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Abstract

Traditional analysis of oil and gas production systems treats individual nodes one at a
time. This only calculates a feasible solution which is not necessarily optimal.
Multivariate optimization is able to determine the most profitable configuration,
including ali variables simultaneously. The optimization can also find the optimal
recovery over a period of time, rather than just at a single instant as in traditional
methods..This report describes the development of multivariate optimization for
situations in which the decision variables may change as a function of time. For
example, instead of estimating a tubing size which is optimal over the life of the project,
this approach determines a series of optimal tubing sizes which may change from year to
year. Examples show that under an optimal strategy, tubing size can be changed only
infrequently while still increasing profitability of a project. The methods used in this
work considered the special requirements of objectives which are not smooth functions
of their decision variables. The physical problems considered included artificial lift
production systems.
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1. Introduction

1.1 Production Optimization

When a new well is drilled, the production engineer is given the task of designing
the "best" completion for the weil. Usually the engineer will use nodal analysis to find
the "best" size of tubing, the "best" operating pressure for the production separator, etc.
(decision variables) Any type of optimization is limited to varying the decision variables
on a trial and error basis to find a suitable combination of the variables.

Nodal analysis is not an optimization technique, lt is a method to find the
stabilized flow rate for a given set of conditions (decision variables). Further, nodal
analysis does not have a time dimension. The solution is for an instant in time.

There are numerical algorithms that are designed to find the minimum or
maximum of nonlinear functions. These algorithms can be used to optimize production
from a single completion. To accomplish the optimization an objective function has to
be chosen along with the decision variables -- they are the variables that the engineer
chooses to optimize. These optimization algorithms simultaneously vary ali the decision
variables, and proceed to find the extreme point without the use of a trial and error
procedure.

Carroll [1990] was one of the first to apply nonlinear optimization algorithms to
production systems. Others have used linear programming, integer programming,
dynamic programming and other techniques to optimization problems in petroleum
engineering. However, Carroll [1990] focused on optimization of well production. The
reader is referred to the work of Carroll [1990] for a history of optimization studies in
petroleum engineering.

In this study a model of the reservoir is coupled to a model of the tubing, and a
model of a two stage separator. These models are then coupled with the nonlinear
optimization algorithms and the objective function. The goal of the optimization study
was to find the optimum values of the decision variables that gave the maximum value of
the objective function -- in this case the present value of the hydrocarbon production.
The production model included a time dimension; the oil and gas rates are given as a
function of time.

The well performance was modeled using a tank model for the reservoir, and
several multiphase correlations for the flow through the tubing string. The sequence of
production separators was modeled using a two phase flash process and an equation of
state. The well performance model was used to generate a production profile for oil and
gas from the reservoir. This production profile was used to generate the present value for



.o

the production. The present value of the oil and gas produced was used as the objective
function for the nonlinear optimization algorithms.

Chapter 2 of this report describes the reservoir model used, Chapter 3 the vertical
multiphase flow correlations used and Chapter 4 the separator model developed. Chapter
5 describes the nonlinear optimization algorithms used and Chapter 6 the results of the
study.

Carroll [1990] studied the optimization of decision variables that were fixed with
time. This particular study concentrates on the optimization of decision variables that
change with time, i.e., variables that are optimized for a single or group of time steps.
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2 Reservoir Model

2.1 Introduction

The behavior of the petroleum reservoir and the inflow performance relationship
was simulated by using a model developed by Borthne [1986] at the Norwegian Institute
of Technology. This chapter is a summary of the detailed analysis that appears in
Borthne's thesis. Readers are referred to his thesis and that of Can'oll [1990] for further
details.

Developed for use in production optimization of a recently discovered reservoir,
the model requires only very basic field parameters, and is able to compute a production
forecast very rapidly.

Based on a material balance equation, which is coupled with a pseudopressure
based inflow relationship, the model assumes that the reservoir is a "tank." The
production from the reservoir is constrained by a minimum flowing wellhead pressure,
and both, maximum and minimum flow rates of the preferred phase (oil).

A series of simplifying assumptions are made in deriving the model. They are:

• The reservoir is homogenous, isotropic, horizontal, cylindrical, and of
uniform thickness.

° The reservoir is a single cell with no-flow boundaries.

• The reservoir is saturated with a single hydrocarbon phase, and an immobile
connate water phase.

• The drive mechanism for the oil reservoir is solution-drive.

• During a time step, production occurs under pseudosteady state conditions, at
a constant rate.

• Capillary pressure, gravity effects, and coning forces are negligible, and are
therefore ignored.

• Ali wells are assumed to be equivalent, and are assumed to produce at the
same average reservoir conditions, and the same inflow performance
relationships.



2.2 Reservoir Material Balance

The mass conservation equation for flow in a porous medium can be written as:

& +qp = - v (2.1)

Where p = pressure

k = permeability
P - density
g = viscosity

'Cb = reservoir bulk volume
qb = mass production rate from reservoir
mb - mass of oil and gas in reservoir
t = time

If the reservoir is considered to be a single cell, then there is no mass flux across
the boundaries and the right hand side of Equation 2.1 is zero. Discretizing the equation
gives the following:

Amp + _pAt = 0 (2.2)

In order to use a realistic pressure behavior in the production system, the black oil
model assumptions were assumed. The black oil model for phase behavior assumes that
the reservoir oil will produce both oil and gas at the surface. Similarly, the reservoir gas
is assumed to produce gas, as well as oil at the surface. The black oil PVT formulation
is shown schematically below.

_tock Tank Oil ) 6ock Tank Gas )

(Reservoir Oil 3 (Reservoir Gas )

Figure 2.1 - PVT Formulation



The following definitions are used in the derivation of the material balance
equations.

vo"
Bo = ,--Tg (2.3)V:o

Bs = VR (2.4)

S

Rs Vg°

= _ (2.5)

r, = V"_ (2.6)

where Bo = formation volume factor for oil

Bs = formation volume factor for gas
Rs = solution gas / oil ratio in reservoir oil
rs = solution oil / gas ratio in reservoir gas

v_ - volume of reservoir oil

v_ = volume of reservoir gas
v s = stock tank oil volume from flash separation of reservoir oil

v_s = stock tank oil volume from flash separation of reservoir gas

v_s = stock tank gas volume from flash separation of reservoir gas

V_s = stock tank gas volume from flash separation of reservoir oil

If ali the oil and gas in the reservoir is separated at stock tank conditions (STC),
the mass of oil will be mo, and the mass of gas ms. As ali this oil and gas originates from
the reservoir, the total oil and gas mass may be expressed as follows:

mo = moo + mos (2.7)

and m s = mss + mso (2.8)

where ms = total mass of gas at stock tank conditions
mo = total mass of oil at stock tank conditions

moo = mass of oil at STC from separation of reservoir oil

mos = mass of oil at STC from separation of reservoir gas

mss = mass of gas at STC from separation of reservoir gas

mso = mass of gas at STC from separation of reservoir oil



These masses can be expressed in terms of reservoir variables and fluid
properties.

moo = _Sop------_s_Vb (2.9)
Bo

CSsr,pSs
mos = Vb (2.10)

Bs

ms, - Vb (2.1 1)
Bs

0SoR,pSso
mso = Vb (2.12)

Bo

where S, = saturation of the appropriate phase
ps = density of the appropriate phase at STC

= porosity

The oil production mass flux (mass per unit time) can be defined as follows.

qo = qoo+ qo, (2.13)

where _o = total mass flux of oil a_the surface

_oo = mass flux of oil originating from reservoir oil

qos = mass flux of oil originating from solution in reservoir gas

In terms of volumetric flow rates and solubility,

(ioo= qoopSoo (2.14)

qos = qssr, pSos (2.15)

where %0 = oil production rate from the reservoir oil, at standard
conditions

qss = gas production rate from the reservoir gas, at standard
conditions.

Equivalent equations can be written for the gas production rates. The total mass
flux equation for gas production is:

qs = qss + qso (2.16)



where _o = total mass flux of gas at the surface

_tss = mass flux of gas originating from reservoir gas

qso = mass flux of gas originating from solution in reservoir oil.

Substituting the appropriate equations and the PVT formulations into Equation
2.2, four mass balance equations can be derived.

al,Sop'.) ,L, _ +qoop_At=0 (2.17)

A(¢Ssr'P°Ss)+_Bs q,,r,"pSosat=0 (2.18)

A(d_S'pSss)+ q"up_sAt = 0Bs (2.19)

A _SsR'pSs +qo,,R, psoAt =0 (2.20)
B.

where the double quote C) indicates that the variable has been divided by the
reservoir bulk volume. For example, q" = q / Vb.

Summing the two oil equations (2.17 and 2.18) and rearranging we obtain the
following expression for oil production at the surface.

Ssr' P-_ + q: At+ qi, At1",pss =
A, 4 B, pSjj _ 0 (2.21)

Similarly, rearranging Equations 2.19 and 2.20, we obtain the following
expression for gas production at the surface.

AC[(BS-_s8 + SoR, P_o_] + q,,uAt + q,,ooAtRP:o =Bo 0 (2.22)

In Equations 2.21 and 2.22 the oil and gas rates appear. Using Darcy's law the oil
and gas rates can be written as:

q"uBs = C_k_..._._ (2.23)
las



q_oBo= C2 k.._._._ (2.24)
lao

where C, and C2 are constants. The two constants are equal, if the capillary
pressure is zero. Taking the gas - oil ratio (dividing Equation 2.23 by 2.24) and
multiplying the result by At gives the following equation.

AG_ _ k_toBo (2.25)
AN"p k_sB s

where AG"p=q_,At which is the incremental gas produced during the
last time step from reservoir gas, per unit volume of
the reservoir.

and AN"p=q"ooAt which is the incremental oil produced during the
last time step from reservoir oil, per unit volume of
the reservoir.

Substituting Equation 2.25 into Equations 2.21 and 2.22 gives the following,

[ (BS_° S'r'pS°')l ANVIl+r, =
,, + , + 0 (2.26)

 [0[t+,o,.0So]]+ 0Sol+ R, = 0 (2.27)
Bo pS,, Lk,o,,B, psi

For a given time step at, Equations 2.26 and 2.27 can be solved using trial and
error procedure to find the incremental oil produced during the time step.

2.3 Solution Procedure

1. Specify the oil rate qo and time step length At.

2. Calculate incremental total oil production aN"p.

3. Assume average reservoir pressure, and calculate the pressure dependent
properties - formation volume factors, solution gas ratios, viscosities and
densities.

4. Calculate oil saturation from Equation 2.26. The term beginning with in
Equation 2.26 is calculated using the properties calculated at the previous time
step.



5. Calculate the gas saturation.

6. Calculate the relative permeability ratio as a function of gas saturation from the
input table.

7. Calculate incremental oil and gas production.

8. Calculate the material balance error.

9. If the material balance is not satisfied then go to step 3 and try a new estimate for
the average pressure.

2.4 Inflow Performance Relationship

A inflow performance relationships is used to calculate the flowing bottomhole
pressure (FBHP) for the weil. The calculations are based on equations which relate the
a,,erage reservoir pressure, and fluid properties with the FBHP.

Darcy's law can be written as

2hkk oqoo= (2.28)
_oBo &

separatingandintegratingEquation2.28gives:

27rkh P_,_k
= l (2.29)

qoo ln(r,/rw) _._toU°

where k = absolute permeability
k_o = relative permeability to oil
re = radius of the reservoir
rw = radius of the well ,

h = height of the reservoir
po = pressure at the external boundary of the reservoir

Pwf = flowing bottomhole pressure
qoo = oil production rate from reservoir oil

Including the skin factor and assuming pseudosteady state flow conditions,
Equation 2.28 can be written in terms of pseudopressure (m(p) ) as:

2rckh lm(Pr)- m(p_)] (2.30)
qoo = ln(ro/rw) -0.75 + S + Dqoo

where S = skin

9



D = rate dependent skin

and m(p) = _--_-dp (2.31)
Jo_toBo

By redefining the pseudopressure, Equation 2.30 can be expressed in terms of the
oil production measured at the surface qo:

2rckh [m(pr)- m(p_)] (2.32)
q° = ln(r_/rw)-0.75+S +Dqo

where m(p) = _( k_o k_r, _,
o _-_o + _---_l _ p (2.33)JL

A similar equation can be written for gas production.

2nkh r [ _ [ -.1
qs (2.34)

ln(ro/rw)-0.75+S+Dq,tm_pr)- m_p_f)j

= _+_ p (2.35)
where m(p) g_B_ goB°

The derivation above relates the flow equations m the pseudopressure functions.
The pseudopressure is a function of both pressure and saturations. Assuming a constant
producing gas - oil ratio, we can derive a relationship between saturation and pressure.
During the discussion of the reservoir material balance equations, the producing gas - oil
ratio Rp was approximated by:

Rp = AGp (2.36)
ANp

Using the material balance equations to substitute for aNp and aGp, Equation
2.36 can be written as

AN"oo(M+ R Ps'°'_p:,)

Rp = ( PS M,_ (2.37)aN"ool+r,p )

where M is the mobility ratio. Solving for M gives

10



Rp - R, P_o
M = PSsg (2.38)

1- Rpr. PS°--_-_

The mobility ratio is calculated from the material balance equations. For the
mobility ratio, we can calculate the relative permeability ratio. As the permeability ratio
is a function of saturation, we can calculate the phase saturation as a function of pressure
for each time step. With the phase saturation, we can calculate the relative permeability
of each phase, and use it in the calculation of the pseudopressure function.

The deliverability Equation (2.31), in terms of pseudopressure can be written as

PC( k,, k_r, _. ln(r,/r,)-0.75-S+Dqo (2.39)
p.,'_,-_+-_-'_JaP = qo 2_kh

In this equation, the right hand side is a constant during a time step. The above
equation is solved to find the FBHP (p_), which gives the value for the integral, equal to

the value of the constant on the right hand side of the equation.

11



3 Tubing Model

3.1 Introduction

The flow of fluids from the reservoir to the wellhead through the completion
string is modeled using the vertical multiphase flow correlations. For a more complete
analysis of multiphase vertical flow the readers are referred to Brown [1977], Govier and
Aziz [1972] and to Beggs [1992].

The law of conservation of energy is used as the theoretical basis for most flow
correlations. For a steady state system, the energy balance equation may be written as

Ul + pl vl + mv_ + mgZl + q' + W_= U2 + p2V2+ rnv_ -_mgZ2 (3.1)
2g c gc 2g, g_

where U --- internal energy
pV = energy of expansion or compression
q' = heat energy added to the system
Ws = work done by the fluid
my 2 = kinetic energy

mgZ = potential energy

Equation 3.1 can be modified to a pressure gradient form by using
thermodynamic relations. For a fluid flowing in a pipe, the law of conservation of
energy can be written as

pvdv (dp)
dp = g P sin 0 + _ + (3.2)
dL g_ g_d/_, _ /

where ,o = density of the fluid
0 = the angle of inclination from the horizontal
g = gravitational acceleration

gc = gravitational constant

v = fluid velocity
L = length of the pipe

(--_) is the pressure loss due to friction/

As Equation 3.2 indicates, the total piessure drop can be thought of as composed
of three distinct components - hydrostatic component, kinetic energy component, and a
component due to friction. Symbolically this can be expressed as

12



ap @
+(--_)_c,io. (3.3)

3.2 Two Phase Flow

When considering multiphase flow, the introduction of another phase into the
flow steam complicates the analysis of the pressure gradient equation. The pressure
gradient is changed by the presence of different phases, which in turn change the fluid
properties such as densities, viscosities, surface tensions and flow velocities. To take into
account these changes a set of variables are defined. A brief description of these
variables follow.

Liquid Holdup HL , defined as the fraction of the pipe element that is occupied by
liquid

HL = Volume of Liquid in a Pipe Element (3.4)
Volume of the Pipe Element

The gas holdup is defined as

H a - 1- H L (3.5)

No-Slip Liquid Holdup/_, is defined as the ratio of the volume of the liquid in a
pipe element that would exist if the gaz and liquid traveled at the same velocity (no
slippage) divided by the volume of the pipe element, lt can be calculated from the gas
and liquid velocities as

)tL = qL (3.6)
qr + qG

Similarly, the no slip gas holdup factor is defined as

)to = 1- At. , (3.7)

Density p,, , is used in calculating the kinetic and potential energy changes.

Several different equations have been used to calculate the appropriate fluid density. The
most commonly used equation is

p,,, = PlHt. + paHa (3.8)

in this case p, is defined to be

13



PL = P,,f_ + P,,,f_ (3.9)

where fx represents the fractional flow of water or oil.

Veloci_ u Many of the two phase flow correlations are based on the superficial
velocity of a phase. The superficial velocity is defined as the velocity of the phase, if the
phase was flowing through the total cross sectional area of the pipe. The superficial
velocity of gas is defined as

qa
esa = -- (3.10)

A

where Vsc = superficial velocity of gas

A = cross sectional area of the pip6
qG = flowrate of gas

The actual gas velocity is calculated from

qo (3.11)
Vo = Ai_i°

Similar definitions can be applied to calculate the superficial velocity, and the
actual velocity of the liquid phase.

The viscosity and surface tension of the fluid is calculated in a similar manner to
the density calculation - (Equation 3.8), with the density terms replaced by the
appropriate viscosity or surface tension terms.

There are many empirical multiphase correlations that have been developed to
predict the pressure drop due to two phase flow in pipes. Most of these correlations use
liquid holdup to accurately predict the pressure loss due to the potential energy term.
This is accomplished by using flow regime maps. Depending on the superficial velocity
of gas and liquid, distinct flow patterns are observed. Each of these flow patterns
provides a different pressure drop associated with the potential energy and friction
energy terms. The flow regimes are based on the fluid distribution in the pipe.

Descriptions of the major flow regimes are as follows:

Bubble Flow.- The pipe is almost completely filled with liquid and the free gas
phase is present as small bubbles. The bubbles flow at different velocities, and except
for the density, have little effect on the pressure gradient.

14



- The gas phase is more pronounced. The gas bubbles coalesce and
form plugs or slugs which almost fill the pipe cross section. The gas bubble velocity is
greater than the liquid velocity. Both phases have a significant effect on the pressure
drop.

Transitional Flow - Change from liquid phase to a continuous gas phase occurs.
Gas bubbles join together, and the liquid may be entrained in the bubbles. _,lthough the
liquid phase effects are significant, the gas phase effects are dominant.

Mist Flow - The gas phase is continuous, and the liquid is entrained as droplets in
the gas phase. Gas phase controls the pressure gradient.

3.3 Hagedorn and Brown Correlation

Hagedorn and Brown [1964] proposed a generalized correlation for multiphase
vertical flow. This correlation was generated using data measured for a wide range of
gas-liquid ratios, tubing sizes, and differing fluid properties.

The pressure drop equation can be written as

VSL + Vsa

144AhAP-___gcg [P,HL + p,(a- HL)]' 1-_ f(vsL2gcd+V'sa)2+A Ah2g (3.12)

where Ah = depth increment
d = pipe diameter
f = Moody friction factor

This correlation does not take into account the different flow regimes. In this
case, the liquid hold up is used as a correlating parameter, in the calculation of the total
pressure drop for an incremental length of pipe.

The calculation procedure for the Hagedom and Brown [1964] correlation is
described below.

1. An incremental pipe length Ah, is chosen.

2. Starting with a point at which the pressure is known, the incremental pressure is
assumed and the arithmetic average pressure is calculated.

3. Specific gravity of the oil and gas are calculated.

15



4. The mass associated with one barrel of stock tank liquid is calculated as.

m;350yo I+_t/OR " I+WOR +0.0764faGLR (3.13)

where WOR - water-oil ratio

GLR - gas-liquid ratio
y'_ = specific gravity

5. Calculate the mass flow rate.

6. Calculate the density, viscosity and surface tension of the liquid and gas phases.

7. Calcula,e the liquid viscosity number, N/.

N,. = 0.15726,u L (3.14)

Interpolating from Table 3.1, Graph 1, calculate CN L

8. Calculate the liquid velocity number, NLv

/ \1/4

NLv=I. 938vs, [ _- ) (3.15)

9. Calculate the gas velocity number, Nay

Nay = 1.938Vsa ! 'OL)t/4 (3.16)
t,o'L )

9 Calculate the pipe diameter number, N o

N o = 120.872 dx[p,./cr L (3.17)

10. Calculate the correlating parameter, q_a as in Graph 2 of Table 3.1. Interpolating

Graph 2 find the value of ¢,.

_j0.38

= "/" (3.18)where q_,_ Nt'v
2.14
D

16



11. Calculate the correlating parameter doa, as in Graph 3 of Table 3.1, and then

interpolate to find the value of Ht./_, and hence the value of the liquid

holdup,H L.

where doa =" N""75"Psc'_,_ )_, ) _,-_o ) (3.19)

Table 3.1' Correlating Functions of Hagedorn and Brown [1964] from Carroll
[1990]

GRAPH 1 11._ GR APH2 ..... li GRAPH 3 .

NI. CNt.. do,, _ dOa HL/g ,

0.002 0.0019 0.010 1.00 0.20 0.04

0.005 0.0022 0.020 1.10 0.50 0.09

0.010 0.0024 0.025 1.23 1.00 O.15
,,_

0.020 0.0028 0.030 1.40 2.00 O.18

0.030 0.0033 0.035 1.53 . 5.00 0.25
, ,.

0.060 0.0047 0.040 1.60 10.00 0.34

0.100 0.0064 0.045 1.65 20.00 0.44

0.150 0.0080 0.050 1.68 50.00 0.65

0.200 0.0090 0.060 1.74 100.00 0.82

0.400 0.0115 0.070 1.78 200.00 0.92

0.080 1.80 300.00 0.96

0.090 1.83 1000.00 1.00,.--

12. Calculate the Reynolds number NRc, and the friction factor f.

17



_ 2.2 x 10-2qom

N..- "")d (3.20)

(_ 18.7
1 2e + (3.21)

and  =1.74-2og d N- 77;
where 6 = roughness of the pipe

Equation 3.21 has to be solved using a trial and error procedure. Then using
Equation 3.12 the value of Ah can be calculated.

The correlation implemented contains a modified form of the Hagedorn and
Brown [1964] correlation. If the flow regime is found to be in bubble flow, the Griffith
and Wallis [1961] correlation is used. The procedure followed is as follows.

1. Calculate the values of A and B.

= _ )2] / d (3.22)A 1.071 [0. 2218( vst +Vsa

B = Vsc" (3.23)
]"SL + V SG

If B is greater than or equal to A, then continue with Hagedom and Brown
correlation. If A is greater than B, the flow is in the bubble flow regime and the Griffith
and Wallis [1961] correlation is used.

2. Griffith and Wallis [1961 ] used the following equation to calculate the gas holdup
Hc

where vs = is the slip velocity, average value of 0.8 ft/sec.

With this value of gas holdup computed the rest of the computations are carded
on in the same manner as in the Hagedorn and Brown correlation.

3.4 Aziz, Govier and Fogarasi Correlation

Aziz, Govier and Fogarasi [1972] proposed a method which was flow regime
dependent. The flow regimes are defined using the following variables.

18



:/72:L/v4N,, = Vsck.O.-_64 ) 62'4°'L (3.25)

( 72 PL / 1/4N, = Vst._6_._i_ L (3.26)

N l = 0.51(100Ny) °'_v2 (3.27)

N2 - 8.6+ 3.8Ny (3.28)

/ \-0.152

N 3 = 70_100N,) (3.29)

Bubble Flow - the case when

Nx <N 1

then the liquid holdup is calculated from

HL = 1 Vsc (3.30)
Vb/

where rb/ = the bubble rise velocity in the flowing stream

vq = 1.2v,. + v_, (3.31)

and vt_, = 1.4lI°'l'g(Pt"- Pa)] v'_ (3.32)

v,, = Vsa + Vst" (3.33)

The hydrostatic head is then calculated by

(d__..p_)= g P, (3.34)
\aL) gc

The friction pressure drop is calculated as

( dp ) = fp,.v_ (3.35)--_ I 2god

19



In bubble flow the acceleration term is considered to be negligible. The
summation of'the friction pressure drop and the hydrostatic p, essure drop gives the total
pressure drop. "

Slug Flow - The limits for this flow regime is defined as follows,

NI<N`<N 2 for Ny<4

and N l<N x<26.5 for Ny > 4

The liquid holdup is calculated as in Equation 3.30, and the bubble rise velocity
as in Equation 3.31. In this case v_, is defined as

v_ = cI g':t(PL - Pc) ]tl2p_ (3.36/

gdZ(P, -Pa)
where NE = (3.38)

O"r

Nv = [(.d3g-PL - Pc )]-j'/2 (3.39)
,uL

In the slug flow regime the acceleration pressure drop is considered to be
negligible. The total hydrostatic pressure drop is calculated as in Equation 3.34 and the
friction pressure drop as

dp ) _ fp, HLv2,. (3.40)"-_ I- 2god

Summation of the hydrostatic and friction pressure losses provides the total
pressure loss.

Transition Flow - This flow regime exists when

N 2<N x<N 3 for Ny<4
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When the flow regime fall in this transition zone, the total pressure drop is
obtained by interpolating between the total pressure drops in the slug flow regime and the
mist flow regime. The pressure drop can be expressed as

(--_)ro. = A(-_)s_,g+ B(-_)M_ ' (3.41)

where A and B represent weighting factors.

Mist Flow - This flow regime is encountered when

N, > N 3 For Ny < 4

and Nx>26.5 For Ny > 4

Aziz, Govier and Fogarasi [1972] use the procedure of Duns and Ros [1963].
Duns and P,os [1963] assumed that with high gas flow rates in this region, that the slip
velocity would be zero. The mixture density is calculated from the no-slip velocities as

P,,,= P'2L + PC_ (3.42)

i

The hydrostatic head is calculated from Equation 3.34 with the density of the
mixture from Equation 3.42.

The frictional pressure drop is calculated from

f 2god (3.43)

The friction factor is a function of the Reynolds number of the gas, which can be
expressed as

pavsad
NR, = (3.44)

/.ta

Duns and Ros [1963] also accounted for the increase in roughness of the wall due
to the presence of the liquid film. The ripples of liquid on the wall causes a drag on the
gas. These processes is governed by the Weber number Nw, and the liquid viscosity

number N_,.

= I/2Nw" Pa sa6 (3.45)
O"L
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N u - PE (3.46)
,OLO'Lg

The following equations provide the corrected values for the pipe roughness. For

values of Nw, N u < O.05

__e= 0.0749o" L (3.47)
d 2Parsed

For values of Nw,Nu > 0.05

°°= 0'3713at" (Nw, N_,)°3°2 (3.48)d 2Pr,Vscd

Using the above relations the frictional pressure drop can be calculated.

The pressure drop due to acceleration can be included by defining an acceleration
term Er as

Ex = v"Vscp" (3.49)
gtP

The total pressure drop can be calculated as

dp

( )ol( )hYdtic= 1- EK (3.50)
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4. Separator Model

4.1 Introduction

Produced reservoir fluids are complex mixtures of hydrocarbons with different
physical characteristics. The produced fluids separate into two phases- oil and gas. The
separation of the oil from the gas at the surface is accomplished by conventional stage
separation.

Stage separation is the process by which gaseous and liquid hydrocarbons are
flashed (separated) into vapor and liquid streams by using two or many separators. As
Figure 4.1 illustrates, the separation process can use as many separators as is desired. As
the number of stages increases, the pressure of the separators is dropped slowly and the
flashing process mimics differential liberation. Differential liberation is the "best"
separation process as it leaves the maximum quantity of the valuable liquid phase.

Gas

I Gas

Feed
Separator# 1

Oil

I Oil

Gas Gas

Feed

Separator# F Separator#

/ Oil

I Oil "i Oil

F

Figure 4.1" Schematic illustrationof a two and three stage separation process (Ahmed [1989])
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GasolineinGas

Phase(gal/bblcrude)

Pr_,ssureof High-StageSeparator(psi)

Figure4.2: GasolineContentof Gas Phaseasa Functionof HighStageSeparatorPressure

Figure 4.2 shows the gasoline that is retained in the vapor phase as a function of
separator pressure. The goal in stage separation is to flash the feed stream at that
pressure which results in the least loss of gasoline and other valuable hydrocarbons to the
gas phase (Chilingarian, Robertson and Kumar [1987]). The separation process is
modeled by using a flash calculation. This chapter describes the flash process that was
implemented in this study.

4.2 Flash Calculation

The oil and gas mixture that flows into a separator has a fixed overall
composition. In the separator it is flashed at a fixed temperature and pressure. The flash
calculation mimics this phase behavior and is used to determine the new composition of
the oil and gas streams.

The following procedure from Orr [1991] is used to determine the phase
compositions.

1. For a flash of a given overall composition, pressure and temperature, guess the
resulting composition of the liquid stream x_ and the gas stream Yi

2. Calculate the equation of state parameters

3. Solve the equation of state and determine the molar volumes of the gas and liquid
phases.

4. Calculate the partial fugacities of the liquid and gas phases.
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5. Check if the partial fugacities of ali the phases are equal. If the partial fugacities
are equal, then the equilibrium composition of the output streams have been
calculated.

6. If the fugacities are not equal, then improve the estimates of the composition of
the phases and return to step 2.

A detailed description of each of the steps described above appears in Section 4.3
through to Section 4.8.

4.3 Initial Estimation of the Compositions

As a first guess, the Wilson and Deal [1962] equation is used to estimate the
value of the equilibrium ratio ki.

exp[37/1+o,/1
ki = Y_!._= (4.1)

xi P,_

where o)i = accentric factor, available from the literature

T,i = Reduced Temperature (= T/Tc,ie.z)

P,i = Reduced Pressure (= p/pc,i,i_.t)

A material balance on component i gives

zi = Lx i +(1- L)y i (4.2)

where L = liquid mole fraction

Using the definition for the equilibrium ratio fl'om Equation 4.1, Equation 4.2 can
be rewritten as

zi (4.3)
xi - L + (1 - L)k i

kizi
and Yi = (4.4)

L + (1- L)k i

The solutions to Equations 4.3 and 4.4 are constrained by the following relation

__xi-_'y i =0 (4.5)
i i
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Therefore, a solution to the following equation must be found

zi(1-ki)
F(L) = _ (4.6)

"7" ki +(1-k,)L

This equation can be solved to find the value of L using a Newton-Raphson
iteration scheme.

LR.,, Lk F(Lk) (4.7)

dLD

Convergence is assumed when both of the following conditions are met.

where 6 = a small number, say 10-6

4.4 Calculation of Equation of State (EOS) Parameters

The Soave-Redlich-Kwong (SRK) equation of state is used in this study. The
SRK equation of state can be written as

RT aiot ip = (4.9)v-b, V(V-b,)

This equation can be written in cubic form as

L'-P--'.J + P P b_ V- P = 0 (4.10)

where V = Molar volume

R = Universal gas constant

2 2

and ai = 0.42747R Td (4.11)
Pc

bi = 0.08664 RT c (4.12)
Pe
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ai =[1+(0.480+1.574toi-0.176co/2)(1- T°'5)]2 (4.13)

(aCt)m= _E[xixj(aiajolictj)°'5(Kij-1)1 (4.14)
i j

b,,,= _ xib i (4.15)
i

g0 is an empirically determined correction factor known as a binary interaction
parameter, characterizing the binary formed by component i and j in the hydrocarbon
mixture. The binary interaction parameters are used to model the intermolecular
interaction through empirical adjustment.

4.5 Calculation of Liquid and Vapor Molar Volumes

The cubic form of the SRK equation of state (Equation 4.10) must be solved to
find the molar volumes of the liquid and vapor. The roots can be calculated analytically
or numerically using a Newton-Raphson iteration scheme. The analytical solution
method is implemented in this study. Detailed explanation of the technique can be found
in the notes of Orr [1991], and in the thesis by Carroll [1990].

4.6 Determining the Partial Fugacities

The partial fugacity _, of a component can be calculated from the following
relation

=p EXP (4.16)

For the SRK equation of state the partial fugacity _, of component i may be
calculated from

[( V ) b i 2_.,xiaiaj (V+b,,,I (act),bi( (_"_-! bm )-ln(x/_T)]f/= p exp V- bm -t- V - b"-'_4 RTb,,, In V + RTb2m In V+bm

(4.17)

27



4.7 Convergence Checks

The phase compositions and the molar volumes are found when the partial
fugacities of each the components are the same, for ali of the phases present. In this case,
convergence is assumed when

I_v_ 11<6 (4.18)f,'_

4.8 Modification of the Phase Compositions

The new values for the equilibrium ratios are found by a substitution scheme
described below. Readers are referred to the work of Orr[1991] and that of Carroll
[1990] for further detail.

.c"L

k_*_= @ k_ (4.19)
f,

With the new values for the phase compositions the procedure is restarted
(Section 4.3).
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Nonlinear Optimization Algorithms

5.1 Introduction

Nonlinear optimization is concerned with finding the minimum or maximum of
nonlinear functions. For example, when designing an aircraft an engineer may try to
minimize the fuel consumption. This is known as the objective, and the mathematical
statement which desclibes the behavior of the objective as a function of the chosen
variables is known as the objective function. In this case, the fuel consumption is a
function of many of the aircraft design variables such as wing span, size of the fuselage,
size of engines used etc., which are known as the decision variables.

Maximum

\
r" -- Actual Function

- _¢._,-%_F--- /,I Negative of the Function
Minimum

Figure5.1 - Showshow the actualfunctionand itsnegativecanbeusedto findthe minimum
andthe maximumof the function

As Figure 5.1 illustrates, maximization can be thought of as the minimization of
the negative of the objective function. Nonlinear optimization algorithms are designed to
find the minimum of objective functions. Therefore, in the rest of this discussion
concentrates on the minimization of objective functions.

Nonlinear optimization algorithms can be separated in to two major classes. One,
the algorithms based on gradients of the objective function such as those based Newton's
method. Second, the algorithms based on function value comparisons such as the
polytope algorithm and other searching techniques.
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Readers are referred to Gill, Murray and Wright [1981] and to Scales [1985] for a
comprehensive treatment of nonlinear optimization.

There are many techniques available to minimize an arbitrary function F(i) of n

independent variables. Before describing these techniques, let me define some commonly
used notation.

The objective function F(x_,x2,x3,x4 ...... x,,) will be denoted by F(i) where the

variables are gathered together in a vector i

._= x2

and /_= Ps (5.1)
/I R

Ali methods used to find the extrema of nonlinear functions are iterative. At the

start of the k-th iteration, the current estimate of the minimum will be denoted by -_k.

The k-th iteration then consists of computing the search vector/Sk, from which the new
estimate for the minimum _k+_is found according to the equation

$'k_l= .2k+ ak/31, (5.2)

where a k is a scalar, and is obtained by a line search or is based on the theory of

the method being used. lt is the method of determining ,hkthat largely distinguishes one
method from another.

5.2 Method of Steepest Descent

Gradient methods involve searching along the vector ,hk from the current point
.i'k. The requirement is that ak be chosen so that

Fk+_< Fk where Fk= F(Yck) (5.3)

It is not always possible to find a vector ,hkwhich satisfies Equation 5.3. The

basic idea in gradient based algorithms is to find the descent direction. The descent
direction is given by the vector/Sk. With the descent direction known, a very small,

positive value of ak. will satisfy Equation 5.3.

Most of the techniques used to find the extrema of the functions use the first and
second derivatives of the functions to compute ,hk. The derivatives may be calculated

analytically or approximated by using finite difference algorithms.
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Using a Taylor series expansion Fk+l,can be written as

p_+, r(_ +a_)_ F_+)d "_ "= otkpkGkpk (5.4)

In this case ali the terms of order three or more have been ignored. The form
indicated in Equation 5.4 is the quadratic approximation to the real function.

The term Gk is the Hessian Matrix of the function F(._) at the k-th iteration, and
can be written as

ak = : : (5.5)

......

In order to satisfy Equation 5.3, t_kmust be chosen such that

/SrGk/Sk< 0 (5.6)

The calculation of the first and second derivatives of the objective function F(._)

may be carried out either analytically or numerically. The numerical, finite difference
techniques used to approximate the values of the derivatives are based on Taylor series
expansions. Readers are referred to Abramowitz and Stegun [1965] for a detailed
description of the available numerical approximations.

Equation 5.4 is a second order approximation to the function F(i) at ik. A ftrst

order approximation can be written as

Fk+_= F(X'k + ak,bk)_. Fk+ a,_r/sk (5.7)

If the condition in Equation 5.3 is to be satisfied

_[_ <o (5.8)

/,ac./

where 'k =[-_" (5.9)
/
L%.

Equation 5.7 can be written in the form

F,+, - Fk _ a_'kll I[/_k_cos 0 (5.10)
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Now if all values in the right hand side of this equation are held constant, and
only the angle O is allowed to change, the equation will be most negative (< O) when
O= _r. Thus, for a small value of a_, the largest reduction in the value of the function
will be in the direction

/3_= -,gk (5.11)

This direction is known as steepest descent direction, and gives rise to the method
of steepest descent.

Figure5.2: Thesteepestdecentmethodshowingthezig-zagprogress.

In the case of this algorithm, the successive search directions are orthogonal, and
as a result the iterations generate a sequence of points which follow a zig-zag path to the
minimum. This results in very small steps being taken, which results in very slow
convergence to the minimum.

The Steepest decent algorithm is very stable, and is theoretically simple.
However, due to the slow rate of convergence, it is not used in optimization, but is the
fundamental component of more elaborate techniques.

5.3 Newton's Method

Newton's method is designed to achieve quadratic termination with a positive
definite Hessian matrix. Mathematically, Newton's method can be represented as
follows. The minimum of a function occurs when

VF=O and V_F=0 (5.12)
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The gradient of the function can be written as

VF = _'k,1= g(2k + Pk) = gk + Ok,hk (5.13)

This is the Taylor series expansion for the gradient of the quadratic function at
2k+1. The terms of order greater than two are neglected. If 2k._ is the minimum of the

function, then_k.t is equal to zero, and therefore

/_k= - G_lgk (5.14)

For non-quadratic functions, 2k + Pk will be in general an approximation to the

minimum, and so an iterative process is required to find the minimum of the function.
Note that in Newton's method ak, the step length, is unity.

The key to finding the minimum of the function is the Hessian matrix Gk. If the
function has a minimum, the Hessian matrix must be positive definite _. Problems arise
with Newton's method when the calculated Hessian matrix is indefinite. This implies that
the quadratic model for the actual function is neither bounded from above or below.
There are a series of methods developed, known as modified Newton methods which
overcome this problem. These methods are ali based on constructing a new positive
definite matrix G'k, which is based on the Hessian matrix and is used to replace Gk in

Equation 5.14.

The Hessian matrix can be decomposed, and written as the product of three
matrices as shown in Equation 5.15. This particular decomposition technique is known
as spectral decomposition.

n

a k = UAU r = _ u_Xiur (5.15)
i=1

where u_ = the eigenvectors of Gk

= the eigenvalues of Gk

U = the matrix composed of the eigenvectors of ab
A = the matrix composed of the eigenvalues of ak on the

diagonal, and zero's elsewhere.

i If ali the eigenvaluesof a symmetricmatrixare strictlypositive,then the matrix is said to be positive
definite. Further, ifA is apositivedefinitematrix,then foranynon-zerovectorx,

._rA.i:> 0

Thereis a correspondingdefinitionfora negativedefinitematrix.
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One of the methods of ensuring positive definiteness is to add a small quantity,
,uk to each eigenvalue, ensuring that ali the new eigenvalues are positive. This

technique, and modification to it, were the work of Marquardt [1963], Goldfeld, Quandt,
and Trotter [1966], and Greenstadt [19671. This process can be represented in matrix
notation as

Gk = Gk + ,ukI (5.16)

The modified Hessian matrix is used in an iterative process, solving Equation
5.14 to find the minimum of the function under consideration.

The method of Gill and Murray [1974] uses the Cholesky factorization of Gk to

modify Newton's method. The Choleskyfactorization can be represented as

Gk = LkDkl,_ (5.17)

In this case Dk is a diagonal matrix and t,k is a lower triangular matrix with

diagonal elements equal to one. The values of Dk (elements d0) and Lk (elements/ii) can

be calculated using the following expressions (go are elements of Gk)

j-i

= - (5.18)
q=l

t#= go-Zdq¢l_ttjq Jt for i=j+l,n (5.19)
q=l

Equation 5.14 can be written in terms of the Cholesky factorization as two
systems of linear equations, which can easily be solved.

T

tk = -g_L k (5.20)

Lrkpk= Dk_tk (5.21)

In the Gill-Murray [1974] process, if any of the values of dij are less than a small

positive constant 8, then a positive quantity rjj is added to gij, and the Cholesky
factorization is continued. The resulting matrices are then used in the minimization
scheme as defined in Equations 5.20 and 5.21.

5.4 Quasi-Newton Methods
u

There are some nonlinear optimization 'algorithms which have the property of
quadratic termination but do not use the second derivatives of the function. These
methods sacrifice the speed of convergence, but save on the expense associated with
calculating a new Hessian matrix for each iteration. During each iteration the Hessian
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matrix is updated, and this new approximation to the Hessian is used to find the estimate
to the minimum value.

The Newton iteration equation (Equation 5.14) can be written as

Pk : -H,_k (Hk _ G; _) (5.22)

During each iteration Hk is updated by

Hk. 1 = Hk + Qff (5.23)

where Q_ is a updating matrix, aU is chosen such that the quasi Newton
condition is satisfied. The quasi Newton condition can be stated as

Hi,,.,(_,,,_ - _,,) : pk(._k._-- 2,) (5.24)

where ,okis a scalar.

Combining Equation 5.23 and 5.24 results in the following equation

Qff a_. = Pk,M'k- Hka_k (5.25)

The solution to this equation can be written as

AYckYr H_Agk_r (5.26)

In this case zk and Ykare arbitraryvectors. If the following conditions axe set

pk=l

Yk= _k

and _'k= HkA,_k

then the updating equation for the new Hessian, Equation 5.23 can be written as

ai_a_ r i_, _ka_rHk
Hk,l = Hk + (5.27)

_raL a_rHkaL

This is known as the Davidon-Fletcher-Powell (DFP) formula (Davidon [1959],
Fletcher and Powell [1963]). This was the first form of the quasi Newton method used
widely in function minimization.
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Another formulation widely used today is the BFGS formula. This was Fast
suggested by Broyden [1970], Fletcher [1970], Goldfarb [1970] and Shanno [1970]. It
can be expressed as

where I is the identity matrix.

The convergence rate when using the quasi Newton algorithms is between linear
and quadratic. The advantage of the method is the reduction in computation required to
generate the new Hessian matrix for each iteration, lt is expected that the reduction in
the efficiency of convergence is offset by the more efficient computation of the Hessian
matrix, and hence the overall efficiency of the method is greater than that of Newton's
method.
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5.5 Polytope Algorithm

The polytope method, also known in the literature as the simplex method, is based
on function comparison techniques. It does not require the use of function gradients, and
can be used on both smooth and non smooth functions.

The polytope algorithm (Gill, [1983]) is a fairly robust function comparison algorithm.
For a problem of n decision variables, a polytope of n+ I points is created. The objective
function is evaluated at each of the n+ 1 points. The point with the highest function value
(known as the worst point) is chosen, and a new point is generated to replace this point.
The method of choosing the new point is as follows.

Using the best n points (excluding the point with the highest function value), a
centroid c is generated.

n

c= 1//nZi i (5.29)
i=l

The centroid is then used to generate the reflected point.

,0 ExpansionPoint
i. J ,/-

I

.I , /

I ' /

\ " "0" Reflect'_nPoint

OriginalPolytope..... I _lm'" [ ] Centroid

,'_('. , ! 1/1 ContractionPoint
WorstPoint /

Figure5.3:TwodimensionalPolytopewiththereflection,ExpansionandContractionPoints.
AfterCarroll[1990]andGill,MurrayandWright[1981].
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The reflected point is generated from the equation

=c+fl(c-

where x, = reflected point

x,.l = Worst point
c = Centroid

fl = reflection coefficient

The function is evaluated at x,, and there are three cases to consider.

1. The function value falls within the set of existing n function values, (i.e. the new
point is neither the best or the worst point). In this case x, replaces x,,t and the

next iteration is begun.

2. The function value is the new best point. In this case, the assumption that the
direction of reflection is "good" is made, and the polytope is expanded in this
direction - a reflection coefficient of greater than one is used. If the new
expanded point is "better" than the reflected point, the expanded point is accepted
as the new best point, and the next iteration is started. If however the expanded
point is not "good", the original reflected point is accepted and a new iteration is
started.

3. If the reflected function value is greater than ali the existing points, then the
polytope is thought to be too large, and a contraction is made by setting the
reflection coefficient to less than one. If the contraction succeeds, the new value

is accepted and a new iteration is started. Othe_'ise another contraction is
carried out.

After several cycles of reflection the existing polytope is discarded and a new
polytope is constructed using the best two points. The other points of the polytope are
spaced on a regular grid using the distance between the two points as the spacing
between points.

One of the main difficulties with the polytope method is to decide when a
minimum point has been reached, as opposed to when the polytope is undergoing
temporary difficulty. Nelder and Mead [1965] suggested the following two criteria for
convergence to a minimum point of a objective function. Convergence is assumed when
either one of the two criteria is satisfied.
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I n+! 12

2. Z_ :=' _<e
_=_ n+l

The above description of the polytope algorithm (also known as the simplex
algorithm) is based on the discussion in Gill, Murray and Wright [1981], Carroll [1990]
and Press, Flannery, Teukolsky and Vetterling [1986].
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6. Optimization of Production Systems

6.1 Introduction

The purpose of this study was to investigate the ability of the nonlinear
optimization algorithms to find optimum values for decision variables that vary with
time. For example to maximize the Present Value of oil and gas production from a
single completion. The completion string -- tubing diameter -- is assumed to change with
time. The optimization would produce the "best" tubing diameter for a given time
interval, for example for each year, or two years, or five years of production.

The previous chapters have described in detail the theory used in developing each
of the components of the production model used for this optimization study. This
chapter will concentrate initially on how the nonlinear optimization algorithms were
coupled to the model of the production system and the objective function, and next,
describe the results obtained from several time dependent optimizations of a tubing string
and a simple gas lift scheme.

6.2 Production Model

I Gas

igh Pressure Separator

Tubing - -'_ Stock Tank 1
I o,

Figure 6.1 : Schematic diagram of the Production Model
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Figure 6.1 shows a schematic diagram of the production model used in this study.
Note that in this case there is no horizontal towline between the wellhead and the high

pressure separator. The flowing wellhead pressure is the operating pressure of the high
pressure separator. The decision v,'u'iables chosen for studying are the tubing diameter
and the high pressure separator pressure. Later in the study a gas lift system was
implemented providing an additional decision variable, the gas injection rate.

6.3 Optimization Scheme and Algorithm

Figure 6.2 shows schematically how the nonlinear optimization algorithms are
coupled with the objective function and production model. The iterative procedure for
optimization is as follows.

1. The nonlinear optimization algorithm sends values for the decision variables to
the production model.

2. Using the values for the decision variables the production model generates the
production forecast.

3. Based on the production forecast the objective function generates the Present
Value.

4. The nonlinear optimization algorithms use the Present Value to refine the
estimate for the maximum, and sends the new estimates for the decision variables
to the production model.

Iteration around the loop (in an anti-clockwise direction) as indicated in Figure
6.2 is continued until the maximum Present Value 2 is found, along with the associated
values for the decision variables.

The IMSL mathematics library functions were used for optimization.
Specifically DUMINF -- a quasi Newton algorithm that uses the BFGS formulation, and
DUMPOL -- an implementation of the polytope algorithm. For a detailed explanation of
these algorithms the reader is referred to Chapter 5 of this work.

The polytope algorithm always converged to the maximum point or to a point
very close to the maximum point. The quasi Newton method did not always converge,
specially when the time dependent variables were included in the optimization scheme.
The "best" results were obtained by using a composite method, where the polytope
algorithm was combined with the quasi Newton method. The technique employed was to

2 In fact the algorithmfindsthe minimumof the negativeof the objectivefunction. This is equivalentto
findingthe maximumof the objectivefunction. SeeChapter5 for furtherdetails.
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use the polytope algorithm first to find the vicinity of the global maximum. Then the
quasi Newton technique was used to locate the maximum point.

I Nonlinear Optimization ) Present Value
Value of Algorithm

DecisionVariables

Objective Function)

Production Model ] Production Forecast

Figure 6.2" Schematic of the Iteration Process for Optimization

6.4 Objective Criteria

For the purpose of this study the objective criteria chosen was the Present Value
of the oil and gas produced from the completion. The Present Value is a widely used
method in project economics. The idea behind using Present Value is the concept of the
"time value of money." The future income is discounted to reflect its worth in today's
dollars.

The Present Value for a future income at time T, FIT, can be represented
mathematically as

PV T = FIT (6.1)
(1+ R)T-½

where R = the discount rate, and reflects the cost of capital to the
company.

FIT = Price of Oil * Oil Produced + Price of Gas * Gas Produced
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lt is assumed that the price of oil and gas will increase with time, and therefore
the price is escalated at a inflation rate i. Equation 6.1 can be modified to

n

PV = _ FIT (6.2)

T_, _,_(I+R)a'-_

The objective function can easily be modified to a net Present Value (NPV) form

l+iJ

where COStT= Capital cost, tax payments, royalties, operating cost etc.

6.5 Tubing Diameter Optimization

The first sets of optimizations were carried out to obtain the optimum tubing
diameters for a given weil. This process finds the "best" tubing diameter for a producing
time interval. The best in this case refers to the tubing size(s) that maximizes the Present
Value. lt mimics the real life case where a workover is performed to change out the
tubing.

Figure 6.3 and 6.4 shows the Present Value surface for the case where a single
tubing size and separator pressure are used for the entire life of the weil. Figure 6.3 is
based on the Aziz, Govier and Fogarasi [1972] and Figure 6.4 uses the Hagedorn and
Brown correlation [1964]. As these figures indicate, the surface is rough (nonsmooth)
and shows the presence of several local maxima.

The following time dependent tubing diameter optimization runs were made.

1. Tubing diameter changed after every 10 years of production.
2. Tubing diameter changed after every 5 years of production.
3. Tubing diameter changed every year of production.

The results from the optimizations are shown in numerical form in Tables 6.1
through to Table 6.4. The tubing sizes, production rates and pressures are plotted as a
function of time for the Aziz, Govier and Fogarasi [1972] correlation in Figure 6.5 to
Figure 6.7.
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Table6.1' SingleTubingDiameterOptimizationResults
,,, I ,, ,,,,.,

, , , ,,,, Aziz, Gorier and Fogm'as! ' , Hagedorn and ,Brown ,,

Separator Pressure (psi) 1113.77 1045.53

Tubing Diameter (inches)._ 9.27 13..

Present Value ($ million) 305.76 311.44

Table6.2: OptimizationResultsforCaseWhenTubingDiameteris ChangedEvery10Years.

Flow Correlation

Aziz, Govier and Fogarasi . Hagedorn and Brown

Separator Pressure (psi) 1113.13 1029.71

Tubing Diameter (inches)

(YearO- 10) 9.16 18.97

(Year 11 - 20) 11.17 11.36

Present Value _$ million) 306.64 _ 313.02 ......
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Table6.3: OptimizationResult,,for CaseWhenTubingDiameteris ChangedEven/5 Years.
................ ' ................... , _'_ ,,, ' ' , , m , ,,, - - -J....

Flow Correlation

....... Aziz, Govier a.ndF.ogarasi ...... Hagedorn and Brown

Separator Pressure (psi) 1115.43 1029.4

Tubing Diameter (inches)

( Year 0- 5) 9.11 22.36

.(Year 6 - 10) 9.26 21.17

( Year 11 - 15) 11.10 10.66

(Year 16- 20) 12.78 9.78

Present Value ($ million) 306.80 314.19i

ii

Table6.4:OptimizationResultsforCaseWhenTubing
Diameteris ChangedEven/Year....

II Flow Correlation. ...... Aziz, Govier and Fogarasi

Separator Pressure (psi) 1089.8

Tubing Diameter (inches)

._ ( Year 1) 9.78

..... ( Year 2) 9.55

( Year 3) 9.34

..... ( Year 4) 9.25

( Year 5) 9.30

( Year 6) 9.47
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Year 7) 9.54

( Year 8) 10.03

Year 9) 10.11

( Year10) 10.80

( Year 11) 11.31

( Year 12) 11.73

( Year 13) 12.19

( Year 14) 12.57

( Year 15) 12.92

( Year 16,) 13.03

( Year 17) 15.04

( Year 18) 11.77

( Year 19) 12.60

( Year 20) 13.38

Present Value ($ million) 354.07

6.6 Gas Lift Optimization

A simple gas lift model was developed to investigate the ability of the nonlinear
optimization algorithms to optimize the gas injection rate with time (Brown [1977]).

The model assumed that the gas was injected at the bottom of the completion
string (tubing) at a specified rate. The net effect of the gas injection is to decrease the
apparent density of the fluid flowing in the tubing. As the wellhead pressure is held
constant, the reduction in density, reduces the pressure drop between the wellhead and
the perforations, decreasing the flowing bottomhole pressure, increasing the flowrate of
oil and gas. Except for the injection of gas, the production model and the objective
function used is identical to the model described in Section 6.2
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The model also assumes that there is an endless supply of gas for injection, and as
the objective function was formulated in terms of Present Value there is no cost
associated with the injection of gas.

Initially, the tubing diameter, separator pressure, and the gas injection rate were
used as the decision variables for optimization. This problem did not appear to have an
optimuin. As Figures 6.8, 6.9, and 6.10 show the Present Value of the production seems
to increase slowly in the direction of increasing tubing diameter and increasing gas
injection rate. This problem can be J'ercome in one of two ways, to apply a cost to the
injection gas, or to fix the tubing diameter. To investigate the time dependence of the
optimum gas injection rate, the tubing diameter was fixed at 5.90 inches (15.0 cm).

Figure 6.11 shows the Present Value surface for the gas injection scheme with the
tubing diameter fixed at 5.90 inches (15 cm). Figures 6.12 and 6.13 show the same
surface for a fixed tubing diameter of 3.93 inches (10 cm) and 7.87 inches (20 cm)
respectively.

The results of the optimizations are presented in Table 6.5 through to Table 6.7.
Figure 6.14 shows the optimum injection rates as a function of time, and Figure 6.15 the
production rates for oil and gas. Figure 6.16 shows the accompanying pressure profiles.

Table6.5:SingleGas InjectionRateOptimizationResults
, , ,' , , ...... , ,, ,

Flow Correlation

Aziz, Gorier and Fogarasi
_ ;, 1 , " , , ,, , ,

SeparatorPressure(psi) 1217.20

Tubing Diameter_(inches ) 5.90 (fixed)

Injection Rate (mmscf/d) 9.78

Present Value ( $ million) 341.35
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Table 6.6: OptimizationResultsforCaseWhenGas Injection
Rateis ChangedEven/10 Years.

Flow Correlation

_ . Aziz, Govier and Fogarasi

Separator Pressure (psi) 1215.89

Tubing Diameter (inches) 5.90 (fixed)

Injection Rate (mmscf/d)

( Year 0 - 10) 10.78

(Year 11 - 20) 0.13

Present Value ( $ million) 343.20 _

Table6.7: OptimizationResultsfor CaseWhenGas Injection
....Ra!eis ChangedEvery5 Years. ....

Flow Correlation

Aziz, Govier and Fogarasi
..... ,, ,. , , ,

Separator Pressure (psi) 1240.2

Tubing Diameter (inches) 5.90 (fixed) ....

Injection Rate (mmscf/d)

( Year 0 - 5) 17.75

(Year 6 - 10) 16.82

(Year 11 - 15) 4.87

(Year 16 - 20) 0.13

Present Value ( $ million) 344.19
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7. Conclusions and Ideas for Future Projects

7.1 Conclusions

This study has demonstrated that nonlinear optimization techniques can be
successfully applied to hydrocarbon productions systems.

Specifically this study shows that

• The nonlinear optimization techniques can be applied to production systems
with decisit,.a variables that change with time.

• The present value surfaces are nonsmooth functions of the decision variables
(tubing diameter, separator pressure, gas injection rate). The nonlinear
optimization algorithms that do not use gradients of the objective functions
like the polytope method are the more suitable algorithms.

• The best strategy for optimization of the production system was found to be to
use the polytope algorithm to find the local area of the maximum point, and
then to use a Newton based technique such as the BFGS algorithm (Broyden
[1970], Fletcher [1970], Goldfarb [1970] and Shanno [1970]) to find the
"exact" location of the maximum.

• The sensitivity of the decision variables to the objective function is a cause for
concern, specially for problems with time dependent variables. For example,
in this study the objective function -- the Present Value -- is weighted towards
production in early years. The result is that production towards the end of the
life of the reservoir has very little effect on the total present value. The
objective surface is relatively flat, and therefore false convergence may be
assumed by the algorithm away from the actual maximum point.

7.2 Future Work

Genetic algorithms and simulated annealing algorithms are being increasingly
used in various engineering fields for optimization. Goldberg [1989], Holland [1975]
and Katragadda [1991] have used genetic algorithms to optimize different problems.
Readers are referred to Goldberg [1989] for a very good introduction to genetic
algorithms. Katragadda [1991] used genetic algorithms to optimize a highly nonlinear
problem -- the trajectory of a spacecraft on a mission from Earth to Mars.

Including the cost of production into the economic analysis by switching the
objective function to use net present value (NPV), is highly desirable. For example when
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considering the gas lift system, the use of NPV would provide a very different objective
surface. The optimization would then be able to include the tubing diameter as one of
the decision variable.

Another very interesting problem to which the nonlinear optimization algorithms
can be applied to is a plunger lift system. Plunger lift is being used increasingly in
industry as a method of dewatering gas wells, and as an artificial lift system for high gas
- oil ratio wells that are unable to flow to the surface. The optimization of the plunger
cycle time, as well as the tubing diameters, and other various decision variables would
pose a challenging problem.
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