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PHYSICS BASIS FOR AN AXICELL DESIGN FOR THE END PLUGS OF MFTF-B

1. INTRODUCTION AND PHYSICS SUMMARY

The primary motivation for conversion of MFTF-B to an axicell
configuration lies in its engireering promise as a reactor geometry based on
circular high-magnetic-field coils (see Ref. 1.1). In comparing this
configuration to the previous A-cell yoginetry, we find a number of differences
that might significantly affect the physics performance. The purpose of the
present document is to examine those features and to assess their impact on
the performance of the axicell, as compared to the A-cell configuration, for
MFTF-B. In so doing, we address only those issues thought to be affected by
the change in geometry and refer to the original report1'2 "Physics Basis
for MFTF-B," for discussion of those issues thought not be affected.

In Sec. 7, we summarize these physics issues. In Sec. 2, we describe
operating scenarios in the new configuration. In the Appendices, we discuss
those physics issues that require more detailed treatment.

1.1. PHYSICS OVERYIEW

The magnet set for the axicell version of MFTF-B is shown in Fig. 1-1.
The central cell is terminated at either end by an axisymmetric mirror cell
called the axicell. This configuration was inspired by the geometry of TARA,
which is under construction at MIT.L3 However, to accommodate the MFTF-B
reference mode of operation, the axicell in MFTF-B has a lower mirror ratio
and a different B profile from TARA.

In the plasma configuration that forms the reference mode {MARS mode)
for MFTF-B, the axicell throttles the flow ¢f ions to the end cell. This is
done by a combination of magnetic constriction and reflection from a potential
peak formed by ions mirror-trapped in the axicell. The final and higher
plugging potential peak and the associated thermal barrier are found in the
minimum-B anchor, as shown in fig. 1-2. Those ions confined to the central
cell by the axicell see only axisymmetric magnetic and electrostatic fields.

Situated outside of the axicells and separated by transition sections,
the MFTF ying-yang magnets act as magnetohydrodynamic (MHD) anchors to the
whole system. Electrical cantact between the axicell/ceatral-cell combination
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Fig. 1-1. Comparison of A-cell and axicell designs for MFTF-B.
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and the minimum-B anchor cell is maintained through the transition region by a
plasma of relatively low density and pressure. Model axial profiles for the
density and potential are also shown in Fig. 1-2.

In assessing the physics performance of this configuration, we have
identified three critical parameters. Their significance is discussed in the
following sections, and more detail is given in the Appendices.

One parameter is set by the degree of coupling of the curvature-driven
trapped-particle mode in the central cell to a drift wave. A minimum coupling
is requived for stability. At high azimuthal-mode numbers this comes about by
finite ion Larmor radius effects. For low-mode numbers, there is a coupling
induced by details of the charge-particle confinement by the end cells., This
sets a minimum for the fraction of central-cell ions that are confined by the
end cell. This constraint is met in the MFTF-B design and is less restrictive
in reactor extrapolations. For MFTF-B, about 2% of the central-cell ions are
confined by the outer potential pea in the reference design. With this
fraction, MFTF-B is calculated to be marginally stable to the trapped-particle
mode.

Another critical parameter is the achievable B-value in the central
cell as determined by both equilibrium and stability considerations. An
important new element in determining the central-cell B 1imit is the density
fand therefore B) in the transition betweasn the yin yang and axicell regions
that is required to stabiiize the irapped-particle mode. The final
magnetic-design is not yet complete, particularly regarding the minimization
of the parallel currents in the equilibrium. Even so, with an intermediate
design we find that central-cell S-values ranging from 36% in the equilibrium
field to 53% in the vacuum field can be sustained and are consistent with an
ancthor B of 55% and axicell B of 20X.

The third critical parameter is the ratio of the density of warm ions
that penetrate into the midplane of the yin~yang anchor to the density of
energetic sloshing ions that possess a loss cone. Such a coexistence of warm
and hot ions is necessary for stability of the latter to loss-cone modes. We
find that a warm-ion midplane-density fraction 20.6 at a Twarm/Thot ratio
20.3 should be nominally stable, as compared to the reference-case design

parameters where "warm/"hot = 0.8 and IﬁarmIThot = 0.32.



1.2. CENTRAL-CELL CONFINEMENT

From the point of view of confinement physics, a primary advantage of the
axicell configuration is the reduction of radial transport in the central
cell. The dominant radial-loss mechanism in the original MFTF-B central cell
was a resonant transport of ions having half-integer-related axial bounce and
azimuthal-drift frequencies and suffering radial displacements because of the
nonsymmetric field components. In the axicell geometry, only the passing
particies experience nonsymmetric fields. Most of the central-cell ions see
symmetric fields so that their transport is classical in the absence of
symmetry=-breaking field errors or fluctuations. Ions entering the end regions
suffer radial steps because of the same geodesic curvature that drives
parallel currents. Once the parallel current is largely eliminated (a design
constraint), the overall transport will be reduced compared to the A-cell.
Detaiis of this improvement are given in Appendix H.

1.3. MASNETOHYDRODYRAMIC (MHD) EQUILIBRIUM

Finite-B equilibria in nonaxisymmetric mirror geometries are dominated
by the currents parallel to B, which are generated by the nonvanishing
divergence of the diamagnetic current. These currents are analogous to the
Pfirsch-Schluter currents in tokamaks and produce closed plasma-curren’ loops
that can roughly image the external yin-yang or basebalil magnet curvents. In
a multicell system such as a tandem geometry, these loops can internally close
over either the full axial extent of the system as a whaole or separately in
each cell.

A tandem-mirror system with a long central cell must have small
quadrupole axial current in the central cell. Otherwise it would generate
Be, Br’ and large flux-tube distortions proportional to the .entral-cell
length. An important constraint on a magnei-set design is that all current
Toops must at least close in each end regign. Qur reference design satisfies
this condition. A much preferred solution has current loops closing separately
in each mirror cell of an end region, which avoids a required balancing of
adjacent cell properties, particularly pressures, and permits a wider parameter
space of central-cell axial-current-free operation. We also have an



in-principle solution that meets the latter more stringert condition but do
not as yet have a satisfactory design from the engineering point of view.

Our design code for this problem is TEBASCO, which solves for plasma
equilibrium to 1inear order in B, using magnet fields generated by our
enginearing magnet design code EFFI. TEBASCO is routinely used by the magnet
design team to iterate magnet designs to adjust the central-cell axial current
to zero while satisfying acceptable flute-stability criteria
[g (central-cel} > B {plug}]. Details of the theory and examples of the code
results are given in Appendix A.

1.4, LOW-FREQUENCY STABILITY - MHD

Modes in the drift-frequency range are conveniently distinguished by
{1) whether the parallel electric field E" vanishes by virture of En
inductive veEtor potsptial K", cancelling the longitudinal field 3¢/3s, or
(2} whether E;, = - 3¢/3s can exist in spite of the pressure plasma. The first
is characteristic of MHD behavior, with or without finite Larmor radius (FLR)
corrections. The second is characteristic of electrostatic bajlooning
behavior, which is very similar to that of trapped-particle modes in tokamaks.

When calculated by pure MHD theory, the axicell configuration has a
central-cell B limit even below that of the A-cell configuration. The worst
modes in this description are highly localized, bending the thin dimensions of
the fan-shaped region between the plug and anchor with little expenditure of
bending energy. In the long solencid, FLR has a strong stabilizing effect on
such highly localized modes. When the worst modes have large emough azimuthal
variation to justify an eikonal approximation, the full 3-D FLR stability
problems can be analyzed using the procedures described in Appendix B.
However, these calculations show such a strong FLR stabilization that, for
most parameters of interest, only very low azimuthal-mode numbers could be
unstable; these, of course, 1ie outside the validity of the theory.

A proper treatment of this problem requires a full 3-D stability
analysis, including the nonsymmetric anchors and rotation in the central cell.
This theoretical capability is currently under development at LLNL. Lacking
this tool to date, we neglected the high-m modes and used the flute-interchange
stability condition as a figure of merit in magnetic-field design.
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Rerent PHAEDRUS results support our neglect of high-m modes
that experiment, only m = 1 was sbserved, and the stability limits agreed with
those of the flute condition. Beta values were too low to expect ballooning
in PHAEDRUS, but finite B experiments in the Wisconsin octupolet'5
demonstrated increased ballooning 8 1imits consistent with FLR theory.

The low-m stability ~roblem is complicated by several features, in
addition to the 3-D character of the equilibrium, namely:

o A powerful energy principie, as in MHD, is no longer available so

that eigenmodes and frequencies must be calculated.

e An eikonal treatment is no longer valid.

The rotation drive in the central cell occurs in the same order as
FLR.

¢ The mode structure is richer, particularly in the presence of hot

electrons as described in the following.

As just discussed, our analysis so far has been eikonal, and the
curvature-driven response has been treated in the high-frequency limit, as in
MHD. In a number of important circumstances, this analysis remains valid in
the presence of fast drifting hot electrons if the curvature-driven response
is properly modified. This procedure is outlined in the following and
detailed in Appendix C.

Following the idea developed for the TARA tandem mirror at MITI‘3, the
anchor cells in MFTF-B will derive most of their pressure from an anisotropic
population of hot electrons. Ample experience in the Elmo Bumpy Torus (EBT),
ELMO, and INTEREM experiments demonstrates that local B-values of several tens
of percent can be generated with relatively low-power electron-cyclotron-
resonance heating (ECRH) and a considerable parameter space of (electron)
microstable operation.

Because of their fast precessional Arift frequencies, these electrons do
not behave as an MHD fluid and, therefore, would not by themselves contribute
a positive pressure weighting to, for example, a flute-stability integral.
These electrons also should be “rigid* in a minimum-B anchor and not contribute
to stability under conditions similar to those where electron rings in EBT are
"rigid™ (i.e., do not have an unstable MHD response in a simple mirror).
However, consistent with EBT results, the warm {or slow-drifting) plasma
coexisting with the hot electrons has an MHD-1ike response in the well that is
dug (or enhanced) by the hot electrons. The anchor B value is divided



between a hot component Bh and a lower pressure warm component Bw {"hot" and
“warm* being defined by frequencies of species' drift relative to the
central-cell MHD frequencies). The contribution to flute stability is given by

B (B *+8)
dg h \
fF"" %‘*_F,FL) , (1.1} %

where > 0 is the density scale length, and k is the component of curvature ;
normal to the pressure-level surfaces. For Bw > Zrnk, this expression becomes

f%&k(sh+8w) '

which is the appropriate weighting when all species are treated as having an
MHD response. For finite Bw/2rnk, the region containing hot electrons can
still be treated as if it had an MHD response, provided the local B-value is
degraded by a factor BW(B" + Zrnk)-l. (In this example flute perturbation is
assumed, but a similar result would hold for a ballooning perturbation.) Thus,
by this replacement, eikonal balloon-code results, including FLR as the only
kinetic effect, can describe tandem systems that have anchors containing .
fast-drifting electrons. '

This change in behavior with Bw compared to Zrnk is directly analogous i
to the Van Dam-Lee-calculated 1imit]'6 on the core B in EBT. There k < 0, sJ
the denominator and, therefore, the sign of the response changes as BH exceeds
ernkl. The emergence of an MHD response for the hot electrons in a
negative-curvature well, therefore, implies instability; whereas in a positive
curvature well it implies increased anchoring.

Our picture of low-frequency stability can be summarized as follows.
Finite Larmor radius in the central cell stabilizes all but very low-m modes.
A proper three-dimensional theory for these has not yet been developed. In
our magnet design, the flute-interchange condition is being used as a figure
of merit with experimental support. If appropriate effective B values are
used, and even with hot electrons in the anchor, ballooning and flute-avcrage
calculations can be carried out.



1.5. LOW-FREQUENCY STABILITY - ELECTROSTATIC

The electrostatic ballooning modes, first identified by Berk and
Rosénbluth1'7, are closely related to trapped-particle modes in fokamaks.
Because of their recent arrival to the tandem-mirror scene, we give more
detail to their properties in this overview.

In such an instability, particles trapped in regions of bad curvature
can drive an electrostatic perturbation that excludes goocd-curvature regions.
Particles passing between the two regions can Debye-shield the perturbed
patential, but this is a fairly weak effect if only a small fraction of
particles are passing.

When the electron-bounce frequency throughout the machine length greatly
exceeds the wave fregquency, the resulting nonvanishing E" 4ges not drive a
parallel electron current, as it would do in an infinite medium.

Because all tandem mirrors only have good magretic curvature in a
1ine-averaged sense, they are predicted to be susceptible to such modes, as
are tokamaks. The tandem-mivor centrzl cells are separated trom the end cells
by large mirror ratios--10 or more for experiments and about 5 for a
reactor--and the passing-particle fraction is small by at least the inverse of
these mirror ratios. For such passing fractions, the calculated
slectrostatic-mode growth rates are re!atively small, the azimuthal m-values
relatively large, and the modes are perhaps benign. However, thermal-barrier
efficiency can be ircreased by further decreasing the passing-particie
fraction. Berk and Rosenbluth]'7 showed that, in the extreme of such cases,
the elecirostatic mode growth rate can rise tu that of the MHD value of the
central cell alone. and the m-value car drop 40 wpity. In such a
circumstance, tne central cell would be expected to tear loose from the
anchors until 1imited by a nonlinear process. The severity of this worst-case
scenerio for electrostatic modes warrants paying close attention to their
properties 1o find means of stabilization.

The stability of the electrostatic balloaning mode can be modelled by

the quadratic equation, as showr in Appendix D,]‘a’]'9
A
1\ 2 m-1 . My 2
(0] - a5 e ) e b0 e



where m is an azimuthal mode number, Wy 4 is the ion-diamagnetic-drift
frequency, and 1% is the MHD flute-averaged pressure-weighted growth rate
including all regions except the minimum-B anchors. The {m-1) term is the
familiar FLR-stabilizing effect. The coefficients a; g are canfiguration-
and geometry-dependent: A, measures the Debye-shielding because of particles
passing between regions of vanishing and nonvanishing perturbed potential; A
measures the difference belween the bounce-averaged, perturbed E x B drift of
ions and electrons and takes the sign of the charge having the lowest such
drift speed. This difference does not occur in tokamaks but does in tandem
mirrors where there is an important electrostatic aspect to parallel
confinement separating the turning points of pasitive and negztive charges.
The coefficient A2 can support or cancel the FLR term, depending on its sign.
Cancellation when A, < 0 leads to electrostatic instability at sonie value

or range of m. Preferred designs use Ay > 0. When this is the case, the
worst mode is usually m = 1, and stability then requires

us A1+ A
T>'_2"_ - (]-3)
Yc Aa

In the axicell design,

rs fpass 2 Bc
A7=A2i_2— n -L—'B_(La+Lt)] ’
P; c c “a
where rc/pi is the number of ion Larmor radii in the central cell; Lc, Lt’
and La are, respectively, the central-cell, transition, and anchor lengths.
For L. = 16 m, Ly =5m, Ly = 2.5 m in the MFTF-B axicell design, and

2
r n
Ay , =0.56 55— P25
1,2 p? n.
Thus, taking values for MARS-mode of MFTF-B described in Sec. 2, rc/pi =~ 13, a
. - 2 .
r Jio "pass/"c > 5% is stable for v ~.y§, whereas "pass/"c > 1.6% is

stable for uﬁi ~ 21§. The parameter A] 2 1s the important physics parameter
determining the coupling to the anchor. In the MFTF-B Axicell design, this

ti : cops )
ratio can be varied by about 100 through variation of rc/Dl and “pass/nc'
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In the original A-cell design, the worst perturbation is one that
eliminates only the yin yang. Both ions and electrons have access to the yin
yang, although the ions are depressed by a potential Amp resulting from
neutral-beam injected jons trapped in the yin yang. The coefficient A,
takes the form

2
A= (,’ri_c)+e‘”p/7ic e\t
L c ec Py c

when Rc is the central-cell mirver ratio, Tic and Tec the centrai-cel)
temperatures, and L, is the effective yin-yang {anchor) length. The
coefficient A, is negative because of the free penetration of the
central-cell electrons into the anchor,

Tc 2(La + LA)
> .
0 Lc

If we use Lc =32 m, Rc =4, Tic/Tec = 1.7, LA =4 m, and 8¢ ~ Tic’ and the
parameters above, we find A; ~ 38 and A, ~ -12. Thus, by Eq. 1.2, we would
expect an instability with m = 3,

in the absence ~f charge-separation effects, obtained by setting Wy = 0
in Eq. 1.2, all magnet designs would yield an unstable mode with growth rates
differing only by Aille for fixed m. This is analogous to the situation in
tokamaks, except Ay is usually much larger in tokamaks if only because of the
increased number of Larmor radii in the cross section.

In summary, as in other average-minimum-B-stabilized systems, localized
electrostatic ballooning, resulting from particles trapped in regions of
unfavorable curvature, appears to be a distinct possibility. In a tandem
mirror, there is a charge-sep»ration mechanism that couples the basic ..ode to
a drift wave. By this means, the mode can be stabilized with parameter

constraints compatible with good confinement.
1.6, MICROSTABILITY
Instabilities near the ien-cyclotron frequency or its multiples have

been a predominant feature of all neutral-beam-heated mirror machines.
Control of these jnstabilities in the plugs and anchors must be considered the

11



primary physics challenge in the develupment of a tandem-mirror fusion reactor.
As the tandem-mirror concept has come to employ a magneticaily trapped
subpopulation of energetic electrons, the microstability of this group becomes
equally important. However, the relatively increased stability of electrons
(as opposed to ions) observed in the EBT experiment lends hope that this

latter problem may be easier to solve.

We identify two passible drives for instability: first, the "loss-cone"
drive due to an inverted perpendicular energy (El) population; and second,
anisotropy, the excess of perpendicular energy over parallel energy (E,)
{(directions are measured relative to B). Although there are similarities of
treatment, it is convenient to discuss ion and electron modes separately.

As regards the ion microstability issue in MFTF-B, we find little
difference between the original A-cell design and the axicell design if the
yin yang is stretched to produce a vacuum mirror ratio of three. In both
cases, the barrier and plugging potentials exist in the same mirror cell. The
outer lobe of the sloshing-ion distribution has hotter electrons and
consequently a higher potential peak. Ions from the central cell that are
confined by this outer peak will supply more than enough warm ions to
stabilize the sloshing hot ions at the cell midplane to loss-cone modes. Only
near the potential peak does an energy inversion appear. and any modes that
might appear are resonant there. A description of Fokker-Planck studies of
sloshing-ion distribution is given in Appendix E.

The most sensitive region for ion modes is the yin-yang anchor. As
discussed in Appendix F, we find that stability to 1oss-cone modes can be
achieved within the range of operating parameters. However, an extreme
sensitivity of calculated stability boundaries to axial equilibrium profiles
is indicative of the theoretical uncertainty. The axicell also contains hot
ions, but the distribution is always made monotonic in perpendicular energy
because of the passing ions confined by the outer potential peak.

The principal anisotropy-driven mode, the Alfvén ion-cyclotron mode
(AIC), has been fairly firmly identified in TMX. Its presence there is well
explained theoretically by the extreme anisotropy induced by the normal
injection. As described in Appendix F, we find the low B value and sloshing
nature of the jons in the anchor to be very stabilizing. The most susceptible
regions for this mode are the axicell and the central cell under intense
neutral-beam heating. Maintenance of low 8 in the axicell and the very large

12
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mirror ratio of the central cell are both stabilizing, but detailed stability
analyses of Fokker-Planck solutions remain to be done. This problem is
virtually unchanged by the magnet-design change.

We identify two modes of concern in the electron-cyclotron~frequency
range: first, the upper hybrid mode of the bulk electrons, driven by a
normonotonic hot-electron population (essentially a loss-cone mode); and,
second, the whistler mode, driven by the anisotropy. Our analysis (described
in Appendix G} has to date been nonrelativistic, care being taken in matching
Fokker-Planck solutions by a series of analytic functions. We find a rather
small parameter span for stability, and we calculate fairly short
convective~growth lengths in typical Fokker-Planck profiles. At issue is the
narrowness of the hot-electron distribution, relative to that of the sloshing
ions, that is required to assure good barrier formation. This problem hoids
for both axicell and A-cell configurations. Relativistic effects are known to
be stabilizing and need to be included in the description.

13
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2. SCENARIOS FOR MFTF-B AXICELL OPERATION

B. G. Logan, R. A. Jong, D. L. Correll, and A. W. Molvik
2.1. INTRODUCTION AND SUMMARY

The primary motivation for the proposed modification of MFTF-B to the
axiceli-plug-magnet configurationz'1 (shown in Fig. 2.1-1) is that, compared
to the A-cell, this configuration when scaled to a reactorz'2 is expected to
improve performance in terms of higher Q, lower plug-magnet capital cost, and
reduced radial transport. These reactor improvements are reviewed briefly in
Sec. 2.2.2. Using essentially the same plasma modeis described in the
criginal MFTF-B propn'~72‘3 but updated where necded (Sec. . %), We estimate
that operation with thermal barriers (Sec. 2.2 following) in the modified
axicell magnet set would achieve the same physics objectives and equivalent
performance as the original A~cell design. Specificaily, we can do the
following:

(1) Generate maximum centeir-cell ion-confining potentials (¢ v 30 kV)

sufficient for confinement, (nt)c 5 X 10]3 cm'3-s, equivalent to
achieving Q v 0.5 with D-T.

(2) Achieve sufficiently high plasma temperatures (Tic ~ 15 keV,

Tec A 9 keV) to test physics of thermal barriers and radial
transport in appropriate collisionless reactor regimes.

(3) Demonstrate high beta MHD equilibrium and stability (BC 4 0.5).

(4) Design for microstable sloshing ions and thermal barriers in the
MFTF-B yin yangs, using theoretical mcdels developed for the A-cell
design and TMX-U.

In addition to the above physics-design criteria, we also reguire the
operating scenarios for the MFTF-B Axicell to satisfy presently understood
theoretical criteria for trapped-particile stabiﬁtyz‘4 and to insure MHD
response of hot electrons (Lee-Van Dam constraints)z's, even though these
theoretical criteria are still evolving and, therefore, are not yet
quantitative. Indeed, consideration of trapped-particie stability led to
designing the thermal barrier in the yin yang rather than in the axicell, so
that more central-cell passing ions can reach the stabilizing yin-yang
region. We balieve this is the best wmode of operating the MFTF-B Axicell in

12




Fig. 2.1-1. Magnet set for MFTF-B Axicell.
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the on-going Mirror Advanced Reactor Study (MARS), so we can reter to it
simply as the thermal-barrier MAk.-mode of MFTF-B. This reference-case
operating mode is discussed in detail in Sec. 2.2. Desciription of the plasma
model used for this mode is detailed in Sec. 2.4. 1In Figs, 2.1-2 and 2.1-3 we
compare axial profiles of field, density, and potential for the MARS-mode of
MFTF-B and for the MARS reactor, respeciively.

In a two-component mode of operation, one can achieve an eguivalent
Q > 0.5 with lower confining potentials and, therefore, with relaxed
beam-species-mix requirements. This alternative-operation mode uses the same
magnret coils with 0,5-5 beams, mostly injected into the central cell. The
thermal-barrier potentials are ane-half of those in the reference-case MARS
mode {Sec. 2.3.1}. Figure 2.3-1 of that section shows the axial prafiles of
fieid, potential, and density for this case, which are very similar to those
used in the present design of the Technology Demonstration Facility (TDF)
engineering-test reactor. The plugs only augment the basic mirror confinement
in the central cell, as originally suggested by Kelley.z'6 Thus, we refer
to tiis case as the Kelley-TDF-1ike mode.

To allow for uncertainties in low-frequency stability {particulariy the
trapped-particle stability), we have also considered (in Sec. 2.3.2) a backup
mode of running the axicell MFTF-B magnet set without injecting the axicell or
pumping the transition region, so that a plasma configuration very similar to
the TMA-U can be obtained (see Fig. 2.3-3). MWith respect to ballooning MHD
and trapped-particle stability, this mode of operation (naturally called
TMX-U-1ike mode) is probably at ieast as stable as the original A-cell design
of MFTF-B. 1In fact, one can cperate MFTF-B almost continuously between the
TMX-U and the MARS modes and obtain increasing central-cell density,
increasing Q, and decreasing margin of MHD and trapped-particle stability when
going toward the MARS-mode. This continuum of operating points is discussed
further in Sec. 2.2. A summary of key parameters comparing these verious
operacion modes of MFTF-8 is given in Table 2.%-1.

Finally, in Sec. 2.3.3, we discuss the option of operating MFTF-8 with
thermal barriers in the axicell if the axicell coils are spread apart to
obtain a larger mirror ratio. This would generate a plasma configuration (see
Fig. 2.3-4) similar to the original propaosed TARA experiment. - Uperation
in this mode is pnssible only if trapped-particle stability is much better
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TABLE 2.1-1. Key parameters for operating modes of MFTF-B with thermal
barriers.

Mode

Parameter MARS-1ike TDF=1ike TMX=U 1ike
0 (overaii)? 0.40 0.6 0.06
Tinc (kev) - 35 -
T (keV) 15 10 15
Tog (keV) 9 6 9
B (T) 1.0 1.6 1.0
Bc 0.5 0.59 0.12
e (em™3) 4.8 x 10'3 9.1 x 1013 1.2 x 1013
(n7)clem™3 ) 5% 10'3 1.4 x 10'3 5 x 1013
Prys (kW) 830 4200 80

aEquiva1ent for D-T.
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than we now estimate. The magnet set for use with thermal barriers in the yin
yang (MARS mode) is designed so that the MFTF-B can be operated in a TARA mode
with only a 3-month turnaround (during which the axicell coils are spread and
beams and ECRH rearranged).
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2.2. AXICELL REFERENCE-CASE OPERATION (MARS MODE)
2.2.1. DESCRIPTICN OF REFERENCE-CASE MARS MODE

We require a thermal-barrier mode of operation that satisfies the
physics and stability constraints mentioned in Sec. 2.1 and that can be scaled
to a high-performance reactor. The key features required are the following:

e A high-field circular coil between the central cell and plug to
cbtain a sufficiently high central-cell density relative to plug
density (high Q).

e A moderately high (R > 3), outward mirror ratio to make thermal
barriers and confine sloshing ions, wherever the plug is located.

e Trapped-particle stability, obtained by charge separation. This
1ast feature requires a significant number of ions {orders of
magnitude above the end-leakage streaming density), which pass from
the ﬁgntral cell through the good curvature regions of the yin-yang
anchors.

These requirements are met by the following:

® Adding a high-field circular coil at each end of the central cell
(see Fig. 2.1-1).

e Increasing the MFTF-8 yin-yany separation to raise its vacuum mirror
ratio from 2 to 3.

e Putting the thermal-barrier plugs into the extended yin yangs.

The high-field circular coil will produce a field of 12 T, using Nb3Sn
inserts. The thermal-barrier plugs will include sloshing ions, with the
ion-confining potential produced by ECRH applied to the cutermost sloshing-ion
density peaks. These features are included in the axial field, potential, and
density profiles shown in Fig. 2.1-2.

To make this scheme adeguate for pumping the transition to a desirable
Tow density, axicells are created by adding another circular coil (but low
field) inboard of the high-field circular coils, with beams injected
perpendicularly into the axicells to create local density and potential bumps
there. The axicells thus serve as electrostatic attenuators, aiding the
nigh-field circular coils in reducing the passing-ion density, relative to the

central-cell density, by an additional factor of roughly exp (- A’pc/Tiwc)‘
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Therefore, the amount of collisional trapping and pump-beam power in the
transition and barrier regions is reduced. In this role the axiceils perform
the same function as the density and potential bumps of the yin yangs in the
original MFTF-B A-cell design and can be used as experimental "valves® to vary
the passing-ion fraction.

Fokker-Planck calculations, recently performed by Archer Futch, for
cases without axicells and with axicells having equal central-cell densities
and 12-tesla mirrors, indicates that axicells reduce barrier-filling rates by
about a factor of 2 to 3. This reduction leads to an important reduction in
pumping in MFTF-B and in reactors. In addition, the passing-ion pressure is
reduced in the transitions, easing MHD interchange and parallel-current drives
there. With respect to tragped-particle stability, raising the central-cell
density by exp (A¢pc/Tiuc) factors allows the use of smaller plasma
radius for the same fusion power; the smaller plasma radius in turn increases
uFithD. thus enhancing drift stabilization of trapped-particle modes.

2.2.2. SUITABILITY QF REFERENCE CASE §CR REACTOR OPERATION

By comparing Figs. 2.1-2 and 2.1-3, one can envision a tandem reactor
with fields, potentials, and densities that follow in nearly constant ratios
to those of MFTF-B. The reactor fields would be higher everywhere by about a
factor of two, except for the being four times higher central-cell field, The
reactor potentials are all about four times higher (likewise beam voltages),
and the reactor densities about ten times higher in the central cell, and five
times higher in the transitions and anchors. The plasma radial dimensions,
however, would only be slightly larger in the reactor because of high
density. Thus the end plug magnets, especially the yin yangs, need only be a
1ittle larger than in MFTF-B.

We have already examined the impact of trapped-particle stability on the
mode of operation (e.g., location of the thermal barriers) in the
axicell-magnet configuration and have shown that the same regime of
trapped-particle stability (w* > Yyyp for high density, small radius)
can be achieved in axicell reactors as well as in the axicell MFTF-B
{Table 2.2-1). The following question naturally arises, however: Why use
axicells for reactors, rather than A-cells or other plug configurations, since
reactor suitability is a key motivating issue for MFTF-B. We addressed this
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TABLE 2.2-1, Plasma parameters for reactor types.

Axicell
Modified- with EBT
A-Cell Cusp Axicell Stabilization
PFUSION 3500 MW 3500 3500 3500
q 10.3 19.7 22.3 12.2
Te, 2.3 M/ 2.3 2.3 2.2
Central Cell
e 1.0m 1.0 1.0 1.0
¢, inner = 0.5 m == -
Ty 1.3m 1.3 1.3 1.3
L 150 m 150 150 150
B, 0.56 . 0.7 » 0.7 ” 0.7 ”
Nic 1.6x10 " ¢cm 2.2x1(; 1.6x10 1.6x10
Tic 40 keV 40 40 40
Tae 36 keV 33 32 33
b 270 ke¥ 260 240 240
Barrier/Plug
Lg 8nm 7 8.6 8.6
Bg 0.63 0.61 0.71 0.36
Mass 5.0x10'%m™3  5.5x1012 3.4x1012 a.ax10'2
Einj,8 350 kev 300 250 260
Eeh 520 keV 390 750 240
Tew 93 keV 110 82 150
¢ 230 keV 190 210 170
¢C 150 keV 150 140 140
Anchor
T 0.84 m 1.2
BA 0.7 n 3 03 13
Nia 1.7x10 cm” 1.5x10
Einj,A 200 keV 150
Eia 310 keV 150
TeA - 32 xeV
¢a -~ 160 keV
¢pc 19 keV -
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question in a recently completed comparative study (Ref. 2.2 Sec. 2.1) at LLNL
of four plug configurations: A-cell (Fig. 2.2-1), axicell (Fig. 2.2-2),
modified-cusp (Fig. 2.2-3), and hot-electron-ring (EBT) stabilized axicell
(Fig. 2.2-2., but without the yin-yang anchor). While these four
configurations do not constitute an exhaustive 1ist of possible piug
configurations, their physics characteristics are probably generic to the
three known means of providing minimum-8 for MHD stability in open systems:
quadrupoles, cusps, and diamagnetic wells created by fast-drifting electvons.
The basic results of that study are summarized in Tables 2,2-2 to 2.2-4.
These tables show significantly lower plug-magnet cost and higher Q (less plug
beams and ECRH) for the axicell and modified-cusp plugs compared to the A-cell
design. The axicell with EBT stabilization had the smallest plug-magnet cost,
but the additional ECRH required to maintain the EBT rings still gave it a
higher overall capital cost per kilowatt. The main reason for the lower
plug-magnet cost and higher Q of both axicell (with yin-yang anchors) and
modified-cusp plugs {compared to the A-cell) was that higher fields could be
designed in the circular mirror coils and could be augmented by normal copper
coils to permit fields even above superconducting 1imits with modest
electric-power consumption. The high mirror fields, together with barrier
pumping, increased the allowed ratio of central-cell density to plug density,
thus increasing § and lowering other plug magnetic fields and costs. An
additional advantage of the circular mirror coils can be expected in the
reduction of radial transport in the central cell (although credit for this
was not taken in the study comparisons). Although the magnet cost and Q of
the modified-cusp was comparable to the axicell, the axicell with quadrupole
anchors was chosen as the favored-candidate reactor configuration for the
ongoing Mirror-Advanced-Reactor Study (MARS). This was primarily because of
greater confidence in the MHD stability of quadrupoles empioyed in many past
and present mirror experiments and because of the forthcoming data base that
will be provided by TMX-U at L(NL, TARA at MIT, Gamma-10 in Japan, and AMBAL-1
in the USSR.

Since the comparative study, the MARS axicell-reactor design has been
further developed in four important areas:

(1) Preliminary engineering analyses by General Dynamics, LLNL, and the

University of Wisconsin on the neutron damage, water cooling, power
consumption, and stress-analysis of the normal coil inserts
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Fig. 2.2-1. A-cell Tandem-Mirror Reactor {TMR).
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Fig. 2,2.»

. Axfce]] ™R,
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Fi9. 2.2-3. Modifieq cusp THR,
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TABLE 2.2-2. Reactor power balance (all powers in megawatts).

Axicell
Modified- with EBT
A-Cell cusp Axicell stabilization
Trapped powers:
ECRH 97 60 47 154
Pump beams 148 98 93 97
Sloshing beams 66 20 12 35
Anchor beams 29 -~ S -
TOTAL 340 178 157 286
Injected powers:
ECRH 108 67 52 17
Pump beams 177 18 115 105
Sloshing beams 122 83 52 159
Anchor beams 30 -- 15 --
TOTAL 437 268 234 435
Recirculated powers:
ECRH 216 134 104 342
Pump beams 354 236 230 210
Sloshing beams 244 166 104 318
Anchor beams 60 - 30 --
Copper coils - 72 72 72
TOTAL 874 608 540 942
Thermal converter output 1176 1176 1176 1176
Direct converter output 520 439 329 493
TOTAL (6ross electrical) 1696 1615 1605 1669
fReC * Grose electrieal”  0-52 0.38 0.34 0.56
Net electrical power 822 1007 1065 727
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TABLE 2.2-3. Reactor costs in millions of dollars ($M).

Axicell
Modified- with EBT
A-Cell Cusp Axicell Stabilization

Beams @%$2/W injected 658 402 364 528
ECRH 8§5/W injected 540 335 260 855
Plug magnets 628 251 302 175
Direct converter 158 83 162 127
Central cell 450 450 450 450
Reactor bldg. 169 154 162 149
80P 470 470 470 470
TOTAL 3069 2145 2160 2754

TABLE 2.2-4. Reactor costs in dollars per kilowatt-electric ($/kWe).

Axicell
Modified- with EBT
A-Cell Cusp Axicell Stabilization

Beams @32/“ injected 300 399 342 639
ECRH @$5/W injected 857 333 244 1176
Plug magnets 764 249 284 212
Direct converter 192 82 143 152
Central cell 547 447 423 545
Reactor bldg. 201 153 152 180
BOP §72 467 aan 569
TOTAL 3733 2130 2029 3473
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TABLE 2.2-5. Key parameters of axicell tandem reactors.

FY81 Study UCID 19271 Higher Field Axicell 1982 MARS Study

{TARA Made) . {TARA Mage) &Ne‘w Operating Mode)

{no thermal alphas) {with thermal alphas){with thermal alphas)
PFUSION 3500 MW 3500 3500
Le 150 m 150 150
Lparrier 8.6 m 8.0 7.0
Be 3.07T a.7 4.7
Bnirror 2071 24 24
re 1.0m 0.38 0.38
Fu 1.3m 0.56 0.56
Nic 1.6 x 101%cm-3 4.6 x 1014 4.6 x 1014
Npass 3.4 x 101%m-3 1.0 x 1013 3.6 x 1012
¢ 22.3 16.8 7.8
TRy 2.3 Mi/of 5.3 5.3
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indicates that high field mirror coils as high as 28 T are probably

feasible, with the cost-effectiveness optimum being about 24 T.

Blanket modules capable of operating at 5 MH/m2 of neutron wall

loading permit us to raise the central-cell field and density,

shrinking the plasma size down to the point where the yin-yang
anchor need be only slightly larger than the MFTF-B coil, using NbTi
conductor.

Equilibrium concentrations of thermalized alphas were included in

the plasma model (resulting in reduced Q by nearly a third) with

provision being made for dc grad-8 radial tramsport (akin to an
optimized ressnant transport in the central cell). On the plus
side, the ignited central cell now provides 50 te 100 MW of power to
sustain a halo dense enough to shield the plasma core from gas and
impurities and provides a handle on reducing the central-cell radijal
electric field and associated E x B rotation.

(4) Conversion of the axicell-plug operating mode, from the TARA-like
mode of the previous year to the more stable regime (with respect to
trapped-particle instabiiities) of thermal-barrier operation in the
yin yang, has been successfully completed. Minimal perturbation
occurred with respect to the central-cell design and plug magnets
(with the single exception being the transition coil design, which
is still being optimized to null parallel current). For comparison,
key parameters of the FY81 axicell design [the first (TARA-mode)
MARS design] and the vecently modified axicell MARS design are given
in Table 2.2-5. Note that conversion to the modified axicell MARS
design made very little difference in the performance. The drop in
Q from FY81 axicell to the MARS design was a consequence of properly
including thermal alphas in the plasma model and power balance.

(2

.

(3

~—

2.2.3. OPERATING SCCNARIO FOR MARS MODE AT STEADY STATE

We now examine the plasma parameters and power balances for the MARS
mode, using plasma models described in detail in Sec. 2.4, and will shortly
consider the stability aspects of this case. Parameters for the central-cell,
axicell, transition, and anchor plugs (Table 2.2-6) are consistent with the
following key engineering choices for MFTF-B:
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TABLE 2.2-6.

Plasma parameters for the MARS mode of the MFTF-B Axicell.

Region Parameter Value
Central-cell Tinc 15 keV
T 9 keV
n(::c 4.8 x 1013 c:m'3
Bc 0.5
.c 30 kv
% 50 kv
(nT)pastukhov 5x10 cn s
Qc 0.6
ot 0.4
Lc 16.5 m
Yin-yang n.m(b} 3.4 x 101° em™3
’b 51 kv
Eeh 470 keV
BA 0.55
’p 80 kV
Tew 72 keV
5o, 72 k¥
n;pala) 5.6 x 10'2 cm™3
Transition or 26 kV
ng 2x 102 en”3
Br 0.05 (0.01 perpendicular,
and 0.09 parallel)
Axicell fix 1.2 x 10M
Bbyc 9.0 kv
A4 0 kv
By 0.20

38



TABLE 2.2-6 (continued)
Trapped current and rf power:

Neutral Beams
Each axicell (80 kV)
Each transition (30 kV)
Each anchor {80 kV)
Each pump beam (80 kV)

ECRH
Anchor (28, 35, 56 GHz)

ICRH
Central cell {15-17 MHz

Trapped current (A}
3.4
6.0
0.30
2.4

Absorbed power (kW)
610

) 210
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e 12-T maximum high-field circular coils (1imited by the
superconducting Nbssn insert).
® AnR... =3yin yang with B ;... =3T { ~ the maximum
separation manageable with the MFTF-B structure).
8 An BO-kV max, 30-s beam with 90% atomic-species fraction, and 28-,
35-, and 56-GHz gyrotrons.
The parameters in Table 2.2-6 are also consistent with the performance
Jevels of the previous A-cell design, namely: (nr)c ~5x 103 en3 s,
Tic = 15 keV, Tec = 9 keV, ¢c = 30 ke¥, 9 ~ 0.5 and Pfusion % 1 MW (equivalent
for D-T). Using definitions in the previous A-cell proposal {Refs. 2 and 3 of

Sec. 2.1), we find:

q = Pfusion = 0.6
s .6
¢ Ipastukho\.v loss wc * ¢e * T1'c * Tec)
Pe -
fusion = 0.4 ,

2nd Qoyerall = T aTTbears, ECRH and TCRW
trapped in the plasma
for this axicell MARS mode of operation of MFTF-B. The fusion power
Pfusion = 640 kid from the central cell and 190 kW from the two dense axicells.
The fact that similar Q's and fusion power obtain for this case in spite of
shorter central-cell length (LC (eff) = 16.5 m versus 32 m for the A-cell
design) and smaller central-cell radius (rc = 0.3 m, max allowed by 12-T
insert, versus v, =0.56 m for the ?scelladesign) is due1gu higher
central-cell density (nc =4.8x 107 cm™° versus 2 x 10'° em™~ in the A-cell
design). The higher central-cell density is made possible by the higher 12-T
circular coil compared to the previous 4-T yin-yang mirror which played the
same role. Mapping of densities in thermal-barrier machines leads one to
expect higher central-cell/plug density ratios in proportion to the maximum
mirror field. However, the central-cell density is not exactly three times
higher than in the A-cell design because of the effect of the outer potential
drop A’pb in the axicell (see Fig. 2.1-2) which accelerates the passing
ions through the high-field mirror (see Eq. 14 in Sec. 2.4 for details).
Figures 2.2-4 to 2.2-6 illustrate schematically the central-cell
ion-~particle flows, central-cell jon-power balance, and central-cell
electron-power balance, respectively, for the MARS-mode of MFTF-B. These

40

P ——— e



L

Charge exchange loss on HEPB
lonizad puy;
. 2 m boay,y

=7 A P2B2 pump beam

oS

Pastukh X oot by ch | Transitions/ 28 A
andlots <& Input by charge exchange barriers X 30-KV pump beam
= a7 A v {12 A absorbed,
. =8 A charge exchange,
=4 A ionized)

= lonized axicell beams

Fig. 2.2-4. Typical central-cell particle balance for MARS mode of MFTF-B.
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Fig. 2.2-5. Typical central-cell ion-energy balance for MARS mode of MFTF-B.



Fig. 2.2-6.
MFTF-B.

Central-cell

Trap in axicell
Trap in anchor

Typical central-cell electron-energy balance for MARS mode of
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values correspond to the parameters in Table 2.2-6. Essentially, Fig. 2.2-4
shows that the central cell is fueled by the axicell beams (since the lowest
axicell mirror is towards the central cell) and by the 30-kVY pump beams of the
transition regions, which have engugh energy to pass deposited ioms over the
axicell-potential hill and into the central cell but not pver the e

potential peaks at the extreme ends of the plugs. .ae axicell-beam power can
be varied by a factor of at least two to controi the amount of central-cell
fueling and heating.

Figure 2.2-5 shows that the central-cell-ion power input from the
axicells must 5e supplemented by ICRH, because an B0-kV beam-voltage limit
does not provide enough energy per ion lost.

Figure | 2-6 shows a simplified electron-power halance {leaving out many
of the details) that involve the major parts of the power flow. Ilnput power
to the central-cell electron is dominated by the ECRH in the anchors, Hot and
warm ECRH electrons in the plugs/anchors originate from the passing central
cell electrons reaching the ECRH resonance zones. Furthermore, the
electron-confining potential is maximum at the outermost yin-yang mirrer. ;
Therefore, scittering and drag losses of these heated electrons, for the most
part, ends up rethermalizing back into either the transition or central cell
by conduction and convection.

Stability Considerations
Having described the reference-case MARS-mode of MFTF-B, which is i
consistent wi.h power balance and engineering constraints, we now show it is i
reasonably consistent with nominal theoretical criteria for plug :
microstability, trapped-particle stability, and MHD stability for interchange il
beta limits and MHD-response of hot electrons. Indeed the stability criteria
described by jaldwin (Sec. 1 of this report) were used to guide the evolution
of this design. We are still in the process of solving MHD stability,
including ballooning at low mode numbers, with finite Larmor radius (FLR) and
conditions for null parallel current in the transitions and anchors. However,
we believe we still have flexibility to lower the beta in the axicell to 10 to
15%, if needed for ballooning (by lowering axicell beam yvoltage somewhat and
raising ICRH cower in the central cell), and to further modify the
transition-ccil design, if needed to reduce the equilibrium paraliel currents

in the ends.
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With respect to plug/anchor microstability, we note that this design for
MFTF-B, which puts the thermal barrier in the yin yang with a larger mirror
ratio, is very similar to the TMX-U, which is designed stable with respect to
present theory for drift-cyclotron-loss-cone (0OCLC), axial-loss-cone, and
Alfvén-ion-cyclotron modes, Data from testing these predictions will pe
available in time to guide the location of beams and ECRH in the MFTF<B yin
yangs, For the reference-case thermal-barrier MARS mode of MFTF-B, the
microstability analysis of Appendix F in this report indicates
that 2 midplane warm-ion fraction, Nyarw’ "hot = 0-75 at Twarm/Thot > 0.3,
should be nominally stable. This is consistent with the parameters in

Tapie 2.2-6: n /"hot = O Mass {BAi/n h (By} = 0.8, and

warm sics

Twarm/Thot = TiwC/ (% E?;gSh) = 0.32. As noted in Appendix F, the
stability boundary varies with the hot-electron axial profile, which can in
principle be controlled by the location of the ECRH resonances. Also, to add
flexibility, the sloshing-ion density can be decreased some 20% with respect
to the passing-ion density.

The stability criteria of Baldwin for conversion of trapped-particle
modes to stable drift waves by charge separation in the anchors (see Eq. 1.2

in Sec. 1) can be written for the m = 1 mode as:

2 2 2
w*'i > 4 YMHD (1 + AI“)/AY‘ ) (2~2-:)
where
r 2 B g, n \ 2 L,(eff)
- b pass A
A = (_C_ (B..C) ( [ L 1 (2.2.2)
r Pic a e / (o

is the Rosenbluth paramzter; 9 Mpass is the effective passing-ion density into
the anchor minus the passing-electron density, averaged yver the good curvature
reqgions of the anchors of effective length LA(eff). The effective Tength
depends in part on the assumed shape of the trapped-particle mode ¢(z), which
has not yet been precisely determined, so therefore LA(eff) and 9 Mass
cannot be precisely determined.

Figure 2.2-7 indicates that gy npass would be about 2 x ]0]2 cm
MFTF-B yin yang, over a characteristic length of about 2.5 m, if the worst
trapped-particle eigen mode rolls off just where the pressure-weighted good

~3 in the
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curvature in the yin yang begins to rise. Since the trapped cold ions of
density (gb - 'l)npass turn well beyond the mode's roll off {in fact way back
near the 12-T high-field mirror) they also contribute to the charge separation
[although somewhat (~30%) less effectively than strictly passing ions from the
central cell] for yin-yang tramsition lengths only a few times longer than
LA(eff) {according to Baldwin's analysis using a coupled, three-square-well
region model).

The actual effective 9, to use in Egs. 2.2.71 and 2.2.2 is uncertain to
the extent it still depends on the actual “worst” eigenmode shape. Given
these uncertainties, we cannot make firm statements now regarding the “margin
of safety” for the particular reference case we have chosen for MFTF-8.
However, we will shortly indicate how we can vary the operating parameters of
MFTF~B to accommodate, up to a factor of four or so, a "worse"-stability
boundary than that represented by Eq. 2.2.1. In Eq. 2.2.1, YMHD is the
average MHD growth rate (without anchors), averaged over all the bad MHD
drives of the central cell, axicell, and yin-yang transition regions. Since
all three regions have comparable drives at present, but the axicell and
transition drives might be reduced relative to the center cell by future
design optimization, we can characterize YMHD in terms of the irreducible
central-cell drive = RE] « rc/Liran(cc). Hence

2 . 2 2 Tic (pi:z') (g?pi) l‘tr‘an(‘:c)

YMup = 0 Yee © "i r. Rc Lc ’

(2.2.3)

where the proportionality constant D depends on the aggregate bad-curvature
regions (being unity in the 1imiting case of central-cell drive only) and

where L, (cc) is the characteristic central-cell (axisymmetric) transition

tran
length. Then using

d
o e (%) _(3.:2_) (2.2.4)

1 2
q Ec Te

where (rc/pc)(dpc/dr) is the pressure-gradient length normalized to
central-cell radius, Eq. 2.2.1 can be solved to estimate the required passing
density (times the effective gb):
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9. n r? B
b n:ass > - 8 3Pc (Ltran(ccg LA(eFf)) (Ef) . (2.2.5)
(0) (&)
The interesting feature exhibited by Eq. 2.2.5 is that the required
passing-ion-density fraction for trapped-particle stability actually decreases
with plasma radius e in splte of the fact that A «y /pfc would be
reduced. This is because uy v l/r overpowers the r. dependence of A
Thus smaller radius plasmas, relat1ve to axial sca]e lengths, allow sma11er

9hMpass/Nc and hence higher tandem-mirror Q:
Pfusion(centra1 cell) n, 2
@==7, hgsT— © g . (2.2.5)
injection b "pass

One caution is that re cannot be made too small relative to Pjc O else other
instabilities such as iow hybrid drift waves might become dominant.

Table 2.2-7 presents key stability-related parameters for MFTF-B and
also for reactors to show that the high w/vyyp > 1 regime for MFIF-B can
also be utilized in reactors. Note in Table 2.2-7 that r_/p;. ™ 13 in MFTF-8B,
while rc/”ic 40 still allows @y > YMHD in reactors (because YMHD is small
in long, thin aspect-ratio plasmas).

Some flexibility exists in the MFTF-B operation to accommodate a larger
passing-ion fraction than is estimated by Eq. 2.2.5, by means other than
simply reduéing the plasma radius further (which would begin to limit
rclpic < 10). 1In the event "pass/" needs to be increased by more than a
factor of two, it would have to be done in part by reducing Ne» since fpass
could not be increased more than twice in the anchor without exceeding
available ECRH power or, just beyond that limit, exceeding the cutoff density
for microwave penetration. Thus, n. would be limited beyond that which
could otherwise be supported by the combination of axicell-potential bump and
the 12-T mirror. The 1imiting case in which the axicell beam and the
transition pump beam are turned off, allowing the transition to fill to a
Maxwellian ion distribution, is the TMX-U mode described in Sec. 2.3.2
(Fig. 2.3-3). By varying the amounts of transition pump beams and axicell
beams, one could vary n. over a range of four while keeping the anchor/plug
parameters essentially constant (see Fig. 2.2-8). If the central-cell ICRH
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TABLE 2.2-7.
tandem-mirror reactors.

Trapped-particle stability parameters for MFTF-B and for axicell

Mirror-Advanced

(ref:i:ﬁzg case ReaihﬁﬁsﬁtUdy Original Axicell Reactor
Parameter thermal barriers) (candidate) (FYB1 report UCID 19271)
rc {m) 0.3 0.4 1.0
Tiwc (keV) 15 35 40
Bc (T) 1 4.7 3.0
re/pic 13 40 60
nc (cm=3) 4.5 x 1013 4.5 x 1014 1.6 x 1014
Ba (T) 1 2 1.4
gp Npass (Ba) 2 x 1012 1x 1013 11 x 101
L e 2.8 3.0 3.0
(gradient parameter)
D = Ywmp/Yec 3 6 ?
wei/ YMHD 1.6 1.0 0.21
Lgran(ce) (m) 5 12 12
La(eff) (m) 2.5 4 3
Leleff) (m) 16.5 150 150
2.3 4.5 0.2
(Rosenbluth Parameter)
9 Npass/Nc 4 x 10-2 2.2 x 10-2 6.3 x 1079 vs

0.3 required for stability
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Fig. 2.2-8. Variation of overall Q and of ion fraction passing intp the
yin-yang anchor as a function of axicell- and pump-beam power.
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heating is also varied appropriately, Tic and (n'r)c could also be kept nearly
constant.

We turn now fo MHD-interchange stability. Figure 2.2-9 shows an example
of a flute interchange calculation using TEBASCO (see Appendix B) for the
vacuum magnetic fields of the coil set of Fig. 2.2-4, with pressure models
appropriate for the reference-case thermal barrier (MARS) mode of MFTF-B
operation. Although the flute beta 1imits would change with finite beta
fields and for coils readjusted to null parallel current, Fig. 2.2-9 indicates
that overal) flute interchange stability is roughly consistent with the betas
required in the reference case {(see Table 2.2-6}. These betas (BC = 0.5 in
the central cell, By = 0.2 in the axicell, and BT = 0.05) give rise to
comparable contributions to bad curvature drive (weighted with pressure) from
each of those three regions, as can be seen in Fig. 2.2-9. Thus,
MHD-interchange stability requires a nominal anchor beta BA = 0.5. In order
for this anchor beta to count as good MHD pressure (as assumed in the flute
interchange calculation of Fig. 2.2-9), the loca) midplane sloshing-ion beta
must well exceed the Lee-Van Dam criterion so that the hot electrons, which
make up most of the BA = 0.5, will have an MHD response:

2r

n .
Bstosh > Ry . (2.2.7)

<losh = 0-05, v = 0.15 m (for a parabolic radial
density profile) and ra = 0.3 m anchor radius. The TEBASCO code calculates

a radius of normal curvature RA = 0.5 rA/(YAH) = 15 m at the anchor midpiane.
Thus, the Van-Dam limit (Eg. 2.2.7) is exceeded by a factor of about 2.5.

Tﬁas. according to Eq. 1.1 in Sec. 1, the effective hot-electron beta is
degraded by a factor of about 0.7, and the effective anchor beta is

0.5 {(0.7) + 0.05 = 0.4. That may still be sufficient for interchange stability
at BC = 0.5, since Fig. 2.2-9 shows marginal stability at BC = 0.6.

Otherwise, the hot-electron beta could be increased above 0.5 to compensate,
provided ion adiabaticity is maintained.

For the reference case, B
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2.2.4. START-UP SCENARIO FOR THE MARS MODE

Evaluation of start up of MFTF-B with thermal barriers shows that the
scenario planned for TMX-U is also appropriate to MFTF-B. Therefore, for
MFTF-B, we will be able to take advantage of the testing and further
developing of these ideas in TMX-U. The start-up of MFTF-B with thermal
barriers in an improved axicell mode differs from start-up scenarios for
MFTF-B in an A-cell mode in one major way. Rather than build up to high
censity as rapidly as possible in a tandem mode and then form the thermal
barrier in an outboard A-cell, we must form thermal bari-iers at a low density
(< 'I0]2 cm3), then continue the buildup in a thermal-barrier mode. The reason
is that the hot-electron power balance requires heating electrons to
mirror-confined energies (>> 104 eV) at low densities; otherwise, collisional
losses will clamp *he electron energy below a few kiloelectron vo’its.z'7 With
an A-cell outboard from the MHD anchor, the hot-electron A-cell could start up
at low density after the anchors and central cell were at high density. With
the axicell, hot electrons for the thermal barrier are in the anchor; MHD
stability then requires that the beta (throughout MFTF-B) be within an order
of magnitude of the plug betas; hence, the plasma density must build up slowly
throughout.

We examine start up from the viewpoint of satisfying the following set
of physics constraints:

¢ Particle and power balance for each species in each cell,

® MHD stability.

& Microstability for both hot ions and hot electrons, and
trapped-particle modes.

For two reasons the most difficult periad in which to satisfy these

constraints is before thermal-barrier formation.

® First, more power is required at this time, because the plasma is
confined only by magnetic mirrors, with little enhancement by
electrostatic plugging.

8 Second, more power is required because absolute microstability is
not assured without substantial electrostatic confinement of warm
ions.,

We have evaluated several of these constraints at times before barrier

formation and find that, even then, they define am operating window in
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e

temperature-density space, as shown in Fig. 2.2-10; the central-cell
ion-particle and power balance will 1imit the maximum density to n = 1012 cm'3,
Similar to the initial 1imit from hot-electron power balance. The requirements
fur pumping the barriers provide a lower bound on the jon temperature, Hot-ion
DCLC stability, because of streaming ions alone, provides a soft upper limit

to the ion temperature.

We are continuing to evaluate the other constraints; until these
evaluations are complete, we will use qualitative arguments. The MHD
Stability was satisfactory and was less restrictive than stream stabiiization
Of DCLC on TMX-U, and we expect similar results for MFTF-B. Stability to
trapped-particle modes is less restrictive during start up than at design
level, as discussed in the next paragraph. We expect the microstability of
the plugs to be substantially enhanced by sloshing ions and by mirror-confined
electrons, thus increasing the upper Tic Timit above that resulting fyom
microstability by streaming ions alone (see Fig. 2.2-10).

Stability to trapped-particle modes requires maintaining an adeguate
ratio of passing to central-cell ions. This, as well as MHD stability, will
be improved during start up by keeping the central-cell density low unti] the
anchor-plasma parameters are near design level. Then the central-cell density
Can be increased to its limits. The greatest susceptibility to
trapped-particle modes will occur before thermal-barrier formation, when the
Passing-ion density will be lower because of the Jack of a potential peak to
reflect these ions. But, because the planned ICRH power of 400 kW into the
Plasma is four times the computed power losses during this time, we can
talerate a substantial degradation of the confinement because of instahilities
Without impairing our ability to start up MFTF-B.

The plasma parameters will be kept in the operating window by controlling
the timing and the power or current of the following "knobs" as indicated in
Fig., 2.2-11:

. Plasma streaming guns.

Gas boxes.

ECRH,

Central-cell ICRH.

0.5- and 30-s, B80-keV, sloshing-ion neutral beams in the anchors,
0.5- and 30-s axicell, 80-keV neutral beams.

Axial and axicell pump neutral beams.

55



Startup guns (1
Gas boxes /"*-/_\ —_—
ECRH (anchor) I £

ICRH {central-cell) M ~——

Stoshing beams
80kV,05s | £y

80 kv, 30s J < £
Axicetfl beams
80kV,05s - L
80kV, 30s = ¢
Pump beams
80kV,30s { $ £
30kV,30s I
Thermal
barrier
> formed ,———5)'1013
‘2 | Stoshing _ " s
g ions l(:entral oe:!;\__/ .
0 1x 10/12_// Sloshing
0 20 40 0.5 15
Time (ms}) Time (s}

Fig. 2.2-11. Start-up of MFTF-B Axicell with thermal barriers.
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We expect the knobs to be used as follows: Plasma streaming guns wil)
provide a seed plasma of minimum density. The ECRH will be used at maximum
power to build up the hot-electron density as fast as possible. The hot
electrons provide several benefits: they aid MHD stability and hot-ion
microstability; they improve the operation of the thermal barriers; and they
prevent the plug plasma from being destroyed by incident gas. It i< the jons
associated with the hot electrons that provide sufficient trapping of sloshing
beams to balance charge exchange losses on gas and pump beams. In previous
scenarios that lacked hot electrons, a rapid buildup to high density was
required to allow the trapping rate to exceed the charge-exchange ioss rate.

Central-cell ICRH will be turned on near full power before the
central-cell density exceeds '|0]2 cm'3 in order to heat the central-cell
and passing ions to a low collisionality. The power level will then be
programmed down to keep Tiwc below the DCLC and MHD boundaries.

Sloshing-ion beams must be turned on at full power soon after the ICRH
in order to maintain MHD stability.

The gas boxes will be turned on to fuel the plasma after the plasma
streaming guns are turned off. They will be programmed initially to keep the
density within the window just discussed. After a thermal barrier is formed
at low density, the gas will be programmed to maintain the plug density
sufficiently higher than the hot-electron density to achieve hot-electron
microstability.

In steady state, most of the fueling and power for the central cell will
come from the axicell and pump beams. But, the gas box and central-cell ICRH
are available during buildup so that operational flexibility is not restricted
by both the pumping and the central-ceil heating being tied to these beams.
Pump neutral beams will be off until the other conditions for establishing a
thermal barrier are either established or are within a pumping time constant
(a few milliseconds) of being established. The axicell beams provide a small
potential peak to reduce the fraction of the central-cell ions that become
passing jons. The passing ions are further reduced by the pump beams. The
pump beams must be turned on to form the thermal barrier. The axicell beams
enhance the performance of the thermal barrier, so are turned on when required
by the particle or power balance.
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The transition from 0.5- to 30-s-duration neutral beams can be staged to
avoid a sudden decrease in the beam current without a simultaneous decrease in
the gas associated with the 0.5-s beams. The gas incident on the plasma will
decrease along with the beam current if one beam is turned off at a time and
one gas-pumping time (approximately 50 to 100 ms} is allowed before turning
off another.

An approximate central-cel) power balance used for start up analysis is
shown in fig. 2.2-12, both before and after thermal-barrier formation. The
maximuym power requirement is 600 kW at design level. However, the axicell
beans contribute about 200 kW to the central cell, leaving 400 kW to be
supplied by the ICRH system. We plan to use the fundamental resonance,

Wy for start up and initial) heating because that directly heats the bulk
of the ion distribution, as required to minimize collisionai filling of the
thermal barrier. Evanescent fast-wave heating at We g has been
demonstrated on the Phaedrus tandem mirror (see discussion and references in
Ref. 2.8) to couple sufficient power to meet the requirements shown in

. 2.2-12. After the density increases sufficiently for a fast wave to

a to propagate, we expect that the fundamental resonance will no longer

heat effectively. We will then use thi heating. At these high densities
(> 2 x 10'3 cm3), heating the tail of the ion distribution will not be a
problem because collisions will transfer sufficient power from the tail to the
bulk. An attractive way to accompiish this heating using one transmitter and
an antenna is to place the antenna near the 2- T field of the central cell and
operate the transmitter near 15 MHz. This provides heating at W in the near
field of the antenna until the density exceeds v 2 x 1013 cm ', at which point
the wave will propagate to the midpTane where heating will cccur at 2“%1' We
will continue to evaluate whether a more flexible two-frequency system might be
more effective. The ICRH experiments in TMX-U, as well as in other tandem
mirrors, will provide additional data on which to base a decision.

Operation outside the desired window can be corrected in the following
ways. Too collisional a barvier can be corrected by increasing the ICRH power
or varying its timing to increase Tic' by decreasing the gas-feed rate or
start-up-gun power, or by varying their timing to decrease the density. The
MHD stability can be regained by increasing the sloshing neutral-beam current,
decreasing the pump-beam current, or by decreasing the current of neutral gas
incident on the plasma ccre, all of which will increase the density of
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sloshing ions. MHD stability can also be increased by decreasing the axicell
beam current. Control of the neutral gas current reaching the plasma core may
require controiling the plasina boundary density and temperature. Both MHD and
DCLC stability can be regained by programming the ICRH power downwards.
Pragramming the density would have no effect if the ICRH power coupled into
the plasma were exactly proportional to the density, but since the
propartionality is only approximate, some control over T1C is available by
varying the gas-box input. Operation at too high a density can be corrected
by reducing the start up gun power or duration and by reducing the gas-box
current.
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2.3. ALTERNATE OPERATING MODES

2.3.1. KELLEY TDF-LIKE MODE

The Kelley TDF-1ike mode differs from the thermal-barrier MARS mode
mainly by the introduction in the central cell of a neutral-beam injected, hot
component that is predominantly mirror confined. The hot component dominates
the neutron production because of its nigher temperature and density compared
to the central-cell warm component, which is potentially confined and
Maxwellian, The warm component is required for microstability of the hot
component. Axial profiles of B, ¢, and n are given in Fig. 2.3-1, and the
parameters are given in Table 2.3-1. The axicel? is eliminated (see MHMD
discussion) in the Kelley-TDF mode. Although the Kelley-TOF mode has a higher
physics Qc than the thermal-barrier MARS mode (0.7 compared to 0.6), the
scaling associated with mirror confinement, compared to potential confinement,
reverses the ordering for reactor conditions. However, as pointed out by
Fowler and Logan,z'9 the physics associated with the TDF mode indicates that
a tandem-mirror machine about the size of TMX could provide fusion
nuclear-engineering data. The lower T value (0.16 s for the TDF mode
compared to 1 s for the MARS mode) allows equilibrium to be reached with 0.5 s
beams without the aid of 30 s duration beams. Here we describe for the
TDF-mode the physics constraints involving microstability, MHD,
thermal-barrier formation, the trapped-particle instability suggested by Berk
and Rosenbluth,z"o and power flow.

Microstability
As with the thermal-barrier MARS mode, the microstability requirements

of the anchor are satisfied by passing ions, which become potentially trapped
in the anchor. The warm component within the central cell has a density level
high enough to establish a monotonic distribution.

Magnetohydrodynamics (MHD)

The predicted experimental value of Bc. at a fixed BC value for the
Kelley-TOf mode, is higher than in the thermal-barrier MARS mode because of the
mirror-confined hot ions. By increasing the central-cell magnetic field from
1.0 to 1.6 T, lowering the transition beta, and eliminating the unstable drive
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Table 2.3-1. Central-cell plasma parameters.

Thermal
Central cell (C) barrier-MARS Kelley-TDF TMX-U
Bc (T) 1 1.6 1
¢ (kV) 50 34 50
¢ (kV) 30 n 30
nee (1013cm™3) 4.8 9.1 1.3
13_-3

NiwC (10"“em™) 4.4 1.6 1.2
nipe (10'%en) 0.4 7.5 0.1
Toc (kV) 9 6 9
Tiwc (k¥ 15 15(1), 10(n) 15
Ting (KV) 35 35 35
(nT)ge (101%m™3 « 5) 4 1.9 5
(nt)j,c (10733 = 5) 5 0.6 5
(0T) g (107%n™3 + 5) 2 1.4 2
PE“SW" (kW) 6402 4200 80
ICRH

Pe trapped (KW) 210 0 60
Beam

PC trapped (KW) 0 5600 0
B¢ 0.5 0.54 0.12
re (em) 30 24 30
«Jas

i appeg (Atom Amps) 1.3 0 1.3
Qc 0.6 0.7 0.6
Qrotal 0.4 0.6 0.06
Lgffective (o) 1650 2060 2810

an additionai 190 kW of fusion power are generated by the axicells.
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from the axicell, we find the theoretically predicted Bc 1imit is higher than
the experimental value required. The *6-T" coil is energized at a current
level equal to one-~third the full value. Any less current results in a dip in
the magnitude of B before it reaches the axicell, which could lead to
potential MHD problems. The “12-T* coil remains energized at full current to
allow the plasma column to clear its smaller internal-diameter-coil case.

Thermal-Barrijer Formation

The potential depth of the thermal barrier 6¢a, with respect to the
peak confining potential, is approximately half as large in the Kelley-TOF mode
as in the thermal-barrier MARS mode (40 kV compared to 70 kV). Therefore,
less ECRH power is required for the former. For 6¢a, the temperature of the
potentially trapped warm electrons within the anchor is the controlling factor
along with the sloshing-ion density. The neutral-beam pumping requirements
are approximately the same because the sloshing-ion density depression (3 to 1
between its turning point and midplane value) does not change between the
operating modes and because the passing ion density is the same.

Trapped-Particle Instability

The physics constraints imposed by the trapped particle instahility are
evaluated in terms of the required passing density, “pass’ normalized to the
centraj-cell density, ng. The requirement is given by Eq. 2.2.5, except
that in the TDF mode the required value of "pass/“c is increased by the
ratio of the mirror-confined ion energy to the warm potentially confined ion
temperature of the central cell. On the other hand, changes in other plasma
parameters (e.g., central-cell radijus and magnetic field), along with a
smaller value of the transition beta, lowers the value of "passlnc that is
necessary for stability in the TDF mode to about half the value required in

the MARS mode.

Power Flow
The physics model developed in Sec. 2.4 can be simplified when applied

to the alternate modes of MFTF-B (Kelley TDF-like and TMX-U-1ike). A1l the
terms involving the axiceil are eliminated and the power and particle inputs
from the P2B2 pumping beams are either absent or exiremely small compared to
the remaining terms. A generalized power-flow diagram of the central cell,
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derived from Eq. 2.4.42 is given in Fig. 2.3-2. A hot-ion component is added
to allow a beam-driven or ICRH-produced tail in the ion distribution to be
present. In Table 2.3-1 the central-cell plasma parameters for the alternate
modes are compared with those for the thermal-barrier MARS-mode reference.

The anchor beam and ECRH requirements for the Kelley-TDF can easily be
scaled from the numbers for the thermal-barrier mode (Sec. 2.2.3), using the
equations of Sec. 2.4. The hardware requirements never exceed those of the
thermal-barrier mode.

The central-cell plasma { value, qc, is given by

Fusion 2 h 2 W hw
0 = T PiRCEV> + Mg Ov>" + 2050050V
C 4 4
n; n;
ihC Wl
( )mirror (EihC + ¢e + Tec) + )Pastukhov wC * Tiwc + ¢e+ Tec)
ihC 17 5uC

(2.3.1)

wherg a 50:50 mix of D-T is assumed for both the hot and warm species and
ERUSTON = 17.6 MeV. For T, = 35 keV and T, = 15 keV, we used

<ovsh = 7.4 x 10716, <ovs¥ = 2.6 x 10715, and <ov>™

= 3.2 x 10’]6 cm3-s'1. The value of QTota] is calculated by adding the
fusion power and the power losses from the other cells.

The central-cell magnetic-field strength for the Kelley-TDF mode is at
the maximum value of 1.6 T rather than at 1 T, as in the thermal-barrier mode,
to allow N © BCBE to reach a maximum level. Given that the hot-ion
component is generated from neutral-beam injection, the value of Eihc can be
derived from the Logan-Mirin-Rensink mode1.2'n The MHD-1imited value of
Be gives in turn LFT with LF, determined from Fokker-Planck studies of the
central-cell jon distribution.

The ¢ value was chosen high enough to minimize the power flow through

the warm-ion channel I!:ES « l/(nT)?Sét“kh°v but Tow enough to keep

(¢ + ¢¢) below the the:mal-barrier mode. After determining (¢e/Tec) from
equating electron- and ion-Pastukhov-particlie losses, the values of Tiuc and
TeC can be determined from the power-balance equations described in Fig. 2.3-2.
The trapped neutral-beam power must support the power losses associated with

both the ion- and electron-particle losses.
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The pumping requirements in the transition are no greater than the
thermal-barrier numbers because the warm-ion losses are less in the Kelley-TDF
mode. The ECRH heating is also less since (¢e + ¢c) is approximately
half the thermal-barrier value. No gas-current feed is required because of the
large amount of trapped neutral-beam current that eventually joins the
warm-ion distribution.

2.3.2. TMX-U-LIKE MODE

The TMX-U-Tike mode is very similar to the thermal-barrier MARS mode in
terms of B, $os ¢ and ('")iwc but operates at lower L (1.2 x 1013
compared to 4.4 x 1013). The axial profiles of B, ¢, and n are given in
Fig. 2.3-3, and the parameters are given in Table 2.3-1 of Sec. 2.3.1. The
TMX-U mode differs from the previously discussed MARS and TOF modes by the
absence of neutral-beam pumping within the transition region between the
central cell and the anchor. The only neutral beams required are those
associated with the anchor. Recause of the long particle lifetimes
(approximately 4 s}, the 0.5-s beams are not able to support this experiment
alone. Long pulse (30-s) beams and ECRH and ICRH are required but at no
larger power levels than for the thermal-barrier mode.

Microstability
The plasma parameters within the anchor that are associated with the

sloshing ions and ECRH electrons are identical in the TMX-U and MARS modes.
The passing-ion density, however, at the inside 3-T mirror of the anchor is
four times greater for the TMX-U mode (1.2 x 1013 ¢m-3 compared to

0.3 x 10]3 cm'a). A1 microstability requirements of the anchor are,
therefore, easily satisfied. The central cell has only a small percentage of
hot ions (less than 10%). This amount does not perturb the inherent
microstability of the Maxwellian distribution, which is potentially confined.

Magnetohydrodynamics (MHD)

The theoretically predicted 1imit of Bc js lower in the TMX-U mode
{12% compared to 50% in the MARS mode) because of the increase in the
destabilizing drive associated with having the transition density, 7, equal

to the central-cell density, ng.
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Thermal-Barrier Formation

Because the anchor parameters are the same for the TMX-U and MARS modes,
the barrier formation will be the same in terms of ECRH power. The increased
passing density mentioned in the microstability discussion might require
additional neutral-beam pumping.

Trapped-Particle Instability

Because the "worst picture® of this instability allows the amplitude of
the fluctuations to locate where the growth rate is maximized and because the
anchor parameters are the same in the TMX-U mode, the minimum "pass/"C
required for stability (and hence maximum nc) is the same in the TMX-U and
MARS modes. “owever, since barrier pumping only occurs in the yin yang, the
12-T coi) does not affect nes which is limited to a value four times Tower
in the TMX-U mode compared to the MARS mode. Thus, trapped-particle stability
is satisfied by a margin of four.

Power Flow
The long particle lifetime (v 4 s) requires the duration cf power

input into the central cell to exceed the 0.5-s-duration beams. The ICRH
power available {see Sec. 2.2.3) for the thermal-barrier MARS mode more than
satisfies the needs of the TMX-U mode. The amount of trappec ICRH power,
Pécﬁfapped’ necessary to support TiwC of 15 keV is estimate by using the
Logan-Mirin-Rensink model (Ref. 2. ll) te calculate Ej e~ anc by using the power
flow in the warm-ion channel (see Fig. 2.3-1). Central-cel? particle losses
from charge-exchange with the high-energy pump beam and from passing particles
trapped within the anchor have beem ignored. Enough ICRH power is available
so that additional power losses can be met if these che-ge-exchange losses
become important or if the £. ihC estimate is inappropriate for ICRM heated
plasmas. The value of Pécﬁgapped does not scale with "?wc because a
large fraction of the power input into the central c211 in the thermal-barrier
case came from the axicell beam and the transition jumping beam (see Eq. 2.4.42
in Sec. 2.4).

The effective centra]-cell length, Leffect!ve’ includes the By f %l
contribution to B I-E—, because the dens1ty is uniform from the centra] cell
through the transution (see Fig. 2.3-3), as is the case for the present TMX-U

experiment.
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2.3.3. TARA-LIKE MODE

In the event some as-yet undiscovered effect other than charge
separztion can stabilize the trapped particle mode, it would be prudent to
design the axicell in MFTF-B in such a way as to allow conversicn to the
TARA-1ike configuration (see Ref. 2.1), to hgve the thermal barrier gencrated
in a larger mirror ratio axicell, and to require a minimum of conyersion time
and cost. At present, we require the 6-T and 1Z-T axicell coils for the
MARS-mode to be usable in a TARA-mode; we switch their order along the z-axis
and spreading them apart from 2 to 4 m to ailow ECRH at 1 T and slo¢shing-ion
injection inte @ larger mirror ratio. Figure 2.3-0 shows an early MriF-p
design for a TARA-configuration magnet set, along with the appropriate axial
profiles of field, density, and potential. Corresponding plasma parameters
for this early TARA-mode set are given in Table 2.3-2.

The only differences between this early TARA-mode design and gne
suitable with the present magnet set converted to the TARA-configyration would
be that the yin yang would have a mirror ratio of 3:1 instead of 2:1, and a
Tonu2r length of 5.2 m instead of 3.4 m, as well as a slightly shorter central
cell (with 14 solenoid coils as planned). Since the midplane yin-yang field
(B, =1 7T) and beta value (B, = 0.5) would be the same, anchor parameters
might be similar to those given in Table 2.3-2.

In the conversion to the TARA-mode, the perpendicular axicell peam of
the MARS-mode is expected to remain approximately in place and serve as a
sloshing-ion beam when the inner axicell mirrors are moved further towzrd the
central cell to get the desired mirror ratio. The axicell beams thus would
hit perpendicularly at a mirror ratio of 1.5 to 2 to make sloshing jons, The
30-kV pump beams (PZBZ), however, would have to be translated aboyt 4 m
towards the central cell (still at about 30° angle) to pump the axijcell.
Moving ECRH from the yin yangs to the axicells would then mostly complete the
conversion to the TARA-mode. Present best estimates are that it wj11 take a
few months and about two million dollars to make the conversion.

Because the estimated achievable plasma parameters and performance
Tevels (Q) of this carly design for the TARA-configuration (Table 2.3-2) are
roughly comparable to the reference-case MARS-mode (Table 2.2-6), what would
be the advantages of the TARA-mode compared to the MARS-mode? Ong advantage
would be that radial transport of central-cell jons that are due tp the
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TABLE 2.3-2. Parameters for MFTF-B Axicell in the TARA-like mode (for an

earlier design), Q = 0.37, Q = 1, Pfusion = 330 kW.

Central cell:

Bc =17

Lc =12.5m

re = 30 13
N = 2.78 x 10

Axicell barrier:

8xi = 61
on = 6T
Lx =4m
Eop = 88 keV

Beam reguirements:

Igss = 293 A
I, (ion) = 0.776 A

Microwave power:

Pa = 81.9 ki
Pancor = 39-4 kW

nyp, = 1.95 x 1012
8, = .356

6, = 33.7

6, = 84,1

T, = 60 keV

3b = 0-]]

Foc = 0.13

n, = 3.59 x 10]2cm'3

I 10sh (abs) = U.470 A

Pcc(ICRH) = 47.3 kW

T 20 keV
Tec 12 ke¥ 13
(nt) = 5x 10

ic

L

2. -3

ni, = 6.89 10%enm™
¢, = 38.1 kV
86, = 71.8 kv

Itrap = 0.670 A

I (abs) = 0.4 A

anchor

Pb = 86.1 kW
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quadrupole anchor would be negligible in the TARA-mode but still be
significant in the MARS-mode. On the other hand, some radial transport is
bengficial for impurity removal. Perbaps the main advantage of the TARA-mode
would be to test the idea that MHD anchors might still work even though
jsolated from the confined axicell plisma, thus permitting evolution of mucCw.
simpler and lower field anchors. This, after all, was one of the main
attractions of the original TARA concept.
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2.4, PHYSICS MODELS FOR CALCULATIONS OF PARAMETERS

The plasma parameters for the axicell version of MFTF-B shown in
Table 2.3-2 were caiculated using the following physics models, which are
similar to those used in determining the operating scemario for the A-cell
version of MFTF-—B.Z‘]2 Where further model developments and Fokker-Planck
calculations occurred, we incorporated the improvements in'the present
calculation. The models were developed for the MARS-)ike mode but can be used
with suitable modifications for the other modes.

2.4.1. CENTRAL-CELL PARAMETERS

2.12 we chose a design point based on a

As in the earlier calculation,
set of central-cell parameters that are near the limit of MHD stability for
our magnet doasign.z']3 In this case, «e choose a central cell BC of 0.5 with
an axicell Bx of 0,20. To maximize the fusjon power achievable from a 50:50
D-T mix, we chose the thermal-ion temperature in the central cell to be
Tiwc = 15 keV. The electran temperature is estimated to be about 60% of
this value (as in Ref. 2.12), and hence Tec = 9 keV. The desired ion
Pastukhov canfinement parameter is chosen as (nT)i"c =5x 10]3. and this
determines the required ion-confining potential éc- This value of ¢
is near the maximum that can be gemerated with 80-kV beams and ECRH,

The electron-confining potential o is initially chosen to give an
electron Pastukhov (nt) equal to the ion value. This tends to give an
cverestimate of ¢b hecause the presence of secondary electrons flowing in
from the end walls would produce an electron-confinement time that is Tess
than the ion Pastukhov-confinement time. However, this estimate for b is
a satisfactory starting value that can be easily refined in one iteration, as
will be shown later. The nomenclature used in this report is similar to that
used in Ref. 2.12 and follaws the axicell system shown in Fig. 2.1-2.

2.4.2. AXICELL PARAMETERS

The plasma density and potential profile in the axicell as well as the
neutral beam required are calculated in a manner similar to that of Ref. 2.12.
The potential rise from the contral cell to the axicell midplane, A¢pc, is
calculated from
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_ el
8o = T In( ec) (2.4.1)

where the electron density at the axicell midplare is determined from,

fex = Miwx * "inx - (2.4.2)
The warm-ion demsity is assumed to be nearly Maxwellian. Hence,
~8¢ /[T,
= pc’ " iwC .4,
Niwx ™ Miwc © * (2.4.3)

The hot ions are determined by assuming the perpendicular B in the axicell
is given by the MHD-stability limit, Then

15, 2
BB 10T 8 By -y (T ¢ T (2.4.4)
ihX OTE, 1)

The solution of Eqs. 2.4.1 to 2.4.4 gives By and the plasma denSity in
the axicell.
The potential drop from the axicell midplane to the outboard mirror is

calcuylated from

_ e
Aq}pb = TeC In [n—xm)-] ’ (2.4.5)

(]

where n y(m) is the electron density at the outboard axicell mirror. This
density is taken as a factor gy(m) times the cold-passing-ion density at the
mirror given by nf}">(m) where,

1/2
-4 /T Ad  /T. A

nfeSm) = no 8PS {e PO orpc [(T-EQ }
iw

o) ) I} e

where
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and Dawson's integral is
2 mx 2
D(x) = e f e du .
0

The plasma lifetime is calculated using the Logan-Rensink model 4¢ in
Ref, 2.12, Assuming that the hot-ion lifetime is determined by scattering
Tosses and electron drag and also that charge-exchange losses are negligible,
the hot-ion-confinement parameter is given by

=1
- -1 = 4]-1
(n1), {(nt)S + [(nt)D In (Emj/EL)l } > (2.4.7)
where
3.9 x 10" (g, ¥?
("T)s = In Aﬁ loglO(Reff) 4
R, 1 L
eff [:Y) ’
c
hopm) s
inj
13
(n7)p = 2 x 10 Tslgc-
In Abi
and E. . is the beam-injection energy. The average energy of the ion§ escaping

inj —
from the yin yang is E, and is obtained from,

‘EL - 1 + Ep (TS,TD)/E'IEJ-_ ’ (2.4 8)
EBinj ' ¥ %/ T+a/7,
3/2
Ts o.M (Einj) Tog (Raeg) 1n Agg .
0 A Vec In (EinjfE'L) In A‘i'i ? .4,

where » is the ion mass in amu and

A
& ° -E'ng"" .

2
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The calculation of A¢bc and A*bb required a value of EihX' the hot-ion
erergy. This energy can be calculated by balancing the drag loyses of the ions
on the electrons with the net energy injected by the axicell beams. Neglecting
charge exchange, the hot-ion energy is given by

(n1)
= 3 dra
Einx = (Epj - §) ‘13?7;‘3 + B - (2.4.10)

Since the hot-plasma-confinement parameter (n-r)p and hence Ejpx depends
on 44, and hecause A4,  depends on the value of Ejyy, it is cloar that an
iterative procedure is required to solve for the potential profile and
plasma-confinement parameter (nr)p.

The axicell beam current required to maintain the axicell js given by
balancing the scattering losses,
= g ~3hX Tex % . (2.4.17)

n'rp

Iy ion

2.4.3. BARRIER PARAMETERS

With our choice of B, the beta in the midplane of the anchor, and Pos
we can solve for the barrier potential ¢, as a function of the fraction Foc of
the cold electrons at the barrier midplane by applying a quasi-neutrality
relation at the barrier midplane, As in Ref. 2.12, the warm-passing-ion
density is mapped from the central-cell value, accounting for the variation in
magnetic field and the change in potential., The cold-electron-density
distribution 1n the barrier midpiane region s assumed to follow a cut-off

distribution,
_ ¢b = A¢ b
) e Tec —e o/ Tee
nECAu’b) = gb(m) niux(m”‘m‘)\ T » (2.4.12)
1-e ec
where

b= "e + M)pc - Nbpb .
The density thus equals the electron density at the 12-T mirror when

¢, = A¢pb' and is zero when by = 9 * A¢pc'
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The quasi-neutrality relation, which is solved for the barrier potential,
then is

necaldy) = nE2%%(b) 6, Foo (2.4.13)

where the passing-ion density nﬁass(b) is scaled from the central-cell
density by

pass 1/2
i (b) o Moc/Tiue ) ' Tiue . [(”b )
Miwc TiwC
.
T, ~{1 -R
-7l - R0 {e Wl 0 erfc I( ) ]
1wC
¢b + e
. 172
T e e
iwC
‘b - gk + ¢*
T. 1/2
iwC i
-/T-R e erfc [(T%E) ] s (2.4.14)
where
Bb vT - Eh
Ry = ———
By /T -8By
LB TR
m BmXo
o2 No% ~ Bl - ) ’
Ro = R

¢*
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Ry ¢

¢'= - -g*’
R0 1

, _Ro %

g = 1-171q; .

and erfc (x) is the complementary error function of x. Here, By is the
magnetic field at the barrier (anchor) midplane, By is the field at the
axicell midplane, and By, is the outer (12-T)} mirror of the axicell.
Equation 2.4.13 is solved for the barrier potential ¢y Then the
passing density at the barrier midplane is given by Eq. 2.4.14 while the
trapped- and total-ion densities at the barrier midplane are obtained from

nti""(b) = (g, - N =5 (2.4.15)

ass
nalb) = 6 n2*°(b) (2.4.16)
where g, is the ratio of total warm-ion to passing-ion density, and G_ is
b b

the ratio of total ion density to passing-ion density.
The hot-electron energy is determined by assuming that the ions and hot

electrons at the barrier midplane supply a known value for 8. Hence, for

energy in kev,

8
_ 15 2 b

B, T
Tie = B % "iwﬂ)/["iA(b) (1-F )1, (2.8.17)

where B is in tesla and the density is per cubic centimeter.
2.4.4. WARM-E: ECTRON AND CONFINING-POTENTIAL PARAMETERS

The peak in the potential profile for the anchor occurs at the position
shown as a in Fig. 2,1-2. The petential and density peak are produced by

90° injection of the sloshing ions at the 1.2 tesla point in the vacuum
field. Fokker-Planck ca'lcu'latil:msz']4 indicate that the potential and
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density peak occur inboard of the injection point. The potential peak is
enhanced by auxiliary electron heating by microwave power applied near the
1.2-T position.

As in Ref. 2.12, the warm-electron density at a is obtained from a
quasi-neutrality condition,

newA(a) = “iA(a) - "ehA(a) - "ecA(a) . (2.4.18)

The hot-ion density at a is taken to be a factor R times the density at the
barrier midplane. As shown in Figs. 2.4.1 and 2.4.2, Fokker-Planck

calculations indicate that 2 value of Rs = 2.8 can readily be achieved. The
hot- and cold-electron densities at a are mapped from the known values at b,

using
13 1/2
B - B eh
. a(2) = n,(b) (A2 a) L (2.4.19)
ehA ehA (Bmho - Bb s’a + Eeh"
and
1/2
n_a(a) =n (b)EE ech . (2.4.20)
ecA ecA Bb TecA + 13¢a

Eeh" is the parallel component of the hot electron energy at b and is
assumed to be about 20% of the total hot-electrcn energy.
The confining potential for the warm electrons, Gva. is defined as

6¢a =t 4y - A¢pc . (2.4.21)

If we use the model of Ref. 2.1, the warm-electron temperature can then be
determined from

86 142
= n (,.,cw ___A_B_) , (2.4.22)
ewh \ 1+ Ncw JAE

as a function of the cold-electron ionization source Je. In Eq. 2.4.22,

B\t _Jd
_ /7 b) ee ‘e
JAB = _4 (I + -B_a)i;ﬁ)_ N (2-4.23)
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3/2

8.19 x 10° 12/2(kev)
Tee * T @ T @ T (2.8.24)
ewA echA ee
1/2
0, .(a) /T
oW - = . (2.8.25)
"ecA ew

The cold-electron-source results from the ionization of the sloshing-ion
beam and the axial high-energy pump beam at the position a. Since the value
of Je will be determined subsequently, we can find the warm-electron
temperature that is consistent with the neutral-beam requirements and the
required potential profile.

2.4.5. ANCHOR-CELL BEAM REQUIREMENTS

The neutral beams injected into the barrier region in the anchor include
the high-energy sloshing-ion beam, incident at 90° at the 1.2-T outboard
position, and an axial high-energy pump beam (HEPB). The HEPB is designed to
pump out the warm trapped ions, which would otherwise build up in the
potential well in the barrier. In addition, the HEPB pumps the hot sloshing
ions and maintains the appropriate ratio of peak to minimum sloshing-ion
density in the anchor (RS).

The potentially trapped jon current in the anchor and transition regions
is determined using a bounce-averaged Fokker-Planck calcu'lationz'15 with the
loss boundaries and distribution functions shown in Fig. 2.4-3. The
magnetically trapped current is calculated as in Ref. 2.1 with a correction
factor (Devot02°]5) jncluded. The magnetically trapped current then is
given by

2 * %
q g, (b*) no , (b*) V&

2.5 % 1070 1372 (20¢/m)% 0 (2.4.26)
where the Devoto correction factor for the MFTF-B Axicell geometry is
D = .
and
sin ox = ;gifi (1 + ;‘E—) ) (2.4.27)
mAo iw
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Fig. 2.4-3. Loss boundary and distribution-function contours for passing and
trapped ions in the transition region.
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The position b* is the point where the potential on the outloard side of the
barrier rises back to the value in the central cell; V; is the effective
volume in this region; and gb(b*) = 2.79. The value of Iu is generally quite
small and equal to about 10% of the potentially trapped ions. The total
trapped current is then taken to be the sum of the potentially and magnetically
trapped currents.
The magnitude of the HEPB is determined by the requirement that the
charge-exchange pumping rate in the bottom of the barrier matches the pumping
rate necessary to maintain the sloshing-ion-density distribution with the
required ratio of peak density to minimum deasity as determined by
bounce-averaged Fokker-Planck2'17 calculations of the anchor. Since the
HEP8 is absorbed and also pumps in the other regions of the barrier and
transition regions, the total pumping by the HEPB is about 15% of ltrap. |
The remaining 85% is to be pumped by the passing-particle barrier beam (P28B2). ;
The ionization current of the sloshing-ion beam in the anchor balances i
the scattering iosses of the hot sloshing ions and the charge-exchange losses
off the HEPB. 1f, in addition, the one-half and one-third energy components
of the sloshing beam were not confined when injecied at the 1.2-tesla point,
they would act as a charge-exchange pump removing the hot sloshing ions that
are confined. The ionization current would then be written

HEPB

: 1 +1
{ion) _ “scat cX
Itosh == T=F, ~ ° (2.4.28)
Here Iscat js the scattering-loss current obtained by Logaﬂz']8 from

modeling Fokker-Planck calculations of the scattering less of the sioshing
ions,

2
pscat | q "ihA(b) ¥s1osh
{n7)

» (2.4,29)
slosh
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and

/8

B . .
()gy05h = 2:23 x 1010 (E)%/ 10m, &ﬂ;—n%—_ . (2.4.30)
LA { (N R

E

<OV . <gV> .
p> [—v"u f5 gt = ey - Fin_’_l
AR NTEATER M| » (2.4.31)

2,173 Y5 9

L3023 Yy 43
i <gy>. .
n v j

. (2.4.32)

=7z, Vi Y

When the one-half and one-third beam-energy components are not confined,
the tern F, is the ratio of the charge-exchange rate of the one-half and
one-third beam-energy components to the ionization rate of the full-gnergy
component of the sloshing beam. For our standard case, all the beam-energy
components are confined, and F2 is zero; IEEPB is the charge-exchange
loss current resulting from charge-exchange interactions between the sloshipg
ions ang the HEPB ions as they traverse the anchor. For the reference-case
parameters, the scattering loss of the sioshing jons is comparable to the
charge-bxchange losses of the HEPB.

he summations fodicated fa £qs. 2.4.37 and 2.4.32 are over the Fal?,
the one-half, and the one-third beam-energy components of the beam;
<ov>;j dnd <av>cxj are the total ionization and charge-exchange
rates for beam component j. Similarly, E. and f. are the energy and
atomic fraction for each beam component; and v, is the velocity of beam
component j, corresponding to the energy €3 (¢ - ¢inj) is the
votentia] difference between the outer mirror and the point of beam injection,

The ionization current from the sloshing beam and the ionization current
of the NEPB deposited in the region of the potential peak provide the cold
electrons that form the cold-electron source J, in Eq. 2.4.23. This value
of Je Places a limit on the maximum sloshing-ion current and HEPB current
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that can be used in the axicell. When ‘]e becomes too large, the model
Eq. 2.4.22 only has solutions for TeuA > 603. a regime where the model
becomes inaccurate. In practice, the value of Jo 13 limited to several
microamps per cubic centimeter.

2.4.6. MICROMAVE POWER REQUIREMENTS

The microwave power supplied to the potentfial peak region a and the
thermal barrier region b in the axicell 1s calculated in a manner similar to
that in Ref. 2.11. The power per unit volume at a iS given by

B B
b 2 1 -
Pa ™ din B, (Tewn = Teca? * % (“a * B, TeuA) * 2 9in Town = Teep) - (2:4.33)

This is the so-called "weak ECRH" 1imit of Ref. 2-11, where

172
n A(b) n A(a) Towr L TWa) A
Iip = ec (mew (TecA o @ €W (2.4.34)
and
x i Bh “a"eun
=z 1 + -1} . 2.4.35
() = 5% | Ta) Teunl?) Tee (¢ ) (2.4.35)

The dominant term in £q. 2.4.33 is the one involving Je. Hence, the power
at a is controlled by the magnitude of the cold-electron source at a.

The microwave powér needed to produce the hot electrons is modeled as
the sum of scattering and synchrotron radiation losses. The scattering loss
per unit volume is

2
q niA(b) (I-FEC] (EehAlz)

PoearT = - , (2.4.36)
where
8  3/2
pr = 1.66 x 108 €5/2 Tog (Rypp) - (2.6.37)

The numerical coefficient of Eq. 2.4,38 is low by comparison with recent
electron Fokker-Planck calculations in this geometry,z'lg which are best
fitted with the coefficient 2.8 x 108. However, those calcuiations include
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only the hot-electron population and neglect drag effects between the hot
electrons and the other eilectron populations whose spatial distributions
overlap. Depending on the details of the spatial distribution, the drag
effects might add as much as 50 to 60% to the power estimate for the hot
electrons at b, Thus, retaining the lower coefficient in Eq. 2.4.38 is
tantamount to correcting for these drag effects, giving a more realistic
modeling of the total microwave power needed at b. However, because some of
this drag power is transferred to the warm electrons at a, we would expect the
power estimate Pa given by Eq. 2.4.33 to be higher than necessary.

The value of R,ee is taken as the smaller of Reff for losses to the
inner-mirror point or the outer-mirror point, where

172
Bt/ (V - Bp)

(2.4.38)
U+ 9/Cann

Reff {inner) =

Rees (outer) = Boy /B (1 - 8)Y2 . (2.4.39)

Here we assume that the potential at the outer-mirror point is the same as that
at the bottom of the thermal barrier. In general, because Qnﬁi is so much
larger than B, , Rogs = Reff(outer).

2.4.7, CENTRAL-CELL ION-PARTICLE AND ENERGY BALANCE

This model assumes all the central-cell ions are thermal ions with a
temperature TiuC' In the most general case, some of these jons are supplied
by ionization of gas and by a neutral beam in the central cell, In addition,
some of the jons produced by charge exchange and ionization of the
passing-particle barrier beam (P2B2) in the transition region become trapped
in the central cell. A third source of ions for the central cell is the
ionization current from the axicells adjacent to the central cell. The
balance equation for the thermal ions then becomes

loss trap pP2B2 _P2B2
li + 21 + 21abs fCx

= 1935, oyP2B2 sPeB2

C ion trap * Ic ion * 21X jon - (2.4.40)
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The axial loss current 1}055 of the warm central-cell ions is given

by
n? v
1}°% = q -(%‘—T'cm% , (2.4.81)

where ("’)iuc is the ion Pastukhov confinement parameter for the warm ions;
f:f:f is the fraction of ions from the passing-particle barrier beam that
are eventually confined in the central cell; fEiBz is the fraction of the
absorbed P2B2 that charge-exchanges on the passing ions in the transition
region; trap is the current of ions from the central cell that traps in the
transition and anchor regions; Istz is the total passing-particle
barrier-beam current absorbed in the transition region; Igaion'
1o jons 2nd lx jon 3re the jonization currents for the central-cell gas
and neutral beams and the axicell neutral beam, respectively. The factors of
two in Eq. 2.4.40 account for the particle losses and inputs from each end of
the system.

The ion-energy equation is obtained by balancing the energy carried out
by each ion with the energy input of each source jon. The difference in
potential between the point of production of the jon and the central cell is

also considered in the energy bookkeeping. The equation is

ICRH _ , P2B2 P2B2
I jon fii Ftrap * Pc * 2labs (Epogz = S8 *+ 86,0) firop

* ZIX ion (Eloss + A'pc)

21 ( ) Ve Mix
+ 21 E + A¢ - E. ——— e
X ion *"loss pc ic <ov>ion Ny

_ Jloss tra
= O (Tye v o) vl P g o

gas

o Mcxjgas ¢, ,cP2B2 [P2B2 |
<qv>335 C ion “iwC cx abs “iwC
™>5on

(2.4.42)
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where Etrap is the mean beam energy trapped per beam neutral jonized, and fii
is the fraction of this energy deposited in the jons. The values of Etrap and

fii are calculated with the formulism of Ref. 2.12 using the atomic fractions,

f, =0.83 ,
f]/z = 0-075 ’

f1/3 = 0.092 ,

calculated for the 80-kV neutral beams with a 90:5:5 molecular mix in the arc
chamber,

The absorbed fraction of the P282 supplies to the central cell an energy
per particle, (EPZBZ - 6¢L + Atpc), where EPZBZ is the average beam energy and
6¢L is the average potential drop between the potential peak in the axicell and
the location where the P2B2 ion is born. The neutral beam in the axicell
contributes energy equal to its loss emergy (calculated in Egs. 2.4.8 and
2.4.9 from the axicell plus the change in potential A’pc' Moreover,
because the passing ions from the central cell can charge-exchange with the
axicell beam, there is a second term in the energy balance that depends on the
axicell ionizaiion current.

The loss terms in the energy balance include the axial energy carried out
by the ions, the energy lost by ion trapping in the transition and anchor
regions, the charge exchange losses by passing ions in the transition and by
interactions with gas in the central cell, and also the energy iost by
electron drag.

In the general problem of particle and energy balance, we solve (2.4.40)
for the gas current (for a given ion-confining potential) and substitute into
Eq. 2.4.42. This gives the rf power, PICRH, as a function of the
central-cell-beam ionization current, Ic jon® ©OF vice versa. However, to
find the optimum (nt)i"c for the system, we solve the balance equations with
the restriction that Igaion = 0. In addition, we set the central-cell-beam
current to zero and obtain the maximum ("T)iwc that can be achieved with the
other given beam inputs. With the gas and central-cell beams set to zero, we
solve Eq. 2.4.40 for lloss {and hence ¢c) to give particle balance, and
then use Eq. 2.4.42 to solve for the value of PICRH, which gives energy
balance.
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2.4.8. CENTRAL-CELL ELECTRON-PARTICLE AND ENERGY BALANCE

The electron-particle losses are all assumed to be axial losses, so that
the electron-loss current is written as

2
v
Loss _ q neC [+
Ie = ~TrT — . (2.4.43)

Here, (nr)ec is the Pastukhov confinement for electrons in the confining
potential ¢,.

The electron sources result from the ionization of the gas, the central
cell and axicell beams, as well as the HEPB, P2B2 and sloshing-ion beams in
the anchor and transition regions. 1n addition, a source of secondary
electrons 1 flow in from the end walls, This current is given in terms

sec 2.20
of the primary electron loss current by®*°

19€C = ) 0SS (2.4.44)

where A is the secondary-emission coefficient. In terms of the total ion
loss out the ends of the system, Itot'

ISEC

AS——— (2.4.45)
15€¢ 4 Itot
where
tot _ O "?wcv slosh , (HEPB ,  P2B2
ptot . __dwl ¢, (1 osh , [HEPB , [PeBZ , ¢ ) .
nT). A ion ion ion X ion
iwC
The electron-particle balance then becomes
sec gas slosh HEPB P2B2 q "zc vC
I *lojon * 1 +2 (IA ion ¥ Lion * Tion *Ix ion)= intiec .
(2.4.456)

In the central-cell electron energy balance, the position of ionization
is taken into consideration. The potential change between this point and the
central cell is then added or subtracted appropriately, depending on whether
the electron is a net energy source or sink to the central-cell electron
population. The rate equation then is
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i

q rliwC vc (E - E.) + 15€€ o +P. +2(P. +P,)
iwC ~ e/ e T 'C a 'b

nt drag
HEPB — P2B2
*Ig jon (1 - Fy5) Eirap +2 [}ion ¢+ Iion (00 - M’pc:’]
2
g n .V
_ eCc slosh
) oC (°b * Tec) * 21A ion ¢c +2ly ion A¢pc ’ (2.4.47)

In this model, the secondary electrons carry in the energy ¢, obtained
from the potential drop from the wall to the central cell. He assume that all
the microwave power that produces the thermal barrier at b and the potential
peak at a eventually ends up in the central cell. This tends to overestimate
the central-cell power input, since some of the hot, magnetically confined
electrons that form the thermal barrier are lost to the end walls, rather than
to the central cell.

The term Pe allows us to intraduce power for direct electron heating of
the central-cell electrons. A portion (1 - fii) of the trapped energy from
the central-cell neutral beams goes directly into the electrons., The
electrons produced by ionization of the HEPB and P2B2 in the anchor and
*ransition carry in energy obtained from their change in potential in entering
the central cell. The electrons produced by ionization of the sloshing-jon
beam in the anchor must climb a potential approximately equal to °c to
reach the central cell, and hence appear as an energy-10ss term in the central
cell. Similarly, the axicell electrons must c1imb the potential A¢pc to
reach the central cell.

The solution of the two rate Eqs. 2.4.46 and 2.4.47 gives us the
secondary-electron current and a new value for the electron-confining
potential °e‘ Recall that we initially set ¢e by requiring that the
jon and electron Pastukhov-confinement parameters be equal. Now when we
introduce the secondary electrons, the electron-confinement parameter and
b are appropriately smaller. This new value of $e is then used to
recalculate the barrier parameters, beam reguirements, and microwave power
needs. Using the electron-balance equations with these revised parameters
gives the next iteration value for ¢b‘ Experience has shown that °b
converges to better than 1% in one iteration.
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Along with the secondary-electron current, we can calculate the
secondary-emission coefficient using Eg. 2.4.45 and compare it to the value of
the coefficient when the secondary-electron current is assumed to be limited
by space-charge effects. The space-charge limited value of the
secondary-emission coefficient has been approximated by Loganz'21 as

1/4

Aoy = [o 15 1n ( Tec + 0.656 (2.4.48)
» 'F”T"T_' . 3 o4
scl e * [+ * iw

If x < Acaes then clearly some suppression scheme would have to be invoked to
get L . below the space-charge 1imited value.

The ECRH power necessary to achieve the electron-particle and energy
balance is larger than the ECRH power required to maintain the hot-electron
and warm-electron populations against the mainly classicai loss processes
modeled by Eqs. 2.4.33 to 2.4,39. ¥hile this extra power cannot be directly
fed to the electrons in the central-cell region, the energy can be supplied to
the central-cell electrons by an appropriately designed microwave system in
the barrier region. The design would be flexible enough so that we would
supply the power necessary to maintain the hot and warm electrons as well as
heat some of the cold electrons that pass to the central cell. This extra
power capability in the barrier region could also b& used to supply more
energy to the hot and warm electrons in the event that non-classical processes
enhance the electron losses in the barrier region. '
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Analytic equilibria with quadrupole symmetry in the
paraxial limit
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Mirsur equilibria for arbitrary mirror ratio and flux-tube cccentricity are abtained to leading order in the

plasma p {beta exp in the ial limit (aaral scale lengths Jong compared wath radial scale

lengths). The solutions are given in terms of quadratures aver known functions. The theory s applied to a
d irror configuration

. INTRODUCTION

Adiabatic confinement in conventional mirrors I8
controlled primarily by the z component of the axi-
symmetric part of the applied magnetic fleld. How-
ever, to create a stable configuration (Interchange mo-
tton belng the problem) it is necessary to generate a
“minimum-B8 well.” This is usually done by adding a
quadrupole (sometimes even a higher order multipole)
component to the main field. This addition, of course,
makes the zuldirg-center equilibrium problem three-
ditnensional. In general, the solutton of this equi-
tibrium set of equations requires large sophisticated
codes and state-of-the-art digital computers.®? Even
then results tend to be relatively crude, because of the
limitations of computer memory capacily and speed.
However, because the symmetry breaking field is weak
compared with the main axisymmetric field, and be-
cause the radius of curvature of the main axisymmetric
field is large compared with other characteristic
lengths, an important simglification can be made.

This simplication in the equilibrium model has been
calied the *long-thin® or paraxial approximation.
Specifically, if we identify the small parameter A as

the ratio of radial scaie length to axial scale length,
then it can be systematically seen that: the perpendicu-
iar romponents of the magnetic field are of order a
compared with the main 2z component; the radius of cur-
vature is of order A"? compared with the radial scale
length; and the local parallel current is of order a
compared with the local perpendicular current.

Using this orderlng, we generate a reduced set of
equations in flux coordinates for the egullibrium ln
Sec. II. These equaticns are nonetheless a formidable
set, and solving them is still an extensive numerical
problem, even though they have the further advantage
that z is a time-like coordinate in the partial differ-
entiai equation determining the flux-line geometry.
That is, the equation can be formally integrated from
one plane of constant z to the next and then Information
from the original plane can be discarded. Hence, in
principle, the required computer storage becomes thaj
of a two-dimensionat problem. Unfortunately, the ax-
ial boundary conditions come from both ends.

To make further progress, we look for a self-con-
sistent equilibrium to first order in the plasma pres-
sure, That is, we expand the eguilibrium equations
treating the ratlo of plasma to magnetic field pressure
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{beta) as a small expansion parameter, but large com-
pared with A%, This expansion Is carried out for quad.
rupale symmetry in Secs. Ml and 1V; in Sec. 10 we de-
velop the general perturbation scheme and in See., [V
we obtain explicit solutions. The solutions are given
as quadratures over Known vacuum-magnetic-field
quantities (functions of z) and over prescribed pressure
profiles (functlons of mod-R and the principal fiux).

We emphasize that, given the natural smallness param-
eter A, we need only assume low beta to obtain analy -
tic solutions; the mirror ratio minus one and lux-tubp
eccentricity are arbitrary differing from zero by terms
of order unity.

Section V gives our results. There are two features
of the equilibrium which we indicate here. We find, as
Stupakov did,? that there is a breakdown in the pertur-
bation expansion, an apparent bifurcation point when
the flute instability criterion is marginal. This we be-
lieve to be an interesting point; whether there is, in
fact, another equilibrium we are not able to say at this
time. The other feature, which is very favorable, is
that the self-consistent equilibrium reduces the strong
ellipticity in the transition regions of tandem mirrors.
This is contrary to the results in Ref. 3. The reasong
for this difference are discussed in Sec. V.

The Heaviside-Lorentz system of units, in which €,
= yp =1, I used throughout,

1l. EQUILIBRIUM EQUATIONS IN THE PARAXIAL
APPROXIMATION

Our starting point is the general tensor-pressure
magnetostatic equilibrium conditions,* ’

(oP),=@x , m
and

=22 (8)- @
where

P=B/2+p,, 3)

Q=8 +p =P, 4

B is the magnetic flux density, x is the curvature vec-
tor, and p, and p, are the pressure components per-
pendicular and parallel to B. The derivatives ¢/dB in
Eq. {2} shouid be undersiood as directional derivatives
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in the parallel direction, i.e.,
a —(B» -1p3 o «
dB_(B VB)'B-v. 5)

Here and elsewhere, |B| ts abbreviated as B and b de-
notes the unit vector parallel to B, Then

x=bvh=-bx{vxd). (6)
Apply the operator b+ vx to Eq. (6) to obtain

bevxx =Bbsv{i/B), m
where i, the parallel current per unit magnetic flux, is

i=b-oxb. ®)

Next, apply the same operator to Eq. {1} and obtain
beox Qe= —iBb-v(Q/B).

Then, with Eq. (7) we have the usual parallel current
equation

beanwQ=5% wQi/BY. @)

These equations, given the requisite conditlions for
well.posedness® (or local stability)

dapP
5 >0 (mirror mode)

and

Q >0 (firehose mode),
determine the equilibrium,

We pow introduce flux coordinates a, 8 with the

property that

B=Vax"vs, (10)
and

b-va=b-9g=0. a1
The pressure distrlbution {8 assumed to be of the spe-
cial form

Pra=Pla, B

That is, aside from its dependence on B, it i6 a fune-
tion of only one flux coordinate, the sn-called prineipal
flux coordinate. We will sa more about this later.

From Ea. (2), {remember d/dB=3/aB), ‘] we obtain
the usual relationship between p, and p,.

=it
b=-F g B). {13)

(12)

80 that only p,(a, B) need be specified.

Henceforth, we assume a large-aspect-ratlo system
so that we make the paraxial (or long-thin) approxima-
tion.® That is, lengths in the x,y plane are small (of
order 1) compared with the axial scale length (in the z
direction), and the field components B,, B, are similar-
ly small, of order a, compared with B,, and B, van-
ishes nowhere. In ali calculations henceforth, ali
terms of relative order A% are systematically dropped.
If we take the unit of length to be on the order of the
transverse scale length, then all gradients in the z di-
rection are of order A, and because of this x is of or-
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der A*., With ds denoting the element of arc length
along a Mux line (constant a, 8), we have

ds =dz. (14)
Furthermore, to this order
B,=8. (15)

From Eq, (1) it follows that
F=Plz) =;8Y2), (16)

where B, denotes the vaceum field. Given P(z) and
p.la, B, only a functional inversion is required to de-
termine B, p,, P, 39 functions of a,z. All are indepen-
dent of 2.

To complete the degcription of the equilibrium re-
quires a deter of the di transforma-
tion (@, 8,2} to (x,¥,z). It 1s thus necessary to deter-
mine the flux-line geometry z(a, 8,2), y(a, 8, 2).

One cquation in the two unknowns x,y Is immediately
obtainable from the definition of a, # as flux coordi-

nates, viz.,

ax,y) 1

Ha, 5 "B an
(see Appendix A), where B !5 a known function of a and
z. (The standard notation is used here to denote the
Jacobian of x and y with respect to o and 8.) To obtain
a second relation, we first define the covariant curva-
ture components A (normal curvature), 10{geodesic
curvature) 50 that

&= AV +10V8. (18)

Thus (primes are used to denote partial derivatives
wi'h respect to z for fixed o, 8),

- "ai la_y
A=x et 52 (19)
and
ey E e
0=x 38 +y 3" {20)
Furthermore, the delinition Ea. 18) reduces to
;_ gfd’x) +a(y'.y))
'-'B(a(a,ﬂ) ala, 8 21

(see Appendix A), and finally, from £q. {§), we obtain
the desired second equation ia x and y of the form

where again Q is a known function of a,z. {The partial
3Q/aa s taken for fixed z,) Presumably Egs. {17)-
(22), in cunjunction with the appropriate boundary con-
ditions, would suffice to determine the unknown coor-
dinates x{a , 8,2) and ¥(a,8,z). In the next section we
linearize these equations about their vacuum values to
obtain the equations which define the flux line geometry
to leading order in beta (the ratio of the plasma energy
density to field energy density).
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. FLUX.LINE GEOMETRY (LEADING ORDER
IN BETA)

To lowest order the flux-line geometry is determined
by the vacuum fields. For guadrupole symmetry in the
paraxiat approximation, the field line trajectories can
be written

=olan,, (23}
Yo =T2)y,, (24)
where o and T satisfy
o7 = (B, /13, ), @)

and where x, and y, are the coordinates of the fieid
lines at the micplane (z = 0) of the configuration, and
B,=B(0). In what follows, we assume the type of sym-
metry defined by the two conditions

B,(2)=8,2), (26)

and
olzf=70=z), T

This, of course, is the symmetry of the standard
minimum-8 mirror (with the fang rotated through an
angle of 90° relative to each other) and of tandem mir-
rors such as TMX, Ambol, and Phaedrus. We also
identily the transverse vacuum-field components

B,=x'B=xBy0",
B,:y'B:y‘,Bv-r’, (28)

where the first equality is valid for any field in the
paraxial limit, and the second Is valid for the vacuum
tield only. The components B,, B,, as such, will not
appear explicltly in further calculations but are written
down here for completeness,

Next, we jdentify the principal flux coordinate to this

order. Froam the parallel-current constraint (22), we
force
L dz aQ
[ . B e 0=0 (29)

in order that the parallel curzent will vanish at the ends
of the device (a necessary condition for 2 plasma to be
condined any isolated Sroxe the surrounding epviron-

ment). Sinee
Q _ g
a au (30)

where p=(p, +p )/2, is alveady of order beta, we need
only the vacuam values of the remaining guantities in
(29). If we now make the identification of

a=y=7r1g (0)/2, r*=xi+y2, (31)
8= 8=ta_n"(y°/xn) , (32)

we see that constralnt (29) is satisfled by symmetry,
since

0= -r*p0” —71")sin f¢cos @ (33)

is antisymmetric. Thus, the leading-order expression
for the parallel current ls

i=y% Ldi‘ » _ .?_Ao_
i rslnzsj'. B,(m Tr)w. (34)
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To next order, we set

x=x,+£, (35)

¥=y, +n, (36)
and obtain, after linearizing Eq. (I7),

g0 alx,m)

1
0,0 A8 5( )‘

but, now let us change coordinates from &, ¢ to x,, Y-
Using Eq. (3), we obtain

2 . =
e B (p,-oP). @GN

in Eq, (37) 8P is the change in the vacuum solution que
te the presence of plasina currents. If there is a
boundary where the flux is fixed (a perfectly conducting
shell at some boundary denoted by y»}, then

fo dup,/B’
6P - "—"— - (38)

,’I

Henceforth, all qua.nlmes refer to their vacuum values
(in the absence of plasma) unless otherwise stated.
Since the right-hand side of Eq. (37) is independent of
6, we can immediately construct the geaneral solution to
this equation, viz.,

E=kox,+o L2, {39)
G
S ; © {40)
ﬂ
where, at this stage,
¢&= @(xm:l'u: z) (41)

i5 an arbitrary stream function, and the particular
solution satisfies

— Bn -
B aw“’"”' {(p,-8Ph

50 that
k—wf'dw""‘” . (42)

To detertis (e sureaii fwciron oaiqaely, #¢ &se ar
second equation for the fiux-line coordinates, Eq. (22),
and the definition of #, Eq. (21). Linearizing these
equations generates

3x, &) | 2v,m0)

a8 | aly'sn) L
2@,8) a8 0,0 ot,6) B “3)
Again, let us put it in terms of x,, v,:
ot _ ot om0t B
"'ay., '°ay,, - o +Tax., iz, (44)

If we now substitute Eqs. (34), (39), and {(40), we fi-
nally obtain

%o’ :a ‘1’ = 2
ﬁm_q- Zsinzw S(lb,z], {95)
with
L gpr
s(q;,ﬂ:%j: '%p(w'-ﬂ")—%(a’-r‘)k’. (46)
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At this point, several remarks are in order. First,
all feld quantities refer to their vacuum values. Sec-
ond, Eq. (45) is an elliptic equation for &'(x,,¥,,2) in
which the coefficients are functions only of 2 (i.e., only
of a parameter, at this level). Consequently, to solve
for ¢ we first solve Eq. (45) subject to the lateral
boundary condition that ¢’ vanish at some = ¢* for all
z and 6. We then construct

¢“01y071)=f ¢”“(ﬂymz’)lﬁ'4‘&:;(’]:","0)- 47
o

That is, kaving solved for ¢, we know ¢ to within an
arbitrary function of x,,y, (or eguivalently, of the flux
coordlinates).

To determine ¢, we demand that the paraltel current
still vanish at the ends to this order in the flux-line
geometry. Thus, we once agaln apply By, (22) so thal

f“oa(“,) fdz(blo)]s;?:o. s

Again, the fiyst term vanishes by symmetry. Thus, we
need only compute the correction to the geodesie curva-
ture

y'-:-’g w3k »20 49

bi0= "3t % an TR

Let us write this as 810, + 610,, wherein the two terms
represent the contributions of 2 and & in the formulas
for ¢ and n. We first have

510, = X, ¥ [ ~(0k)* 0 + (TR)*T - koo” + k1T°]. {5

Now, since 610, is an odd function of 2z, it too does not
contribute to Eq. {48). Finally, the remaining piece is

Y 1) " (“’)
m“’”’“(” ayn) BT
28V _ o i(ze)
After rearranging,
_ i 8¢ . a( a@)
m"“'aa( ay) eV,
22 2 )
-yu(a 3. 4)) —zo(f“ax°¢ 3
or, in polar coordinates,

_ "+r-r" ¢  agt -T7"
o1, = TS

2fod+1t ,)'
'a_r( 7 ?

o7 —1? ,)'
+(rcoszaa -sln29”)(—,‘,——¢ . {51)

3 F [
xg-o(rslnzsar +cos2 63—6-)4;-

Finally, making use of symmetry, we obtain the defin-
ing equation for &,

%da _
n W‘i ==z, (52}
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where

J-Ld; jg {(uu" +TT')f dz*

+(T"‘lr‘d’z!"9? EPEAPY
oo - Jo 4 ?B\raxu F’_+c4.,.»,..sa—e}'tl

3 e
-r;;[(c’+r’]¢]

(rcos‘lﬁ——sinzs )[(o’ -1me’ ]'} (53)
and
AL Ny
_L 5 adJ(tra +77"). (54

This same Integral, N, appears in the familiar low-8
fiute -instawlity criterion: >3,

At this Btage several points necd to be made. For
one, we see that the perturbation procedure breaks
down when the flute -jnstability parameter, 0, is
actually equal to zero, Thus, thrre is apparently a bi-
furcation in the equilibrium at t.e marginal point. A
second peint is that the parallel cu-rent constraint is
trivially satisfied beyond the lateral boundary of the
plagma since the pressure vanishes. Consequently,
there is not a unique value of &, in the vacuum region,
any one wili do. Dilferent 3,"s only correspond to dif-
ferent positions in the vacuum. With 2 conducting
shell, ¢, is chosen to force 3 =g¢* on the boundary. In
general, our only interest is in the flux-line geometry
within the ined plasma; ly, we do not
examipe the exterior region.

Thus, we see that Eqs, (45) and (52), atong with the
appropriate definitions, completely determtne the
equilibrium. All that remains is to solve the elliptic
differential equation (45), which Is done in the next
section. From this poiat on, we consider ouly the case
in which the boundary is at Infinity, where 4‘ must be
well-behaved.

fV. SOLUTION FOR ¢

We solve Eq. (45) by transforming it to Poisson’s
equation in the stretched coordinates (™x,, o™l,),
which we then invert by means of the appropriate
Green's furction. In terms of the coordinates (v, 6)
deflned in (31) and (32), the Green’s function is

1
Glr 8lr', 8 =g-1na,
l 1 l)l 1 i J s })I
A=;,(rcoss—r cosp +F(”me_r sing’)*,

and ¢ is

. ,asw 2) R
ZWTBImI di'y f de' ¢*1%' mA, (55)

where we have again used (31) to express v’ in terms
of ¢*.

Next, we integrate by parts with respect to ¢’ to ob-
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tain
teed yn (aerste 2 [ de
o' =5 Bnlmjo' .us(v,-,zlj; 46’ ¢
1 cos?6’ , sin®8’
"{“‘"*K["‘(T*T)

,fcosfcos®’ , singsing’
i e e 1R

We then transform the logarithmic ferm by integrating
J

by pacts on @ and obtain, after some algebraic reduc-
tion,

49'=——1—[mf.dd:’5(;." ,z)f'de'e‘"ﬁ
2woTB, o T A

[cose’ ,,Siné’ 7 (cnsB . .slno)]
77 o? rve el

We evaluate the integral over 8’ by converting it to a
contour integral over the unit circle: o'% =¢,

1 -, tl41/72)e? - 2pf cosg + 1)+ (170%)R? - 2ipp sané - 14)
o rm 1m£ a'ster, ot f v TG 3 cont + TF— (70T 2l sind 17 * 561

where pmy/»’. The { integrand has four poles. Two
are roots of

-2pxt-p=0,
and two are roots of
?-2px't-u'=0,

where

X =het - pte™), 6
and

w={reo)/irzo). (58)
We henceforth assume that 7 > g, Implying that p®>1,
M <Y, The final will be d of this
choice. We write the roots as

="+, i=1,2, (59)
where

r‘,::(-l)'[p’(x‘)’+p‘|”’, j=12. (60)

It is then possible to show that the residue at each of
the poles is given by the general formula

By = (i/)u*(ox*/05 + 1), (61)
with Eq. (61), Eq. (56) reduces to

o 11 Y uy
d’——zﬂsnlmj; dyf S(,b.zlg.p T

(62)

the sum including only those poles lying inside the unit
circle.

Allthat remains is to locate the poles. Consider those

at f=Lj. We note that at p=1, ;£/| is independent of
8, [In particular,

151 ha=1, llha=u.
We also observe that

ferl . o=y o
independent of 8. Now consider |3} for 6=0. We see
that

185 lo- o= =(=1M4pl1 - 2} +lip* (1= P + w12,

a n: nbtonic function of p. For § =7/2, there are two
pozsiilities, depending on the value of p. Il p<2/p*/
(1+g*), I'}is real, and

l‘:l l:-n:‘,F-
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r
i p>2Vu /(1 + p7), on the other hand, I} is purely
imaginary, and we find

167 ] lpwsse=1p0 ¢ u+ (-1V[3p7 (10 ) — po)fe,

again, a monotonic function of p. Finatly, it can be
shown that 1L /de= 0 1f, and only if, 8=0or /2, or
if p=0or 1. The net result of the foregoing considera-
tions is that all possible values of 1;] are confined to
the shaded region of Fig. 1.

A similar diagram could be constructed for !;; | by
recogaizing that
&)e=-u'ty.
or
lg1=awle). (63)
From Fig. 1 and Eq. {63) we conclude that for p<1,
i.e., ¢’ >, the contributing poles are ;. Referring
to Eq. (62}, we see that in this case the sum over the
poles is proportional to {C'{)™ + (') =0, The effect
is to restrict the &' integration to the range [0, ).
Agaln referring to Fig. 1 and Eq. (63), we see that,
for p>1 (¢' <3}, only the poles at { = ¢} contribute.

1o’

FIG. 1. Sketch showing the location of the poles ¢=U§ relative
to the baundary of the unit cirele 1 ¢ 1=1.
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Thus, from Eq. (62),

o i ’ ’ HY
¢ = 20731"‘,[-"'1’5('1’ z)p( +I‘.)'

We can simplify further by noting that (y*/T')* =y /.
Therefore, finally,

r_ __2 -
¢ =~ G oPE, n Imf 49’ S@, 2)
(] -1/2
In Eq. (84) and henceforth we deflne
[ TN (65)

After considerable algebra this solution has been shown
to satisfy Eq. (45) by direct substitution, It can ecastly
be shown that If S Is a polynomial in ¢ of order N, then,
for ¢ <4y, ¢’ has harmonics up to 8in2(N+1)8, On the
other hand, for ¢ > ¢4, all harmonics are generated (al-
though, of course, falling off as y™¥). To complete the
solution, the stream function itself is given by

o=J" 0", 8,22’ + ool0, ), (66)
0

where o,(¥, 8) is obtained from Eqs. (52) through (54).

In Appendix B we write down the explicit equations
for the equilibrium inside the plasma source for the
following pressure profiles:

p,= (1= 0/4g)p (B), (67
and

b= =3/4sP5,B), (68)
where ﬁ"(B] is chosen to fit the various tandem mirror
configurations, and the ¢ dependence is assumed to be
the same in different regions of the system. Although
configurations in which the weighting function varies
from one region to another are conceivable, we do not
consider such complications.

V. DISCUSSION

1t should be emphasized that equilibrium based on the
anisotropic magnetohydrodynamic equations does ot in
itself guarantee long time equilibrium. These equa«
tions only assame {u, J} Invariance. To ensure equi-
Librium on a drift time scale, the particle distribution
must satisfy the drift kinetic equation

aF ¢ (ax aF K BF) 0, )

ot e\ay 36 a8 3y,
where the partial derivatives imply (i,J) held constant;
K is the Hamiltonian defined in terms of the action as

J= jds[2(K—uB-e¢)/m]”’; (70)

and its dertvatives are proportional to the respective
VB drifts. Now, the VB drifts due to finite g are
large {of order A™%) compared with the curvature drifis
and since B is a function of ¢ only (& dependence is of
order A%), the drift kinetic equation is automatically
satisfied to the lowest order in A since F is not a func-
tion of 8.
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Next, before we present a detailed equilibrium, the
following points should be made. We note that the 8
correction to the flux surface defined by p{(¢, B), is in-
versely proportional to the instability criterion {note
the definition of IT, Eq. (54)]. At the marginal point
the perturbation expansion breaks down, i.e., ¢,—=,
which implies a bifurcation in the equilibrium. Wheth-
er the other equilibrium is physical or not we cannot
say at this time.

Another observation regirding this term is that the
signs of ¢, and {i are the same, The numerator on the
right side of Eq. (52) for the tandem mirror configura-
tion is positive definite; to see this consider Eq. (B9).
Glven that the central cell Is generally axisymmetrie
over most of its length, only the second term propor-
tional to k, in Eq. (B7) is scaled with this longest
length. All other terms in the integrand are zero in
the axisymmetric region and can be dropped. Then,
for this term we have

1642
3B,y
LA (L S
le: B 7P f.'dz B(oo =777

Now define z ~ +[ as the boundary of the axisymmetric
region such that [ /(L —])>> 1 and consequently,

2% Lop .
T sm49f d.—(oo'—ﬂ )

L'B(a+1)’j dz—(oa —-77")

8 ( 2 - 'dz
38,,;1:,5"149[ dz (aa =11 )I f

r-

L=
LA —
5!:149[L dzB (oo™ - 77")

Es

and finally we have

1 P f"d_z U Ldzploc” = 777)/BF _. an

Bo= -1 sin46.

12Bug % B [tdzplou”-77%)/8

The form of Eq. (71) is the same as that derived by
Stupakov® who considered only the case where [ was
very large.

Now the flux surface at the midplane is easily seen to
be, Eqs. (39) and (40),

31(01BL0)] = ut1 + 281 + 5, 200, a2

Hence if 0 <0 (denominator >0), which it must be for a
stable configuration, the octupole distortion squares off
the surface. With the other sign the surface exhibits

a diamond -shaped distortion.

This property explains the difference between our
results and these of Stupakov® lhat led lo a diamond-
shaped distortion. He argued that a proper boundary
condition was j =0 at the mirror peak separating the
central cell from the plug, thus discarding any influ-
ence of the plug on the central cell. In general, the
flute-instability criterion [Eq. (54)] is positive (un-
stable) for the central-cell alone. Because of this
change in sign, he was led to the constraint that the
central cell could not be too long or else field lines
would migrate to the walls because of the finite distor-
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FIG. 4. Field steength and plasma bete on axis. (@} 512) on
%95, Yoth tn racue ldashed curve) and with plasma present
(solld curve), normalized ta {B,),. (M) Plasma beta on axis.
, = 2p, 78} I5 shown dashed and 8= {p, +p,)/B] solld. Ver-
tical dotied Hnes murk the inbosrd mirrar peaks and mid-
planes of the end cells,

ton of the flux. As we will subsequently show we ab-
tain the opposite effect, that is, because beta s finite,
field lines reduce their maximum excursion from the
axis in the ceatral-cell region.

Now, which boundary candition is corsect? Obvious-
ly, if we assume thal the mirror is isolated from the
outside world, j, =0 at the axial edge of the confined
plasma. This boundary condition, alang with the (a-
teral boundary condition, completely determines the
equilibrium. There is no freedom to specify the paral-
lel current at the intérface of the central cell and the
plug. We, of course, find that it is not simultaneously
zero at both interfaces.

We now present resulta based on the {inear flux de-
pendence of the pressure profile for a standard tandem

= H™H I H

g P

~oosp : -‘

& :

L4

% 10k
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¥ [ >

<t kS “ ’
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 fem)

FIG. 3. Parallel current per unit magnetic flux ealculated
from Eq. {22} on the fleld Itne #= ¢y, £=r/4. In (2} the equi-
librium magnetic field was used In the caleylation, while in
{b) the vacuem tield was used. Vertlcal dotted lines gre as
in Flg. 2.
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2 lem)

FIG. 4. The x coordinate of the ficld Iine 4 =dg, 4=1/4,
tn racuo (dashed curvel and with plasma present isolid curve).
Vertical dotted Mnes are as in Fig. 2.

mirror configuration (the TMX Upgrade) for which (8y),
=3% 10" G, and y, = 1,35 x 10° G-em”. The computer
code EFFF ard the exgerimental coil configuration
were used to generate the vacuum ficld functions Blz),
e} on 3 fne grid (typicatly 200-400 polnts), Cubic
spline interpolation was used between grid points so
that the quadratures arising in the calculation of &
could be evalvated using the Gear method.® In Fig. 2
we show the dependence of mod-B and pressure on .
fn Fig. 3, we plot the parallel current per unit flux as
a funclion of £ in both the total fiedd and the vacuum
field. In Fig. 4, we compare a lield-line trajectory

at fipite bela with its trajectory in the vacuum for the
same flux coordinates, In Figs. 5 and 6, we have sim-
ilar comparisons for the normal and geodesic curva-
tures. Nole that althoygh the G(A?) quantity 2yA ap-
proaches unity in the transition regions for the extreme
ease shown (3 = 2, ), it is small over the bulk of the
plasma because it scales as »* In Fig. 7, we compare
flux surfaces in the finite-beta {ield with those in the
vacuum field at the midplane of the machine, the mir-
ror peaks, and the midglane of the plug. We see
-squaring off of the flux surface at the midplane of the
machine (octupole distottion). Wa also note the re-
duced eccentricity at the inboard mirror, the plasma
currents are attempting to recirenlarize. Conversely,
e eccentricity at the outboard mirrar is inereased.

2o

FIG, 5. The guanyty 2¢Aon the fleld Une ¢=¥,, 0=7/4, io
both the equilibrium magnetic field @) aud in vgcwo (b). Ver-
tical dotted Uines gre in Fig, 2.
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FIG. 6. The geodesic curvature on the field Jine 2= 0y, =174,
19 both the equllibrium magnetie field @) and fn racuo ().
yertical dotted Mnes are a8 in FIg. 2.

In these comparisons we have used

bo=P={B../2B*O) <z,

and
.~ B B.-B
p4=—%=m(z’)m+6p" 2y <z <Z3,
where

B{¢) - B¥z,) z

BYz,)-Bz,}* **

&, =68 B{0)B(2) Blz) ~ Blz,)|[Ba - Blz)]
+ =% B0, ) + Bl B, - BT ’

bp“:ﬁz“ B(0) <z <2,,

z <z <2y,
where B, =min{B(z,), Bz,)].

To close, 6p, Is obtained from the integral of the
parallel pressure balance equation

Bu . By (13}
Note that these combinations were chosen to farce g, te
ye zero at the plasma boundary. Ailso note that z, is
the position of the inboard mirror, z, is the position of
the outboard mirror, and z, is the position of the phg

* pinimum (see Flg. 2). These choices are used to
represent the penetration of the central-cell plasmz and
o identify the solepold and plug beta values. For these
gomputations 8,=0.25 and 8,=0.5, These high vales
were picked to emphasize the effects of the plasma
currents. At lower values the resulis are gualitatively
the same,

We conclude with a word of caution. The analysis is
perturbative and so fleld line displacements should be
gmall relative to their vacuum positions to be believed.
al50, to quantify the accuracy it \s necessary 10 cai-
culate to next order in B, a project not contemplatel at
this time.
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FIG. 7. Constant-pressure~surface cross seutiona perpen-
dicular to the magnetic axls in vacuo (dotted cusves) and at
Minite beta {solid curves). Contours dre at equslly spaced
flux {ntervals shown at four different axial pesiélons.

ACKNOWLEDGMENTS

We have benefited greatly from the helpful comments
of L. §. Hall.

This werk was performed under the auspices of the
. S. Department of Energy by the Lawrence Livermare
Natlonal Laboratory under contract number W-7405-
ENG-48.

APPENDIX A. LONG-THIN DIFFERENTIAL
GEOMETRY

Here, we derive Eqs. {17) and (21), which, with Eq.
{22), determine the fizld-line geometry, Soth follow
from the large -aspect-ratio Limit of a stapdard dif-
ferenlial geometric relationship among the variables of
any invertible coordinate transformation. This result
is most concisely stated if we denote the Cartesian co-
IR o, T, 2 W K, %, 2 e S SoOTiMes
{a, B,5) by {%,,%,,%,). Then, it is easily shown that

3%y 3(xy, x5) 2(%,, E;l;.i)

ax, = € 505 T30z, X0 )

(A1)

where €,,,=0if any two indices are egual and ==1 ac-
cording to whether {Z, m, #) is an even or gdd permuta-
tion of (1,2,3); the standzrd notation for the Jacobian is
used; and the summation convention is not used. An
equivalent equation with barred and unbaryed variables
interchanged clearly also holds.

From Eq. (10) we find that

M:wxva-w:a-w:a. (A2)

a(xuxznf:}

Then, Eq. {17} follows immediately from fhe long-thin
Limit of the special case of Eq. (A1) for wnichi=j=3;

35 alx,y!

Y- 3)

9z ala, 8 B (A
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To O{A), however, Eq. (14) implies that

T, Ax
.—,;_T:'A ﬁ g3 (A4)

with which Eq, (A3) becomes

v, vh
Hea )

i.e., Eq. (17),

To obtain Eq. (21) we note that in the large-aspect-
ratio kimit, the components of the unit vector b are
[see Egs. (15), (28)]

be=x'y b =9, 0,=1. (AS)

Inserting Egs. (AS) in Eq. (8) glves

' ax'

i=beUxh= <x'y” AT o,
: ax  ay

1A6)
The {irst twe tecrms on the right side of Eq. (A6] are
0(x?) relative to ¢he last two, leavlng
L3y &' 3y da
g= 2% _dvde Ay'af dx'da dx' 3B

@ Iy 2@ x aﬂ 3¢ da gy af oy’ a7
If we now use Eqs. (A4) in Egs. (A1) to evaluate the
necessary partial derivatives, we find that Eq. (AT)
becomes

’ ’ ’
i= B(B:V v _dy'oy  ox'dx 9z ax)

da 38 " Bda sx 3B 0P da

_ofeletx) 8y,
_B(a(n_B_) 2o m)'

which is Eq. (21).

APPENDIX B, LINEAR AND QUADRATIC PRESSURE
PROFILES

In this appendix, we obtain the explicit solutions for
the two pressure profiles given by Egs. (67) and (68).
First, define

4 .
k,(z)=§(?_:'—f);jr'dz%(ua'-n'), (81}
and .
kl2) = wlp /87", (B2)

Now considering first the linear pressure profile. we
have from Eqs. (42), (46), and (64)

dz,’=—2uB 1mf d.y'l:(k,+k1-_—(k,+-2i)]

44‘ . ~112
(1+ Y q),) , B3}

with the definition
n=n VL B4}

Integrating by parts twice generates
b= -5 “B lmﬁk ok J—-—-(1+rz- 1+n)

2 B\l -7 1-n i
-;‘(k -23) % —E'T[(l""ﬂ’—(l--:.’!].

1334 Phys. Fluids, Val. 24, No. 7, July 1981

1

or collecting terms,

Y 1
A —zu—gﬂfm[lh +h N1 —n)

! k\f1 2 1
'a(”-*?)(i-aﬂ*a')]' (5]

Taking the imaginary part produces the answer

o= —{[ (k, + 4y )——(I., )] sin2e

&y
+ u(kl + Z)H 51n40} (B6)

Turning to the expresstons for &, Egs. (52) through

{(54), and nating that &, and &, are even funciions of 2,
we have for the aumerator:

oA t e ® Sogrrrror [farr ( f_a,)
P amaoLd:B{m vrr )_[rfz ult, + 3
‘A
+(cra"-‘rr")ja‘ dz'(k‘» %3) *%[(a’f»r’)u(kn%)
+ (o? -'r’)(k‘ + ’*.21)]‘} . (B7)

Note that the term Unear in ¢ cancels, Next integrat-
ing by parts and combining the integrated part, we have
with

13_)' B ( L) '

(B =2\F (s8)

[see Eq. (2)] and Eq. (25),

Do, = .zgw,{ dzﬂ[(au +rr')f dz’ ;1(& +%‘)

+(m"-17")j; dz'(k‘-r—z‘-)}d'—:j;dzk,(kp%)}

5ind 8
R U ——
Lia ploc”*+777)/B
Next, we turn to the quadratic srurce. Here we have

(B9)

=gt e e+ 10 -2 +4)
917 ozup, 1P, W TR

. g 2 B :'l 7 )-Il:
(%) (k.+-;)}(x+ o) - e

Integrating by parts three times produces

;= -2—“—“'3: Im((k, +2)1-n)- ,—‘b (kl + ’522)
(1 -;vﬁ%n‘) ( !) (b +%){12nqz sn’ (1 +u
o (1= +ar - -y ), @)

where we have used Eq. (B5) (note that the term quad.
ratic in ¢/&, is multiplied by two here), Again collect-
ing terms in the braces we obtain for that term

SV B2 )
w,) w2)G-37F %)

Peatistein, Kaiser, and Newcomb plc<2}



Finally we have for the imaginary part

Pk : ¥ k
b4 =—’:[§(k, + k,)sin28 -5 v (k‘ + El)
1 sio20 -3 usints) +3(2L)' )
x(a smza_susm«ia +2(%) kl+a

(2 sm:a-- nsindé + o u’sin&ﬂ)] . (B12)

B0 = 105,,

oA Jz]'}) sindg
[2 ( ) f"dzp(ua +77°)/ B

and, after intcgrating by parts

Bo,2= 260, + m;’u,{f dz a[(aa'*-rf')f dz’ u(

E:n dz & (k, k) sin46
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f dz ploo”+ rr')/B

Closing, we compute the expression for ¢,. We im-
mediately see that

Do,z = 2D,y + 8, (B13)

where 84, comes {rom the new term propartional to
(&, + k,/3) in Eq. (B12). For that term we have

(f a2 {(aa +rr'1f &’ u( +_)* oo —ff")fdz {2__,_.- (h,%z)

)t o a3
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APPENDIX B
GYROKINETIC MAGNETOHYDRODYNAMICS (MHD)

W. M. Nevins and T. B. Kaiser

1. INTRODUCTION

Quadrupole tandem mirrors vely for MHD stability on high pressure-
weighting of regions of favorable curvature (MHD anchors) relative to those of
destabilizing curvature. This guarantees stability to curvature-driven modes
when the plasma B-values in the unstable region of destabilizing curvature is
less than some critical value that depends on the value of B in the anchors
and on details of the magnetic geometry.

To determine the critical B-value, we must formulate and solve the
equation of motion for the modes of interest. At low 8, the characteristic
perturbations are electrostatic flute modes whose stability criterion is
simple and ue]l-known.a']’g At higher values of B, magnetic-field
perturbations make flux-line bending possible. This allows modes to localize
in regions of unfavorable curvature. The stability properties of such
ballooning modes ultimately will determine the critical B-values achievable
in tandem mirrors.

Here in Appendix B we present a full three-dimensional ahalysis of
"large-n" ballooning modes in the axicell configuration of MFTF-B. Since this
analysis was performed, the proposal coil set for MFTF-B has been altered.
While the resulting'changes in the equilibrium magnetic field can be expected
to change quantitative results, we do not expect a change in our main
qualitative result: in a machine the size of MFTF-B (ai/Rp = 0,06 in the
central cell), localized modes will not limit the central-cell B.

In Sec. 2 we discuss flute stability, and in Sec. 3 we review the
“large-n" formalismB'2 as it applies to tandem mirrors. Ir Sec. 4 we present
the ideal MHD central-cell beta limit due to large-n ballooning modes. In
Sec. 5 we show how the formalism of "quasi-classical" mechanics may be used to
obtain a global-dispersion relation, which includes both kinetic effectsB'3'4
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and the "1/n® correct'ions.ﬁ'3 We present marginal-stability boundaries for
the axicell configuration of MFTF-B in Sec. 6 and discuss our results in

Sec., 7.
2. FLUTE STABILITY

In the low-8 limit, the MHD eigenmodes of a tandem mirror are
flute-1ike.B~1 a sufficient condition for the instability of such modes is
that

t %5 %E pA>0 , p= Ei_;_gﬂ R (B.1)
where B is the magnetic-field strength (g = ﬁb); ¢ is the principal flux
coordinate (g = VW x ¥6); Pl," (¥,B) are components of the plasma-pressure
perpendicular and parallel to B; and A is the normal curvature
(K=0b+W= fy+ V). Thus, it is necessary for stability that the
flux-tube average of the pressure-weighted normal curvature be positive.

This condition along with minimization of plasma current flowing
parallel to B through the central cell have been the major constraints on the
design of the MFTF-B magnetic-field coils. While the design continues to
evolve toward one with acceptably small central-cell parallel current, we
examine the flute stability of our latest design, which has not yet satisfied
all constraints. We consider two pressure models for the transition region;
one in which the pressure is constant (B = 0.05) and the other in which p ~ B
represents a passing and trapped population with a 9% ~ 3. Stable
central-cell beta-values (Bc) are listed in Table B-1 for both equilibrium
and vacuum-field configurations for an axicell beta of 0.2 and an anchor beta
of 0.55, the reference-case values. These central-cell beta values are to be

Table B-1. Critical beta-values for the central cell.

Equilibrium Vacuum
field field Mars-mode
Ptp ~ B B, = 0.36 Bc = 0.6 Bc = 0.5
PR constant Bc = 0.53 Bc = 0.96 Bc = 0.5

116



compared with the value of 0.5 of the reference case {Mars mode). While the
precise value of the critical central-cell B for flute stability will
probably be somewhat different for MFTF-B, the qualitative result should be
the same: flute modes are not expected to impose a serious constraint on
performance of the machine.

3. LARGE-r THEORY AND OTHER APPROXIMATIORS

In the past few years a great deal of progress has been made in analyzing
ballooning modes by employing the "large-n* expansion.B’2 Although this
formalism was originally developed to analyze ballooning modes in tokamaks
it has been extended to non-axisymmetric systems like tandem mirrors.?% The
large-n formalism describes modes in which the typical scale length for
variation of the perturbation across the magnetic field is short in comparison
to either the equilibrium scale lengths or the scale length for variations of
the perturbation parallel to B. An eikonal approximation,
¢ = P(s) exp [iS{8,¢)], is then employed to describe the perpendicular
variations in the stream function, ¢, which describes the perturbation. The
assumption of rapid perpendicular variation allows one to reduce the MHD
ballooning mode problem to the soluytion of a second-order ordinary differential
equation along each magnetic-field line.B‘z'3

This equation is most simply written in magnetic-flux coordinates,
(s,6,¥); where the enclosed magnetic flux ¥ labels a particular flux surface;

0 is an angle-like variable that labels a particular magnetic field 1ine on
this flux surface; and s measures the position along this magnetic-field Tine.
In the work reported here, we use the long-thin or paraxial expansion.B'5 To
lowest significant order in the long-thin parameter, A = R/L (R is a typical
radial dimension and L is a typical axial dimension), no difference exists
between s and the axial distance z. Hence, we may write the ballooning-mode
equation as a second-order differential equation in z:

s AUBIE 2) 10c 12, 2
(= 5 Bfwi - sy

B-2.3'

1 . . -
+ g Lupy + P 0] (£x B) ¢ B8 gs]¢ =0, (8.2)
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where Q = 82 + Pl - P" is the parallel component of the total stress

tensor;B'5 ¥s is the gradient of the eikonal $(8,¥); p(2)} is the mass density;
w is the wave frequency; §* = (Ti/eB)(1/er) is the anguiar velocity of
diamagnetic rotation [Rp is the scale length for variation in the perpendicular
ion pressure, R;‘ = - (rB/P;,) (3P; /39)]; while Sy = 35/00 is

proportional to the surface component of the wave vector. Hence, ﬂ*Se is the
usual diamagnetic drift frequency. In writing this equation we have ignored
the finite-B corrections to @* (see Ref. B-4). This approximation is justified
because we find that Eq. B.2 properly describes the most unstable modes only
at modest values of the central-cell beta, 8 <0.1.

We will solve this equation subject to the boundary condition 3¢/9z = Q
at the axial boundaries of the plasma. Physically, this boundary condition
Tollows from requiring that the perturbed current vanish in the vacuum
external to the plasma. A consequence of this boundary condition is that,
while the labels of magnetic-field lines beyond the axial boundaries of the
plasra may be interchanged by the perturbation, the structure of the external
magnetic field is left unaltered.

It is necessary to find MHD equilibria in order to evaluate the
coefficients in Eq. B.2. Nonaxisymmetric tandem-mirror equilibria are
obtained by using the expansion described in Ref. B-6. This evolves expanding
in both the long-thin parameter XA and in B = 2P/Bz.

A final approximation is to treat f* as constant, independent of 0, v,
and z. The lack of dependence on 0 and ¢ is justified if @* varies little
over the region in 6 and ¥, over which the modes are localized. This
approximation s analogous to the approximation du*/dr = O used in the
nonlocal analysis of electron-drift waves in toroidal syst.ems.B'7 Diamagnetic
effects are most important in the long central cell of tandem mirrors.B'8 and
@* is nearly constant in this region. Hence, we believe that the
approximation 3Q*/3z is justified. We will see in Sec. 6 that the
approximation @* = constant greatly simplifies the system of equations that
must be solved numerically to obtain the marginal-stability boundary for
ballooning modes in a given magnetic configuration,
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4. [IDEAL MHD RESULTS

Previous analysis of beta limits in MFTF-B were based on a stud_yB"9 of
ideal MHD ballooning modes in the large-n Timit. We review the principle
results of ideal MHD-ballooning-mode theory here because they provide a basis
for understanding the full three-dimensional treatment, including both the
kinetic term and the "1/n corrections" described in the next section. The
ideal MHD-ballooning-mode equation may be obtained from Eg. B.2 by taking
the limit & + 0. Since &* is proportional to ai/Rp. this is equivalent tg
considering a very large machine, in which the ion gyroradius ay is very mych
less than a radial-scale length R. In the ideal MHD limit, each term in the
ballooning-mode equation is proportional to |25|2. Upon dividing the
equation through by the value of |2$|z at the midplane of the central cell,
one obtains an equation that depends only on the orientation of VS and that is
independent of the magnitude of ¥5. Hence, Eq. B.2 can provide no informatijon
about the magnitude of VS.

The orientation of VS is determined by

Fzagsysy (8.3)

The marginal stability condition for ideal MHD ballooning modes in
nonaxisymmetric tandem mirrors depends on both the field-line labels,
(6,9), and on I'. At small to moderate values of B.s the "worst" field
line (i.e., the last field line on which ideal MHD-ballooning modes are
unstable ag B, is decreased) always occurs at 6 = § n/2. These field liney
lie on pne of the principle axes of the elliptical flux surfaces in and near
the M40 anchor ceffs. e stab? {7ty properties are the same Yor any vaiue of
N as a result of quadrupole symmetry. Hence, we need only cansider MHD
stability in the neighborhood of 8 = 0.

The worst value of § generally lies about midway out in the radial
profile, which is Gaussian for the assumed constant @%. Figure B-1 shows
the critical value of B. for marginal stability in the axicell configuratiap
of MFTF-8 vs y. The peak value of beta in the MHD anchor cell is held fixed at
Ba = 0.55, while the peak value of beta in the axicell (where the central-cel]
ions are plugged hy the ambipolar potential) is set at Bp = 0.11. Values af
0 and T have been chosen at each value of ¢ to minimize B.- We see that the
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Fig. B-1. Critical value of Bc as a function of Y. The values of beta in the

MHD anchor cell and the axisymmetric plug cell are held fixed at B, = 0.55
and Bp = 0.11. Theta and T were chosen at each value of ¢ to minimize 8.

Fig. B-2. Critical value of B vs I for Ba = 0.55, Bp =0.11, and @ = 0; ¥

is held Fixed at “V“bdge = 0.043.
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worst flux surface at ¢ = 0.043 lies at the bottom of a quite gentle well in
critical Bc.

Similarly, in Fig. B-2 we show the critical value of 8, vs I for the
same values of 8, and Bp. In fig. B-2, 6 is held fixed at zero and ¢ is fixed
at *’*edge = 0.43, the worst field line for I' = 0. We see that worst
orientation, I' = 0, lies at the bottom of a very steep well in Be- When T
is less than about 0.25, we see that the critical value of B. is negative.
That is, the axicell configuration of MFTF-B is found to be unstable to ideal
MHD-ballooning modes even at zero central-cell beta. Increasing B, makes the
system more stable, while increasing Bb makes the system more unstable.

We find in Sec. 6 that this result is far too pessimistic. When effects
associated with the perpendicula~ structure (i.e., "1/n corrections*) and
diamagnetic drifts (i.e., "kinetic terms") are included, the beta limit is
greatly increased and falls somewhere in the range 0.1 < B, £ 0.4. This
result, first, is in part due to the stabilizing kinetic term, which acts over
the entire axial length of a tandem mirror, while the destabilizing
pressure-curvature term acts only in the axicell and the transition region
between the axicell an& the MHD anchor cell. Second, the result is in part
due to the "1/n corrections”; that is, the orientation of the perpendicular
wave vector, as described by I', is determined by the perpendicular structure
of the mode and is no longer free to be adjusted so that it fits into the deep
well in Fig, B-2 near T = 0.

5. METHOD OF SOLUTION

The stabilizing kinetic effects enter Eq. B.2 through a term
proportional to Se. Unfortunately, the single-field-1ine problem provides no
information about the magnitude of Se; this information must be obtained from
a solution of the eigenvalue problem in the plane perpendicular to B. This is
in contrast to the ballooning-mode problem in axisymmetric systems, 1ike
tokamaks, where S9 is replaced by the toroidal-mode-number n. In
axisymmetric systems n is a constant, so one can independently analyze the
kinetic term and the radial-mode structure, which leads to the *1/n
t:mr'rections".B'3 In nonaxisymmetric systems, 1ike the axicell MFTF-B
configuration, these two problems are coupled through Se. s0 that they must be
treated together.
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Equation B.2 describes the behavior of large-n (i.e., Se >> 1)
ballconing modes on each magnetic-field line. A numerical solution of this
equation aleng a particular field line yields the local dispersion relation,

D(ei*ﬁr!ﬂz ; Bc)Ba'Bp -10) = o . (8-4)
The explicit dependence on Se enters through the parameter
22 = w(w -+ Sg) - (B.5)

Note that the local dispersion relation depends not only on the field-line
labels (6,y), the wave parameters V5, and w, but also on the equilibrium
parameters &+, B, etc.

Our problem is to "sew” together the solutions on each field Tine in a
self-consistent way to obtain both the mode structure in the (9,¥) plane
and the global dispersion relation. We accomplish this by using the theory of
quasi~ciassical mechanics--essentially WKB theory generalized to many
dimensions.B'lo In the quasi-classical formalism, the Tocal dispersions
relation 0 may be viewed as the Hamiltonian geverning the motion of a ray in
the four-dimensional phase space: (9, ¥, Se’ Sig, where the field line labels
(6,¥) are the coordinates and the covariant components of VS, {Sgs S#)’ are
the conjugate momenta. The ballooning mode ray then obeys the equations of
motion

5.0

8 3%, ° (B.6a)

V- -a‘s’—w . (B.6b)

S = - %% , (B.6¢c)
and

¢ __ 3D

) D (B.6d)
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The ray motion described by Eqs. B.6z-d may be either integrable or
stochastic.B']] The Hamiltonian D is ciearly a constant of the ray motion
since the ray must stay on the surface D = 0. If there is a second independent
constant of the motion, then the ray orbit must lie on a two-dimensional
surface, Z, embedded in the four-dimensional phase space. It may be shown
that the surface I is topologically a torus. This surface is central to the
quasi-classical theory of mechanics, where it is known as the “invariant
torus”. Ray orbits that l1ie on an invariant torus are said to be integrable.

If a second constant of motion does not exist, then the ray orbit fills
a three-dimensional region of phase space (the energy shell), and the ray
orbit is said to be stochastic.

The theory of quasi-classical mechanics is concerned primarily with
integrable systems. If the ray orbits are stochastic, little can be said
about the mode spectrum; while if the ray orbit is integrable, then the
dispersion relation may be obtained by quantizing the two independent actions,

1, = f v e dg . (8.7)
Cy

These two independent actions are obtained by following a closed path that goes
either once around the invariant torus the short way (C]) or else once around
the torus the long way (Cz). This is illustrated in Fig. B-3. The
quantization condition for the systems considered here is

I = (an + ) . (B.8)

We find that the modes associated with the larger values of n, are more stable
than the n, = 0 modes. Hence, in studying marginal stability one need only
consider normal modes satisfying

L =7 . (8.9)

Before attempting to apply the methods of quasi-classical mechanics we
must determine if the ray orbits associated with "large-n" ballooning modes in
the axicell configuration of MFTF-B are integrable. This is accomplished by a
direct numerical integration of the ray equations of motion. A ray is
initialized with a particular set of phase variables (00, Yo» 560)' The
fourth phase variable, 540. is chosen such that the ray lies on the “energy
shell", 0 = 0. The orbit is advanced in time using Eqs. (B.6) together with
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Fig. B-3. Phase-space trajectory and invariant toroid for two degrees of
freedom. The C, and C, curves are for defining the action integrals 1, and }
I,. The toroidal helix is the trajectory; normally it is not closed. (Shown |
with permission of [. C. Percival, Ref. B-10,) y

X
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the Livermore Solver for Ordinary Differential Equations (LSODE).B'IZ At

each time step, the ballooning-mode equation B.2, is integrated on the current
field line to calculate D and its derivatives. The value of D is monitored to
check the accuracy of the iategration. Integrability may then be determined
from a Pcincaré map; each time that the ray passes through the

hyperplane ¢ = ¢0. the current values of 6 and Se are plotted. If the ray
orbit is integrable, then these points will 1ie on a smooth curve as in

Fig. B-4, while if the ray orbit is stochastic then they will fill an area in
the (o, Se) plane. Figure B-5 shows a stochastic orbit. We did not follow
this orbit long enough to see this area-filling property in the Poincaré map.

We find that the ray orbits are often but not always integrable. When
the equilibrium parameters are in the general vicinity of ideal MHD marginal
stability, the ray orbits are found to be integrable; while as we move further
from ideal MHD marginal stability (by increasing BC for example), this
integrability breaks down. The assumption that Se >> 1 also breaks down for
the most unstable modes far from ideal MHD marginal stability, so that this
loss of integrability does nct by itself limit our calculation.

It is really somewhat remarkable that any ray orbits are found to be
integrable, as it is an unfortunate fact of classical mechanics that most two-
dimensional Hamiltonian systems are not integrable. Two general cases exist
in which twc-dimensional systems become integrable. Either there is a
symmetry (perhaps & hidder one) or there is a separation of time scales. Our
system is an example ¢f one in which there is a separation in characteristic
time scales of the ray motion. This may be seen in the projection of the ray
orbit into the (6, ¥) plane shown in Fig. B-4. There is a rapid motion
directed generally parallel to V¥ superimposed on a s1o4 precession in 8.

We believe that this separation of time scales is associated with th2 extreme
ellipticity of the equilibrium flux surfaces in the transition regiin between
the MHD anchor cell and the axiceil. Ballgoning modes are associated with the
bending of flux bundles in this transition regicn. When a flux bundie with a
circular cross section in the central cell is mapped into this region, it also
takes on an elliptical cross section. These elliptical flux bundles act much
1ike pieces of tin; they are easily bent perpendicular to the flat plane but
are very stiff when bent parallel to the flat plane. Hence, the ballooning
ray has a rapid quiver associated with bending the elliptical flux bundles
parallel to their major axis in the transition region. The action associated
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Fig. B-4. Example of an integrable ballooning ray orbit: (a) Projection of
the ray orbit onto the ¢, plane; (b) surface of section plot of Se vs 6;
(c) points connected to form a smooth curve; and {(d) our computed value at
Ifast= which is shown to be well conserved.
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Plots same as in Fig. B-4 except for a stochastic orbit.
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with this rapid motion, Ifast’ is then an adiabatic invariant over the slow
motion. Hence, Lgast 18 the second independent constant of motion that

guarantees the integrability of ray orbits.
A numerical approximation to Ifast may be obtained by following the

ray orbit once arcund the torus the short way, accumulating S¥S * dq along the
ray orbit and then closing the loop by using a two-point, Simpson's rule
integration to step back to the initial point along a line of constant y.
This scheme allows us to evaluate Ifast once for each point on the Poincareé
map. The numerically determined value of Ig,c¢-® is plotted in Figs. B-4
and B-5. The initial phase variables were chosen such that lfast = for the
first loop so that the dispersion relation, Eq. B.9, is satisfied. We see
from Figs. B-4 and B-5 that Ifast is indeed well conserved on the integrable
orbit, while it is not conserved on the stochastic orbit.

The separation of time scales also provides us with some information
about the frequency spectrum. The separation in frequency between modes with
neighboring values of Neast is Aw ~ 2"/Tfast’ where

-9
Tfast ~ 3w Ifast

:fdg . %b.) V§ , (B.]O)

and the integral is to be taken once around the torus the short way. Noting
that |3¥5/9:;| may be interpreted as ]/Vgroup’ we see that T, . is
essentially the period of the fast motion. Similarly, the frequency
scparation between modes with neighboring values of 10w is dw ~ 2"/Tslow'
where

= .2
T 10w —fdg o D (B.11)

with the integral taker once around the torus the long way (Is]ow is
essentially the area enclosed by the line segments connecting the points on
the Poincaré map in Fig. B-4). Hence,

T
§_(g~ fast << 1 (B.]Z)

slow

That is, the 1ine spectrum must be Yike that shown in Fig. B-6.
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Fig. B-6. Sketch of line spectrum that is characteristic of a system with
well-separated time scales. Each normal-mode frequency is labeled by the EBK

mode number ("slow' "fast)'
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It follows that we need only do a careful job in quantizing Ifast’
while the remaining parameter that determines Islow may be chosen to
maximize instability. This will put us within 6w of the most unstable
mode. Instability is marimized when the derivative of 1fast with respect to
the remaining parameter vanishes. This approximation is analogous to
estimating the dispersion relation in a plasma slab by using local theory at
the most unstable value of the inhomogeneous cocrdinate. This procedure
generally does reasonably well. although i misses WKB corrections (which are
usually stabilizing) that are ussec:ated with the radial-mode structure. In
the present instance, we retain WKB corrections associated with the fast
motion but ignore small stabilizing corrections associated with the slow
motion. This is an important practical simplification because it is now only
necessary to follow a ray once around the torus the short way and compute just
Ifast' This in turn requires on the order of 103 integrations of the
balloon equation and takes several seconds of CPU time on a CRAY-1. A
numerical computation of Is1ow (which we are avoiding) would require that we
follow the ray for at least one full period of the slow motion. This requires
between five and ten minutes of CPU time on a CRAY-1. Hence, ignoring
corrections to the mode frequency of order Sw as compared to corrections of
order Aw saves hours of computer time in computing marginal stability

boundaries.
6. MARGINAL STABILITY BOUNDARIES

It is necessary to find the invariant torus associated with the unstabie
*large-n* ballooning modes to obtain the dispersion relation and the marginal
stability boundary. We expect that the most unstable ballooning modes will be
localized in the neighborhood of the worst field line of ideal MHD theory.
Hence, we may fix 60 and 4b as the labels of this field line. The initial
value of Se, Seo' then selects a particular invariant torus from among those

intersected by the curve

6 = 00 .
ey s (8.13)

(e, v, I, )y =0 .
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Given a particular set of equilibrium parameters, the frequency of the
most unstabie mode satisfies the equations

2 -
Ifast(SO’ wb, Seo, {7 Bc, cee} T (B.14}
and
a1
fast
=0 . (B.15)

If we require this mode to be marginally stable, we must satisfy the additional
equation

sl
fast _
50 - 0 . (B.16)

In general, it would be necessary to simultaneously solve Egs. B.14 to
B.16. Fortunately, the assumption I* = constant, together with the fact
that Se has only a small fractional variation during one period of the rapid
motion allows us to replace the third equation with the condition

%gg =0 (8.17)

or, from Eq. (B.5),

This results in a considerable simplification, as it is now only necessary to
solve Eqs. B.14 and B.15 simultaneously with 22 set equal to -(9*590/2}2.
These equations may be solved numerically to find the marginally stable
value of @* for a particular set of equilibrium parameters, Bc‘ Ba’ Bp
Then one of these parameters, say B., may be varied tc produce a stability
boundary like that shown in Fig. 8-7. We are able to track the stability
boundary from ideal MHD marginal stability at Bc = -0.167 to Bc =0.1. At
this point an examination of the ray orbit shows that, while the orbit performs
several rapid oscillations, it ultimately escapes 1ike the ray orbit shown in
fig. B-5. Hence, the ray orbit is no longer integrable, and the
quasi-classical procedure outlined in Sec. 5 is no longer justified. As long

{(B.18)

ere o
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axicell is Bp = 3,11, while the MHD anchor-cell beta is Ba = 0.55 (upper
curve) or 0.40 (Yower curve). The flute average-beta limit for B, is (.55,

as shown by heavy Iine near 8, = 0.4.
O T
40 ~1
= 0.40
30 . .
o
'
201 -
g,=055
wh >
N
N ™
™
ol1 (- ™
-0.1 a1 a3 0.5
f;

Fig. B-B. A plot of Se Vs Bc at marginal stabitity.
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as the ray orbit continues to perform even one rapid oscillation it is
possible to define 1fast and to solve Eqs. B.15 and B.16. Points on the
marginal-stability boundary obtained in this manner are connected by a dashed
line in Fig. B-7.

Figure B-B shows the values of Seo on the marginal-stability boundary.
HWe see that the condition 5g >> 1, required in the derivation of Eq. (B.2),
also breaks down near B, = 0.1. Hence, there is little significance to the
dashed portion of the marginal-stability curve.

The effect of varying beta in the MHD anchor cell, Ba. is shown by
the lower curve in Fig. B-7, in which B, has been reduced from 0.55 to
0.40. Just as in ideal MHD ballooning-mode theory, we find that decreasing
Ba tends to destabilize the system.

7. SUMMARY

The main result of this calculation is the marginal-stability boundary
shown in Fig. B-7. An important feature of the marginal-stability boundary is
the fact that the characteristic value of Se at the marginal stability

decreases as ﬁt and 2* increase (see Fig. B-8) until the calculation breaks

down at B, =0.1. At this point, @ = 1.4 x 1072 and S, = 7.27. 1t is
possible to extend the calculation to Targer values of Bcs as indicated by the
dashed curves in Figs. B-7 and B-B, but two assumptions underlying this
calculation (Se >> 1 and integrability of the ray orbits) are not satisfied in
this regime.

The axicell configuration of MFTF-B lies off to the right of Fig. B-7 at
2 = 0.1 in our units. It is clear from Figs. B-7 and B~-8 that “large-n*
ballooning modes will not limit the central-cell beta at these large values of
f#*. The rapid decrease in Se on the marginal-stability boundary suggests that
at larger values of 8. and %, the most dangerous modes will be low-m modes
with a global structure in the plane perpendicular to B. The beta limit
impused by such modes is certainly bounded from above by the flute
average-stability condition, BC < 0.4, as this 1imit is found to be
relatively insensitive to the field-line labels, (¥, €). Hence, we may expect
the central-cell beta limit to fall in the range 0.1 < 8. < 0.4.
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The extension of large-n theory beyond its domain at validity gives a
marginal-stability curve {the dashed line in Fig. B-7) that appears to
asymptote to the flute-stability limit as &* increases. This suggests that
at the rather large values of 2* in the axicell configuration of MFTF-8
(9* = 0.1) the actual central-cell beta limit will be closer to the flute

average 1imit of 0.4. Theoretical and computational studies of the low-m

modes that will determine this B8 limit are currently in progress.
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APPENDIX C
SOME EFFECTS OF HOT-ELECTRON STABILITY IN TANDEM-MIRROR GEOMETRY
D. E. Baldwin

A hot, anisotropic electron component will continue to play an important
role, 1t appears, in tandem-mirror (TM) confinement, either as a
potential-depressing component in a thermal barrier or as a pressure-enhancing
component in an magnetohydrodynamic (MHD) anchor. The theory of the
interactions of these hot electrons with low-frequency interchange and
ballooning modes follows closely that of Elmo Bumpy Torus (EBT) stability, but
some features are special to the TM geometry. Im this note, some of these
special features are examined by using a model balloon-mode equation.

The most immediate special feature of TM's are the several axial regions
having particles of quite different energies and, therefore, different drift
speeds. We model this by treating each region as a localized slab having
magnetic curvature simulated by a local effective gravity. These regions are
then coupled by a balloon-mode equation obtained by setting Vi {perturbed) = 0.
We introduce the curvature-drift frequency W and the VB-drift frequency g
for each species and assume that B exceeds the ratio of the plasma-density
scale length n to the magnetic radius of curvature Rc‘ Then for each species
wp >> wy. Hot-species quantities are labeled by sybscript “h", and
warm-species quantities by "w*, with hot and warm defined by drift speeds
relative to wave frequency in the ordering w >> Wo >> W, and
Wgp >> WV By pe

The balloon equation for eikonal solutions in finite Larmor radius (FLR)
ordering and this frequency ordering is given by

2
k Qg4 k w - Aw aw,
B%E(Ta a’%)*;l'[w(ww.) — (‘]‘hu,z o= 0, (©0)
A

where ¢ is proportional to the displacement; Q = B2 tp-Ps VA is the local
Alfvén speed; @ is the diamagnetic drift frequency; a« is the local
species~density fraction; b = 1/2 ky a“ with “a" the species gyroradius; % is
the sum over all species; & is the sum over only warm species; and
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Gm*in
P —F—= 1+ 1B, R

h: ~1lg 'ttt e
Zm"*i“k 27w =By Iry!
b

The w,; term is due to finite ion gyroradius. Beinc nonvanishing over
the entire solenoid, its effect is enhanced for long solenoids to the point
that only low-m modes are unstable. We mode! m = 1 by setting w,; * 0 and
taking k, ~r5'. When @ >> Wy, Eq. C.1 then reduces to the familiar MHD
balloon equation.

The parameter 4, which has the sign of the local curvature, is that
obtained by Van Dam -nd Le(=c".l in their analysis of EBT stability. When
Wh >> w, the drive .orm

A Ay 4
T P ,
is locally stabilizirg (i.e., < 0) in a well having Wy g > C only when 1
-1 <4 <0. When IA* << 1, the denominator of A replaces the I-drive by the
a-numerator of A. Tris latter term describes the warm species moving in the
VB-well dug by the hct electron (through mB); the hot electrons otherwise drop
out of the problem, ¢s in the “rigid ring® description. If 1Al > 1, the hot
electrons respond as MHD fluid in the negative-curvature well.

In the positive-curvature MHD anchor of a TM, & (now > 0) is again
important when most cf the anchor B appears in hot electrons. Again, only the
portion &/{1 + A) of the total pressure contributes; or equivalently, orly the
anchor 8 excluding hot electrons contributes, although it does so in the
enhanced well dug by the hot electrons. !

A second class of modes can appear near the hot-electron-drift freguency
in a well having A < 0. Berk and Dominguezc'z show that when Wp < nci’ the i
ion gyrofrequency, stability in a slab requires

"1 %n -’
total Ty - (c-2) f

1

This originates from a condition in which there is enough ion mass to preclude

the high-frequency m tions, w < Wepe I
1t has been assumed that in a TM the jons of the central cell will serve a
the function of eliminating the Berk-Dominguez modes. ¥e find that, although
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this is true for a flute mode, a long, TM central cell can actually have a
destabilizing effect.

To illustrate this for a TM configuration having a central cell and a
double-end cell, one of positive and one of negative curvature (such as MFTF-P
or TARA) we assume modes that are flute through the entire end region and
sinusoidal through the central cell. There will be curvature-driven
contributions from the plugs (Rc < 0), anchor (Rc > (), and transition
(Rc < 0) between the central cell and end region. Introducing the frequercy
associated with Alfven-wave propagation in the central cell wy = 2 Valle, we
obtain a dispersion relation by equating logarithmic derivative of § at
§ = % LC/Z:

- tan w/w
2w A =B f ds [mz P Aeg E“‘“*i“‘k] (€.3)
Lc wA cot m/wA C D+a+t Bvﬁ U) - (] + A) wk b L] .

where p = plug, t = transition, and a = anchor. The upper term describes even
modes and the lower term, odd modes. With x = m/wA, X = wk/mA,

o, W
ds *ik
B L uf d,ﬂ 1?':2: b
A=CCAf 95.2.,72=t’p
2 pratt BY, t.p f ds
p+a+tr

and

2

aul, 0y
[EX—

o = - _iL._______E____
S
/-.fa+t B

P

, andmka*w ;

this becomes

XY - TE A, *hx o (O« Ap) *p .

v

[— tan x] 2 2 2 Aa 9 X - Ap xkp (€.4)
cot x

Here, for simplicity we set @, * = in the anchor cell.
To analyze rocts of this dispersion relation, we plot the right and left
sides of Eq. C.3 vs x, as shown in Fig. C-1 for the even solution.
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(dashed curves) of the dispersion relation.
right of the d-curve intercept locates the point x

for explanation.
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Frequency dependence of right side (solid curves) and left side

On the x-axis, the mark to the
= (14 4) x,. See text



gonsider first the solid curve alore, which would be the local condition
or that appropriate formally as A + =, [Extension “a" of the solid curve i5
that which would pertain in pure MHD. The dip at x = 0, generating curve "b",
arises from the plug term at x = 0. In BT, "a“ lies above the axis and
stabilization is generated by conversion to "b" by electrons having large %-

Again for A + =, a second branch of modes is unstable if curve "c*
pertainS, rather than "d". The condition for "d" is given by Eq. C.2 when
W < - Note that even when ocal staility is achieved, a negative energy
wave exists, as indicated by the negative slope of the solid curve at the root
having w > 0.

when the dashed curves are added, the actual roots occur at the
intercepts with the appropriate solid curve, When X << 1, all of the tan
structure 1S pusned to nign x, 1.e., x tin x > K as In Fig. t-1. The only
change 15 a less restrictive Berk/Domingrez condition {e.g., "c” as shown is
stable)- This corresponds to adding the central-cell-mass weighting in a
f lute mode.

pecreasing @y by increasing Lc pulls the tan structure in until a pair
of real roots is lost for w, = mw,. Physically, the otherwise stable negdtive
energy mode in the end cells has coupled to a positive energy shear Alfvén wave
standing in the central cell to produce instability. Similarily, for a lond
solenoid, a solution Im w > w, can be found by setting tan x + i.

These modes that originate from the coupling to the solenoid disappear if

(I+Ap) xkp<0 R

which can be achieved either by a good-cuvature plug, w > 0, or by the

Yax Qamelea canditian heing exceeded in 4 had curvatuxe glug, A.p <al. The
former case is that of TARA; the latter, that of MFTF-B. This result does not
bode well for a simple axisymmetric TM stabilized by hot electrons in a
bad-curvature well; if Ay < -1, it would be Tow-frequency (MHD) unstable, and
if -1 < Ap < 0, it would be high-frequency (mkh) unstable.
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APPENDIX D
ELECTROSTATIC BALLOONING MODES
D.E. Baldwin

The low-frequency stability analysis described in Appendices B and C was
predicated on the assumption that gu =0, as in conventional MHD thegry.
Normally, this condition is well satisfied; an electrostatic field 3¢/3s drives
a parallel current and a subseguent inductive componentlin, forcing ﬁh to zevo
while intreducing bending of the magnetic lines. The energy required for this
bending is a stabilizing effect that offsets the tendency of medes to localize
in regions of unfavorable magnetic curvature.

The response to a$7as is quite different for electrons confined in a
potential well, as in any open geometry, when their axial bounce frequency
exceeds the wave frequency. Then, on successive Lounces, they receive nearly
compensating impulses on passing through regions of parallel electric fields,
and little net parallel current is generated. There results a mode that is
substantially flute-like through the solenoid and end-cell regions of
unfavorable curvature, and vanishing in regions of favorable curvature. This
is an electrostatic (ES) ballooning mode, localized to regions of unfavorable
curvature without requiring a bending energy. The transition between the
flute-like portion of the perturbation and the region where it vanishes can
occur when the equilibrium reflects a significant number of particles, such as
a mirror or potential gradient.

In such low-frequency electrostatic disturbances, the electror response
is to Debye shield the perturbation, just as in the analogous situation of
electron Debye shielding in an ion acoustic wave. There is a similar parallel
ion response when the ion bounce frequency is also large. However, both Debye
shielding contributions can be small in geometries having small fractions of
particles that pass between regions of good and bad curvature.

We neglect here the axial variations in the electric field drifts and,
after transforming to a rotating frame, drop all such drifts, Similarly,
because the dominant finite-B effect is to introduce a E“ that cancels the
magnetic-well effect of the equilibrium VB-drift, we consider only
electrostatic perturbations in low B, Axial variations of both the
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equilibrium E x B drift and the VB-drift introduce a number of complications
whose effects remain to be evaluated, although there do not appear to be any
really significant effects arising from these variations.

An eikonal approximation gives the equatioh for perturbed

charge-neutrality,

.2
3 Lol (R R N PP R

where the sum is over species,

| ds ds
ces) = —(...) Tp = —_—
BJ Y ’ B Vil
w is the magnetic-drift frequency, and JD js the Bessel funciion introduced
to allow for FLR effects. This equation may be put in a variationa) form by

multiplying by ¢ and integrating over the field line to obtain

£ feon y EfTF D) (S e o

where we have introduced the Larmor radius p upon expanding Jg and

defined
R kxb « Vf
Wy S -
Q of foe

Charge neutrality (or its radial derivative) can be expressed in the same
notation by

2 [— R
af -
E%—fdedurﬂ;(¢2aa.-¢2ub)=o , (0.2)
which has been obtained by multiplying the local charge condition by ¢2

and integrating over the field line.
The drift frequency T G contains the £ x B drift,

C
=g kxb ° s
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and the magnetic drift,
3]5 ‘(uVB+v2,_) ’

where ¢ = b » ¥b. Equation D.1 becomes quite complex when the variation in
@y, vwhich is due primarily to variation in s is comparable to w. We do
not consider here such circumstances and assume that wp can be written as

Wy =Wy tuwg
where Wy is the constant, species- and z-independent € x B-drift frequency of

the central cell. We take wp << w - uy, and expand the denominators of
Eq. D.1. MWhen this is added to Eq. D.2 and divided by w - wy, with
@+ w+ wy and higher order quantities are discarded, we obtain the result

2
Z.%‘fd*’d“ B 5% {[(cb - k‘oz_e] (@ + uy - i)

'6"-

=0 . (D.3)

In this approximation, i - w corresponds to the total density gradient
because of the flux dependence of f and of @, 50 that wy - wy = wx is the

familiar diamagnetic drift frequency.
In this form, one can identify the Debye shielding, the polarization,

the FLR, and the bounce-averaged curvature-drive terms. The term

(377732 (w, -~ wo) describes a coupling to drift waves brought about by the
€, U, 9 dependence of particle turning points and, therefore, ¢, in the
combined magnetic and electrostatic fields. This term is absent in the

equivalent tokamak calculation.
When the drift and FLR effects are neglected, the variational form
becomes za energy principle for u?, which is a minimum at the eigenfrequency

9 __
2 fdedu 1, AP (g - g . (0.4)
Eﬂ—fdedu 5 -2+ 42 232]
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provided trial functions are chosen that vanish in the anchor where

(&* - “b) w§ < 0, there is always an instability in this approximation. If
the (¢ - $)° factor is small, the growth rate will be the MHD growth rate in
the absence of the anchors. This Dabye term can be small when very few
particles pass between the regions of good and bad curvature. In such
circumstances, a perturbation such as that sketched in Fig. 0-1 minimizes

uﬁ. In the long central cell, ¢ =8, so that all particles trapped there do
not contribute. For those that do pass between the regions, j.e., in and out
of the perturbation,

2L, 2
Ta(o B fds(¢ o) e

where La is the length of one anchor and ¢ is the perturbation level in the
central cell. If we define the characteristic MHD growth rate of the
unfavorable curvature region alone as

2= Zg‘f"e"“ % 3¢ T (& - @) (0.5)

~N

c
:E:SL—-,Pdedu g ko &
we find
)
Y
Wt = < , (D.6)
1 [+ ds -
1+ ——— f &85
K2p2 nchf B
$=0

where n is the density of particles passing into and out of the perturbation,
and the integration is carried out over the region that " “-e perturbation
vanishes. According to how many ions are trapped in t.. ansition region, in
addition to those passing directly from the central cell, the eigenfunction
will minimize this integral of n. MWhen both the positive potential peak and
thermal barrier are placed in the axiceil, as is possible in one gperating mode
of the axicell configuration, ﬁ/nc is very small. The special susceptibility
of this operating mode to ES ballooning was first pointed out by Berk and
RosenbluthD-1,
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Fig. D-1. Profiles of field B, density n, and potential ¢ for the MFTF-B
Axicell design. The dashed line represents the worst ES ballooning mode,
which occurs when the density in the transition is very low.
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The drift term in Eq. D.1, neglected in obtaining Eq. D.6, can play an
important role in stabilizing the basic mode described by £q. 0.6 by caupling
it to a drift wave '2*0'3. The process is very similiar to familiar FLR
stabilization of curvature-driven modes and is described by including wy - wy
in Eq. D.3. As may be observed in Eq. D.3, particles trapped in a region of
constant $ have no drift contribution, just as they have no Debye
contribution. The FLR term, of course, contributes everywhere.

A second point to be recognized from Eq. D.3 is that the ion~drift term
has the same sign as the ion-FLR term and is, therefore, additive. The
electron-drift term has the opposite sign. The magnitude of each term is
weighted by ($ - #)2, and this term is in turn increased by the “overshoot®,
or the distance of reflection of a particle beyond the place where ¢ goes to
zero. Thus, configurations are preferred in which ions carry further beyond
the perturbation than the electrons, and the axicell configuration is of this
type.

The variatijonal form of Eq. D.3 can be used to compare the axicell and
A-cell geometries with regard to stability to the ES ballooning mode.

Consider first the axicell design shown im Fig. D-2. As a trial function,

take ¢ = 1 through the central ceil, ¢ = 1 ~ a in the transition, and ¢ = 0

in the anchor or yin yang. The parameter ¢ will be varied to achieve a minimum
in the stabilizing contribution. Changes in ¢ are located at the high mirror
peak of the axicell and the inside edge of the thermal barrier (see dashed line
in Fig. D-2).

The ion distribution in the tramsition is composed of a portion that
streams directly from the central cell (to be confined by the positive
potential of the anchor, "pass) and a population of ions that have become
trapped between this potential and the high-field coil of the axcicell. With
good pumping in the tramsition region, the distribution of these trapped ions
is close to that of the passing component and, therefore, is beam-like in
character. We denot=s their relative density by 9y - 1 (gb is the total density
in the transition normalized to the passing compopent; the two spatial profiles
throughout the transition and anchor regions are nearly equal). We then
compute different averages for different classes of ions. Introducing the
bounce time in each region--central cell, transition, and anchor (rc, Ty»

Tas respectively)--we have for those ions trapped in the central cell,
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Fig. D-2. Field, density, and potential profiles for the MFTF-E Axicell
design, The dashed line represents the trial function, having variable
transition-region value, when the plasma density in the tramsition is low but
significant.
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for those untrapped in the central cell and confined by the anchor potential

—=1 3

3= Tt Z(Tt + ta)(l - a)
T ¥ Zﬁt + 'ra) T, >> 7,1,

and for those trapped in the transition-anchor region,

t
= (1 = a) —a—oy ,
T + T

Here Tes Tyy Ty aTE proportional to the iengths shown in Fig. 0-2.
Although the ion distribution in the transition region is of a streaming

type, the electrois that neutralize these ions wiil be locally Maxwellian and

very few of them will pass through the high-field axicell coil. Thus, to 2

good approximation, the electrons in each cell are confined to that cell, their

., ¥ in each cell, and they drop out of the shielding and drift terms of
i

va L7
To calculate the effect of the beam-1ike jen distribution in the

transition regions, we temporarily restore the definition of w, and rewrite
Eg. D.3 as
S8 St s [ 16797 # 78] [l ) K+ e o]
-2 —
b Ysr a1 |
- [mo-gé+n!(_x_l_)_-Vf]‘ =0 . (0.7) i
Because 3f/3s > 0 for trapped jons, such terms must be treated with some

As implied above, we treat § as independent of e, u, except for the
Thus, for the term

care.
differences arising from the trapped and untrapped orbits.

not containing af/de, we obtain
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fdedu Tg (¢ - 3)2 -}—z_k_x_q . Vf

26* a T +T T, T

= t a 2 ta dg

il o {9y - (1 - a) P ]f T Mpass
¢ a (Tt Ta t+a

(D.8)
where Tc is the central-cell ion temperature, and the passing density "pass is

integrated over the transition and anchor regions. In the 3f/3e term, we
integrate in energy, expressing the result in terms of the ccmmon value of f at

the separatrix and A(¢ - ¢)2, which is the jump in (¢ - ¢)2 between passing
and trapped iocns. Estimating

1 df
du Tf iy = Zf n
f B |separatr1x To "ag B Pass 2

we obtain

=2
fd” 8f 8o - 8)%eparatrix

2
QT +tT

] t 7 a 2 Tt'a e
~al [t a1y ‘ h . (0.9)
Tc_ [ T T, (Tt . Ta)z fB_ pass

Integrals containing E:e have their principal contributions from the central
cell when these considerations do not apply because of the nearly Maxwellian
nature of the distributions there.

Combining these results, we cbtain from Eq. D.3 and the assumed
perturbation (negiecting the FLR term so as to model a rigid perturbation},
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2

a1 *tT 5T
t a 2 ta dL
wlw = w) =2 - (1 - a) zf n
0 [ T, + T, (Tt N 13)2‘ t4a B pass

T + T TT
ta dg
- um ay -1 - u) —_—] 2 f =n
[ Tt T (gb (1. + Ta)e t4a B pass

. [wzkzpz ‘B g - 0)] jc'g&,,c =0 , (.10)

where the subscript ¢ denotes the central cell.

The choice of o to yield the most unstable mode, in general. involves
the parameters Gk/"b and &ylﬂ%. Here we set a = 1, thereby eliminating the
stabilizing effects of positive 9f/3c and g, # 1 in the transition region.

This perturbation has ¢ = 0 in the transition reqgion and anchor. Solutions arc

stable provided

G- w) (2f 5np)°

- - +
%""B (@, - j‘g— : tta . (D.11)
[+ (kzpzfgin +2 gin)

c c t+a p

In terms of the growth rate Ye introduced in Eq. D.5, this becomes

—2‘>-n—+—m- . (D.12)

and we have introduced the familiar w,.

In the A-cell geometry shown in Fig. D-3, we assume that the worst mode
is one that vanishes in the yin yang and the A-cell. All but a fraction of
electrons are free to pass through the anchor, and only these see an average
potential
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Fig. D-3. Profiles of field, potential, and density at one end of MFTF-B when
operated with thermal barriers of the A-cell type. The dashed 1ine represents
the assumed worst perturbation that excludes the favarable yin-yang curvature.
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¢e ) Tc * Ta * Ta
where A refers to A-cell and, as before, a to the anchor, or yin-yang.

if there is no local potential rise A¢p in the anchor, the same
fraction of ions pass through as electrons and there is no drift term at all.
In the presence of A¢p, a drift term develops. However, because it is
generated by electrons, this term has the opposite sign as the familiar ion

FLR term.
Neglecting the €, u dependence of the various transit times, we arrive at

the following estimates,

=2 1 'Amp/Tic 2Ly + L)
<TB(°“” >ions‘§e T

[+

- 2(L. +L,)
=2 _1 A
<EB(¢ -4 >>e1ectrons - Rc aL

where ... denotes the €, u average, and Rc is the mirror ratio seen by the
central cell. When allowance is made for Weg = = Wyg Te’Ti' these results lead
to the dispersion relation

[

A
1+ —7) W - w Qn -1+ ——) w+ = ,
where

T 86 /T, ¥ 2L + L)

1 ic p’ic) ¢ a A
A] -.R_.(T_-}-e _.2. —L__—— '

c ‘V'ec Py c

-89 /T \ 120l +1,)

A =.l (] e 1c) c a A
5 - - ___1;:_____ .

P;

Evaluations of the A-factors for the two magnet sets are given in Sec. I.
Comparisons of the two geometries shows the A-values for the A-cell
configuration are larger. However, the sign of the drift term is such as to
cancel the FLR term, giving instability at finite m.
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APPENDIX E
SLOSHING IONS IN THE MFTF-B ANCHOR
M. E. Rensink

1. INTRODUCTION

In both the A-cell and axicell configurations for MFTF-B, sloshing jons
play a key role in microstability considerations and in creation of the
potential that plugs the solenoid. In the A-cell configuration the
sloshing-ion distribution and plugging potential were produced in the A-cell
itself. For the new axicell configuration, the sloshing-ion distribution and
plugging potential are produced in the anchor (yin yang). Here, we report on
some nounce-average Fokker-Planck calculations for sloshing ions in the MFTF-B
anchor. As in the previous designs, sloshing ions are formed by off-midplane
neutral-beam injection perpendicular to the magnetic field.

2. MAGNETIC FIELD

The axial magnetic field profile for the stretched yin-yang configuration
is shown in Fig. E-1. The vacuum magnetic field, Bvac(z)’ is obtained from
an EFFI code run. The finite-beta depression of the vacuum magnetic field is
estimated by means of the long-thin approximation,

B{z) = B, ,.{2) /T - B(z]
where our model for B(z) is

- B,..(2)
Bz) = B(0) (?MT—%:%(;T) :

We assume a midplane (z = 0) beta value 8(0) of 0.55, so the vacuum mirror ratio
of 2.91 increases to 4.34, mainly because of the hot magnetically-confined

electrons.
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Fig. E-1. Axial magnetic-field profile in anchor.
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3. ELECTROSTATIC POTENTIAL

The axial potential profile, #(z), is sketched in Fig. E-2. This
potential is derived by setting the local charge density to zero, including
contributions from cold, warm, and hot electrons as well as passing, trapped,
and sloshing ions. The self-consistent calculation of this potential is a
formidable problem, so for the sloshing-ion calculations described here we
assume a fixed form for the potential as part of our input data.

On the outboard side of the anchor midplane, we assume a piece-wise
quadratic form for ¢{y], where ¢ = B(z)/8(0) is the local mirror ratio;

2
v -
¢W]=°a-(°a- (ﬁ(ﬁ) » 1£¢'.<.¢'a H

a

2
V- Wa
Oa-(¢a-¢m) ma s ‘l‘aﬁ‘l’i'l’m .

"

The parameters used in our simulations were:

@0 20.0 keV

[
[}

80.0 keV  , ¥, = 1.50 ;

=]
[l

=0.0keV , g =4.34 .

On the inboard side of the anchor midplane we assume a net mirror ratio
R, =4.34 and a potential rise (midplane to inboard mirror) Ay, of 32.5 keV,
These parameters are important in mapping the passing- (solenoid-) ion
distribution from the inboard mirror to the midplane, which is the reference
point for the bounce-average Fokker-Planck code. The detailed profile of &
on the inboard side does not enter the calculations because in performing
orbit averages, the code assumes symmetry with respect to the midplane.

4. NEUTRAL BEAM INJECTION

Reutral-beam injection is represented by various source and loss terms in
the Fokker-Planck equation for the ions. These may be written schematically
in the form
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i (28] = C0r) + 2 aa) (0] + v, Iny(2)5(v.0)

b
- Vex fi(z,v,e)] .

The first term, C(f;), is the Fokker-Planck collision term. The remaining
terms represent ionization and charge exchange for each beam in the problem.
The factoy o (z) defines the spatial profile of the incident neutral beam.
Typically, we assume the Gaussian form

“b(Z) = exp[-(Z - zb)z/(mh)zl »

where z, 1s the fnfection goine amd dzy fs the axial extent of the beam. For
sloshing beams in the MFTF-B anchor, we inject at the position of the potent:i]
peak, z}, = 130 cm, as indicated in Figs. E-1 and E-2. For well-collimated
beams focused at the magnetic axis the spatial extent is Azy = #10 cm for
perpendicylar injection.

The 1ocal source strength (partic]es/cm3/s) at the injection puint is
proportional to the local ion density for ionization and charge-exchange
processes, The rate coefficients \g and “Ex are specified as input
parameters, These are related to incident neutral-beam currents and ionizatjon
and charge-exchange cross sections, e.g.,

b —_
v[ = b (0\/ )I; s
n, = ijevn ,

where J, \s the incident meutral-beam current density, v, is the beam velocity,
and (——71 is the impact-ionization rate parameter (from both el:ctrons and

ions).
The velocity-space shape factor, Sb(v,e). describes the energy and

orientation of the neutral beam and has the form
S {v,8) = K_exp[-A (v - v )2 - {cos & - cos 6 )2'
b'Vs b * o) "% !

where (vb.eb) specify the mean velocity and pitch angle &nd (Ab,yb)
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define the spread in these quantities. The normalization constant, Kb’ is
defined such that

fc3, Sp(v.8) =1 .

5, BEAM SPECIES MIX

There are three energetic components for the injected neutral beams.
Most of the incident neutrals have the full 80-keV energy, but there are
smaller fractions with half-energy (40 keV) and third-energy (27 kev). For
our sloshing-ion beams, we have assumed a 90/5/5 molecular-source-current mix,
which leads to incident atomic currents at the plasma in the ratio 83/8/9 when
beam divergences are taken into account. The half- and third-energy beam
components tend to reduce the mean energy of the trapped ions because they
constitute a finite fraction of the total incident heam. This effect is
accentuated because the charge-exchange cross section at 27 keV and 40 xeV is
larger than at 80 keV, leading to a Targer trapping fraction for the half- and
third-energy components. Also, if the half- and third-energy ions from the
sloshing beam are not trapped, then charge exchange between these components
and the sloshing ions acts as a loss mechanism for the jons and leads to
increased sloshing beam current requirements.

6. HIGH-ENERGY PUMP BEAM (HEPB)

The high-energy pump beam is directed along the magnetic axis so that
any charge-exchange of this beam with the sloshing or trapped jons produces an
untrapped ion. Thus, the HEPB removes ions from the anchor. The rate
parameter (Eﬁ)gips can vary significantly with axial position because the
charge-exchange cross section is a strong function of the relative velocity
between the axially directed HEPB and the co- or counter-streaming components
of the sloshing ions. This effect is included in the specification of the
profile factor o (z) for the HEPB. For the MFTF-B anchor, ayepg(2) 18
approximately uniform for the axially-directed HEPB, and the spatial variation
of (EV)EEPB is modelled by

ayeppl2) = expl-2212]
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where ch =~ 250 cm fits the estimated fall off in (ov)ﬁEPB as one moves

out from the midplane.
7. LOSS-CONE BOUNDARIES AND PASSING TONS

The velocity-space loss boundary at the midplane of the anchor consists of
several segments, as shown in Fig. E-3. For ions to escape through the
outboard mirror from the midplane, they must first be able to pass over the
pntential peak °a at ¢,. Ions to the right of curve A satisfy this condition.
If the magnetic moment of these ions is not too large, they will be able to
pass through the outboard-mirror throat and escape from the plasma. Ions to
the right of both curves A and M satisfy these conditions. It is also

‘ble for ions to escape through the inboard mirror and join the passing
wns in the solenoid or in the transition region between the axicell and
potential peak at wa in the anchor. Ions in the shaded region to the
right of curve L but to the left of curve A satisfy this ccndition, and we
call these the “passing” ions.

We assume that the passing ions have a Maxwellian distribution

characterized by the solenoid-ion temperature (Tic = 15 keV for nominal
MFTF-B operation). The density of the passing ions depends on the strength of
the charge-exchange pumping in the transition region. In this report we
present results for several plausible values of the passing-ion density.

8. RESULTS

We present results for three different values of the passing-ion density
at the inboard-mirror throat, i.e., Ny = 2 x 10]2, 4 x 10]2, and
8 x 1012 ¢n73, The incident sloshing beam is held fixed, and in each case the
HEPB has been adjusted in intensity to maintain a midplane ion density
ng = 3.2 x 1012 cm'3. Table E-1 sumarizes input parameters common to all
three cases. Results are summarized in Table E-2 and in Figs. E-4 to E-7. It
should be noted that the density profiles in Fig. E~4 apply only to the
outboard side of the anchor.

From Table E-2 we see that the ratio of warm (passing and trapped) ions
to sloshing ions is largest for case C (ny = 8 x 101 cm'3) so we expect this
to be the most favorable case for microstability. An examination of the
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Table E-1. Input parameters for sloshing-ion anchor.

Magnetic Field

Outboard-mirror ratic (net)
Inboard-mirror ratic (net)

Midplane-to-mirror axial distance (symmetric)

Potential
Potential drop (midplane to outboard mirror)
Potential rise (midplane to peak of plug)
Mirror ratio to peak of plug potential

Potential rise (midplane to inboard mirror)

80-keV_Sloshing Beams

Mirror ratio (midplane to injection point)

Axial distance (midplane to injection point)

Axial extent of beam

Local injection angle

Equivalent midplane injection energy

Equivalent midplane injection angle

Rate coefficients for full/half/third-energy
beam components

Incident sloshing-beam current density (at

injection point on each side of midplane)

80-keV HEPB

e -folding length for €all off of (OV)'!E(PB

Ry = 4.34
RL = 4.34

F—. 248 cm

4%, = -20 keV
49, = +60 keV
v, = 1.5

AQL = +32.5 kel

Vin, = 1.5

Zin5 = 130 cm
azinj =+t 10 ¢m
8inj = 90°

Eggg = 140 keV

0) . 2q0

eﬁnj 38

u§L = 13.75/3.62/7.07
L.

VoL = 5.34/2.27/5.25

sL ) 2
Jincident = 10-4 mA/cm
ch = 248 cm
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Table £-2. Effect of passing-ion density on anchor parameters.

Case number
A B C D
Fokker-Planck run MF25N MF25K MF25M  MF25Q
Passing-ion density at inboard-mirror
throat, n (cn3)(10'2) 2 4 8 0
HEPB-rate coefficient needed to maintain
to constant midplane density,
HEPB (5-1) 1.50 1.8  3.30 1.83
Incident HEPB current density;
HEPB 2
JHEPE ot {(mA/en?) .03 1.26  2.26  1.26
Total midplane-ion density, n{cm~3)(1012) 3,22  3.33  3.12  2.08
Pasting warm-ion density, np(cm'3(10]2) 0.10 0.30 0.40 0
Trapped warm-ion density, np{en”3)(101%) 0.77 152 2.25 0
Sloshing-ion density, ng (cn™%)(10'%) 2.35 1.61 0.47 2.08
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173



F (parpendicular velocity)

"[Casa A {0, =2 X 10'2 cm3)

70

{a} @} {b)
1 <]
)
: |
:: CaseB(nm=4X1012 cm"3)
. 1
n
2
25 T
5] i
1] 1
.
B
g e 2 ¢ B L 2B T PRI ECR
T n —p
y ey 7w _CaseDing, =0} {d)
V) \\_‘
- s
ko
L]
~0
»
10
»
b on
A
10
R £
a
g v 222 L RBF 7RSSR

F (paralle! velocity)

Fig. E-5. Contour plots of ion-distribution function, fo("i' "u)’ at
anchor midplane for four values of Ny

174


file:///VMrj

{a)
ao
- n, =2x 102 ¢m3)
10 F
s F
€-08
e v =2 2 g £ 8 8 %
0000% | (b'
[+1:1+1s L9
2000%
- 122 -3
50002 (n, =4 X107 cm™)
_E o001 |
[£]
L
[ * —
> o Il =4 [ o x: a 3 o
S - - LY » - z
53
=
2 -
2 Y (c}
PAGLIY i
1 \
.;8_' 20006 |
T8
O0C0w
tn, =8% 19'2em™3)
aooGe F

0
5
0

15

20

5

10

()

4o

\

2t (nm-——-O)

o w o e o 0 ) 1 o
- - & L1 - - T

Perpendicular velocity (107 cm/s)

Fig. E~-6. Distribution of perpendicular velocities at anchor midplane for
four values of e

175



1CGpop P
)

5800

“000

2!
o0 n,, =2 10"em3)

[}
o o o
o n < £ an o

-

=1

)

“gon

2090 §
” {n, =ax 10" em™3)

12boo

T
—
a

-

10500 b

F {paralle! vetocity)

9ho0 +

6%00 |

whoo b

o e b= a a
[ LY L m T

parallel velocity (107 em/s)

Fig. E-7. Distribution of parallel velocities at anchor midplane for four
values of e

176



midplane-vl distributions in Fig. E-6 confirms this expectation. If the
higher value of the passing-ion density in case C should turn out to be the
most plausible, but a larger fraction of sloshing ions is required (e.g., to
produce a larger potential peak), then both the HEPB and the sloshing-beam
currents would have to be increased relative to the values given in Tables E-1
and E-2.

The presence of the warm (passing + trapped) ions in cases A, B, and C
tends to obscure some of the features of the sloshing ions, so to obtain a
clearer picture we examine case D in which there are no warm ions. Here we
use the same HEPB as in case B but arbitrarily set the passing-ion density to
zero. Results are given in Table E-2 and Figs. £-4 to E-6. The sloshing-ion
midplane density for this case is Ry = 2.08 % 1012 cnr3; the peak density 1S
2.84 times higher. The peak, which occurs at a mirvor ratio wpk = 1.3, is
shifted toward the midplane from the injection point at winj = 1.5. This
inward shift is due to ion-ion scattering, which tends to broaden the midplane
pitch-angle distribution of the sloshing ions. Ilons that scatter toward
smaller pitch angles escape through the loss cone, while ions that scatter
toward 6 = 90° are trapped closer to the midplane.

The particle confinement time for the sloshing ions is limited by a
combination of charge exchange on the HEPB and axial loss because of ion-ion
scattering into the 1oss cone. This cam be seen from the particle balance
equation which we write in the form
SL Nsi Nsi

aNg,
= ¥ Yionization ~ <JEPB, © T g o>
cx

<5t - *9

where the line-integrated particle and current densities are
- dz n{z
Noo -fT_;—)'z »

s Vi (2) n(2)
Yionization = P 92 Wz) '
In steady state, for case D, we find that the 1ifetimes for loss from charge
exchange and scattering are comparable,
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“Tend-loss” ~ 0-88 s .

The somewhat shorter lifetime for charge exchdnge is typical of most cases we

have considered for sloshing jons in the anchor.
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APPENDIX F
ION MICROSTABILITY
L. D. Pearlistein and G. R. Smith

This section contains assessments of both loss-cone and Alfvén ion-
cyclotron instabilities and an overall conclusion.

1. LOSS-CONE STABILITY (L. D. Pearlstein)

The background for the material presented here on stability to loss-cone
modes was detailed in Phy=.cs Basis for MFTF-B,B'] and will not be repeated
here. Rather, I will update the physics and the status of the stability to
loss-cone modes in the axicell configuration. In this configuration, there
are still two cells (the axisymmetric mirror and the quadrupole anchor) with
loss-cone distribution of ions. As in the A-cell yin-yang, the axicell ion
distribution averaged over the parallel velocity is a monotonic function of
the perpendicular velocity and thus is stable to loss-cone modes. After such
an average, the yin-yang anchor-barrier cell, like the A-cell, does maintain a
loss-cone between the midplane and the outboard mirror (see Fig. F-1 and its
stability must be ascertained.

I begin with a brief description of the modes. In general, the electrons
generate the waves while the jons provide the instability mechanism. Stability
rests on the control of the ion distributions. An important property of these
modes are the various space scales. The wavelengths perpendicular to the
magnetic field are short (klpi 2 1) compared to equilibrium scale lengths
and, consequently, the eikonal approximation can be used for this variation.
Wavelengths along the magnetic field are comparable to equilibrium scale
lengths (variations in the magnetic field, density, and the 1ike). Hence, we
solve a second-order ODE along the magnetic fietdF ! with k,(s), to find the
eigenvalues, that is, the standard "balloon" equation. The form of this
differential equation follows:
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Fig. F~1. Stability of axicell configuration to loss-cone modes:

{a) Electrostatic potential ¢ and magnetic field B as a function of z,
distance along the magnetic field; {(b) sloshing-ion density, the thermal-ion
density, and the magnetically confined ECRH-generated electron density, all
shown as functions of z. The central cell is off to the left. Al7 densities
are normalized to the peak sloshing-ion density.
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A1l undefined notation is standard (for definitions see Ref. F-1). Aiso the
new form (B) of the finite B term added to the basic equations arises from the
VB electron drift with klpé << 1.F'2 Note that in the 1imit Te + 0, we recover
the standard result B = B. Also F.[¢] is as defined in Ref. F-1. Onethrther
addition has been an improved self-consistent barrier-potential model.

In Fig. F-2 T present results for the vacuum mirror ratio 2.8,

Bvac = 0,55 (actual mirror ratio 4.) for the sloshing-ion profile shown. Alse
shown is the density of magnetically trapped electrons and the density of
thermal ions and the potential, all as functions of s. The potential profile
shown differs somewhat from that calculated in Sec. II, although the
warm-plasma-density profile is quite similar. This difference is due to our
approximate model distribution function, which must be an analytic function of
mod-B (see Ref. F-3) for the stability analysis.

In Fig. F-2, stability boundaries are shown for the two worst modes
(solid 1ine) of the configuration described above and stability boundaries for
a configuration with a 20% broader ECRH profile (dashed 1ine), thus also a
more flattened well. The ordinate is the ratio of the thermal-ion density ta
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Fig. F-2.

Marginal stability for two worst modes (solid lines) and for a
configuration with a 20% broader ECRH profile {dashed Jines).

The two curves
of each set correspond to two magnetically contained electron profiles varying

by 20% (see text). The vertical axis is the ratio of thermal-ion to

sloshing-ion density at the mirror midplane. The horizontal axis is the ratio
of thermal-ion to sloshing-ion energy. The shaded regions imply the existence
of uncertainty in profiles.

The square region depicts the nominal operating
regime for the MARS mode.
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the sloshing-ion density evaluated at the midplane of the mirror, and the
abscissa is the ratio of the thermal-ion energy to the energy of the sloshing
ions evaluated at the midplane of the mirror. The curve labelled n, = 0

(the lowest axial mode) is the stability boundary for the analog of the
drift-cyclotron-loss-cone (DCLC)} mode in a symmetric well, but here

w=1.4 W and is near a resonant frequency in the region of no warm plasma.
The curve labelled n, = 1 (the next mode) is the stability poundary to the
axial loss-cone mode (ALC) computed from straight-line orbits where

@ > 5.5 w.y. The normal operating regime is denoted by the rectangle shown in
the figure.

The basic conclusion of this study is that stable regions for loss-cone
driven modes overlap the operating regime of the MFTF-B Axicell configuration.
The shaded area on the graph represents the sensitivity to details and is a
measure of the uncertainty of the theory. Obviocusly, a more extreme variation
in profiles can expand the shaded area to include the operating point. It
should be emphasized that this sensitivity to moderate changes in scale length
is primarily a property of the large hole in the pernendicular sloshing-~ion
distributions, a signature common to both the A-cell and axicell
configurations.

Further properties of a marginally stable point are shown in Figs. F-3
and F-4. The marginally stable distribution function averaged over the
parallel velocity is shown in Fig. F-3. The values generated from a
bounce-averaged Fokker-Planck code (circles) are used as input to the various
scenarios. Last, Fig. F-4 shows the magnitude and phase of typical

eigenfunctions.
2. ALFVEN ION-CYCLOTRON STABILITY {G. R. Smith)

Each of the operating modes of MFTF-B has at least one mirror cell for
which Alfvén ion-cyclotron (AIC) stability must be considered. Here, we give
a preliminary assessment of AIC stability in each type of cell. More detailed
assessments will be undertaken as Fokker-Planck resuits for each cell become
available, Also, we describe briefly the flexible, model ion distribution
function being used for each type of cell.

The various operating modes have two qualitatively different types of
mirror cells, those containing sloshing ions and those without a sloshing-ion

component.
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Fig. F-3. Ion-distribution function f as a function of perpendicular velocity
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obtained from a Fokker-Planck rum.
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2.1 Anchor-Plug Cell With Sloshing lons

For three operating modes (axicell, Kelley, and TMX-U-like) the anchor
plug implemented in the yin-yang magnet has a strong sloshing-ion component.
Hot electrons provide most of the B; the B of the sloshing ions is
moderate, of order 10%, a few times the value expected in TMX-U.

In initial calculations of the effect of a sloshing-ion component on AIC
instability, a strong stabilizing effect has been discovered., Crudely, the
sloshing energy of the ions can be included in calculating the anisotropy
<vf>l<vﬁ> - 1 that drives the instability. Thus, a sloshing-ion component
with mean pitch angle of 45° contributes weakly, at most, to driving AIC
instability.

Because of this strong stabilizing effect, the largest drive for AIC
instahility may come from the region where the ions reflect from the inner
mirror, since the anisotropy and ior energy (and therefore B) are both high
there. This region is fairly short (< 100 cm) in terms of the typical unit
of length (inverse wavenumber) for RIC instability

7 ,.\1/2
£ _23x10 (_g) o,

Yp n
where 7 and p are the ion charge and mass numbers and n is in cubic
centimeters. For MFTF-B, Z =1, =2, n =6 x 10]2, and c/tupi ~ 15 cm. The
shortness of this region of high sloshing-ion density shows the need for
calculations that take into account the axial equilibrium variations.
Detailed calculations including sloshing ions and axial variations are

necessary to refine the parameters of this anchor-plug cell.

2.2 Cells Without Sloshing lons

2.2.1 Anchor-Plug Cell of TMX-Like Operating Mode. This cell, also
jmplemented in the yin-yang magnet, has high jon B, like the successful
2XI11B experiment. However, unlike 2X1IB, the stabilizing effect of finite
length is negligible in MFTF-B since for n = 10]4,

-—':—.-84cm<<L ~ 150 cm .

i plasma
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Counteracting the destabilizing effect of larger plasma size is the
potentially stabilizing effect of larger mirror ratio in MFTF-B. The vacuum
mirror ratio of 2 in 2XI1IB was not fully utilized because of the maintenance
by electron drag and charge exchange of an ion distribution much shorter than
the mirror-to-mirror distance. If means can be found in MFTF-B to build aa
jon distribution that fills this cell of vacuum mirror ratio 3, AIC stability
can probably be achieved in spite of the long plasma length.

2.2.2 Axicell, The axicell operating mode of MFTF-B (and of the similar MARS
reactor study) contains am axisymmetric mirror cel) with moderate ion B
(comparable to the TMX end cell). In this respect, the axicell is much
superior to the yin-yang cell of the A-cell design of MFTF-B, which requires

B to be many times that achieved in TMX. The smaller mirror ratio of the
axicell (1.5 on the central-cell side) allows confinement of only a rather
anisotropic distribution. The anisotropy could, however, be somewhat Jless
than in T™X and in the A-cell design, which {Iike 2XIIB)} did not utilize their
full mirror ratios. An estimate of the anisotropy limit can be obtained by

adapting the convective-absolute boundary calculation of HedrickF'4
! -1/2
W ~1.9 8 .

For B of 20%, this predicts that absolute instability cam be avoided if

which should be achievable. This calculation neglects the stabilizing effect
of the central-cell ions that seem to be present in TMX. In MFTF-B the effect
may be stronger than in TMX, because the central-cell icns have significant
density throughout the axicell.

The axicell thus seems more stable than the yin-yang of the A-cell
design.

2.2.3 Central Cell for Kelley Operating Mode. In this gperating mode, which
is similar to that of the Technology Development Facility (TDF) strong
neutral-beam injection and short confinement time can lead to a significantly
non-Maxweliian ion distribution in the central cell. Furthermore, high B is
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required, and the plasma is extremely long in units of c/mpi, which may imply
that suppression of absolute AIC instability is not adequate to avoid
deleterious effects; convectively growing waves might heat and trap ions in
the bad-curvature transition region. Ameliorating these effects is the very
large vacuum mirror ratio of about 10. The large mirror ratio may allow a
sufficiently Maxweliian distribution to be built so that AIC instability can

be avoided.

2.3 Model Ion-Distribution Function

An ion-distribution function that is very useful for modeling the
various cells of a tandem-mirror machine leads to a numerically tractable
dispersion relation for Alfvén jon-cyclotron instability, as described in this
section.

The ion-distribution function ¥ is a superposition of distributions fj
of one or more icn components (e.q., sloshing, passing, trapped):

flo) = 3 hHW .
J

The following two models for fj allow a large variety of mirror cells to be
studied. The first model has fj separabie in perpendicular and parallel
velocity v, and v, while the second has f; separable in speed
v = (vf + vﬁ)”2 and pitch angle ¢ = tan™! (vllv"). Thus,

|

fj(g) = Aj filv)) :exp[- uﬁ(v“ - uj)z] + (v” + - v”)’ >

Both models have the required symmetry under vy * - v, For perpendicular
wave number k; = 0, the form of f; does not enter the dispersion relation, only
the density and temperature moments enter. Even for k, # 0 the first model
allows both velocity-space integrals to be done analytically.

For the second model, a particular class of Fj(v) allows one
velocity-space integral (speed) to be done analytically for klaj <1,

where 3 is the mean gyroradius of ion component j:
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e

22& 2
F.(v) = C. - a, £,=0,1,2, «o. .
J(v) CJv exp( ajv ) g 0

For kl = 0, a rather simple form of the dispersion relation results even
for the model fj = Fj(v)Gj(¢). Suppressing the subscript j for brevity, we
can write the dispersion relation for a plasma with cold electrons as

2

22 2, Y
0 = D{w,k) = k°c° - v + + D, (w,k) ,
IELI i
2 2,"1/2 n/2
D'i = wp.i 1 +m f d¢ tan ¢ G(¢)
¢loss

1/2
{sin ¢ tan ¢[(2 + 920 - Z5+z'm] -5 12“2’-%) ’

where the generalized plasma dispersion functions,

“-1/2 f° du u" exgg-uzi

Ipl2) u-z ’

have argument

w-92 1/2
k cosg © .

Z—_‘
Here, R is the ion-cyclotron frequency. These functions can be computed
accurately and rapidly. Only a single integral {over pitch angle ¢) must be
done numerically. HNonzero k; < a31 does not force the numerical evaluation
of both velocity-space integrals but merely introduces a determinant with

elements no more complicated than D shown above.
3. CONCLUSION

The conclusion of this study is that both the A-cell and axicell
configurations look the same with regard to ion microstability. Further,
provided the predicted operating parameters can be achieved and some care is
taken in forming the ion distributions, we anticipate that the plasma will be
stable to these modes.
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APPENDIX &
ELECTRON MICROSTABTLITY
Y.-d. Chen, W.M. Nevins, and G.R. Smith
1. INTRODUCTION

The hot-electron plasmas in tandem mirrors muy be unstable at frequencies
comparable to the electron-cyclotron frequency R. By studying these
instabilities we hope to prevent deleterious effects by learning how to operate
exporiments without strong instabilities.

An early review of microinstabilities of ECRH plasmas was provided by
Guest and Sigmar.G'1 The instabilities that led to the most stringent
constraints on plasma parameters were the electromagnetic whistler instability
and the electrostatic “upper-hybrid loss-cone* {(UHLC) instabijity. Later work
on the whistler instability shows that relativistic effects are significantly
stabilizing even for mean electron energies much less than the rest
e\'lel-gy.c'i"2 to &-4 The UHLC instability was the subject of . detziled study
for plasma parameters appropriatesto the earth's magnetosphere.G's

In this previous uorkG'] t0 6-5 4t was found that the wavelengths
associated with these high-frequency electron modes are short in comparison to
typic.] macroscopic scale lengths of the plasma. Hence, requiring stability
in the case of these modes tends to constrain the electron-distribution
function rather than the configuration of an experimental plasma.

In this article we describe our present numerical study of instabilities
of ECRH plasmas. Qur work improves on earlier viork by more accurately
modeling the electron-distribution functions suggested by recent Fokker-Planck

studies of electron-cyclotron-resonance heating (ECRH) in a magnetic-mirror
field.6-6,6-7

2. MODELING THE ELECTRON DISTRIBUTION
Fokker-Planck studies of ECRH plasmas in the TMX-Upgrade Experiment have

found distributions f(v) like the one shown in Fig. 6-1.6706-7 Tpe
distribution for MFTF-B will be similar to that shown in Fig. 6-1. The moments
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Perpendicutar valocity, v, (108 rafs)

Parallel velocity, v, (108 mys)

Fig. G-1. Contour plot of electron distribution found in Fokker-Planck
studies of the ECRH plasma in the TMX-U experiment. The total electron
density is given by w%/nz = 1,55, Contours ave logarithmically spaced,
adjacent contours being separated by a factor of iwo.



fy, = Jdv f(v) and f, = 2n fvldvlf(gj are monotonically decreasing functions of
perpendicular an parallel energy, respectively. It does not follow, however,
that loss-cone instabilities are absent, because the distribution in Fig. G-1
is poorly approximated by f, f,, i.e., f(v) is not a separable function of
perpendicular and parallel energies. Separable distributions have been used
in most previous studies; exceptions are the whistler-instability studies of
Sr:harere'8 and Jacquinot and Leloup.e'2 Loss-cone instabilities with finite
k, can be driven by wave-particle interactions at v, = (w - nf2)/k,, along
which the perpendicular-velocity distributfon is inverted for appropriate n,
w, and k. Here, n is an integer, w is the wave frequency, ana kllis the
parallel component of the wavevector. Failure to recognize the nonseparability
of f(v} would.lead to overly optimistic stability assessments for lass-cane
instabilities. Therefore, we have developed the following nonseparabie model
for the distribution function of an ECRH plasma.

We superpose a number N of electron components with various parameters:

N
fly) = Z] fly) . (6.1)
s:

Each species has a separable distribution
24

3 2 2
f (v) = s 'L exp —;i— Ml (G.2)
s'\=f T 372 a - - ;? . .
" °12,s”s’ %y s \ 125 % s %,

By appropriate choices of the densities ng. thermal speeds °1,s and “H,s'
and indices Es' we achieve a good reproduction of Fig. G-1, as shown in
Fig. G-2.

Superposing separable distributions to model a nonseparable distribution
allows us to avoid numerical velocity-space integrations, a considerable
computational advantage. The distribution in Eq. G.2 is precisely that used
by Callen and Guest,G'9 who provided all the formulae necessory tor
numerical calculation of the dielectric function D(w,k)} = det [D(ew,k)],
whose roots describe the small-amplitude waves of a collisionless plasma in a
uniform magnetic field, §0.

We have written a computer code that solves the fully electromagnetic
dispersion relation D{w,k) = O for the non-separable model distribution
given by Eqs. G.1 and G.2. The direction of wave propagation k with
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Perpendicular velocity, v, (16 m/s)

Paraltel velocity, v (108 m/s)

Fig. G-2. Model electron distribution formed by superposing five separable
distributions (see Eq. G.2). The logarithmically spaced contours are
separated by a factor of two. The plasma frequencies “p' perpendicular
temperatures Ty = (2 + 1) muf/Z, paraliel temperatures T" = muﬁ/Z,

and indices 2 are given by mg/:z? = 0.64, 0.92, -0.037, 0.046, and -0.018,
respectively; T, = 3, 40, 12, 12, and 4 keV; T/ = 0.3, 0.35, 4, 2, and 63
and £ =0, 1, 1, 1, and 1. Dotted contours give unphysical negative values of
the distribution function. The spacing between adjacent dotted contours is
also by a factor of two. The magnitude of the most negative value of the
distribution function is less than 1/2000th of the most positive value.
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respect to 50 can be arbitrary, but the plasma is assumed to be spatially
uniform and nonrelativistic.

The uniform-plasma approximation is a reasonable first approximation
because high-frequency instabilities have wavelengths much shorter than
typical equilibrium scale lengths of the plasma. The nen-relativistic
approximation is known to be pessimistic for the whistler instability: 6ladd
has found growth-rate reductions of a factor of two or more for mean electron
energies of 250 keV, one-half the rest energy.G'a’G'4 Relativistic effects
are stabilizing only for instabilities with w < 2, Nevertheless, at the
200-600 keV energies envisioned for MFTF-B, even the UHLC instability, which
has w > @, will have to be treated relativistically. The results in the
next section were found with the non-relativistic approximation.

3, NUMERICAL RESULTS

Only two instabilities, the whistler and upper-hybrid 1oss-cone modes,
are found in a plasma with the non-separable model electron distribution shown
in Fig. G-2 by applying the Nyquist technique thoroughly over the k plane. MWe
have used cur computer code to calculate the real freguencies and temporal
growth rates of these jnstabilities. For the whistler mode the maximum growth
rate occurs at k; = 0 and k;c/R = 1.4), where w/Q = 0.55 + i 0.025. When we
double the total electron density without changing the shape of the
distribution, we find that the wave vector that maximizes the growth rate
shifts to k”c/ﬂ = 1.74, where the frequency is given by w/f = 0.51 + i 0.049,

For the UHLC instability we show in Fig. G-3 a contour plot of Imw in
the klk" plane. Thé maximum growth rate occurs at klclﬂ = 9,9 and
k"/ki = 0,071, where &/Q = 1.18 + § 0.0064, These values of Ku and k; for the
most unstable mode are in line with estimates presented by Guest and
Sigmar.G'E Note that the growth rate of the UHLC mode goes to zero as k; goes
to zero, as expected for our monotonically decreasing f;. Doubling the total
electron density shifts the maximum growth rate to klc/ﬂ = 10.9 and
kylk, = 0.13, where w/Q = 1.24 + i 0.008,

Defining <T,> and <T, > to be the averaged parallel and perpendicular
temperature, respectively, for the distribution given by Eqs. G.1 and G.2,
our model distribution shown in Fig. G-Z has <T,>/<I > = 0.32. We vary T,
of all components, keeping ratios of T, between all five components constant.
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Fig. 6-3. Temporal growth rate of the upper-hybrid loss-cone instability for
the electron distribution shown in Fig. G-2. Solid contours give Imw > 0,
dotted contours give Im w < 0. The interval between adjacent contours is

-4
4.0 x 1077 Q.
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We find that increasing <T,>/<T,> stabilizes the whistler mode, but
destabilizes the upper-hybrid loss-cone mode as shown in Fig. G-4. The maximum
growth rates of both modes are less than 0.008 Q when <T">/<T1> 2 0.5,

Doubling the <T,>/<T; > to 0.64 shifts the maximum growth rates to

k”clﬂ = 0,9 for the whistier mode, where w/ft = 0.32 + i 0.004, and

kjc/f = 9.25 and k;/k; = 0.056 for the upper-hybrid 1oss-cone mode, where

w/f = 1.16 + i 0.008.

Figure G-5 shows curves of constant temporal growth rates in the
<T">/<IL> versus “%totlnz plane, maximized over the k plane, for the whistler
and the upper-hybrid loss-cone instabilities. “ﬁtot = E “ﬁs is proportional
to the total electron density. In the <T,>/<( > versus u%totlﬂz plane,
the value of T, and m% for each component i¢ varied, such that the ratios
of T“ and of b between all five components remain constant. The maximum
growth rates of both modes are less than 0.004 22, if we require that
<T,>/<T > 2 0.4 and wﬁtot/ﬂ? £ 0.55. Along the growth rate
Vmax/n = 0.004 curves, the convective growth length of the whistler mode varies
from 20 cm to 8 cm, and that of the upper-hybrid loss-cone mode varies from
3.6 cm to 1.3 cm, when “%tot/nz increases from 0.55 to 3.05 and B = 1 tesla.

Figure G-6 shows the boundary between conditions for absolute and
convective whistler instability when the ratios of T" and mg between all five
components remain constant. Since increasing “%tot/nz increases the required
temperature anisotropy <T,>/<I,> for convective instability, increasing the
total electron density has a destabilizing effect.

4. SUMMARY

Our work to date has found two instabilities, the whistler and
upper~-hybrid loss-cone modes, in a plasma with an electron distribution
function similar to that produced by electron-cyclotron-resonance heating. In
the hope of preventing deleterious effects in future experiments, we continue
to study these instabilities, hoth in the uniform-plasma approximation
discussed here and with effects of spatial nonuniformity.
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APPENDIX H

RADIAL TRANSPORT
R. H. Cohen and J. M. Gilmore

We assess here the importance of varjous mechanisms for transport of ions
and ion energy in the solenoid of the proposed MFTF-B Axicell configuration.
The transport mechanisms considered are resonant transport and classical
diffusion, both resulting from charged-particie encounters and ion-neutral
encounters. The principle conclusions are:

o The axicell reduces resonant transport by a factor of order
R'] exp(-A¢bi/T) compared to a configuration with the same geodesic-curvature
profile but without the axicell betwezn the yin-yang cell and the solenoid.
(Here R is the ratio of the minimum field strength on-axis in the axisymmetric
region to the mid-solenoid value.) However, the simplest axicell magnet
designs tend to have large geodesic curvatuyre in the transition region,
producing unacceptably large transport. We anticipate the final design for
MFTF-B will result in a radial loss rate less than the ax:al loss rate.

® The classical charged-particle energy diffusion rate is about a
third of the axial loss rate.

¢ lon-neutral transport is a rather weak (rt 2 1.5 x 1014 cm
effect in the piasma but is much larger in the halo.

35-1)

1. RESONANT TRANSPORT

As of this writing, the magnetic-field design for MFTF-B has not been
finalized. The issue delaying this process, namely the lack of a satisfactory
equilibrium, is closely related to resonant transport, as both the parallel
current and the radial drift per bounce are proportional to a line integral
Jdstd of the geodesic curvature, We have analyzed a preliminary field
design and found that “he solencid ions passing into the transition and
yin-yang cells satisfy the criterion for intrinsically stochastic transport,
thereby implying unacceptably high radial-transport rates. However, a drop in
JdsiB by a factor of order five would cause the transport to change from
stochastic to banana transport and would be accompanied by a precipitous drop
in the diffusion coefficient. Reduction of fdstD by at least such a facter
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is deemed necessary for a good equilibrium. We estimated the banana-diffusion
coefficients for the preliminary design to be two orders of magnitude smaller
than the stochastic diffusion coefficients, implying a radiai lifetime of the
order of the axial lifetime.

The axicell configuration proposed for MFTF-B has a potentially strong
advantage over the A-cell magnetic configuration vis-a-vis resonant transport.
The axicell mirrors and potential hill confine most of the solenoid ions to a
purely axisymmetric region, so that, in a bounce time, only a fraction of
order R~! exp (-A¢pi/T) of the ions experience the quadrupole field, implying
a scaling of the diffusion coefficient by the same factor. The scaling with
A¢pi' the size of the potential hill in the axicell, is only very crudely given
by the exponential factor, as will be explained later.

If we approximate the radial drift per bounce Ar = a cos 2 B as
independent of pitch angle over the range of pitch angles for which particles
pass into the nonaxisymmetric region, then in the stochastic limit (large
electric field, azimuthal drift per bounce A8 > r/a), we can calculate the
scaling with R. The stochastic particle-diffusion coefficient isH’]

B 2
Dy = 25— fdz-:duaf . (H.1)
0 rLSm n

Taking f to be Maxwellian and independent of v /v over the range

(1 =RYVY2 <y v <1, we find by =1 - (1 - R™)1/2 unich is proportional
to R'] for large R. For more moderate electric fields, the diffusion
coefficient depends on the velocity space location of individual resonances,
as well as the collisionality regime (banana/plateau); the scaling remains
0{1/R), although a precise general scaling cannot be written.

Calculation of resonant transport in the axicell configuration is simpler
than in previous configurations, because solenoid ions which pass into the non-
symetric region all have v"/v = 1 at the midplane of the solenoid, and all
reflect off of the potential hill in the yin-yang cell. Thus, the general
expression for the change of flux coordinate ¢ in a bounce,

S
t
- o mMC 2 .
da =2 e—j; ds (v, + vé/av ) ; (H.2)
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where {0 is the geodesic curvature, s = 0 dengtes the solenoid midplane, and
S, denotes the turning point; becomes

Zm V2

vy (9 12
jO' dasis , {v”/vs) > {1 - 1/R) s T Vg > 49

e pi
sy = (R.3)
0 elsewhere
where now s denotes a point part way up the side of the potential hill in the
yin-yang cell. In Eq. H.3 and henceforth, a subscript t denotes evaluation of
a quantity in the transition region, whereas a subscript s denotes a solenoid
value.

Equations H.2 and H.3 are usually evaluated along a field line, a
procedure that is only accurate as long as the azimuthal drift ABe during the
time an jon spends in the transition and yim-yang regions is negligitle. Im
the opposite limit ABe >> 1, Aa should become exponentially small, in
4o = -48,. Following in the spirit of Ref. H-3, we assume Eq. H.2
is valid for wgy Le/v“ < 1, where wg is the azimuthal drift frequency, and take

Aa=0 thLe/v" >1 . (H.4)

Here Le is an effective length for the transition region; a plot of vs s for
the preliminary MFTF-B design irdicates that most of the contribution to fds
comes from a narrow spike about 2 m in length in the transition region; hence
we take L, = 2 m in the numerical calculations described below.

The integra) im EqQ. H.3 is available as output in the TEBASCQ
equilibrium code; hence we can estimave Aa without numerically calculating
drift orbits. (Furthermore, use of Eqs. H.3 and H.4 with wg = Gpp and
approximating the bounce time by t" = L/v” when L is the distance between
yin-yang centers, allows the integrals in the resonant-banana, resonant-plateau
and stochastic Jiffusion coefficients""’"'2 to be evaluated amalytically.
These results will be described in a separate communication.)

The criterionﬂ-q for stochastic transport can be approximately w»ritten
as K = 2 aAB/r > 1; here, AB is the azimuthal drift in a bounce. Approximating
AB by ExB drift alone, this becomes

Ti T3
E >-e»—r-m, (H.s)
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From Eq. H.3 and TEBASCO output for the vacuum field of case £EGZ24 (generated
by the EFF] code), we 7ind Jdsl0 = 24 ¢m at + = 21 cm, implying that with
energy of 45 keV in the transition region {15 keV in the central cell),
a/r = 0.47 for ions. Then, for the reference MFTF-B parameters of
Table 2.1-1 (MARS mode), we find stochasticity for E > 70 V/em. For E ~ Te/er,
the design studied satisfies H.5 by about a factor of five. Integration of
Eq. H.1 using Eqs. H.3 and H.4 gives
2
Dy = 4—1[1%—2—5 (g)”zexp(-b%iﬁ) 6ixgexy)

where Xg = (eEr/T)2 (2Le p]ﬂr)z, X = A¢pi/T. and

x% tx +2 40 (x] +1) x| - Xq > x3/R

(x1 - xo) (xl-z) +24+ ¢ (x] -x+1)-g+h, 0<% - X7 < x /R

EXp(x]-xo)[2+0+h]—g x°>x~| .

7« (potential difference between solenoid and

Here, x; = x, (I-R'1)'], ¢
transition region),
9=EXP(x]’x2)[("2'xo) (x2-2)+2+¢(x2—x0+1)] ’

and h = R™V (£ + 2x, + 2). For MFTF-B paraneters this gives
Dg = 5.5 x 10'a en? 51 and a corresponding lifetime of order 10'2 s. This
time is shorter than the classical time to scatter into the loss cone, 144 1nR.
Thus the transport would act to produce a loss-core distribution.

The above estimates for the diffusion rate can be considered as an upper
bound. Additional effects could reduce the diffusion rate, at least mildly,
in the design studied and perhaps drastically in the final design.

For example, the above estimate is obtained by neglecting the azimuthal
drift in the transition region until it is large enough to rotate particles by
order ©/2 in a single transit through the spike in the geodesic curvature.
However, before that limit is reached, the azimuthal drift wil) be Jarge
enough to cause particles to drift by order w/2 between their pre- and
post-bounce passages through the spike in 0. The radial displacements
accompanying these successive pa=.,es no longer add in phase, as previously
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assumed. At least, the successive phases will be effectively random, reducing
the (stochastic) transport by about a factor o: two. Also, for a (perhaps
uninteresting) range of parameters, the orderly variation of the phase change
with radius can lead, as in Ref. H-7, to regions of stochasticity separated by
annular nonstochastic bands. The radial lifetime would then be approximately
determined by the time to diffuse (under the influence of collisions) across
the nonstochastic bands.

A more important effect is that reduction of Sdsi) by a factor of
aorder five causes the transport to become resonant rather than stochastic;
such a reduction is required for production of a satisfactory equilibrium.
Because the collisionality in MFTF-B is such that resonant transport is in the
banana regime, the transition to nonstochastic dynamics can produce an
order-of-magnitudz change of two in the transport rate, as the following
example shows. The precise reduction in fdsil required is uncertain, as
Eq. H.3 is only an estimate of the stochasticity criterion: the stochasticity
parameter K is actually K = 2adAB/ar and so depends on second derivatives
of the potential and magnetic field; and the stochasticity boundary for an
arbitrary dynamical map is only appreximately K = 1. (It is clear, however,
that particles with a/r ~ 1/2, as in the studied design, are stochastic). The
stochasticity boundary will be studied in more detail numerically.

To illustrate the difference between stochastic and nonstochastic
diffusion rates, we evaluate the nonstochastic resonant transport for the
preliminary design. In Fig. H-1, we plot numerical values for the resonant
diffusion coefficients Do, D], a~d D2 and the lifetime estimate Ty, S defined
by Eas. ".1, H,2, and H.9 of Ref. H-4. The diffusion coefficients are obtained
by numerical integration of the smaller of the banana ard plateau integrands,
as described in Ref, H-5. The acceleration and change in wg that is due to
the axial variation of the ambipolar potential is neglected. We use
Egs. H.3 and H.4, with both VB and ExB contributions to wg- For all data
shown, the collisionality regime is banana. The electric fields Eq and E; in
Fig. H-1 correspond to Te/r and-¢clr. respectively. MWe see that, except for
the narrow spike around E = 200 V/cm, the lifetime 1, is always greater than
about 1 s, corresponding to nt > 5 X 1013 cp3 s'], or about the same
order as the axial lifetime. Changing Jfds)) by a factor a wil) change the

banana lifetime by about u'llz. Note that the marked difference beiween
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Fig. H-1. Resonant diffusion coefficients (DO’ 04, and Dz) and lifetime
estimate {1,) for MFTF-B preliminary design, all shown as a function of
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stochastic and resonant lifetimes is due to the low collisionality in MFIF-B.
The resonant-plateau and stochastic lifetimes are comparable.

The route being pursued to minimize Jds0 is to add extra coils, which
have the effect of producing two spikes of oppositely signed IJ in the
transition region. One can, in fact, thus achieve Jdsil0 = 0 along a field
line. However, JSds vil eyaluated along a particie orbit will in general not
vanish, because of both the azimuthal drift 88, in a single pass through
the transition region and the variation in velocity v from the axial variation
of the electrostatic potential. Defining l] to be the integral of 10 over
one of the spikes, and A¢ to be the axial change in potential over the
region of the spikes, the effective noncancellation of JfdsiD because of the
azimuthal drift and the axial potential variation are, respectively, of order
ZABtr I] and (Ad/2T) Il‘ To ensure nonstochastic dynamics, we must keep these
guantities below about 5 cm x (r/21 cm)2 (i.e., one~fifth of the value of
Jdsig in the preliminary design).

The effect of the potential hill in the axicell on resonant transport
can be appreciably larger or smaller than exp(-Aspi/T), depending on the
electric field. Because of the large mirror ratio, the principle effect of
the potential is to cut off the resonance sum at a resonance number k = k¢
[azimuthal drift per bounce = (2k + 1) n/2] such that, for k > Ko all resonant
particles are reflected by either the magnetic field or by the potential.
Neglecting W8 drifts, one has 2k, + 1 = (E/E,)(T/Mm.)uz, when E, is the
electric field for which a thermal particle drifts n/2 per bounce. The
resgnance sum is also cut off when the azimuthal drift in the transition region
becomes too large {at a k that is independent of E). Thus, for large enough E,
the cutoff due to Ad becomes irrelevant, while for E/E, < (A¢pi/T)I/Z, resonant
transport is effectively eliminated.

for the R-! scaling and Eq. H.3 to apply, the radial transport of ions
magnetically trapped in the solenoid-plus-axicell region must be smalil compared
to that of ions passing to the yin-yang cell. This in turn requires that
Jdsi) in the solenoid-plus-axicell region be small compared to #(R) iimes
Jdsi0 in the transition-plus-anchor region. Here, h{R) equals R™% in the
banana regime and equals R"”2 in the plateau and stochastic regimes. The
inequality for banana transport, which is the more severe one, is satisfied
for the design studied.
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2. CLASSICAL CHARGED-PARTICLE TRANSPORT

The classical ion-heat flux Q is predominately due to jon-ion scattering,
q=- (2nT/mLﬂE Tci) VTi, where Tei is the ion-ion collision time. Taking
n/n0 = T/T0 =1 - rZ/rz, where ng and TO denote on~axis values and r. is the
central-cell plasma radius, and defining ;he radial energy lifetime Ta gy the
relation nOTol'te = =¥ * Q, we find L tc]/4 3> where p; = 2Ti/miﬂi'

For the MFTF-B parameters of Table H-3, this gives T = 25 7 i Th1s is to be
compared to the lifetime for axial-energy loss, Tea © (1 + 3 /T )'

vihere T is the Pastukhov {particle) lifetime; for MFTF-B, one has

Ta“‘s‘[ci-
For MFTF-8 parameters, the classical ion-particle flux is driven,

approximately equally by ion-electron and ion-ion {0(p /r4) terms in flux]
scattering; the lifetime is of order 10 Ty and is, thus, of little

concern.

3. ION-NEUTRAL TRANSPORT

The flux of particles arising from ion-neutral collisions, Tqs can be
written as:
- gn , ne 3¢ ndl
“Tin = %0 Gr * T ar)"D]nTa ;

Q
where 0y = p? vl + v /ﬂ ) . and we estimate Dy, = O, . We note
2,2 _ FC — = =
Vg <<l and  v=npTog, Vi s Vet T Vion 0 B4 = 2 Ok

ii
We assume that the density of molecular deuterivm neutrals at the plasma edge
{r = 40 cm) is n, = 2 x 10)0 cm'3. This implies a Franck-Condon neutral
H-8 an attenuation of

density, nﬁc, of 2.4 x107 cm'3 at r = 20 cm, assuming
Adopting

the Franck-Condons through the halo nf two orders of magnitude.
arabolic models for the radial density, temperature, and potential profiles
gives a flux Iy, = 4.6 x 10'3 cm'z-s'], corresponding to

= 1.45 x 10]4 cm 3°s, the f)ux further in is smaller yet. On the other

nt.
in

hand, in the halo, I, = 1.4 = 10 cm 2'5 -1 corresponding to
Tn=7x1&2CW3%.



4. CONCLUSIONS

Stochastic transport would seriously 1imit the operation of the
preliminary design studied. However, reduction of the line-averaged geodesic
curvature by a factor of about five should be sufficient to change the
transport regime to resonant banana; the resultant radial nt would be about
1014 cm’3°s, which is of the same order as the axial nt.*

Ion-neutral particle transport and ion-ion energy transport have ntv
values of the order of, but smaller than, the corresponding axial nt values;
thus these processes will quantitatively affect profile shapes but not
qualitatively alter the machine performance.

*Note added in proof: The constraints on zzimuthal drift in the transition
region mentioned at the top of page 213 have proved to be serious. For the
current {as of 7/30/82) design it appears necessary to externally control the
radial potential profile in the transition region in order to avoid
stochastic transport for the design plasma parameters.
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APPENDIX T
BARRIER POTENTIAL MODEL
L. D. Pearistein and W. M. Nevins

We present here a useful model for calculating the variation in the
electron density, ion density, and ambipolar potential along magnetic-field
1ines in the thermal-barrier cell of a tandem mirror. We derive potential
profiles in the barrier, sloshing-ion A-cell and use the analytic distribution
function suggested by R. H. Cohenl'l for the thermal ions. This distribution,
being continuous across the separatrix, is less likely to lead to potential
sheaths. For the thermal electrons, we use an analytic distribution that is
again continuous across the separatrix. The general configuration and
notation is depicted in Fig. I-1. In what follows, we only consider the
region between By and be-

We first consider the thermal electrons in the well region (between 8,
and B.) whose phase space is carved up as shown in Fig. I-2 (note
¢ = leld).

To model the hot trapped electrons and the warm passing zlectrons, we
approximate the electron distribution as follows:

f=—exp(-c-4) , €>-¢; ;3 (L.1)

2l

and

—

f= exp (-et -¢OT) » E<-dg 3 (1.2)

al

where
{1.3)

¢ = Twarm/Thot .

Thus, for ease of analysis, we assume that the temperatures of passing
and weakly trapped electrons are the same. Also, for the same reason, we
assume the more deeply trapped electrons and the more deeply trapped Yushmanov
electrons have the same temperature.
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Central

Magnitude
T
|
l
|
/

Mod-B

\k//¢AMB

-—

Distance

Magnetic-field strength (solid 1ine) -~d ambipolar potential
{dashed line) for a typical thermal-barrier cell .- a tandem mirror.

PamB

Passing

E:pBg

Trapped (1)

-t

/Q
[
-¢c

Thermal-electron phase space.

Electrons in the regions labeled

Trapped (1) and Trapped {I1) are confined by the potential peak about b+
Electrons in the shaded regicn (Yushmanov electrons) are confined by a
combination of magnetic forces and the ambipolar electric field.



The thermal electron density is then

n=_1f
P &

PamB g+
de exp (-€ -tpo) f —duB
“1’0 0

VETIB S
2 e .12 172
= /e [(d’ 4’0) - exp (¢AMB - d’o) (¢ - ¢AMB) ]

+erfc (0 - ¢4y) - exp (4pyp - ¢g) &FFC (¢ - o) . (1.4)

and
1 o 0 a8
nt = — de exp ["T(E + @0)] f —=—
vT Yed 0 vYe-" B+
(o - ¢,)1/2
=22 0 vl ST e- e (1.5)
/z T /e o)

where we have defined

u 2
ert (uz) =—2-exp (uz)f dte v
T 1]

o 2
oFfe (1) = -2 exp (uf) f dte © (1.6)
YT u

Next consider the phase space for the thermal ions (see Fig. I-3).
The dashed line is the vy © 0 line for positive potentials and the wavy

Jine is the same for negative potentials. Following R. H. cohenl'] we write
the distribution for the passing jons as
f =e¢€ 1.7
p (1.7
and for the trapped ions as
€ - auBM
fT = exp -TT) , (1.8)
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Fig. 1-3. Thermal-ion phase space.
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which is continuous on the separatrix (e = uBM}. The density of trapped
particles increases continuously as a gees from 1 to 3« and then from
- to 0. The Vimit o = 1 corresponds to zero trapped ions, while @ = ¢
corresponds to a completely filled barrier.

We now compute the jon densities far the passiag jons. First, for
negative potentials we have

4 /R . +YR/R,

wedf" o f deenp () e-y -2, (L)
P /&0 yR
where here, and in what follows, we have the following definitionc:
Y= w o,
R = BMIB s
_ R
t= 4 (72) .
Rc
¢p= 4 'Rc—_'—r .
X = ;—fL, . (1.10)
Next writing e -y - ¢ = xz, we have
8,/R [y(RAR-1) + o - 632
n; = }—2_ dy exp {-y) dx exp (-xz - ¢} .
m -0 [y(R-1) - 9112
and integrating by parts on y, we obtain
n; = erfc (-¢) - erfc (¢c ) e~
_n\n2 -~
- (B—i—l) [erfc (-¥) - e P EFHC (o - w)]
/2 ¢ /R
R e
T (1 -kﬁ) f dat et 1 . (1.11)
T (] it *R—:—R'c- (@c - ¢)
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which can be written

-9,
n, = &Fc (-¢) - e erfc (4 - 0)

+ 1 - ;;s) 3{% &7 [gig (o - 9] - ¢ P arrE (R=r) (9 - w)f :
(I.12)

Next for positive potentials, we have
yR/RC*¢C

R-1}

s f‘f’" " -1/2
n =— d de e €-¢-
: ﬁ[ [ yj;+¢ ( y)

¢ /R ¢ +yR/R

P c ¢ - _

+ dy deec(e-at-y) ]”2]. (1.13)
$/R-T ¥R

Consequently, for the passing ions we have

R /2 (-4 -4
n = ((1-R—°) ze CETC [ (0 - #9) e "Eﬁf[‘;—:-,}—c-wp-w}}

172 -$
Ff(d:c—ﬂ-(-rg—r) e TErT (9, - ¥) $>0
+

) 172 -¢
erfc(-¢) - e Ce?c’(%-@) - (ﬂi—l) [e?"c (-¢) - e per?c(¢p-w):0¢ < 0.
(1.14)
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Next turn to the trapped plasma. Consider ¢ > 0, then we have

$ /R R
ny =L P dy exp (- ayR/a - l)fy deexp (efa-1) (e - ¢ - _y)'”z
LA Y s
yR/Rc+¢C

.I (-]
* 7171; R dy exp(- oR/a - 1) de exp{efa - 1) (¢ - ¢ - ”1/2_

p y+

(1.15)

Again transforming the square root away, we cbtain

s _ 20 [P R -1 [y(R-1)-4] X
n.,. = d eXD(- + f dx ex
tr ~ ¥ [ borr1 Ya-T E‘l‘#) o P(ETT)
Nt -1, e YRR Throc-12 ( 2 )
yexp(—y——_—-— - f % exp |[—]] -
@p/R o -] a -1 0 a -1
(I.16)
Next, integrating by parts, we find that the integrated parts cancel,
leaving
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+ _a-1 | ¢p R-1
Ttr " aR - 1 ‘e ( R ) “’p - ¥
Lo @ YRLL
- c
+— dy expl- y >—=—+ 1- —-)
A oot Bt ety -
R ( @~ ] )]/2 1 exp [y(RIRc - ]) + ¢C - ¢]' .
R, \&R_ - o - ¢ 17 a-1T1 {
b+ w=)
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Finally, combining terms and going through the same algebra for ¢ < 0, we

obtain
Cfa-10\ ("% 172 (a-1 /2 R -Tg-
Nep = (——uﬂ — ]) :e (1-2./R) (—-——-‘ﬂc — ]) erfc [—-——_ T R R (¢, - qﬂ]
/2 -¢
R -
(_ﬁ_]) Pert (o, - ¥) ¢$>0
+
1/2 ¢ 1/2
R -1 P = a-1 1/2
(—R-) [er?c (-¥) - e " erfc (¢p - 41)] +2 (--—-“ ) ){ $<0
(1.17)
where the Dawson integral is defined by
2 X 2
D(x) = e”* f gtet . (1.18)
0
In terms of Z functions, we have
2
—ZD(x) =je™ . —]Z(X) s
’n n
2 i,
erfc(x™) = - — Z(ix) , 1.19
) - ) (1.19)

which defines the analytic continuation [e.g., consider 2 (a - ‘l/tr)]/2 D(x]/z)

for a <0, note 0 < a <1 is forbidden],
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In the remainder of this paper we show several representative solutions
for the barrier potential and thermal-ion density profile. The sloshing-ion
distribution was chosen to satisfy

rsiosn = (FAe) o [ (8- ) /] o [ (8- 0)° [t

where R* is chosen to force ng ¢, to peak at R, and A is fixed by the relative
sloshing-ion density at the midplane (R;). For the magnetically trapped ECRH
electrons, we choose
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- 1- 1R
"ecrr = Mecru(®) (T‘Z‘Eng;) s (1.21)

where "ECRH(O) is determined by forcing charge neutrality together with one
further condition needed for closure. A convenient choice is the density
ratio of thermal electrons to ECRH electrons at the midplane.

A comparison of the two figures shows the following parameters in common:

"stosu(® o
n * 2
SLOSH

"he® o,

“ECRH

T
e,warm .

T-l—-- = 1 (temperature ratio of thermal
i electrons to thermal jons) ,

T

0. 102,

e,hot

ec -

L=
BsLosHIR)

nth.i(o)/"cc = 0.085 ,

Note that since the separatrix for the thermal electrons is energy dependent

v = 3/2 (R. H., Cohen's notation, Ref. I-1). To mock up a more realistic

v = 1/2, we raise the Te.hot to get a higher plug potential (¢t)' In Fig. I-4,
we have various profiles for a = 1.5, which results in a g(Ry) = 1.8 and
“th.i(o)lncc = 0.085. 1In Fig. 1-5, we have the same profiles for a = 3, which

results in a g(Ry) = 6.5 and ny, ;(0)/n. = 2.4. We use Logan's
definition"~“ of g, namely g{R) = M 1.(R)/npi(R).
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Fig. 1-4.

Magnitude

Profiles of Mod-B, ambipolar potential ¢; thermal-ion
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Mep.ib and sloshing-ion density N5 0SH for a = 1.5.

Fig. 1-5.
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density
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The same profiles as in Fig. I-4 but with a = 3.
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Note that in this case the barrier potential is roughly symmetric about
jts minimum. That is, there is no resemblance of a sheath. Using the
analytic models for continuous distrbution across separatrices has removed the
sheath, It should be emphasized that these are approximate analytic models
for equilibrium distribution. Except for extreme cases [too few trapped
thermal ions (x < 1.1) or too much necking off (ngp. o0}/ ngepy < 0.025)], they
give rise to continuous potentials and densities and are thus quite useful for
obtaining as profiles of n and ¢ for use in composite calculations. lon
microstability is one such case. Using numerical profiles from Fokker-Planck
codes would increase computer times by at least an order of magnitude
{probably two orders). This i{s of course the trade off, the potentially
inaccurate profiles for computer speed and reliability. In Fig. I-6 we plot
various equilibrium quantities as a function of 9(Ry).
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