUADRATIC PRESSURE 
PROFILES 

In this appendix, we obtain the explicit solutions (or 
the two pressure profiles given by Eqs- (67) and (68). 
First, define 

*>U>-|<5T*f*|<'»'-TT,>-
and 

*,(«)= u(Jyff)'. 

(Bl) 

(B2> 

(B3) 

Now considering first the linear pressure profile, we 
have from Eqs. (42), (46), and (64) 

„ / i i ^ i V " 

with the definition 

ri = ne'". <B4) 

Integrating by parts twice generates 

or collecting terms, 

*•' - i s : , B [ I t « + * . , « - " 

-^(*' tr)(|-|'+h')]- < B S > 
Taking the imaginary part produces the answer 

Turning to the expressions for £ 0 , Eqs. (52) through 
(54), and noting that ki and k% are even (unctions of £, 
wc have for the numerator: 

• « n r * - « " ) £ " , & ' ( * , , | ) + j [ ( o a + r 1 ) M ( * 1 - ' ^ ) 

(DC) 

(B7) 

Note that the term linear in * cancels. Next integrat­
ing by parts and combining the integrated part, we have 
with 

(IH(i)' 
[see Eq. (2)| and Eq. (25), 

x „ S ' n 4 e . (89) 

Next, we turn to the quadratic source. Here we have 

Integrating by parts three times produces 

-4-lm((»,+*,)(!-,)-^ ( V | ) a:=- 2tiB„ 

(IT ) 

where we have used Eq. (B5) (note that the term quad­
ratic In $/i!rg is multiplied by two here). Again collect­
ing terms in the braces we obtain for that term 

fc)V*)G-i-*-£V 
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Closing, we compute the expression for <&rt. We im­
mediately see that 

*o.r = 2*(M + 6<»o 

Finally we have for the imaginary part 

^=H^jC*iK+"')r*'''(*'^)*'w*-rr")r'fc'(f-4i--)(*'^) 
-H^f)]})jr 

(B13) 

sln« 
Lirfj/dJir'+iT-y/B 

and, liter Integrating by parts 

v n')/B 
(B14) 
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APPENDIX B 

GYROKINETIC HAGNETOHYDRODYNAMICS (HHD) 

W. M. Nevins and T. E. Kaiser 

1. INTRODUCTION 

Quadrupole tandem mirrors rely for HHD stability on high pressure-
weighting of regions of favorable curvature (HHD anchors) relative to those of 
destabilizing curvature. This guarantees stability to curvature-driven modes 
when the plasma 6-values 1r< the unstable region of destabilizing curvature is 
less than some critical value that depends on the value of 6 in the anchors 
and on details of the magnetic geometry. 

To determine the critical 6-value, we must formulate and solve the 
equation of motion for the modes of interest. At low B, the characteristic 
perturbations are electrostatic flute modes whose stability criterion is 
simple and well-known. * At higher values of 8, magnetic-field 
perturbations make flux-line bending possible. This allows modes to localize 
in regions of unfavorable curvature. The stability properties of such 
ballooning modes ultimately will determine the critical B-values achievable 
in tandem mirrors. 

Here in Appendix B we present a full three-dimensional analysis of 
"large-n" ballooning modes in the axicell configuration of MFTF-B. Since this 
analysis was performed, the proposal coil set for HFTF-B has been altered. 
While the resulting changes in the equilibrium magnetic field can be expected 
to change quantitative results, we do not expect a change in our main 
qualitative result: in a machine the size of MFTF-B (a^/R,, = 0.06 in the 
central cell), localized modes will not limit the central-cell B. 

In Sec. 2 we discuss flute stability, and in Sec. 3 we review the 
"large-n" formalism^ as it applies to tandem mirrors. In Sec. 4 we present 
the ideal MHD central-cell beta limit due to large-n ballooning modes. In 
Sec. 5 we show how the formalism of "quasi-classical" mechanics may be used to 

D O A 

obtain a global-dispersion relation, which includes both kinetic effects • 
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and the "l/nH corrections. We present marginal-stability boundaries for 
the axicell configuration of MFTF-B in Sec. 6 and discuss our results in 
Sec. 7. 

2. FLUTE STABILITY 

In the low-0 limit, the HHD eigenmodes of a tandem mirror are 
flute-like. "' A sufficient condition for the instability of such modes is 
that 

/
L d? a p i + p n 

L £ | J ; P H > 0 . P - - V 1 ' t 8 ' 1 

where B is the magnetic-field strength (B = Bb); i> is the principal flux 
coordinate (B = Vu> x 79); P. „ (iJ'.B) are components of the plasma-pressure 

-V •+* -V X f II 
perpendicular and parallel to B; and fl is the normal curvature 
(K = b • 7b = HJ# + 1079). Thus, it is necessary for stability that the 
flux-tube average of the pressure-weighted normal curvature be positive. 

This condition along with minimization of plasma current flowing 
parallel to B through the central cell have been the major constraints on the 
design of the MFTF-B magnetic-field coils. While the design continues to 
evolve toward one with acceptably small central-cell parallel current, we 
examine the flute stability of our latest design, which has not yet satisfied 
all constraints. We consider two pressure models for the transition region; 
one in which the pressure is constant (B« 0.05) and the other in which p ~ B 
represents a passing and trapped population with a g„ = 3. Stable 
central-cell beta-values (6 C) are listed in Table B-l for both equilibrium 
and vacuum-field configurations for an axicell beta of 0.2 and an anchor beta 
of 0.55, the reference-case values. These central-cell beta values are to be 

Table B-l. Critical beta-values for the central cell. 
Equilibrium Vacuum 

field field Mars-mode 
P T R ~ B B c = 0.36 B c = 0.6 B c = 0.5 
P-TR constant 6 C = 0.53 B c = 0.96 B c = 0.5 
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compared with the value of 0-5 of the reference case (Mars mode). While the 
precise value of the critical central-cell B for flute stability will 
probably be somewhat different for MFTF-B, the qualitative result should be 
the same: flute modes are not expected to impose a serious constraint on 
performance of the machine. 

3. LARGE-n THEORV AND OTHER APPROXIMATIONS 

In the past few years a great deal of progress has been made in analyzing 
ballooning modes by employing the "large-ri" expansion. B _ z Although this 
formalism was originally developed to analyze ballooning modes in tokamaks0 '• , 
it has been extended to non-axisymmetric systems like tandem mirrors. "^ The 
large-n formalism describes modes in which the typical scale length for 
variation of the perturbation across the magnetic field is short in comparison 
to either the equilibrium scale lengths or the scale length for variations of 
the perturbation parallel to B. An eikonal approximation, 
$ = 4>(s) exp [iS(8,+)], is then employed to describe the perpendicular 
variations in the stream function, <fr, which describes the perturbation. The 
assumption of rapid perpendicular variation allows one to reduce the MHD 
ballooning mode problem to the solution of a second-order ordinary differential 
equation along each magnetic-field line. t , J 

This equation is most simply written in magnetic-flux coordinates, 
(s,6,*); where the enclosed magnetic flux <p labels a particular flux surface; 
6 is an angle-like variable that labels a particular magnetic field line on 
this flux surface; and s measures the position along this magnetic-field line. 
In the work reported here, we use the long-thin or paraxial expansion. 5 To 
lowest significant order in the long-thin parameter, A = R/L (R is a typical 
radial dimension and L is a typical axial dimension), no difference exists 
between s and the axial distance z. Hence, we may write the ballooning-mode 
equation as a second-order differential equation in z: 

[dZ g3 M g 

+ 3̂ [#Pi + p
l ( ) x b ] (£ x b) : VS Vsl* = 0 , (B.2) B J 
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where Q = B + P. - P is the parallel component of the total stress 
D C •*• " 

tensor; 7S is the gradient of the eikonal S(6,il0; p(z) is the mass density; 
ui is the wave frequency; ft* = (T./eB)(l/rR ) is the angular velocity of 
diaraagnetic rotation [R is the scale length for variation in the perpendicular 
ion pressure, R*1 = - (rB/P^) (BP^/3*)]; while S e = 3S/36 is 
proportional to the surface component of the wave vector. Hence, ft*S„ is the 
usual diamagnetic drift frequency. In writing this equation we have ignored 
the finite-B corrections to ft* (see Ref. B-4). This approximation is justified 
because we find that Eq. B.2 properly describes the most unstable modes only 
at modest values of the central-cell beta, B < 0.1. 

He will solve this equation subject to the boundary condition 3<j>/3z = 0 
at the axial boundaries of the plasma. Physically, this boundary condition 
follows from requiring that the perturbed current vanish in the vacuum 
external to the plasma. A consequence of this boundary condition is that, 
while the label? of magnetic-field lines beyond the axial boundaries of the 
plasna may be interchanged by the perturbation, the structure of the external 
magnetic field is left unaltered. 

It is necessary to find MHD equilibria in order to evaluate the 
coefficients in Eq. B.2. Nonaxisymmetric tandem-mirror equilibria are 
obtained by using the expansion described in Ref. B-6. This evolves expanding 
in both the long-thin parameter A. and in B 5 2P/B . 

A final approximation is to treat ft* as constant, independent of 9, i|>, 
and z. The lack of dependence on 6 and ip is justified if ft* varies little 
over the region in 6 and <i, over which the modes are localized. This 
approximation is analogous to the approximation 3u*/3r = 0 used in the 

R 7 
nonlocal analysis of electron-drift waves in toroidal systems. Diamagnetic 

R R 
effects are most important in the long central cell of tandem mirrors. and 
ft* is nearly constant in this region. Hence, we believe that the 
approximation 3ft*/3z is justified. We will see in Sec. 6 that the 
approximation ft* = constant greatly simplifies the system of equations that 
must be solved numerically to obtain the marginal-stability boundary for 
ballooning modes in a given magnetic configuration. 

118 



4. IDEAL MHO RESULTS 

Previous analysis of beta limits in MFTF-B were based on a study " of 
ideal tiHD ballooning modes in the large-n limit. We review the principle 
results of ideal MHD-ballooning-mode theory here because they provide a basis 
for unqerstanding the full three-dimensional treatment, including both the 
kinetic term and the "1/n corrections" described in the next section. The 
ideal MHD-ballooning-mode equation may be obtained from Eq. B.2 by taking 
the limit fl* + 0. Since ft* is proportional to a/R p. this is equivalent to 
considering a very large machine, in which the ion gyroradius â  is very m Uch 
less than a radial-scale length R. In the ideal MHD limit, each term in the 
ballooning-mode equation is proportional to |VS| . Upon dividing the 
equation through by the value of |VS| at the midplane of the central cell, 
one obtains an equation that depends only on the orientation of VS and that is 
independent of the magnitude of VS. Hence, Eq. B.2 can provide no information 
about the magnitude of VS. 

The orientation of VS is determined by 
r = 2<ys 6 . (6.3) 

The marginal stability condition for ideal MHD ballooning modes in 
nonaxis.ymnetric tandem mirrors depends on both the field-line labels, 
(6.^). and on I". At small to moderate values of 6 C, the "worst" field 
line (i.e., the last field line on which ideal MHD-ballooning modes are 
unstable as B c is decreased) always occurs at 6 = N TT/2. These field line% 
lie on one of the principle axes of the elliptical flux surfaces in and ne«-
tne tWG anchor ceTfs. Hie stabi fi'ty properties are trte same for any vafue 0 f 
N as a result of quadrupole symmetry. Hence, we need only consider MHD 
stability in the neighborhood of 8 = 0. 

The worst value of ij> generally lies about midway out in the radial 
profile, which is Gaussian for the assumed constant fl*. Figure B-l shows 
the critical value of 8 for marginal stability in the axicell configuration 
of MFTFwB v s i|i. The peak value of beta in the MHD anchor cell is held fixed at 
6 a = O.55, while the peak value of beta in the axicell (where the central-Cell 
ions ar e plugged by the ambipolar potential) is set at 6 = 0.11. Values of 
6 and r have been chosen at each value of ty to minimize 6 C- We see that the 
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Fig. B-l. Critical value of $ c as a function of .̂ The values of beta in the 
MHD anchor cell and the axisymmetric plug cell are held fixed at 6 g = 0.55 
and Bp = 0.11. Theta and T were chosen at each value of <|< to minimize 6 C. 

-0.1 

Fig. B-2. Critical value of 8 vs T for B a = 0.55, B p = 0.11, and 6 = 0; \|» 
is held fixed at * / + e d g e = 0.043. 
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worst flux surface at <p = 0.043 lies at the bottom of a quite gentle well in 
critical fic. 

Similarly, in Fig. B-2 we show the critical value of 8 C vs r for the 
same values of B a and B . In Fig. B-2, 6 is held fixed at zero and <|» is fixed 
at ilf/̂ edge = 0.43, the worst field line for r = 0. We see that worst 
orientation, r = 0, lies at the bottom of a very steep well in B c . When r 
is less than about 0.25, we see that the critical value of B c is negative. 
That is, the axicell configuration of MFTF-B is found to be unstable to ideal 
MHD-ballooning modes even at zero central-cell beta. Increasing 0 makes the 
system more stable, while increasing 3 p makes the system more unstable. 

We find in Sec. 6 that this result is far too pessimistic. When effects 
associated with the perpendicular structure (i.e., "1/n corrections") and 
diamagnetic drifts (i.e., "kinetic terms") are included, the beta limit is 
greatly increased and falls somewhere in the range 0.1 < 6_ < 0.4. This 
result, first, is in part due to the stabilizing kinetic term, which acts over 
the entire axial length of a tandem mirror, while the destabilizing 
pressure-curvature term acts only in the axicell and the transition region 
between the axicell and the MHD anchor cell. Second, the result is in part 
due to the "1/n corrections"; that is, the orientation of the perpendicular 
wave vector, as described by P, is determined by the perpendicular structure 
of the mode and is no longer free to be adjusted so that it fits into the deep 
well in Fig. B-2 near r = 0. 

5. METHOD OF SOLUTION 

The stabilizing kinetic effects enter Eq. B.2 through a term 
proportional to S„. Unfortunately, the single-field-line problem provides no 
information about the magnitude of S f l; this information must be obtained from 
a solution of the eigenvalue problem in the plane perpendicular to j$. This is 
in contrast to the ballooning-mode problem in axisymmetric systems, like 
tokamaks, where S_ is replaced by the toroidal-mode-number n. In 
axisymmetric systems n is a constant, so one can independently analyze the 
kinetic term and the radial-mode structure, which leads to the "1/n 
corrections". In nonaxisymmetric systems, like the axicell HFTF-B 
configuration, these two problems are coupled through S g, so that they must be 
treated together. 
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Equation B.2 describes the behavior of large-n (i.e., S„ » 1) 
ballooning modes on each magnetic-field line. A numerical solution of this 
equation along a particular field line yields the local dispersion relation, 

o(e,*,r,fi2 ; e c,e a,e p ..-) - o . (B.4) 
The explicit dependence on Sfl enters through the parameter 

fl2 = to(oj - fl* S e ) . (B.5) 

Note that the local dispersion relation depends not only on the field-line 
labels (6,^), the wave parameters WS, and w, but also on the equilibrium 
parameters Q*, B , etc. 

Our problem is to "sew" together the solutions on each field line in a 
self-consistent way to obtain both the mode structure in the (0,40 plane 
and the global dispersion relation. We accomplish this by using the theory of 
quasi-classical mechanics—essentially HKB theory generalized to many 
dimensions. -'° In the quasi-classical formalism, the local dispersions 
relation 0 may be viewed as the Hamiltonian governing the motion of a ray in 
the four-dimensional phase space: (8, •, S„, S.), where the field line labels 
(e,t) are the coordinates and the covariant components of VS, {S e, S^,), are 
the conjugate momenta. The ballooning mode ray then obeys the equations of 
motion 

8 = §- , (B.6a) 

+ - §§- , (B.6bJ 

S e = " l . (B.«0 
and 

V - $ • (B-6d) 
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The ray motion described by Eqs. B.6»-d may be either integrable or 
stochastic. ' The Hamiltonian D is clearly a constant of the ray motion 
since the ray must stay on the surface D = 0. If there is a second independent 
constant of the motion, then the ray orbit must lie on a two-dimensional 
surface, I, embedded in the four-dimensional phase space. It may be shown 
that the surface Z is topologically a torus. This surface is central to the 
quasi-classical theory of mechanics, where it is known as the "invariant 
torus". Ray orbits that lie on an invariant torus are said to be integrable. 

If a second constant of motion does not exist, then the ray orbit fills 
a three-dimensional region of phase space (the energy shell), and the ray 
orbit is said to be stochastic. 

The theory of quasi-classical mechanics is concerned primarily with 
integrable systems. If the ray orbits are stochastic, little can be said 
about the mode spectrum; while if the ray orbit is integrable, then the 
dispersion relation may be obtained by quantizing the two independent actions, 

\ = f ~s * d a • <8-7> 
Ck 

These two independent actions are obtained by following a closed path that goes 
either once around the invariant torus the short way (C-|) or else once around 
the torus the long way (Cg). This is illustrated in Fig. B-3. The 
quantization condition for the systems considered here is 

I k = (2n k + l)it . (B.8) 

We find that the modes associated with the larger values of n k are more stable 
than the n k = 0 modes. Hence, in studying marginal stability one need only 
consider normal modes satisfying 

I k = it . (B.9) 

Before attempting to apply the methods of quasi-classical mechanics we 
must determine if the ray orbits associated with "large-n" ballooning modes in 
the axicell configuration of MFTF-B are integrable. This is accomplished by a 
direct numerical integration of the ray equations of motion. A ray is 
initialized with a particular set of phase variables (6Q, ikv, Son). The 
fourth phase variable, S^Q, is chosen such that the ray lies on the "energy 
shell", 0 = 0. The orbit is advanced in time using Eqs. (B.6) together with 
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Fig. B-3. Phase-space trajectory and invariant toroid for two degrees of 
freedom. The C| and C„ curves are for defining the action integrals Ij and 
l2> The toroidal helix is the trajectory; normally it is not closed. (Shown 
with permission of I. C. Percival, Ref. B-10.) 
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the Livermore Solver for Ordinary Differential Equations (LSODE). At 
each time step, the ballooning-mode equation B.2, is integrated on the current 
field line to calculate D and its derivatives. The value of D is monitored to 
check the accuracy of the integration. Integrability may then be determined 
from a Poincare map; each time that the ray passes through the 
hyperplane ty = <P0, the current values of 6 and Sg are plotted. If the ray 
orbit is integrable, then these points will lie on a smooth curve as in 
Fig. B-4, while if the ray orbit is stochastic then they will fill an area in 
the (6, Sg) plane. Figure B-5 shows a stochastic orbit. We did not follow 
this orbit long enough to see this area-filling property in the Poincare map. 

We find that the ray orbits are often but not always integrable. When 
the equilibrium parameters are in the general vicinity of ideal MHD marginal 
stability, the ray orbits are found to be integrable; while as we move further 
from ideal MHD marginal stability (by increasing S for example), this 
integrability breaks down. The assumption that Sg » 1 also breaks down for 
the most unstable modes far from ideal MHD marginal stability, so that this 
loss of integrability does not by itself limit our calculation. 

It is really somewhat remarkable that any ray orbits are found to be 
integrable, as it is an unfortunate fact of classical mechanics that most two-
dimensional Hamiltonian systems are not integrable. Two general cases exist 
in which two-dimensional systems become integrable. Either there is a 
symmetry (perhaps a hidden one) or there is a separation of time scales. Our 
systam is an example of one in which there is a separation in characteristic 
time scales of the ray motion. This may be seen in the projection of the ray 
orbit into the (©, *) plane shown in Fig. B-4. There is a rapid motion 
directed generally parallel to Vt|> superimposed on a slow precession in 8. 
We believe that this separation of time scales is associated with tb3 extreme 
ellipticity of the equilibrium flux surfaces in the transition region between 
the MHD anchor cell and the axicell. Ballooning modes are associated with the 
bending of flux bundles in this transition region. When a flux bundle with a 
circular cross section in the central cell is mapped into this region, it also 
takes on an elliptical cross section. These elliptical flux bundles act much 
like pieces of tin; they are easily bent perpendicular to the flat plane but 
are very stiff when bent parallel to the flat plane. Hence, the ballooning 
ray has a rapid quiver associated with bending the elliptical flux bundles 
parallel to their major axis in the transition region. The action associated 
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Fig. B-4. Example of an integrable ballooning ray orbit: (a) Projection of 
the ray orbit onto the *,6 plane; (b) surface of section plot of Sg vs 6; 
(c) points connected to form a smooth curve; and {d) our computed value at 
'fast* w n ^ c n ^ s shown to be well conserved. 
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with this rapid motion, I f a s t , is then an adiabatic invariant over the slow 
motion. Hence, I f a s t is the second independent constant of motion that 
guarantees the integrability of ray orbits. 

A numerical approximation to I f a s t may be obtained by following the 
ray orbit once around the torus the short way, accumulating /VS • dg along the 
ray orbit and then closing the loop by using a two-point, Simpson's rule 
integration to step back to the initial point along a line of constant i|). 
This scheme allows us to evaluate I f a s * once for each point on the Poincare 
map. The numerically determined value of If a s t-« is plotted in Figs. B-4 
and B-5. The initial phase variables were chosen such that I f a s t = " for the 
first loop so that the dispersion relation, Eq. B.9, is satisfied. Me see 
from Figs. B-4 and B-5 that I r a s t is indeed well conserved on the integrable 
orbit, while it is not conserved on the stochastic orbit. 

The separation of time scales also provides us with some information 
about the frequency spectrum. The separation in frequency between modes with 
neighboring values of n f a s t is Ato - Z*/Tf a s t, where 

'fast 3u> Jfast 

• / 
d a ' - ^ V S , (B.10) 

and the integral is to be taken once around the torus the short way. Noting 
that |3VS/3:.<| may be interpreted as 1/v Q r 0 U D» we see that T. . is 
essentially the period of the fast motion. Similarly, the frequency 
separation between modes with neighboring values of n . is 6u ~ 2u/T , , 
where 

slow 
= / d a* fcHs . CB.ii) 

with the integral taken once around the torus the long way ( I s i o w is 
essentially the area enclosed by the line segments connecting the points on 
the Poincare map in Fig. B-4). Hence, 

g~!l«t« 1 . (BJ2) 
slow 

That is, the line spectrum must be like that shown in Fig. B-6. 
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Fig. B-6. Sketch of line spectrum that is characteristic of a system with 
well-separated time scales. Each normal-mode frequency is labeled by the EBK 
mode number ( n s 1 o w , n f a s t ) . 
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It follows that we need only do a careful job in quantizing If a s*» 
while the remaining parameter that determines I s j o w may be chosen to 
maximize instability. This will put us within &u of the most unstable 
mode. Instability is maximized when the derivative of * f a s t with respect to 
the remaining parameter vanishes. This approximation is analogous to 
estimating the dispersion relation in a plasma slab by using local theory at 
the most unstable value of the inhomogeneous coordinate. This procedure 
generally does reasonably well, although i . misses WKB corrections (which are 
usually stabilizing) that are ^ssoCraled with the radial-mode structure. In 
the present instance, we retain WKB corrections associated with the fast 
motion but ignore small stabilizing corrections associated with the slow 
motion. This is an important practical simplification because it is now only 
necessary to follow a ray once around the torus the short way and compute just 
Ifaef This in turn requires on the order of 10 3 integrations of the 
balloon equation and takes several seconds of CPU time on a CRAY-1. A 
numerical computation of I s-i o w (which we are avoiding) would require that we 
follow the ray for at least one full period of the slow motion. This requires 
between five and ten minutes of CPU time on a CRAY-1. Hence, ignoring 
corrections to the. mode frequency of order &m as compared to corrections of 
order AID saves hours of computer time in computing marginal stability 
boundaries. 

6. MARGINAL STABILITY BOUNDARIES 

It is necessary to find the invariant torus associated with the unstable 
"large-n" ballooning modes to obtain the dispersion relation and the marginal 
stability boundary. We expect that the most unstable ballooning modes will be 
localized in the neighborhood of the worst field line of ideal MHD theory. 
Hence, we may fix 6- and i|u as the labels of this field line. The initial 
value of Sg, SQQ, then selects a particular invariant torus from among those 
intersected by the curve 

e = e 0 . 

* = * 0 , (B.13) 

D(e, *, r, a z ) = o . 
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Given a particular set of equilibrium parameters, the frequency of the 
most unstable mode satisfies the equations 

W 8 o « V 5eo> "2; ec, ...) = 1. (B.i4) 
and 

a < r ^ = 0 . (B.15) 

If we require this mode to be marginally stable, we must satisfy the additional 
equation 

si 
- g i = 0 . (B.16) 

In general, it would be necessary to simultaneously solve Eqs. B.14 to 
B.16. Fortunately, the assumption ft* = constant, together with the fact 
that S. has only a small fractional variation during one period of the rapid 
motion allows us to replace the third equation with the condition 

# = ° ; (B.i7) 
or, from Eq. (B.5), 

w—fS. . (B.18) 

This results in a considerable simplification, as it is now only necessary to 
solve Eqs. B.14 and B.15 simultaneously with Sr set equal to -(n*S_Q/2)*. 

These equations may be solved numerically to find the marginally stable 
value of ft* for a particular set of equilibrium parameters, B_, B . B ... . 

C a p 
Then one of these parameters, say B c, may be varied to produce a stability 
boundary like that shown in Fig. 8-7. Vie are able to track the stability 
boundary from ideal MHD marginal stability at B c = -0.167 to B £ = 0.1. At 
this point an examination of the ray orbit shows that, while the orbit performs 
several rapid oscillations, it ultimately escapes like the ray orbit shown in 
Fig. B-5. Hence, the ray orbit is no longer integrable, and the 
quasi-classical procedure outlined in Sec. 5 is no longer justified. As long 
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fig. B-7. Marginal stability boundary in the 8Q, Q* plane. The projected 
operating point with this coil set is ft* = 0.1. The value of beta in the 
axicell is 8 p = 0.11, while the MHD anchor-cell beta is S a = 0.55 (upper 
curve) or 0.40 (lower curve). The flute average-beta limit for & a is 0.55, 
as shown by heavy line naar 3 C = 0.4. 
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Fig. B-8. A plot of $ e vs 0 C at marginal stability. 
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as the ray orbit continues to perforin even one rapid oscillation it is 
possible to define l f a s t and to solve Eqs. B.15 and B.16. Points on the 
marginal-stability boundary obtained in this manner are connected by a dashed 
line in Fig. 8-7. 

Figure B-8 shows the values of S„Q on the marginal-stability boundary. 
We see that the condition S 0 » 1, required in the derivation of Eq. (B.2), 
also breaks down near 8 C =0.1. Hence, there is little significance to the 
dashed portion of the marginal-stability curve. 

The effect of varying beta in the MHD anchor cell, B a, is shown by 
the lower curve in Fig. B-7, in which B has been reduced from 0.55 to 
0.40. Just as in ideal MHD ballooning-mode theory, we find that decreasing 
fls tends to destabilize the system. 
a 

7. SUMMARY 

The main result of this calculation is the marginal-stability boundary 
shown in Fig. B-7. An important feature of the marginal-stability boundary is 
the fact that the characteristic value of S 9 at the marginal stability 
decreases as 6 C and it" increase (see Fig. B-8) until the calculation breaks 
down at &Q = 0.1. At this point, 8* = 1.4 x 10" 2 and Sg = 7.27. It is 
possible to extend the calculation to larger values of B c, as indicated by the 
dashed curves in Figs. 5-7 and B-B, but two assumptions underlying this 
calculation (Sg » 1 and integrability of the ray orbits) are not satisfied in 
this regime. 

The axicell configuration of MFTF-B lies off to the right of Fig. B-7 at 
12* = 0.1 in our units. It is clear from Figs. B-7 and B-8 that "large-nM 

ballooning modes will not limit the central-cell beta at these large values of 
ft*. The rapid decrease in S g on the marginal-stability boundary suggests that 
at larger values of B c and Q*, the most dangerous modes will be low-m modes 
with a global structure in the plane perpendicular to B. The beta limit 
imposed by such modes is certainly bounded from above by the flute 
average-stability condition, B < 0.4, as this limit is found to be 
relatively insensitive to the field-line labels, (̂ , 6). Hence, we may expect 
the central-cell beta limit to fall in the range 0.1 < B < 0.4. 
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The extension of large-n theory beyond its domain at validity gives a 
marginal-stability curve (the dashed line in Fig. B-7) that appears to 
asymptote to the flute-stability limit as ft* increases. This suggests that 
at the rather large values of fl* in the axicell configuration of MFTF-B 
(S* * 0.1) the actual central-cell beta limit will be closer to the flute 
average limit of 0.4. Theoretical and computational studies of the low-m 
modes that will determine this 6 limit are currently in progress. 
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APPENDIX C 

SOME EFFECTS OF HOT-ELECTRON STABILITY IN TANDEM-MIRROR GEOMETRY 

D. E. Baldwin 

A hot, anisotropic electron component will continue to play an important 
role, it appears, in tandem-mirror (TM) confinement, either as a 
potential-depressing component in a thermal barrier or as a pressure-enhancing 
component in an magnetohydrodynamic (MHD) anchor. The theory of the 
interactions of these hot electrons with low-frequency interchange and 
ballooning modes follows closely that of Elmo Bumpy Torus (EBT) stability, but 
some features are special to the TM geometry. In this note, some of these 
special features are examined by using a model balloon-mode equation. 

The most immediate special feature of TM's are the several axial regions 
having particles of quite different energies and, therefore, different drift 
speeds. We model this by treating each region as a localized slab having 
magnetic curvature simulated by a local effective gravity. These regions are 
then coupled by a balloon-mode equation obtained by setting V*j (perturbed) = 0. 
We introduce the curvature-drift frequency ui and the VB-drift frequency Ug 
for each species and assume that 6 exceeds the ratio of the plasma-density 
scale length r to the magnetic radius of curvature R . Then for each species 
«0g » u^. Hot-species quantities are labeled by subscript "h", and 
warm-species quantities by "w", with hot and warm defined by drift speeds 
relative to wave frequency in the ordering u » Wg w » <^M and 

The balloon equation for eikonal solutions in finite Larmor radius (FLR) 
ordering and this frequency ordering is given by 

2 where $ is proportional to the displacement; Q = B * P± - P(); v^ is the local 
Alfv€n speed; 10*4 is the diamagnetic drift frequency; o is the local 
species-density fraction; b = 1/2 kj a. with "a" the species gyroradius; Z is 
the sum over all species; £ is the sum over only warm species; and 
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The tM^- term is due to finite ion gyroradius. Beinr nonvanishing over 
the entire solenoid, its effect is enhanced for long solenoids to the point 
that only low-m modes are unstable. We mode? m = 1 by setting w* i + 0 and 
taking ki * r n . When u » *^h, £q. C.l then reduces to the familiar MHD 
balloon equation. 

The parameter A, which has the sign of the local curvature, is that 
obtained by Van Dam nd Let1" in their analysis of EBT stability. When 
ui.n » u>, the drive isrm 

A y^A 
is locally stabilizing (i.e., < 0) in a well having <^,^<\ > 0 only when 
-1 < A < 0. When 'A' « 1, the denominator of A replaces the r-drive by the 
Z-numerator of A. T H s latter term describes the warm species moving in the 
VB-wel 1 dug by the hct electron (through w J ; the hot electrons otherwise drop 
out of the problem, is in the "rigid ring" description. If IAI > 1, the hot 
electrons respond as MHO fluid in the negative-curvature well. 

In the positive-turvature MHD anchor of a TM, A (now > 0) is again 
important when most cf the anchor B appears in hot electrons. Again, only the 
portion A/(l + A) of the total pressure contributes; or equivalently, only the 
anchor 8 excluding hot electrons contributes, although it does so in the 
enhanced well dug by the hot electrons. 

A second class of modes can appear near the hot-electron-drift frequency 
C-2 

in a well having A < 0. Berk and Dominguez show that when uikh < Jl c i, the 
ion gyrofrequency, stability in a slab requires 

^i , 1 Kh l r ,» 
''total * "ci 

This originates frcnr, a condition in which there is enough ion mass to preclude 
the high-frequency m tions, a < OJ^. 

It has beon assumed that in a TM the ions of the central cell will serve 
the function of eliminating the Berk-Dominguez modes. We find that, although 
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this is true for a flute mode, a long, TM central cell can actually have a 
destabilizing effect. 

To illustrate this for a TM configuration having a central cell and a 
double-end cell, one of positive and one of negative curvature (such as MFTF-P 
or TARA) we assume modes that are flute through the entire end region and 
sinusoidal through the central cell. There will be curvature-driven 
contributions from the plugs (R < 0), anchor (R > 0 ) , and transition 
(R c < 0) between the central cell and end region. Introducing the frequercy 
associated with Alfven-wave propagation in the central cell w^ = 2 V A/L C, we 
obtain a dispersion relation by equating logarithmic derivative of ? at 
s L c/2: 

2OJ 
L c W A 

tan cu/aj. 
cot bi/w. > AJ c "p+a+t BV< L 

H .«*!«* 
(1 + A) u k . ]. IC.3) 

where p = plug, t = transition, and a = anchor. 
modes and the lower term, odd modes. With x = (o/ti>n, Xi, = tUt/i". 

.1 

The upper term describes even 
I D . 

A = 
Lc*A f ds 

—5 J —7 
c p+a+t BV^ 

(Ml)*, . to . 

ds y * i k 
TT2-—B— ' t ,P 

•'p+a+t B 

and 

• 4 - -
/ •dsv^Vjc . 

Va+t B 

this becomes 

»r tan x cot x 

and (î . 

VkP 
ua 1 + A, + Yp x - (1 + A ) x. kp 

(C4) 

Here, for simplicity we set w ^ + °> in the anchor cell. 
To analyze roots of this dispersion relation, we plot the right and left 

sides of Eq. C.3 vs x, as shown in Fig. C-l for the even solution. 
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Fig. C-1. Frequency dependence of right side (solid curves) and left side 
(dashed curves) of the dispersion relation. On the x-axis, the mark to the 
right of the d-curve intercept locates the point x = (1 + A ) x^ See text 
for explanation. 
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Consider- first the solid curve alone, which would be the local condition 
or that appropriate formally as A + •». Extension "a" of the solid curve is 
that which would pertain in pure MHD. The dip at x = 0, generating curve ,<D"> 
arises from the plug term at x = 0. In EBT, "a" lies above the axis and 
stabilization is generated by conversion to "b" by electrons having large \ -

Again for A + % a second branch of modes is unstable if curve "c" 
pertains, rather than "d". The condition for "d" is given by Eq. C.2 when 
tu.. < acy Note that even when local stability is achieved, a negative energy 
wave exists, as indicated by the negative slope of the solid curve at the root 
having w > 0. 

When the dashed curves are added, the actual roots occur at the 
intercepts with the appropriate solid curve. When x « 1, all of the tan 
structure is puSnea to "nicfh x, i.e., x tan x * x as in Tig. t-"l. The only 
change is a 1 e s s restrictive Berk/Domingue2 condition (e.g., "c" as shown *s 
stable)- This corresponds to adding thecentral-cell-mass weighting in a 
flute mode. 

Decreasing u. by increasing L pulls the tan structure in until a pair 
of real roots is lost for 03 k h « nu>A. Physically, the otherwise stable negative 
energy code in the end cells has coupled to a positive energy shear Alfvgn w a v e 

standing in the central cell to produce instability. Similarly, for a lon<) 
solenoid, a solution Im OJ > <u. can be found by setting tan x -*• i. 

These modes that originate from the coupling to the solenoid disappear if 
(1 + A ) x. < 0 , 

P kp 
which can °e achieved either by a good-cu-vature plug, uv > 0, or by the 

former case is that of TARA; the latter, that of MFTF-B. This result does not 
bode well for a simple axisymmetric TH stabilized by hot electrons in a 
bad-curvature well; if A < -1, it would be low-frequency (MHD) unstable, and 
if -i < A < 0, it would be high-frequency (w^) unstable. 
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APPENDIX 0 

ELECTROSTATIC BALLOONING MOOES 

D.E. Baldwin 

The low-frequency stability analysis described in Appendices B and C was 
predicated on the assumption that E = 0, as in conventional MHD theory. 
Normally, this condition is well satisfied; an electrostatic field 3$/3s drives 
a parallel current and a subsequent inductive component A,(, forcing E(J to zero 
while introducing bending of the magnetic lines. The energy required for this 
bending is a stabilizing effect that offsets the tendency of modes to localize 
in regions of unfavorable magnetic curvature. 

The response to 34>/3s is quite different for electrons confined in a 
potential well, as in any open geometry, vihen their axial bounce frequency 
exceeds the wave frequency. Then, on successive bounces, they receive nearly 
compensating impulses on passing through regions of parallel electric fields, 
and little net parallel current is generated. There results a mode that is 
substantially flute-like through the solenoid and end-cell regions of 
unfavorable curvature, and vanishing in regions of favorable curvature. This 
is an electrostatic (ES) ballooning mode, localized to regions of unfavorable 
curvature without requiring a bending energy. The transition between the 
flute-like portion of the perturbation and the region where it vanishes can 
occur when the equilibrium reflects a significant number of particles, such as 
a mirror or potential gradient. 

In such low-frequency electrostatic disturbances, the electron response 
is to Oebye shield the perturbation, just as in the analogous situation of 
electron Debye shielding in an ion acoustic wave. There is a similar parallel 
ion response when the ion bounce frequency is also large. However, both Debye 
shielding contributions can be small in geometries having small fractions of 
particles that pass between regions of good and bad curvature. 

We neglect here the axial variations in the electric field drifts and, 
after transforming to a rotating frame, drop all such drifts. Similarly, 
because the dominant finite-B effect is to introduce a B,. that cancels the 
magnetic-well effect of the equilibrium 7B-drift, we consider only 
electrostatic perturbations in low 6. Axial variations of both the 
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equilibrium E x B drift and the vf$-drift introduce a number of complications 
whose effects remain to be evaluated, although there do not appear to be any 
really significant effects arising from these variations. 

An eikonal approximation gives the equation for perturbed 
charge-neutrality, 

where the sum is over species, 

7 T = i - f$l I ) , = f$l 
TB J v l l b -^ v l l 

ujp is the magnetic-drift frequency, and JQ is the Bessel function introduced 
to allow for FLR effects. This equation may be put in a variational form by 
multiplying by <{> and integrating over the field line to obtain 

where we have introduced the Larmor radius p upon expanding JQ and 
defined 

kxb • Vf 
">* a 3f/3e 

Charge neutrality (or its radial derivative) can be expressed in the same 
notation by 

2 i - / d e d l J T B H ^ 2 ( ^ - *2 %) = 0 • (°-2> 
which has been obtained by multiplying the local charge condition by $ 
and integrating over the field line. 

The drift frequency Up = (̂  + o^ contains the £ x j$ drift, 

&v = % kxb • V« , 
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and the magnetic d r i f t , 

« i 

where K = £ • Vb. Equation D.l becomes quite complex when the variation in 
u>D, which is due primarily to variation in (%, is comparable to at. We do 
not consider here such circumstances and assume that m D can be written as 

top * OQ + tog , 

where u^ is the constant, species- and z-independent E x B-drift frequency of 
the central cell. We take wg « m - UQ, and expand the denominators of 
Eq. D.l. When this is added to Eq. D.2 and divided by to - u>0, with 
(u + u + <jg and higher order quantities are discarded, we obtain the result 

+ - — 5 - t a . -<%) = 0 • (D.3) 
In this approximation, % - UQ corresponds to the total density gradient 
because of the flux dependence of f and of 4, so that w* - wg = w* is the 
familiar diamagnetic drift frequency. 

In this form, one can identify the Debye shielding, the polarization, 
the FLR, and the bounce-averaged curvature-drive terms. The term 
{$ - •) (<u* - iDQ) describes a coupling to drift waves brought about by the 
e, y, q dependence of particle turning points and, therefore, $", in the 
combined magnetic and electrostatic fields. This term is absent in the 
equivalent tokamak calculation. 

When the drift and FLR effects are neglected, the variational form 
p becomes an energy principle for u , which is a minimum at the eigenfrequency 

M2_ Z ^ d C d u T B l i » 2 ^ - ( 1 b H _ ( D > 4 ) 

Dm^/ d e d l J TBllL {*-* ) 2 + k W ] 

149 



provided trial functions are chosen that vanish in the anchor where 
(ui* - OJQ) ma < 0, there is always an instability in this approximation. If 
the ($ - $ r factor is small, the growth rate will be the MHD growth rate in 
the absence of the anchors. This Dabye term can be small when very few 
particles pass between the regions of good and bad curvature. In such 
circumstances, a perturbation such as that sketched in Fig. 0-1 minimizes 
o 

ut . In the long central cell, $ = $, so that all particles trapped there do 
not contribute. For those that do pass between the regions, i.e., in and out 
of the perturbation, 

2 r^ 2 2 U 2 

where Lfl is the length of one anchor and <t>c is the perturbation level in the 
central cell. If we define the characteristic MHD growth rate of the 
unfavorable curvature region alone as 

we find 

w2 = £ , (D.6) 
, . _ 1 \ f ds -

where n is the density of particles passing into and out of the perturbation, 
and the integration is carried out over the region that e perturbation 
vanishes. According to how many ions are trapped in t.. ansition region, in 
addition to those passing directly from the central cell, the eigenfunction 
will minimize this integral of n. When both the positive potential peak and 
thermal barrier are placed in the axicell, as is possible in one operating mode 
of the axicell configuration, n/nc is very small. The special susceptibility 
of this operating mode to ES ballooning was first pointed out by Berk and 
Rosenbluth 0 - 1. 
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Fig. D-l. Profiles of field B, density n, and potential $ for the MFTF-B 
Axicell design. The dashed line represents the worst ES ballooning mode, 
which occurs when the density in the transition is very low. 
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The drift term in Eq. D.l, neglected in obtaining Eq. D.6, can play an 
important role in stabilizing the basic mode described by Eq- 0.6 by coupling 
it to a drift wave *D . The process is very similiar to familiar FLR 
stabilization of curvature-driven nodes and is described by including w* - U>Q 
in £q. 0.3. As may be observed in Eq. 0.3, particles trapped in a region of 
constant $ have no drift contribution, just as they have no Debye 
contribution. The FLR term, of course, contributes everywhere. 

A second point to be recognized from £q. 0.3 is that the ion-drift term 
has the same sign as the ion-FLR term and is, therefore, additive. The 
electron-drift term has the opposite sign. The magnitude of each term is 
weighted by ($ - $) , and this term is in turn increased by the "overshoot", 
or the distance of reflection of a particle beyond the place where $ goes to 
zero. Thus, configurations are preferred in which ions carry further beyond 
the perturbation than the electrons, and the axicell configuration is of this 
type. 

The variational form of Eq. D.3 can be used to compare the axicell and 
A-cell geometries with regard to stability to the ES ballooning mode. 
Consider first the axicell design shown in Fig. D-2. As a trial function, 
take $ = 1 through the central cell, $ = 1 - a in the transition, and 4> = 0 
in the anchor or yin yang. The parameter a will be varied to achieve a minimum 
in the stabilizing contribution. Changes in $ are located at the high mirror 
peak of the axicell and the inside edge of the thermal barrier (see dashed line 
in Fig, D-2). 

The ion distribution in the transition is composed of a portion that 
streams directly from the central cell (to be confined by the positive 
potential of the anchor, n_.,,) and a population of ions that have become 
trapped between this potential and the high-field coil of the axcicell. With 
good pumping in the transition region, the distribution of these trapped ions 
is close to that of the passing component and, therefore, is beam-like in 
character. We denote their relative density by g. - 1 (g b is the total density 
in the transition normalized to the passing component; the two spatial profiles 
throughout the transition and anchor regions are nearly equal). We then 
compute different averages for different classes of ions. Introducing the 
bounce time in each region—central cell, transition, and anchor (T , T t, 
T a, respectively)—we have for those ions trapped in the central cell, 

152 



12 
B(T) 

SO 
<MkV) 

«-* "J La f"— 
n (10 1 3 cm" 3) 

10 • 

-20 -10 0 
Z W 

10 20 

Fig. D-2. Field, density, and potential profiles for the HFTF-fi Axicell 
design. The dashed line represents the trial function, having variable 
transition-region value, when the plasma density in the transition is low but 
significant. 
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$ = 1 ; 

for those untrapped in the central cell and confined by the anchor potential, 

and for those trapped in the transition-anchor region, 
T*. 

Tt + Ta 
Here T C , t t, T are proportional to the lengths shown in Fig. 0-2. 

Although the ion distribution in the transition region is of a streaming 
type, the electrons that neutralize these ions will be locally Maxwellian and 
very few of them will pass through the high-field axicell coil. Thus, to a 
good approximation, the electrons in each cell are confined to that cell, their 
, F in each cell, and they drop out of the shielding and drift terms of 
u, 1.7. 

To calculate the effect of the beam-like ion distribution in the 
transition regions, we temporarily restore the definition of <u* and rewrite 
Eq. D.3 as 

£ m - / d e d } J TB |[«* " *>E + k W ] [(« + «fc) § + B ** * Vf] 
-£ -

Because 3f/3e > 0 for trapped ions, such terms must be treated with some 
care. As implied above, we treat (fas independent of e, u, except for the 
differences arising from the trapped and untrapped orbits. Thus, for the term 
not containing 3f/9e, we obtain 
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i ^ l T ^ r < g b " , , < 1 "" ) 7T777I/ r **\r*U u Pass 

(D.8) 

where T c is the central-cell ion temperature, and the passing density " D a s s i s 

integrated over the transition and anchor regions. In the 3f/3e term, we 
integrate in energy, expressing the result in terms of the common value of f at 
the separatrix and A(<(> - $) , which is the jump in (<(> - $) between passing 
and trapped icns. Estimating 

/ d l J T B f Iseparatrix ~ T T z j T IT n. t+a u p a s s 

we obtain 

/ du TBf d( + - < t 0 2

s e p a r a t r i x 

2 ^ 

•c l • v ^ T • ( 1 • 0 , ^ T ^ U r - w • (D"9) 

Integrals containing ^ have their principal contributions from the central 
cell when these considerations do not apply because of the nearly Maxwellian 
nature of the distributions there. 

Combining these results, we obtain from Eq. D.3 and the assumed 
perturbation (negiecting the FLR term so as to model a rigid perturbation), 
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"l« = ̂  [-̂ T-V -d--) 7 ^ 7 ] 2 -ia «~ "Pass 

+ (gh - DO - a) 2 
TjT t a »2 

"a J L r np K + TJ'J •'t+a D p a s s 

where the subscript c denotes the central cell. 
The choice of a to yield the most unstable mode, in general, involves 

the parameters <u*/«V) and %/<%. Here we set a = 1, thereby eliminating the 
stabilizing effects of positive 3f/3e and ĝ , 4 1 in the transition region. 
This perturbation has <J> = 0 in the transition region and anchor. Solutions arc 
stable provided 

« . - • » ) * ( « / r " p ) 2 

In terms of the growth rate Y introduced in Eq. D.5, this becomes 

where 

4 , 4A 2 

» 2 
Y c 

* (1 +A) » 

A = 
2 / 

1 n+ 

dH 
"p 

A = 
k V /• 

(D.12) 

and we have introduced the familiar to*. 
In the A-cell geometry shown in Fig. D-3, we assume that the worst mode 

is one that vanishes in the yin yang and the A-cell. All but a fraction of 
electrons are free to pass through the anchor, and only these see an average 
potential 
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Fig. D-3. Profiles of field, potential, and density at one end of MFTF-B whefl 
operated with thermal barriers of the A-cell type. The dashed line represents 
the assumed worst perturbation that excludes the favorable yin-yang curvature* 
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where A refers to A-cell and, as before, a to the anchor, or yin-yang. 
If there is no local potential rise A9 in the anchor, the same 

fraction of ions pass through as electrons and there is no drift term at all. 
In the presence of A<p , a drift term develops. However, because it is 
generated by electrons, this term has the opposite sign as the familiar ion 
FLR term. 

Neglecting the e, u dependence of the various transit times, we arrive at 
the following estimates, 

\ T B ( * ' •> / ions ' T£ e L^ 

. 1 i v : LA> 
lectrons IT" L, c 

where ... denotes the e, M average, and R is the mirror ratio seen by the 
central cell. When allowance is made for w* e = - co*̂  T e/T^, these results lead 
to the dispersion relation 

(' m ' 
u * i ( m - 1 + i a ) t , J + ^ = 0 

where 

A l 
- 1 / T i c 
' R c i T ec 

f "V T ic\ rl 2 \ + L A> 
} 7, Lc 

A 2 -tfr" c - % / T i c ) i 2 ( L a + LA> 
^ P? L c 

Evaluations of the A-factors for the two magnet sets are given in Sec. I. 
Comparisons of the two geometries shows the A-values for the A-cell 
configuration are larger. However, the sign of the drift term is such as to 
cancel the FLR term, giving instability at finite m. 
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APPENDIX E 

SLOSHING IONS IN THE HFTF-B ANCHOR 

M. E. Rensink 

1. INTRODUCTION 

In both the A-cell and axicell configurations for MFTF-B, sloshing ions 
play a key role in microstability considerations and in creation of the 
potential that plugs the solenoid. In the A-cell configuration the 
sloshing-ion distribution and plugging potential were produced in the A-cell 
itself. For the new axicell configuration, the sloshing-ion distribution and 
plugging potential are produced in the anchor (yin yang). Here, we report on 
some oounce-average Fokker-Planck calculations for sloshing ions in the HFTF-B 
anchor. As in the previous designs, sloshing ions are formed by off-midplane 
neutral-beam injection perpendicular to the magnetic field. 

2. MAGNETIC FIELD 

The axial magnetic field profile for the stretched yin-yang configuration 
is shown in Fig. E-l. The vacuum magnetic field, B (z), is obtained from 
an EFFI code run,. The finite-beta depression of the vacuum magnetic field is 
estimated by means of the long-thin approximation, 

B(z) = B v a c { z ) A - 6(z) 

where our model for 6(z) is 

(K - B v a c U)\ 

We assume a midplane (z - 0) beta value 3(0) of 0.55, so the vacuum mirror ratio 
of 2.91 increases to 4.34» mainly because of the hot magnetically-confined 
electrons. 
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Fig. E-1. Axial magnetic-field profile in anchor. 
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3. ELECTROSTATIC POTENTIAL 

The axial potential profile, *(z), is sketched in Fig. E-2. This 
potential is derived by setting the local charge density to zero, including 
contributions from cold, warm, and hot electrons as well as passing, trapped, 
and sloshing ions. The self-consistent calculation of this potential is a 
formidable problem, so for the sloshing-ion calculations described here we 
assume a fixed form for the potential as part of our input data. 

On the outboard side of the anchor midplane, we assume a piece-wise 
quadratic form for •[+], where <|> = B(z)/B(0) is the local mirror ratio; 

*L>] = *a - (•, - *0) [-arTT) • !<•<•, 

xm 
The parameters used in our simulations were: 

* 0 = 20.0 keV ; 

* a = 80.0 keV , i|»a = 1.50 

* m = 0.0 keV , \ = 4.34 

On the inboard side of the anchor midplane we assume a net mirror ratio 
R L = 4.34 and a potential rise (midplane to inboard mirror) A*, of 32.5 keV. 
These parameters are important in mapping the passing- (solenoid-) ion 
distribution from the inboard mirror to the midplane, which is the reference 
point for the bounce-average Fokker-Planck code. The detailed profile of * 
on the inboard side does not enter the calculations because in performing 
orbit averages, the code assumes symmetry with respect to the midplane. 

4. NEUTRAL BEAM INJECTION 

Neutral-beam injection is represented by various source and loss terms in 
the Fokker-Planck equation for the ions. These may be written schematically 
in the form 
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•ft f i (z.v.e) = C(f.) + E o^z) [(vj + vJ x)n.( 2)S b(v,e) 

- vj x f i ( z,v,e)] . 
The first term, C(f^), is the Fokker-Planck collision term. The remaining 
terms represent ionization and charge exchange for each beam in the problem. 
The factor o. (z) defines the spatial profile of the incident neutral beam. 
Typically, we assume the Gaussian form 

%(z) = exp[-(z - z b) Z/(Az b) 2] , 

nhere zb fs crte frrjeccfcrr frufr.c sad dz. fs tire axial extetrt of tite iteair. f&r 
sloshing beams in the MFTF-B anchor, we inject at the position of the potent-ai 
peak, z b = 130 cm, as indicated in Figs. E-l and E-2. For well-collimated 
beams focused at the magnetic axis the spatial extent is Az b = ±10 cm for 
perpendicular injection. 

The local source strength (particles/cm /s) at the injection point is 
proportional to the local ion density for ionization and charge-exchange 
processes. The rate coefficients vj and \r are specified as input 
parameters. These are related to incident neutral-beam currents and ionization 
and charge-exchange cross sections, e.g., 

VI = "b <™>I > 
nd = y«b -

where J Q is the incident neutral-beam current density, v b is the beam velocity, 
and (ov}j ,s the impact-ionization rate parameter (from both electrons and 
ions). 

The velocity-space shape factor, S b(v,e), describes the energy and 
orientation of the neutral beam and has the form 

Sb(v,6) = Kfa expE-yv - v b ) 2 - y b (cos 6 - cos 6 b) 2] , 

where (v b,e b) specify the mean velocity and pitch angle and { A ^ Y ^ ) 

167 



define the spread in these quantities. The normalization constant, K b, is 
defined such that 

fe2> sb(v,e) = l . 

5. BEAM SPECIES MIX 

There are three energetic components for the injected neutral beams. 
Most of the incident neutrals have the full 80-keV energy, but there are 
smaller fractions with half-energy (40 keV) and third-energy (27 kev). For 
our sloshing-ion beams, we have assumed a 90/5/5 molecular-source-current mix, 
which leads to incident atomic currents at the plasma in the ratio 83/8/9 when 
beam divergences are taken into account. The half- and third-energy beam 
components tend to reduce the mean energy of the trapped ions because they 
constitute a finite fraction of the total incident beam. This effect is 
accentuated because the charge-exchange cross section at 27 keV and 40 KeV is 
larger than at 80 keV, leading to a larger trapping fraction for the half- and 
third-energy components. Also, if the half- and third-energy ions from the 
sloshing beam are not trapped, then charge exchange between these components 
and the sloshing ions acts as a loss mechanism for the ions and leads to 
increased sloshing beam current requirements. 

6. HIGH-ENERGY PUMP BEAM (HEPB) 

The high-energy pump beam is directed along the magnetic axis so that 
any charge-exchange of this beam with the sloshing or trapped ions produces an 
untrapped ion. Thus, the HEPB removes i?ns from the anchor. The rate 
parameter (tfv)^ can vary significantly with axial position because the 
charge-exchange cross section is a strong function of the relative velocity 
between the axially directed HEPB and the co- or counter-streaming components 
of the sloshing ions. This effect is included in the specification of the 
profile factor ct^z) for the HEPB. For the MFTF-B anchor, n H E p B ( z ) i s 

approximately uniform for the axially-directed HEPB, and the spatial variation 
of ( o v ) ^ P B is modelled by 

o H E p B ( z ) = exp[-z Z/L^] , 
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where L £ x « 250 cm fits the estimated fall off in (<»v)j!^PB a s o n e raoves 

out from the midplane. 

7. LOSS-CONE BOUNDARIES AND PASSING IONS 

The velocity-space loss boundary at the midplane of the anchor consists of 
several segments, as shown in Fig. E-3. For ions to escape through the 
outboard mirror from the midplane, they must first be able to pass over the 
potential peak * at ty. Ions to the right of curve A satisfy this condition. 
If the magnetic moment of these ions is not too large, they will be able to 
pass through the outboard-mirror throat and escape from the plasma. Ions to 
the right of both curves A and M satisfy these conditions. It is also 

"ble for ions to escape through the inboard mirror and join the passing 
ions in the solenoid or in the transition region between the axicell and 
potential peak at ^, in the anchor. Ions in the shaded region to the 

a 
right of curve L but to the left of curve A satisfy this condition, and we 
call these the "passing" ions. 

We assume that the passing ions have a Maxwellian distribution 
characterized by the solenoid-ion temperature (Tj c = 15 keV for nominal 
MFTF-B operation). The density of the passing ions depends on the strength of 
the charge-exchange pumping in the transition region. In this report we 
present results for several plausible values of the passing-ion density. 

8. RESULTS 

We present results for three different values of the passing-ion density 
at the inboard-mirror throat, i.e., n M = 2 x 10 1 2, 4 x 10 1 2, and 
8 x 10' c m . The incident sloshing beam is held fixed, and in each case the 
HEPB has been adjusted in intensity to maintain a midplane ion density 
nQ a 3.2 x 10 cm" . Table E-l summarizes input parameters common to all 
three cases. Results are summarized in Table E-2 and in Figs. E-4 to E-7. It 
should be noted that the density profiles in Fig. E-4 apply only to the 
outboard side of the anchor. 

From Table E-2 we see that the ratio of warm (passing and trapped) ions 
12 3 to sloshing ions is largest for case C (n M = 8 x 10 cm ) so we expect this 

to be the most favorable case for microstability. An examination of the 
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Fig. E-3. Loss-cone boundaries In midplane velocity space of anchor. 
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m = -20 keV 

A*, 
a 
= +60 keV 

*a = 1.5 
t&L = +32.5 keV 

Table E-1. Input parameters for sloshing-ion anchor. 

Magnetic Field 
Outboard-mirror ratio (net) fy = 4.34 
Inboard-mirror ratio (net) R, * 4.34 
Midplane-to-mirror axial distance (symmetric) z m * 248 cm 

Potential 
Potential drop (midp lane to outboard mirror) 
Potential rise (midplane to peak of plug) 
Mirror ratio to peak of plug potential 
Potential rise (midplane to inboard mirror) 

80-keV Sloshing Beams 
Mirror ratio (midplane to injection point) V i | t = l.S 
Axial distance (midplane to injection point) z- n : j = 130 cm 
Axial extent of beam fiz^ - = ± 10 cm 
Local injection angle 6̂  - = 90° 
Equivalent midplane injection energy EJ|*j = 140 keV 
Equivalent midplane injection angle d\^l s 38° 
Rate coefficients for full/half/third-energy ^ L = 13.75/3.62/7.07 
beam components ^ = 5.24/2.27/5.25 

Incident sloshing-beam current density (at 
SL ? 

injection point on each side of midplane) ''incident = 1 0" 4 m A/ c m 

80-keV HEPB 
e -folding length for fall off of (av)"^ P B L c x = 248 cm 
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Table E-2. Effect of passing-ion density on anchor parameters. 

Case number 

Fokker-Planck run MF25N MF25K MF25M MF25Q 

Passing-ion density at inboard-mirror 
throat, n m (cm" 3)(10 1 2) 2 4 8 0 

HEPB-rate coefficient needed to maintain 
to constant midplane density, 
^ P B (s - 1) 1.50 1.83 3.30 1.83 

Incident HEPB current density; 
J^ E P?. f (mA/cm2) 1.03 1.26 2.26 1.26 
incident 

Total midplane-ion density, n(cm" 3){10 1 2) 3.22 3.33 3.12 2.08 

Passing warm-ion density, n (cnf 3(10 1 2) 0.10 0.30 0.40 0 

Trapped warm-ion density, n T(cm" 3)(10 1 2) 0.77 1.52 2.25 0 

Sloshing-ion density, n S L(cm" 3)(10 1 2) 2.35 1.61 0.47 2.08 
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Fig. E-4. ion density as a function of magnetic field for four values of n 
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anchor midplane for four values of n. 'm-
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midplane-v, distributions in Fig. E-6 confirms this expectation. If the 
higher value of the passing-ion density in case C should turn out to be the 
most plausible, but a larger fraction of sloshing ions is required (e.g., to 
produce a larger potential peak), then both the HEPS and the sloshing-beam 
currents would have to be increased relative to the values given in Tables E-1 
and E-2. 

The presence of the warm (passing + trapped) ions in cases A, B, and C 
tends to obscure some of the features of the sloshing ions, so to obtain a 
clearer picture we examine case D in which there are mi warm ions. Here we 
use the same HEPB as in case B but arbitrarily set the passing-ion density to 
zero. Results are given in Table E-2 and Figs. E-4 to E-6. The sloshing-ion 
midplane density for this case is n Q = 2.08 x \0 cm" 3; the peak, density is 
2.84 times higher. The peak, which occurs at a mirror ratio typk = 1.3, is 
shifted toward the midplane from the injection point at yij • = 1.5. This 
inward shift is due to ion-ion scattering, which tends to broaden the midplane 
pitch-angle distribution of the sloshing ions. Ions that scatter toward 
smaller pitch angles escape through the loss cone, while ions that scatter 
toward flQ = 90° are trapped closer to the midplane. 

The particle confinement time for the sloshing ions is limited by a 
combination of charge exchange on the HEPB and axial loss because of ion-ion 
scattering into the less cone. This can be seen from the particle balance 
equation which we write in the form 

3 " S L SL "SL NSL 
"ST " + ionization " ̂ RIPB; " < t e n d . l o s s > • 

where the line-integrated particle and current densities are 
„ _ £ dz n(z) 

..SL, 
SL r vi ( z ) n l z ) 

"ionization J "' flz) 
In steady state, for case D, we find that the lifetimes for loss from charge 
exchange and scattering are comparable, 
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«ig P B» = 0.65 s 

^end-loss" = ° * 8 8 s 

The somewhat shorter lifetime for charge exchange is typical of most cases we 
have considered for sloshing ions in the anchor. 
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APPENDIX F 

ION MICROSTABILITY 

L. D. Pearlstein and G. R. Smith 

This section contains assessments of both loss-cone and Alfven ion-
cyclotron instabilities and an overall conclusion. 

1. LOSS-CONE STABILITY (L. D. Pearlstein) 

The background for the material presented here on stability to loss-cone 
modes was detailed in Phyi ,cs Basis for MFTF-B, and will not be repeated 
here. Rather, I will update the physics and the status of the stability to 
loss-cone modes in the axicell configuration. In this configuration, there 
are still two cells (the axisymmetric mirror and the quadrupole anchor) with 
loss-cone distribution of ions. As in the A-cell yin-yang, the axicell ion 
distribution averaged over the parallel velocity is a monotonic function of 
the perpendicular velocity and thus is stable to loss-cone modes. After such 
an average, the yin-yang anchor-barrier cell, like the A-cell, does maintain a 
loss-cone between the midplane and the outboard mirror (see Fig. F-l and its 
stability must be ascertained. 

I begin with a brief description of the modes. In general, the electrons 
generate the waves while the ions provide the instability mechanism. Stability 
rests on the control of the ion distributions. An important property of these 
modes are the various space scales. The wavelengths perpendicular to the 
magnetic field are short (k.Pj •> 1) compared to equilibrium scale lengths 
and, consequently, the eikonal approximation can be used for this variation. 
Wavelengths along the magnetic field are comparable to equilibrium scale 
lengths (variations in the magnetic field, density, and the like). Hence, we 
solve a second-order ODE along the magnetic field with k I(s), to find the 
eigenvalues, that is, the standard "balloon" equation. The form of this 
differential equation follows: 
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Fig. F~l. Stability of axicell configuration to loss-cone modes: 
(a) Electrostatic potential § and magnetic field B as a function of z, 
distance along the magnetic field,- (b) sloshing-ion density, the thermal-ion 
density, and the magnetically confined ECRH-generated electron density, all 
shown as functions of z. The central cell is off to the left. All densities 
are normalized to the peak sloshing-ion density. 
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2 2 2 
\sk^--zT~T-l& = kf(*+ Fr++ F^rt) , (F.l) 

to <u . k,c + u. "d "i" "pe 
where 

Electromagnetic 

with 

(F.3) 

and 

o d vi f e < v i 2 > - — — h • lf'V 

All undefined notation is standard (for definitions see Ref. F-1). Also the 
new fcrm ($) of the finite ($ term added to the basic equations arises from the 

F-? PB electron drift with k p « 1. Note that in the limit T + 0, we recoyer 
the standard result (J = 0. Also F-[<f>] is as defined in Ref. F-1. One further 

F-3 addition has been an improved self-consistent barner-potential model. 
In Fig. F-2 I present results for the vacuum mirror ratio 2.8, 

6 = 0.55 (actual mirror ratio 4.) for the sloshing-ion profile shown. Also 
shown is the density of magnetically trapped electrons and the density of 
thermal ions and the potential, all as functions of s. The potential profile 
shown differs somewhat from that calculated in Sec. II, although the 
warm-plasma-density profile is quite similar. This difference is due to our 
approximate model distribution function, which must be an analytic function of 
mod-B (see Ref. F-3) for the stability analysis. 

In Fig. F-2, stability boundaries are shown for the two worst modes 
(solid line) of the configuration described above and stability boundaries for 
a configuration with a 20% broader ECRH profile (dashed line), thus also a 
more flattened well. The ordinate is the ratio of the thermal-ion density to 
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Fig. F-2. Marginal stability for two worst modes (solid lines) and for a 
configuration with a 20X broader ECRH profile (dashed lines). The two curves 
of each set correspond to two magnetically contained electron profiles varying 
by 20X (see text). The vertical axis is the ratio of thermal-ion to 
sloshing-ion density at the mirror midplane. The horizontal axis is the ratio 
of thermal-ion to sloshing-ion energy. The shaded regions imply the existence 
of uncertainty in profiles. The square region depicts the nominal operating 
regime for the MARS mode. 
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the sloshing-ion density evaluated at the midplane of the mirror, and the 
abscissa is the ratio of the thermal-ion energy to the energy of the sloshing 
ions evaluated at the midplane of the mirror. The curve labelled n = 0 
(the lowest axial mode) is the stability boundary for the analog of the 
drift-cyclotron-loss-cone (OCLC) mode in a symmetric well, but here 
(u <* 1.4 <u • and is near a resonant frequency in the region of no warm plasma. 
The curve labelled n z = 1 (the next mode) is the stability boundary to the 
axial loss-cone mode (ALC) computed from straight-line orbits where 
u) > 5.5 (O.J. The normal operating regime is denoted by the rectangle shown in 
the figure. 

The basic conclusion of this study is that stable regions for loss-cone 
driven modes overlap the operating regime of the MFTF-B Axicell configuration. 
The shaded area on the graph represents the sensitivity to details and is a 
measure of the uncertainty of the theory. Obviously, a more extreme variation 
in profiles can expand the shaded area to include the operating point. It 
should be emphasized that this sensitivity to moderate changes in scale length 
is primarily a property of the large hole in the perpendicular sloshing-ion 
distributions, a signature common to both the A-cell and axicell 
configurations. 

Further properties of a marginally stable point are shown in Figs. F-3 
and F-4. The marginally stable distribution function averaged over the 
parallel velocity is shown in Fig. F-3. The values generated from a 
bounce-averaged Fokker-Planck code (circles) are used as input to the various 
scenarios. Last, Fig. F-4 shows the magnitude and phase of typical 
eigenfunctions. 

2. ALFVEN ION-CYCLOTRON STABILITY (6. R. Smith) 

Each of the operating modes of MFTF-B has at least one mirror cell for 
which Alfven ion-cyclotron (AIC) stability must be considered. Here, we give 
a preliminary assessment of AIC stability in each type of cell. More detailed 
assessments will be undertaken as Fokker-Planck results for each cell become 
available. Also, we describe briefly the flexible, model ion distribution 
function being used for each type of cell. 

The various operating modes have two qualitatively different types of 
mirror cells, those containing sloshing ions and those without a sloshing-ion 
component. 

185 



T 1 1 1 1 1 1 1 r 

Perpendicular velocity, v 1 

Fig. F-3. Ion-distribution function f as a function of perpendicular velocity 
at midplane of anchor at marginal stability. The circles depict values 
obtained from a Fokker-Planck run. 
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Fig. F-4. The amplitude and phase of the eigenfunction of marginal stability 
for the n z = 0 mode and for the n z = 1 mode. 
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2.1 Anchor-Plug Cell With Sloshing Ions 

For three operating modes (axicell, Kelley, and TMX-U-like) the anchor 
plug implemented in the yin-yang magnet has a strong sloshing-ion component. 
Hot electrons provide most of the &; the & of the sloshing ions is 
moderate, of order 10X, a few times the value expected in TMX-U. 

In initial calculations of the effect of a sloshing-ion component on AIC 
instability, a strong stabilizing effect has been discovered. Crudely, the 
sloshing energy of the ions can be included in calculating the anisotropy 
<v̂ >/<vjj> - 1 that drives the instability. Thus, a sloshing-ion component 
with mean pitch angle of 45° contributes weakly, at most, to driving AIC 
instability. 

Because of this strong stabilizing effect, the largest drive for AIC 
instability may come from the region where the ions reflect from the inner 
mirror, since the anisotropy and ion energy (and therefore B) are both high 
there. This region is fairly short (< 100 cm) in terms of the typical unit 
of length (inverse wavenumber) for AIC instability 

J/2 c _ 2.3 x 10 ,,., 
— = 1 ' * » c m 

Pi 
W 

where Z and u are the ion charge and mass numbers and n is in cubic 
centimeters. For MFTF-B, Z = 1, u = 2, n a 6 x 10 , and c/u . » 15 cm. The 
shortness of this region of high sloshing-ion density shows the need for 
calculations that take into account the axial equilibrium variations. 

Detailed calculations including sloshing ions and axial variations are 
necessary to refine the parameters of this anchor-plug cell. 

2.2 Cells Without Sloshing Ions 

2.2.1 Anchor-Plug Cell of THX-Like Operating Mode. This cell, also 
implemented in the yin-yang magnet, has high ion 8, like the successful 
2XIIB experiment. However, unlike 2XIIB, the stabilizing effect of finite 
length is negligible in HFTF-B since for n =» 10 , 

c «4 cm « L , ~ 150 cm . OL.J plasma 
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Counteracting the destabilizing effect of larger plasma size is the 
potentially stabilizing effect of larger mirror ratio in MFTF-B. The vacuum 
mirror ratio of 2 in 2XIIB was not fully utilized because of the maintenance 
by electron drag and charge exchange of an ion distribution much shorter than 
the mirror-to-mirror distance. If means can be found in MFTF-B to build an 
ion distribution that fills this cell of vacuum mirror ratio 3, AIC stability 
can probably be achieved in spite of the long plasma length. 

2.2.2 Axicell. The axicell operating mode of MFTF-B (and of the similar MARS 
reactor study) contains an axisymmetric mirror cell with moderate ion B 
(comparable to the TMX end cell). In this respect, the axicell 1s much 
superior to the yin-yang cell of the A-cell design of MFTF-B, which requires 
6 to be many tines that achieved in TMX. The smaller mirror ratio of the 
axicell (1.S on the central-cell side) allows confinement of only a rather 
anisotropic distribution. The anisotropy could, however, be somewhat less 
than in TMX and in the A-cell design, which (like 2XIIB) did not utilize their 
full mirror ratios. An estimate of the anisotropy limit can be obtained by 
adapting the convective-absolute boundary calculation of Kedrick 

For 6 of 20%, this predicts that absolute instability can be avoided if 

which should be achievable. This calculation neglects the stabilizing effect 
of the central-cell ions that seem to be present in TMX. In MFTF-B the effect 
may be stronger than in TMX, because the central-cell icns have significant 
density throughout the axicell. 

The axicell thus seems more stable than the yin-yang of the A-cell 
design. 

2.2.3 Central Cell for Kelley Operating Mode. In this operating mode, which 
is similar to that of the Technology Development Facility (TDF) strong 
neutral-beam injection and short confinement time can lead to a significantly 
non-Maxwellian ion distribution in the central cell. Furthermore, high 6 is 
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required, and the plasma is extremely long in units of c/u., which may imply 
that suppression of absolute AIC instability is not adequate to avoid 
deleterious effects; convectively growing waves might heat and trap ions in 
the bad-curvature transition region. Ameliorating these effects is the very 
large vacuum mirror ratio of about 10. The large mirror ratio may allow a 
sufficiently Maxwellian distribution to be built so that AIC instability can 
be avoided. 

2.3 Model Ion-Distribution Function 

An ion-distribution function that is very useful for modeling the 
various cells of a tandem-mirror machine leads to a numerically tractable 
dispersion relation for Alfven ion-cyclotron instability, as described in this 
section. 

The ion-distribution function f is a superposition of distributions f. 
of one or more ion components (e.g., sloshing, passing, trapped): 

f(v) = £ fjlv) . 
J 

The following two models for f.= allow a large variety of mirror cells to be 
studied. The first model has f; separable in perpendicular and parallel 
velocity v 1 and v ( | l while the second has fj separable in speed 
v s (v^ + vjj) 1^ 2 and pitch angle $ = tan"1 (v 1/v | (). Thus, 

^ W - A j f , ^ ) j e x p [ - « j ( v , | - u / ] M v | | - - v I | ) | > 

fjfv.) = Fjtv) G j U ) , G..(.j>) = G..(ir - *) . 

Both models have the required symmetry under v n •* - v,,. For perpendicular 
wave number k± = 0, the form of fx does not enter the dispersion relation, only 
the density and temperature moments enter. Even for kĵ  t 0 the first model 
allows both velocity-space integrals to be done analytically. 

For the second model, a particular class of F.(v) allows one 
J 

velocity-space integral (speed) to be done analytically for k ^ < 1, 
where a.- is the mean gyroradius of ion component j: 
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2A. F (v) = C v j exp(- o 2 ) , I = 0, 1, 2, ... 
J J J J 

For k x = 0, a rather simple form of the dispersion relation results even 
for the model f* = F.(v)G*(<|>). Suppressing the subscript j for brevity, we 

J J J 
can write the dispersion relation for a plasma with cold electrons as 

2 
_ _ 0 <o to 

0 = D{u>,k) = k V - o? + -r^r- + O^w.k) , 

D i • u p i I 1 + T[fr* 1.5) / d * t a n * G <*> 

'loss 

Jsin * tan + [(2 + l)l^u - Z ^ J - 2 ^ z ^ j j 
where the generalized plasma dispersion functions, 

•1/Z (" i u .' e»p(V) v» • «-w / U - Z 

have argument 
z k cos* a 

Here, fl is the ion-cyclotron frequency. These functions can be computed 
accurately and rapidly. Only a single integral (over pitch angle $) must be 
done numerically. Nonzero kx £ a^ does not force the numerical evaluation 
of both velocity-space integrals but merely introduces a determinant with 
elements no more complicated than D shown above. 

3. CONCLUSION 

The conclusion of this study is that both the A-cell and axicell 
configurations look the same with regard to ion microstability. Further, 
provided the predicted operating parameters can be achieved and some care is 
taken in forming the ion distributions, we anticipate that the plasma will be 
stable to these modes. 
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APPENDIX G 

ELECTRON MICROSTAB'LITY 

Y.-J. Chen, W.M. Nevins, and G.R. Smith 

1. INTRODUCTION 

The hot-electron plasmas in tandem mirrors muy be unstable at frequencies 
comparable to the electron-cyclotron frequency fi. By studying these 
instabilities we hope to prevent deleterious effects by learning how to operate 
experiments without strong instabilities. 

An early review of microinstabilities of ECRH plasmas was provided by 
Guest and Sigmar. "' The instabilities that led to the most stringent 
constraints on plasma parameters were the electromagnetic whistler instability 
and the electrostatic "upper-hybrid loss-cone" {UHLC) instability. Later work 
on the whistler instability shows that relativistic effects are significantly 
stabilizing even for mean electron energies much less than the rest 
energy. G" z t o G" 4 The UHLC instability was the subject of t detailed study 
for plasma parameters appropriate-to the earth's magnetosphere. 

In this previous work ' t 0 it was found that the wavelengths 
associated with these high-frequency electron modes are short in comparison to 
typical macroscopic scale lengths of the plasma. Hence, requiring stability 
in the case of these modes tends to constrain the electron-distribution 
function rather than the configuration of an experimental plasma. 

In this article we describe our present numerical study of instabilities 
of ECRH plasmas. Our work improves on earlier work by more accurately 
modeling the electron-distribution functions suggested by recent Fokker-Planck 
studies of electron-cyclotron-resonance heating (ECRH) in a magnetic-mirror 
field.S-6.G-7 

2, MODELING THE ELECTRON DISTRIBUTION 

Fokker-Planck studies of ECRH plasmas in the TMX-Upgrade Experiment have 
found distributions f(yj like the one shown in Fig. G-1. _ 6»G-7 T h e 

distribution for MFTF-B will be similar to that shown in Fig. G-1. The moments 
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0 1 2 

Parallel velocity, v(J ( 1 0 8 m/s) 

Fig. G-1. Contour plot of electron distribution found in Fokker-Planck 
studies of the ECRH plasma in the TMX-U experiment. The total electron 

2 2 density is given by «£/n = 1.55. Contours are logarithmically spaced, 
adjacent contours being separated by a factor of two. 
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fA = /dV|, f (_y_) and f|( = 2n Jv^d^f (v.) are monotonically decreasing functions of 
perpendicular an'1 parallel energy, respectively. It does not follow, however, 
that loss-cone instabilities are absent, because the distribution in Fig. G-l 
is poorly approximated by f^,, i.e., f(_v) is not a separable function of 
perpendicular and parallel energies. Separable distributions have been used 
in most previous studies; exceptions are the whistler-instability studies of 

G ft G ? 
Scharer and Jacquinot and Leloup. c Loss-cone instabilities with finite 
k ( | can be driven by wave-particle interactions at v„ = (<o - nfi)/k|1( along 
which the perpendicular-velocity distribution is inverted for appropriate n, 
u, and k||. Here, n is an integer, <«> is the wave frequency, ana k is the 
parallel component of the wavevector. Failure to recognize the nonseparability 
of f(y_) would-lead to overly optimistic stability assessments for loss-cone 
instabilities. Therefore, we have developed the following nonseparable model 
for the distribution function of an ECRH plasma. 

We superpose a number N of electron components with various parameters: 
f(v) = £ f j v ) . (G.1) 

s=l 
Each species has a separable distribution 

fs 
exp f- V r- \ . (G.2) 

By appropriate choices of the densities n , thermal speeds c^ and ô ( , 
and indices I, we achieve a good reproduction of Fig. G-l, as shown in 
Fig. G-2. 

Superposing separable distribution;; to model a nonseparable distribution 
allows us to avoid numerical velocity-space integrations, a considerable 
computational advantage. The distribution in Eq. G.2 is precisely that used 

G-9 by Callen and Guest, who provided all the formulae necessary for 
numerical calculation of the dielectric function D(tu,k) = del [D(fcj,k_)], 
whose roots describe the small-amplitude waves of a collisionless plasma in a 
uniform magnetic field, BQ. 

Vie have written a computer code that solves the fully electromagnetic 
dispersion relation D{ai,k_) = 0 for the non-separable model distribution 
given by Eqs. G.l and G.2. The direction of wave propagation ĵ  with 
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Parallel velocity, v„ (10 8 m/s) 

Fig. 6-2. Model electron distribution formed by superposing five separable 
distributions (see Eq. G.2). The logarithmically spaced contours are 
separated by a factor of two. The plasma frequencies u , perpendicular 

2 2 
temperatures T x = (£ + 1) mc^/2, parallel temperatures T„ = mocyj/2, 
and indices i. are given by cojj/fi2 = 0.64, 0.92, -0.037, 0.046, and -0.018, 
respectively; T x = 3, 40, 12, 12, and 4 keV; T,,/^ = 0.3, 0.35, 4, 2, and 6; 
and 8. = 0, 1, 1, 1, and 1. Dotted contours give unphysical negative values of 
the distribution function. The spacing between adjacent dotted contours is 
also by a factor of two. The magnitude of the most negative value of the 
distribution function is less than l/2000th of the most positive value. 
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respect to BQ can be arbitrary, but the plasma is assumed to be spatially 
uniform and nonrelativistic. 

The uniform-plasma approximation is a reasonable first approximation 
because high-frequency instabilities have wavelengths much shorter than 
typical equilibrium scale lengths of the plasma. The non-relativistic 
approximation is known to be pessimistic for the whistler instability: Gladd 
has found growth-rate reductions of a factor of two or more for mean electron 
energies of 250 keV, one-half the rest energy. 6 - 3 , 6"* Relativistic effects 
are stabilizing only for instabilities with a> < fl. Nevertheless, at the 
200-600 keV energies envisioned for HFTF-B, even the UHLC instability, which 
has u > ft, will have to be treated relativistically. The results in the 
next section were found with the non-relativistic approximation. 

3. NUMERICAL RESULTS 

Only two instabilities, the whistler and upper-hybrid loss-cone modes, 
are found in a plasma with the non-separable model electron distribution shown 
in Fig. G-2 by applying the Nyquist technique thoroughly over the k̂  plane. We 
have used our computer code to calculate the real frequencies and temporal 
growth rates of these instabilities. For the whistler mode the maximum growth 
rate occurs at kj = 0 and k„c/fl = 1.41, where w/fl = 0.55 + i 0.025. When we 
double the total electron density without changing the shape of the 
distribution, we find that the wave vector that maximizes the growth rate 
shifts to k(|c/ft = 1.74, where the frequency is given by u/ft = 0.51 + i 0.049. 

For the UHLC instability we show in Fig. G-3 a contour plot of Int u in 
the k̂ k.. plane. The maximum growth rate occurs at k̂ c/ft = 9.9 and 
k,,/^ = 0.071, where w/a = 1.15 + i 0.0064. These values of k„ and kL for the 
most unstable mode are in line with estimates presented by Guest and 
Sigmar. ' Note that the growth rate of the UHLC mode goes to zero as k|r goes 
to zero, as expected for our monotonically decreasing fL. Doubling the total 
electron density shifts the maximum growth rate to k1c/ft = 10.9 and 
k(|/kx = 0.13, where w/ft = 1.24 + i 0.008. 

Defining <\.f> and <T±> to be the averaged parallel and perpendicular 
temperature, respectively, for the distribution given by Eqs. G.l and G.2, 
our model distribution shown in Fig. G-2 has <T||>/<Ti> = 0.32. We vary T ( | 

of all components, keeping ratios of T ( | between all five components constant. 
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0.4 0.6 0.8 
Parallel wavevector, k.,c/£2 

1.0 

Fig. G-3. Temporal growth rate of the upper-hybrid loss-cone instability for 
the electron distribution shown in Fig. G-2. Solid contours give Im u > 0, 
dotted contours give Im u < 0. The interval between adjacent contours is 
4.0 x 10" 4 ft. 
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We f ind that increasing <T,|>/<T1> stabilizes the whistler mode, but 
destabilizes the upper-hybrid loss-cone mode as shown in Fig. G-4. The maximum 
growth rates of both modes are less than 0.008 fl when <T | j>/<T1> > 0.5. 
Doubling the <T|J>/<T1> to 0.64 shifts the maximum growth rates to 
k ( |c/« = 0.9 for the whistler mode, where w/fi = 0.32 + i 0.004, and 
k^c/ft = 9.25 and kn/kL = 0.056 for the upper-hybrid loss-cone mode, where 
tu/fi = 1.16 + i 0.008. 

Figure G-5 shows curves of constant temporal growth rates in the 
<T(|>/<TL> versus ^L^0J^ plane, maximized over the £ plane, for the whistler 
and the upper-hybrid loss-cone instabilities. % t o t * f " L 1 s P r 0P° r ti° nal 
to the total electron density. In the <T(|>/<Tl> versus wL o t/ft plane, 
the value of T„ and or for each component is varied, such that the ratios 
of T.. and of uf between all five components remain constant. The maximum 
growth rates of both modes are less than 0.004 Si, if we require that 2 2 <'||>/<Ti> > 0.4 and «t*ot' 5 0.55. Along the growth rate 
tm,Ja " 0.004 curves, the convective growth length of the whistler mode varies 
from 20 cm to 8 cm, and that of the upper-hybrid loss-cone mode varies from 
3.6 cm to 1.3 cm, when «C*ot/l« increases from 0.55 to 3.OF and B = 1 tesla. 

Figure G-6 shows the boundary between conditions for absolute and 
convective whistler instability when the ratios of T | ( and u»p between all five 
components remain constant. Since increasing *» Pt 0t/^ increases the required 
temperature anisotropy <T„>/<T±> for convective instability, increasing the 
total electron density has a destabilizing effect. 

4. SUMMARY 

Our work to date has found two instabilities, the whistler and 
upper-hybrid loss-cone modes, in a plasma with an electron distribution 
function similar to that produced by electron-cyclotron-resonance heating. In 
the hope of preventing deleterious effects in future experiments, we continue 
to study these instabilities, both in the uniform-plasma approximation 
discussed here and with effects of spatial nonuniformity. 
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Fig. G-4. Growth rates, maximized over k_, of the whistler and upper-hybrid 
loss-cone (UHLC) instabi l i t ies as a function of the temperature anisotropy 
<T„>/<T1>. 
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Fig. 6-S. Constant-growth-rate curves for the wlmcler and UHLC modes. The 
temperature anisotropy, <Tn>/<Tt>» is shown as a function of total electron 

9 9 
density, %xa\! G r o w t h r a t e s a r e maximized over the k plane. Solid 
curves are for the whistler mode; dashed curves for the upper hybrid loss-cone 
(UHLC) mode. 
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Fig. G-6. Cotwective-absolute instability boundary for whistler mode. 
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APPENDIX H 

RADIAL TRANSPORT 
R. H. Cohen and J. H. Gilmore 

We assess here the importance of various mechanisms for transport of ions 
and ion energy in the solenoid of the proposed MFTF-B Axicell configuration. 
The transport mechanisms considered are resonant transport and classical 
diffusion, both resulting from charged-particle encounters and ion-neutral 
encounters. The principle conclusions are: 

• The axicell reduces resonant transport by a factor of order 
R~ exp(-iij) ./T) compared to a configuration with the same geodesic-curvature 
profile but without the axicell between the yin-yang cell and the solenoid. 
(Here R is the ratio of the minimum field strength on-axis in the axisymmetric 
region to the mid-solenoid value.) However, the simplest axicell magnet 
designs tend to have large geodesic curvature in the transition region, 
producing unacceptably large transport. We anticipate the final design for 
MFTF-B will result in a radial loss rate less than the ax;al loss rate. 

• The classical charged-particle energy diffusion rate is about a 
third of the axial loss rate. 

• Ion-neutral transport is a rather weak (nr > 1.5 x lo crrrs ) 
effect in the plasma but is much larger in the halo. 

1. RESONANT TRANSPORT 

As of this writing, the magnetic-field design for MFTF-B has not been 
finalized. The issue delaying this process, namely the lack of a satisfactory 
equilibrium, is closely related to resonant transport, as both the parallel 
current and the radial drift per bounce are proportional to a line integral 
/dsK) of the geodesic curvature. Me have analyzed a preliminary field 
design and found that v-he solenoid ions passing into the transition and 
yin-yang cells satisfy the criterion for intrinsically stochastic transport, 
thereby implying unacceptably high radial-transport rates. However, a drop in 
/dslO by a factor of order five would cause the transport to change from 
stochastic to banana transport and would be accompanied by a precipitous drop 
in the diffusion coefficient. Reduction of /dstO by at least such a factor 
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is deemed necessary for a good equilibrium. We estimated the banana-diffusion 
coefficients for the preliminary design to be two orders of magnitude smaller 
than the stochastic diffusion coefficients, implying a radial lifetime of the 
order of the axial lifetime. 

The axicell configuration proposed for HFTF-B has a potentially strong 
advantage over the A-cell magnetic configuration vis-a-vis resonant transport. 
The axicell mirrors and potential hill confine most of the solenoid ions to a 
purely axisymmetric region, so that, in a bounce time, only a fraction of 
order R*-' exp (-A6./T) of the ions experience the quadrupole field, implying 
a scaling of the diffusion coefficient by the same factor. The scaling with 
Adji ., the size of the potential hill in the axicell, is only very crudely given 
by the exponential factor, as will be explained later. 

If we approximate the radial drift per bounce Ar = a cos 2 B as 
independent of pitch angle over the range of pitch angles for which particles 
pass into the nonaxisymmetric region, then in the stochastic limit (large 
electric field, azimuthal drift per bounce AB > r/a), we can calculate the 

H-l 
scaling with R. The stochastic particle-diffusion coefficient is 

D„ = * B A / d e d u a 2f . (H.l) 
u rL snf n J 

Taking f to be Maxvtellian and independent of v N/v over the range 
(1 - R _ 1 ) 1 / 2 < v,/v < 1, we find D Q « 1 - (1 - R " 1 ) 1 ' 2 which is proportional 
to R" for large R. For more moderate electric fields, the diffusion 
coefficient depends on the velocity space location of individual resonances, 
as well as the collisionality regime (banana/plateau); the scaling remains 
0(1/R), although a precise general scaling cannot be written. 

Calculation of resonant transport in the axicell configuration is simpler 
than in previous configurations, because solenoid ions which pass into the non-
symmetric region all have v,,/v = 1 at the midplane of the solenoid, and all 
reflect off of the potential hill in the yin-yang cell. Thus, the general 
expression for the change of flux coordinate a in a bounce, 

f St Aa = 2 E£ J ds (v„ + v2/2v(|)ta ; (H.2) 
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where HD is the geodesic curvature, s = 0 denotes the solenoid midplane, and 
s t denotes the turning point; becomes 

5 
2mcvt f 4> U 2 i 2 
~ir)Q

 d s f f i' < v j ( / v s ) > ( l - l / R ) U ' , I n , v s
£ > A » p . 

Aa = { (H.3) 
0 elsewhere 

where now s' denotes a point part way up the side of the potential hill in the 
yin-yang cell. In Eq. H.3 and henceforth, a subscript t denotes evaluation of 
a quantity in the transition region, whereas a subscript s denotes a solenoid 
value. 

Equations H.Z and H.3 are usually evaluated along a field line, a 
procedure that is or. ly accurate as long as the azimuthal drift Af5 during the 
time an ion spends in the transition and yin-yang regions is negligible. In 
the opposite limit A6 » 1, Aa should become exponentially small, In 
Aa °= -AB e. following in the spirit of Ref. H-3, we assume Eq. H.2 
is valid for aiot (. /v,( < 1, where u^ is the azimuthal drift frequency, and take 

Aa = 0 , ^ t L e / v J ( > 1 . (H.4) 

Here L is an effective length for the transition region; a plot of vs s for 
the preliminary MFTf-B design indicates that most of the contribution to /ds 
comes from a narrow spike about 2 m in length in the transition region; hence 
we take L £ = 2 m in the numerical calculations described below. 

The integral 1n Eq. H.3 is available as output in the TEBA5C0 
equilibrium code; hence we can estimate Aa without numerically calculating 
drift orbits. (Furthermore, use of Eqs. H.3 and H.4 with «„ = U L _ and 
approximating the bounce time by t.. = L/v.. when L i s the distance between 
yin-yang centers, allows the integrals in the resonant-banana, resonant-plateau 
and stochastic diffusion coefficients*1"1' to be evaluated analytically. 
These results will be described in a separate communication.) 

H—1 
The criterion for stochastic transport can be approximately written 

as K = 2 aAB/r > 1; here, A8 is the azimuthal drift in a bounce. Approximating 
A8 by £xB drift alone, this becomes 

Ti r 3 
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G = 

From Eq. H.3 and TEBASCO output for the vacuum field of case EGZ24 (generated 
by the EFFI code), we find /ds!0 = 24 cm at • = 21 cm, implying that with 
energy of 45 keV in the transition region (15 keV in the central cell), 
a/r = 0.47 for ions. Then, for the reference MFTF-B parameters of 
Table 2.1-1 (MARS mode)., we find stochasticity for E > 70 V/cm. For E ~ Tg/er, 
the design studied satisfies H.5 by about a factor of five. Integration of 
Eq. H.l using Eqs. H.3 and H.4 gives 

D 0 = 4 7 ^ ( ^ ) 1 / 2 e X P ( " ^ i / T ) G ( X ° , X l ) ' 
where x Q = (eEr/T) 2 l2L e p/nr) 2, x, = A* p i/T, and 

x 2 + 2x ] + 2 + « (x1 + 1) xl " x 0 > X l / R 

(x1 - x Q) ^ - 2 ) + 2 + 4 (x1 - x + 1) - g + h, 0 ^ x Q - X l < x /R 

exp (x, - x Q) [2 + * + h] - g x Q > x ] 

Here, x, = x Q ( 1 - R ) , * = T" x (potential difference between solenoid and 
transition region), 

g = exp (*i • x 2) [(x 2 - x„) (x 2 - 2) + 2 + * (x 2 - x Q + 1)] , 

and h = R~' (x£ + 2xP + 2). For HFJF-B parameters this gives 
-i 2 -i .? 

0 0 = 5.5 x 10 cm s and a corresponding lifetime of order 10 s. This 
tirae is shorter than the classical time to scatter into the loss cone, x ^ InR. 
Thus the transport would act to produce a loss-core distribution. 

The above estimates for the diffusion rate can be considered as an upper 
bound. Additional effects could reduce the diffusion rate, at least mildly, 
in the design studied and perhaps drastically in the final design. 

For example, the above estimate is obtained by neglecting the azimuthal 
drift in the transition region until it is large enough to rotate particles by 
order TT/2 in a single transit through the spike in the geodesic curvature. 
However, before that limit is reached, the azimuthal drift will be large 
enough to cause particles to drift by order n/2 between their pre- and 
post-bounce passages through the spike in 10. The radial displacements 
accompanying these successive pa- ,es no longer add in phase, as previously 
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assumed. At least, the successive phases will be effectively random, reducing 
the (stochastic) transport by about a factor o two. Also, for a (perhaps 
uninteresting) range of parameters, the orderly variation of the phase change 
with radius can lead, as in Ref. H-7, to regions of stochasticity separated by 
annular nonstochastic bands. The radial lifetime would then be approximately 
determined by the time to diffuse (under the influence of collisions) across 
the nonstochastic bands. 

A more important effect is that reduction of /dslfl by a factor of 
order five causes the transport to become resonant rather than stochastic; 
such a reduction is required for production of a satisfactory equilibrium. 
Because the collisionallty in MFTF-B is such that resonant transport is in the 
banana regime, the transition to nonstochastic dynamics can produce an 
order-of-magnitude change of two in the transport rate, as the following 
example shows. The precise reduction in /dsffl required is uncertain, as 
Eq. H.3 is only an estimate of the stochasticity criterion: the stochasticity 
parameter K is actually K = 2a3A0/3r and so depends on second derivatives 
of the potential and magnetic field; and the stochasticity boundary for an 
arbitrary dynamical map is only approximately K = 1. (It is clear, however, 
that particles with a/r ~ 1/2, as in the studied design, ̂ re stochastic). The 
stochasticity boundary will be studied in more detail numerically. 

To illustrate the difference between stochastic and nonstochastic 
diffusion rates, we evaluate the nonstochastic resonant transport for the 
preliminary design. In Fig. H-l, we plot numerical values for the resonant 
diffusion coefficients OQ, 0,, a^d Dp and the lifetime estimate T 2 , as defined 
by Eqs. '1.1, H.Z, and H.9 of Ref. H-4. The diffusion coefficients are obtained 
by numerical integration of the smaller of the banana and plateau integrands, 
as described in Ref. H-5. The acceleration and change in u_ that is due to 
the axial variation of the ambipolar potential is neglected. We use 
Eqs. H.3 and H.4, with both VB and ExB contributions to <ug. For all data 
shown, the collisionality regime is banana. The electric fields E 1 and E 2 in 
Fig. H-l correspond to T e/r and -* c/r, respectively, we see that, except for 
the narrow spike around E = 200 V/cm, the lifetime T 5 is always greater than 

ii 3 i 
about 1 s, corresponding to ni > 5 x 10 cm s , or about the same 
order as the axial lifetime. Changing /dslQ by a factor o will change the 

-1/2 
banana lifetime by about a ' . Note that the marked difference between 
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Fig. H-1. Resonant diffusion coefficients (D Q, 0^, and D-) and lifetime 
estimate (x^) for HFTF-B preliminary design, all shown as a function of 
electric field. 
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stochastic and resonant lifetimes is due to the low collisionatity in MFTF-B. 
The resonant-plateau and stochastic lifetimes are comparable. 

The route being pursued to minimize /dstQ is to add extra coils, which 
have the effect of producing two spikes of oppositely signed K] in the 
transition region. One can, in fact, thus achieve /dsK) = 0 along a field 
line. However, /ds vK3 evaluated along a particle orbit will in general not 
vanish, because of both the azimuthal drift AS in a single pass through 
the transition region and the variation in velocity v from the axial variation 
of the electrostatic potential. Defining I, to be the integral of 10 over 
one of the spikes, and A* to be the axial change in potential over the 
region of the spikes, the effective noncancellation of /dsHD because of thn 
azimuthal drift and the axial potential variation are, respectively, of order 
2A0. I. and (A4>/2T) I,. To ensure nonstochastic dynamics, we must keep these 
quantities below about 5 cm x (r/21 cm) (i.e., one-fifth of the value of 
/dstO in the preliminary design). 

The effect of the potential hill in the axicell on resonant transport 
can be appreciably larger or smaller than exp(-A* /T), depending on the 
electric field. Because of the large mirror ratio, the principle effect of 
the potential is to cut off the resonance sum at a resonance number k = k. 

<r 
[azimuthal drift per bounce = (2k + I) n/2] such that, for k > k., all resonant 
particles are reflected by either the magnetic field or by the potential. 
Neglecting VB drifts, one has 2k. + 1 = (E/EJ(T/AA i ) 1 / ' 2 , when E* is the 
electric field for which a thermal particle drifts ir/2 per bounce. The 
resonance sum is also cut off when the azimuthal drift in the transition region 
becomes too large (at a k that is independent of E). Thus, for large enough E, 
the cutoff due to A* becomes irrelevant, while for E/E* < (A<j>_;/T) ' , resonant 
transport is effectively eliminated. 

For the R scaling and Eq. H.3 to apply, the radial transport of ions 
magnetically trapped in the solenoid-plus-axicell region must be small compared 
to that of ions passing to the yin-yang cell. This in turn requires that 
SdslO in the solenoid-plus-axicell region be small compared to h(R) times 

p 
/dslO in the transition-plus-anchor region. Here, h(R) equals R" in the 
banana regime and equals R ' in the plateau and stochastic regimes. The 
inequality for banana transport, which is the more severe one, is satisfied 
for the design studied. 
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2. CLASSICAL CHARGED-PART1CLE TRANSPORT 

The classical ion-heat flux Q is predominately due to ion-ion scattering, 
q = - (2nT/m,ft? i ( ) VT^, where T f is the ion-ion collision time. Taking 
n/n 0 = T/TQ = 1 - rZ/r^, where n Q and TQ denote on-axis values and r c is the 
central-cell plasma radius, and defining the radial energy lifetime x„ by the 2 2 2 2 relation ^ Q l \ = -V • Q, we find x £ = rQ x^/4 ev where p 1 = ZT^/m^fl^ 
For the MFTF-B parameters of Table H-3, this gives x £ = 25 T Q i . This is to be 
compared to the lifetime for axial-energy loss, x £ a = (1 *• ̂ / T ^ c ) " T , 
where x is the Pastukhov (particle) lifetime; for MFTF-B, one has 
T E a ~ 8 T c i ' 

For MFTF-E parameters, the classical ion-particle flux is driven, 
approximately equally by ion-electron and ion-ion [0(p/r*) terms in flux] 
scattering; the lifetime is of order 10 T . and is, thus, of little 
concern. 

3. ION-NEUTRAL TRANSPORT 

The f l u x o f pa r t i c l es a r i s i ng from ion-neut ra l c o l l i s i o n s , I\j_, can be 

w r i t t e n as: 

p n / iS. j . n e 2&s * n n 3 T 

" in " u 0n l 3 r T 3r> u l n T 3r 
o 2 2 •! 

where 0 Q = p^ v(l + v /ft-)" , and we estimate D-, = 0 Q - We note 
v 2/ w2. « 1 and v = n^ C « i n ^ 7 , ^ e T = v, o n , o 1 n = 2 « „ . 

We assume that the density of molecular deuteriw neutrals at the plasma edge 
(r = 40 cm) is n = 2 x 10 cm" . This implies a Franck-Condon neutral 

FC 7 3 H fl 
density, n , of 2.4 x10 cm J at r = 20 cm, assuming ° an attenuation of 
the Franck-Condons through the halo of two orders of magnitude. Adopting 
parabolic models for the radial density, temperature, and potential profiles 13 -2 1 gives a flux T. = 4.6 x lo cm -s , corresponding to 
nx. = 1.45 x 10 cm *s; the flux further in is smaller yet. On the other 

13 ? l hand, in the halo, I". = 1.4 x 10 cm *s corresponding to 
n Tin = 7 * cm ' 
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4. CONCLUSIONS 

Stochastic transport would seriously limit the operation of the 
preliminary design studied. However, reduction of the 1ine-averaged geodesic 
curvature by a factor of about five should be sufficient to change the 
transport regime to resonant banana; the resultant radial ni would be about 
1 0 1 4 cm" 3 ,s, which is of the same order as the axial nx,* 

Ion-neutral particle transport and ion-ion energy transport have nr 
values of the order of, but smaller than, the corresponding axial nT values; 
thus these processes will quantitatively affect profile shapes but not 
qualitatively alter the machine performance. 

*Note added in proof: The constraints on azimuthal drift in the transition 
region mentioned at the top of page 213 have proved to be serious. For the 
current (as of 7/30/82) design it appears necessary to externally control the 
radial potential profile in the transition region in order to avoid 
stochastic transport for the design plasma parameters. 
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APPENDIX I 

BARRIER POTENTIAL MODEL 

L. D. Pearlstein and W. H. Nevins 

We present here a useful model for calculating the variation in the 
electron density, ion density, and ambipolar potential along magnetic-field 
lines in the thermal-barrier cell of a tandem mirror. We derive potential 
profiles in the barrier, sloshing-ion A-celT and use the analytic distribution 
function suggested by R. H. Cohen for the thermal ions. This distribution, 
being continuous across the separatrix, is less likely to lead to potential 
sheaths. For the thermal electrons, we use an analytic distribution that is 
again continuous across the separatrix. The general configuration and 
notation is depicted in Fig. 1-1. In what follows, we only consider the 
region between B M and <f>c-

We first consider the thermal electrons in the well region (between B Q 

and B c) whose phase space is carved up as shown in Fig. 1-2 (note 
if = le l d». 

To model the hot trapped electrons and the warm passing electrons, we 
approximate the electron distribution as follows: 

f = - = e x p (-e -fy) , e > - * 0 ; (1.1) 
/if 

and 

where 

f =-!-exp (-ex -4> 0T) , e < - * 0 ; (1.2) 

< = Twan/ Thot ' < K 3 > 
Thus, for ease of analysis, we assume that the temperatures of passing 

and weakly trapped electrons are the same. Also, for the same reason, we 
assume the more deeply trapped electrons and the more deeply trapped Yushmanov 
electrons have the same temperature. 
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Distance 
Fig. I-l. Magnetic-field strength (solid line) - d ambipolar potential 
(dashed line) for a typical thermal-barrier cell i a tandem mirror. 

Passing 

Trapped (II) y j ^ ^ . 

Trapped (I) 

-*„ 
c M 

Thermal-electron phase space. Electrons in the regions labeled Fig. 1-2. 
Trapped (I) and Trapped (II) are confined by the potential peak about $ 
Electrons in the shaded region (Yushmanov electrons) are confined by a 
combination of magnetic forces and the ambipolar electric field. 
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The thermal electron density is then 

n.-^f d« exp (-« -*0) / ^ 
p /if J - $ n

 u J 0 /e - yH -Tfr 

^ [(• - V V 2 - exp <«AMB - * 0) ( * - W 1 / 2 ] 

+ erfc" {$ - * 0 ) - exp (4m - <|>0) IFTc" (+ - <t>AHB) . (1.4) 

and 

n = - 1 / de exp [ - x ( e + * , ) ] / d f i B 

1 /W ^ ° •'O /e - MB~+ 

2 (• " * o i V 2 1 _ 

where we have defined 

erf (u 2) = — exp (u 2) /* dte _ t 

(1.5) 

2 2 2 /** ?t 
erfc (u ) = — e x p (u } J dte (1.6) 

/i J\i 
Next consider the phase space for the thermal ions (see Fig. 1-3). 

The dashed line is the v„ = 0 line for positive potentials and the wavy 
, 1-1 

line is the same for negative potentials. Following Ji. H. Cohen we write 
the distribution for the passing ions as 

f = e" e (1.7) 
P 

and for the trapped ions as 

f T " " * ( - T T T T 1 ) • < L 8 > 
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ft* Trapped 

-T,7»T*I*>°1 

e = ^B + * [ i ? < 0 ] 

Fig. 1-3. Thermal-ion phase space. 
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which is continuous on the separatrix (e = JJ*uJ» The density of trapped 
particles increases continuously as a goes from 1 to +*> and then from 
-00 to 0. The limit a = 1 corresponds to zero trapped ions, while a = 0 
corresponds to a completely filled barrier. 

We now compute the ion densities for the passing ions. First, for 
negative potentials we have 

n o = - i i d * J de exp (-e) (e - y - * ) 1 / 2 , (1.9) 

where here, and in what follows, we have the following definition;: 
> = uB , 

R = 8H/B , 

Rc 

9 
Next writing e - y - $ ~ x , we have 

V R [y(R/Rc-i) + 4>c - * 3 1 / 2 

n = — I dy exp (-y) I dx exp (-xfc - <J>) . 
P " ™ ;[y(R-D - * ] 1 / 2 

and integrating by parts on y, we obtain 

n" = erfc (-$) - erfc ($ - <t>) e"*0 

- (^f1) [erfc (-#) - e" p er7c [*p - #)] 

R 1 / 2 rV Rt 
+ - r ( l - ] r ) / dte-'-j j^—L -T-rTj- , (1-11) 
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which can be written 

n = erfc (-$) - e erfc (<t»c -

1 /2 — d) 
- (5-^-L) [erTc (-•) - e" p ir7c" (* p - *)] 

M1"^) KC^[A c(* c-*)]--*PirTc(^-)%-,)} . 
(1.12) 

Next for positive potentials, we have 

n o = 4 / d * I de e - £ (e - * - y) 1 / 2 

p /iF WO Jy*b 

V R A + y R / R c i 
+ f dy / de e " e (e - * - y ) " 1 / 2 . (1.13) 

- V R - T •'yR » 

Consequently, for the passing ions we have 

er7 (* c - 4>) - h p r r ) e p e?7 (* p - *) * > 0 

irfc"(-<(>) - e ci7fc(4. c-4.) - i ^ r ] [erTc (-*) - e per7c(<t>p-*)]j4. < 0. 

'(1.14) 
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Next turn to the trapped plasma. Consider $ > 0, then we have 

V R vR 
Kr = — / dy exp (- oyR/a - 1} / de exp (e/a - I j (e - * - y ) 

c r v f -4/R-1 «/I,+A 

•1/2 
/r7 4/R-1 y+4> 

.yR/R c +* c 

+ 7Z f d y e x p ( " ° * R / a - ] ) / d e exp(e/a - 1) (e - * - y) 
/ i r \/R "V* 

l/2_ 

(1.15) 
Again transforming the square root away, we obtain 

'4>/R-l ^ "" ' ~~ •fJQ 
* 2 r r p / OR- i * v r t y ( a - i ) - « ' " , 2 , 

+ f ̂ . ^ ^ [y(R/Rc-D'-*c-*] 1/2 
dx exp M 

(1.16) 
Next, integrating by parts, we find that the integrated parts cancel, 

leaving 
J/2 

n t r = SR-rr | e (-T-) t * p - « -

i I / B —(-^^)( ' -r) 
1/2 

/ i f ^ /R 

R 
(^==T) 

1/2 

c \ " "c * . - • ( y +4^) 
r y ( R / R c - 1 ) + 4 , c - » I 

T7? e x p L oTTl Jj • 

225 



Finally, combining terms and going through the same algebra for <j> < 0, we 
obtain 

•* • (**) |Ai - v»>"2 ( ^ r ^ t ^ r ' *r̂ <s - •>] 

(JL_L) e P erf ( • , , - * ) . * > 0 

+ 

(H1) n ["**<"*> - e*P i ? ? F (*P - *)] + 2 ( S r 1 ) D <x 1 / 2 ) |> * < o 
(1.17) 

where the Dawson integral is defined by 

'0 
In terms of 2 functions, we have 

-x 2 T x t 2 

D(x) = e / dt e x . (1.18) 

2 
-?- D{x) = i e - x - ^ Z(x) , 

erfc(x2) = - — Z ( i x ) , (U9) 

which defines the analytic continuation [e.g., consider 2 (a - 1/ir) ' D(x ) 
for a < 0, note 0 < a < 1 is forbidden], 

vl/2 z(^Y Hx^h+O-v^^fix) 
In the remainder of this paper we show several representative solutions 

for the barrier potential and thermal-ion density profile. The sloshing-ion 
distribution was chosen to satisfy 

"SLOSH • ( H W T « [" (F - ')'/'] - E> (£ " ')7*2]"-»> 
where R* is chosen to force "sLOSH t 0 p e a k a t "•• a n d A i s f ™ e t * b v t n e relative 
sloshing-ion density at the midplane (R m). For the magnetically trapped ECRH 
electrons, we choose 
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(I - 1/R \ 
i - VRJ • ( I - 2 1 ) 

where n E^ R H(0) is determined by forcing charge neutrality together with one 
further condition needed for closure. A convenient choice is the density 
ratio of thermal electrons to ECRH electrons at the midplane. 

A comparison of the two figures shows the following parameters in common: 
n S L 0 S H W . n , 
" S L O S H ^ " ' 

T 
• p > w a — = 1 (temperature ratio of thermal 
i electrons to thermal ions) , 

'e.hot 

"cc . _ , 
nSL0SH^*>' 

n th. i ( 0 > / n cc " ° - 0 8 5 • 

•WIB ' 3 ' 

Note that since the separatrix for the thermal electrons is energy dependent 
v = 3/2 (R. N. Cohen's notation, Ref. 1*1). To mock up a more realistic 
u = 1/2, we raise the T h t to get a higher plug potential (4>c). In Fig. 1-4, 
we have various profiles for a = 1.5, which results in a g(Rfi|) = 1.8 and 
nth.i(°^ ncc = 0* o a !>. In Fig. 1-5, we have the same profiles for o = 3, which 
results in a gCfy) = 6.5 and nj.h>1-(0)/ncc = 2.4. We use Logan's 
definition1"2 of g, namely g(R) = n,,. ,(R)/n .(R). 

in•l pi 
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—1 1 1 1 ' 1 ' 1 ' 1 . > -

*7 / \ 0C = 2.13 " / \ 0C = 2.13 " 

1 i , V 
/ \ 0„ = -3.O8_ 

' . 1 ,\ 1 

"SLOSH/ne.c. 

Fig. 1-4. Profiles of Mod-B, ambipolar potential $; therraal-ion density 
nth i' a n t l s l o s n i n 9 " i o n density ncLOSH ̂ o r a = ^'^' 

-1.0 0 1.0 
Distance (m) 

F i g . 1-5. The same p r o f i l e s as in F i g . 1-4 but w i th a = 3. 
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Note that in this case the barrier potential is roughly symmetric about 
its minimum. That is, there is no resemblance of a sheath. Using the 
analytic models for continuous distrbution across separatrices has removed the 
sheath. It should be emphasized that these are approximate analytic models 
for equilibrium distribution. Except for extreme cases [too few trapped 
thermal ions (a < 1.1) or too much necking off ("th.e^°^nECRH * 0 » 0 2 5 ) ] » t h e ^ 
give ri$e to continuous potentials and densities and are thus quite useful for 
obtaini09 as profiles of n and $ for use in composite calculations. Ion 
microst^bility is one such case. Using numerical profiles from Fokker-Planck 
codes would increase computer times by at least an order of magnitude 
(probably two orders). This is of course the trade off, the potentially 
inaccurate profiles for computer speed and reliability. In Fig. 1-6 we plot 
various equilibrium quantities as a function of 9(1^}. 
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