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CUMULATIVE-STRAIN-DAMAGE MODEL OF DUCTILE FRACTURE:
STMULATION AND PREDICTION OF ENGINEERING FRACTURE TESTS

ABSTRACT

A cumulative-strain—-damage criterion is used to predict the initiation
and propagation of fracture in ductile materials. The model is consistent
with a model of ductile rupture that involves void growth and coalescence.
Two- and three-dimensional finite difference computer codes, which use
incremental-plasticity theory to describe large strains with rotation, are
used to trace the history of damage in a material due to extermal forces.
Fracture begins when the damage exceeds a critical value over a critical
distance and proceeds as the critical-damage state is reached elsewhere. This
unified approach to failure prediction can be applied to an arbitrary geometry
if the material behavior has been adequately characterized. The damage
function must be calibrated for a particular material using various material

property tests. The fracture toughness of 6061-T651 aluminum is predicted.

INTRODUCTION

Fracture of ductile materials in engineering structures can often be
related to gross yielding, elastic-plastic crack growth, or the initiation and
propagation of cracks in the linear elastic regime. Although the criteria are
generally treated independently, they all involve material separations that
are very similar on a microscopic scale. The distinction between the criteria
appears to be due to the evolution of enginéering design analysis; i.e., the
use of tensile properties was developed long before the recognition of
fracture mechanics as a des{gn concept. Thus, while the material may not
recognize these differences, it is useful as a design aid to treat these
failures separately.' A fracture model that is con51stent with a
v01d-growth and- coalescence mechanlsm for ductlle fracture should be capable
of predicting fracture regardless of the loading or geometry of the structure

involved. Such a model gives a unified picture of observed material




responses, from linear-elastic fracture to elastic-plastic or fully plastic

behaviors.

BACKGROUND

Most engineering structure contain flaws or cracks. Thus engineering
design often requires evaluation of the maximum flaw size and operating stress
level for safe operation. Large flaws and/or high stresses can lead to crack
growth and ultimately to unstable propagation and structural failure.
Knowledge of the fracture toughness of a material, a measure of its resistance
to crack growth, is required to design against unstable crack propagation.

Small-scale specimens can be used to determine the resistance of a
material to crack propagation, but measurements taken at small scale do not
necessarily coincide with large-scale results. Structures that are large
enough fail by brittle fracture.” 1In the brittle-fracture regime, the
failure stress varies inversely as the square root of the size, so that larger
geometrically similar structures will fail by brittle fracture at a lower
average stress. Smaller similar structures will fail at a higher average
stress, until a certain size is reached. For further reduction in size the
failure mode changes to ductile fracture. For small-scale testing to be
successful, the size-effect scaling laws must be understood.1

Linear elastic-fracture mechanics (LEFM) successfully describes the
scaling law for brittle fracture. The material is treated as a linear elastic
solid, and the stress field at a crack tip due to a remote stress is
calculated. Figure 1 shows the well-known solution to this problem for
positions near the tip of a crack.2

The stress field in Fig. 1 is characterized by the stress-intensity

factor KI' For certain geometries, the value of KI at the crack tip has

*

Brittle fracture refers to plane strain fracture as predicted by linear
elastic fracture mechanics. The micromechanism leading to fracture is assumed
to be simple rupture due to microvoid coalescence whether the macro-scale is

ductile or brittle.
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Fig. 1. Elastic stress field in the vicinity of a
crack tip, arising from a remote load perpendicular
to the crack.

been calculated in terms of the geometry and far~field stress. For example,
the stress intensity factor for a crack of length 2a in a plate of width w

pulled in tension by a far-field stress ¢ is3

1/2

when a/w is small,

KI = o_ /na .

Thus, the applied lovad and external’geOmetry'ofnthe component are connected by
linear elastic theory to a valde of Ki'ét the ¢érack tip.

A reasonable postulate is that crack growéh occurs when a critical stress
o extends over a{critical distance ?c;”TﬁéHValue of the stress-intensity
factor Ki for crack extension under these conditions is called the plane

strain fracture toughnéss K_ . Thus a single parameter K

Ic ; IC.describes
fracture initiation where the existence of a critical stress o and a
critical distance r. is assumed but the quantities are not evaluated. A
mathematically equivalent postulate is that fracture occurs when the strain
energy extends over a sufficient distance, i.e., when ozr exceeds some

limiting value.




The presence of a crack with a stress concentration as shown in Fig. 1
can lead to catastrophic brittle fracture even when the average stress through
a section is well below the flow stress used in design of the structure. The
advantages of the KIC concept for evaluating fracture toughness are: (1) An
analysis can be made that relates external physical measurements on a test
specimen to a reasonable postulate for fracture initiation; (2) the method is
conservative, in that it evaluates the material resistance to fracture at
worst—-case conditions, 1.e., those under which brittle fracture occurs.

A through-the-thickness crack in a plate and the compact tension specimen
provide practical plane strain geometries that reproduce the stress conditions
of Fig. 1, provided that certain size requirements are met. The important
factors in selecting the dimensions of the small-scale test specimen are the
crack length and the specimen thickness. LEFM is postulated on elastic
behavior. Ho&ever, the very high local stress in front of the crack always
leads to plastic flow at a crack tip. For the analysis to be valid, the
extent of plastic flow must be small compared to the specimen dimensions and
crack length. If the crack is too short compared to the remaining ligament,¥
gross yielding will occur before fracture conditions are reached, and some
unknown combination of plastic flow and fracture properties is then being
measured. If the crack is too long, the stress field at the crack tip can
interact with the boundaries of the specimen. In either case, the analysis is
incorrect and the KIC test is not valid.

Figure 1 shows the position ry ahead of the crack tip that corresponds
to oy = YO, where YO is the flow stress. A valid KIc test requires
that ry be small compared to the crack length. The thickness dimension is
important because the normal stress at a free surface is zero. If °, is
the stress in the thickness direction, then o, = -P + S,, = 0 at the
lateral boundaries of the specimen, where P is the hydrostatic pressure and
S,z is a stress deviator. At the elastic limit, s, is limited by the
material flow stress. As a consequence, the hydrostatic pressure 1s limited
at the lateral boundaries. As the load on the crack tip of the specimen is
increased, the fact that the hydrostatic pressure is limited at the boundaries
affects an increasingly larger portion of the load-bearing surface in the
plane of the crack. The purpose of plane strain testing is to evaluate the
resistance to fracture of a material under conditions in which the hydrostatic

*The remaining ligament is the length of the segment in the crack plane that

bears the applied load.



tension is not limited. The specimen thickness must be chosen large enough
that plane strain conditions exist when fracture first begins.

For the reasons given above, materials with high fracture resistance
and/or low flow stress require large test specimens to achieve the desired
fracture conditions. A convenient parameter for correlating dimensions of

cracked bodies is

KIc

Ic YO

which has the dimensions of length. Irwin® has pointed out the importance
of this parameter. The value of LIc determines whether the behavior is

5

brittle or ductile. If the structure is small compared to L the

Ic?

failure mode will be ductile; if the structure is large compared to L the

Ic?
failure mode will be brittle. Valid KIc tests require that the minimum
thickness of a compact tension specimen be greater than 2.5LIC.6 For low-

and intermediate-strength steels, L. ranges from 0.02 to 40 in.5 LEFM is

I
too conservative when the test speci;en size requirement is larger than the
actual structure; in this case the structure does not fail by brittle
fracture. The problem cf structural design is to determine fracture
resistance when both L;. and the structure are large, and when it is
impractical to test at the actual size of the structure.

The J integral, originally defined by Rice,7 is a path-independent
energy line integral for two-dimensional problems. Using the "HRR'" model
developed by Hutchinson8 and by Rice and Rosengren9 to describe the
stress—strain field in the vicinity of a crack, McClintock10 concluded that
J is a measure of the plastic stress and strain singularity near a crack tip.
With such an interpretation, we may regard the field-characterizing parameter
J, for the plastic case, as analogous to the stress—-intensity factor K in
LEFM. A description of J as a fracture criterion is given in Refs. 11 and
12. As in the K mgthod, the applied load and the external geometry of the
specimen are connected by theory to a value of J at the crack tip. A critical

value for crack extension, J is identified. With the J method, the

Ic?
specimen thickness for a compact tension test must exceed 15J/YO (see Ref. 8).
Since the J integral accounts for plasticity, the method permits compact
tension tests on specimens many times smaller than permitted by the

K method.
Ic
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The J method is based on a one-parameter model of fracture. [t overcomes
a major limitation of the K method by including stable crack growth with
increased load. A limitation of the J method is that deformatiom plasticity
is used to describe plastic flow. This non-physical model of plastic behavior
can only provide an analysis for modest crack growth (growth of approximately
6% of the remaining ligament, according te Ref.l0). Figure 2, taken from Ref.
14, compares the K and J methods with experimental results for fracture
propagation under plastic conditions. The crack growth is stable, since an
increase in the applied stress is required to extend the crack after ‘
initiation at point A. The K method incorrectly predicts oal/2 = constant.

1f JIC is acceptgd as a fracture criterion, and if conditions for
ductile behavior are met, larger flaws than would be pérmitted by the KIc
criterion can be tolerated for the safe operation of a structure. _
Nevertheless, the J method must be applied conservatively, becausé of the
limitations of the analysis and because of incomplete experimental data. As
shown 1in Fig. 2, the JIc criterion permits only slight crack extension,
although considerable stable extension may in fact be possible. An analysis
that could describe observed crack growth up to the limit load (point B in

Fig. 2) would safely extend the service life of the structure by delaying

repair until a much larger crack developed.

[ I | |
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ég 200 E;
£ 20 - @
kA Je 2
[«5) —
< 10 °A <

0 ] 1 1 1 0

0 20 40 60 80 100

Crack length a (% of cross section)

Fig. 2. Schematic representation of crack
initiation and propagation for ductile material
behavior. 1Initial crack length 25% of cross
section. Line A-B: Experimental stable crack
growth. Point A: Limit of K-method analysis.
Line A-J: Limit of J-method analysis.
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CUMULATIVE-DAMAGE MODEL

Plane-strain fracture-toughness testing, in which a crack is loaded in
tension, attempts to evaluate fracture behavior when the hydrostatic tension
is large compared to the flow stress. A fracture process that occurs at
conditions of high hydrostatic tension without an initial crack is spallation
resulting from the impact of two solids. Compressive stress waves generated
at impact reflect from boundaries and produce tensile stresses within the
solids, causing brittle fracture. There is a geometric size effect similar to
that found in fracture-mechanics studies. In small-scale experiments,
fracture requires larger tensile stresses, achieved by higher iﬁpact
velocities, than required in geometrically similar large-scale experiments.
Tuler and Butc‘nerl5 showed that spall experiments could be correlated by a

cumulative damage parameter D: fracture occurs for

2
D = (0-00) dt > D_ . (1)

it °’

i.e, when the tensile stress g exceeds a threshold stress 00 for a

sufficient time.

A time—dependent material behavior is not necessarily implied by these
experiments. Colliding-plate experiments can produce one-dimensional strain
states that cannot be reached statically because of the motion of lateral
boundaries in étatic experiments. The same correlation of experimental
dynamic fracture data is obtained when the incremental time dt in Eq. (1) is
replaced by an incremental distance dr divided by an arbitrary velocity. With
this substitution, Eq. (1) takes the form 1;721‘:'= constant or

0'1'1/2

= constant. Thus, fracture from dynamic spall experiments
correlates in the same’'manner as in stati¢ fracture experiments, and a
time-dependent material behavior is not ‘required to explain fracture by

spallation. The spall results and the K_  analysis have in common a

Ic
one-parameter model that satisfactorily correlates experimental data for

fracture at high hydrostatic tension. The parameters KIc and D are

crit
not material parameters. since they serve only to correlate fracture data at
high hydrostatic tensions.

A size effect 1s revealed by the fact that small specimens sustain higher

tensiie stresses than do large geometrically similar specimens. We consider

7




this to be due to a material property size effect, namely that stress or
damage of sufficient magnitude must extend over a definite minimum distance
before fracture will begin.

Below we describe a model for fracture initiation and propagation that is
independent of specimen size and that describes the material behavior up to
the limit of load-carrying ability. A microscopic distance is incorporated to
account for the material size effect. Macroscopic size-effect phenomena

result from the model.

FRACTURE MODEL
STRAIN DAMAGE

The cumulative-strain-damage model assumes that fracture is the result of
the history of strain damage to the material. Two factors enhance strain
damage: hydrostatic tension and asymmetric strain. A damage history based on
these factors follows McClintock's theory of ductile fracture.l®
Hydrostatic tension accounts for the growth of holes in fracture by spalling,
in which the loading consists of large triaxial stress and small strain.
Interrupted tension tests reveal the initiation and growth of voids that link
with neighbors to form fracture surfaces. Incipient—-spall experiments show
the same progression.

Asymmetric strain accounts for the observation that the elongation before
failure decreases as the shear load 1increases in fracture tests with combined-
stress loads. This was noted by Mogi,17 who studied the effect of
intermediate stress on the fracture of rocks. Mogi's data show that
elongation decreases when tensile fracture occurs with confining stresses that
produce asymmetric strains. We assume that, after initiation, the holes can

link up as a band if subsequent loading is shear.
DAMAGE HISTORY

The simplest expression for the damage D that follows the concepts just

described is



D = [wlwz dEp s

where
tP = equivalent plastic strain,
a
= hydrostatic-pressure weighting term = S —
w) = hy P ghting )
_ . . . . B
w, = asymmetric-strain weighting term = (2 - A) |
s, s,
A = Max{—, —], S, > 5, > S, .
S5 $1 1 2 3

Here P 1is the hydrostatic pressure; 15 89 and s, are the principal

stress deviators; and a, a, and B are material constants. The parameter A
ranges from O to 1; we call the stress field symmetric when A = 1 and
asymmetric when A = 0. These limits correspond to the loading conditions for

the simple tension test and the torsion test, respectively.

MATERIAL SIZE EFFECT

Fracture begins when the cumulative damage D exceeds a critical damage
Dc over a critical distance . DC and r, are considered material

constants.
CALIBRATION FOR 6061-T651 ALUMINUM

The damage model was calibrated for 6061-T651 aluminum by simulating
simple tension tests and fracture experiments on notched cylinders, flat
plates, and notched plates, ahd.éhaiyéing tﬁe resulting stress- and
strain-field histories up to the‘initiétioﬁ“6f ffacture. In all, 14
geometries were examined. These tests are described in detail in the
Appendix. The best fit to the damage model'&s given by the parameters listed
in Table 1. ' ' o




TABLE 1. Parameters for damage model fit to 6061-T651 aluminum.

Fracture Model

Parameters Equation of State
D = 0.67 k = 10.6 x 106 psi (Bulk modulus)
c (72.8 GPa)
r = 0.003 in. p = 3.6x 106 psi (Shear modulus)
€ (0.08 mm) (24.8 GPa)
1 0. 4.70 gm/cm3 (Density)
S = 109 ksi b ‘ y
(0.75 GPa) 0 —5.0.1
Y = 41 (1 + 125¢P)°° " ksi  (Flow stress)
a =1.8 ’ _
B = 0.75

0.285 (1 + 125:)%° ! cpa

IMPLEMENTATION IN NUMERICAL SIMULATIONS OF FRACTURE

Numerical simulations of fracture, whether by the finite-difference
methods used here or by finite-element methods, have a characteristic
dimension, the zone or element size, that must be considered when implementing
a damage model of fracture that itself includes a material length r.. I1f
the zone size is smaller than r., the damage D centered in the zone that
breaks first must exceed DC by an amount that depends. on the local damage
gradient, the zone size, and r.. If the zone size is twice r., D must
equal DC since the damage is defined at the zone center. If the zone size
exceeds L but is smaller than the distance to the elastic-plastic boundary
in the direction of crack advance (Fig. 1), fracture begins when D is smaller
than DC by an amount that again depends on the local damage gradient, the
zone size, and r.

In certain cases, implementation of the model can be simplified by using
our knowledge of the plastic-strain and damage fields near notches and
cracks. Simulations of material tests using notched tension specimens show

the plastic-strain field just before fracture begins has the form

P _ _P _
€ e exp( r/ro) ,

10



where E£ is the (extrapolated) strain at the notch surface, rj; is

roughly equal to the notch-root radius, and r is the distance below the
notch. This exponential dependence appears to hold for sharp cracks also,
ovér a distance ahead of the crack tip approximately equal to the crack-tip

opening displacement §. For sharp cracks, r, = §/2. For positions

0
between ¢ and ry, the strain field at fracture initiation is approximately

as predicted by J theory,

where x is the distance in front of the crack tip as in Fig. 1.
For 6061-T651 aluminum, r. = 26 at the point of initiation of sharp
cracks. For simulations of fracture advance in precracked 6061-T651

specimens, the zone-centered damage given by

2DcrC
DF = AX

must be reached, where Ax is the zone size in the direction of fracture
advance and 4x/2 is the distance from the zone center to the crack tip.
This simplification is only valid for fracture advance from a sharp crack, and
it assumes a particular functional form for the damage field near an advancing

crack tip, i.e., Dx = const.

APPLICATION TO COMPACT TENSION TESTS

Figure 3 shows the geometry used. in tests to check the damage model. The
specimen thicknesses of 0.5 ing.(12f7 mm) and 0.15 in. (3.81 mm) meet the
J-integral criterion on J_ , since they. exceed 25JIC/Y0. (From the work

18 Ie 2
of Begley et al.,”™ J_ = 80 in.*1b/in.” (0.014 MN/m) and

Ic
v0 = 41 ksi (283 MPa): Thus the thickness must exceed 0.05 in. (1.27 mm).)
The other dimensions of the specimen follow the standard geometry for the
1/2~T compact tension test. All dimensions of the compact specimen can be

referred to the thickness as a geometric scale factor. (The designation 1/2-T

11
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1.20 0.750 0.414 0.250

Fatigue
crack

Load line

TAB Thickness
01 0.150
02 0.500

Fig. 3. Compact tension test on 6061-T651
aluminum. Distance 20 is from end of fatigue
crack to load line; b is length of uncracked
ligament. All dimensions in inches.

is used for 1/2-in.-thick specimens.) We followed the standard ASTM
J-integral experimental technique, in which a plot of load vs load-line
displacement is made for several nominally identical specimens. Each sample
was loaded to a different displacement and after unloading was examined for
crack extension. A value of J was calculated for each specimen from the
relation J = (A/Bb)f(a/w), where A is the area under the load displacement
curve, B is the specimen thickness, and b is the length of the uncracked
ligament. The value of f(a/w) was essentially constant at 2.2 for the
specimens 1nvestigated. Figure 4 shows the experimental results.

The calculational model for the two geometries is shown in Fig. 5. The
calculation was done with the time-dependent finite-difference program HEMP

19

3-D. The specimen was loaded by applying a small velocity at the load-pin

position. The displacement was recorded for a position corresponding to the

12
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r
&‘. 400 — —
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2 300} 4 TABO2 e —
< . Calculation : a0
~ 2001 —
/
100 @ —
(p—°
0 ] | 1
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Aa (in.)

Fig. 4. J vs crack extension 8a for 6061-T651
aluminum. Initial crack length a® = 0.614 in.,
uncracked ligament b = 0.382 in. Specimen
dimensions given in Fig. 3.

. - X
Fig. 5. Computer model for simulation of experiment TAB 01, B/2 = 0.075 in.;
6 zones. The rear surface is a plane of symmetry. TAB 02 is the same, but
B/2 = 0.25 in.; 16 zones. Arrows show direction of pull. The load line
displacement is recorded at point d.
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clip gauge of the experiment, and the load was calculated by integrating the
calculated stress field over the ligament area.

Figure 6 shows the calculated load per unit area vs displacement.
Fracture began in both specimens at an average stress well below the flow
stress. In the thick specimens, fracture began while the average
stress-strain behavior was still lipear, while in the thin specimens gross
yielding occurred before fracture began.

Figure 7 shows the calculated stress profile along the thick-specimen
ligament centerline just before critical damage was reached. The stress is
primarily hydrostatic tension for about half the ligament, and is then
compressive until the opposite surface is reached. Figure 8 shows the
accumulated load across the ligament surface starting from the crack tip. The
total load on the specimen is carried on the first 0.015 in. of the ligament
(measured from the crack tip); i.e., the load on the remainder of the ligament
balances to zero. The result that high loads are supported in very small
distances ahead of the crack has a strong influence on the choice of near-tip
zone size and zone-release mechanism.

Fracture propagation was simulated by applying free-surface conditions to
a node point that had reached the failure condition. The kinetic energy
introduced by the method of loading the specimen in the computer simulation

did not affect fracture initiation. However, the method of simulating

I T I 0.04
5} TABO2
5 L —0.03
TABOT ., |-
- 5
g N —0.02 &
l: - =_ - load lo
- 97 Tigament area
, L7 cioamen —0.01
0 I B
0 0005,  0.010 0.015

" Displacement (in.)

Fig. 6. -Calculated average stress o vs displacement (at point d, Fig. 5);
arrows indicate fracture initiatiom.

TAB 01 Ligament area = 0.382 X 0.15 = 0.0573 in.2
TAB 02 Ligament area = 0.382 X 0.5. 0.191 in.

14
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Fig. 7(a). Calculated stress profiles at ligament
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Fig. 7(b). Calculated contours of constant Oyys
in GPa, under conditions of Fig (7a).
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Fig. 8. Load along ligament for TAB 02. The quantity x is
the distance from the crack tip.

propagation did produce a dynamic effect. When the free-surface boundary
conditions were applied to a node that met the failure conditions, the kinetic
energy released drove the damage function of the adjacent nodes. The amount
of energy released can be appreciated by reference to Fig. 8, which shows that
the creation of a small surface area can release a very large fraction of the
total load on the ligament. A computational technique was developed to damp
the kinetic energy that results when the free surface conditions are applied,
and this allowed us to approach a quasi-static result.

The usual analysis of experimental data in the J-integral technique takes
J to be the intersection of a graph of J vs crack extension Aa with a

Ic

"blunting line."

It is assumed that the crack extends some distance without
creating a new surface. The calculations show this does not happen; the crack
tip moves in the direction that shortens the crack before fracture occurs.
Apparently, the experimentally observed crack extension on the blunting line
is, in fact, the growth of a zone of intense plastic stretch on the crack
surface that begins at the tip and moves back along the flank of the crack.
This stretch is developed as the crack profile changes to the
characteristically blunt notch shape before the crack extends. Since this

stretch zone is not directly related to crack growth, and since, in our

16



calculations, there is no clear—-cut demarcation of the stretch zone, we take
JIc to correspond to the intersection of the J-vs-Aa curve with the
J axis, as in Fig. 4. Since the blunting line for 6061-T651 aluminum is much
steeper than J vs Aa, results from either method are essentially the same.
(For materials that exhibit large changes in J with Aa, our model would
suggest that JIc should be taken where Aa = rc.) The experimental
results for the thick specimens give J = 51 in.'lb/in.2 The same analysis
applied to the thin specimen yields a negative value for J.

The calculated HEMP 3D results are shown in Fig. 4. Taking the J
corresponding to the first initiation or "pop-in" as JIc’ we obtain
J . = 40 in.1b/in.? (0.07 MN/m) and J = 49 in.e1b/in.” (0.086
MN/m) for the 0.5-in. and 0.15-in. specimens respectively. Figure 4 shows
that the calculated crack advance agrees with each experiment. The crack
extension for the specimens proceeded by tunneling. A single value of Aa
was obtained by averaging through the thickness as described in the ASTM J
procedure. The damage model reproduces the experimental data for each

experiment even though the J-integral method did not give results of any

significance for the thin specimen.

CONCLUSIONS

Our simple model describes fracture initiation and propagation. The
model is consistent with the main features of ductile fracture by void
initiation, growth, and coalescence, and contains a parameter (rc) that
represents a microscopic or material size effect. The observed macroscopic
size effect (brittle or ductile behavior): is a direct consequence of the
model. The results predicted bywtheJdamage;model agree with experimental data
and, in particular, prediét thé'necéssafy-scaling relation for ductile
fracture. 7 A

The excellent agreement:'of our model with experimental data for fracture
propagation was not a foregone conclusion. The model parameters werev
determined using data from fracture-initiation experiments; the fracture
propagation results of the model were predictions. It is therefore reasonable
to infer that the model represents the important phenomena of ductile fracture
initiation and propagation. Since J theory augmented by a measured increase

in J with crack extension, also seems to describe fracture initiation and
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propagation, there should be a simple connection between our model and J. We
have not found such a simple connection, but we indicate here the links that

have been uncovered.
CTOD AND rc

For 6061-T651 aluminum, r_ is approximately twice the crack-tip opening

displacement (CTOD) at fracture initiation. A previous study of A533B

stee1?0 showed that r, was approximately equal to CTOD for a 1-T compact

specimen, which was marginally big enough to be a valid test. For two

additional heat treatments of that steel, r_ was twice CTOD and 2.5 times
CTOD. Thus we tentatively assume that the T of our model, which is used
for both initiation and propagation, is approximately twice the CTOD of a
compact tension specimen at initiation. We note further that J should

Ic
also, in theory, be related to CTOD by the approximate formula

There is no convenient theoretical connection between Dc and JIc'
Although mathematical expressions (Eqs. (8), (9), and (16)) have been given
for both the stress field and the equivalent strain field as functions of J
and the work hardening behavior, these formulas are in serious error for
plastic strain. (They are quite accurate for stress, however.) This has been
shown by several authors, including McMeeking and Parks,21 by comparison of
the analytical predictions with results from numerical simulationms. Thus, at
present, three experimental geometries are required to obtain parameters for
our model: the tension test, to obtain the work-hardening behavior and
plastic strain at fracture in the presence of intermediate hydrostatic
tension; a notched tension test to obtain the strain at fracture with
intermediate hydrostatic tension and intermediate asymmetric loading; and a

fatigue-cracked compact test to obtain the parameter T, and the plastic

strain at fracture with high hydrostatic tension.

18



Two specimens are required for JIc testing--the tension specimen and a
compact specimen. However, the size of compact specimen required to obtain
r. is considerably smaller than that réquired for JIc’

The value of our model is that fracture extension can be predicted beyond
maximum load, without the size requirements of J tésting. Thus we see our
model, with detailed numerical simulations, as a means of extending the scope
of fracture toughness measurement and its use in engineering design. In
situations in which LEFM is valid, K;. is appropriate for design. In

situations in which J theory is valid, J_. and J vs Aa are appropriate for

Ic
design. There are, however, situations that involve substantial plasticity
and substantial stable crack growth. It is in those situations that our
model, unlike either LEFM or J theory, is valid and appropriate for both

design and analysis of existing structures.
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APPENDIX
EXPERIMENTAL CALIBRATION AND VERIFICATION OF THE DAMAGE MODEL

The ability to predict failure of a component under arbitrary loading
requires an accurate assessment of material behavior under a well-prescribed
load. Such a "material model calibration'" is often used to evaluate a
material's yield strength, ultimate strength, aﬁd fracture resistance. The
damage model requires a similar calibration. To calibrate the damage model,
we use tests that characterize the material flow properties--both axial and
shear-—-and the stress-strain state at incipient failure. The materiais used
in the current assessment are 6061-T6 and 6061-T651 aluminum. All 6061-T651
specimens were maéhined from a single pilece to ensure property control. This
material was attractive because of its availability, cost, ease of machining,
and uniformity of microstructure. Further, the relatively low ultimate

strength of 6061-T651 aluminum allowed us to investigate a wide range of

specimen configurations. All tests were run at room temperature.

The standard tension specimen was used to establish the plastic flow
relation employed in the computer calculation. This test also provided data
on fracture initiation. Tests were also designed to study fracture initiation
for different combinations of plastic strain, stress, and stress gradients.
Axial (simple tension) and shear (torsion) behavior were investigated as was
the effect of multiaxial stress states with enhanced hydrostatic tension
(notched tension).

The combination of hydrostatic tension and shear can be related to the
mechanisms of ductile fracture; i.e., hydrostatic stresses are associated with
void growth, while the linking-up of voids can be attributed to shear
deformation. Hence the order of the applied loads--i.e., hydrostatic followed
by shear or vice versa--should be important in failure modeling.

An evaluation of the stress-order effect using tension/torsion samples:
was undertaken. Shear deformation with rotation (torsion) was also compared
to shear in an axially loaded flat plate (limited vrotation). The study of the
effects of stress gradient employed the notched-tension and
center-notched-panel tests. These tests were used to assess the

characteristic size requirement necessary for fracture initiation. The
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following sections give a brief description of the various tests used to
calibrate the damage model and verify its applicability.

The next section describes the methods used to evaluate the material
constitutive equations. Tests used in this task included the simple tension,
torsion, flat-plate tension, and notched-tension specimen. The section
following that describes the tests used in the damage model calibration.
These tests include: the tensile test of a plate with a central notch, and

the notched-tension, torsion, and tension—-torsion tests.

A METHOD FOR DETERMINING THE WORK HARDENING
FUNCTION TO DESCRIBE PLASTICITY OF METALS

The Need for Constitutive Relations

A constitutive equation is a model to describe physical behavior.
Constitutive equations that describe the principal features of physical
phenomena provide models of material behavior that permit calculations of a
physical event to be carried to completion. For example, in the study of
spall it is important to know the shape of a stress wave induced in a material
in order to calculate the states of stress and strain when the wave interacts
with a free boundary. A constitutive relation that adequately describes the
evolution of a stress wave propagating through a given material is thus
important in the spall problem, even though details of microscopic phenomena
responsible for the wave shape may be unknown.

A constitutive equation is a model based on judgment. It is especially
useful when it provides a wide-range description of the physical behavior.
Three fundamental types of mechanical behavior can be associated with real
materials: elasticity, plasticity, and possibly rate effects including
viscosity. In the engineering application of metals to structural design,
elastic—plastic properties are the main concern.

Elastic-plastic theory has been very successful in describing the
behavior of metals and provides a good framework on which to build models of
material behavior. In elastic-plastic theory, the total stress is composed of
a hydrostatic component P and a deviatoric component s; a limit is imposed on
the magnitude of the deviatoric stress by the yield condition. Constitutive

relations for elastic-plastic theory are given by the following equations.
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Constitutive Relations

Stress (Hooke's law). The stress relations follow Hooke's law, as described by

a) 8;5 = Z“Eij + 6ij ,
b) 0 = -P + sij , for i = j, j=1, 2, 3,
c) G..=s.. for i # j,

1] 1]

d) -P = RV/V .

Here éij is the strain rate deviator, V is the voiume, 4 is the shear

modulus, K is the bulk modulus, and 5ij is a correction term for rigid
rotation. The dot over a parameter means a time derivative along a particle
path. The time derivative provides a desired ordered sequence for the
incremental stress/strain relation, and no rate-dependent behavior is meant.
Generally, either the von Mises or the Tresca yield criterion is used to
predict yielding. The von Mises criterion is well suited for computer

modeling and is discussed below.

von Mises Yield Condition. The von Mises model postulates that yielding will

occur when the equivalent stress exceeds the material flow stress as defined

in uniaxial tension, i.e.,

o -Y >0,
eq -
. 3
¢ = equivalent stress = 5 v2J |
Y = flow stress = H(eP).

Here 2J is the second invariant of the deviatoric stress tensor. The total

strains are assumed to be the sum of elastic and plastic components. It is
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implicit in this formulation that the sum of the plastic strains is zero
(plastic incompressibility). The equivalent plastic strain ePis obtained by

integration during plastic deformation:

where

2
dEp =\/— dpe.. dpe.. ;
3 13 1]

the Peij are components of the plastic strain.

In satistying the von Mises condition, the plastic strain-rate vector
associated with a principal stress vector must be directed outwards along the
normal to the yield surface. Computer simulation programs that incorporate
the above model of elastic-plastic flow are described in Refs. 22 and 23.

The shear modulus u and bulk modulus k can be obtained from ultrasonic

measurements. Knowledge of the work-hardening function H(Ep) is necessary

for solutions of problems in which plastic deformation occurs.

Tension Test

Tne simple tension test of a cylindrical specimen offers a direct method
for relating the equivalent stress aeq to the equivalent plastic strain
gP. For this test the equivalent stress coincides with the uniaxial stress
SR and the equivalent strain édihcides_with the extension in the pulling
direction. Very large local plastic strains‘can be produced when a ductile
cylinder 1is pulled in tension. A slight taper is used in the cylindrical
specimen to control the position ofitﬁeflarge‘strainsj‘the smallest diameter
is at the midsection. The geometry permits very easy measurements of the

equivalent stress ‘and equivalent strain.

Stresses. The uniaxial stress is taken as the load divided by the midsection

area and is usually called the true stress O Thus the proposition is




This is only strictly true before the elastic limit has been reached and while
the axial stress o, *is uniform across a section of the cylinder. As the
plastic strain increases, o, and Oeq become increasingly nonuniform.

It is instructive to review the definitions of the axial and equivalent
stresses. For the geometry of the tension test, the midsection is a plane of
symmetry and the coordinate axes are the principal axes. The second invariant
of the deviatoric stress tensor 2J can be evaluated from the principal

deviatoric stresses:

The radial and hoop strains are the same, so S r = Sgp- Since
2 .
s +s +s =0, we have s__ = -2s__. Thus 2J = 3s_ /2,
zZ rr 60 zz rr zZZ
and
3 3Sz
o ::J:v2= Z.
eq 2 2
The uniaxial stress 1is ozz = =P + Szz' The radial stress ¢
must be zero at the cylinder free surface, i.e., o= -P + S, = 0.
Thus
N |
Srr ZSzz
and ¢ = -P + s = 3s /2 =g . Of course this is not a
zz zz 72z eq

result; rather, it is the basis for the original proposition.

After the elastic limit is reached and the tension load on the cylinder
continues, the stresses depart from a uniform distribution. This is the
region of interest, in which plastic flow occurs. The analysis of the

experimental results of a tension test assumes that the average uniaxial

stress azz’ and the average equivalent stress aeq are equal to the true

stress o,,:
T
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Here R is the current outside radius of the cylinder.

The elastic limit is reached first at the midsection, where the cross
sectional area nR2 is smallest and where the stresses are therefore
largest. The flow stress Y at the midsection increases when plastic flow
occurs. Positions adjacent to the midsection reach the elastic limit, and the

process continues until plastic flow extends throughout the specimen length.

Strains. The magnitude of the plastic strain in the axial direction falls off
as the axial distance from the midsection increases. A strain measurement
must be taken over a region in which the strain is constant if the results are
to be independent of the gauge length. 1In the tension test, the radial strain
remains fairly constant even for large plastic deformations. The radial
strain can be obtained by measuring the change in diameter of the midsection;
thus the diameter of the cylinder serves as the gauge length. We wish to
obtain the strain in the axial direction--specifically, the equivalent plastic
strain €. The simple analysis that follows shows the relationship between
external measurements and strains in a cylinder.

External measurements of the radius R and of an arbitrary axial length L,
taken at the mid-plane of a cylinder, can be used to determine the average

natural strains:

L .
€ = dL in L (axial strain),
zz 0L 0
L L
R dR R
e ~loxw ~ In ) {(radial strain),
R R
e .= dR do _ R< dr _ in R (hoop strain)
60 Rdg  J0 R 20 P :

Here LO and Rq,are initial dimensions.

The strain €0 is .the result of the change in length of a linear

element in the ¢ -direction, where the change in length is due to a
displacement in the r .direction. The concept of natural strain compares the
extension of an element of length to the current leungth rather than to the

initial length.
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The volumetric strain [dv/v is

g‘i: QI:‘—.'_Z i&-
v L R

hence

v L_<_R_.>2
v0 LO RO

where VO is the initial volume.

The strains € , € , and € include both elastic (%)
zz rr 06
e

and plastic (Pe) components, i.e., ¢ = %%+ Pe |
' zz zz zz

etc. The elastic components are small compared to the plastic components.
It is experimentally observed that the volume does not change during

plastic flow (plastic incompressibility). Thus if pezz, perr’ and
P

€4g are the plastic strains,

P P P =
Ezz + Err + 666 0 .

Here the plastic strains Pe , Pe_ | and Pe are also the
2z rr 606

principal plastic strains. The equivalent plastic strain eP for this case

is given by

sP = 2 (. _P )2 (p _P )2 (p _P )2.
€ \ﬁ; ( Ezz Err * err ‘o0 * o0 ezz ?

with Pe = -2P¢ = -2P¢ the equivalent plastic strain is the axial
zz rr rr

3
P . P,
zz®

plastic strain: i.e., €

Experimental Results: 6061-T6 Aluminum. Figure A.l gives the experimental

results for two 6061-T6 aluminum tensile specimens. The same data are shown
as both load and true stress OT vs radial strain € oo When the data
are plotted as ln Opvs lne ., a straight line is obtained. Thus
the data fit the form o_ = n = - = - 0
i m o a(ezz) , where €, = ~2¢ 2 1In D/D
and D is the cylinder diameter. A convenient form in which to express the

flow stress is Y = a(b + €P)". Here Y has replaced o and (b + &P)
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Fig. A.1l. (a) Load and (b) true stress vs strain at midsection of a cylinder
pulled in tension, original diameter DO = 15.85 mm. Inset: dimensions of
cylinder.
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has replaced €., in the relation op = a(ezz)n. The assumption

here is that the average stress-strain data obtained experimentally can be
used to suggest a relation for a point-function flow stress. The parameter b
could be considered to be the elastic strain, since the experimental strain
€, = -2 ln(D/DO) includes the elastic strain. The elastic strain, of
course, will change as the load changes. Since the components of elastic
strains are small compared to the plastic strains, we will ignore them and
consider b as an empirical constant of the order of the strain at the elastic
limit. It can easily be shown that, with this form for the flow stress, the
exponent n corresponds to the axial strain at maximum load. Figure A.l shows
that this occurs at a radial strain of -0.05, or an axial strain of 0.1. It
is of course important that fracture has not occurred in the region of the
experimental data used to develop the plasticity function. Fracture of these
tensile specimens originates at the center of the specimen. Examination of
interrupted tests establishes that fracture begins after the peak load, when
the radial strain is approximately 0.26.

From the curve of load vs radial strain, the elastic limit is estimated
to be 41 ksi (284 MPa). This is consistent with Hugoniot elastic~limit
results that measure the elastic limit in compression. With thé constants a
and b adjusted to give the flow stress at the elastic limit with n = 0.1, the
tension test can be simulated with the HEMP computer program. The resulting

flow stress can be described by

p)O.l

Y = 41(1 + 1ZSE kSi, or Y = 284(1 + 125€_P)0-1 MPa.

Experimental Results: 6061-T651 Aluminum. Figure A.2 shows experimental

results for tensile specimens machined from 6061-T651 aluminum. All tests
were run in stroke control to avoid specimen instability at maximum load. The
diametrical strain measurements were made during the test using photographic
techniques with correlation to the load-stroke plot.

The test results show that all specimens behaved similarly (within
experimental uncertainty) up to maximum load. This occurred at a radial
strain of -0.05 £ 0.005, or equivalently, an axial strain of 0.1 % 0.01.
However, at strains beyond this critical point, the necked cross section
became more and more elliptical. All photographs were taken from one

location, so we were unable to determine how this eccentricity progressed as

28



9-0 T T T 1 || r 1 ] 1
i Load
(experiment) 470
8.5 Ny
o) g
2 - 60 IS
= 2
b - o
o k7
- @
8.0 Calculation —150 E
o Experiment 7
—440
7.5 R | 1 i 1 { 1 |
0 0.05 0.10 0.15 0.20 0.25
-In /DO

Fig. A.2. Load and true stress-vs—strain at the
midsection of a 6061-T651 aluminum round bar pulled
in tension. Original diameter DO = 12.7 mm.

the strain increased. Post-failure inspection indicated that the final

fracture area (necked area at failure) was consistent from specimen to

specimen, with a reduction in area (R. A.) of 67%. The final eccentricity,
D ., was 1.12 + 0.02 for all specimens. The final radial strain

max' min

at fracture, calculated using an average neck diameter (determined from the

neck area) resulted in -1n(D__ /D.) = 0.20, so that (gP) = 0.40. This is

avg' 0 avg

substantially less than values obtained for 6061-T6 aluminpm. However, the

difference can be reconciled if instead of using the average diameter, we

incorporate. the maximum strain or minimum diameter. With this diametrical

measurement, the final plastic strain is (Ep)max = 0.52

(—ln(D/DO) = 0.26), in closer agreement with data on 6061-T6 aluminum.

The elliptical failure is believed to be a result of. the processing of the

4-in. 6061-T651 plate used for the tests.

The experiment -provides the true stress g, as the load divided by the

T
current cross sectional area at the midplane (as given in Fig. A.2). The
axial stress o and the true stress oy are the same for this geometry
until enough plastic strain has occurred and the stress profiles across the
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cylinder radius are no longer flat. The experimental data for true stress vs
radial strain are used to estimate the dependence of the flow stress Y on the
equivalent plastic strain. Comparison with experiment is made with the
computer simulation by summing the product of axial stress and elemental area
for each computed point on the radius, and dividing by the cross sectional
area. Fig. A.2 shows results assuming the flow stress of 6061-T651 aluminum
is described by

~p,0.1 . . .
Y = 38.4(1 + 1258%) ksi, or equivalently 265(1 + 1ZSEP)O !

on 6061-T6 described earlier gave Y = 41(1 + lZSEp)O'l ksi, or
284(1 + 12587)0+1 wpa.

MPa. The study

Calculations. The HEMP finite difference code,22 used to simulate the

tension test, solves the equations of continuum mechanics in two spatial
dimensions and time. At each grid point, the incremental stress is obtained
from strain increments that in turn are obtained from gradients of the
velocity field. The constitutive model described earlier was used with the
bulk modulus K = 10.6 X 106 psi (72.8 GPa), the shear modulus p = 4.02 X 106
psi (27.7 GPa), and the density po = 2.703 gm/cm3. The initial Lagrange

grid used square zones, with 20 zones in the radial direction. A fixed axial
velocity was applied to the cylinder end. Symmetry boundary conditions were
applied at the position corresponding to the midsection of the experimentaI
cylinder, which had an 0.5% taper. The program solves the constitutive
equations at each zone at discrete time steps. The components of plastic
strain are obtained by subtracting the elastic strains, obtained from the
stress deviators, from the total strains. This procedure implicitly
introduces plastic incompressibility into the model. The equivalent plastic

P is evaluated at each zone, and is used to calculate the flow stress

p)n

strain €
Y = a(b + € for the zone. Thus, as mentioned earlier, the average
stress—-strain behavior of the cylinder, obtained from external measurements,
is used to suggest a poilnt-function flow stress.

Figure A.l1 compares the HEMP calculation with the experiment on 6061-T6
aluminum using the flow stress relation Y = a(b + Ep)n, where a = 4.6 kbar,
b = 0.008, and n = 0.1; these values give Y = 41(1 + 125gP)0- 1 ksi, or
Y = 284(1 + ]ZSEP)O'1 MPa. The calculated true stress shown in Fig. A.1l is
the average axial stress 9, described earlier.

Figures A.3, A.4, and A.5 show calculated profiles at the midsection of

the specimen when R/R0 = (.772, the value just before fracture. The stress
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Fig. A.3. Calculated profiles at the cylinder
mid-section at time of fracture, R/RO = 0.772.
eP  is the equivalent plastic strain; -P/Y is
the ratio of the hydrostatic stress to the flow
stress. Both variables are dimensionless.

profiles are not constant. However, Fig. A.3 shows that the equivalent
plastic strain profile is fairly flat and that the strain calculated from the
external radius, -2 1n(R/RO) = -2 1n(0.772) = 0.52, is a good measure of

the average value of zP

Figure A.4 shows that the_axial;sttess, Ezz;,Which carries the load, 1is
quite different ffbwgﬁhe,egﬁzyaleétﬁetfeégioé*;igggﬁ as Y'%n Fig. A.4.
The true stress from the*simulatiOnéprogram;1622; was calculated by summing
zone by zone the product of the zone stress and zone area in the mid-plane and
dividing by the mid-plane area. The calculated value of the true stress
corresponding to Flg. A4 is g sz = 66.7 ksi (460 MPa); this is not too
different from a mean value of the equ1va1ent stress qu’ taken as
62.4 ksi (430 MPa), where Ueq =Y. Thus the external measurements on a
tension test can give stress/straln information sultable for establlshlng a
first guess for a counstitutive relation for the plastic work-hardening
function.
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Fig. A.4. Continued from Fig. A.3, 0,, is the
axial stress, 0., the radial stress, and dggg
the hoop stress. The flow stress Y is also the
equivalent stress Oeq> since the material is at

the elastic limit.

Figure A.5 shows that the hydrostatic stress -P is responsible for the

nonuniform axial stress o, in Fig. A.4.
For aluminum, the power-law form describes the observed behavior very

well, and the constants were determined on the first try. For a metal with a

more complex work hardening behavior, several iterations of the computer
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Fig. A.5. Continued from Fig. A.3. s,,, s,p
and sgg are stress deviators; -P is the
hydrostatic stress.

simulation program would probably be necessary to develop a satisfactory form
to describe the flow stress.

Figures A.6 and A.7 show contours of the axial stress o, and the
hydrostatic pressure P at the same radial strain as in Figs. A.3, A.4, and
A.5. Figure A.7 shows that the pressure is compressive in a region one to two
radii away from the center. This is caused by the free surface boundary
conditions on the exterior of the cylinder. The interior stress in the
direction normal to the.cylihdér'free‘sugface must be zerv at the free

surface. To maintain this stress=fré

e,

R A S L Y

e condition, there is motion normal to
the free surface as the cylinder-is elongated. The net effect is that
material moves away from the center regionm; this is similar to an extrusion

process by squeezing. . - . ..

s

Impact Experiments

b ‘ _u;.&fﬁi,«_‘;w
The impact of a cylindér agaénét a r{éid boundary brovides a simple
geometry in which to examine the behavior of the constitutive model for a
different stress/strain history. Figure A.8 shows results of calculations and

experiments for the impact of 6061-T6 aluminum cylinders against a rigid
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Fig. A.6 . Calculated contours of axial stress
6,, at time of fracture.
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Fig. A.7. Calculated contour of the hydrostatic
stress -P at time of fracture.
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Fig. A.8. Comparison of experiment (top) and calculation (bottom) of
right-circular aluminum cylinders after striking a rigid boundary. (a)
Original length L0 = 1.85 in. (4.69 cm); final length Lf = 1.52 in. (3.86 cm);
impact velocity U = 0.0108 in./s (0.0275 cm/s). (b) L0 = 0.925 in.

(2.35 cm); Lf = 0.650 in. (1.65 cm); U = 0.0147 in./s (0.0373 cm/s).

boundary. The experimental rigid boundary is obtained by backing a l-in.-
{(2.54-cm)-thick alumina tile with a section of hard steel of the same
thickness. The final lengths of the cylinders are very sensitive to the flow
stress. All the details of the experimental results were closely reproduced
by the calculations using the constitutive model described.

The effect of temperature will become important at higher impact
velocities. Additional experiments would be required to map out the regions
of thermal softening. When the melting temperature is reached the flow stress

Y must be set to zero.

Torsion Tests

The stress—loading conditions in the simplie tension test are seldom the

same as those under which materials fracture in an engineering structure. In
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and 33,
is in the direction

terms of the principal stress deviators s s the loading of a

1’ 72

simple tension test is s, = g, = —sl/2, where s

2 3
We use the

1

sual definition s >
usu 0 L 28 S35
Analysis of tests used to evaluate

of the tension load. with

v

the stress deviators positive in tension.

fracture resistance, such as the compact-tension, Charpy, and notched~cylinder
tests, shows that the stress is very close to pure shear where maximum strain

occurs. For pure shear, the stress loading is s

3 % 789, with §, = 0.

It is not possible to make an accurate direct measurement of the strain in the
foregoing fracture-toughness geometries, so the plasticity function cannot be

checked. However, the torsion test provides a relatively simple geometry

where s1 = —s3 and 52 = 0.

The torsion specimens used in this investigation are cylindrical, with a
The

reduced central section that confines the area of plastic deformation.

central region has a diameter of 0.75
2.0 in. (51 mm) in the bulk sectionm.
between minimum and maximum section.

constant rate of overall twist (i.e.,

in. (19 mm); the diameter increases to
There is a 3-in. radius of curvature
The torque loading was applied using a

stroke control) while the axial load was

maintained at zero {(1.e., load control). Data were recorded in three

independent ways: (1) as a plot of torque vs angle of twist (e.g.. Fig. A.9);
(2) as a sequence of still photographs taken during the test with an emphasis
on determining the strain immediately before fracture; and (3) as a video
recording of the entire test. Vertical lines were lightly scribed into the
specimen surface to facilitate photographic measurement of the local shear
so that

twist angle. The test methods were correlated in time,

cross-referencing the data provided verification of the test methods. Failure
corresponded to simultaneous loss of torque-carrying capacity and cracking on
the surface of the specimen. The fracture surface was very flat in every
case, indicating a pure shear across the failed section (tensile load
successfully maintained at zero). .
The results at failure were very consistent from test to test with
respect to both the maximum torque (Fig. A.9, and the localized shear twist
angle (Fig. A.10). Further, microstructural examination (i.e., examination of
polished sections) of the grain structure just below the failed surface showed
grain shear strain approximately equal to that observed on the surface. The
shear strain was also measured at various depths using the microstructural

approach. A plot of shear angle at failure vs radius (Fig. A.11) shows that
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Fig. A.9. Torque and angle of twist for a solid
6061-T651 aluminum cylinder.

r=3.00in. (76 mm)

0.75 in. diam. (19 mm)

Fig. A.10. Torsion test of a solid 6061-T651
aluminum cylinder. On the left is the experiment,
with scribe lines that were originally parallel to
the cylinder axis. On the right is the calculation,
with lines formed from the Lagrangian coordinates.
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Fig. A.1l. Variation of shear angle, measured from the angle
of grain rotation, as a function of radius in 6061-T651
aluminum torsion test. A nonlinear strain distribution is
observed, as predicted by the computer analysis. The angle
¢g is the shear angle measured on the surface. :

the strain distribution is nonlinear. This nonlinear behavior was predicted
in the computer simulation.

As in the tensile-specimen study, the flow stress as a function of
equivalent plastic strain can be determined from the experimental results of
Fig. A.9. Since a power-law plasticity function 1s in widespread use, we

apply this form to express the experimental results:

a(1 + beP)e ;

o]
]

here Y = flow stress, Ep = equivalent plastic strain, and a, b, and ¢ are

[

material constants. With the constants for the plasticity function estimated
from experiment, the torsion test can be simulated on the HEMP
finite-difference simulation program.

Figure A.10 compares calculation and experiment just before ductile
fracture of the solid cylinder. Figure A.12 shows experimental values of
stress and strain compared to the plasticity function given above with
a = 35.4 ksi (244 MPa), b = 103, and ¢ = 0.051. The corresponding

parameters derived from simple tension tests are a = 38.4 ksi (265 MPa),

38



400 L) L T T ' 1 T | L T 1 T 1 T
O 50
300 . |
v0 =2.44 (1 + 1000 &P)0.051 40
~ i
Q = .
2 | O Experiment .
o ‘»
> 200 - 130 2
£t {1 3
! )
S 1%
100 |~ 7
i ~10
0 T S RS N TR S SEN SR NN S S S 0
0 0.5 1.0 1.5

Equivalent plastic strain €P

Fig. A.12. Flow stress obtained from solid-cylinder torsion
test of 6061-T651 aluminum.

b = 125 and ¢ = 0.1. Thus, the elestic limit for the torsion test occurs at
35.4 ksi (244 MPa) and for the simple tension;test at 38.4 ksi (265 MPa). A
more s1gn1f1cant d1fference 1s the work hardenlng exponent equal to 0.051 for
the tor51on test and 0 l for the 51mp1e ten51on test.

Although the spec1men—to—spec1men varlatlon of torque and shear tw1st
angle was very small the torque predlcted u51ng a von Mlses yield surface was
about 15% hlgher than the experlmental values.: In add1t10n, the localization
of twist is much less pronounced in the computer simulation than in the actual
spec1mens Wh11e such dlscrepanc1es are of concern, the fact that the von
Mises yield condltlon does not necessarlly represent material behavior under
targe strains has been previously reported.24 The torsion simulation was

rerun, however, using a simple approximation to the Tresca yield surface. The

difference between the von Mises and Tresca criteria in pure shear reduces the
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1/2). Furthermore, the twist

simulated torque by about 15% (i.e., by 2/3
localization experienced in the test specimens can be better reproduced using
the Tresca simulation, although there was still some discrepancy in this
respect.

A second area of concern is adequate simulation of shear deformation
involving large rotation, as in the torsion test. Hayhurst and Storakers25
discuss the use of constitutive and damage relationships in situations in
which rotations of material elements occur within a homogeneous stress field.
They observe an apparent strengthening in copper samples;, they ascribe this to
the rotation of the surface elements of tﬁe material, which have undergone
material deterioration due to the maximum principal stress, to new
orientations in which they are subjected to lower values of direct tensile
stress. A comparison of the computer-generated failure geometries with the
actual specimens indicates that the simulation correctly describes rotation.
An axially loaded flat-plate geometry (one that also results in shear failure)
was also tested to investigate shear damage with limited rotation. These
results are presented in subsequent sections.

A characteristic of the solid torsional specimen is the nonuniform shear
through the thickness> This tends to mask the true shear stress-strain
behavior by shifting the relative shear-load capacity from the outer fibers to
the inside during plastic deformation.

Thus, while the solid-cylinder torsion test gave accurate values of flow
stress and plastic strain at failure, this test is not sensitive enough to
determine either the elastic limit or the work hardening at plastic strains of
less than 30%. Thin-walled hollow cylindrical specimens with nearly uniform
shear in the wall were used to evaluate the shear stress-strain relation, as
shown in Fig. A.13.

These tests confirmed the Tresca yield model for pure shear. However,
because of geometrical constraints imposed by the test apparatus, a final
failure strain could not be evaluated from the holiow specimens. The maximum
plastic strain that was still uniform around the circumference was 20 to
30 %. Up to this limit, the test is sensitive enough to determine the work
hardening. ‘

The best fit to the function used earlier waé obtained with a = 35.4 ksi
(224 MPa), b = 1000, ¢ = 0.073. Figure A.14 shows the work-hardening function

and data points reduced from the experimental torque-twist records and
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photographs of the scribe lines taken during the test. The figure shows that
the work hardening of this aluminum in torsion is not well represented by a
simple power law over the entire range of plastic strain. Indeed, at large

plastic strains the work-hardening exponent is less than about 0.03.

Plasticity Function for Combined Stress Loading

The stress state at fracture in fracture-resistance test specimens 1s
neither pure tension nor pure shear. To simulate fracture tests thus requires
a work-hardening function that depends on the state of stress. We first
introduce a parameter A that characterizes the stress field. In the simple
tension test, S, = s3; in the torsion test, s, = 0. We define A =
32/53, so that A ranges from 1 to O as the stress changes from simple
tension, which we term symmetric loading, to pure shear, which we term
asymmetric loading. A general definition of the parameter A, which measures
the degree of asymmetry of the loading, including both tension and

compression, 1s

S s

A work-hardening function that is convenient for numerical calculations and
that uses our work-hardening data from the tension and torsion tests directly
is

ER ALV N TSI PR (1)
Here YT is the work-hardening function in simple tension and YS is the
work-hardening function in pure shear. In using Eq. (1), we have made the
conventional assumption that plasticity in metals is independent of the mean
stress; we also assume isotropy. The parameter A determines the shape of
the yield surface. With a = 0, we recover the von Mises surface. If
YS = 31/2YT/2 and A = 1.593 we obtain an excellent approximation to the
Tresca surface. We show the intersection of these two surfaces with the plane
of constant mean stress, S, + s. + s

1 2 3
We use the Levy-Mises flow rule, so that the principal plastic strain

= 0, in Fig. A.15.

rates are proportional to the principal stresses. This is especially
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Fig. A.15. Intersection of yield surface with plane
s) + sp + s3 = 0. Solid line: A = 0; Yp

= Yg = 43.5 ksi (300 MPa). Dotted line:

A = 1.593; Yp = 43.5 ksi (300 MPa), Yg 37.7

ksi (260 MPa).

convenient in our numerieal solutiens, andrit satisfies existence and
uniqueness requlrements, JUSt as the assoc1ated flow rule does (see, for
example, Ref. 22) In add1t10n, y1eld surfaces w1th corners have the
advantage that there is no amb1gu1ty in the d1rect10n c081nes of the principal
plastic strain rates. For arbltrary YT’ YS’ and A,Athe surface we

define is not necessarily d1s51pat1ve.‘ We note that the requ1rement of
convexity of the y1eld surface is a sufflclent but not ~a necessary, condltlon
for satisfying Drucker's postulate (that y1e1d1ng be 1oca11y d1$Slpatlve) when

work hardening is present.23 Thus, although the yield surfaces we will

present are not convex, we verified that they were dissipative in the cases

tested.
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Tension Test of Flat Plates

It is natural to look for a test in which plasticity occurs under
combined tension and shear. As stated earlier, this is the loading of
practical interest where the resistance-to-fracture properties of material are
assessed. A major difficulty is to find a geometry that permits accurate
strain measurements as the load increases. A geometry that exhibits combined
stress conditions is the tension test of a flat plate. The strain can be
monitored by scribing lines perpendicular to the loading direction, as shown
in Fig. A.16. The increase in the separation of adjacent limes, divided by
the original separation, gives a measure of the strain for positions along the
plate. Once again, we used 6061-T651 aluminum in the investigation.

Figure A.17 shows experimental results just before fracture of a flat
plate. The strains, determined as just described, are plotted at the
geometric center between adjacent lines. The figure also shows computer
simulations of the experiment using the work-hardening function determined
from a simple tension test and the work-hardening function that depends on the
stress state. For this latter calculation the parameter » (from the
previous section) had the value 0.7. We used the work-hardening developed
from the hollow-cylinder test for YS. Figure A.18 shows the computed
equivalent plastic strain using the two work-hardening functions. The
equivalent plastic strain is very similar to the strain determined by the

change in separation of lines on the surface, shown in Fig. A.17. Figure A.19

shows the intersection of this surface with the plane S, + 5, + 55 = 0;
it also shows the trajectory of the central point of the plate.

The two calculations are compared with the experiment at the strain
determined by a 1.00-in. (25.4-mm) clip gauge across the geometric center of
the specimen (Fig. A.16). The strain corresponding to Fig. A.17 is
aL/L0 = 0.118, where AL = increase in length of 10 and 10 = gauge
length = 1.0 in. (25.4 mm). .

The experimental load vs strain as measured by the clip gauge is’
reproduced by both calculations. Hence using a single strain gauge to
correlate this experiment with a calculation would not reveal the error in the.

plasticity function.
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-—101.6 mm

3.175-mm-thick
flat
plate

Fig A.16. Tension test of flat plate. At the top is the plate geometry. In
the center is a 6061-T651 aluminum plate specimen with scribe lines and
1.00-in. (25.4-mm) clip gauge as tested. At the bottom is the grid used in
the computer simulation.
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Notched Cylinders

We used the notched, round-bar tension test of 6061-T651 aluminum to
assess flow behavior and‘ductile fracture resistance under conditions of high
localized strain (i.e., high strain gradient) and enhanced hydrostatic
stress. The next section gives a more complete discussion of results from a
series of experiments and computer simulations on geometrically scaled
notched-tension specimens. In this section we simply compare the simulation
results to the experiment as a Qerification of the flow model. The strain
fields have the form gf = Eg l P
P is the strain at the notch, r is the distance

N
below the notch, and a is a constant. In the simulations of the

exp(-ar). Here € 1is the equivalent plastic

strain at position r, €

notched-cylinder tension tests, we used the work-hardening function from the
simple tension test. We have recalculated the tests with the yield surface of
Eq. (1) with the same parameters as used for the flat plate. The computer
simulation was correlated with the experiment just before fracture by matching
the notch profile, as shown in Fig. A.20. The plastic-strain fields for
simulations with the flow stress determined from the tension test and the flow
stress of Eq. (1) were quite similar, except that the slope of the strain
field calculated with Eq. (1) was about 10% less. Figure A.21 shows results

for the notched cylinder with an initial root radius R = 0.157 in. (4 mm).

Conclusions

Our experiments show that the work-hardening of 6061-T651 aluminum is
different in tension and torsion. By comparing numerical simulations with
experiments on flat plates, we find that the work-hardening and stress states
are different from either tension or torsion. We have developed a flow-stress
model that accounts for these differences,. and have used it in a numerical
simulation of a motched-round-bar tension experiment. In this geometry,
neither the plastic strain nor the equivalent stress are conveniently
measured. By comparing this simulation with another that used a flow-stress
model based on the tension test alone, we found that the equivalent plastic
strains differ by less than 5% at the point of fracture when fracture begins.

Apparently when plasticity is localized by sharp notches, the strain at
fracture can be determined satisfactorily with a flow-stress model based on

the simple tension test. When plasticity is not localized by notches,
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Fig. A.20. Calculational grid and experiment at
strain conditions just before fracture of notched

aluminum cylinder. Original notch radius r = 0.157
in. (4 mm).
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Fig. A.21. Calculated equivalent plastic strain for
a notched-cylinder tension test. Notch root radius
0.157 in. (4 mm). Solid line: &P (%) = 19
exp(-0.39r); dotted line: &P (%) = 19 exp(-0.36r).
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however, a flow-stress model that includes the effect of stress state 1is
required to obtain the strain at fracture.

This last conclusion 1is important when one estimates the local equivalent
plastic strain for a given overall stretch in a structural member. When we
used the flow-stress model wiEB‘&ata based on the tension test alone, and
matched the stretch across the clip gauge with the stretch in the simulation,
we underestimated the equivalent plastic strain at the center of the plate by
more than a factor of two. We obtained a much better estimate by using a

flow-stress model that included the effect of stress state.
CALIBRATION AND VERIFICATION OF FAILURE CRITERIA IN DUCTILE FRACTURE

With the constitutive model determined, we can calculate the
stress-strain distributions resulting from external loads for various specimen
geometries. The objective is to develop a fracture-mechanics methodology for
ductile fracture by correlating the observed experimental failure of a
specimen with the computer simulation. The calculated stress-strain field at

the observed fracture point can be used to develop a model of ductile fracture.

Tension Test of a Plate with a Central Slot. Figure A.22(a) shows the

geometry of a centrally notched tension specimen of 6061-T6 aluminum. Figure
A.22(b) shows the calculational grid of the computer model. Because of the
symmetry of this geometry, only one-eighth of the physical specimen is
required for the model. At the notch root, the Lagrange grid spacing is 0.005
in. (0.127 mm); hence two zones are used to describe the 0.01-in. (0.254-mm)
notch-root radius. The;g?id spacing increases geometrically with distance
from_thé notch.‘/Sik”zonés are used in the half thickness of the plate. The
specimen is pulled iﬁ tension, perpendicular to the notch, by grips that are
5.5 in. (14.0 cm) from the notch.

Figure A.23 shows the experimental and calculational values of the load
vs the fractional notch opening (b/h%) - 1. When correlating calculation | _
with experiment, one should make the physical measurement as close as possible
to the region of interest, which in this case is the notch root. For
accuracy, a second réquirement is the use of an experimentally observable
initial condition that undergoes a large change. The change in the notch
opening, measured bf a clip gage, is used here as a suitable means of matching

the experiment and calculation.
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Fig. A.22. Center-notched-plate tension specimen of 6061-T6 aluminum. (a)
Geometry, with initial notch width h0 = 0.02 in. (0.508 mm) and notch-root
radius R = 0.01 in. (0.254 mm). (b) HEMP 3D model of one-eighth of specimen.
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Fig. A.23. Load vs notch opening of center-notched
plate pulled in tension.

Figures A.23 and A.24 show that the constitutive model calibrated with
the simple tension tests accurately describes all main features of this test.
Interrrupted tests showed that flat fracture occurred when (h/ho) - 1 was
between 0.6 and 0.7. The flat fracture was a small triangular region at the
notch root at the center of the plate as shown in the diagram of Fig A.26.
When (h/ho) - 1 reached 1.3, 45-deg shear fracture became visible at the
surface.

Figures A.25 and A.26 show the calculated stress and strain distribution
at the notch tip just before the experimental flat fracture occurs. Figure
A.26 includes a sketch of the experimentally observed flat fracture region,
which appears as a triangle with a base along the notch root. The base
extends *0.039 in. (%1 mm) in the thickness direction from the plane of
symmetry.
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Fig. A.24. Experimental (left) and calculated (right) plastic-flow field of
the centrally notched plate when (h/h0) - 1 = 0.6. The calculations show
contours of constant equivalent plastic strain.
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Fig. A.26. Calculated equivalent
plastic-strain profile through the
thickness at a position 0.001 in. (0.025
mm) ahead of the notch, when

(h/h0) - 1 = 0.6. The sketch shows

the observed triangular region of flat
fracture.

The calculation shows that the equivalent plastic strain decreases beyond
the 0.039-in. (l-mm) position (Fig. A.26). This is consistent with the
fracture of the simple tension test, which occurred at an equivalent plastic

strain between 0.5 and 0.6.

Notched-Tension Tests

The simple tension test was used to establish the critical damage under
near—-uniform strain and relatively low hydrostatic stress. Notched-tension
tests provide an experimental means of studying failure under conditions of
large localized strains and enhanced hydrostatic tension. Changing the notch
sharpness or the notch-root radius changes the strain field in the specimen at
failure. The localized high strain is used to determine the critical volume
or size dimension over which strain accumulation must be evaluated; high
hydrostatic tension can be related to void-growth models of ductile fracture.
High hydrostatic tension is similar to the stress state at the tip of a sharp
crack in plane strain as employed in KIc fracture testing. Four sets of
geometrically similar specimens are defined in Table A.1. 1In all, thirteen
different specimen geometries were tested.
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Experimental Evaluation.

Specimens were loaded in a servo-hydraulic test

machine under stroke control.

Plots of load vs stroke were made during the

test, and a very accurate strain measurement was made to permit the computer

simulations to be correlated with the experiment.

Two factors were considered in choosing a means to match the experiments

with the calculations. First, the correlation should be made in the region of
TABLE A.1
Geometry Size D (mm) d (mm) R (mm) Eg(%) a (mm)-.1
I A 12.7 9.50 1. 30 1.56
B 25.4 19.1 2. 23 0.78
C 50.8 38.1 4.1 20 0.39
D 76.2 57.2 6.1 19 0.26
I1 A 12.7 9.50 0.51 33 3.28
B 25.4 19.1 1.0 25 1.64
C 50.8 38.1 2.0 23 0.82
D 76.2 57.2 3.0 22 0.55
IIT B 25.4 19.1 0.51 35 3.33
C 50.8 38.1 1.0 25 1.67
D 76.2 57.2 1.5 21 1.11
1v 50.8 38.1 0.51 43 3.33
D 76.2 57.2 0.76 38 2.22
* e AR ,
E§ = calculated equivalent plastic strain at the notch when fracture

occurs:

- _p —ar
P = eg e 2 ,

where r 1is the d1stance from the notch 1n the radlus dlrectlon and a 1is

the straln f1eld decay constant.
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interest; in this case, the region of interest is the notch root, at which
fracture begins. Second, to improve data sensitivity, the strain should be
measured on a dimension that undergoes a large change. A photographic
technique was used to monitor notch—geometry changes. Photographs were
correlated to the loading curve by electronic marking on the load-stroke
plot. In this way, the notch geometry at the point of incipient fracture, as
determined from experimental photographs, can be compared directly with the
computer-predicted notch geometries. The calculations produce a time sequence
of fields corresponding to increasing displacement. The calculated
stress/strain field at fracture initiation was selected by choosing the time
at which the notch geometry in the simulation most closely resembled the
photograph immediately before failure. Figure A.27 shows an overlay of the
experimental notch geometries before loading and just before failure on the
corresponding computer simulation.

For very small notch radii, the photographic method was indadequate
because we could not accurately observe changes in notch geometry. With these
specimens (experiments A and B in Table A.1), we supplemented the photographic
procedure by spanning the notch with a 0.50-in. (12.7-mm) extensometer.
Although this method does not make use of the large geometry change at the
root of the notch, the sensitivity of the extensometer gave enough accuracy
that we could match a measurement with the computer simulation. In this case,

we determined the computer time of fracture onset by matching the elongation
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Fig. A.27. Notched tension specimen geometry I C. (a)
Calculational grid overlayed on experiment at initial
conditions. (b) Calculational grid and experiment at
strain conditions just before fracture.
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across the notch and the extensometer reading at failure. When the

photographic techniqﬁe yielded valid results, the two methods agreed very well.

Calculations. Figure A.28 shows stress conditions near the time of failure

for geometry III B, in which the root radius is 0.020 in. (0.50 mm). All the
specimens shown in Table 1 gave similar stress patterns. The peak stress
occurs slightly below the notch, and the hydrostatic pressure at the notch is
about 29 ksi (200 MPa) tension.A The ratio 52/83 is about 0.1 at the notch
and rises rapidly to 1 slightly below the surface.

Figure A.29 shows the equivalent plastic strain field for geometry II B
at three different load extensions. The parameter AL refers to the
displacement of a point on the axis originally 2.756 in. (70 mm) from the
center. The three lines were obtained by plotting the calculated equivalent
plastic strain for each zone of the calculational grid. The figure shows that

P

the equivalent plastic strain has the form &8° = Eg exp(-ar), where e is

N
the strain at the notch and r the distance below the notch. The decay
constant a was found to be the same as the load extension increased, as shown

in Fig. A.29. All the other geometries gave similar results, so that for any
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Fig. A.28. Calculated stress fields for geometry III B. (a) Axial stress
0,, and hydrostatic pressure p at midplane vs radius. (b) Contours of
axial stress at notch tip.
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Fig A.29. Equivalent plastic strain vs distance
from notch for different extension AL of geometry
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one geometry the product aR of the decay constant and root radius is
constant. Moreover, the product aR has very nearly the same value for all the
geometries: This shows that the notch establishes the local strain field
irrespective of other dimensions. Table 1 gives the decay constant a and the
equivalent plastic strain at the notch at fracture for all the specimens.
Figure A.30(a) shows the calculated strain field at fracture for geometry I
experiments. The point of intersection of the lines can be interpreted as a
critical strain of 18% and a critical distance of about 0.01 in. (0.3 mm).
Similarly, Fig. A.30(b) gives a critical strain of 20% and a critical distance
of about 0.006 in. (0.15 mm) for geometry II. For geometry IIT, Fig. A.30(c)
shows a critical strain of 18% and a critical distance of about 0.008 in.
(0.2 mm). The uncertainty in establishing the correct correlation time for
the calculation gives an error in zP of about *10%. Hence no conclusions
can be drawn for the results of geometry IV shown in Fig. A.30(d), since the
experiments correlated to computer simulations gave the same result within the
uncertainty. Actually, to establish a critical strain and distance by this
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Fig. A.30. Equivalent plaStic strain vs distance from the notch at time of

fracture for four ratios of root radius to diameter.

method requlres notch rad11 about as large as the cr1t1ca1 dlstance Thus,

the scaled. experlmen‘ (0_3 mm) root

‘uld include notches of about 0. 01-1n

radlus

Torsion Tests °= . :
In the'préviod§‘ » 1iqp'we discussed the results of torsion tests on
solid 6061-T651 aluminum with reference to the evaluation of the material flow
model. These tests were also used to assess the critical damage, i.e., the
equivalent plastic strain, required for shear fracture under conditions of

large rotation.
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Figure A.10 compares the specimen and a computer simulation of the test
at imminent failure. The final shear angle is measured along the centerline
of the specimen to avoid parallax errors arising from the curvature of the
specimen surface away from the plane of the photograph. The localized shear
twist angle ¢ measured along the centerline of the reduced section was ‘

67 + 2 deg. The idea that this critical shear twist angle is a constant was
subsequently confirmed on specimens of radii from 0.188 in. (4.76 mm) to
0.375 in. (9.53 mm). Figure A.31 shows the specimen surface at failure. The
equivalent plastic strain at fracture is 100%. This torsion result shows an
increase in ductility over the tension tests, in which the equivalent plastic
strain at failure was about 60%. The torsion test has a zero hydrostatic
stress component. This will suppress void growth due to hydrostatic tension.
An increased deformation would result for the shear component acting alone,

because the inherent voids are relatively small and widely spaced.

Fig. A.31. Surface of 0.75-in. (19.05-mm) diam solid torsion specimen of
6061-T651 aluminum at failure. The right side shows the grain microstructure
0.025 in. (0.635 mm) below the surface.
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Tension-Torsion Tests

Results discussed in the previous sections related to the application of
an appropriate constitutive model and critical damage factor to specimens
subjected to a single load system,Ai.e., tension or torsion. The relation
between hydrostatic tension:and shear due to combined load systems can be
associated with the void;grthh—and;coalescencé mechanism of ductile
fracture. In this respect, both the sequence'aﬁd the magnitude of applied
loads should influence the critical damage requirement,for ductile fracture.
To investigate this, we tested a series of tension—tOrsion samples ranging in
minimum diameter from 0.377 in. (9.58 mm) to 0.751 in. (19.08 mm). As with
the torsion samples, the section diameter increased away from the specimen
center.

Four samples were deformed in te&sion up to‘a prescribed radial strain,
and then twisted to failure; we observed the final shear strain angle. Figure
A.32 shows typical results. The early stages of ductile fracture relate to
void growth due to hydrostatic tension. The initial tension should therefore
open voids in the reduced section, and the subsequent torsion should enhance
the shear link~up of these voids. It was anticipated that the resulting
failure strain would be less than that resulting from torsion only, because of
the mechanisms of enhanced void growth and coalesence. The results, however,
indicated only a minor reduction in strain. The localization of shear strain
was generally confined to the region of high tensile deformation.

The magnitude of the shear strain to failure in the combined-load test
can be understood by considering the location of damage accumulation in the
tension and torsion phases of the test. During tensile loading, the highest
hydrostatic stresses are'étifhe'5§écihén center (see Fig. A.5), and drop
rapidly near the outside %adiuSiJthus it is in this central region that the
void-growth médhahism is active.’ During’the torsion phase of the loading, on
the other hand, the maximum shear (and thus the void-coalesence mechanism) is
acting on the outer fibersiz*sinéeféﬁé’fﬁbfioad"SyStems'aré essentially acting
on different material, the «ffect of the load sequence is not realized. A
thin-walled cylinder, in which void growth due to tension and shear due to

torsion act on the same mater.al, should exhibit a more pronounced effect.
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Fig. A.32. Shear deformation and cracking on
the surface of a tension-torsion sample.
Specimen was loaded to an axial strain P

= 0.20 and then twisted until cracking was
observed.

Conclusion

Notched-tension tests offer a possiblity of determining a fracture-size
effect with relatively small test specimens. For accuracy, the experiments
should be conducted with notch radii near the dimension of the expected size
effect. A major difficulty is the correlation of the computer simulation with
the experiment; this difficulty arises because of the relatively small
displacement in notched-tension tests. The fracture strain for 6061-T651 1is

about half the value estimated for 6061-T6 aluminum.
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