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FEASIBILITY OF MHD SUBMARINE PROPULSION

Phase II - MHD Propulsion: Testing in a Two Tesla Test Facility

Abstract

This report describes the work performed during Phase I and Phase II of the coilaborative
research program established between Argonne National Laboratory (ANL) and Newport
News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the
development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 11
focused on the experimental validation of the thruster performance models and the
identification, through testing, of any pi:~1omena which may impact the attractiveness of this

propulsion system for shipboard applications.

The report discusses in detail the work performed in Phase II of the program. In Phase II,
a two Tesla test facility was designed, built, and operated. The facility test loop, its
components, and their design are presented. The test matrix and its rationale are discussed.
Representative experimental results of the test program are presented, and are compared
to computer model predictions. In general, the results of the tests and their comparison with
the predictions indicate that the phenomena affecting the performance of MHD seawater
thrusters are well understood and can be accurately predicted with the developed thruster

computer models.






1.0 Executive Surmmmary

A multiphase/multiyear collaborative research program was established between Argonne
National Laboratory (ANL) and Newport Mews Shinbuilding and Dry Dock Company (NNS)
to demonstrate the feasibility of magnetohydrodynamic (MHD) seawater propulsion. This
objective was met by developing computer models of thruster performance and conducting

experiments to validate the adequacy of the developed models.

The need for high strength magnets (10-20 Tesla) and superconducting matc . :.:is to build
these magnets is discussed. Also a historical and technical background of MHD seawater

propulsion is presented.

Phase I of this research program focused on the development of a design-oriented lumped
parameter computer code for MHD propulsion. The computer program is composed of
individual models that predict the performance of an MHD propulsion system at different
operating conditions. This work, funded by NNS, was completed during 1990.

Funding for Phase II, reported here, was equally shared by the DOE/Superconductivity Pilot
Center at ANL and NNS through its Independent Research & Development (IR&D)
Program. The focus of the second phase was the experimental validation of the thruster
performance code ai:i identification through testing of any phenomena which may impact
the attractiveness of this propulsion system for shipboard applications. To accomplish this
in a cost effective manner, a test facility was designed and built at ANL utilizing an existing

2 Tesla conventional electromagnet. With the exception of the electrodes, the MHD test



section (thruster) was fabricated from optically clear polycarbonate resin to enable visual

observation of the electrolytically-generated gaseous bubbles.

Pre-test analysis was performed using the developed MHD propulsion code to establish the
baseline performance of the test loop, define the t=st matrix, and determine instrumentation
requirements. This facility was designed to provide prototypical flow velocities and electric
current densities of a full size MHD seawater thruster that ensures prototypic bubble

generation rates.

The facility instrumentation system included measurement of pressure distribution along the
thruster, flow rate through the thruster, pH and electrical conductivity of the working fluid,
electric current distribution over the electrodes and driving voltage, and measurement of the

bubbles and their characteristics via high speed video camera.

Tests were performed, using an aqueous solution of sodium chloride and Instant Ocean™,
to investigate the effects of magnetic field orientation, flow velocity, current, voitage, and

electrical conductivity on thruster performance and bubble generation.

Good agreement was found between the measured and predicted parameters. This has
served to validate the thruster computer models deveioped at Argonne. Furthermore, the
results indicate that the production of bubbles does not have an impact on propulsion
performance for electric current densities relevant to characteristics of full-size thrusters.
Also, it was demonstrated that the thruster performance is independent of the orientation
of the magnetic field relative to gravity. In general, the results of the tests and their

comparison with predictions indicate that the phenomena affecting the performance of



MHD seawater thrusters are well understood and can be accurately predicted with the
developed thruster computer models. Good agreement between measured and predicted

data served to validate the computer models developed during Phase L.






2.0 Introduct.on

The idea of using MHD seawater propulsion for surface ships and submarines has been
examined in the past by many investigators!’®! and was found to have sufficient merit to
warrant further study. Both the original and more recent investigators!”) have demonstrated
that the attractiveness of this propulsion concept is dependent on the development of high

magnetic flux density magnets.

Recent advances in superconductors have renewed interest in using this propulsion concept
for ships and submarines.®” The potential benefits of this advanced propulsion system
include: reduced noise (from the elimination of rotating machinery required to support
conventional propulsion); potential for operating at higher speeds because an MHD thruster,
unlike a propeller, is not cavitation-limited; and enhanced maneuverability through the use
of vectored thrust. Moreover, the arrangement of components needed for MHD propulsion
does not require a fixed longitudinal stack-up, thus allowing greater architectural flexibility
for the shipbuilder. To explore these potential benefits, conceptual designs of surface ships
and submarines are being pursued."” Crucial to this process are validated design tools that
can address the performance characteristics of MHD thrusters as a function of their

geometry and operating parameters.

There may be, however, some noise related problems associated with MHD propulsion.
Because sea water is an ionic conductor, electrolysis occurs at the electrodes and gases are
evolved. The resulting formation of bubbles has been identified as a potential noise source.
The behavior of these bubbles under the unique conditions of high flow velocity, high

ambient pressures, large magnetic fields, and the separated electrodes characteristic of MHD



propulsion devices have been the subject of recent investigations.l"!*?! Little, if any, data
seems to exist on bubble characteristics under the conditions peculiar to MHD propulsion.
Even the existence of bubbles at the cathode has been debated. Bubble size, density,
distribution over the electrodes, and subsequent downstream behavior all require
measurement in prototypic MHD propulsion experiments.'!! Recent experiments have been
performed to study bubble formation and bubble dynamics in MHD thrusters,'>!?l and
preliminary results are encouraging. However, conclusive prc Jf of these results would best

be obtained from open sea testing of an MHD vehicle.

MHD seawater propulsion is dependent upon the conductivity of seawater to carry electric
current and an applied magnetic field (Figure 2.1). Energy is supplied to the thruster by
applying an external electric field. The resulting current (I) which interacts with the applied
magnetic field (B) produces a Lorentz (IxB) force. Essentially the MHD thruster is an

electromagnetic pump which accelerates the fluid (seawater) to provide thrust.

There are several MHD thruster configurations being considered for seawater propul-
sion'®Y] These configurations fall in two categories: internal, where MHD forces are
produced in a duct; and external, where MHD forces are produced external to the hull.
There are different thruster and magnet configurations possible in these categories (e.g.
internal - annular shroud or pod mounted ducts with toroidal or dipole magnets). The

internal thruster is being considered for naval applications by NNS.

For practical applications, increased propulsion efficiency should be attained. This is
achieved by either increasing the fluid conductivity or by increasing the magnetic field

strength. Seawater conductivity can be enhanced with a seeding procedure. However, this
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is not considered desirable because of the weight and volume penalties associated with
storing a suitable conductivity enhancer, and/or the risk of leaving a detectable trail of highly
conductive fluid. Thus, increasing magnetic field strength is the only method for improving

propulsion efficiency.

The effects of magnetic field strength and other cperating parameters, such as cruising
velocity and thruster geometry, have been studied by different researchers in the past using
simple physicai relationships. For example, Phillips'!! performed a icasibility study of MHD
propulsion using different magnet configurations. He discovered that the propulsive
efficiency of the system operating at 10 knots using a 0.6 Tesla magnet is only 8%. His
conclusion was that such low efficiency would make MHD seawater propulsion unattractive

as an alternate propulsive concept.

To demonstrate the need for higher magnetic fields, Doragh!? performed an investigation
which demonstrated that a propulsive efficiency of 60% could be achieved, at a speed of 10
knots with a magnetic field of 10 Tesla. These studies and simple back of the envelope
calculations lead to the conclusion that a high flux density superconducting magnet must be

used if practical MHD propulsion efficiency is to be achieved.

Stuart Way of Westinghouse!** successfully tested a 10 ft long, 900 Ib. submarine model to
demonstrate proof-of-concept MHD propulsion. In addition, he performed a parametric
study for submarines and found that propulsion efficiencies for a 7 Tesla magnetic field, and
a 29 knot cruising speed were as high as 80%. Similar results regarding the enhancement

of propulsion efficiency have been discussed by Hummert.[!



Recent activities in the U.S. have included programs supported by the Navy (the Office of
Naval Research - ONR, the Office of Naval Technology - ONT, and the Naval Undersea
Warfare Center - NUWC), the Defense Advanced Researck: Projects Agency - DARPA, and
Newport News Shipbuilding and Dry Dock Company. The obijectives of these programs

essentially fall into two categories:

. Development of accurate computer models which predict fluid flow and
electric fields insidle MHD thrusters to gain a thorough understanding of
performance and loss mechanisms inside this propulsion system.[!+17]

. Conducting limited scope experiments and demonstrations that address critical
issues, confirm theoretical predictions, and gain hands-on experience with the
operation of MHD thrusters.[15-20]

Outside the U.S., Japan and Russia are very interested in MHD propulsion. In the early
1980’s the Japanese Ship and Ocean Foundation launched a research and development
program to acquire the technology necessary for MHD ship propulsion, and to construct an
experimental ship to demonstrate this concept.””) The ship, Yamato I, was completed in the
fall of 1991 and has completed sea trials.?! This $40 M ship has a displacement of 185
tons, length of 110 ft, design speed of 8 knots and is propelled by twin thrusters with 4 Tesla
Low Temperature (Lo T,) superconducting magnets. Because of the low magnetic field

strength and the small size of the thrusters, the propulsion efficiency is low.

All studies of MHD propulsion lead to the conclusion that high magnetic flux density (10-20
Tesla) superconducting magnets must be used if practical MHD propulsion efficiency is to
be achieved. In the past few years, the continued development of low temperature (Lo T,)
superconducting materials has made the requirements of high magnetic fields and 1ow weight

for MHD propulsion seem attainable. Recent developments in high temperature



superconducting materials have renewed interest internationally in reviving the concept of
electromagnetic ship propulsion.®® Progress has been made in the development of high
temperature (Hi T,) superconductors such as yttrium-barium-copper-oxide (YBa,Cu,0,) and
bismuth strentium calcium copper oxide (Bi,Sr,Ca;Cu,0Og). This new generation of ceramic
superconductors can potentially achieve magnetic fields (H_> 15 tesla) greater than their Lo
T, counterparts. The critical temperature (T,) for the new generation of superconducting
matenals now extends to about 125 K which is well above the 77 K boiling point of liquid

nitrogen. Cryogenic cooling with liquid nitrogen has several benefits:

. Liquid nitrogen can be manufactured on board (instead of being stored).
. Liquid nitrogen is much cheaper.
° Refrigeration equipment for liquid nitrogen is smaller, lighter and more

efficient than those required for liquid helium.

. Commercial insulation can be used for liquid nitrogen refrigeration equipment
and piping. :

This will simplify the logistics of operation and maintenance and will lead to a reduction of
space and weight. These advances in superconducting materials coupled with progress in
high strength, low weight composite materials, which are required to contain the internal
forces generated by the magnet, increase significantly the prospects for the development of

full size seawater vehicles using MHD propulsion.

This report begins with a historical background of the two phase ANL/NNS joint research
program. Phase I consisted of developing computer models and performing parametric
studies to assess the feasibility of MHD ship propulsion. A brief description of the
developed computer models is given. Phase II is the experimental validation of the

developed models. A 2 Tesla conventional electromagnet, from an existing ANL facility, was

10



used in a seawater MHD test loop. This test facility and related ~omponents are described
in detail along with the instrumentation used to collect data on the loop and the MHD
thruster. The test program and its rationale are discussed. Finally, representative
experimental results are givcn and compared to pre-test computer model predictions. The
report ends with a set of recommeﬁdations leading to an open-ocean test of an Unmanned

Underwater Vehicle (UUV) propelled by an MHD thruster.

11
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3.0 Program Background and Qutline

The work performed in this program was a joint research effort by the Engineering Physics
Division of Argonne National Laboratory and the Advanced Propulsion Technology Group
of Newport News Shipbuilding and Dry Dock Company. The overall objective of the
program is to investigate the feasibility of MHD ship propulsion using superconducting

magnets.

Newport News Shipbuilding has a long-standing interest in shipbaard applications of
superconductivity.”®! Prior to becoming a member of ANL’s Industrial Affiliates Program on
Hi T superconductivity, NNS approached ANL to explore a possible collaborative effort to
study MHD seawater propulsion. ANL was selected as a teaming partner because of

leadership in three areas:

1. Sizable research effort in superconducting materials.

2. Construction and operation of the world’s largest superconducting magnets
and channels for MHD applications.

3. Development of state-of-the-art, multi-dimensional, MHD computer codes.

The scope of work of this program was divided into two phases.[®®] A brief outline of work
performed during both phases is provided in this section for completeness. A cursory review
is given of other important issues for the successful application of the MHD concept for
marine propulsion. Such issues include system design and integration of this concept for
shipboard applications, and the development and design of superconducting materials for
large magnets with strong magnetic fields. Also, some other technical considerations and

developmental needs are included.

13



3.1 Phase I - MHD Thruster Performance: Computer Model Development and Parametric Analysis

Phase I was completely funded by Newport News. The Phase I work scope consisted of
developing computer mod:ls and performing parametric studies to assess the feasibility of
MHD ship propulsion. Also, existing ANL multi-dimensional MHD generator computer
codes were modified for thruster applications and were used in this study. As part of Phase
I, Argonne trained four NNS engineers ir the use and application of the adapted codes for
MHD ship and submarine propulsion. The sc. of computer models that make up the
thruster performance code and the environmeni ‘n which they operate are described in

Chapter 4.

Results of the parametric study performed during Phase I of the program confirmed the
need for strong magnetic field strengths (10-20 Tesla) in order to achieve attractive
propulsion efficiencies.!”! More recent results!"”) have further indicated that higher overall
efficiencies of the propulsion system can be maintained over a wide range of cruising speeds

(2-20 m/s) for full-size submarines operating at higher magnetic fields (15-20 Tesla).

3.2 Phase IT - MHD Thruster Performance: Experimental Validation of Developed Models

Besides the need for superconduc.ing magnets with strong magnetic fields, several key issues
still remain to be addressed experimentally to assure feasibility of MHD seawater propulsion.
These include the effect of operating parameters on performance of MHD thrusters such
as flow velocity and electric load factor or applied voltage. Other issues that may affect
MHD thruster performance are: electrode design and longevity; bubble generation; and the

effect of magnetic field orientation, with respect to gravity, on the bubble size and their
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effect on the electrical performance of the thruster. These effects can be evaluated by
performing small scale experiments. The need for these experiments has been recently
emphasized at an ONR (Office of Naval Research) workshop on MHD propulsion.?!
Results obtained from small scale experiments can be used to also verify the predictions of

the computer models developed during Phase I of the project.

Based on the need for validation of the computer model, a proposal was written to the
DOE/Superconductivity Pilot Center at ANL, for a joint research activity on the feasibility
of MHD ship propulsion using superconducting magnets. The proposal was approved as the
work for Phase II was funded equally by the Pilot Center and NNS’s IR&D program.

The work scope of Phase II of the MHD propulsion program included four tasks: Task 1
covered the design of a test facility using an existing 2 Tesla conventional electromagnet
from the Argonne Liquid Metal MHD Experimental Facility (ALEX); Task 2 included the
construction of the facility; Task 3 covered the operation of the facility; and Task 4 included
data reduction and experimental analysis. This work was completed in 9 months. The

following is a brief outline and the rationale of work performed for each task.

3.2.1 Task 1 - Facility Design

The 2 Tesla test facility was designed to use an aqueous solution of NaCl and Instant
Ocean™ as the primary working fluids. The facility is fully instrumented and capable of
collecting detailed data on pressure, voltage, current, and velocity at any axial position within
the bore of a 2.0 Tesla conventional electromagnet. This facility was designed using mostly

off-the-shelf components to minimize cost. A pump was included in the flow loop to vary
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the fluid velocity between 2-8 m/s. An MHD thruster with segmented electrodes was
designed using polycarbonate resin to facilitate observation of the electrolytically generated
gaseous bubbles at the cathode. The magnet as well as the test section were designed to be
rotated 90° so the effect of magnetic field orientation, relative to gravity, on thruster
performance could be determined. This change in orientation could affect the evolution of

bubbles and thereby impact the performance of the thruster.

3.2.2 Task 2 - Facility Construction

In Task 2, the required materials were procured or borrowed from other experimental
facilities at ANL. Items that could not be purchased, such as the test section and the
pressure taps, were fabricated at NNS and ANL respectively. Facility construction took

approximately 3 months.

3.2.3 Task 3 - Facility Operation

Follow?ng construction, experiments pertinent to operation of MHD propulsion on ships and
submarines were conducted with both a horizontal and vertical magnetic field. Measure-
ments were made of current, voltage, flow velocity, pressure, and magnetic field. Visual
observation as well as high speed video recording were used to monitor the dynamics of
bubbles formed during the experiment. Also, the effect of the fringing magnetic field on

electrical end losses and performance of the thruster was investigated.
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3.2.4 Task 4 - Data Reduction and Analysis

Task 4 included both the pre- and post-test analysis for the experiment. The Phase I
computer code was used for the pretest analysis and to assist in defining the operating
parameters for the experiments. The results of the simulation tests were compared to
experimental results to verify the predictions of the developed computer models. Data
gathered by the instruments was récorded and entered in a computer spread sheet for

tabulation and analysis.
3.3 Technical Considerations and Developmental Needs

Besides the basic understanding of the MHD thruster performance, there still remain several
technical and design issues that should be addressed to assess the feasibility of this concept
for naval applications. Some of these issues include the system design and integration of the

MHD propulsion system, and the design of superconducting magnets with strong magnetic
fields.

Work on integrated designs of propulsion systems using MHD thrusters is being pursued by
NNS.' The use of an MHD propulsion system allows greater flexibility in the equipment
arrangement than a conventional mechanical drive system. The propeller and associated
hardware are eliminated. The fixed longitudinal stack up required for the propulsion
turbine, reduction gear, shaft, and propeller is no longer be necessary, allowing engine room
spaces to be utilized more efficiently. Instead, the MHD thruster, DC power supply, and

a superconducting magnet with its cryogenic support equipment, will be installed.
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One challenge facing the shipbuilder is the large number of small hull penetrations required

to support an MHD thruster. This situation is in contrast to a conventional ship where a
large dynamic penetration is required for propulsion shafting. The use of three dimensional

modeling will ensure the success of the MHD ship design process.

Other issues that require technical development include the following: superconducting
magnet design and material for large magnets with high magnetic field strengths, magnet
structure integrity, magnet excitation and protection, cryogenic and structure design of the
refrigeration system, size, weight, and cost of the superconducting magnets and cryogenic
system, MHD duct geometrical configuration, electrode materials and configuration,
electrode erosion, magnetic, acoustic, and chemical signature control, seawater and electrical
conductivity variation and systems integration of the MHD thruster into seawater vehicle
design. Among those issues, the construction of practical and reliable high strength
superconducting magnets of reasonable size, mass, and cost is considered the most

challenging.
Work is being pursued and good progress has been achieved at Argonne and elsewhere on

the development of superconducting material and high strength, low density composite

materials.
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4.0 Models for MHD Pro, jon

From its inception in October of 1988, the NNS Magnetohydrodynamic Propulsion
Development Program required a dynamic tool to analyze surface ship and submarine
propulsiun concepts. Accordingly, an agreement was reached between Newport News
Shipbuilding and Argonne National Laboratory to provide such a tool. Argonne was

contracted to develop MHD thruster models and train four engineers in its use.

In June 1990 four NNS engineers visited Argonne National Laboratory for training in the
use of the ANL/NNS MHD computer program. The two day session covered theory and
practical applications of this code. Additionally, instruction was provided for modifying the

source code to suit NNS’ specific application.

The computer program!®” is written in the C++ programming language and is compiled for
use on a personal computer. The first part of the program is a collection of models which
describe fluid flow, thruster geometry, electromagnetic field interactions, and ship drag. The

second part is the interactive environment in which these models operate.
Eight individual models®”! comprise the first part of the code, they are: liquid model (lig),

nozzle model (Inoz), diffuser model (1dif), pipe model (Ipip), loss model (loss), mhd0 model
(mhd0d), mhd1 model (mhd1d), and the drag model (drag).
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4.1 Liquid Model (lig)

The liquid model initiates the fluid flow conditions at the inlet of the MHD thruster with
user specified values of velocity, pressure, density, viscosity, and electrical conductivity. The
values of density, viscosity, and electrical conductivity are treated as constants while the

other remaining values are updated by the code as required.

4.2 Nozzle Model (Inoz)

The nozzle model simulates incompressible flow through a nozzle by using a simple head
loss. Total pressure drop through the nozzle is calculated by multiplying a user specified

lumped loss coefficient by the dynamic head at the nozzle exit.

4.3 Diffuser Model (1dif)

The diffuser model describes fluid flow through a diffuser by multiplying the dynamic head
at the inlet by the sum of frictional and local loss coefficients. Both loss coefficients are
determined from empirical relationships based on fully developed turbulent flow. Frictional
losses are determined as a function of wall roughness, Reynolds number, divergence angle
and area ratio. Similarly, local losses are calculated as a function of divergence angle and

area ratio.
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4.4 Pipe Model (lpip)

The pipe model calculates frictional head losses in a constant cross-sectional area pipe.
These losses are determined from a turbulent head loss relationship where the friction factor
is computed from an empirical equation as a function of roughness, hydraulic diameter, and

Reynolds number.

4.5 Loss Model (loss)

The loss model simulates a loss in total pressure due to elbows, valves, or any other source
of pressure drop. This is done by multiplying the inlet dynamic head by a user defined loss

factor.

4.6 MHI) Model (mhd0d)

This portion of the code models a simple, one-dimensional MHD thruster. It uses a
continuous electrode with a constant magnetic field and thruster geometry. The MHDO
model includes ohmic and frictional losses as well as electrical end loss correction factors for

pressure and current (k, & k).

4.7 MHD1 Model (mhdld)

The MHD1 model, like MHDJ, is a one-dimensional thruster model. MHD1, however,
couples a one-dimensional hydrodynamic model to a two-dimensional electrical model that

calculates the electric field potential and current everywhere within the channel. While this
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model does not show effects of cross stream flow variations, it sufficiently accounts for the
effects of wall friction, fringing electric and current density fields, and electrode surface

potential losses on the thruster electrical efficiency.

The equations used in the hydrodynamic model are the usual one-dimensional equations for

conservation of mass:

m~pAu
P (4.1)
and conservation of momentum.
du__dp _feu?
pu Tx T +JxB 2d
(4.2)

In equations 4.1 & 4.2 m, is mass flow rate, u is the average velocity, A is the cross sectional
area, p is the fluid density, J is the electric current density, B is the magnetic flux density,
and d is the thruster hydraulic diameter. The coordinate system: is taken with x along the
fiow direction and y normal to the electrodes. The friction factor, f, is obtained from an
empirical relationship representing the standard Moody diagram, as a function of Reynolds
number and the average size of the surface roughness. The first order differential equations

are solved using a 4" order Runge-Kutta method.

The two-dimensional electrical model solves Maxwell’s equation for the electrical field
potential in conjunction with Ohm’s law. The resulting modified Laplace equation for the
electrical potential is given by:

ﬂ + ﬂ - 0

ax? oy?
Xy (43)

22



where @ is the electric field potential. This equation, written in a finite difference form, is
solved using a successive overrelaxation procedure. The solution gives the values for k, &
k; (end loss correction factors). This two-dimensional electrical model is used to predict the
fringing current fields near the electrode ends and to determine the electrical end losses in

that region.(’]

The following boundary conditions are used in the 2-dimensional electrical model. On the
electrodes, P is specified as a constant equal to +V/2 on the anode and -V/2 on the cathode,

where V is the total applied potential difference. On the rest of the electrode walls, the
normal current density is taken to be zero; from Ohm’s law this boundary condition requires

that:

—_— =B -4

(4.4)

To include most of the fringing fields, cross stream boundaries were assumed sufficiently far
upstream and downstream of the electrodes. Thus, the normal current density at these

boundaries was taken to be zero.

o

ox (4.5)

The electrical field potential everywhere within the channel is solved given the flow velocity,
magnetic field, and applied potential. The computed potential field is then used to
determine the centerline transverse electric field E,, which in turn is used to determine

J, along the centerline from Ohm’s law, which for an MHD thruster can be written:



J, =0 (E,-uB)
d 4 (4.6)
Note that Jy is the transverse current field. The axial current field does not enter into this

simple one-dimensional hydrodynamic model.

Additionally, MHD1 allows the user to enter a variable thruster height, width, and magnetic
field as a function of thruster length.

4.8 Drag Model (drag)

In this model, developed at NNS, the submarine geometry is entered by specifying length,
diameter and geometric exponents that describe the forward and after part of the ship.!
Default values for other constants such as propeller efficiency, free flood factor, and reserve

buoyancy are assumed by the program if they are not specified.

This algorithm calculates the wetted surface area and volume of the submarine by assuming
an elliptical forward end and a parabolic aft end. The submerged and surfaced

displacements are then calculated.

Planform and surface areas, effective aspect ratio, lift and drag coefficients for all
appendages are next calculated.” Total hull drag coefficient (Cd, ;) is determined from
the sum of the friction drag coefficient (Cd,), the user-specified pressure drag coefficient

(Cd,,), and the hull friction drag correction factor (§).

Cdpyyy=Cde+Cd,, +8 @
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The drag is calculated for the hull and all appendages and then totaled;

p- CdpAV?

29 (4.8)

where Cd is drag coefficient, p is fluid density, A is wetted surface area, V is ship velocity,

and g is acceleration due to gravity.

The propulsive coefficient is determined as the product of the propeller efficiency, relative

rotative efficiency, and the hull efficiency.

PC=1 propM rocM pusi (4 9)

The shaft horsepower (SHP) for each appendage and the hull is calculated and totaled!®)

once the effective horsepower (EHP) is determined.

SHp- EHP
PC
(4.10)
Where,
EHP=DV
(4.11)

Additionally, this program calculates structural and machinery weights as well as the

machinery volume.



4.9 System Analysis

The second part of the ANL MHD program is the interactive environment called GPS
(Generalized Post Script). This PostScript-like language is used to interact with the
developed models. In addition, GPS has a built in library of mathematical functions and

logical operators used for independent analysis or in conjunction with the models.!*”)

Essentially, GPS allows the user to treat each model separately. This means the models can
be combined in any order, any number of times, to more accurately represent a large
number of system configurations. GPS also allows the user to pass information from one
model to another. For example, if the velocity of a fluid was changed in one model, the new
velocity can be passed to the next model. Additionally, this environment allows the user to
impose constraints or logical operations on the system being examined. In our case, the
code considers steady state conditions where the thrust from the thruster equals the drag on

the submarine.

Another advantage of GPS is that the models, logical and mathematical operators, and
constraints can all be typed into a standard ASCII data file and piped into GPS for analysis.
This allows the user to easily duplicate similar data input files and complete a study by
executing a batch command from the DOS prompt. Similarly, the output of this program
can be piped to a file (ASCII format), displayed on the monitor, or echoed to the printer.
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3.0 Experimental Layout

The test facility used for model validation is organized into five sections:
] Primary loop
. Secondary loop
. Additional Systems
i Instrumentation

. Bubble Diagnostics

The primary loop (Figure 5.1) consists of a 2 Tesla conventional electromagnet, a test
section, gas separator, a loop pump, polyvinylchloride (PVC) piping, and related fittings.

Additional systems support both loop operation and data acquisition.

5.1 Working Fluid

Two solutions were examined as candidate working fluids for this experiment:
° Aqueous solution of sodium chloride (NaC1).

. Instant Ocean™,

Aqueous solution of sodium chloride (NaCl) was selected as the primary working medium
in lieu of Instant Ocean™ because the NaCl solution does not contain additional dissolved
salts whose precipitates (e.g. calcium hydroxide - Ca[OH]}, and magnesium hydroxide -
Mg[OH]},) might foul the loop during operation. Increased NaCl concentrations beyond

values characteristic of seawater are used to enhance electrical conductivity and thus achieve
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test operating conditions closer to prototypic than would have been possible with conductivi-

ties representative of seawater alone.

Instant Ocean™ was used at the end of the test program to verify the thruster performance
for more than one working fluid and compare bubble evolution/behavior with the two

working fluids.

All loop components were selected to be compatible with both primary and secondary
working fluids and the products of electrolysis such as: hydrogen gas (H,), sodium
hypochlorite (NaClO), and hypochlorous acid (HCIO).*)

5.2 Primary Loop

The purpose of the primary loop is to circulate the working fluid in support of data
acquisition in the test section. The primary loop also provides for 1-moval of dissolved
gasses in the working fluid. Components of the primary loop include:

¢  Magnet

*  Test Section

e  Separator

*  Standpipe
e  Loop Pump
*  Piping

The loop is designed to function in two modes of operation: the pump assist mode, and the

unassisted mode. In the pump assist mode, the pump overcomes the losses in the flow loop
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and induces a (variable) velocity into the test section. This allows the current to be varied
independently of the velocity in the test section. In the unassisted mode the loop pump is
removed froin the test setup requiring the test section to develop sufficient thrust to balance
the frictional losses in the loop. This mode was to be employed for demonstration purposes

only.
.2.1 Magnet

An existing 2 Tesla, iron core, conventional electromagnet with a uniform magnetic field
volume of 8" x 30" x 50” is used in the test setup. This 67 ton, water-cooled electromagnet
was selected because the magnetic field can be oriented either horizontally or vertically to
observe the effect of gravity on bubble evolution and MHD thruster performance. The
magnetic field as a function of length is plotted in Figure 5.2.

5.2.2 Test Section

Sheets of optically-clear polycarbonate resin were solvent welded with methylene chloride
(CH,Cl,), strengthened with brass screws, and sealed with a silicone rubber adhesive to form
the 6" x 6" x 12’ test section (Figure 5.3). This material was selected to enable visual
observation/measurement of the electrolytically-generated hydrogen bubbles at the cathode.
Seven pressure taps were installed along the 50" active length of the test section (that
portion of the test section where the electrodes are located) to measure the internal pressure
distribution. Each electrode was segmented into five parts (47,6",307,6",4") enabling
specific measurement of both applied current and voltage to better ascertain the impact of

fringing current on thruster performance. The anode segments are a mixed-oxide coating
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(ruthenium) on a 1/4” thick titanium substrate and the cathode segments are titanium plates
of the same thickness. A removable lid was installed to allow for electrode maintenance.
The non-active portion of the test section was included in the design, along with an inlet flow
straightener, to provide a well developed velocity profile for the active section of the

thruster.

J.2.3 Separator

A bubble separator was included in the loop to assist in the separation of hydrogen bubbles
from the working fluid. The separator tank design is based on a cyclone principle commonly
used to separate solids and liquids from gas streams. In this application, the centrifugal field
moves the hydrogen bubbles to the center where they rise, enter the standpipe gas space,
are diluted by nitrogen gas below the flammability limit, and are exhausted to the
atmosphere. The tank is 30" in diameter and 74%" tall (Figure 5.4). Inlet and outlet
connections were installed off-axis to generate the centrifugal field required for separation.
A flanged lid was provided to facilitate coating the interior of the tank with a synthetic
rubber corrosion preventative. Elliptical heads were installed to facilitate gas removal and

loop drainage. Other features of this tank include:

. A 3” connection at the top center of the separator required for
the installation of the separator standpipe.

. A 2” loop drainage/fill connection at the bottom center of the
tank.

. A 1%2" connection to accommodate installation of the conduc-
tivity probe.
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2.2.4 Standpipe

A 33" long, 4" diameter, 3/8” wall thickness, clear acrylic pipe is installed at the top of the
separator to enable loop operators to monitor the working fluid level in the loop, facilitate
the injection of nitrogen into the system, and provide an expansion volume (Figure 5.5).
Loop pressurization, hydrogen dilution, and venting is accomplished through the following

standpipe penetrations:

. A 3/8” nitrogen connection.

. A 1” vent connection located in the top of the standpipe.

. A 1/4" drain connection to lower the fluid level in the stand-
pipe.

. A 1/4” connection for a level indicator tube to monitor fluid

level during loop fill.

2.2.5 Loop Pump

The loop pump is a 30 kw (40 hp), horizonia! end-suction, 12* x 10” centrifugal pump
(Carver Pump ETAL 250-33 364T) whose motor is driven by a variable frequency speed
controller (Emerson Industrial Pump Controller). This controller enables testing at fluid

velocities in the range of 2-8 m/s independently of current applied to the thruster electrodes.

2.2.6 Piping

Schedule 40 polyvinylchloride (PVC) piping was used in the primary loop. Pipe sizes were
established by the pump discharge (10*), the flowmeter (8*), and the pump suction (127).

An 8” to 12" concentric enlarger was installed downstream of the flowmeter to effect the
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transition to the required size for the pump suction. Additionally, 10” round to 6” square
fiberglass reinforced piping transitions were installed to reduce flow losses into/out of the
test section. An 8” flexible connection was installed between the two fixed points in the
system, the loop pump and the separator tank, to accommodate changes in pipe length due
to variations in temperature, reduce vibration in the loop from the pump, and accommodate
any misalignment of loop components. Finally, 150 Ib slip on flanges were used, where

necessary, to connect loop components.

5.3 Secondary Loop

The purpose of the secondary loop (Figure 5.6) is to:
. Fill/drain the loop from/to the primary storage tank.
. Mix the working fluid so that it possesses uniform properties.
. Transfer the used fluid to storage.
. Transfer the stored fluid to a waste disposal vehicle.

. Filter the working fluid during both loop fill and mixing opera-
tions.

The components that make up the secondary loop are:
e  Circulation Pump
*  Primary Storage Tank
*  Secondary Storage Tank
e  Filter

«  Piping
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3.3.1 Circulation Pump

The circulation pump (Vanton CCGH-PY200) is used as a mixing/transfer pump. This 1%
hp, close-coupled centrifugal pump has a maximum flow rate of 25 gpm at 15 feet total
developed head. Additionally, this pump has a polypropylene water jacket and a 3/8"

freshwater flush connection to rinse the seal face.

3.3.2 Primary Storage Tank

The primary storage tank is an 1100 gallon, 7'-2* diameter, 4’-6" tall vertical tank
fabricated in one piece of high density cross-linked polyethylene. The purpose of this tank
is to contain the entire contents (375 gallons) of the loop and enable the loop to drain by
gravity in the event of an emergency. Additionally, a 1/2” thick, 19" diameter PVC bolted
manway with a 3/8” foain gasket is provided for tank maintenance. Other features of this

tank include:

° A 3/8” nitrogen connection which allows dilution of the gasses,
which may evolve out of solution when the loop is emptied and
the working fluid depressurized, below their flammability limit.

. A 17 vent connection to allow displaced gasses to be vented to
the building exterior.

. A 1/4” connection for the standpipe drain system.

. A 3/4" connection with a valve (DV2) and funnel which permits
purged fluid from the test section pressure measurement system
to be returned to the primary storage tank without the removal
of the tank lid.

. A 0-3 psi pressure gauge (G4).

. A 0-15" H,0 vacuum gauge (GS5).
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. 2” bulkhead penetration for loop drainage/fill connection.
o 17 bulkhead penetration for pump inlet.

. 3/4” bulkhead penetration for installation of the pH probe.

The geometrical constraint for the selection of this tank was that the total volume of working
fluid has to be stored in 24" of vertical height (the distance between the bottom of the

separator and the floor).

5.3.3 Secondary Storage Tank

The secondary tank is a 550 gallon, 4'-0" diameter, 6’-8” tall verticul storage tank which
serves as an interim storage site of expended fluid between iest runs. This tank is fabricated
from the same material and furnished with a similar manway as the primary storage tank.

Principal features of this tank include:
. A 1" vent connection.
. A 0-3 psi pressure gauge (G6).

. A 1" bulkhead penetration for tank drain/fill.

There are no constraints on the selection of this tank except that it contain the volume of

the working fluid in the loop.



5.3.4 Filter

A 3/4”, single cartridge, S micron, post filter (Housing - CWC fluids model S1101 and Filter
- model R100) was installed parallel to the fpump discharge to allow the loop operator a

choice of using the filter for the loop fill and the working fluid mixing operations.

Piping material for the secondary loop was the same as the primary loop. Pipe sizes were
established by equipment connections, specifically 1” for the circulation pump, and 2* for
the separator drainage. Two 2” ball valves (V1 & V2), five 1” ball valves (V3, V5, V6, V7
& V8), and three 3/4” ball valves (V4, V9 & V10) were installed in the circulation loop to
enable operation in different modes of operation (e.g. fill, drainage, mixing, transfer, and
filter). Also, a ball check valve (CV4) was installed in the pump discharge to prevent back

flow through the circulation pump.
5.4 Additional Systems

Eight systems are required to support both loop operation and data acquisition, they are:
*  Nitrogen
*  Oxygen Monitor
e Vent
o Electrode Power Supply
¢  Standpipe drain
*  Loop Pump Drain
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e  Circulation Pump Flush Face Seal
* Loop Fill

4.1 en

Nitrogen gas is supplied (Figure 5.7) from an existing manifold/regulator to the following

points:

. Separator standpipe - to reduce the concentration of the
separated hydrogen gas below its flammability limit and to
maintain the working pressure of the tank/loop.

. Primary & secondary storage tanks - to provide an inert atmo-

sphere for working fluid storage.

Nitrogen is delivered to the experiment via a 3/8” supply line which branches to serve the
separator standpipe and both storage tanks. Flow rate is controlled in both branches with
dedicated needle valves (NV1 & NV2) and is monitored using rotameters (FM1 & FM2).
Tank selection is made with ball valves (V11 & V12) installed downstream of the rotameter
(FM2). Backflow is prevented in the standpipe and both tanks with check vaives (CV1, CV2
& CV3) set at 1/3 psi. . oop pressure is safeguarded with a 1/4” adjustable relief valve
(PRV1) set to crack at 10 psi. Pressure gauges are installed on both the primary &
secondary storage tanks (G4 & G6) ar on the separator standpipe rotameter (G3 0-15 psi)

to monitor component pressure and nitrogen supply pressure respectively.

Nitrogen was selected as the pressurizing/diluting agent because it is a cost effective non-

reactive gas.
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5.4.2 Oxygen Monitor

A portable oxygen monitor (Edmont-Wilson Model 60-400) is used to monitor the
concentraticn of O, in the primary storage tank. This system is calibrated prior to each test
series and enables the loop operator to determine if conditions inside the primary storage
tank support detonation of gases which may evolve out of solution when the loop is drained
and the working fluid depressurized. The storage tank is purged with nitrogen during the
loop fill operation. Testing begins once the monitor indicates that a stable, inert

environment exists (i.e. that oxygen concentration is less than 4% by volume).

The portable monitor is recharged with a nickel-cadmium battery charger (Edmont-Wilson

Model 60-401) at the end of each test run or daily, whichever occurred first.

5.4.3 Vent

The vent system (Figure 5.8) conveys unwanted gases outside the building and is connected

to the following points:
. Separator standpipe.

o Primary & secondary storage tanks.

Loop pressure is controlled both by the supply of nitrogen (as described in section 5.4.1) and
the throttling of the resultant flow from the separator standpipe vent with a 1” bronze globe
valve (VV1). Loop pressure is monitored with gauges placed in the standpipe vent (G1 0-5
psi & G2 0-30 psi) and a pressure transducer (PT105). Backflow into both of storage tanks
is prevented by ball check valves (CVS & CV6). Additionally, gas flow from the primary
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storage tank can be stopped by closing a PVC ball valve (VV2) ip order to maintain an inert

atmosphere in the tank.

J.4.4 Electrode Power Supply

Power is supplied to the electrodes from a water cooled, 1200 amp power supply (ACME
Rectifier). Connections are made on power supply flags at the back of the cabinet. A
50mV shunt is installed in each cable which serves individual anode/cathode segments
(Figure 5.9). The gauge and length of the power cables were selected so that the voltage
drop in all of the leads is the same. To insure uniform distribution of current to the
electrodes, the cables are attached to 3/4" wide copper busses (Figure 5.10) which are bolted
to the electrode studs on the test section. Finally, the cables are strapped to the test section
using insulated hose clamps to prevent the JxB forces from pulling them away from the test

section when the magnet is energized.

5.4.5 Standpipe Drain

The standpipe drain (Figure 5.11) enables the loop operator to drain displaced working fluid
which may rise in the standpipe, due to gas generation in the loop and/or expansion of the
working fluid from a rise in temperature, back to the primary storage tank. This system
consists of a 1/4" connection at the base of the standpipe with a 1/4" tube attached to a plug

valve installed in the primary storage tank lid.
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3.4.6 Loop Pump Drain

This system enables the working fluid trapped in the pump case and the 12" run between
the flowmeter and the pump, to be drained back to the primary storage tank. A 3/8"
bronze ball valve was installed at the base of the pump case with a clear 1/2” hose that

connects to the secondary loop at the 3/4” inlet/outlet connection (V4).

3.4.7 Circulation Pump Flush Face Seal

Freshwater required to flush the seal face of the circulation pump is supplied via 3/8” tubing
from an existing 3/4” spigot. The waste fluid (return) is similarly transferred to an existing

drain.

3.4.8 Loop Fill

Water for loop fill system originates at an existing 3/4” spigot then travels through a water
demineralizer (Culligan) and finally connects to the circulation system at the 3/4” inlet/outlet
connection (V4).

3.5 Instrumentation

Two types of instrumentation were used in the test program. The first type includes the
instrumentation that supplies the data necessary to satisfy the primary objective of the test

program, ie. the determination of thruster performance. The second type includes all
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instrumentation necessary to monitor loop performance and carry out the various operations

during preparation for loop start-up, testing, and post-test loop shutdown.

.1 Data _Acquisition System

The Data Acquisition System (DAS) utilized in the NNS/ANL 2 Tesla Test Facility consists
of hardware and software that perform the following functions:

° Data Sampling

. Data Reduction
° Display
. Data Storage

The analog output signals processed by the DAS are supplied by the instrumentation,
outlined in sections 5.5.2-5.5.9, through Barrier Terminal Strips (BTS). The heart of the
DAS is a Real Time Peripherals (RTP) G-2 LAN Compatible analog and digital I/O system.
The dJata input is performed by an RTP Universal Controller and associated analog/digital
conversion and analog input cards. The I/O is controlled and coordinated by the G-2
processor and the data is passed to the VAXStation 3100 for further reduction and

processing.*Z

The software package used for data acquisition is called SCAN-G2. This software consists
of a constantly changing collection of over 200 Fortran subroutines that perform specialized
tasks during experimental runs. There are two main programs that calibrate the RTP analog

input cards and scan the instruments during an experimental run.*?
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5.5.2 Pressure Measurement

5.5.2.1 Test Section Pressure Measurement

Two differential pressure transducers (Rosemount Analytical model 1151DP) connected in
parallel] are attached to seven pressure taps located along the 50” active portion of the test
section (Figure 5.12). These transducers, which have different sensitivity ranges (DPT1 0-1
psi & DPT2 0-10 psi), measure the differential pressure that develops in the test section.
The transducers and associated plumbing, which isolates the pressure taps under
investigation, are located in instrumentation and control cabinet 2 (ICC2). Output from
these transducers is displayed both on the transducer, in percent of maximum pressure, and
at the DAS. Required power for these transducers is provided from a dedicated 15 volt DC
supply (Computer Products Model PM502) mounted in ICC4.

5.5.2.2 Loop Pressure Measurement

Six transducers (Omega 140 Series, 0-15 psig) are installed in the loop (Figure 5.13) to

measure system pressure at the following locations:
. PT101 & PT102 pump outlet and inlet respectively.
. PT103 test section downstream of the flow straightener.
. PT104 & PT106 separator outlet and inlet.

. PT105 separator standpipe vent.

Individual output from the transducers is displayed (Omega DP2000-P5 Digital Transducer

Indicator) at ICC1. Display selection is made with a six-position switch (Omega). Output
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from the transducers is connected to DAS via BTS strips. Power required for both the
transducers and the display is provided from a dedicated 8 volt DC supply (Omega Model
PST-4130).

5.5.3 Potential Measurement

Potential across all five electrode pairs as well as total potential is measured with a voltmeter
(Solartron 7061 Systems Voltmeter). Output leads are connected to each pair of electrodes
as well as the electrode power supply for total voltage (Figure 5.14). Output is transmitted
from the voltmeter to the Micro 488 controller then to the ADI Modem and finally to the

VAXStation 3100 for analysis and storage.

5.5.4 Current Measurement

Electrode current is measured using 50mV DC Ammeter shunts (Empro Manufacturing
Type HA) installed between the power supply flags and the cable runs to the individual
electrodes. Shunts were sized to accommodate the maximum current for the individual

electrodes (Figure 5.15). Shunt outputs are connected directly to the BTS strips of the DAS.

3.53.5 Amp-Hour

An ampere time totalizer (Kraft Dynatronix Mcdel ATC 1000T) with built-in display
(Omron H7EC) measures the number of coulombs per run. Current leads (input) for this
meter connect to an internal power supply shunt. The output is not connected to the DAS.

Power for this meter is supplied from a 120 Volt AC outlet strip mounted in ICC2.
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3.3.6 Conductivity

A submersion/insertion toroidal conductivity sensor (Rosemount Analytical Model 228) is
installed in the base of the separator tank. This probe is connected to a miCToprocessor
analyzer (Rosemount Analytical Model 1054A T) mounted in ICC3 which displays both the
working fluid conductivity and the temperature (Figure 5.16). Output from this instrument
connects to the DAS via a BTS strip. Power for the microprocessor analyzer is from a 120

VoIt AC outlet strip in ICC3.

S.5.7 Flow Rate

An 8" electromagnetic flow meter (Endress & Hauser Viromag Series Model FTI1943) is
installed downstream of the separator and is used to monitor flow (Figure 5.17). Output
from this device connects both to a multipurpose display (Digitec B 401) at ICC 1 and to
the DAS. Power for the flowmeter is provided from a 120 Volt AC outlet strip mounted

in ICC3. Power for the display is from a similar outlet strip located in ICC4.

Flow rate is controlled using a potentiometer located in ICC 1 which regulates pump RPM

with an existing 30 hp motor controller (Emerson Industrial Pump Controlier).

2.5.8 Temperature

A chromel-alumel thermocouple (Omega K-type) located downstream of the flow
straightener in the test section is used to monitor temperature. Output from this device

connects to a cold junction compensator (Omega type CJ) and then to the DAS BTS strip.
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3.5.9 pH

The pH probe (Omega Model phtx-92) is installed in the primary storage tank with a
bulkhead fitting. Output from this probe is connected to the display/transmitter (Omega
model PHTX-92) at ICC 3 (Figure 5.18). Working fluid pH need not be constantly
monitored by the Data Acquisition System and therefore is only recorded at the beginning

and end of each test run.

5.6 Bubble Diagnostics

Options for bubble photography include the use of xenon flash tubes or pulsed laser in
conjunction with cine (high speed mechanical) cameras or low speed video cameras. The
double flash, shadow (backlit) photography technique is a standard diagnostic for measuring
droplet behavior in spray combustion. Pulsed laser systems are fast (a few nanoseconds),
but relatively expensive. Flash tube systems are less expensive, but with marginally fast pulse

times.[!!]

MHD Instruments of Palo Alto California has recently developed a high speed gated,
intensified video camera (GIVCAM) by combining an intensifier tube with a solid state CCD
video camera. With this equipment, the behavior of gas bubbles evolved from rod
electrodes was directly observed in sea water as a function of current density. These first
results were reported at the Second ONR Workshop on MHD Submarine Propulsion in
November of 1989.%%! Bubble size decreased with current density and at a value of 2500
A/m?, bubbles with diameters in the 50-100 micron range were measured. Even under the

relatively low velocities of buoyancy, the small size of these bubbles required a gate time
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(electronic shutter time) of 1 millisecond and less. For the conditions of MHD propulsion
experiments, the high velocities of several meters per second require fast gate times of a few

microseconds or less to "freeze" the motions of these microscopic bubbles.[!]

Diagnostics on the evolution and distribution of gaseous bubbles downstream of the
electrodes in the ANL/NNS MHD test loop was the goal of this assignment. The specific
objective was the measurement of bubble size, bubble density, and bubbles velocity in the
boundary layer and the mainstream flow. A secondary objective was the verification of the
significant changes in bubble behavior induced by changing the type of "salt" water (NaCl

versus Instant Ocean™), "]

In situ bubble diagnostics in MHD propulsion test loops must meet three primary
requirements imposed by the test environment: 1) magnification, 2) fast shutter speed, 3)
discrimination. Since the anticipated bubble size is small, a magnification of 2 to 3 is
required for adequate resolution. At these values of magnification, the field of view is
limited to a few millimeters. For complete characterization of the bubble density
distribution, this field of view must be traversed across the flow. Since the anticipated
bubbles are small and moving at speeds of several meters per second, fast shutter speeds
in the range of 0.3 to 3 microseconds are required. Since a large number of bubbles are
distributed throughout the boundary layer and possibly into the core flow, techniques for

discriminating bubbles under measurement from the "cloud" of bubbles is required.'!!
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5.6.1 Measurement Techniques

Two techniques were developed and used for the direct imaging measurements of bubbles:
shadow photography and streak photography. In the shadow technique, the bubbles are
back illuminated by a collimated light source. The bubble shadows are "frozen" by a fast
shutter speed. Discrimination within the "cloud" of bubbles is effected by the small depth-of-
field controlled by the f-number of the optics. Since light entering the edge of a bubble is
refracted away, the edge appears as a circular shadow. Light passes unimpeded through the
center of a bubble so that a bright spot should appear in the center of the circular shadow.
The bubble diameter can be directly measured from the diameter of its shadow. The

circularity of the shadow may be used as a criteria for separation of bubbles from debris in

the flow.[!!]

Streak patterns are best observed by illumination with a sheet of laser light from the side.
By using a relatively long exposure times, streaks of light are photographed as the bubbles
pass through the sheet of illumination. The camera optics must be focused at the same
location as the laser sheet. The bubble speed is determined by measuring the streak length
and knowing the exposure time. The velocity vector (in the plane of the field-of-view) is also

determined by the direction of the streaks.!!!]

3.6.2 Bubble Diagnostics Equipment

The bubble diagnostics system developed by MHD Instruments consists of five major system

components:

. The gated, intensified video camera (GIVCAM) with microprocessor control.
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° Imaging optics train consisting of 300 mm telephoto lens with custom
extension tube.

. Remotely operated translation mechanisms.

. Computer controlled with super-VHS video recorder and video monitor.
The optics train was designed to meet the above requirements for magnification and
minimum separation distance between the flow field and the camera lens. A telephoto lens
with a 300 mm focal length was chosen to meet these constraints. For control over the
discrimination distance, an f/2.8 lens is used. A corresponding adjustable extension tube was
fabricated to match this lens. In normal operation, this extension tube is set to a length of
635 mm. Two types of illumination sources were developed. For shadow photography, an
intense, uniform background is desired. This source was designated around a 300 W
projection lamp with a custom collimating optics. For streak photography, a helium-neon
laser with a nominal output of 9 mW is used. The laser beam is transformed into a sheet
with a cylindrical lens. A rotating front surface mirror, placed after the cylindrical lens,
steers the laser sheet throughout the boundary layer; beam steering is driven by a computer-
controlled stepper motor. Since the ANL/NNS test channel is constructed of optically clear
polycarbonate resin, the bubble diagnostics equipment was readily mounted at the magnet

exit for optical access to the flow field.['!]

The central component of the bubble diagnostics system is the GIVCAM intensified video
camera. This camera is based on a microprocessor controlled microchannel plate (MCP)
intensifier tube with supporting optics and high voltage power supplies. The intensifier tube
image is focused via relay optics on a standard CCD video camera. The onboard
microprocessor and timing circuits allow pulse times down to 100 nanoseconds which are
synchronized with the 60 Hz video camera. The CCD imaging module is a complete

monochrome solid-state TV camera. In starndard EIA interlaced mode, its resolution is 610
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horizontal by 488 vertical pixels. Recall that a TV frame consists of two interlaced fields of
244 lines acquired every 1/60 of a second. Use of the TV standard allows the application

of low cost video recorders and monitors. Super-VHS video recorders provide a good match
to the resolution of the present GIVCAM which is built around a 18 mm intensifier tube.
Furthermore, this pixel resolution results in a good match with reasonably priced frame-

grabber boards and the super VGA standard for PC computers.!'!!

In order to scan throughout the boundary layer an into the core flow without changing
magnification, the entire optics train was translated. The GIVCAM, extension tube, and
telephoto lens were mounted to an optics beam which was in turn attached to two linear
translation mechanisms. The optics beam is driven by a stepper motor via a lead screw.
The stepper motor is mounted compactly between the optics beam and the mounting

channel. The completed optics train and translation hardware are shown by Figure 5.19.11]

The diagnostics hardware was controlled with a 386 PC computer equipped with hard disk,
VGA monitor, and control cards. The stepper motors were connected to a special port on
the stepper motor card while the GIVCAM was operated through a standard serial port.
The video data was recorded on a JVC model HR-S6600U super-VHS video recorder. A

composite monitor was added to view the camera output directly.'!]

9.0.3 Instrument Calibration

Both the bubble size and streak velocity require an accurate calibration of the length scale.
Since the aspect ratio of the CCD detector element is 4/3, the field-of-view area is also

known. For quantitative measurements of bubble density, the effective depth-of-field for a



bubble shadow must be determined. Note that the objects of interest, bubbles, are in a
medium with a different index of refraction than the optics train. The theory for a simple
lens completely surrounded by air with the object in water indicates that the magnification

is not affected, but that the focus distance is changed. The bubble diagnostics optics was

focused on a scale with and without water in the path; the effect of water on the length scale

was negligible, as expected.("]

The bubble diagnostics system was set up for the same parameters as used during the tests
and calibrated by directly recording the image of a six inch scale. All of the processed
images were reproduced with the proper 4/3 aspect ratio and with a standard size format.
The calibration image shown by Figure 5.20; here, each division is 1/100 inch. The
calibrated size scale is then 1035 microns per inch. Note that the corners of the image in
Figure 5.20 are slightly rounded. This is caused by the adjustment of the relay lens to use
as much of the intensifier tube area as possible for the greatest resolution. Since this tube
has an active diameter of 18 mm, the magnification ratio is determined by scaling the
distance between corners; the resulting magnification is 2.5 which verifies the design value.
Similarly, by scaling the frame, the field-of-view size is determined as 6.31 mm by 4.73

mm.[!
The focus distance in water was directly measured by translating the camera from one side

of the channel to the opposite wall. The correction factor for distance in water was

determined as 73% of the distance moved by the camera.!'!)
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The effective depth-of-field for bubble shadows is more difficult to accurately measure. The

traditional formula for depth-of-field may be used as a guide:

As=+b (f/#) % '\l+-I—-1n)

5.1)
where m is magnification and b is the blur size at the film or detector plane. Since the
object will be defocused by moving toward it or away from it, the total depth-of-field is 2As.
Good experimental results were obtaine: at f/4 and with the magnification value of 2.5, the
depth-of-field for this system is about 4.5 times the blur size. For an intensifier tube, the
blur length is around 30 microns so that a depth-of-field of 135 microns is indicated.
However, bubble shadows are still clearly visible over this distance. The effective distance
for imaging bubble shadows (called depth-of-shadow here) was determined empirically by
a bench top experiment. The resulting measurement for depth-of-shadow was about +1.5
mm with a spread of +25%. The present calibration procedure allows the quantitative
estimation of bubble density by using the measured values of field-of-view area and depth-of-
shadow tu provide a value for measurement volume. This volume is 6.31 x 4.73 x 3 mm®

which equals 90 mm?.[1]
5.6.4 Image Processi

The image data stored on analog video tape was digitized with an HRT-512 frame grabber
board installed on a 486 PC computer with 8 MB of RAM. The HRT-512 frame grabber
digitizes with a resolution of 512x512 pixels with 8 bit accuracy. This pixel resolution
provides a good match to the CCD camera pixel format. The 8 bit accuracy implies a gray

scale of 256 shades with a value of 0 for black and a value of 255 for white. This gray scale
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results in near photographic quality and is a good match with the super VGA video standard
for PC computers. This frame grabber is controlled by a custom computer program,
BUBBLE2, developed by MHD Instruments. The latest version of this program can operate
in a batch mode in which sequences of images are digitized and stored in memory up to the
limit of RAM installed. For the present study, 10 images were grabbed in sequence every
500 ms. The image sequence may then be stored as a file, enhanced, and/or reproduced as

a halftone picture on a laserjet printer. This program is written and compiled in turbo-C.[!!]

Recall that a standard TV video frame consists of two intcrlaced fields taken at intervals of
1/60 second. To avoid a double exposure at the fast shutter speeds used the GIVCAM was
triggered only once 1/30 second (per frame). The resulting digitized image has an
unexposed field so that every other line is black. The first image enhancement routine
inspects each frame to detect if a field is black; if so, the routine fills in the missing field by
linear interpolation of the neighboring good lines. At this point, the image sequence was

archived for subsequent processing.[!!

An eight step procedure was developed for enhancing the quality of the digitized images.
First, the image is gently smoothed with a nine point convolution kernel. Then a routine for
computing the image statistics is called; this routine computes the histogram, and such key
features as its peak value and the value of gray scale at the edge of the histogram peak. At
this point, the contrast in increased to C(0, peak value) where the zero value implies black
is still black and all other pixels are stretched in value so that the peak vaiue is shifted to
a value of 255. The "iris" effect, in which the center appears overexposed, is next corrected.
To correct for the "iris" effect, the brightness of each pixel was increased by an error

function which depends on both radius and angle. The radial function used is a displaced
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linear functional C(r-r,) while the angular function is made up of the first five terms of the
Fourier series. In step 5, the image is contrasted towards the black by C(min,255) where
min depends on the dip and peak values. Step 6 smooths out the contrast operation. Then
the image is contrasted towards the white by an algorithm which adjusts all images to about

the same level of brightness (regardless of their original value).!*!

Finally, the images are sharpened by one of two convolution filters. The first filter is a
gentle sharpening used in conjunction with a lower target brightness, so that detail of the
background is preserved for comparison. The second option consists of a vertical filter in
conjunction with a whiter contrast which tends to eliminate most of the background. The
vertical filter "lifts" out the bubbles and imparts a three-dimensional character to their

appearance.!]
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6.0 Pre-Test Analysis

A pre test analysis was performed to support the design of the test loop and provide
guidance in establishing a test matrix. This analysis was divided into three areas:

. A Parametric Analysis

° Loop Chemistry

. Loop Energy Balance

6.1 Parametric Analysis

The system code developed in Phase I was used to design loop components, define optimum
operating conditions, assist in the selection of instrumentation for individual componer:ts, and

predict overall characteristics of the test loop.

A parametric sweep was performed on the test loop using the following variables:
. Separator loss coefficient k=0 - 1.25
. Working fluid conductivity 0=4.5 - 22.5 S/m
. Test section fluid velocity u=2 - 8 m/s

. Load Factor K=1.1- 30

Output values include voltage, current, loop component velocity and pressure drop, and
pressure loss/recovery in the test section. The actual magnetic flux distribution of the 2

Tesla magnet was used in the facility model.
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6.2 Loop Chemistry

Prior to testing the facility was chemically modeled. The scope of this study was to:
. Determine the MHD test loop chemistry.

. Calculate the amount of the products of electrolysis produced
as a function of ampere-hour.

. Determine the change in pH as a function of ampere-hour.

. Determine the change in conductivity of the working fluid as a
function of ampere-hour.

The electrolysis of an aqueous solution of NaCl results in the generation of chlorine gas

(CL,) at the anode and hydrogen gas (H,) at the cathode, as follows:

2C1- ~ Cl,+2e"
Anode (6.1)

2€e+2H,0 ~ H,+2 (OH) -
Cathode (6.2)

A surplus of electrons at the cathode creates conditions for chemical reduction (gain of

electrons) and the resulting deficit at the anode supports oxidation (loss of electrons).!l

More complicated reactions can occur depending upon the level of current supplied. The

chlorine generated at the anode will quickly be hydrolyzed and hydrogen gas generated
by:[31-34]

C1,+H,0 = HC10+Cl- +H*
(6.3)
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HC10 =H*+(Cl0)

(6.4)
anat e 1
(Cl0)-+Na*+ - Na(ClO) (6.5)
H*+OH~ = H,0
(6.6)
2H*+2e - H,
(6.7)

6.2.1 Electrolysis Products

6.2.1.1 Mass

The mass of the electrolysis products was calculated® by first determining the number of

moles produced, n, using Faraday’s Law:

(6.8)

where Q is the number of applied coulombs, and F is the faraday constant. The mass, m,

can then be calculated by equation 6.9.

m=nFwW (69)

Where FW is the formula weight.
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Because equations 6.3 & 6.4 represent equilibrium relationships, there is no straightforward
method for determining the amount of electrolysis products produced. Instead, the amount
of hypochlorous acid (HCIO) produced is determined assuming that reaction 6.4 did not
occur. Similarly the amorant of Sodium Hypochlorite (NaClO) produced is calculated as if
all the hypochlorous acid was cunverted to the hypochlorite ion (ClO’), and in-turn ali of the
hypochlorite combined with the sodium (Na*) spectator ion as indicated in reaction 4.5.
These assumptions were made in the hopes of bracketing the mass of electrolysis product

produced. Results are shown in Figure 6.1.

6.2.1.2 Volume

The volume for the gaseous products of electrolysis (chlorine and hydrogen gas) was

calculated® using the Ideal Gas Law:

Ve MRT

d (6.10)

Where V is volume, m is mass (from section 6.2.1.1), R is the gas constant for either
chlorine or hydrogen, T is fluid temperature, and P is system pressure. Results are indicated

in Figure 6.2.

6.2.2 pH

The principal effect governing the ApH of the system occurs at the cathode.*®! The excess
electrons will generate hydroxide ions as shown in equation 6.2. The change in pH as a

function of ampere-hour was calculated®” by first determining the molarity of the hydroxide
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ions (OH’) produced by equation 6.2. Then the molarity of hydronium, H;0O, is calculated
by dividing the ionic product constant of water by the molarity of hydroxide. Finally the

system pH is determined by:

DPH=-log [My o]
(6.11)

However:
e "The pH of the system is dependent on whether or not the

hydrogen and chlorine are vented from the system or allowed
to recombine."(*®

Figure 6.3 displays the worst case change in system pH, where none of the electrolyzed

hydrogen gas was allowed to recombine and was vented from the system.

6.2.3 Conductivity

With regard to change in specific conductivity:

*  '"The ionic equivalent exchange of chlorine ions for hydroxide
ions is not expected to result in a net change in conductivity
(assuming solution volume constant)."®l

This conclusion is supported by the DARPA funded 6 Tesla MHD test loop at ANL,P!

where it was determined that the change in conductivity based on the chlorate conversion

is 0.05%.
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6.3 Loop Energy Balance

This analysis was performed to determine loop cooling requirements, if any. Assuming no
heat transfer, no change in kinetic energy of the fluid, and no changes in elevation, the first

law of thermodynamics for a steady-state steady-flow process reduces to:

We,=n(h,-h,)
vy~ (6.12)
A change in enthalpy, assuming a constant specific heat, can be represented by:
-h=-C (T,-T)
Pa=By=Gp(Tim Ty (6.13)

By combining and rearranging these relationships, we can determine the change in

temperature per unit time by:

At mC,
(6.14)
With the work into the control volume, Wy, taken to be:
Wepm W+ W
v Tpump el (6.15)

Where W, .., and W, are work from the pump and work from the test section respectively,

and are expressed as:

w -ApQ W, =VI
pume e (6.16 & 6.17)

Where Ap is the pressure rise in the pump, Q is the volumetric flow rate, V is the applied

potential to the test section, and I is the applied current.
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Results from this analysis indicate that the predicted worst case working fluid temperature
rise is .57 °F/min or 34.2 °F/hour (.32 °C/min or 19.16 °C/hour). This analysis indicates that

by limiting the duration of a tcst run, a loop cooler would not be required.

82



7.0 Experi I Conditi

7.1 Test Matrix

The design of the test matrix was based on' results from the pre-test analysis and is

summarized in Table 7.1.

Orientation
NaQl Solution o0=45 u=2-8 J=100-800 Horizontal
NaCi Solution o=225 u=2-8 J=100-800 Horizontal
Nacl Solution o=225 u=28 J=80-800 Vertical
Vertical |

Table 7.1: Test Matrix

The test program consisted of the following measurements in both primary and secondary
working fluids:

1. Measurement of pressure distribution in the test section with zero magnetic field over a

velocity range of 2-8 m/s to determine the baseline frictional losses.
2. Measurement of pressure distribution in the test section at 2 Tesla with no current

supplied to the thruster over a velocity range of 2-8 m/s to determine the modification of the

pressure distribution by the magnetic field alone.
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3. Measurement of the volt-ampere characteristics of the thruster at zero magnetic field to
determine the total electrochemical potential, confirm the conductivity of the working fluid,
and obtain preliminary evidence on the effect of bubbles on the electrical performance cf

the thruster.

4. Measurements of the thruster performance at a magnetic field of 2 Tesla over a velocity

range of 2-8 m/s and a current density range of 70-820 A/m>.

7.2 Conditions for Bubble Tests

Four tests were conducted with the bubble diagnostics instrumentation during two separate
testing periods. Sodium Chloride solution was used for the first testing period in April, 1992
while Instant Ocean™ was used for the second test period. The dates of these tests and
salient conditions are summarized in Table 7.2. Each test was recorded on ST-120 super-
VHS video tape cassettes in normal mode (2 hours duration). Over the test program, three
cassettes (labeled N1 through N3) were used. The cassettes used for each test are listed in
Table 7.2 along with the coordinating tape counter time. A logbook based on the tape time
counter (accurate to one second) was maintained for key test conditions and diagnostic
parameters. Many of these events, such as a change in camera gain or switching the thruster
power supp.y, are directly observable on the video monitor so that logbook consistency can

be verified.['!]



Test Fluid

Shadow Size

0:00 - 18:40

Leser Streak

18:40 - 42:00

NaCl Shadow Size 42:00 - 1:27:00 “
NaCi Shadow Size 1:27:00 - 1:45:36

NaCl Shadow Size 0:00 - 39:30 JI
NaCl Laser Streak 39:30 - 1:02:00 Jl

Instant Ocean ™ | Shadow Size 0:00 - 1:08:21 n

Table 7.2: Conditions for Bubble Measurement Tests

The flexibility of the ANL/NNS loop design allowed convenient installation of the bubble
diagnostics equipment; this equipment performed well for all of the tests. Both the shadow
photography as well as the laser streak techniques were applied during the first testing
period. During the first test, the laser streak data was used to verify the calibration factor
for the loop flow meter. During the final test, bubble size measurements were emphasized
in anticipation of the effect of Instant Ocean™. This test plan was optimized to obtain the
best bubble size data by reducing the saturation of the test fluid with hydrogen gas. At each
data point, the current was only applied for 30 seconds. This procedure provided a sample
of 900 video pictures at each condition while also supplying a definitive marker for electrode
produced bubbles (versus saturation bubbles). The detailed conditions for the Instant
Ocean™ test are listed in table 7.3. Nominal velocity values of 2 and of 8 m/sec were used
with nominal current valued of 50, 100, and 150 amps. At each flow condition, the boundary
layer was scanned by translating the bubble diagnostics instrument. The relationship
between camera position and boundary layer location is described in section 8.6. Critical

GIVCAM parameters are also listed.[1]
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Date 6/26/92  Clock Sync: tape start time 00:00:09 = 3:09:00 pm clock time
Pressure = 5 psig / Magnetic Field = 0 Tesla / Conductivity = 4.7 S/m

Camera Gain/ f/# Exposure
Position (volts/-) Time
(inches) ’

2 02 640 / /4

2 04 640 / /4 1’

2 5:26 50 1.0 640 / (/4 09

2 6:58 50 30 640 / 1/4 09 "

2 8:58 50 0.0 640 / f/4 0.9
E 2 10:57 50 01 640 / £/4 0.9

2 12:42 50 0.1 670/ £/4 0.9 Il
[ 8 15:46 50 01 670 / £/4 09 {I
H 8 17:35 50 0.0 670 / {/4 0.9

] 19:44 50 0.2 670/ f/4 0.9 1"

8 21:16 50 04 670 / f/4 09

8 22:58 50 0.1 670 / /4 0.9

8 25:42 150 0.1 700 / f/4 0.9
I 8 26:29 150 0.1 700/ /4 0.9

8 2922 150 0.1 660 /2.8 0.9

8 31:46 100 0.1 700 / /4 0.9

8 33:06 100 02 700 / /4 0.9

8 34:11 100 03 700 / £/4 0e

8 3s:21 100 0s 700 / /4 0.9

8 36:43 100 1.0 700 / /4 0.9

2 0.1 700 / /4 09 H

Tab'e 7.3: Conditions for Instant Ocean™ Bubble Size Test
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After the test run at counter time 36:43, bubbles were observed remaining in the flow after
electrode current was switched off. This condition became severe for the lower velocity case
at time 39:20. At this point, the test was interrupted and an attempt was made to remove

gas form the test fluid. Further runs were made at velocity values of 2, 8, and 4 m/sec while

@'



the current ranged from 50 to 100 amps. Video data was recorded until a counter time of
1:08:21. However, the test data appears suspect after the saturation point was reached.
Based on these observations, the allowable electric charge for saturation is about 14 amp-

hours for this loop.!"!]
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8.0 Results and Discussion

8.1 Volt-Ampere Characteristics

The measured Volt-Ampere (V-I) characteristics for the center pair of thruster electrodes
(30" in length) are shown in Figures 8.1, 8.2 & 8.3 for different flow velocities, conductivities
(4.8, 22.5 S/m and 5.3 S/m), and for both working fluids. The linear nature of the V-I

characteristics indicates that, for thruster-relevant current densities:

e The generation of hydrogen bubbies at the cathode has a negligible effect on the
current transport across the working fluid.

* Single electrode potentials (SEP’s) are essentially independent of the current density.

The fact that the V-I characteristics are independent of velocity provides further support to
the first conclusion.  The calculated fluid conductivity, oy 4ope from the slope of the
V-I characteristics, is in excellent agreement with the value measured, 0 ety DY the

conductivity probe and is summarized in Table 8.4.

o P —S—— = e

Working Fluid | Measured Conductivity

NaCl Sclution
i NaCl Solution
Instant Ocean™

Table 8.4: Comparison of Measured and Calculated Conductivity

89



001

08

I'g a.nbi4
sansuLlorieyn |-A

(V) uaung

09

oy

014

S/W 9sNn
S/W p=n

sS/W gan

*
+

[}

W/S tL'p =0 1-Ag
E\w w..? - vo;o-oe(ﬁ

0]

Sl

0c

14

ot

(\) abejjopn



00t

08

2’8 ainbi4
solsuajoeieyn |-A

(V) 3uaing

09

ov

0c

S/W g=n

S/W =N

X
O

W/S g1 = "4 g
E\w m-NN - Q.uﬂ..l.-_o

ot

(\) 8beljoAa

91



001

£'g 8.nbi4

Uead( juelsuj - soljslaloelieyn |-A

08

(sdwe) jusiing

09

ov

0¢

|

I

1

i

W/ 1°'g = *9o1® I-Ap
E\m m-m s —-O.—:.IIEQ

G¢

o€

(S]1]ON) abej|oA

92



Finally, the sum of the SEP’s at the anode and cathode (AV .), given by the y-intercept
of the V-I characteristic, shown in Table 8.5, is in excellent agreement with the sum of the
single electrode potentials provided by Eltech, the electrode manufacturer. Eltech quoted
a measured SEP of 1.1 volts for the anode and an estimated value, based on literature, of
1.5 V for the cathode (these figures are expected to increase slightly with increased current

density and decreasing salt concentration).

Working Fluid | Measured Conductivity | Electro-Chemical Potential
Omeasured (S/M) ==£Ig_g=(vol
Na(l Solution 48 2.6
| Naci Solution 225 25
Il Instant Ocean™ 53 2.7

Table 8.5: Electro-Chemical Potentials

In their totality, the V-I characteristic results demonstrate that for current densities of
interest to MHD seawater propulsion, well established constant values of SEP’s and fluid
conductivity are the only electrical material properties that enter into the calculation of

current transport and thruster performance.

&2 Curent Density

Since the electrodes are segmented, the measurement of individual currents permits the
determination of fringing current effects at the electrode ends. Figures 8.4, 8.5 & 8.6 show
the measured and calculated average current densities over the five electrode segments for

two electrical conductivities in the NaCl solution (0=4.5 & 22.5 S/m) and for Instant
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Ocean™ (0=5.5 S/m). The figures indicate that the fringing current effects are confined to
relatively small areas and, as such, they are expected to have a small effect on the
performance of thrusters with moderately large electrode length to width ratios (8.3 in the
present case). The effect of electrical end losses (due to fringing fields near the electrode
ends) on MHD thruster performance has been investigated in detail.’>*7} It has been found
that, as the aspect ratio (electrode length/electrode width) and load factor increase, the
electrical end losses decrease. The electrical end losses were shown to have a significant

adverse effect on the thruster efficiency for load factors close to one.!!s!
83 Calculated and Measured Pressure Rise

The measured pressure difference over the 30” center electrode was used to determine the
degree to which the performance of the thruster follows theoretical predictions. Specifically,
the measured pressure difference during thrust producing operation was reduced by the
measured pressure difference at the same velocity and magnetic field, but at zero current.
The resultant MHD pressure rise, normalized by the theoretical pressure rise as calculated
on the basis of the measured current, is plotted as a function of the current density in Figure
8.7 for different flow velocities and magnetic field orientations for d=22.5 S/m. As shown
on this figure, there is good agreement between measured and calculated pressure rise
(thrust). Similar results were obtained for 0=4.5 S/m in an aqueous solution of sodium

chloride and for 6=5.5 S/m i Instant Ocean™, as shown in Figures 8.8 & 8.9 respectively.
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&84 Thruster Efficiency and Losses

Thruster efficiency, defined as the ratio of mechanical power generated by the thruster to

electrical power supplied to the thruster, is given by:

. ApQ

M= avr

(8.1)

where Ap is the pressure rise along the thruster, Q is the volumetric flow rate, AV is the

potential difference across the electrodes, and I is the electric current.

In Figures 8.10, 8,11 & 8.12, the measured total efficiency for an aqueous solution of sodium
chloride (0=4.5 S/m and 0=22.5 S/m) and Instant Ocean™ (0=5.5 S/m), at u=2 m/s is

plotted against the load factor K,

x. A Xéd
(82)

where d is the electrode separation, B is magnetic flux density, and u is the fluid velocity.
As shown, total efficiencies of approximately 4% and 8.4% for the sodium chloride solution
and 4% for the Instant Ocean™ were achieved under these conditions. As expected, the
results indicate that thruster efficiency increases as electrical conductivity increases. In
addition, Figure 8.11 demonstrates that thruster performance is not affected by a change in
orientation of the magnetic field. Figures 8.10, 8.11 & 8.12 also show that the total efficiency
is given by the ideal thruster efficiency (equal to 1/K) reduced by frictional drag and SEP
losses. Since both the losses and the ideal thruster efficiency are easily calculated, the

performance of MHD thruster can be predicted with confidence. The calculation of the
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effect of end losses on efficiency is more complicated, but such losses are of little practical
importance unless thrusters with magnetic flux densities in excess of 10 Tesla operating

near load factors K=1 are under consideration.!é]

8.5 Ideal Thruster Efficiency

The "ideal" thruster efficiency for both working fluids at different operating conditions,
calculated from the measured total efficiencies and losses, is plotted against the load factor
in Figures 8.13 & 8.14. As shown in these figures, there is good agreement between the

experimentally determined ideal efficiencies and the theoretical dependence of 1/K.

As seen from the preceding figures, the theoretical predictions are in good agreement with
the measured values. Deviations can be attributed to experimental errors, given the fact that
differential pressure measurements are as small as a few tenths of a psi for some of the
cases. The results presented here are confined to the central portion of the thruster, away
from the fringing current areas. Measurements in the end regions are subject to large
experimental error because the pressure differentials involved are small. Calculations
indicate that losses associated with such end =ffects are much smaller than frictional losses

for the expected parametric range of actual seawater thrusters.
8.6 Bubbles
The detailed characteristics of bubbles must be determined by processing a statistical

sampling of images recorded at various locations in the flow field. Since both the size of

bubbles as well as their number density fluctuate in time, hundreds of samples are desired
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at each condition for accurate measurements. Calibration of the equipment for both length
scale and measurement volume are required for quantitative measurements. In addition,
image processing software is required for translating the thousands of video frames recorded

into a format amenable to data reduction.['!]

8.6.1 Qualitative Observations

Duﬁhg the first three tests with NaCl solution, bubble shadows were not observed by direct
imaging. Despite the use of fast shutter speeds (less than 1 microsecond), high electrode
current (200 amperes), and measurement locations near the cathode wall, medium size (40
micron diameter) or larger bubbles were not observed. However, visual observations
revealed a "cloudy" appearance of the fluid near the cathode wall. This effect was rendered
visible by the projection lamp and increased with electrode current. This optical activity was
manifested as a strong scattering of the background illumination source with a large
reduction in background intensity as measured by the video camera. The test fluid became
increasingly cloudy with the number of ampere-hours discharged until finally it took a dense

yellowish hue.[!!}

The results of the final test with Instant Ocean™ were dramatically different: many large
bubbles with diameters in the 100 to 300 micron range were observed upon application of
current even at 50 amperes. For this test, the current was applied for 30 second intervals
and the bubble activity diminishes within seconds of switching off the current. A decrease
in overall intensity is also noted for this "large" bubble case due to scattering of light from
bubbles outside the measurement volume. The region of strongest bubble activity occurred

within a few millimeters of the electrode wall; beyond this thin layer, the bubble number
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density rapidly decreases. The number of large bubbles per frame was observed to increase
in rough proportion with electrode current. As expected, the bubble number density
decreases as the flow velocity is increased. Before the test solution became saturated, only
a few bubbles were observed in the core flow (with current on) or near the wall with the

current off. Before saturation occurred during the fourth test with Instant Ocean™, over

18,000 video frames of bubbles shadows were recorded at various conditions.'!}

8.6.2 Bubble Size Results

During data reduction, the image analysis process was semi-automated so that each entire
sequence of images was processed for all eight steps in batch mode. The image sequence
was then printed out two on a page. Each image print contains the file header at the top
of the page and its sequence number overhead. In addition, the original value of average
intensity is recorded along with the value for the final enhanced version (level = original ->
enhanced). Evidence of the many large bubbles produced during the Instant Ocean™ test
is showr ty the enhanced images reproduced for the N301 sequence. This sequence of ten
frames of video data is shown first for the gentle sharpen filter with background (Figures
8.15 - 8.19), then as a sequence (S#1 through S#10) for the vertical filter with more
backgrcund removal (Figures 8.20 - 8.24). These ten images provided a statistical sample
of the bubbles produced near the cathode wall (0.19 cm from the wall in this case). Note
that several tens of black circular shadows are visible on each frame. These black "dots"
correspond to bubbles with diameters in the 40 to 260 micron range. The gray shadows
represent bubbles that are on the edge of the effective focal volume for the imaging optics.

The gray background is caused by the dense "cloud" of bubbles generated near the wall.['!]
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N301 S#1 (level = 129 -> 187)

MHD Instruments

Bubble Photos S#1 & S#2, N301 Sequence - Gentle Sharpen Filter
Figure 8.15



MHD Instruments: N301 S#3 (level = 128 =-> 190)

4, N301 Sequence - Gentle Sharpen Filter
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(level = 130 -> 188)
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MHD Instruments: N301 S#7

Bubble Photos S#7 & S#8, N301 Sequence - Gentle Sharpen Filter
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MHD Instruments: N301 S#9 (level = 115 -> 187)

Bubble Photos S#9 & S#10, N301 Sequence - Gentle Sharpen Filter

Figure 8.15
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Bubble Photos S#7 & S#8, N301 Sequence - Vertical Filter
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As a check on the origin of these bubbles (electrode generated versus recirculation), the
video frame sequence N302 (Figures 8.25 - 8.29) was taken only 5 seconds after the
electrode current was turned off. Note that the bubble activity is greatly reduced to less
than 10 bubbles per frame. The conditions for these two sequences (with and without
current) are summarized in Table 8.6. The tape time is indicated at the start of each
sequence so that the test conditions may be determined by referral to Table 7.3. A further
indicator of bubble density is given by the background intensity level; heavy bubble activity
results in a reduction of the background illumination (ideally white). This indicator is also
shown in Table 8.6 as a percentage (100% corresponding to white). Note that withcut
current, the average intensity level is 72 percent (before enhancement). With current, the

background level dropped to only 48 percent.!!!]

[ | Date: 6/26/92 pllock Sync tape start time 00:00:09=15 09 00 clock time
Instant Ocean Pressure-s psng / Magneuc Fneld- 0 T&sla / Condnctmty-S 2 S/m

From Wall Intensity Level

20 to 100 bubbles per |
frame; 40-260 microns §

<10 bubbles per
frame, 60-130 mlcrons :

Table 8.6: Conditions for Bubble Image Sequences

At this point in the data analysis, the black (in focus) bubble shadows are counted and
classified according to size. These bubble diameters are then averaged to find their volume
and diameter and normalized to an average number per frame. Since the focal volume is
known, the bubble number density can be determined quantitatively. Finally this process is

repeated for each location in the flow field until the bubble activity drops off to zero.[*!
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Bubble Photos S#3 & S#4, N302 Sequence - Vertical Filter
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MHD Instruments: N302 S#9 (level = 183 =-> 204)
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Bubble Photos S#9 & S#10, N302 Sequence - Vertical Filter




Bubble sizes in static electrolysis experiments have indicated sizes in the 50 to 100 micron
range for similar values of current density.?**! The larger (by several factors) bubbles
observed for Instant Ocean™ in the present tests were surprising since the dynamic forces
were expected to reduce bubble size. The converse result of very small micro-bubbles for
the NaCl solutions is more amenable to rationalization by shear stress effects and diffusion
of hydrogen gas. While the two test solutions have about the same chlorine content (at
equal conductivity), Instant Ocean™ (like sea water) contains significant concentrations of
magnesium and calcium in addition to sodium. Presumably, these additional ions have
modified the electro-chemistry in the boundary layer in a manner which dominates bubble
size. At present, the influence of electrode surface parameters versus boundary layer effects

on bubble size are not well understood.

Since the resonant frequency of bubble noise scales with the inverse of size, the large
hubbles observed for the Instant Ocean™ test may play a significant role in the acoustic
signature of MHD propulsion devices. Presumably, operation with sea wc ier will be similar

to Instant Ocean™ since the inorganic chemical constituents are matched.

The behavior of bubbles generated under the unique operating conditions of ax MHD
propulsion test loop has been elucidated by direct measurements based on imaging
diagnostics. Surprising results, with important consequences for the submarine application,

have been observed over a range of electrode currents.!!!}
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87 Loop Chemistry

8.7.1 pH

The system pH was measured before and after test runs and only varied slightly. Typically
at the beginning of a test series the pH was 7.8 and at the end of the test it only reached
8.4. This small change is believed to be the result of the fact that the fluid velocity in the
test section allowed most of the electrolyzed hydrogen bubbles to be driven into solution and

recombine to neutralize the hydroxide.

8.7.2 Conductivity

The principal effect governing the change in conductivity of the working fluid was the change

in temperature of the working fluid.

88 Working Fluid Temperature

The rate at which the working fluid temperature rose was significantly less than modeled in
section 6.3. During the course of the experiment the working fluid rose, on average, 8
°C/hour.

8.9 Test Duration

The phenomena which limited test duration was the amount of electrolytically generated

hydrogen bubbles. At low fluid velocity and high current, a large volume of bubbles evolved
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off of the cathode, and saturated the working fluid. This effect occurred after about 14
ampere-hours of operation and was especially pronounced in our test facility because of the
small fluid volume (375 Gallons). During these conditions, the loop was operated to
saturation, and the current shut off. The working fluid was circulated until all of the evolved

hydrogen was removed from the test setup with the bubble separator.
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9.0 Summary and Conclusions

The following are the major accomplishments and main conclusions achieved during phase

I of the program.

1. A one-of-a-kind magnetohydrodynamic test facility had been designed, fabricated,
tested, and operated to provide unique data on MHD seawater propulsion. The
thruster, a rectangular duct with electrodes to pass the electrical current, was
fabricated from optically clear polycarbonate resin, for visual observation and

characterization of the generated bubbles.

2. A pre test analysis was performed to support the design of the loop and provide
guidance in establishing a test matrix, using the MHD system code established in
Phase 1. This code was used to design loop components, define optimum operating
conditions, assist in the selection of instrumentation for the individual components,

and predict the overall characteristics of the loop.

3. The thruster was modeled with a one-dimensional hydrodynamic model coupled to |
a two-dimensional electrical model. The thruster model includes the major loss
mechanisms that affect the performance of MHD thrusters. Among these losses are
the joule dissipation losses, frictional losses, electrical end losses, and single electrode

potential (SEP) losses.
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Tests were performed, with salt water and Instant Ocean™ (a fluid chemically similar
to seawater), to investigate the effects of magnetic field orientation, flow velocity,
current, voltage, electrical conductivity, and bubble generation on thruster perfor-

mance.

Good agreement was found between the measured and predicted parameters. This
has served to validate the developed NNS/ANL thruster computer models.
Furthermore, the results indicate that the phenomena affecting the performance of
marine MHD thrusters are well understood and can be adequately predicted with the

developed computer models.

For current densities relevant to seawater thruster applications single electrode

potentials (surface potential losses) are essentially independent of the current density.

MHD thruster performance is independent of magnetic field orientation relative to
gravity.

The generation of hydrogen bubbles at the cathode has a negligible effect on current
transport across the working fluid and does not appear to have an impact on

performance for current densities relevant to full size thrusters.

A bubble diagnostics system for measuring bubble behavior directly by imaging
techniques was successfully applied at the exit of the ANL/NNS test channel. The
effectiveness of using shadow photography for size measurements and of using streak

photography for bubble velocity measurement were both demonstrated.
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10.

11.

Bubble formation at the cathode (and presumably related noise) is dependent on

both current density and fluid velocity.

The bubble size results revealed an order of magnitude difference in diameter
depending on the type of salt water used. Evidence for substantial gas evolution by
the cathode was observed for both salt water and instant ocean. In the case of NaCl
solutions, a dense "cloud" of micro-bubbles was inferred by their large reduction in
background intensity. Since these bubbles were not imaged, but scattered light, their
size must be in the 1 to 20 micron range. The use of Instant Ocean™ test fluid
resulted in the generation of much larger bubbles (up to nearly 300 microns in

diameter). At the channel exit, these bubbles were localized within millimeters of the
cathode wall.
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10.0 Recommendations

The taeasurement of large bubbles for the test with Instant Ocean™ indicate that basic and
specialized testing is required to predict bubble behavior for full-scale MHD thrusters. The
mechanisms of bubble generation and of bubble development downstream need

investigation.!!]

A series of small-scale tests are needed to confirm the impact of NaCl solutions versus
Instant Ocean™ on bubble behavior. Tests with both of the above fluids plus samples of
ocean water should be carried out. Careful attention to saturation limits must be observed
for any test work (bench scale or flow loop). Any measurements of bubble behavior and
bubble induced noise should be confirmed by tests in open sea-water with a prototypic test

vehicle.!]

Therefore, it is recommended that a follow-on program be considered.*!) The objectives
of this program are to evaluate hydroacoustic and other relevant performance characteristics
of MHD seawater propulsion relative to conventional systems and to demonstrate scale-up

of performance to larger vehicles.

To reduce cost and assure program success, it is proposed that an existing vehicle be
modified to accommodate a seawater MHD thruster. Based on a survey of vehicles the
DARPA/Charles Stark Draper Laboratory (Draper) Unmanned Undersea Vehicle (UUV)

is considered a suitable test platform because:
. Support hardware/software for vehicle launch/recovery exists.

. Data acquisition, tracking, and related support systems required for at sea
testing have been demonstrated.

133



o A fully operational vehicle/mission package simulation facility, which can
support redesign, exists. }

. This vehicle currently has no mission.

. This vehicle permits testing in the submarine performance envelope.
Elements of an at-sea demonstration program would include:
101 ition of at-sea_demonstration/design requirements

*  Performance Objectives - speed, duration, transient behavior, maneuverability
and control (including thrust reversal) for surface and submerged conditions.

*  Component/System Design Requirements - battery power supplemented with
tethered power will be considered. Fully autonomous operation could be
conducted for realism with low speed and low endurance, while the addition
of tethered power as an addition or substitute for batteries could enable
demonstration of higher speed and endurance. Vehicle maneuverability and
control will also influence design requirements.

* UUV Modifications - addition of hull modules, propeller removal,
rearrangement for battery and/or electronics section, and other modifications
to accommodate MHD thruster and auxiliary systems will be specified.

*  Hydroacoustic Performance - test plan for implementation at Navy test range
(e.g. MONOB) will be prepared. Existing acoustic data base for the UUV will
be used for comparative analysis.

e  Cost/schedule estimates - estimates of cost and schedule for major program
elements.

10.2 Supporting R&D/Technology Development

*  Magnet - several configurations will be evaluated for propulsive performance,
magnetic signature, producibility, ease of integration, and salability to full size
submarines.
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e Electrodes - material selection and segmentation based on ANL/NNS test
results and other available data.

*  Cryogenic systems - selection based on ability tc miniaturize for integration
into the UUYV, and potential to meet Navy requirements for shock, vibration,
and noise level.

e Data base for d-sign scale-up - data generated at various MHD test loops will
be used as a Casis for selection of thruster configuration and auxiliary
equipment that can be scaled to full size submarines with a high confidence
level. Additional data will be generated an these loops as required to validate
the design.

10.3 Detail Design/Assembly/Test

e Detail design - perform detail design of UUV modifications, thruster and
auxiliary systems.

* Simulation - using the existing UUV simulation facility, the effects of installing
an MHD propulsion system on the vehicle will be simulated to validate the
design.

¢ Component fabrication/procurement - preparation of qualified supplier list
and identification of long-lead items for fabrication or purchase.

e Component/system verification testing - laboratory testing of components will
be considered as an option, to reduce risk and/or cost of at-sea demonstration.

* Installation on UUV - install thruster, cryogenic systems, and auxiliary
equipment on UUV in accordance with prepared procedures.

e Test in Navy underwater range - implement test plan including
launch/recovery, hydroacoustic and other performance data acquisition, and
data analysis.

*  Producibility assessment - evaluate salability of construction/testing costs to full
size submarines.
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Appendix A: Argonne MHD Test Loop - Main Loop Arrangement, Details & List of Material
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Appendix B: Argonne MHD Test Loop - Drain, Vent & Storage Piping, Arrangement
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