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ABSTRACT

A critical evaluation is made of the dynamic pressures and the associated forces induced

by ground shaking on a rigid, straight, vertical wall retaining a semi-infinite, uniform vis-

coelastic layer of constant thickness. The effects of both harmonic and earthquake-

induced excitations arc examined. Simple approximate expressions for the responses of

the system are developed, and comprehensive numerical data are presented which eluci-

date the effects and relative importance of the various parameters involved. These solu-

tions are then compared with those obtained by use of a simple model proposed previously

by Scott, and the accuracy of this model is assessed. Finally, two versions of an alternative

model are proposed which better approximate the action of the system. In the first, the

properties of the model are defined by frequency-dependent parameters, whereas in the

second, which is particularly helpful in analyses of transient response, they are repre-

sented by frequency-independent, constant parameters.
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EXECUTIVE SUMMARY

The study reported herein represents the first step in a broader investigation into the response to

ground shaking of embedded and underground structures. It presents a comprehensive evaluation of

the dynamic pressures and the associated forces induced by ground shaking on a rigid, straight, verti-

cal wall retaining a semMnfinite, uniform viscoelastic layer of constant thickness. The effects of both

harmonic and earthquake-induced excitations are examined. Simple approximate expressions for the

responses of the system are developed, and comprehensive numerical data are presented which eluci-

date the effects and relative importance of the various parameters involved. These solutions are then

compared with those obtained by use of a simple model proposed previously by Scott, and the accu-

racy of this model is assessed. Finally, two versions of an alternative model are proposed which better

approximate the action of the system. In the first, the properties of the model are defined by fre-

quency-dependent parameters, whereas in the second, which is particularly helpful in analyses of

transient response, they are represented by frequency-independent, constant parameters.

With the analytical expressions presented, the dynamic pressures and the associated forces exerted on

the wall may be evaluated readily and reliably. Additionally, the numerical data presented and the

analysis of these data provide valuable conceptual frameworks for the interpretation of solutions for

more involved systems as well.

Scott's model, which ignores the radiational damping capacity of the medium and considers the wall

pressures to be proportional to the relative motions of the wall and the soil at the far field, does not

adequately describe the action of the system and may lead to large errors. The proposed alternative

models, which effectively consider the wall pressures to be governed by the action of the soil in the

immediate vicinity of the wall, better characterize the response of the system, and lead to results of

reasonable accuracy. In particular, the model with frequency-independent parameters may be used to

evaluate readily and reliably the effects of earthquake ground motions of broad-banded spectral char-

acteristics.
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SECTION 1

INTRODUCTION

The evaluation of the dynamic soil pressures induced by ground shaking on vertical walls is funda-

mental to the seismic analysis and design of earth retaining structures and of embedded and under-

ground systems. Although these systems have been the subject of numerous studies over the years,

their dynamic response is still not well understood. There is, in particular, lack of adequate response

data and of rational but simple methods oi'analysis which may be used reliably and cost-effectively in

design. Valuable accounts of previous contributions on the subject have been provided in state-of-the-

art reports by Nazarian and Hadjian [1], Prakash [2] and Whitman [3], and they will not be high-

lighted here.

The methods that have been used for the analysis of the problem can conveniently be classified into

three categories: (1) those in which the relative motions of the wall and backfill material are suffi-

ciently large to induce a limit or failure-state in the soil; (2) those in which the wall is essentially

unyielding and the ground motion is of sufficiently low intensity so that the backfill material may be

considered to respond within the linearly elastic range of deformations: and (3) the intermediate case

in which the true nonlinear, hysteretic properties of the soil are accounted for explicitly.

Representative of the first approach is the well known Mononobe-Okabe method [4, 5] and its various

variants [6, 7, 8], in which a wedge of soil bounded by the wall and an assumed failure plane is con-

sidered to move as a rigid body, experiencing the same acceleration as the ground. Representative of

the third approach is a recent contribution by Siller et al [9] dealing with the responses of gravity and

anchored walls.

The present study is in the vein of the second approach; it examines the wall pressures and associated

forces induced by ground shaking under elastic conditions of response. The sy,,tem investigated is a

semi-infinite, uniform, viscoelastic stratum of constant thickness which is excited by a space-invariant

motion along its base and its vertical boundary. Both harmonic and transient excitations are used. Rel-

atively simple, approximate solutions and comprehensive numerical data are presented which eluci-

date the effects and relative importance of the numerous parameters involved. In addition to valuable

insights into the response of the particular system considered, the numerical solutions presented pro-

vide a convenient frame of reference for the analysis and interpretation of the responses of more com-
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plex systems as weil.

The elastic response of this system has been examined previously by Matuo and Ohara [10], who

employed a method of analysis similar to the one used here. However, the accuracy of their solution

cannot be confirmed, and they have presented no numerical solutions. In a series of valuable studies

[11, 12], Weod has provided analytical solutions and comprehensive numerical data for the response

of a stratum of finite length excited uniformly along its base and its two vertical boundaries. Wood's

analysis was implemented by modal superposition and led to expressions involving double series.

While these expressions can also be used to approximate the response of the semi-infinite stratum

considered herein, they require the consideration of a prohibitively large number of terms.

Scott [ 13] has proposed a simple model for approximating the responses both of the semi-infinite stra-

tum examined here and of the bounded system investigated by Wood [11, 12]. In this model, the far

field response of the stratum is evaluated from an analysis of a similarly excited, uniform shear-beam.

The dynamic wall pressure at an arbitrm-y height is then computed on the assumption that it is propor-

tional to the relative motions of the wall and the shear-beam at that height. Scott's model has been

used widely [14 through 18] and variations of it have also been employed in analyses of piles [ 19] and

of underground cylindrical structures [20].

One of the objectives of the present study is to assess the reliability of Scott's model for the problem

under consideration by comparing its predictions with those of the more nearly exact analysis pre-

sented herein. A final objective is to present an alternative model which better approximates the action

of the system.
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SECTION 2

SYSTEM AND METHOD OF ANALYSIS

The system investigated is shown in part (a) of Fig. 2.1. lt is a semi-infinite, uniform layer of vis-

coelastic material that is free at the upper surface, is bonded to a rigid b_,se,and is retained along one

of its vertical boundaries by a rigid wall. Both the wall and the base of the layer are presumed to be

excited by a space-invariant motion, the acceleration of which at any time t is _g (t). Material damp-

ing for the medium is considered to be of the constant hysteretic type [21].

The properties of the layer are defined by its mass density, p, shear modulus of elasticity, G, Pois-

son's ratio, v, and the material damping factor, 6, which is considered to be frequency-independent

and the same for both shearing and axial deform _,ons The latter factor is the same as the tan8 factor

used by Veletsos et al in several previous studi ..... _ %undation dynamics (e.g., Refs. 21 and 22) and

twice as large as the percentage of critical damping, 6, used by other authors in related studies (e.g.,

Refs. 11, 12, 13 and 23).

The displacements relative to the moving boundary and the resulting wall pressures and forces for the

base-excited system can be shown to be identical to those of the force-excited system indicat_ in part

(b) of Fig. 2.1. Both the wall and base of the latter system are stationary, and the layer is excited by

uniform lateral body forces of intensity -p _g (t). For exciting frequencies that are very low in com-

parison to the fundamental natural frequency of the stratum, the action of the force-excited system

may be easier to visualize than that of the base-excited system.

2.1 Governing Equations and Assumptions

When referred to the rectangular system of coordinates x, y shown in Fig. 2.1, the equations of motion

for the medium may be written as

/) xy ,9½
_ +_)-_ = PH_t2+PH_s(t) (1)

O xy_ g0ZV_9oy+ - 13 (2)

in which o x and oy are the normal stresses at an arbitrary point and time along the x- and y-coordi-
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nates, respectively; u and v are the corresponding _isplacements relative to the moving boundary: "Oxy

is the shearing stress in the x-y plane: a dot superscript denotes a differentiation with respect to time:

and _ and rl are dimensionless position coordinates defined by/_ - x/H and 11 - y/H. The sign

convention for stresses and displacements is that used in theory of elasticity. Specifically, displace-

ments are positive when directed along the positive direction of the corresponding coordinate axes,

normal stresses are positive when they induce tension, and the positive directions of the shearing

stresses are as indicated by the inset diagram in Fig. 2. l(a).

For the two-dimensional, plane strain condition examined herein, the stress components are related to

the displacement components by

10u l_v

o x = (._L*+ 2G* ) _0--_ + 3.*HOq (3)

=G* 1 _ 03-_)_xy _ ( + (4)

1 0v 1 0u

oy = (x* + ) + (5)

in which G* and X* are the complex-valued Lame constants

(3* = O ( 1 + rf)) (6)

2v G*
_'* - 1 --2v (7)

and i = 4-_.

Fundamental to the analysis presented is the assumption that no vertical normal stresses develop any-

where in the medium. As a consequence, the following expression is obtained from Eq. 5

bv Z.* bu v Ou
0-_ = -X* + 2G*-0_ - 1 - v _ (8)

which when substituted into Eq. 3 leads to

= q12oG, 1 o3ux HO_ (9)

where

I 2 (10)qJo = 1-v

Next, on substituting Eq. 3 along with Eq. 4 into Eq. l, and making use of Eqs. 7 and 8, the equation

expressing the equilibrium of forces in the x-direction can be written as

'1 /""g"

,i
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_geG _-+ 0-_.,.p _-t2 = 0H2_g(t) (11)

in which

(12)q/e= " -V

Eq. 11 is solved subject to the boundary conditions

ut,_= o = 0 (13)

uln = o = 0 (14)

With u determined, the normal stresses are computed from Eq. 9; the vertical displacements, v, are

determined by integration of Eq. 8 subject to the boundary condition

vl_ = o = 0 (15)

and the shearing stresses, "_xy'_e determined from Eq. 4.

lt should be noted that Eq. 2, which expresses the equilibrium of the vertical forces, is not satisfied in

this approach, neither is the condition of vanishing shears at the free surface. For the horizontal

ground motion being examined, the primary motions in the medium are shearing ax:t longitudinal.

The vertical motions and stresses are Poisson's ratio induced, and would not be expected to affect

importantly the resulting wall pressures and forces which are the quantities of primary interest in this

study. This expectation as well as the unimportance of violating the condition of zero shearing stresses

at the surface are confirmed in a later section through studies of the static response of the system.

Note should also be taken of the fact that no mention has so far been made of the in-plane condition at

the wall-soil interface. For the analysis presented, both the shearing stresses and the vertical displace-

ments along the interface are generally finite. Accordingly, the presumed interface condition is neither

smooth nor rough but intermediate in nature. This approximation is also examined further later.

If instead of the vertical normal stresses, Oy, the vertical displacements, v, had been assumed to be

zero, it can be shown that both the factor _goin Eq. 9 and the factor _g_in Eq. 11 would have had to be

replaced by

/2(l-v)

Zo = 4! 1-2v (16)

The assumption of vanishing vertical displacements underlies both the analysis presented by Matuo

and Ohara [10] and the study of several related three-dimensional problems reported by Tajimi [23].

2-3
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The interrelationship of the solutions based on the Oy = 0 and v = 0 approximations is examined in
a later section. In the interim, it is worth noting from Eqs. 16 and 9 that, as v --->0.5, the longitudinal

normal stresses in the solution for the v -- 0 approximation tend to infinity, a result which is clearly

unacceptable. Except where specifically otherwise indicated, the solutions presented herein are for the

assumption of vanishing vertical normal stresses.

2.2 Harmonic _,esponse

For a harmonic input motion of acceleration

_g(t) = Xge i°_' (17)

the relative displacements u (_, rl, t) may be expressed in the form

u(_, q,t) = U (_,'l:)e it°t (18)

in which Xg = the acceleration amplitude of the input motion; co = the circular frequency of the

excitation and resulting response: and U (_, 11) - a complex-valued function of _ and q represent-

ing the relative displacement amplitudes.

= The function U (_, q) may be expressed as a linear combination of the natural modes of vibration of

II the medium computed on the assumption that it acts as a series of vertical cantilever shear-beams, i.e.,

_ nii;

U 11)= Un sin- -n (19)
n= 1,3

in which n = an odd integer. Note that in addition to satisfying the boundary condition defined by Eq.

14, this expansion defines exactly the far field effects.

On substituting Eqs. 17 and 18 into Eq. 11, making use of Eq. 19, and expanding Xg in the form

Xg _ 4_X _ 1 nnn g. 3n sin-_- q (20)= j

it is found that U. must satisfy the ordinary differential equation

d2Un F nn -12 4pXg H2
---i AnU n - (21)

2 [_2Vo] n v G*

in which

An = 1 1 + I_5 (22)
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10_

don- (23)
n oo 1

cot = the fundamental circular natural frequency of the cantilever shear-beam, given by

/_V s

Cam- 2 H (24)

and v8 = _O = the shear wave velocity for the medium.

The homogeneous solution of Eq. 21, Uhn,is given by

U"n(_) = Ane-%_+Bne %_ (25)

in which An and B n are integration constants, and a n is the square root of the coefficient of U n in Eq.

21. The latter quantity may be expressed as

nn
(x - (a n+_b n) = c n+td n (26)

n 2_g8

where an and bn are real-valued positive dimensionless factors defined by

an = ^jiAn cos0n (27a)

bn = 4__,_sin0n (27b)

and On - a phase angle in the range between 0 and rc/2 given by

1 1 8'2.

0n = _ArgAn = _ arc tan ----51-don+ b2 (28)

The vertical bars in the expressions for a n and bn represent the modulus of the enclosed quantity. For

a non-dissipative, undamped medium, On equals zero for don< 1 and rc/2 for don> 1"accordingly, for

bothcases, an+ 1;bn = _ - do2.

Considering that the term at the extreme right of Eq. 25 increases without bound with increasing/_

while the response is finite, the integration constant Bn must vanish. This reasoning is strictly valid

only for a dissipative medium with a finite value of 5. For a purely elastic medium and values of

don> 1, a n is purely imaginary, and the term involving the factor B n does not increase unboundedly.

Rather, its product with the time function ete°trepresents a harmonic wave propagating from the far

field towards the wall. However, since no waves originate or are reflected from the far field, Bn must

again vanish.

The particular solution of Eq. 21, Unp, is a constant given by

2-5



16 P XgH 2 1 1

UPn(_) = n 3 G n31-_b2n+i6 (29)

and the complete solution for Un (_) is given by

Un(_) = Ane-(%+id,,_ _ .ln63pXgH2 1 1 (30)G n3 1 -_2n + ib

in which the integration constant A n may now be determined from the boundary condition defined by

Eq. 13.

On so determining A n, and substituting the resulting expression for U,, into Eq. 19, the following

er.pression is obtained for the relative displacement amplitude

- (Cn + tdn) _ nn16 pXg H2 _-, 1 1 - e
sin-_ Q (31)

U(_,rl) = n3 G n= ,3 n3 i-qb2n+l_

The real part of this equation represents a response component that is in phase with the exciting

motion, whereas the imaginary part represents a component that is 90 ° out of phase. Two factors con-

tribute to the imaginary' part: (1) the soil material damping; and (2) the radiational damping, which is

associated with the capacity of the medium to dissipate energy by radiation of waves into the far field.

The relative importance of these two sources of energy dissipation depends on the frequency of the

excitation, and this dependent. , :x_mined further in a later section.

Provided soil material damping is finite, as _ --_ oo the exponential term in Eq. 31 vanishes, and the

equation reduces to

16 P XgH2 _-, _1 1 sin nn
U(rl) -- n3 G ._3 _n +_6= , n31- 2 -_-rl (32)

This expression is, of course, the same as that governing the motion of a base-excited, vertical shear-

beam of the same height and material properties as the stratum: see Appendix.

For a purely elastic medium with no material damping, Eq. 31 reduces to

llJ% /----"

16pXg H2 I_ 1 l-e
U (_, 1]) = n3 ---G--- _ n-3 _ sinnn-2-11 (33)n=l,3 1--q_n

The following trends are worth noting in this expression:

1. For exciting frequencies lower than the fundamental natural frequency of the layer (values of

_ < 1), the exponential functions for all terms in the series are real-valued, and the displacemeru

2-6
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amplitudes increase monotonically from zero at _ = 0 to their maximum values at the far field:

the latter values are the same as those given by the undamped version of Eq. 32. The lack of any

imaginary terms in the solution confirms the well known fact that no energy gets dissipated by

radiation of waves in this case.

2. Fo_-exciting frequencies higher than the fundamental natural frequency of the layer, the power of

the exponential functions is purely imaginary for the first term of the series, and either real and

negative or purely imaginary for the higher order terms. Accordingly, superimposed on the mono-

tonically varying function of/_ in this case, there are harmonic functions of non-decaying constant

amplitudes that persist even as/_ _ oo. In particular, the far-field motion consists of the superposi-

tion of the shear-beam motion and the motion due to waves radiated from the wall.

3. For exciting frequencies equal to any of the natural frequencies of the layer (i.e., _bn = I or

d_l - 1, 3, 5.... ), the response of the system becomes infinite. Soil material damping naturally

limits these responses to finite values .....

2.2.1 Vertical Displacements. On substituting Eq. 31 into Eq. 8, integrating with respect to r! and

satisfying Eq. 15, the vertical displacement v is found to be given by

v (_, 11,t) = V (_, q) ei'_t (34)

in which

16hvvPXgH 2 _ 1 (an +[bn) e-(c'+id")_
__ nK

V (_, 11) = rc3 G n3 " ( 1- cos rI) (35).=_,3 1-_?+_b -2-

and

V
m

Wv - .J(1-v) (2-v) (36)

2.2.2 Normal and Shearing Stresses. These quantities may similarly be expressed as

o x (/_, rl, t) = o (_, 11)e t°'t (37)

and

_xy (_' 11,t) = "_(_, 11)ei'°t (38)

and on substituting Eq. 31 into Eq. 9, and Eqs. 31 and 35 into Eq. 4, the following expres-

sions are obtained for the complex-valued stress amplitudes o (_, 11) and • (_, 11)"

2-7
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_, 1 (an + tbn) e-(%+ia") _

.. nTI;

- -- sin-_- rl (39)
a(_,TI) - pXgH(1 +l_8) n= 3 n2 1-(_2n+1_5

in which

V2o 2
V_, - Ve - J(1-v) (2-v) (40)

and

-(% +ia.)g)
1 (1 +tS) (1-e nn

___rc2PXgH8 _ 1-_2n +i5
COS -_- TI

n=l,3 (41)

v -(%+ ian)_ nn x-]
----e ( 1 - cos -_- rl2-v ,j

For _ = 0, i.e., for points on the wall-medium interface, the first group of terms within the summa-

tion of Eq. 41 vanish, the exponential terms in the second group of terms become unity, and the shear-

ing stresses _, like the corresponding displacements defined by Eq. 35, turn out to be generally non-

zero and proportional to Poisson's ratio, v. lt follows that the presumed in-plane interface condition

is, as already noted, neither smooth nor fully bonded but intermediate in nature.

2.2.3 Wall Pressures and Forces. The amplitudes of the dynamic wall pressures, ow (vi), are

obtained from Eq. 39 simply by deleting the exponential term. With the pressure amplitudes estab-

lished, the amplitudes of the total wall force or base shear per unit of length of the wall, Qb, and of the

corresponding bending moment, Mb, are determined by integration to be

1

Qh = J'°w (rl) Hdrl
o (42)

oo

16qlo ..

11;3pXgH" (1 + l_b) _ 1 a. + I_bnn=l,3 nal-_2 n+_5

and

1

Mb = [ow (rl) H2rldrl
0

n-I (43)

32_o_ c, ,,3 £ (-l) 2 an + [b n
- -_ 19Agn ( 1 + [5) n = l, 3 n4 1 -- 1}2n+ [_)

in which the negative signs indicate that these forces are induced by compressive wall pressures.
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= /1 - #2n , the wall pressure amplitudes,For an undamped medium with 5 = 0 for which a n+ {bn ,_

a w(rl), and Eqs. 42 and 43 reduce to

8_OpXgH2 £ 1 ._1 nn£I w (rl)
/1;2 n= 1,3 n3 v_l---sin-2-rl-a_

(44)

16_go _' 1 1
Qb = P XgH2 ,--, (45)

g3
n=l,3 n3,_l_a2n

and

n-I

32_go _ (-1) 2
Mb = 7.1:4 pXgH 3 _., 1 (46)n=l.3 n4 2

,J1 - d_rt

Note that for an > 1 (values of to > na t ), the terms involving the square-root sign in these equations

become imaginary. Note further that the terms within the summation signs in Eqs. 42 through 46 are

independent of Poisson's ratio. Accordingly, the dependence of the wall pressures and associated

forces on v is reflected fully in the factor _o defined by Eq. 40. Incidentally, for the solution based on

the assumption of vanishing vertical displacements, this factor must be replaced by the factor _o

defined by Eq. 16.

2.3 Transient Response

With the harmonic response of the system established, the response to an arbitrary transient excitation

is evaluated by the Discrete FourierTransform (DFT) method in combination with the Fast Fourier

Transform (FFT) algorithm [24]. In the application of this procedure, the duration of the forcing func-

tion should be increased by the addition of a sufficiently long band of zeros [25] to eliminate the alias-

ing errors that may be introduced. For the solutions presented herein, the duration of this band was

taken equal to either the duration of the forcing function or 10 times the fundamental natural period of

the layer idealized as a cantilever shear-beam.
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SECTION 3

PRESENTATION AND ANALYSIS OF RESULTS

3.1 Static Effects

lt is desirable to begin by examining the responses obtained for harmonic excitations the frequencies

of which are small compared to the fundamental natural frequency of the layer (i.e., for values of

_1 -->0). Such excitations and the resulting effects will be referred to as static, a term which should

not be confused with that normally used to represent the effects of gravity forces. In the equivalent,

force-excited version of the problem shown in Fig. 2.1(b), the static excitation is represented by a set

of horizontal body forces of constant intensity -p _:g.

O st) is attained at the top of the wall, and it is determinedThe maximum static wall pressure, ( w- max,

from Eq. 44 to be

(cr_) max= ---0.742_o p XgH (47)

The maximum shear and bending moment in the wall occur at the base, and their values per unit of
st

length, Q_t and Mb , are determined from Eqs. 45 and 46 to be

Q_t = -0.543_FopXgH 2 (48)

and

M_ t = -0.325_o oxgH 3 (49)

For Poisson's ratio v = 0.3, (O st)w.max - -I.3610XgH , which equals the value of the total body

force exerted over a soil strip of unit thickness and length 1.361H. Similarly, the corresponding base

shear of 0.995oXgH 2 is approximately equal to the body force exerted over a square of side length

equal to the wall height. These results suggest that the wall pressures and forces in this case are con-

trolled by the action of the medium in the immediate vicinity of the wall rather than by its far-field

action.

As a measure of the accuracy of the solutions that have been presented, the base shears for the wall

computed from Eq. 48 for different values of Poisson's ratio for the medium are compared in Fig. 3.1

with those obtained from Wood's more rigorous solution [11]. The latter solution is strictly valid for_a
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layer of finite length, L, retained by a wall with a smooth interface at each end. For the numerical data

reported here, L was taken as 10H, a value which is believed to adequately approximate the behavior

of the semi-infinite layer, and approximately 70 terms were used in the series expressing the variation

of effects in the long direction. Also included in Fig. 3.1 are the base shears computed on the assump-

tion of no vertical displacements for the layer. The latter values are obtained from Eq. 48 merely by

replacing q_o by _o' The following interrelationships are observed:

1. Over the full range of v values, the results based on the Cry= 0 assumption are in very good
agreement with the exact results.

2. For values of v < 1/3, the same also is true of the results based on the v = 0 assumption. How-

ever, as v _ 0.5, the accuracy of the latter solution deteriorates rapidly and ceases to be accept-

able.

Mention has already been made of the fact that the solution presented herein does not satisfy the con-

dition of zero shearing stress at the free boundary. Study of Eq. 41 reveals that the unsatisfied shearing

stress attains its maximum value at the junction of the surface and the wall, and that it decays rapidly

with increasing distance from the wall. Furthermore, its maximum value turns out to be independent

of the exciting frequency and generally small compared to the normal pressure exerted on the wall.

For the statically excited system, the ratio of the amplitudes of the two stresses, determined approxi-

mately from Eqs. 39 and 41 by considering only the first terms of the series, is

• (0, l) v [i--V- (50)t ..........

cr(0, 1) 2_! 2-v

The maximum value of this ratio occurs for v = 0.5 and equals 0.144; the value for v = 0.3 is only

0.096. lt is concluded that the violation 0Xthis boundary condition has only a minor influence on the

magnitudes of the wall pressures and associated forces, the quantities of primary concern in this study.

Using the finite elements method of analysis, Wood has also evaluated the static wall pressures con-

sidering complete bonding between the wall and the soil, lp. 60 of Ref. 11].The results were found to

be in good agreement with those obtained for the smooth interface condition, except for over a very

narrow region near the surface, for which the solution for the rough interface exhibits a singularity

which cannot, of course, develop in a real soil. This finding provi.:les further support for the reliability

of the solutions presented herein for which the in-plane condition at the wall-medium interface is nei-

ther smooth nor fully bonded.

3.2 Results For Harmonic Response

3.2.1 Magnitude and Distribution ot' Wall Pressures. The complex-valued amplitude of the

dynamic wall pressure, c_w(rl), may conveniently be expressed in the form
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cs, (11) = -(gr +tg2)_gopXgH (51)

in which g_ and g2 are dimensionless factors that depend on,he position coordinate 11,the frequency

ratio Ct - to/to_' and the associated damping factor, 8. The effect of Poisson's ratio is reflected fully

in the factor _o. The real part of this equation represents the restraining effect of the elastic, spring-

like action of the medium, whereas the imaginary part represents the effect of a damping mechanism

analogous to that of a viscous damper. The real-valued amplitude of the pressure is, of course, given

by the square root of the sum of squares of the component parts.

The values of gt and g2 for the top of the wall are plotted in part (a) of Fig. 3.2 as a function of the

frequency ratio, _o/to I , and the corresponding values of ,/g_ + g_ are plotted in part (b) of the figure.

The material damping factor in these solutions is taken as 8 = 0.1. The following trends are worth

noting in these plots:

1. For co = 0, the factor g2 = 0 and the wall pressure reduces, as it should, to the value defined by

Eq. 47.

2. For values of o < to1' the pressure is dominated by the real part of Eq. 51, whereas for co> tol' it

is dominated by the imaginary part. Note in particular, the very rapid and large increase in g2 at

values of co close to to_. The relative unimportance of the imaginary part of Eq. 51 for o < to t is

consistent with the earlier statement to the effect that, within this range of frequencies, there is no

energy dissipation by radiation of waves.

3. The absolute maximum pressure amplitude is attained at to = tot and it is associated with an

amplification factor of 3.39. This is a relatively low value, indicating large overall damping for the

system.

The heightwise variation of the factor _/g_+ g_ in the expression for the amplitude of the wall pres-

sure is shown in Fig. 3.3(a) for selected values of the frequency ratio, to/tol" lt is observed that, for

values of to/to_ of the order of 2 or less, the stress amplitudes increase monotonically from zero at

the base to a maximum at the top, and that they are dominated by the fundamental mode of vibration

of the layer. By contrast, the wavy variations for the larger values of to/tol reflect the increased con-

tributions of the higher modes of vibration.

The pressure distribution for to= 3cot (i.e., at the second natural frequency of the Iayer), may better be

appreciated from the plots in Fig. 3.3(b), which identify the real and imaginary parts of the pressure

amplitude in addition to the real-valued amplitude. Note that the horizontal scale in this figure is twice

as large as that employed in Fig. 3.3(a).

3.2.2 Horizontal Variation of Effects. For the frequency ratios considered previously in Fig. 3.3(a),

Fig. 3.4 shows the horizontal variation of the real-valued amplitudes of the horizontal normal stress at
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the top of the layer, IOx(_, 1)1. Similarly, Fig. 3.5 shows the corresponding variations of the real-val-

ued amplitudes of the top displacement relative to the moving base, iU (_, 1) J, and of the shear at the

soil-rock interface, I'c(/_, 0) 1. Stresses in these plots are normalized with respect to p XgH, and dis-

placements are normalized with respect to pXgH2/G. These data are for a medium with v = 0.3 and

- 0.1. Unless otherwise indicated, the same medium properties will be considered for ali other

solutions that follow.

As would be expected, the amplitudes of the normal stress decrease from their maximum or near max-

imum values at the wall to zero at the far field, whereas those of the shearing stress and displacement

increase from zero at the wall to the values associated with the shear-beam action of the layer at the

far field. The variations are monotonic for co/co_ < 1, confirming the absence of radiational effects,

and oscillatory for the higher values of to/to_ for which the radiational effects are important. The rate

of decay of the normal stress with increasing distance from the wall is quite rapid for the small values

of o3/coI and only moderate for the higher values. This suggests that whereas the wall pressures at

low frequencies are, as already indicated, controlled by the action of the medium in the immediate

vicinity of the wall, those at high frequencies are also influenced by the far-field action of the medium.

3.2.3 Base Shear and Moment. The real-valued amplitude of the base shear per unit length of the

wall, !Qbl, is plotted in Fig. 3.6 as a function of the frequency ratio co/o; 1 for three different values of

the material damping factor for the medium, b. Poisson's ratio for the medium in these solutions is

again taken as v = 0.3. The results are normalized with respect to pXgH 2.

As would be expected, ali curves start at the left from the static value of 0.995pXgH 2 identified pre-

viously, and the curve for the undamped system becomes infinite at exciting frequencies equal to the

natural frequencies of the layer. Soil material damping reduces significantly the resonant peaks, par-

Ocularly those corresponding to the higher modes of vibration. For b = 0. I, the amplification factor

for the first resonant peak is only 3.05, whereas the second resonant peak is hardly noticeable.

The very significant effect of damping on the higher resonant peaks is associated with the fact that,

except for the totally undamped system, the fundamental mode of vibration is the dominant contribu-

tor to the response even for high-frequency excitations. This is demonstrated in Fig. 3.7, in which the

exact amplitudes of the base shear for a wall retaining a medium with 8 = 0.1 are compared with

those obtained considering the contribution of the fundamental mode of vibration only. The excellent

agreement between the two sets of results indicates that the one-mode approximation should be satis-

factory for transient excitations as weil.

The amplitude of the base moment per unit length of the wall may conveniently be expressed as the

product of the base-shear amplitude and an appropriate height, h. If the response were contributed

solely by the fundamental mode of vibration, considering that this mode varies as a half-sine from
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zero at the base to a maximum value at the free surface, the height h would have been

(2/r0 H - 0.637H. The exact values, identified in Fig. 3.8, are not materially different, except for a

totally undamped system at exciting frequencies close to the second natural frequency of the layer.

3.3 Solutions for Transient Response

The response of the medium was also evaluated for the first 6.3 sec of the N-S component of the

ground motion recorded during the 1940 El Centro, California earthquake. The acceleration, velocity

and displacement traces of this record have been presented before in [26]. The peak value of the

ground acceleration is _s = 0.312 g, and the corresponding values of the velocity and displacement

are _s - 14.02 in/sec and xs = 8.29 in.

The upper solid line in Fig. 3.9 defines the absolute maximum value of the base shear per unit length

of the wall induced by the El Centro ground motion for a medium characterized by v -- 0.3 and

5 - 0.10. The results are plotted as a function of the fundamental cyclic natural frequency of the

medium, defined by

vs (52)
fl = 4H

and they are normalized with respect to p_gH 2. It should be noted that the right part_of this figure,

which defines high-frequency, stiff systems, corresponds to the left parts of Figs. 3.2, 3.6 and 3.7, and

that the left part of Fig. 3.9 corresponds to the right parts of the previous figures.

As a measure of the values of fl that may be encountered in practice, it is noted that for values of vs

in the range between 400 and 1600 ft/sec and values of H in the range between 10 and 50 ft, the value

of f_ falls in the range of 2 cps to 40 cps.

The responses of high-fi'equency systems, with values of f_ of the order of 30 cps or more, is effec-

tively static, and the maximum base shear per unit of length of the wall in this case is approximately

p _sH 2. With decreasing system frequency, the peak response increases but, as would be expected of a

highly damped system, the increase is limited to a factor of less than 1.5. For highly flexible, very

• low-frequency systems, the maximum effects are naturally less than those obtained under static condi-

tions of excitation.

The upper dashed line in Fig. 3.9 defines the values of the maximum base shear computed considering

the contribution of only the fundamental mode of vibration of the medium. As anticipated from the

responses of the harmonically excited systems examined earlier, the agreement with the more nearly

exact solution is indeed excellent. If follows that the maximum values of the wall pressures may, for

all practical purposes, be considered to increase as half-sine waves from zero at the base to a maxi-

mum value at the top, and the maximum base moment may be computed as the product of the base
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shear and the height h = 0.637H. The significance of the lower two curves in Fig. 3.9 is identified in

the following section.

Before proceeding to the next section, it is desirable to reiterate that, when appropriately adjusted, the

data for the wall pressures and associated forces presented in Figs. 3.2, 3.3 and 3.6 through 3.9 are

also valid for the solution based on the assumption of vanishing vertical displacements, lt is only nec-

essary to replace the factor _o in Eqs. 42 through 49 and Eq. 51 by the factor Zo defined by Eq. 16.
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Figure 3.3 Heightwise variations of coefficients in expression for wall
pressure induced by harmonic input motion; 5 = O.1.
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Figure 3.4 Horizontal variations of horizontal normal stresses induced
at top of layer by harmonic base motion: v = 0.3, b = 0.1.
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Figure 3.5 Horizontal variations of top displacements and base shearing
stresses induced by harmonic base motions: v = 0.3, 5 = 0.1.
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SECTION 4

MODELING OF SYSTEM

4.1 Scott's Model

The accuracy of Scott's model is assessed in this section for the special case of the semi-infinite stra-

tum. The model is shown in Fig. 4.1: it consists of a uniform cantilever shear-beam that represents the

far-field action of the layer and a set of distributed linear horizontal springs connecting the shear-beam

to the wall. The material properties and height of the beam are taken equal to those of the stratum, and

the stiffness of the springs per unit of length and height of the wall, ks, is taken as

8(l-v) G _ 0.4 .Gol_iks = 10(1-2v) H -
(53)

Both the wall and shear-beam are presumed to be excited by the same ground motion. Note that the

only damping for the model is that invoJved in the shear-beam itself.

Considering that the relative di:;placement amplitudes for a harmonically excited shear-beam are

defined by Eq. 32, the amplitudes of the wall pressures for the model are given by the product of this

equation and ks as

6"4Z2o .. _.1 1 sin rl (54)
%(q)- 5 19XgH n31_Cn+t 5 2-7"1; n=l,3

The amplitudes of the base shear and base moment per unit length of the wall are similarly given by

12.8Z2o 1 1

Qb= rr'* 19XgH2 _ n-_..... 2-..... (55)
n= 1,3 1 - _n + l_b

and

n-I

25.6Zo2 (-1) 2 1

Mb = 5 19XgH3 _._ n 5 2 (56)

There are several shortcomings to this model:
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1. The rationale and accuracy of Eq. 53 are uncertain. Considering that the wall pressures and forces

are proportional to ks, any errors involved in the specification of this stiffness affect directly the

resulting responses, lt should also be noteu that as v tends to 0.5, kSand hence the wall pressures

and the associated forces become infinite.

2. The ground motion in the model is effectively presumed to be resisted by shearing action of the

medium in the far field, and by extensional, column-like action between the far field and the wall.

No provision is made for the shearing resistance of the portion of the medium in the immediate

vicinity of the wall, which, based on the information presented in previous sections, may affect

importantly the resulting wall pressures.

3. The model does not provide for the radiational damping capacity of the medium; as a result, it may

significantly overestimate the responses of the system at exciting frequencies close to the natural

frequencies of the stratum.

In Fig. 4.2, the real and imaginary parts of the frequency response curves for the amplitude of the

pressure at the top of the wall computed from Eq. 47 are presented along with the corresponding plots

obtained by use of the Scott model. As before, Poisson's ratio and the material damping factor in these

solutions are taken as v = 0.3 and b = 0.1. Comparison of the two sets of results reveals the follow-

ing:

1. The static value of the pressure amplitude for the model is significantly lower than that obtained by

the more rigorous approach, a result indicating that the spring stiffness defined by Eq. 53 is too

low:

2. As anticipated, the fundamental resonant peak of the pressure computed by the model is indeed

significantly higher than the exact value.

3. The relative magnitudes of the real and imaginary parts in the two solutions are different over the

entire range of the frequency parameter. Note, in particular, that whereas the responses of high-fre-

quency systems in the more rigorous solution are dominated by the imaginary part, in Scott's

model, they are dominated by the real part.

The differences between the two solutions may better be appreciated from Fig. 4.3 which compares

the real-valued amplitudes of the base shear computed by the two approaches. The agreement is

clearly less than satisfactory, lt is noteworthy, however, that whereas Scott's model overestimates the

response at exciting frequencies close to the fundamental natural frequency of the stratum, it underes-

timates the response at the remaining frequencies, lt is conceivable, therefore, that for earthquake

ground motions for which the dominant frequencies of its harmonics fall within a band extending to

both sides of the fundamental natural period of the stratum, the differences in the responses computed

by the two approaches may not be as large as might be infen'ed from the differences in the ordinates of

the plots in Fig. 4.3.
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That this indeed the case is demonstrated in Fig. 3.9, in which the exact maximum values of the base,

waU-shear induced by the El Centro record are compared with those computed from Scott's model.

Within the middle range of the frequencies considered, the agreement between the two sets of results

may not be deemed to be unreasonable. However, this agreement is fortuitous: it stems from compen-

sating errors associated with the underestimation of both the stiffness and damping capacity of the

system.

If the stiffness of the springs in Scott's model were increased so as to yield the correct, effectively

static response at high natural frequencies, it is clear from Fig. 3.9, that the comparison at the other

frequencies would deteriorate dramatically. Obviously, this is not a desirable modification of Scott's

model.

As would be expected from information already presented, the fundamental mode approximation of

the solution based on Scott's model (represented by the lower dashed line in Fig. 3.9) is in excellent

agreement with the corresponding exact solution.

4.2 Proposed Models

For the purpose of estimating the dynamic wall pressures and the associated base shear and base

moment, the action of the soil stratum may more reliably be modeled by that of the simple oscillator

shown in Fig. 4.4. The mass of this model, na*, is determined so that the total wall force or base shear

for static conditions of _esponse equals the exact value defined by Eq. 48. This requires that

m* = 0.543_o pH 2 (57)

4.2.1 Model with Constant Parameters. The spring stiffness, k'*, in this case is determined so that

the undamped natural frequency of the model equals the fundamental natural frequency of the

medium idealized as a series of vertical shear-beams. The result is

2
, n G

k* = m - 1.339q*oG (58)
4H 2 P

Finally, the damping coefficient, c*, is determined so that, for a harmonic excitation of a frequency

equal to the natural frequency of the model, the total wall force for the model and the actual system

are equal. This requires that the damping of the system, in percent of critical damping _*, be defined

by

_, = 1 (59)

2_!TRt,_2_1

in which the transmissibility factor, TR tj, represents the ratio of the exact real-valued amplitude of-
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the total wall force at to = tol to the corresponding force induced under static conditions of response.

Implicit in the development of Eq. 59 is the assumption that the coefficient of viscous damping, c*, is

constant. If, in the spirit of the constant hysteretic form of damping used in the characterization of the

hysteretic properties of the medium, the product toc* rather than c* is considered to be constant, then

the damping factor will be inversely proportional to co.On denoting the latter factor by _*(co), one

obtains

(*(to) -  6o)
to/to1

With the total well force established, the wall pressures are determined considering their magnitudes

to increase as a half-sine from the base to the top, and the base moment is determined assuming the

force resultant to act at the centroid of the pressures, i.e., at a distance h - (2/r0 H from the base.

The exact response spectrum for the base shear of harmonically excited systems is compared in Fig.

4.5 with the corresponding spectra obtained by the proposed model for each of the two forms of

damping referred to above, lt is observed that:

1. The agreement between the two sets of results is not particularly good for exciting frequencies

other than zero and the fundamental natural frequency of the stratum.

2. The results are insensitive to the forms of damping considered, even as to/co_ tends to zero and the

value of _*(co) for the constant hysteretic form of damping tends to infinity.

3. The differences between the rigorous and approximate solutions suggest that the stiffness of the

spring in the proposed model is not constant as presumed, and that tlae frequency-dependence of

the damping coefficient corresponds to neither of the two forms of damping considered.

4.2.2 Model with Frequency-Dependent Parame',ers. The mass of the model, r_ , in this case is

defined, as before, by Eq. 57, but the spring stiffness, k (o3), and the damping coefficient, c (co), are

determined so that the harmonic responses of the actual and replacement systems are identical at ali

frequencies.

Let TR be the complex-valued transmissibility of the actual system at an arbitrary frequency, and

(TR) m be the corresponding quantity for the model. The exact transmissibility is determined from

Eq. 42 by normalizing the result by the corresponding static value.

With the mass of the model defined by Eq. 57, the static effects for the two systems are identical, and

the equality of the dynamic effects may be satisfied by equating the two _aw,missibilities. R_alling

that
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I_ (ro)

(TR) m - I_ (ro) - rn_o2 (61)

where I_ (co) = the complex-valued impedance of the model defined by

I_(ro) - k(ro) +(roc.(ro) (62)

replacing (TR) m by TR, and solving for I_ (ro) , one obtains

TR r_ro2 (63)l((ro) - TR-1

This quantity may conveniently be expressed either as

I_(ro) = k_,(ot+¢2_-_) (64a)

or in the form

1_ (ro) "- kst (_ + 1_) (6_b)

in which lost = the static value of I_ (ro) corresponding to ro/ro1 -:" 0; _x = a dimen:,ionless stiffness

coefficient which is unity at co = 0: _ = the damping of the mode, in percent of critical damping:

and _5is an alternative damping factor, analogous to _he factor 5 used to characterize the soil material 0

damping of the medium in the original system. The factors _t, _ and _5are functions of the frequency

ratio eo/co_ and of the soil material damping factor 5.

In the following, the parameters of the model are determined approximately using for TR the v_ues

obtained considering the contribution of only the fundamental mode of vibration of the layer. Fo_ this

approximation, the mass of the model is given by

16_ o
ffl - pH 2 (65)

_3

the static spring stiffness is given by

kst 8q/°- G (66)
7_

and the values of _t, _ and _ are as shown in Fig. 4.6. Note that for a non-dissipative medium with

5 = 0, the stiffness coefficient decreases from unity at co = 0 to about 0.5 at co = ro_, then remains

constant. In this case, both _ and _5are zero for ro < ro_, and at the high frequencies, they approach

asymptotically the values of _ = 0.25 and _ = 0.Sro/ro t . For a medium with non-zero values of 5,

as ro/rol _ 0 15tends to _ and _ tends to infinity.

lt has been observed [27] that the variations with frequency of the dimensionless impedance factors

for the model are similar to those reported by Wolf [28] for a semi-infinite rod with exponentially
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increasing cross sectional area. However, the interrelationship of the two problems is not clear at this
time.

Had the values of _t, _ and _ been determined from the complete solution, rather than its first mode

approximation, they would have been found to be more sensitive to variations in the exciting fre-

quency, particularly at frequencies close to the second natural frequency of the layer, lt must be

emphasized, however, that this model with frequency-dependent characteristics is not proposed as a

practical means of analyzing the actual system, but rather as a means of visualizing and explaining its

response. After all, the response of the actual system may be evaluated as readily as that of the model.

4.2.3 Model with Modified Frequency-Independent Parameters. Both for the actual system and

the simple replacement oscillator with frequency-dependent properties referred to in the preceding

section, the evaluation of the response to transient excitations requires the use of Fourier transform or

Laplace trartsform techniques. By contrast, the analysis of the constant-parameter model described

earlier may be implemented much more readily by direct integration procedures, lt is desirable, there-

fore, to explore the possibility of adjusting the constant-parameter model so that it better approxi-

mates the response of the actual system.

Instead of determining the damping of the model so that its response at resonance matches the exact

response, for broad-banded earthquake ground motions, it would be preferable to evaluate it so that

the areas under the frequency response curves of the two systems are approximately the same over a

fairly wide range of frequencies extending to both sides of the resonant peak. This requires that the

damping factor for the model be greater than the value defined by Eq. 59.

For ground motions of the type recorded in the 1940 E1Centro earthquake, it is recommended that the

damping factor for the constant-parameter model be determined from

5

_* = 0.275 + _ (67)

and that its mass and stiffness be determined, as before, from Eqs. 57 and 58, respectively. For the rec-

ommended damping, the peak transmissibility for a system with 5 - 0.1 mms out to be 1.9, a value

substantially lower than the exact value of 3.1 (see Fig. 4.3).

In Fig. 4.7, the exact response spectra for the maximum base shear in the wall of systems subjected to

the E1Centro earthquake record are compared with the corresponding spectra computed by the modi-

fied constant-parameter model. Two different values of the soil material damping factor, 5, are con-

sidered, lt is observed that, in both cases, the agreement between the two sets of results is indeed quite

reasonable over the full range of natural frequencies examined.
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Figure 4.1 Scott's model.
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Figure 4.3 Comparison of frequency response curves for base wall-shears
computed by analytical solution and Scott's model:
v =0.3, b=0.1.
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Figure 4.4 Proposed model.
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SECTION 5

CONCLUSIONS

The principal conclusions of this study may be summarized as follows:

I. With the analytical expressions developed herein, the dynamic pressures and associated forces

induced by ground shaking on a vertical, rigid wall retaining a semi-infinite, uniform viscoelastic

soil layer may be evaluated readily.

2. The comprehensive numerical data that have been presented and the analysis of these data provide

valuable insights into the effects and relative importance of the numerous parameters involved,

and a conceptual framework for the analysis and interpretation of the solutions for more involved

systems as weil.

3. Scott's model, which ignores the radiational damping capacity of the medium and considers the

wall pressures to be proportional to the relative motions of the wall and the soil at the far field,

does not adequately describe the action of the system and may lead to large errors.

4. The proposed alternative models, which effectively consider the wall pressures to be governed by

the action of the soil in the immediate wcinity of the wall, better characterize the response of the

system, and lead to results of reasonable accuracy. In particular, the model with frequency-inde-

pendent parameters may be used to evaluate readily and reliably the effects of earthquake ground

motions of broad-banded spectral characteristics
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SECTION 7

NOTATION

The following symbols are used in this report:

An, B n constants of integration

an, bn, cn real-valued dimensionless factors

coefficient of viscous damping for model with frequency-dependent parameters

dn real-valued dimensionless factor

fl fundamental cyclic natural frequency of soil layer

G shear modulus of elasticity of soil material

Ga` complex-valued shear modulus for soil material, defined by Eq. 6

gr, g2 dimensionsless factors in expression for dynamic wall pressure

H height of wall and soil layer

I_ (to) complex-valued stiffness or impedance of model with frequency-dependent

characteristic

k:(to) stiffness of spring for model with frequency-dependent parameters

k* stiffness of spring for model with frequency-independent, constant properties

ka stiffness of distributed springs in Scott's model

k:st static values of I_ (to) and k (to)

Mb bending moment at wall base

M_t static value of Mb

m* mass of model with frequency-independent, constant properties

mass of model with frequency-dependent parameters; it is taken equal to m*

n odd integer

Qb base shear in wall

Q_t static value of Qb

TR complex-valued transmissibility of system, representing ratio of actual base

shear induced in the wall to corresponding static value

TR t value of TR at to = to1

(TR) m complex-valued tr_smissibility of model, representing ratio of total force

transmitted to base of the model to the corresponding force transmitted under

static conditions of loading
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t time

U complex-valued amplitude of horizontal displacement relative to moving

boundary for an arbitrary point of the medium

Un nth term in an expansion of U

Uhn, U p homogeneous and particular solutions of differential equation governing Un

u horizontal displacement relative to the moving boundary of an arbitrary point of

the medium

V complex-valued amplitude of vertical displacement of a point of the medium

v vertical displacement of an arbitrary point of the medium

vs velocity of shear-wave propagation of medium

Xg, Xg, Xg amplitudes of harmonic ground displacement, velocity and acceleration,
respectively

x horizontal position coordinate

xe, xg, _g maximum values of displacement, velocity and acceleration of ground for a

transient ground shaking

_g (t) instantaneous value of ground acceleration

y vertical position coordinate

a n complex-valued dimensionless factor

_z dynamic stiffness coefficient for model with frequency-dependent parameters

dimensionsless damping coefficient for model with frequency-dependent

parameters

5 material damping factor for constant hysteretic characterization of soil damping

_*, _ damping factors, in percent of critical damping, for models with frequency

independent and frequency-dependent parameters, respectively

rl y/H = dimensionless vertical position coordinate

On phase angle defined by Eq. 28

An dimensionless factor defined by Eq. 22

_,* complex-valued Lame constant defined by Eq. 7

v Poisson's ratio for soil

x/H -- dimensionless horizontal position coordinate

p mass density for medium

o complex-valued amplitude of horizontal normal stress at an arbitrary point

o w normal wall pressure
cPt static value of cr

W w

crx horizontal normal stress at an arbitrary point and time

-_ complex-valued amplitude of shearing stress at an arbitrary point

_:xy shearing stress at an arbitrary point and time

nn frequency ratio defined by Eq. 23

Zo function of v defined by Eq. 16
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_e' Wo functions ofv defined by Eqs. 12 and 10, respectively

Uv, _o functions of v defined by Eqs. 36 and 40, respectively

to circular frequency of excitation and resulting steady-state motion

to_ fundamental circular natural frequency of stratum cosidered to act as a series of
vertical cantilever shear-beams



SECTION 8

APPENDIX

8.1 Harmonic Response of Uniform Shear-Beam

The response of a base-excited, uniform shear-beam with constant hysteretic damping is governed by

the differential equation

c*
H2 _)ll2 - p_-_-t2+ p_g(t) (A.I)

inwhich _ (t)=thebaseaccelerationatanytimet; u = thedisplacementofthebeam relativeto

themovingbase:H = theheightofthebeam; TI= y/H = thedimensionlesspositioncoordinate

forapointofthebeam ata distancey fromthebase;p = themassdensityofthebeam;G* = its

complex-valuedshearmodulusdefinedby

(3* = O (1+ (_)) (A.2)

G = the real-valued modulus; and 6 = the constant hysteretic material damping factor, frequently

denoted as 215or 2_ by others.

For a harmonic base acceleration,

_g (t) = :Kgei'_t (A.3)

in which Xg = the amplitude of the acceleration; (o = its circular frequency, and _ = ,f--1. The

beam displacement may be expressed as

u(q,t) = U(q)e i_°t (A.4)

in which U (q) is a function of rl only.

On substituting Eq. A.4 into Eq. A. 1 and cancelling the common exponential function, one obtains the

ordinary differential equation

O*d U
+ to-_U = Xg (A.5)

pH2dq 2

The solution of Eq. A.5 may be taken in the form
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oo n_

U (rl) = _ C,sin-_-rl (A.6)
n=l,3

in which C n are constants to be determined, and each term of the series satisfies the condition of

U = 0 at rl = 0 and U' = 0 at rl = I : a prime superscript denotes differentiation with respect to

Next, the constant Xg is expressed in the formT1.

oo

4 Rg 1 , nrcXg - _ _ n sm-_- q (A.7)
n-l,3

and Eqs. A.6 and A.7 are substituted into Eq. A.5 to obtain

16 P XgH2 1 1

Cn-- rc3 G n31-d_+_8 (A.8)

in which

lco
_n - (A.91

no I

_V s

°l - 2 H (A.10)

and vs - the shear wave velocity for the material of the beam, defined by
V"2"--_

= (A11)
_Jp

The resulting expression for the instantaneous value of the relative displacement, u (TI, t), is

u(_l,t) = 160XgH2[ _._( 1 1 nx I i_t
-- sin rl e (A. 12)

rF G n 3 n31-_2+_8 -2-
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