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The cficct of a small amount of poise on the standard mapping is considercd. Whenever the
siandard mapping possesses acvelerator modes (where the action increases approximately lincarly
with time), the diffusion cocfficient contains a term proponional to the reciproral of the variance
of the noise term. At iarge values of the stochasticity parameter, the aceclerator mtodes exhibit

a mniversal behavior,  As a result the dependence of the diffusion cocfficient on stochasticity

parameter also shows some universal behavior,
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{. Introduction

‘The standard mapping,
Y — | = —csing_g, T — L., =Y, {1

is ann important model with which to study Uic pheramenon of stochasticity [1). Recently. Rechester
and White [2] calculated the diffusion coefficient for this mapping with an added nisc 1enn §z; in (he
equation for #; — #;—y. "The random variable §z; s sampled out of 4 normal distiibution f(5z:; @) of
variance o,
Sz 0) = (220) "1 exp(~}2* o).

‘The introduction of aojse has profound effects on the long-time properties of (1). For instance, with
o > 0, the motion is crgodic; whereas, for & = 0. the motion need not be ergedic even for Targe e.
("Ergodic™ here means that a tAimc average for a single realization of the trajectory will be equal to a

phasc-space average where the phase space 15 defined by taking = and v modulo 27.)

One conscquence of the ergodicity of the motion when o > 0 is that the diflfission cocflicient may
cxhibit a 1/o dependence for small o. This happens whenever the mapping with ¢ = 0 has “accclerator
modes™ which are stable regions in which the particles are continually nccclcratcd;\Wc may casily sce the
origin of this 1 /o dependence. Ergadicity ensures thit a fixed fraction of time is spent in cach accelerator
mode. As o is decreased, the mode is visited less often while the duration af cach visit is proportionately
increased. (Only the noise can cause a particle to anter or leave an accelerator made.) This leads to a
diffusion consisting of a fow large steps. Since the siep size Aw and the duration of the step are hoth
proportional t £/a, the contribution o the diffusion coefficient also scales as 1/ In this paper, we
shall confirm the 1 fo dependence for two different types of noise. However, we expect similar behavior
for any noise model.

The remainder of this paper is organized as follows: In section 2, the results of ref. 2 are interpreted
in terms of the correlation funceion. This allows us to extend the result of ref. 2 to include other noise

madels and 16 determine the behavior of the ditfusion cocflicient when o is small. [n particular, we



predict the 1/ dependence when there are accelerator modes present. Scction 3 looks at the behavior
of the diffusion cocfficient numerically. The /¢ dependence is confirmed and the dependence on e
is found. In section 4, we examine the e dependence in more detail. We find that the accelerator
medes. which give the t/e behavior, have a universal structure when ¢ is large. This means that the
diffusion coelflicien: exhibits a dependence on e which has sumce universal characteristics. ‘The results are

simmarized in section 5.

2. The correlation function

We shall cxamine the standard mapping (1} with two different types of noise. With the first type,

the standard mapping becomes
o o— v == —esint. g F vy, T —2ey =wu+dn, ()
where 8v and éz; are randam variables sampled from distributions f(82,; o) and f{8z,; o) respectively.
This is a simple generalization of the sysiem treated in ref, 2 so that the noisc causces diffusion in both the
v and z directions
‘I'nc effect of the sccond type of noisc is describer? by

Y=Y = —esinT ), H—z_1=06y m—5y | =1—z+0n 3

Here {6z, 8z} is a random point chosen with 2 distribution g(6z., 6z1; 0) where
oz, 2;3) = exp(—0) b(z,2) + [ — expl—a)/(24) u(z, 2),

8(2.2) 15 the Dirac delta function, and u{z, 2) is a uniform function equal w 1 if |z} << 7 and |z] < =
and 0 otherwisc. This noisc terin models the cffect of large-angle scatlerings. The effect of z in (3) is
to provide an origin shift 0 v in the eguation for 2. — z,—;. The solution to (3) behaves as that of
the noisclese standard mapping {1) as long as (62, éz) is (0,0). Afier an average of 1 /o (for smail o)
iterations, a large-angle collision takes place which completely randomizes the particle’s position in

and 2.
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Equations (2) and (3) represent examples of wo distinct types of noise. In (2) the noise is diffusive;
this is the limit in which the particie sufters frequent but smald uncorrelated kicks, On the other hand, in

the large-angie scattering model (3). the particle is rarely kicked by the noise but the icks arc large.

in the absence of noisc, there cxist small regutar regions from which an orbitis excluded (assuming
it started outside such a region). Noisc destroys dhese regular regions allowing i particle to wander
anywhere in phase space. In addition, th? types of noise we consider in (2) and (3) maintain the area-
preserying nature of the standard mapping because at any given time step they mercly translate the
phase space by some fixed amount, From this it follows that the motion is ergodic. Lo, that time averages

can be replaced by phasc-space averages.

The velocity-space diffusion coefficientis defined by

a2
D= jin S, @

where the angle brackets denote ar average over some appropriately chasen enseinble. An cquivalent

definition is [3]

1 o0
= §CU+ ECf. (%)

r=1]

where

C.,- = ((IH_-,CQ ),

@, = w4 — v is the acceleration, and the average now includes an average over £, Because the
motion is ergodic, we can replace the time average by a phase-space average coupled with an average
over al) realizations of the noise terms. (In calculating phase-space averages we use the periodicity
of the mappings in the z and v dircctions so that the averaging need only be done over a 27 X 27

square. However, when defining D and a;, the periodicity m v is not used.) The result for C, will be

independent of the ensemble chosen so the ensemble average can be ignored. Thus we have

2 %
_ dIﬂ/ duy
G = l 2xJo 27O )
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where here the angle brackets mean an average over the distributions of all the noisc terms appearing in

a.ag. For instance, for the noisc term in (2) we have

) =/;mf(5$r+li0)d'517 ;,;/:.xf(ﬁvr;p]d&),-

s / f(51|;0)d521[ ‘f(évt.;p)dﬁth.

This operation is an identity in the limite — 0 and p — 0.
The first few C, are then found for (2) to be
G=4E +p, =0,
Cy = — 1 dy(e) exp(—o — }p),

Cy = — 5(2.[",)(5)(3)(;)(—-0 -+ iﬁlz-’ﬁ(‘)cxl’(—m’ —a

Assuming that the sum in (53 can he truncited at 7 == 3, we have

D lp+4e2[h — Sl exp(—a — Lp) — J3{)enp(—o — p) + J3{¢) exp(—3e — p))].

With p — 0 this agrees with the result obtained by Rechester and White {2]. We might expect the
truncation o be accurate when ¢ ereatly exceeds the stachasticity threshold. ie.. ¢ 3 1. This question
will be examined in mare detail below. This approach shows that the oscillitions in D seen by Chirikov
[1} are due to short-term correlations in the standard mapping and, contrary o his assertion, are not
directly caused by the peesence ol aceelerator modes.
The same calculation miy be made for (3). Here we obtain

Go = §é?, C =0,

Gy = — ¢ hyfe) exp(—20),
[—1e203(e) + Le2/3(e)] exp(—3a),

exp{—or)Cr(o — 0).

G

I

G
This result for €, comes abuut because the probability that at least one large-angle scattering 1akces place

between ag and a, is L — exp(-—oar). If no scattering takes place then the mapping is the same as the
noiscless one.
In order to illustrate this method uf computing the diffusion caeflicient for another mapping, we

consider the mapping obtained for the motion of an jun in a lower hybrid wave [3]. 'The mapping is L5
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uw— ., =2x5 — 2xiAcosty_g, v — vy =278 4+ 27A cosy,

and we are interesied in diffusion in the o direction where p = §{v — u). We take A to be much larger
than the stochasticity threshold A 2> 4. Then the motion is approximately ergodic (even though there
is no noise in this model). utthermgre, we expect (subject to the restrictions to be explored laler in this

sccliony that pnfy a few tenns w (5) contribute wo 1. So we have
D = 7 AL 4 4(27A) cos{278) — JH2n A sin?(26Y],

where the fint term in the brackets s he contribution from Gy andd the other terms come from Cy.

Antansen and O 4] have idso derived Liis result using the method of paths in Fourier space {5).

The question of the accuracy of discarding the terms for = > 3 in (5) may most casily be addressed
with the noise model employed in (3) because we need only determine the behivior of C-.3(0 — ).
Whenoe = Dande > 1. ph.nic space may be divided ino two regions: a targe connected stochastic
region and those parts of phase space withia slands. A particle starting in either region stys forcver in
that region. 3t is useful o write C; as the swn of 22 and C¥ which are the contributions w the integrals
in (A) due to the stechastic and island regious respectively.

We shall assume that G9! decays exponentiafly with increasing 7 So far as we know, this has not
been proved for the standard mapping. The numerical evidence is that €7 decays quite rapidly for
small © and large e. The decay for larger 7 is difhcult o measure accurnitely because the error in the
measurcments of G may exceed the value of C%F. (Grebogi ctal, (6] h..ve suggested that the decay may
be slower than exponential for some ¢.)

The contributions due 1o the island region may be cvaluated guite accurately because, within a
given island, the ume-averaged aceeleration is a constant a, (1 is a subseript Lebelling the various islands).
‘The frequency of oscillation around an island is typically of order unity. ‘Therefore C2 consists of a
mean part {independent of 7) equal 10 @ = ZJ a?A, /Ay plus a parg which oscillaes with a froquency

of about unity. A, is the areu of the £th istand and Ag = (272 is the total arca of phase space.

Wc are now in a position w assess the contributions to £ of C* and € when o i finite. {he sum
r 1




over C3F probably cor verges rapidly su that a truncation at some fairly lov 7 is quite accurate. Since,
in that casc. only the werms [or small 7 cantribute to . a small amount of noise has iitle effect on this
contribution. The oscillators part of C wuay sinnlaly be neglecred when evaluating D sinee its sum
when weighted by exp(—ar) s on the arder of o, The mean part of 2 on the other hand, increases D
by

+ 5 )

r==|

N —

n. = L(';,-’ + DO Q(
L

~= 1 coth{}n] =~ Q/o

?
a;A,

=D oA )

'
Phas wili be nonzero 1f at least ome of the islands is an acceleraior mode, e, a, # 0 for some 1. in
these modes. a particle. mstead .of retaming 1w the imginal island after N oaterations, goes 10 the image
of that island displaced upwards or downswards i » by some moluple of 27, Such a mode is called an
Ni-order accelerator mode. tin fact, due 1o the symmetries of the standard mapping, accelerator modes
come in pairs with Ay, == Ay, | and a3, = —ay,. 1.) So. if acceleraior modes exist, o can be chosen

so that Dy, and hence 1D are arbwrarily Jarge.

Accelerator modes are best found by looking for stable accelerating fixed points, Around cach such
fixed point there will be an sccelerator mode. Several first- and second-order accelerating fixed points for

(1) are cataloged in table 1. Charikov [1] gives
(0 = 270 < || << {(2an)? +16)'2 = ¢ (3)

with n being an integer as the condition for the swhility of first-order fixed points. The magnitude of
the acceleration of e accelerator maode associated with such fixed points is 27n. Actually the firsi-order
mades exist beyond €. The sccend-order fixed points which are marked by asterisks and which follow
the first-order fixed points in the table are the result of e first-order fixed point becoming unstable
and giving nse wy 2 stable second-order fised points. The accelerating regions around these second-order

fixed points are best thought of as being a continuation of the firsi-order accelerator mode.

ot ——e
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The physical explanation of the 1/e divergence was given in section 1. Here we will cast that
explanation inte more guantitatisve serms. Consider o particle thag has just been placed in an aceelerutor
mede by a collision. When o is small. the prabability that it sunvises in that mode for longer than 2
time s (1) = exp{—at). {Ihis is just the probuhility tat thewe is ne collsion during the time

t.) The probahility thai it leases between times ¢ and £ 4 dt is p(1)d! where p{t) = —dPP(t)/dt =

o exp(—at). i‘rom (4). the contnbution ta the diffusson coefficient fram the aceelera or inndes t

D, = 5O Vi aieptidt A, o
2y L Ay )

1
the fartor A, /4y is the fraction of time a particle spends in the #ih accelenior mode. Substituting for
plt). wehave [, = Qo which agrees with (7).

The same considerations apply to the standard mapping with noise given by (2). T this case, the
fisrm of p{£) & not hnewn: it will in fact depend o the siee o the accelerator fasde. However, we do
expect the duration of a particle’s stay in an aceelerator inode w he approximately, A%/o (for g = Q)
where A is the scale length of the island. This is to be compared with an average duration of 1/o for
the Jarge-angle scattering case (3). Since A is usually quite small, the coeflicient of 122 1 /o term in D for
(24 should be smaller than that fur (3). ‘These constderations will he refined i section 4, when we will be
able 1o mike more accurate scaling arguments,

Iir the next section we numrically confirm the 1/ dependence and explore tie dependence of D

One.

3. Nwmerical «vahution of the diffusion cacflicient

In arder 1o measure the diffusion coclficient numerically we adopted a method based on (3) which
is designed 1o Fandle systems with long carrclations. The trajectories ef J particles with random initial

conditions (with a uniform distribution) are advanced o £ = kT according v cither (2) or (3). A
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correlation function s deflined for the £ iterate of the map [or each trajectory by

ool
]
& k &
(G T+ E : A,
f=n
where a,k == g g =ty i I aceelerston due ok terates ol the inap. A diffusion cociicient based

on the jth tagectony s gnen hy
D. = Lo + ! i ot
B 2k n ['C ~ T
T tinal value of Ds obimed by averag ng 1, over ). The stndand desianon of 1, dinded by Vi
e e give o mieasune of the erracin 2,

In this methad. correlations up to a time separation of &£, are retaoned. With 7 = land L == 0,
we regener the “standard ™ miethod which o bised on (4 0 order to obrain accurate results i this cave J
musi he larze. Here we do eat tike J 1o e Jarge: however, good statistics are nhiained bacause we take
T — L > 1w that here are many observations of h (‘*, Normally we 1ake J to be &) which allows
us to muke full use of the vectorization capabilines of the Cias- 1 computer on which the cosnputations
of D are performed.

In fig 1. we show the o dependence of D for () with p = 0 and ¢ = 6.6 und 12.8. D is
normalized W its quas-hincar value L2, = !le). [hese values of ¢ were chosen wy satisly {8) for n =
] and 2. We see that D does bave 4 1/o dependence Toi ~mall o The values of o ai which this
dependence becomes evident ste abuut 100 Tand 10 7 for ¢ = 6 6 .and 128, The salues for D for
o = 107" greatly excecd the rumerical vatues gven i aef 2 Sine orbits of lengih 30 sere used in
those computations, the ceffect ol the aceclerator modes wins largely suppiessed.

Alsoshown in fig. 115 D for (1) with ¢ = 6.8, As expecied. the toeflicient of the 1 /o term is nearly
168 tirmes larger than for (2),

“Faking the limit D{e -+ 0) gives an infimite result from the 1/o werm, 1f we interchange the limits
so that we ke o — O hefore & — oc in (4% the value of 12 depends an how the initial conditions

are chosen since the motion in tis case 15 not ergadic. B an enseimble 1s defined by chosing inttial

callc
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canditions uniformly in phasc space, D {5 infinite because some trjectaries will he accelerating. This
is then consistent with ihe value of D obpained by wking the limite — 0 after | — oc. A more
“naturgl” ensemble is obtained 1f we resteict the initiad conditions L the stechastic reg’an of phase space.
Figure 1 shows the vilue of the P fore = 6.6 and & == 0 with such mitia) conditions. The error in
this measurement of 1 is guite furge oven though Tong trajectories were used in the computation. This
probahiy artses because the stachiastie regeom includes a “stick v porion close e e accelerator modes.
A particle which wanders ingo this portion of phase space muay stilb spend ¢ long thoee aceelerating even
though the trajectory is stll stochiantic. Tic praperdies of these sticks regions aroone slands need more

thorough study if the diffusion coelficient fore = 0 is w be understood.

No cahancement of {2 was detected in the ranges ol € wiicre second-order aceelerator modes exist.
Because these modes are much snaaller than the first-order aceelerator modes the value of o at which
they begin 1o contribute signiﬁcz.mtly is so small that prohibidaely long runs would hine o be made to
detect any cffect numcrically.

Next we turn ta the behavior of £ as a function of ¢. Here we huld e fixed and equal to 3 x 108
and < is vaned i and somewhat bevond the ranges given by (8} with n = | and 2 The results are
snown in fig. 2. D rises quite rapidly as soon as e exceeds ¢, for dhy first-order fixed point. At about
oie quarter and at about ane hall ol the way through the interval {¢o, ¢; ). 2 15 drimatically reduced. As
we shall see this is due W the appearance of fourth- and third-order resonances. Nothing much happens
10 L aj ¢). Although the central fixed point beeones unstable at this value of ¢, were is still 4 KAM
surface of the original tepology surrounding bodh the unstable first-order fixed point and the o new

second-order stable fixed points, Yhere is fittle change in the overall size of the island at this tronsition.

Perhaps the most nuteworthy featire of fig. 2 is that the plots for both n = 1 and 2 are so similar.

This «-agests that there may be a universal structure for the acceleratar modes. We pursue this subject

further in the next scction.

0
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4. Universal belavior of accelerittor modes

Referring to table 1. we see tiat the accelerator modes eaist only in o narrow range in ¢, ‘they
are likewise preseat only ma small region of phase space. This elfect becomes more pronoanced as
€ i increased and wllows gs to approvimate the aceelerator modes by o Taylorsenes expansion of the
mapping. We consider o general arca-preserying mip at the (z, y) plane which depends on a paraimeter
. We siift the origin and & so that the aceckerator mode "t appea s ac (€, ) = 0and & == 9, We
pick o frame aancling with the acccleration of the made: therclore the constant terms which represent
the aeceleration are subtiacted. We shall ondy directy trent aceel:rator modes which appear as a result
of tingzrt biturcatons. Other higher-order lixed poids whith come from hifurcations of 1 existing
accelerator mode wilh be treited as port of that accelerator mode  The lincar terms of the mapping at

k =0 hinethe form
71 = (L + a')zo + b, w =¥+ (1 —a)m,

witha? 4- %’ = 0, Because the mode appears as a tangent bifurcation, the trace of the tange st mapping
matrix is 2. By ransforming (z, y) with
=2 +ady /e + 6%,  y=--dLjb by fe? 07,
the lincar mapping becomes
=y =o,+ ¢, vi = %

A similar transformation js possible if & = 0 but & 52 0. The ondy case where the transformation is not
pussible is if @’ == b = & == 0 in which case the lincar imapping is un ‘dentity. We now add the terms in
the Taylor expansion which are quadratic in z and y and linearin k,

o, =z Ly + ez -y Fel + 1k (10a)

¥, =y, + g +d'zyul + €yl + Pk 110b)
We have taken k ~ O(z?). Unforiunarcly, this mapping is not in general arca-preserving because
the omitied cubic tenns in the man also contribute to arca preservation. However, we can make (10)

conserve arca by expressing four of the cocflicicnts of the quadratic terms in terms of the other two.

L
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'T'he ceellicients of z{,z ¢ and ¢, are taken as the independent ones. This choice is motivaled by noting
that the results are then independent of our choice of the dicection of time, Thus when we invert (19),
the coclticients of r’,‘" depend only on ¢ ind ¢, whereas the other coellicients are linked in a more
complicated way. Also, in somie respects we may order ' as 27 le.g,, consider the positions of the fixed
paints of (03], The terms invalving zgyp and yi2 are of the same order as Uie neglecied tenns. Therefore
their coellicients should only be chosen o nsure the preservation of area; i.e.,
& =2 —c), ¢ =(c—clld, did =ele=c/c.
Fyuation (10) may then be written as
2
2 = gk g b el € — PRI L,
J ot 142

¥y = Yo+ [c'r 4 (¢ -~ W/}2 /1 + /K.
Finafly, we perionn the transformations

= 2z’ — (I — ¢/ )"/, Y o= 2"/

and

=X, Y=Y+ —c/d), k=-—dk/(f)

to give

¥ — th = 2XE —K), Xi—~X =" ()
This is a universal mapping approximating the behavior of accelerating modes for large stachasticity
parameter. Al the transformations which give (11} are linear. and, with the exception of the last one
which is just a shift of the origin, they are all independent of k {and /). For the first-order aceelerator

modes for the standard mapping (1) which appear at ¢ = 2xn. the transformations reduce to
x 2 p 2 4
T= ;f:(z— -+ ;n-X), v= :}:(—th + ;_;Y), € =27n 4 EK' 12)

The transformations !eading to (11) are not well defined if the various coefliients sarisfy unusual
relationships., The first transformation is nov possible if the fincar term is an identity. 1f the motion

acound a stable Nth-arder fiv ! noint of a mapping is simifar to rotation by an angle 2ap/q where p

e

and ¢ are integers, then the lincar part of the gN'th iteriste of the map is an identity. But this does not
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correspond to the first appearance of an aceelerator mode. (It appeared with the N'th-order fixed point
ar sooncr.) The transformations also fail it ¢’ or f* is scro. In this case higher order terms have to be kept.
‘This is what happens with the standard mapping al its (non-accelerating) fixed point which appears at
¢ = @ and (z,v) = {0, 0). The same thing happens if we ook at the secand-order fixed paints which
appear when a first-order fiaed point goes unstable (the fixed points marked with asterisks in table ),
But here again such secand-order fixed peints are not the first accurrence of it acccderalor mode in the
neighnorhood of parameter and phase space. They are treated by the seco. L-arder fixed points of {(11)
that appear for K >> 1. Ancther form of Jegeneracy oceurs if the exace mapping has, for instance, a real
squa - rout. Then guadratic ternis i the mapping may be finite but still the cubic an | quartic terms may

not be neglected. An example «fthis is provided by the second iterate of (11).

Figure 3 ilustrates this mapping for a particular value of X and alsa shows that it docs indeed
cioscly approximate the standard mapping near first- and second-order accelerator modes.  Thus

accclerator modes inay be studied by examining (11) and how the ransfarmations affect the diffusion.

We begin by cataloging some properties of {11). For 0 << K << £, (11) may be transformed into the

Hénon quadratic map [7),
2 =zgcosa— (g — z2)sine, y = zpsina+ (w — z2)cose.

i€ is relaced o Hénon's parameter by K == sin™(a/2). The ransfonnation beween the two sets of

coordinates is given by

X = cos(a/2) sin(la/2w + Y/2 —sin*(a/2), Y = —2cos(a/2}sin’(a/2)y,

w = zcos{a/2) + ysin{a/2), v= —zsin(a/2?) 4 ycos{a/2).
The transformation depends intimately on a {and herce on Ky and becomes singular at X = 0 and 1.

For K < 0, (11) has no fixed points. 1t kas two fist-order fixed points for £ > 0, (X, Y} =
{FVK,0), which following ref. 7 we call J; and I} respectively. | is always hyperbolic and so is

unstable. [; is elliptic and therefore stable for K << 1. ALK = 1, & twrns into a hyperbolic point with
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reflection and two sccond-order fixed points are born. Thus the values X = 0 and K = 1 correspond to

the parameter values eg and ¢ listed for the fixed points without asterisks in table [

The second-order fised points are stable for 1 << K <C -; This corresponds to the range in €
for whicl: the fixed points labelled by asterisks in table [ are stuble. At K = :{ a seeond bifurcation
takes place giving rise o perindic wajectory of period 4. This rajectory in wm hecomes unstable at
K = 1.2801 when a perind-8 cycle is borm. The process of a period-2"" trajectory hecoming unstubie
and producing a period-2 1 trajectory continues. Greene ct al. [#] show that it sccumutates at K =
12840 = {1 + 1.2663)%. When K excceds this vatue, they conjecture that {113 has nw stable fixed

points. Therekore, Jor large r the first-order accelerator modes oxist for

g = 2mn << ¢ << ¢ A= gg + 1.2840(¢) — ¢y) == 27n - 1.2840 X 4/(#n). (13

e map (11) has two main symmetry lines, They are the X-axis (¥ = 0) which corresponds to
the w axis in the Hénon map and the line ¥ = K — X2 Reflection in vne of the symenetry lines
corresponds o reversing time, E.g. ¥ = 0 is the invariant line for the ransfonmation X = X’ — Y7,

Y = — Y which turns (11) into its inverse.

In order to understand how (11) contributes to diffusion we must determine how large a region is
trapped around the stable fixed points. We define an orbit 10 be trapped if X and Y remain bounded
for al) time. (Trapped orbits are the ones which contribute strongly to the diffusion because in the
original mapping they are the oncs that are perpetually accelerated.) Unapped osbits escape to infinity
with ¥ — +oo. Itis straightforward to show that for X <C 2 all particles with ¥ 2> 10 cscape in
this way. An approximate numerical test for being trapped is ta check e ¥ << 10 during a large
number of iterations. Figure 4 shows the extent of the trapped region along the two syminetry lines
and its tota) arca as functions of K. Figure 4b is just a rescaling of Kénon's fig. 2. The dips in the
plats of the diffusion coefficient correspond to the large reductions in the size of the wrapped region that
occur for certain values of K. These are associated with the occurrence of higher-order resonances to

the basic rotation about the Iy {7]. Purticularly large cifects are produced by the fourth- and third-order
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resonances. A stable period-four cycle exists for J} < K < 0.3044. This is born at J; and in the process
of moving away from this paint destroys much of the stable regivn. A stable period-vree cycle Iy exists
for § << K << {} == 0.5625. Unlike other resonances this is born away from the associated lower-order
fixed point £y, Iy moves further away Trom I; as K increases. while its unstable twin [ moves towards
L. When [ goes unstable at K = & I s au Jy causing the destruction of all stible regions in the
neighburbood of Jy .

In erder w make a more quantitativ ¢ compartson hemween the behavior of te diffusion coefficiznt
in fig, 2 and the hehavior of (1), we mus wseertain the effect of the transformations used to derive (L),
We saw in section 2 that the contributies of an accelerator mode 1o the difusion coefficient when the
noise is due to large-angle scatiering (3) is given by the arex of the mode and its acceleration. Mow the
area of the accelerator mode is 4/ ([b]e’?) of the arca of the wrapped region of (11 (g, 4c). Soin the limit
of small 2. the dilfusion coelficicnt for (3} cansists of & superposition over aceelerator modes of forns of
fig. dc. lincarly scaled hy appropriate amounts in both directions. For a first-order accelerator mode. A;
the arca of the mode scales as 1/n? ~ 1/¢? (12) while the acceleration varies 85 a; ~ n ~ ¢. Thus
from (7) we have ID;, ~ L/a. The relative importance of the first-order modes with this noisz model is
given by Dyg /Dy ~ 1/(oe?).

With the noise employed in (2), the sitnation is more complicated. The way dilfusion duc to o and
p enters (11) depends in a more involved way on the transfonnations used 1o derive £11). For instance,
take the case where p = 0 (then all the diffusion duc to the noise is in the z-direction). In /1) the
diffusion is then aleng a line Y = a'(e” -+ 44)X/6%. So the cffect of cach accelorator mode as a
function of & depends on what this dircction is, However, in {2) the important accelerator modes are the
first-order ones and for these maodes te transformation 1 (X', ¥') kes the particularlv simple form (12).
The only way the trunsformation changes as n is changed is by an overall scate fuctor. The effect of the

noise wit, then only depend on the ratio of g to o (apart from a constant faclor).

In order to find the cffect of a first-order accelerator mude in (2) on the dilfusion coefficient, we

ga back to the expression for Dy, given in (7). Now p{t) is no longer a probability sincc it is not
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aormalizable. 1t may be defined as follaws. limagine «.. sting infinitcly many particles ai the buundary
of the trapped region. (The number of particles has to b2 infinite because almost @l of them leave the
trapped region immediatcly ) Supposc the number which are left after o ume ¢ is P(t), The number
which Jeave hetween ¢ and - d£ is then p{L)di where p(t) = ~dP{t)/dt. Before applying (9), we
mustalse enswie that ¢ and g are small so that cach visit to the aceelerator mode is uncorrelated with
the previous one. (1o or g s not small, e particle may be immediately <canered back inte the rapped
region after heing scattered out of it ins.ead of being swept fur away from the istand. This efectively
increases e area of the tapped regione Such comderatians were not necessiny for e hirge-angle
seattering mudel) Taking p = 0. we hane p[t) ~ g{ot/ A*) where g i some functicn which, fora given
K. applies for all frst-order accelerator mades and which is independent of g0 A is the seale length of
e wland which from (12) is proportional w 1 /7. Here again, o must be small o be able to write p(t) in
this way because we need to be able to separade the siow time scale of the mation due Lo the noise in (2)
fram the fast time seale due to tie standard mapping itself, ‘This form for p{f} applics for any diffusive
notse mode) if we regard o as o measure of the extent of the Green's function response afiet a unit of
time under the action of the nuise alone. Using (9), we find that, when ¢ satislies 1130 Dy, ~ 1/71¢%)
and Dy /Dy ~ 1/{oe). This is confirmed by fig. 2. where we sce that 22/, decreases by roughiy a

factor ol 16 when ¢ is doubled.

5. Couclusions

When naise is added to the standard mapping the diffusion coeflicient cansists of two parts, One
part is primarily duc to short-lerm correlations in the stoc! astic region of phase space and this part
exhibits ncarly sinusoidal oscillations [2]. "Fhe other part is proportional w the inverse of the noise
parameter o and cxists only when aecclerator mades a-c present. When Wie noise is weak. this ialter
past dominales. ‘The role of the noise is o ensure that cvery trajectory eventuatly visits the aceelerator
moades. This effect has been confirmed numerically for the first-order accelerator modes. 'Fhese modes

exist in windows given by (13} and their refative importance decays as e for diffusive noise (2) and
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as e~ ? for large-angle scattering {3). Although many higher-order accelerator mmodes exist (see table 1),
they are so smadl that they do not contribute significantly w D for the values of o that can be dealt with
caomputationally. In the absence of nuise the diffusion cocllicient is not filly defined until the cnsemble
in (4) is speeilied, However, anomalies in the diffusion cocflicient are seen esen when the enscmble in (4)
is fken W he rajectories in the stochastic region. This is apparents because trajeciories can he greatly

acceferated while in the vicini of the accelerator modes,

We showed in section 4 that the acecleriator modes exhibit a unnversal belavior. Bepending
the noise maodet. the ditfusion cocfliciene therefure exhibits seanie aniversal features as the parmctere is
varied.

Similar ¢flects are expected m other mappings which allow aceelerator mades. Such mappings
arc pnes which are periodic in the velocity directon. For example, an anoimalously large diffusion
cocllicien! was found at s certain -\Elhll‘ of the parameter for the mapping studied in retf 3. (1 he divergent
hehasior oif the difTusion coeficient for this case has been noted by Antonsen and Ou [4].) However,
such mappings arc often derived as appraximations to mappings which are not periodic in the velocity
direction. For instance (1} may be derived from similar iappings in which ¢ is effectively a Tunction
of v, ¢(v) [9]. These more general mappings do not have acceler. L. modes. Neverlieless, if the
dependence of e on v is weak, we still expect there to be somc efiect due 1o the presence of the “latent”™
accelcrator inodes. These are channels in phase space which allow particles to he uniformly accclerated
from a velocity w such that e{zp) =~ ¢, to a velocity w such that €v.) &= e, fen and e; being the
parameter values for the birth and death ol an accelerator mode in the standard mapping). No noise
is required 10 bring particles into these channels, This short cut will result in an cnhancement of the
diffusion coctlicient hetween wy and v,. DJifTusion an longer velocity-space scales will still be limited by

the siower diffusion clscwhere.
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Tables

Tablci. First- and second-orler stable accelerating fixed points for the standard mapping (1). Here, N
is the vrder of the fixed point and a is its mean aceeleration, ‘The subseripa © and 1 denote the values of
€.z, und v when the fixed point first appears and when it becomes unstable. Thesce fixed points together
with those generated from these by the symmetrics of (1) gise ali the firsi- and sceond-order accelerating
fuxed ponts for lef < 20. The entries Tabelled with asterisks resull winen the prece ling first-order poirt

becomes unsiable.

N R e (mew)n) o o) a—a
2 1/2 4.0236 0.3957,0.1951 L0021 0.3846, 0.2159 0.0685
1 1 6.2832 0.2500, 0.0000 7.4484 0 1598, 0.0000 1.1652

*2 1 7.445%4 0.1598, 0.0000 7.7134 0.2083,0.0928 0.2650
2 i/2 8.6789 - 0.5416,0.3214 8.6883 0.34902,0.3272 0.0093
2 1 9.8226 0.4526,0,2294 9.8288 0.4516,0.2342 0.0062
2 1/2 9.91686 0.208’(, 0.2627 99311 0.2177,0¢ 2741 0.0145
2 3/2 18.9101 0.3678,0.1409 10.9175 0.3666,0.1459 0.0074
1 2 12.5664 0.2500, 0.0000 13.1876 0.2010, 0.0000 0.6213

2 2 13.1876 0.2010,0.0000 13.3385 0.2260,0.0491 0.1508
2 1/2 14,3918 0.5939, 5.3629 14.3949 0.5934, 0.3658 0.0031
2 3/2 15.0416 0.2254,0.1826 15.0452 0.2288, 0.15866 0.0036
2 1 15.2394 0.52790,0.2954 15.2413 0.5267,0.2976 0.0C19
2 3/2 15.9607 0.4700,0.2378 15.9623 0.1698, 0.2358 0.00t6
2 1 15.9966 0.2271,0.2598 15.14992 0.2301,0.2632 0.0027
2 2 16.6679 0.4142,0.1810 16.6697 0.4139,0.1831 0.0017
2 1/2 16.9287 0.2278,0.3341 16.9321 0.2312,0.3380 0.0034
2 5/2 17.4630 0.3515,0.1168 17.4657 0.3510,6.1183 0.0027
1 3 18.8496 0.2500, 0.0000 19.2693 0.2167, 0.0000 0.4197

2 3 19,2693 0.2167, 0.0000 19.3728 0.2335,0.0334 0.1035
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Vigure Captions

Fig. 1. 'The dependence af D/Dy ona vhere Dy == 1 ¢?. The hars indicate the error (4 one standard
deviation). The lower two cunves are for the diffusis ¢ noise model {2) with p — 0 and (a) e = 6.6 and
(b} ¢ = 12.8_Ihe upper cursc (e is for the large-angle scatterng model (3y and ¢ = 6 6. The dashed
lines show the 1/e depercence. The point with the Jowest value of o on cach curve was calculuted with
ET = 2 00 and AL = 107 1 ower .alues of these parameters were used far the Targer values of .
The puint an the right (d) gives D/, D e = 0 and initial conditons in the stochastic region. Here
KT = 10" and kI = 5§ x 107

Fig. 2. /Dy as a function of ¢ for the standard mapping with diffusive noise (2) with p = 0 and

g =3 x 10 % Ihebarsshow the erroras in fig. 1. Here kT = 6 < 10® and kL, = 3 ~ 107,

Fig. 3. Comparisor of the quadratic mapping (11} with the standard mapping (1) in the regions of
accelerator modes, The fust figure (a) shows trajectories for the mapping (11) with K = 0.265 with 9
different initial conditions. There is a first-order islund at the origin whosce center is £;. The other o
large islands are part of a chain of 4 fourti-order islands. The other figures (b and ¢) show trajectorics fo-
the mapping {1) with ¢ = [8.9620 and 15.0425 where first- and second-crder aceeleralor mode.- exist.
The coordinates {z, u) in (1) have been transformed to (X, ¥} according o the prescription given in
Scction 4 with £ = 0.263. I.c.. for (b) the ransformation is (12) withn = 3; and for (c} it is /(27) =
0.2254 — [0 ~7(3.4298X + 0.0019Y + 0.0001K), v/(2n) = 0.1826 — ! — 10~ (3 9784X —

0.2721Y — 0.0119K), and e = 15.0416 + 3.6453 x 107K,

Fig.4. The wapped region of phase space for the quadratic mapping (11). Plots (a) and (b) shows
the interscction of the trapped region with the two symmetry lines V = K — X2 and V = 0. The
trapped region is represented in black, ‘1hese plots are calculated with a resolution of 0.002 in X and K.
Trajectories of length 10000 were used in the test for being wapped. ‘The curve (©) shows the total area
A af the trapped region. This was caleuiated with a resolution of 0.005 in X and Y and at intervals of

0.01 in £, Here the trajectory length was 1000,
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