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!. Introduction 

The standard mapping, 

vt — «i_i = — £ s i n i ( _ i , xt —1(- . = tit, (1) 

is ,'in important model with which to study die phenomenon of stocliasticity Jl). Recently. Rochester 

and White 12] calculated die diffusion coefficient for this mapping with an added n >ise term Sn in the 

equation for xt ~ 2,_i. The random variable 6xt is sampled out of a normal distribution f{5xt;o) of 

variance tr, 

f(x;a) ••=-- {2m)-incxp(—^2/a). 

The introduction of noise has profound effects on die long-time properties of (1). l-or instance, with 

a > 0, the motion is ergodic: whereas, for o = 0, the motion need not be ergodic even for large t. 

("Krgodic" here means that a time average for a single realization of the trajectory will be equal to a 

phase-space average where die phase space ts defined by tak ing x and v modulo 2T.) 

One consequence of Che ergodicity of the motion when o > 0 h thai the diffusion coefficient may 

exhibit a \jo dependence for small a. This happens whenever the mapping with o = 0 has "accelerator 

modes'* which are stable regions in which the particles arc continually nccclci atcd^We may easily sec die 

origin of this 1/u dependence, [-.rgcidicky ensures that a fixed fraction of time is spent in each accelerator 

mode. As a is decreased, the mode is visited less ofcen while the duration of each visit is proportionately 

increased. (Only die noise can cause a particle- to outer or leave an accelerator mode.) This leads to a 

diffusion consisting of a few large steps. Since die step size Av and die duration of the step are both 

propoitiona! to I/a, the contribution to the diffusion coefficient also scales as ]/a. In this paper, we 

shall confirm the \(o dependence for two difFcrent types of noise. However, we expect similar behavior 

for a,iy noise model. 

The remainder of this paper is organized as follows: In section 2, the results of ref. 2 are interpreted 

in terms of the correlation function, lliis allows us to extend the result of rcf. 2 to include other noise 

models and to determine the behavior of the diffusion coefficient when a is small. In particular, we 



predict the \jo dependence when there are accelerator modes present. Section 3 looks at the behavior 

of die diffusion coefficient numerically. Hie 1/cr dependence is confirmed and the dependence on e 

is found, in section 4. we examine the t dependence in more detail. We find that the accelerator 

modes, which give the t /o beha\ior. have a universal structure when t is large. This means that the 

diffusion coefficient exhibits a dependence on t which has some universal characteristics. The results are 

summarized in section 5. 

2. The correlation function 

We shall examine the standard mapping (I) with two different types of noise. With the first type, 

the standard mapping becomes 

«( — iv_i = —tsinari_ i - f $ n _ i , x, — I , _ I = vt + Sxt, (2) 

where 6vt and bxt are random variables sampled from distributions f{Svt; p) and f{6x,-, a) respectively. 

This is a simple generalization of die system treated in rcf. 2 so that die noise causes diffusion in both the 

v and i directions 

The effect of the second type of noise is describci' by 

U( — u ( _l — —£s in i ( _ | , zl—zt_i~6zt, i ( — i j _ ] = y, — a, + ix ( . (3) 

Here {6xi, Szi) is a random point chosen with ?. distribution g(Sxi,6zt;o) where 

g(x,z;a) -^ «xp{—o)6{x,z) -\- [I — cxp(—cr)]/(2/r)2u(x,z), 

6(2. z) ii me Dirac delta function, and u{x, z) is a uniform function equal to 1 if \x\ < IT and \z\ < T 

and 0 otherwise. This noise term models the effect of large-angle scatterings. The effect of z in (3) is 

to provide an origin shift to v in the equation for xt — xt-t. The solution to (3) behaves as that of 

the noiseless standard mapping (I) as long as (&xtl Sz,) is (0,0). After an average of 1/cr (for small a) 

iterations, a large-angle collision takes place which completely randomizes the particle's position in x 

andz. 
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Equations (2) and (3) represent examples of two distinct types of noise. In (2) the noise is diffusive; 

this is die limit in which tile particle suffers frequent but small uncorrected kicks. On the other hand, in 

the large-angle scattering model (3). the particle is rarely kicked by the noise but die kicks arc large. 

In die absence of noise, there exist small regular regions from which an orbit is excluded (assuming 

it started outside such a region). Noise destroys dicse regular regions allowing a particle to wander 

anywhere in phase space. In addition, th: types of noise we consider in (2) and 0\ maintain the area-

preserving nature of llic standard mapping because at any given time step they merely translate die 

phase space by some fixed amount, l'roni tilts it follows dial the motion is erjoJic. t.'.. that time averages 

can be replaced by phase-space averages. 

The velocity-space diffusion coefficient is defined by 

n .. ((«; — H J ) 2 ) , J 4 D = lim - , (4) 
i—» 2.1 

where the angle brackets denote ar average over some appropriately chosen ensemble. An equivalent 

definition is [3] 

1 r = l 

where 

CT = {a;+Ta(), 

at = v,.|_i — U| is die acceleration, and die average now includes an average over I. Because die 

motion is ergodic, we can replace the time average by a phase-space average coupled *ith an average 

over all realizations of die noise terms. (In calculating phase-space averages wc use the periodicity 

of die mappings in the x and v directions so dial die averaging need only be done over a 2?r x 2r 

square. However, when defining D and a,, the periodicity in v is not used.) Hie result for C, wiJl be 

independent of die ensemble chosen so die ensemble average can be ignored. Thus we have 
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whcrc here the angle brackets mean an average over the distributions of all the noise terms appearing in 

aTau. For instance, for the noise term in (2) we have 

/
CM r o o 

f(SxTi.,;a)d6iTi-i f(SvT;p)dSvr ••• 
-on J --ras 

/ f(6x,;o)d6x, I J{Svi],p)dSv0. 

This operation is nn identity in the limit o —• 0 nndp —» 0. 

The first fen C, are then found for (2) to be 

q, = .{c* + />, C , = 0 , 
C, = _ l t ^ ( £ ) C x p { - a - i p ) , 

Ci = - J c J / f ( £ ) e x p ( - a - />) + i c ' 2 ^ ( f ) c x p ( - 3 < 7 - p). 

Assuming that the sum in (5! can be truncated at r — 3, we have 

D *« lp + ic ' [J - ./,(<) c x p ( - o - ip) - J'f(c)cxp(-tJ - p) + J%t)txp[-3a - p)\. 

With p -> 0 tiits agrees with the result obtained by Kccticster and White |2|. Wc might expect the 

tmncation ID be accurate when c ereatly exceeds the stochasticity Uircshold, i.e.. ( » 1. This question 

will be examined in more detail below. This approach shows that the oscillations in D seen by Chirikov 

[1) arc due to short-term correlations in the standard mapping ant1, contrary tn his assertion, are not 

directly caused by the presence of accelerator modes. 

The same calculation may be made fur (3). Mere wc obtain 

Q, = J t 2 , C, = 0, 

Gi = -J£''4(<:)exp(-2o), 

Q = | - .UVf(0 + } f. 2Jfc)]cXp(-3a}, 

C7 = cxp(—OT)CT(O -> 0). 

'["his result for CV comes about because the probability that at least one large-angle scattering lakes place 

between ao and a, is t — cxp(—or). If no scattering takes place dien the mapping is the same as the 

noiseless one. 

In order to illustrate this method of computing the diffusion coefficient for another mapping, wc 

consider the mapping obtained for the motion of an inn in a lower hybrid wave [3], llic mapping is 
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U( — «i—i =2ir8 — 2:r/i cos« [_ i , v, — i>,_t =- 7.n8 -f- 2* / \ cosU; 

and wc arc interested in diffusion in the o direction where p = | ( v — u). We lake A to be much larger 

Ihnn die siochaslicuy ifircshold .4 > j . Then the motion is approximately crgodic (even diough there 

is mi noise in (his model). I•'imhcrmurc. we expect (subject to the restrictions to be explored Inter in this 

section) dial onlj a few terms m (S) contribute ;<> D. So we have 

D ^ . *',V<|1 + .' u(2ir/\)cos(2ijfi) - .ff(2T,4)sin 2(2ir5)], 

whore die first term in the hr.ickcts is lie contribution from Co and the other terms come from C\. 

Anloiiscn and Ou|-)]liavc also derived Liis result using the method of paths in Vourier space [5]. 

I he question of the accuracy of discarding die terms for r > 2 in (5) may most easily be addressed 

with the noise model employed in (3) because we need only determine the behavior of C,^3(0 —• 0). 

When o = 0 and f < ; 1. pha^e space may he divided into two regions: a large connected stochastic 

region and those parts of phase space «itliin islands. A particle starting in either region stays forever in 

Dial region, i l is useful ID write C i i ruhcsi i inofC*' a n d C " which are die contributions, to the integrals 

in (ft] due 10 die stochastic and island regions respectively. 

We shall assume dial C*' decays exponentially with increasing r So far as wc know, this has not 

been proved for the standard mapping. The numerical evidence is dial CT' decays quite rapidly for 

small r and large t. The decay for larger r is dillicull lo measure accurately because the error in the 

measurements of C " ! may exceed die value ofC-*1'. (Grcbogi et al. [f>| h..vc suggested that die decay may 

be slower Uian exponential for some t.) 

Hie contributions due 10 the island region mav he evaluated quite accurately because, within a 

given island, the time-avcragcd acceleration is a constant a, ft is a subscript l.tlulfiiig the various islands). 

The frequency of oscillation around an island is typically of order unity. Therefore C" consists of a 

mean pari (independent of r) equal wQ = JT, "-i^i I An plus a part which oscillates with a frequency 

of about unity./!, is theaieaofuic t'dl island and/to = (2ir) 2 is the total area of phase space. 

Wc are now in a position to assess die contributions to D afC'J and C" when a is finite. Hie sum 
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over C'r' probably coi verge rapidly so thai a truncation at some fairly low r is quite accurate. Since, 

in Ui.it case. onl> the terms lor small r contribute lo D. a small amount oFnnisc has little effect on this 

contribution. The oscillator pari cl'C't" may sitiiil.uk he neglected when evaluating D since its sum 

when weighted h\ cxp ( -o r ) is on the order ufo I lie mean p.irtotT'J*. on the other hand, increases £) 

by 

^ C/l(l 

fins will be non/i.'ro if at least one of the islands is an accelerator mode. i.e.. a, ^ 0 for some i. In 

these modes, a panicle, instead .of returning to the original island after N iterations, goes to the image 

of dial island displaced upwards or downuards in v hi some multiple of 2JT. Such a mode is called an 

N ill -order accelerator mode. I In fan. due in the symmetries of die standard mapping, accelerator modes 

come in pairs uith A-i, — A*, \ anda^, = —a-±,. i.) So. if acccleratoi modes exist, o can be chosen 

so dial D,j, and hence D arc arbitrarily large. 

Accelerator modes are best found by looking for stable accelciating fixed points. Around each such 

fixed point there uill bean accelerator wide. Several first- and second-order accelerating fixed points for 

(1) are cataloged in table I.Oiirikov [!| gives 

<„ •= Inn < |f| < \{lrnf + 16\'^ = t, (3) 

with n being nn integer as the condition for the stability of first-order fixed points. The magnitude of 

the acceleration of die accelerator mode associated with such fixed points is Irn. Actually the first-order 

modes exist beyond fj. I he second-order fixed points which are marked by asterisks and which follow 

the first-order fined points in the tabic arc die result of die first-order fixed point becoming unstable 

and giving rise to 2 stable second-order fixed points. 'Ihe accelerating regions around these second-order 

fixed points arc best thought of us being a continuation of the first-order accelerator mode. 

http://Ui.it
http://sitiiil.uk
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The physical explanation of the 1/(7 divergence was given in section I. Here wc will cast that 

explanation into more quantitative terms. Consider .1 particle that lias just been placed in an accelerator 

mode by a collision. When o is small, the probability that it survives in that nindc for longer than a 

time ( is / ' {() = exp( —at). (This is just the probability lli.it ilicic is IUI collision during, the time 

(.) The probability Uiai it leases between limes ( and ( + (it is p{l)dt where p(!) — —tll'[t)/dt = 

a ttp(—crl), l-'nim (4). the conmluition 10 the diffusion coefficient from the .mvlcra or modes n 

1 lie i'.i'lur A,/An is ihc fraction of l i inr a pnrticlr spends in llie ; ih accclernioi mode. SnbMinuing for 

p[l). «c have I),, = Q/a which .igrees with (7). 

The same considerations apply to the standard mapping wiili noise gi\cn In (2). [11 iliis case, the 

form of p(l) is not t.noun: it v.ill in fact depend on (he si/c <i'"tlie aacJcrdloi KMMIC. However, wc do 

expect the duration of a particle's stay in an accelerator mode to be approximately A 2 jo (for p = 0) 

where A is die scale length or the island. This is to be compared with ,111 average duration of 1/CT for 

the large-angle scattering case (.1). Since A is usually quite small, the coefficient oFi'.e l /o term in O for 

(2| should be smaller than that for (3). I hose considerations will he refined in section 4, when we will be 

able to make more accurate scaling arguments. 

];> the next section wc nu/mricaUy confirm ihc 1/CT dependence and explore the dependence of D 

one. 

3. Numerical valuation of Ihc diffusion coefficient 

In order lo measure the diffusion coefficient numerically wc adopted a method based on (5) which 

is designed to handle systems with long correlations. The trajectories cf J particles with random initial 

conditions (with a uniform distribution) arc advanced 10 t = kT according 10 cither (2) or (3). A 

http://lli.it
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correlalion function is delined for the ki\\ iier.no of the m.ip for eaeh tnijccmry by 

where a* — i' l {, . j — !>(, is the atveler.aion due iv k neuies nl die map. A diffusion coefficient based 

<iii [he jlh liajeuon is given by 

J'lic filial \.iJuc i\] !) is IIIM.lined In .iver.ij up l)j mer J. Hie si.iiul.nd deviation of l)j divided by \/J is 

u-ied lo give .1 nieasuie "1 ihc crim in D 

In this method, correlations up to a lime separation u(kl, arc retained. V\ nh T = I and L = 0. 

we recover the "stand,nd" tuethod which :s based on (-1): in older lo obtain accurate results in tlnscis?./ 

mus; he latec. Here we do not lake J n> i>c large: however, good statistics are obtained Ixv.iusc we uke 

T —• I. S> I so that die re ,-IK m.im observations of v.:"h Ck

r. Normalk we take J lo he M vihich allows 

us lo make full use of the vectori/ation capabilities of the Ci.n-1 conipuler nn which the computations 

of .0 arc performed. 

In fig 1. v.c show the a dependence of D fin il) wiih p --• 0 and t — (i.6 and 12.8. D is 

normalized lo its quasi-linear value D:lt •--- {('. Ihcsc values oft were chosen to satisR (S) for n = 

] and 2. We sec thai D docs have a l /a dependence I'm -.null o Ihc values nf o a; which ihis 

dependence becomes evident aie :ihout 10 ' and 10 ' for < ----- f> f> ,md 12 8. I "he values for D for 

o = 10 ~ ' greatly exceed the ininiciic.il '.allies gncn in icf 1. Siiu.c orbiK of length DO \>cre used in 

Ibnsc compulations, die clfecl ol the accelerator modes was largely suppressed. 

Also shown in Tig. 1 is I) furl 1) with < •-- 6.6. As expected, the (.oeflineni ul the \jn term is nearly 

100 (irrrcs larger (linn kn(2). 

Taking die limit 0{o --> 0) gives ,ui infinite result from the l /a term. If we interchange the limits 

so that we take a -> 0 before t -> oc in (J), she value of O depends on htiw the initial conditions 

arc chosen since the motion in tins case is not errjodic. if an ensemble is defined by cruising initial 

http://iier.no
http://si.iiul.nd
http://ininiciic.il
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conditions iiniTtimily in phase space, D i-i infinite because some trajectories will be accelerating. This 

is ilicn consistent with the value of £> obtained by taking the limii a —i 0 after ( —• oc. A more 

"natural" ensemble is obtained if wc restrict Uie initial conditions to the stochastic' teg on of phase space, 

figure I shows :hc value of the P for i — 6.6 and a — 0 with such initial conditions. The error in 

this measurement of I) is quite large even though long trajectories were used in [he computation. This 

probably arise-, because the stochastic regi >n includes ;i "sticky" poition close lo the accelerator nioJes. 

A particle which wanders into this portion of phase space may still spend a long time accelerating even 

thoiiyli the trajector; is still stochastic. The properties of these sticky regions aioniu islands need more 

thorough study if the diffusion coelTicicn! fore = 0 is to be understood. 

No enhancement of D was detected in the ranges til c where second-order accelerator modes exist. 

Because these modes arc much smaller than the first-ardct accelerator modes the \aluc of t f at which 

lhe> begin lo contribute significantly is so small thin prohibitively long runs would h,i\e to be made to 

detect any effect numerically. 

Next wc turn to the behavior of D as a function ofc. Here wc Imld r fixed and equal to 3 x 1 0 ~ e 

and - is varied in and somewhat beyond the ranges given by (8) with n = I and 2 '["he results arc 

snown in fig. 2. D rises quite rapidly as soon as t exceeds <n for the first-order fixed point. At about 

one Quarter and nt about one haiTol" llic way through the interval ( tn r ( | ) - D is dramatically reduced. As 

wc shall sec tJlis is due lo the appearance of fourth- and lllird-order resonances. Nothing much happens 

lo D ai ( i - Although the central fixed point becumes unstable at litis value ofc, tnerc is still ;i KAM 

surface of the original topology surrounding boih the unstable first-order fixed point and die two new 

second-order stable fixed points. There is iiule change in ihc overall si/e of the island at this transition. 

Perhaps the most noteworthy feature of fig. 2 is that the plots for both n ~ 1 and 2 arc so similar. 

ITiis r'-^csts that there may be a universal structure for die accelerator modes. Wc pursue this subject 

further in the next section. 

file:///aluc
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4. Uniuisal lieliaiior of aceolcralor modes 

Referring to tabic I. we see thai llic accelerator modes exist only in a narrow range in t. ihey 

arc likewise present only in a small region of phase spate. I his cll'cct hccomcs more pionounced as 

t is increased and allow-, a-, to apimnimate llic accelerator modes by a Taylor-series expansion of tile 

mapping. We consider a general arca-prcsen nig map ol the (x, y) plane which depends on a parameter 

k. We shift Iho origin and A- MI that (lie accelerator mode ^-.t appe;, s ;it (r, ;/) •= 0 and k ~- 0. Wc 

pick a IV.iiiie uav cling with the acceleiMltiiii of the mode: there fore the cnnslanl terms which represent 

the acceleration arc subliaeieil. We shall oitb dircclk treat accelerator modes uliich appear .is a result 

of tangent hil'uaalioiis. Other higher-older lixed points wlvrh conic from bifurcations of -a existing 

accelerator mode will be nc.:lcd as pan of that accelerant mode The linear terms of ihe mapping at 

k = 0 haieilic form 

X\ = (I -+ a')xQ + by,), y, = b'xn + fl - a')yn, 

with a'1 -\- bb' =z 0, because the mode appear-, as a tangent bifurcation, me trace of the tangc it mapping 

matrix is 2. Ily transforming (i, y) with 

x = r + a'y'/(an + P), y =- - a V / t - b,J/(a" + b1), 

the linear mapping becomes 

A = A\ \~ t/iu y'\ = >Ja-

A similar transforination is possible if 'i = 0 but b' ^ I). Hie only case where the transformation is not 

possible is if a' = 6 = 6' — 0 in which case the linear mapping is an identity. We now add the terms ir 

the Taylor expansion which are quadratic in x and y and linear in k, 

x\ = x'a + yj, + exj? 4- dx'ny'u + ey* + fk (10a) 

y\ = y'u + dxZ + d'x'A) + e'y% + fk. ,1 Ob) 

Wc have taken k ~ 0(x 2 ) . Unfoi innately, this mapping is not in general area-preserving because 

the omitted cubic terms in Llic man also contribute to area preservation. However, wc can make (10) 

conserve area by expressing four uf the coefficients of the quadratic terms in terms of the other two. 
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1 he coefficients of z{>2. c and c\ are taken as the independent ones. This choice is motivated by noting 

thai die results are then independent of our choice of the direction of time. Tims when we invert (10), 

die coefficients of x'j2 depend only on c and d, whereas the oilier coefficients arc linked in a more 

complicated way. Also, in snmo respects »c may order ij as x'1 |c.g.. consider the positions of the fixed 

points off 1())j. Ilic terms involving ?f,i/j, and ytf are of the same order as the neglecicd terms. Therefore 

their coefficients should onl\ he chosen lo ."iisiire Ihc preservation of area; i.e., 

d' = 1(d — c), e' = (d - cf/d, d/d' = e/d =- c/d. 

1 u,ualioii (10) max then he nrittcn as 

A = *o + •/» *• <=[cv + V - CW(<^ -'• /*. 
V\ = y'0 + [c'r' + [d-c)yf/d + rk. 

l-'inally. we pcriiin:' the transformations 

x'=2\x"-(l~c/d)y"}/d, i/ = Wjd 

and 

x" = X, y" = Y + 2K{f/f - c/d), k = -4ft /(df>) 

to give 

K, - Ko = 2 ( ^ - /C), Jf, - Ab = y,. (1 J) 

This is a universal mapping approximating the behavior of accelerating modes for large s'ochasticity 

parameter. Ml the transformations which give (11} arc linear, and, with the exception af the last one 

which is just a shift of the origin, diey are all independent of k (and K). l;or the first-order accelerator 

modes for the standard mapping (1) which appear at c = 2 ra. the transformations reduce to 

T = ±(l + --x), v = ±(-2int +—Y\ e = 2itn+—K. (12) 
V.2 m, / \ 7rn / rn 

Tiie transformations leading to (11) arc not well defined if the various cocfrUcnts satisfy unusual 

relationships. The first transformation is not possible if the linear term is an identity. If the motion 

around a stable Nth-order fi' :••' point of a mapping is similar to rotation by an angle 2np/q where p 

and q are integers, then llie linear part of die qNib iterate of die map is an identity. I"!LIt this docs not 
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corrcspond to the first appearance of an .iccelcrator mode. (It appeared with (he Nth-order fixed point 

or sooner.) The transformations also fail ilV or/ ' is zero. In ill is case higher order terms have to be kept. 

This is what happens with the standard mapping at its (non-accelerating) fixed point which appears at 

t = 0 arid [x, v) = (0, 0). The same tiling happens if we look at the second-order fixed points which 

appear when a first-order fixed point goes unstable (the fixed points marked with asterisks in tabic I}. 

licit here again such second-order fixed p. hits are not the first occurrence of ,ui accc Icralor mode in the 

neiglmor'iood of parameter and phase spjec. They are treated by the scco. .-order fixed points of (11) 

that appear for K > 1. Another form of degeneracy occurs if Die exact mapping ha.', for instance, a real 

squa, J root. Then quadratic terms ir. the mapping may be finite but still the cubic an 1 quartic terms may 

not be neglected. An example (.fihis is provided by die second iterate of (11). 

Figure 3 illustrates this mapping for a particular value of K and also shows that it does indeed 

closely approximate the standard mapping near first- and second-order accelerator modes. Thus 

accelerator modes mav be studied by examining (11) and how die transformations affect die diffusion. 

We begin by cataloging some properties of(U). 1-orO < K < 1, (11) may be transformed into ihc 

Hcnon quadratic map [7], 

i , = Jo cos o — [yu — io)sinci, t/i = i o s i n a - f ( t t o — ijj)cosa. 

K is related to Hcnon's parameter by K = sin'(a/2). The transformation bc>wccn the two sets of 

coordinates is given by 

X = cos 3(a/2)sin(a/2)™+ Y/2 — sin 2(a/2), Y = -2cos(a/2}sin 2 (a/2)u, 

an*! 

w = zcos(a/2) -(- «sin(a/2), v = — xsin(a/2) -f- yc«s(a/2). 

The transformation depends intimately on a (and hence on /C)and becomes singular alK = 0 and 1. 

For K < 0, (11) has no fixed poinu. It has two first-order fixed points for K > 0, (X, Y) = 

Pr^/K, 0), which following rcf. 7 wc call 1, and /', respectively. /', is always hyperbolic and so is 

unstable. I, is elliptic and therefore stable for A" < 1. At K = 1. h Uims into a hyperbolic point with 
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reflection and two second-order fixed points are born. Ilius the values K = 0 and K = 1 correspond to 

the parameter values eo and t | listed for the fixed points without asterisks in tabic I. 

Hie second-order fixed points are stable for 1 < K < jj. 'litis corresponds to the range in t 

for Hliicli the fixed points labelled by asterisks in lahlc I are stable At K = \. a second bifurcation 

takes place giving rise to periodic trajectory of period 4. This trajectory in turn becomes unstable at 

K = 1.2801 when a period-S cycle is bom. The process ol'a period-2'" trajectory becoming [instable 

and producing a pcriod-2'" + ' trajectory continues. Greene ct al. [K] show that it accumulates at K = 

1.2840 —• ,(1 + 1.2663)*. When K exceeds this \alue. they conjecture that (11) has no stable fixed 

points. Therefore, for large n the first-order accelerator modes exist for 

e0 = 2™, < £ < t 2 sa £„ + 1.2840(c, - t u ) = ; 2jrn - f 1.2810 x i,'{im). ( U ) 

lite map ( l l ) h«s two main symmetry lines. 'Ilicy arc the X-axis (V = 0) which corresponds to 

the w axis in the Hcnon map and die line Y = K — X1. Reflection in one of the symmetry lines 

corresponds to reversing time. K.g., Y = 0 is lite invariant line for the transformation X = X' — Y', 

Y = —Y' which turns (11) into its inverse. 

In order to understand how (11) contributes to diffusion we must determine how large a region is 

trapped around the stable fixed points. We define an orbit to be trapped if X and Y remain bounded 

for al) time. (Trapped orbits arc die ones which contribute strongly to the diffusion because in the 

original mapping dicy arc the ones that arc perpetually accelerated.) Ur." apped orbits escape to infinity 

with Y —i -few. It is straightforward to show diat for K < 2 all particles with Y > 10 escape in 

this way. An approximate numerical test for being trapped is to check that Y < 10 during a large 

number of iterations. Figure 4 shows the extent of the trapped region along die two symmetry lines 

and its total area as functions of K. Figure 4b is just a repealing of Hermit's fig. 2. The dips in the 

plots of the diffusion coefficient correspond to die large reductions in the si/.c of the trapped region that 

occur for certain values of K. These are associated with the occurrence of higher-order resonances to 

die basic rotation about die h |7J. Particularly large effects are produced by the fourth- and Uiird-order 
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rcsotiances. A stable period-four cycle exists for i < K < 0.3044. litis is born at /, and in the process 

of moving away from this point destroys much of the stable region. A stable pertud-direc cycle ij exists 

for ^ < A' < & = 0.5625. Unlike oilier resonances this is born away from die associated lower-order 

fixed point h • h moves runner away from /| as K increases, while its ui>.sl.ih!c twin l't moves towards 

t\. When l.i goes unstable at K = j{j, I\ is at / ( causing the destruction of all stable regions in the 

ncighburtiooi'of I\. 

In order m make a more quantitative comparison between the behavior of tite diffusion coefficient 

in fie. 2 and ihe behavior of 11 \). we uuis ascertain the effect of the transformations used to derive (11). 

We saw m section 2 lh.it the contributi"* of an accelerator mode to Lhc diffusion Liicflicicnt when the 

noise is due to large-angle scattering (3) is given by the area of the mode and its aixeleratioi:. Now tine 

area of die accelerator mode is 4/(|(/|c / :!] of the area of the trapped region ofll II (fig. 4c). So in the limit 

of small a. the dilfusion coefficient for (3) consists of a superposition over accelerator modes of forms of 

fig. 4c. lincarlj scaled hj appropriate amounts in both directions. l-"or a first-order accelerator mode. /t, 

the area of die mode scales as 1/rr ~ 1/e2 (12) while the acceleration varies as a, ~ n — t. 'ITius 

from (7) we have D,„ ~ l /o. The relative importance of the first-order modes with this noise model is 

given by D l s /D , , ,~ l / ( f f f 2 ) . 

With the noise employed in (2), ihe situation is more complicated. l"hc way diffusion due to a and 

p enters (11) depends in a more involved way on the transformations, used to dcvi\e'U). i'or instance, 

take the case where p = 0 (then all the diffusion due to the noise is in the i-direction). In (11) the 

diffusion is then along a line Y — a'[ari -f- bu)X/b'1. So the effect of each accelerator nude as a 

function of K depends on what this direction is. However, in (2) the important accelerator modes are the 

first-order ones and for these modes the transformation to (X, Y) takes the particular!" simple form (12). 

The only way ihe transformation changes as n is changed is by an overall scale factor. The effect of Ihc 

noise wil, then only depend on the ratio of p to a (apart from a constant factor). 

In order to find the effect of a first-order accelerator mode in (2) on the diffusion coefficient, we. 

go back to the expression for £),„ given in (9). Now p[i) is no longer a probability since it is not 
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,-iormalizable. It may be defined as follows. Imagine •,„ /ting infinitely many particles ai ihc boundary 

of the trapped region. (The number of panicles lias to b-: infinite because almost all of them leave the 

trapped region immediately ) Suppose the number wliiih arc left after a time ( is P{1), 'Hie number 

which leave between t and .' -(- dt is then »{l)di where p(l) —- -dP(t)/dl. Before applying (9), wc 

musi also ensure ilvt a and p are small u> lh;il each \isit lo 'he accelerator mode is uncorrected with 

the previous one. (Ifcr or/> is not small. 1I? particle may be immediately scattered b ick into the trapped 

region after being scattered nut oT it, im.cad of being swept far away from the island, litis effectively 

increases Ihc area of the dapped region. Such coiisidcruli.nis were not necessary for 'he large-angle 

scattering nn dei.) Taking p = 0. wc h;i\e p[t) ~ t/(at/A2) where i/ L some fiinclit u which, for a given 

!i. applies for all first-order accelerator modes and which is independent ofcr. A is die scale length of 

llic island which from (12) is proportional to ]/n. I Ice again, o must be small lobe able to write p(t) in 

this way because we need to be able to separate Ihc slow time scale of the motion due lo Uic noise in (2) 

from the fast time scale due to die standard mapping itself, This form for p(0 applies for any diffusive 

noise model if «c regard o as a measure of the extent of the Green's function response after a unit of 

time under the action of the noise alone. Using (9), we find that, when c satisfies (13; Dti ~ l/ ' -rt 2 ) 

and D,,/D r j; ~~ l/(oc') . This is confirmed by fig. 2. where wc see that DfDH\ decreases by luughiy a 

factor of 1G when t is doubled. 

5. Conclusions 

When noise is added to the standard mapping die diffusion coefficient consists of two parts. One 

part is primarily due to shorl-lerm correlations in the sloe! islie region uf phase space and this part 

exhibits nearly sinusoidal oscillations [2]. The other part is proportional to die inverse of die noise 

parameter o and exists only when accelerator modes ;,-c present. When Hie noise is weak, this latter 

part dominates, 'lite role of the noise is to ensure dial every trajectory eventually visits die accelerator 

modes, This effect has been confirmed numerically for the first-order accelerator mode,. These modes 

exist in windows given by (13) and their relative importance decays as t~' for diffusive noise (2) and 
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as e~ 5 for large-angle scnttering (3). Although many highcr-ordrr accelerator modes exist (see table I), 

the- arc so small thai the) do run contribute significantly to D for the values of a that can be dealt with 

computational!). In the absence of noise the diffusion cuclliciem is not fully defined until the ensemble 

in (4) is specified. However, anomalies in llic diffusion cociliciciu arc seen even when the ensemble in (4) 

is [Liken to be trajectories in the stochastic region. This is appaienth because trajcciovies cm be greatly 

accelerated «hiie in the > ieinitv ofll ie accelerator modes. 

We showed in section -1 th.n the accelerator modes exhibit a universal behavior. Depending :m 

'.he noise model, the diffusion coefficient therefore exhibits some universal features as the parameters is 

varied. 

Similar effects arc expected m other mappings which allow accelerator modes. Such mappings 

arc ones which are periodic in the velocity direction, for example, an anomalously large diffusion 

coclficicni was found at a certain value of the parameter for the mapping studied in rcf 3. ( I lie divergent 

behavior of the diffusion eocfliciem for this case has been noted hv Antonsen and Oil [4].) However, 

such mappings arc often derived as approximations to mappings which arc not periodic in the velocity 

direction, '-'or instance (1) may be derived from similar mappings in which c is effectively a function 

of u, t(ti) [')]. These more general mappings do not have acrclcr. ,, modes. Nevertheless, if die 

dependence of c on v is weak, wc still expect there to be sonic effect due to the presence of die "latent" 

accelerator modes. 'Ilicsc arc channels in phase space which allow particles to be uniformly accelerated 

from a vclorily Vt, such that cftb) "=* <-u to a velocity u a such that t{vj) Ra tj (tn and t 2 being die 

parameter values for the birth and death of an accelerator mode in the standard mapping). No noise 

is required to bring particles into these channels. This short cut will result in an enhancement of the 

diffusion coefficient between vu and i^. Diffusion on longer velocity-space scales will still be limited by 

the slower diffusion elsewhere. 
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r 
Tables 

Table I. Kirst- and second-order stabJe accelerating fixed points for the standard mapping (1). Here, N 

is the order of the fixed point and a is its mean acceleration. The subscripts 0 and I denote the values of 

1.1. and v when die fixed point first appears and when it becomes unstable. These fixed points together 

«ilh lliose generated from IJKSC by lhc symmetries of 11) gi\ c all tlie first- and second-order accelerating 

fixed points for |c| < 20. The entries labelled with asterisks result when the precc ling first-order poirt 

becomes unstable. 

N" >l/(2«) £<) fai, H.)/(2ir) <-i "'_'v».)/(2_*£_ £| — «fl 
2 ~~ 1/2" •1.0236 0.3957,0.1951 A nnii 0.3846,0.2159 0 0685 
T 1 6.2832 0.2500,0.0000 7.4484 0 1598,0.0000 1.1652 
•2 1 7.44^4 0.1598,0.0000 7.7134 0.2083,0 0928 02650 
2 1/2 8.6789 • 0.541ft, 0.3214 8.6883 0.5402,0.3272 0.0093 
2 I 9.8226 0.4526,0.2294 9.8288 0.4516,0.2342 0.0062 
2 1/2 9.9166 0.2087,0.2627 9.931 [ 0.2177,0 2741 0.0145 
2 3/2 10.9101 0.3678,0.1409 10.9175 0.3666,0 1459 0.0074 
1 2 12.5664 0.2500,0.0000 13.1876 0.2010,0.0000 0 6213 
•2 2 13.1876 0.2010,0.0000 13.3385 0 2260,0.0494 0.1508 
2 J/2 14,3918 0.5939,0.3629 14.3949 0.5934,0.3656 0.0031 
2 3/2 15.0416 0.2254,0.1826 15.0452 0.2288.0.1S66 0.0036 
2 1 15.2394 0.5270,0.2954 15.2413 0.5267,0.2976 0.0C19 
2 3/2 15.9607 0.4700,0.2378 15.9623 0.4698,0.2398 0.0016 
2 1 15.9966 0.2271,0.2598 15.i)992 0.2301,0.2632 0.0027 
2 2 16.6679 0.4142,0.1810 16.6697 0.4139,0.1831 0.0017 
2 1/2 16.9287 0.2278,0.3341 16.9321 0.2312,0.3380 0.0034 
2 5/2 17.4630 0.3515,0.1168 17.4657 0.3510,0.1193 0.0027 
1 3 18.8496 0.2500,0.0000 19.2693 0.2167,0 0000 0.4197 
*2 3 19.2693 0.2167,0.0000 19.3728 0 2335,0.0334 0.1035 
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i-'igurc Captions 

I-'ig. 1. Hie dependence of D /D, , on a vhere D,,! = .',£3 I "he h.irs indicate the error ( i one standard 

deviation). The lowir two curves are for the diffusive noise model (2) with p •=• 0 and |;i) i = 6.6 and 

(b) f = 12.8. The upper tunc (c) is for the large-angle scattering model (.1) and c = G fi. The dashed 

lines show the \ja dcpcn'Jcncc. The point with die lowest value ofcMin each curve was calculated with 

kT = 2 X 10- and kL = 10'. ] ower .allies oflhese parameters were used for the larger values of a. 

Hie poinl on the right (d) gives D/D,it f i r a = 0 and initi.il conditions in the stochastic region. Here 

kT -•= 10" audita = 5 X 10"'. 

l-'ig. 2. D/Dqi as a function o f t for the standard mapping with diffusive noise (2) with p = 0 and 

cr = 3 X 10 ' ' . I h c bars show the error as in fig. I. HcrcfcT = 6 x 10° and/ef, = 3 v i r j i . 

l-'ig. 3. Comparison of [he quadratic mapping (11) with the standard mapping (1) in the regions o f 

accelerator modes. The first figure (a) shows trajectories for the mapping (11) with K = 0.265 with 0 

different initial conditions. There is a first-order island at the origin whose center is I t. The other iv.o 

large islands are p i r l of a chain of A foimli-order islands. Hie other figures (b and c) show trajectories fir 

thc mapping (1) with i = L8.9t)20 and 15.0425 where first and second-order accelerator mode, exist. 

The coordinates (x, u) in (1) have been transformed to [X, V) according to the prescripiion given in 

Section 4 with K — 0.265. I.e.. l'or(b) die transformation is (12) with n = 3; and for(c) it isz/(2ir) = 

0.2254 — 10 -'(3.4298X + 0.0019K + 0.0001K), v/[2-n) = 0.1826 — ]l — 10" '(3 9784X — 

0.2721 y - 0.0119/f), and i = 15.0416 + 3.6*153 x L0~3K. 

I : ig. 4. The trapped region of phase space for die quadratic mapping (11). Plots (a) and (b) shows 

the intersection of the trapped region with the two symmetry lines V = K — X2 and V = 0. The 

trapped region is represented in black, llicse plots arc calculated with a resolution of 0.002 in X and K. 

Trajectories of length 10 000 were used in the test for being trapped. The curve (c) shows the total area 

A of the trapped region. This was calculated with a resolution of 0.005 in X and Y and at intervals of 

0.01 in K. Here the trajectory length was 1000. 
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