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4. Effect of Transverse Dispersion on Transport in _a One-Dimensional Flow
Field with Transverse Dispersion
4.1 Transport of Radionuclides Released from a Point Source
Our previous analyses {Sects. 2,3, and (HL)] have been concerned with the
migration of radionuclides released from an infinite plane source into a one-
dimensionral flow field. In this geometry there is no net effect of diffusion
and dispersion of radionuclides in directions normal to the direction of water

flow, s¢ transverse dispersion was omitted from the differential equations to
be solved. However, for a radionuclide source of finite extent the effects of
transverse dispersion must be considered.

Here we first consider the time-space-dependent concentration of a
radionuclide emitted from a generalized source into a porous medium, with
dispersion occﬁrring in any direction. The transport equation is then simplied
for the case of local sorpiion eguilibrium and for a point source of dissolving
radionuclides. A solution is then developed for the space-time-dependent con-
centration of the 1th member of a radionucliide decay chain in an infinite
porous medium in which uniform one~dimensional flow of groundwater occurs.

In Sect. 4.2 the analyses are generalized to apply to any member of a
radionuclide decay chain, resulting from dissolution of a plane source of
finite exteni. Numerical examples are given in Sect. 4.3.

4.1.1 The transport eguation
The general equation governing the transport of nuclide i through the

porous medium is
-

3 - - —>-=.—> -)' -
ot LeNgp® (1-e)N; T =9 Dy-v (eNgp) * w7Dg VL{-e)N; T - e (eviyy)

- leNig + (Lo )+ oy ) [Ny g+ (Ledh; (]

*eSqy * (L) Sy (4.1.1)

where Ni] and Nis are the concentrations of the i~th nuclide in liquid an.
solid phases, respectively. The first two terms on the right-hand side repre-
i?nt dispersion in both phases, with dispersion-coefficient tensors f] and

Ds in liquid and solid phases. The dispersion coefficient in a given phase

is assumed to be the same for all radionuclides.
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To simplify, we make three basic assumptions:

(a)} There is local chemical equilibrium between radionuclides dissolved in
the ground water and radionuclides sorbed on the solid, so that the concentra-
tions in liquid and solid phases are related by a linear equilibrium:

Nis = Foi Miy (4.1.2)
where KDi is the sorption equilibrium constant for radionuclide i. The
retardation coefficient Ki is defined as

K, =1+ ey . (4.1.3)

i € Di t

(b) The values of porosity =, flow velocity V, dispersion-coefficient
tensoi s 3‘ and 35, and sorption constants KDi and Ki are constant in
space and time.
(c) We can choose a system of coordinates (x,v,z,t) so as to satisfy both
of the following conditions:
c.1) The three axes of this system are the principal axes of an overall
dispersion tensor, including contribution from both phases, and

defined as:

= = l-e
b =3, += Km.:ﬁs . (4.1.4)

Thus, the tencor B will include only three dispersion coefficients
D, C., D , along the three axes. If diffusion in the solid
Xy 'z = =
phase is negligible, D reduced to Dj.
c.?2) The direction of the flow velocity 7, which is constant according to
assumption (b}, is the direction of one of the axes, e.g., the z
axis. Thus

Vo=v.? (4.1.5)

>
where z is the unit vector in the z direction.
Using assumptions (a), (b}, and (c), Cquation (4.1.1) becomes:
2 2 2
N, 3 N a N, 2 N 3N,
19'=e|:0x i, 2 “‘]_EV it

i st ? Y 7 ° Dz 2 2z

3y ¥4

€
Ix

- hgeKaNgy g ek Nyt ey (4.1.6)
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Si is a volumetric source term (atoms/m3 sec) defined as:

Sp=Sipt EE s (4.1.7)
Here again, if the solid-phase source term Sis is negligible, S_i reduces
to Si]'
The change of variables:
X = xJ 0D, (4.1.8)
y = yv D, /D, (4.1.9)

is such that:

AN 2y, Ny
D N p— - al (4.1.10)
X ax2 X a(x/bxlnz)z z ax2
and
ANy Ny
D 5 = DZ > - (4.1.11)
Y oy 3y
The transport equation written in the transposed coordinates (X,y,z), becomes:
N, (aZNi aZNi aZNi) N,
K, — =¢D |—s5 *+ —5 + - eV (4.1.12)
1 at z 322 a}z 322

- A_izK_iNi + Ai—IEKi—l N'i-] + eS_i

where z = z and Ni = Ni]'
We introduce the following notations:
D
z
1= = (4.1.13)
where 1 is a characteristic length of the dispersion process, and represents

the ratio of the magnitudes of dispersion and convection, and
Vo= o (4.1.14)

where Vs is the convective velocity for a chromatographic band for the ith

nuclide, taking sorption into account, as has been previously defined in the
one-dimensional models.
Using (4.1.12), (4.1.13), (4.1.14), dividing by Kis and denoting the

Tiquid phase concentration by Ni for simplicity, Eq. (4.1.6) can be written:
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(4.1.15)

This is the basic transport equation to be used in the present study.
Considering that both of the last two terms are sources of the i-th nuclide,
Eq. (2.6.15) can alternatively be written as:

2 2 2

it LA 3;2 332 17 (4.1.16)

- AN 4 Si(x,y,z,t)

where $1(;,;,;,t) is a general source term, defined as:

~~~ Vi e, SR

$;(%,y,2,t) = - &, Vi Ni_1(%y,2,t) + —; (4.1.17)
Equation (4.1.15) gives N;{X,y,z,t) for

—oo ¢ ; & * oo

Nctct ™ —ogy< too
—o0 & E & + oo
4.1.2. Initial and boundary conditions

The initial condition is:
Ni(X,¥,2,0) =0for any X,y,Z (4.1.18)
The boundary conditions are:
Ni(2=,y,2,t) = Nj(X,2=2,t) = Nj(%,¥,%=,t) = 0 (4.1.19)

for an infinite medium. When bounded media are considered, appropriate
boundary conditions will be specified.
4.1.3 Source terms and release modes

For a discrete point source of radionuclides, releasing ptsi atoms/sec

of nuclide i into the ground water at x=y=z=0, the volumetric source term is:
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Si = PLSi(t)-s(x)-6(y)-8(2) (4.1.26)
The point-source condition does not 1imit the applications of the solutions.
It is Tikely that releases from wastes into ground water can be represented by
a collection of point sources, each corresponding to the release from a waste
canister. Furthermore, even if the sources are assumed to be continuously
distributed throughout a repository, the distiibution can be treated as a
collection of point sources, i.e., the point-source solution can be integrated
over the source domain (cf. Appendix D.).

The nature of the function ptSi(t) depends upon the release mode. We
cons ider three of the modes defined in our earlier report (H1):

{a) Impulse release: a quantity Qi of the i-th nuclide is released
instantaneously at time t - 0. The source functica is then:

Ptsi(t) = Q4 s(t) 4.1.21)
(b) Band release: an initial amount wo of total waste material is

released at a constant rate NO/T over a leach time . The undissolved waste
material contains an atom fraction "i(t) of nuclide i, so that:

W
PEs.(t) = 2 n;(t) [h(t) - h(t-T)] (4.1.22)

where h(t) is the Heaviside step function:

hi(t) =0, t<0
= t>0

h(t) (4.1.23)

If nuclide i is formed by radioactive decay of precursors in the waste, the
atom fraction "1(t) is given by the Bateman equation (B1) [cf. Egs. (2.1.12),
(2.1.13), (2.1.14), and {(2.1.15)]. The source ter:. in the liquid then becomes:

W

st
-+ Bie I [h(t)-h(t-T)] . (4.1.24)

J

M_..

Ps(e) - .
J=1
(c; Step release: In this case waste material dissolves at a constant
total rate W /T, as for a band release, but the dissolution coniinues at this
rate without regard to limitation by the finite amount of waste material, so
that:



4-6

W i .t
Pts.(a) = 293 Bije % h(t) . (4.1.25)

4.1.4. Integrated conservation equation
The total amount mi(t) of the i-th nuclide present in all the domain g

of interest is:

m, (t) =///B N, (%,¥,2,t)dxdydz. (4.1.26)

If 8 is unbounded, or if the flux of radionuclides transported across the
boundaries is zero, mi(t) verifies the following conservation equation:

dm. ]
L ,///B Si(x,y,z,t)dxdydz{. (4.1.27)

The solution of this eguation is:

. (-
m, (t) =/t o }// 5, (%,7.2,6)dxdydZ de‘. (4.1.28)

[}

Thus, the integrated conservation equation for the i-th nuclide is:

f/ N, (X,5,2,t)dxdydz =
)
t —}\].(t_e) .
/ de /// € $,(%,,2,8 )dxdydz .
0 8

4.1.5. Concentrations for an impulse point-source release

We now present analytical solutions to the transport equation (4.1.15)
corresponding to the different source terms previously discussed. For the
impulse point-source release of a single nuclide ptS.(t) is given by
Eq. (4.1.21). We suppose that nuclide i has no precursors. The solution of
this classical problem can oe derived formally by transform calculus, using
Laplace transforms for the time coordinate and exponential Fourier transforms

on the space coordinates (C1):
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-A:t
NARTEL) =0 e | 6E vt 6(F,1vit) - G(Z-v,t,1v.t) {4.1.30)

where G is the Gaussian function, definad by:

2
a
T

Gla,u) = = (v>0) . (4.1.31)
Qg Vv

If the impulse release occurs at location ( u, v, w ) and time e, i.e., if:

Si(X,¥,2,1) = Qi<s(X-u) s(y-v)-s(z-w) s(t-o) (4.1.32)
inen the concentration at X,y,Z due to this impulse is

Ni (%, ¥,2,t) = Q5 erift-e) 6[x-u,tvi{t-8)]*
(4.1.33)

6LY-v,1vi(t-8)] G[Z-w-vi(t-s), lvi{t-0)]
4.1.6. Concentrations for a general point-source release at X =y =Z = 0
To determine the actual concentration of the i~-th member of a chain, we
must consider the transport Eq. (4.1.15), with a source term given by
Eq. (4.1.20),

3z (4.1.34)

To find Ni’ we can use the previous solution for impulse release,
Eq. (4.1.33), as a Green's function. The two source terms in Eq. (4.1.38) are
cons idered as sums of impulse functions, i.e., impulse releases:

V. V.

1 ~ i
— N. (X,¥,2,t) = a; - (4.1.35)
Vil i-1 i-1 Vil

t +oo
/o de/_.mdu (. dv[:;N;_l(u,V,Vl,G)- §(X-u) « 8(y-v) -

s(z-w) -s(t—o)z dw

Aa
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and
= ") o) sH) s(@)
! (4.1.36)

- k-i— () 8(¥) 45(2)'[0t Psi(e) s(t-e)ds .

The solution for each impulse release is the Green's function given by
Eq. (4.1.33). The complete solution is obtained by superimposing all these
solutions for all impulse releases from both source terms. It can be written
in forms of two contributions:

N(R.7,20) = MK 5,2,t) + NEK 3.2t (4.1.37)

where N? js the concentration of i directly released from the waste:

. s (o) aalt-e) _
=/ e 6[%,1v;(t-8)] 6y, 1. (t-e)] . (4.1.38)

G[z—vi(t-e), Ivi(t—e)]do

and N? is the concentration of i formed by decay of its precursors pre-
viously released from the waste:

Wi(z,5.2,1) -
t oo +o2 Foo v~i
};dg/_w du/_,, d\.//m dw;"i—l i Ni_l(u,v,w,e) .
- (4.1.39)
—xi(t-e) -
e ‘G[x-u,]vi(t—e)] .

GLY-v,1v;{t-6)] -B[z-w-v,(t-0),Tv.(t-8)] .

The study of the integrals in N.X and N.” and the validity of
the solution they define are considered in {(Al). We simply assume here that


file://-/At-9
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2 2

they exist for any t > 0 and (X,¥,3) such that X2 + 32 + 2% 4 0, and

define a solution to Egq. (4.1.34) with the bgundary conditions of Sect. 4.1.2.
We will deal separately with the terms N? and N? in the

following section on step release.

4.1.7 Concentrations for a step release from a point source
To evaluate the term NE resulting from a step release, we must
replace ptS].(t) in Eq. (4.1.38) by the corresponding expression, given by
Eq. (4.1.25). Using the definition of the function G from Eq. (4.1.31), there

results:

W i Lot

R 0 - 21 73
NS = 1% > Bij e

o=
v, 3o+ 7P+ 32

[4xlv,(t-5)73/2

'

(4.1.40)

de .

0
The change of variable: 1 E]vi(t-e) transforms this expression into:

Z

W i - =57 ~A
R 0 - 21 %
N =T J?:-l Bije
- (4.1.41)
]Vit g 1. 41(xi-xj)-+ ;2 + 32 4 ;2
e 4]2 Vi 47T
dat
0 (4"T)3IZ
We will use the following notations (Hl):
A o
i3 v »3=0
A A (4.1.42)
LI E RPN
Nys = —— = =1,
ij Vs Vi
Tij = v, 5 §=0
1 1 ) (4.1.43)
]"_ij-v—- -V »,J#0



B,:. = A, s i=0
wet (4.1.44)
5, = oid it0
W Ty ’
A B
- Zk 7ij -
i =1+ 41 v (4.1.45)

Thus, using Kivi = v, Eq. (4.1.42) becomes:

W i z
R 0 - - 5T - B:t
N1 = =77 5%1 B]J e 21 Jjo (4.1.46)

This form suggests the use of two functions F and E defined by:

2

2.4 b°
F{U,a,b) = 1[“ e—-({a—;a/z—T}dT (4.1.47)
0

dnt

E(I,J,K,;,y,i,t) =

; -
27 ~ 81t K R PR (4.1.48)
e . F(]VKt’T_ . 7 ) .

When no confusion is possible, we will use the notation € ( I, J,

K) = E (I, J, K, X, ¥» Z» t). F can be determined by performing the integral

of Eq. (4.1.47):

1 2ab b -2ab b
F{U,a,b) = mﬁ"e ab erfe (a fU":/%)* e c? erfc(-a /U_+/U_) (4.1.49)

where "erfc" represents “he complementary error function. Thus, NT.R can

finally be written:



i z s 22l
R Wo1oox .o 21 Biot . F(lvit,!g]ﬂ JAILTE) (415
iT T 2 B
or
" i
R 0 1 Z . .
L = Bij E (3.0,1) . (4.1.51)

It can be noted that the functions F and N? are not defined for
X = Yy = 7= 0, since the form:

]V_it _ Y.
e 2
41 d
37z O
0 (4nt)

does noi then exist. This results from the fact that the solution for a
point-source release is infinite for t = 0, at the source location
X=¥=7=0.

These same functions E(I,J,K) and F appear in the contribution N? due
to precursors previously leached from the waste. As given by Eq. (4.1.39):

P t . v
N =Jf dg/. dg/. d{/n dw l?. N, (u,v,w,e)]
B P e T R
-xi(t-e}
- e G x—u,lvi(t—e)) (4.1.52)

. G(Y—v,]vi(t-e)) . G(’zv—w—vi(t—e),hi(t-e))

Assume that Ni_'

i consists of a sum of terms P1._1 of the form:

=

-9 Loee,aky,

,Z,t) (4.1.53)
vt 12

«<?

Pia

where C is an arbitrary constant.

Each of these terms will correspond in N? to a term Pi:
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wo c vy t 4oo 4oo 4oo
P T2 T Jodof auf ovf T E(1,00,0,0,0,0)

M) @1 e) - 6@y, v (t-0) (4.1.50)

» G(Fwv,(t-8),1v, (t-0)

The mathematical treatment of this term given in (A1) shows that Pi can
be reduced to:

b e C Y Ty
Toovlhoge el vy g Vil
E(1,3,1,%,5,2:t) = E(1,d.K,%,7.2,t) (4.1.55)

+ E(K,i’Ks?{,yy‘i,t) - E(K’isiy‘x,ys'iat)
where
Migki = T A A /
1IKi = 13 ki - ki 1 ‘4,1.56)

Equations (4.1.53) and (4.1.55) establish a recurrence relation showing
that if it is possible to express Ni-l with the function E, this is also
possible for N?. Equation (4.1.51) shows that N?
function of E for the first nuclide, which has no precursor. However, since
Nl = N?, N is also a linear function of E. Therefore, N, = Ni(E)

is a linear

for any 1.

Equations (4.1.53) and (4.1.55) therefore allow the derivation of N?
from Ni-l'

The recurrence relation defined by Eqs. (4.1.53) and (4.1.55) states that
a term E(I,J,K} in the solution for Ni—l appears as four different E terms

in the solution for N; i.e.,

i-1°

in Nj_1: E (I, J, K) is unchanged,

Yo T . ) .
in o N.: « 1E(1,3,1) - E(I,3,K) + E(K,i,K) - E(K,i,1)} (4.1.57)
TV Mok




Using this procedure, the solutions le, st, N3S for the
step release of a three-member decay chain can be readily determined:

W
S~~~ 0
N1 (x,¥,z,t) = vT!z 811 E(1,0,1) (4.1.58a)
S (.5 wo i
N (x,y,z,t) = B, E(jvo’z)
2 1?44 d

L M BurTio

£(1,0,2) - E(1,0,1) (4.1.58b)
w12 V1 Migpo

+ E(1,2,1) - E(l,Z,Z){

3
W
Ng (%,7,2,t) = o, X By; E(3,0,3)
e g=r
2 .
W A I,
T e
w12 o 2 vy Migos
. )E(j,0,3) - E{j,0,2) *+ E{2,3,2) - E(2,3,3)
W By A, T
+ =9 _%E_F#__AQ (4.1.58¢)
vT1 1 Mo12
*2T1o
A 5— [E(1,0,3) - E(1,0,2) *+ £(2,3,2) - E(2,3,3)]
2 ™Moz
ATy
- s [E(1,0,3) - E(1,0,1) * E(1,3,1) - E(1,3,3)]
2 M013
AR,
+ v [E(l,2,3) - E(l,zgl) + E(1,3,1) - t(1’393)]
2 "213
Y2 T2
T [E(1,2,3) - (E(1,2,2) * E(2,3,2) - £(2,3,3)]
2 Maes

Equations (4.1.58a,b,c) and the supplementary Eqs. (4.1.48-49) for E and F
are written in terms of the transformed coordinates (X,y,Z,t). The



corresponding concentratirns in real coordinates (x,y,z,t) are written by
employing Eqs. (4.18) and (4.19), and noting that Z = z:

Ni(xy,z,t) = == N(K,3,%,t) (4.1.59)
Xy

The function E in Egs. (4.1.58a,b,c) for Ni(;,},z,t) must be evaluated at
X,¥,Z, which are determined by

x=x v,/ {4.1.8)
y=y Vb, (4.1.9)
7=z {4.1.60)

4.1.8 Concentrations for a band relcase from a point-source

Concentration profiles for a band release {Eq. (4.1.22)] are obtained by
sunstituting the step release solutions into the superposition equation
(2.1.18).
4,1.9 First Nuclide in Chain, Step Release, No Axial Dispersion

A relatively simple solution for the concentration Nl(x,y,z,t) for a
point-source in a one-dimensional flow field, with transverse dispersion
(Dx =D, = DT) and no axial dispersion (Dz = 0} can be obtained from
£gs. (4.1.38) and (4.1.59) since N = NX.

We assume a step release at x =y =2 =t = 0. From Eq. (4.1.25):

o]
n -, t
i (4.1.61)

W
t) =

pt
5(t) = T

The following terms appear when Eqs. (4.1.8), (4.1.9), and (4.1.59) are
substituted into (4.1.38):

/5, Jx; k,x?
/ T G[x,lvlt] = ToxD, exp - 4th (4.1.62)
b, /K, Kyy?
WG[y,]vlt] = Wy— exp - o (4.1.63)
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When DZ > 0, a unit impulse originating at z-vlt appears at z unmodified
by axial dispersion, so that the Green's function for transport in the axial

direction becomes:

Tim G(Z-v,t,lv. t) = &{z-v t} .
D> 0 1 1 (4.1.64)

7

Substituting Egqs. (4.1.59) and (4.1.60-64) into Eq. (4.1.38) and
integrating, we obtain:

-2 2
00 AP - X exp |- y
W n Alt 4sz/v 4zD /v
e” y h(vlt-z} .

N (x,y,2,t) =
117275 4xTv
sz sz

Yo v (4.1.65)

Equation (4.1.65) is rewritten with the simpiication that Dx = Dy = DT:

a2
Wl gt T\Tam
Nl(x,y,z,t) = o © e h(vlt-z) (4.1.66)
where
2D
9z— (4.1.67)

This solution for the first member, with no axial dispersion, will Le used for
numerical demonstrations of point-source and plane-source concentration
profiles in Sect. 4.3.3.
4.1.10 Application to varivus far-field boundary conditions

(a) Release In a Semi-Infinite Medium with Zero-Flux Boundary
Conditions. We consider a semi-infinite medium bounded by a plane x = L
parallel with the flow direction, thus including all points (X, ¥, Z) such
that:

(L > 0)

!
2
1A

>
1A
—

=]

i
2
|A
<?
1A
+

!
)
1A
[
+

oo .
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We assume that the flux of any radionuclide i, at any point of the
boundary, is zero at any time. This corresponds to a boundary impervious to
nuclides, for instance the ground surface. The first of the houndary condi-
tions (4.1.19) is now replaced by:

aNi
(L,¥,Z,t) = 0 . (4.1.68)

X

Release is assumed to occur at the origin of the axes, but we need not
specify its nature. Let NE (X, ¥» Z, t ) be the solution in an unbounded
medium, for the release we are considering. Then, we can express Ni simply

as:
o~ s U ~ Uy oy ~ ~
N, (X,¥,Z,t) = Ni(x,y,?,t) + Ni(x—ZL,y,z,t) . (4.1.69)

(b) Release In a Semi-Infinite Medium with Zero-Concentration Boundary
Conditions. We now assume that the concentration of nuclide i is zero at any
point on the boundary and at any time; i.e., we replace (4.1.68) by:

Ny (L, Y2, t)=0. (4.1.70)

This implies that there exists a physical mechanism removing all nuclides
as soon as they reach the boundary, so as to maintain the concentration equal
to zero.

A flow, either of ground water or surface water, can provide such a
mechanism if it is fast enough compared to the flow in the initial medium and
maintains a concentration much smaller than the concentrations observed there.

With regard to the amount of nuclides escaping through the boundary, this
assumption of immediate removal of nuclides is conservative and thus gives
maximum values of possible releases out of the repository medium through a
lateral boundary.

In this case we can express Ni as:

Ny (X, ¥, 2, t) =M (R, T, E, ) - N (Ro2L,T,3.t) (4.1.71)

(c) Diffusive Current of the i-~th Nuclide through a Boundary at x = L.
At any point of the boundary, characterized by X = L, the waste being at the
position X = ¥ = ¥ = 0, the dispersion current is equal to:
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aN.

j=-D (L, Yy, z,t). (4.1.72)

%
Equations (4.1.36), (4.1.37) and (4.1.38) show that aN?/ax is odd, so

that, using (4.1.68) we obtain:

aNiU -
— (L, ¥y, 2z, t ). (4.1.73)
ax

j==-2 DZ
The total rate J at which atoms diffuse across the boundary at time t is:

+o0 aNiU .
J--20,f dy/ 47— (L35 . (4.1.74)
2w axX

One can show mathematically that, if JIJK is defined as:

=-20, f dy/ a3 2 E(1,3,K,L,7,%,t) (4.1.75)

le - 3x

then we can rewrite JIJK as:

W Byt g
g = b 2 Fel F(]vKt, /Lglf— , %) (4.1.76)

if YK 2 1, and:
W -8t Ay
o L 13" * TJK L
JIJK = 4 - T ¢ F (vit, 3T > ?) (4.1.77)
.f * . . .
1 Y1k < 1, F being defined as:
2
alr -Er
U e
“w,a0) <1 f S (4.1.78)

The preceding formulas are useful for the step-release case.
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4.1.11 Comparison with the One-Dimensional Solutions for an Infinite Plane

Source

The source of nuclides released into the ground water is a major
difference between this model and the one-dimensional models developed earlier’
in Sect., 2.1 and (Hl). In the one-dimensional models for an infinite plane
source (H1), the water flow rate per unit amount of waste must be specified
for the purpose of determining a concentration. In the three-dimensional
model presented here, only the point-source release rate, or the amount
released, need be known, together with the velocity of ground water flow.

The concentrations predicted for the point-source with three dimensional
dispersion depend upon the values of transverse dispersion coefficients, which
now become critical parameters.

In the one-dimensional solution with a boundary condition expressing dis-
solution from a plane source (Hl), there appears an integral F', similar to

the F developed here:

T
F'(U,a,b) =/ ——m— dT (4.1.79;
(411T)1/2

Resulting from the consideration of the z direction only, the exponent in the
denominator of F' is %—instead of g-in F. Accordingly, the integrated form of
F' is different from the integrated form of F in Eq. (4.1.49):

a 2
_;a"r+_b_
e

F'(U,a,b) = -zlﬁ *-ezab erfc <am+/%—>+ e'zaberfc<-a/F + /—%)‘ (4.1.80)
and the solutions for source boundary conditions show different functional
behaviors in the one-dimensional and three-dimensional cases.

On the contrary, the one-dimensional solution with a concentration
boundary condition at the plane source includes the same integral as in the
present three-dimensional solution [Eq. (4.1.49)]. As a result, the only
differences between both solutions, besides numerical constants, are the
following:

. Ve R
a) |z| is replaced by X2 + 32 + 32

everywhere except in the first exponential term, which remains ez/21;
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b) the whole expression is divided by VX2 + 32 + 32,
along the Z axis, i.e.,for X = ;'= 0, the three-dimensional solution differs
from the one-dimensional solution with concentration boundary condition only
by multiplication by a numerical factor and division by [zl. The 1ater mod? -
fication accounts for the fact that as concentretion peaks proceed, lateral
diffusion broadens them and so decreases the concentration on the z axis for

Therefore,

larger values of z.
The maxima of peaks will thus occur for smaller values of Z, and the peaks

will be shifted towards the repository. However, this shift is not an
important one because the variation of the term 1/|Z| (or 1/ VQQ + }2 + 52)
is slow comp:red to variations of other exponential ard error function factors.

A much more important difference between the concentrations on the z axis
calculated by the two models results from the difference of the numerical
coefficients in both cases. The area of the waste is a crucial parameter in
the one-dimensional model, and the concentrations become infinite if the area
tends towards zero while the dissolution rate remains finite.

On the other hand, the concentrations on the z axis calculated by the
three-dimens ional model depend largely on the value of the dispersion coef-
ficient, and become infinite if dispersion tends towards zero.

Finally, as shown in Appendix D, the three-dimensional solution can be used
tc obtain the one-dimensional solution for a plane source. To do so, the plane
source is represented by an infinite distribution af point sources, and the
three-dimensional solution for a point source is integrated with respect to
this distribution.

234 230 ’526Ra

4.1.8 Application to the transport of Th >
As an illustration, we will now apply the previous results to the

migration of the chain:
234y 5 230Th » 226Rg

We assume no 234U daughters at the beginning of leaching. The migration
characteristics are summarized in Table 4.1.1.
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TABLE 4.1.1

Data for the 234y _ 230Th _ 226Ra chain migration.

Medium parameters:
Filow velocity v :10m/ yr

Diffusion coefficient D: 103 m2 | yr (unless otherwise specified)

Characteristic
diffusion length 1 : 10 m {unless otherwise specified)
Leach Time T : 30,000 yrs
Nuclide characteristics: 234U 230Th 226Ra
Half-life, yr 2.44x10° 7.7x10% 1.6x133
Decay constan’ »,, yr™! 2.801x10°  9.002x10%  4.332x107

Assumed sorption retardation
retardation con-

stant, K. 1x10° sx10” 5x102
Migration speed
vi =g, miyr 1.0x1072 2.0x1073 2.0x107}

1

4.1.8.A Concentration Profiles in an Unbounded Medium

Concentration profiles of the three nuclides migrating in an unbounded
medium are given in Figs. 4.1.1 through 4.1.4, at time t = 50,000 yrs.
Figure 4.1.1 shows the profiles of the three nuclides along the flow direc-

tion. Relative concentrations, expressed per unit amount of 234U initially
present in the waste, are plclied versus the distance from the waste.

These profiles can be compared with those given by our previous report
(H1) for similar conditions, but for one-dimensional dispersion. It is not
meaningful to compare magnitudes, because the two models depend upon different
parameters (see Sect. 4.1.7).

The profiles with three-dimensional dispersion appear to be quite similar
in shape to those in (Hl). The maxima of the .eaks expectedly occur for
smaller values of z (cf. Sect. 4.1.7), as shown in Table 4.1.2.
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TABLE 4.1.2

Lecation of concentration maxima for a transport time of 5 x 104 yr,
as computed from one~ and three-dimensional dispersion.

Locations of the maximum global concentration, =m

234y 2307H 226Ra
One-dimensional dispersion 320 63 360
Three-dimensional dispersion 270 56 110

This last effect is specially important for 22

6Ra, because the broad

peak of this radionuclide actually results from the mingling of two 226Ra
peaks, Tocated at the 230Th and 234U peaks. Due to transverse diffusion,
the farthest peak is broadened more and thus becomes smaller than the nearest
peak, resulting in the important shift of the concentration maximum.

Figure 4.1.2 gives the transverse concentration profiles along a direction
perpendicular to the water flow. They correspond to a time t = 50,000 yrs and
a distance z = 100 m from the repository.

It can be seen that 234U, more mobile than 230

Th, presents a broader
peak. However, though 226Ra is more mobiie than its precursor 230Th, its
peak is not broader because the shorter half-life of 225Ra prevents its
build-up in regions containing relatively little 230Th.

Figure 4.1.3 gives the transverse profiles of 230Th at a time of

5 x 104 yr, for three different distances from the repository:

z = 50, 100, 300 m.

230Th with distance z from

The decrease in the maximum concentration of
the repository is not due to dispersion, but to the initialiy zero amount of
230Th in the waste at the beginning of dissciution (cf. Figure 4.1.1).

To illustrate the importance of the dispersion coefficient, Figure 4.1.4
shows 234U concentration profiles along the flow direction, for dispersion
coefficients 0.5 x 10+3, 1x 10+3, 2 x 10+3 mz/yr, corresponding to
characteristic dispersion lengths 5, 10, 20 m.

Expectedly, increased dispersion broadens peaks and considerably reduces

maximum concentrations.
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Figure 4.1.2. Concentration profiies of 234U 230Th 226Ra decay chain

along a direction perpendicular to the water flow, at t = 5x104 yr.
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4.1.8.B Release of Nuclides from a Bounded Medium

Applying the results in Sec. 4.1.6, we now consider the maximum rate of
dispersive release out of a medium bounded by planes parallel with the flow
direction. Using Eq. 4.1.60, we compute the instantaneous discharge rate
across boundaries at x = # L, with x = 0 at the point source of dissolving
waste. Aquifers along the boundaries are assumed to give a zero-concentration

boundary condition.

The results are presented for 234

U, giving a relative release rate
defined as:

relative release rate =

total discharge rate of 234U through the boundary at time t

initial 234U release rate, at time 0, from the waste poirt source

Figure 4.1.5 shows a plot of this relative rate versus time, for a char-
acteristic dispersion length 1 =10 m (D = 103 m2/yr), and for various values
of the distance L from the repository to the boundary. It can be seen that, as
transverse dispersion proceeds, the release rate first increases dramatically with
time. Then, as radioactive decay reduces the available amounts of 234Us the
release rate increases no more, and would eventually decrease for larger times.
It also appears that moderate variations in the distance between the waste and the
boundary can change the rat=2 by several orders of magnitude. Figure 4.1.6 shows
an equivalent plot for a distance L = 1000 m between the waste and the boundary,
and for various values of the characteristic diffusion length., The same variation
in time than previously is observed. Expectedly, the influence of the dispersion
coefficient is considerable.

2. Transport of Radionuclides Released fraom a Finite Plane Source
2.1 Introduction .

The analytical studiés in Reference (Hl) have dealt primarily with the
transport of nuclides in a single space dimension in the presence of one-
dimensional groundwater flow. The release of nuclides was modelled either by
a source term or a concentration boundary condition applied on the plane z =
0. In the present research we extend these results to an emitting repository
surface of finite dimensions located in 2 uniform flow field. The primary
purpose is to judge the effects of transverse dispersion on the transport of
the nuclides which was not considered in the previous work.

The following assumptions are made:

4.
4.
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1) The repository surface S is located in a uniform, one-dimensional
ground water flow field. This means that S is penetrated with the
same groundwater velocity as prevails outside of the repository in
the plane of S, see Figure 4.2.1.

2) Dispersion effects in the flow direction are neglected in the first
part of the analysis.

A detailed study of the hydrodynamic effects on radionuclide transport is
given by the writer in Sect. 5. Work is in progress to deal with a more
realistic velocity field in which the (possibly) different permeabilities of
soil and repository are taken into account. It is hoped that this will
eliminate the first assumption.

The neglect of dispersion effects in the flow direction is one of
mathematical convenience only. By the method of solution to be given one can
obtain a recursive solution for individual members of a nuclide chain in the
presence of longitudinal dispersion. These solvtions are of a rather complex
character and are costly to evaluate by machine computations.

4,2.2 Without Loungitudinal Dispers-ion
If the longitudinal dispersion is neglected one can obtain the general

(non-recursive) solution for a ruclide chain of arbitrary length. This
solution is of a relatively simple form and gives physical insight 1into the
effects of diffusion in one-dimensional {low fields.

The starting point is the equation system, i = 1,2,——

aNi aNi azNi aZNi K]._1
STt Vi T AN e Dt Dyi 7 MM g0 (4.2.1)
aX 3y i
where
D D
= = X Y
vy = Ki , i = Ki , Dyi Ki (4.2.2)

for the determination of the functions Ni(z,t;x,y) in an (x,y,z) cartesian
coordinate system, see Figure 4.2.1.



Renository Surfuce
Figure 4.2.1 Repository Surface

The solution is sought for - «< (X,¥) <w, 0 ¢ 2 <, t > 0.
concentration boundary conditions are

[N
N (0,t5%,5) = NIS; () 8 (t),0x] < a, [yl < b, t >0
=0, |x] >a, |y] >b
witn
¢, (t) =0, t<0
and the initial conditions,

The

Ni(z,O;x,y) =0, —o< (X,y) < ®,0<z<¢o,
Equation (4.2.1) allows for the possibility of dissimilar dispersion effect in
the x and y directions. Equation (4.2.3) permits the nuclide concentration
emitted at the repository surface S to be an arbitrary function of position
Si(x’y) on S. The release rate function é;'(t) is also arbitrary.
In order to obtain the general solution to the egquation system, consider
the following sets of boundary conditions, where P = (x,y) and Bi(P,t) =

S.}(xa)')¢i (t).

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)
Boundary Nuclide Chain
Condition Member 1=1 | P —— 1=1 e 1=1i
j=1 N{l)(o,t;P)=N§31 M (0, t5p)-0 w1 (0, 1;p)=0 N (o, 5p)=0
je2 N{Z)(o,t;P)=0 Néz)(o,t;P)=NgB2 N8 (0, t5p)=0 n{2) (0,t;P)=0
e Nf‘)(o,t;P)=0 N (e, t5p)-0 M (o0, t50)-n{ 1B N (0, t;p)<0

i M eer0 WVt w{Po,ep)c0
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The solutions to equations (4.2.1) and (4.2.5) subject to the conditions on
]iqe j of the above set nf boundary conditions i is denoted by
M3 (z,t5000,0= 1,2, ol i

On account of the linearity of the governing equations the sum of the
solutions for all these individual boundary value problems for each value of j
will be the solution to the complete problem described by Eqs. (4.2.1-5) i.e.,

. i-1 R
Ni(z,t;x,y) = Ni(1)(z,t;x,y) + Ni(J)(z,t;x,y),i =1,2, ... (4.2.7)
j=1

It should be noted that some of the N(j) functions vanish. For instance,
if say Nl(z)(o,t;x,y) = 0 but not NZ( )(O,t;x,y), which is the case

for the second set of boundary data (j = 2) in Eq. (4.2.6), then
N{z)(z,t;x,y) =0forZ >0 and't > 0. In general there will be no
precursors for the functions N%J)(z,t;x,y) for 1 < j and so

Ngi%(z,t;x,y) =0 in the space z > 0 for t > 0 provided 1 ¢ j. For

each set j =1,2, ... ,i of Eq. (4.2.6) the governing equation to be solved
for each nuclide N%j) is:

aN%J) aN%J) ;) azNgj) azNgj)
T R L >
K .
1-1 (3)
T M Mo (4.2.8)
where 1 = 1,2,...1 and
w1) < 0 when 1 ¢ 3. (4.2.9)
The boundary conditions are obtained from Eqs. (4.2.3) and (4.2.6)
: 0, 14
N%J)(U,t;x,y) = ’0 Ty
Ny© S;06x085(0), Xl < a, Iyl < b, 1= (4.2.10)

0, [x >a, [yl >b, 1= !

where

(t) t < 0.

m
o
-
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The initial conditions is

N%j)(z,o;x,y) = 0. s —w <Xy} <w, 0<2zcw.

On applying a double Fourier transformation, defined by

-/T(wlx + wzy)

N(z,t; ml,wz) =j[ j[ N(z,t;x,y)e dxdy, ¢ -1 = i)

to £gs. (4.2.8) (4.2.10) and (4.2.11) one obtains

Al ) ’
1 1 fpld)y o 14l (3)
A B P T A S B Xt
where
[N} 2 2
A=y + (Dx]wl + Dy] Uy ).
_ 0, 1£3]
N](O,t; g, mz) = ~
Nj Sj(ml’ mz) ¢J(t) s $=]
where
— . +a a (ml)( + wz.Y) A
Sy wy) =f 55(x,y) e dxdy, (/T = 1)
-a -b
where

N](Z,O; wl, w2) =0, 0<¢z< o

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.14a)

(4.2.15)

(4.2.16)

The problem has thus been reduced to a one-dimensional transport problem which

was studied in detail in Ref. (Hl).
the general solution to the equations (4.2.13-16).

There the author presented in Sect. 4.4.2
There appears to be no need

to reproduce the steps in that analysis and an outline of the method might

suffice.
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The above equation system is subjected to a repeated Laplace transform
with respect to t and z. There resuits an algebraic system of difference
<quations which can be solved in closed form, Ref. (Hl), Eqs. (4.114,
4.115). These expressions are inverted to recover the z and t deperdence.

This yields, see egqs. (4.125a, 4.126)

. . /
7.0, ¢: _a ) o < . e m
Wizt wpewp) = ANy Silugs wp) - 3oy
m=j m
x ;i; p () E (t,a)* ¢i'(tﬂ 34 (4.2.17)
< rm rm* ? J
r#m
and
z 2 2
7. (1) 0 _?E# Prier T Oy l“2]" z
N (z,t; g mz) = N; 'Si(ml, mz) e b (t- =
(4.2.18)
The constants have the following meaning
. i
a(3) ]']l vt
r=j
8 ). [ »
m - . rm
r=j
T
-1
G _ 7 [ ]
D A _4A
rm gle (gm rm)
gém#r
(i-1)
D",m ! (4.2.19)
K A
r r
v, = s {vy = 0)
e
r _V—Vr_ R ArV—AmVr
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The functions grm(t’w) which appear in the convolution integral are

0, tc z/Vm

(D (4.2.20)

2 2
Gpp(tso) = a1 Dymog” * Apmd (8= 2WVp)s gy gpy

e
There remains the inversicn with respect to the transverse coordinate variable

(x,¥), which is carried out with help of the Fourier inversion formula

\/—_l(mlx+m2y)

N(z,tix,y) = 1—}'_// Wiz, tsop.0p)e duy du, (4.2.21)

The formal interchange of thir double ‘ntegral in Eq. (4.2.17) with convolu-
tion integral yields the funct.on

Gy m, (2 ts%:¥)

1 ® e 2 2.4
=7 / / Sj(ml,wz) exp [— (Dxmwl + Dym“'? + r‘m) (t - Z/Vm)
++/ —l(mlx+w2y) ] dmldm2 . (4.2.22)

For the inversion of Eq. (4.2.18) we require

2z 2
W [Dx1“’1 * Dy]“'zz]
. 1 7=
H](z.x,y) E] W—f fg (ml,mz) e
+ v —l[mlx+mzu] dmldm2 (4.2.23)

With these functions we obtain the general (non-recursive) solution from

Eq. (4.2.7) in the following form:
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_h
o 1 " z
N, (2,t5%,¥) = Nje Hy(z5x%,y)8 (t- )
! (4.2.24)
-(a lv )z
1-1 . 1 mome ]
+ 3 A(J) N £ S i) Y E g
ahN X o7 &g 006, (2 tixyd * g5 (1)
r#n
1=1,2,...
The first term represents those lth nuclides that have heen convectea from

the boundary (z=0) and have escaped decay. The triple sum represents Ith

nuclides contributed from all precursors.

In order to illustrate the solution and obtain physical insight into its
character let us consider the radionuclides to be emitted in a uniform manner
from the repository surface. In this case:

l,lx]<a,|y](b
Sj(x,y) = i=1,2...1 (4.2.25)

0,[x|>a.|y|>b

in Eq. (4.2.3). Furthermore, consider the dispersion identical in the x and y

directions, i.e., Dxm= ym=Dm' The principal task is the evaluation of

the functions Grmj and H]. The double integral (4.2.22) can be expressed

as an iterated integral because sj(ul,mz) is separable in its variables.

To evaluate it one can use the convolution theorem for Fourier transformation.

This requires the Fourier inverse transforms:

Fol ls—j(wl,wz) = [hx+a)-n(x-a)] [n(y+b)-nty-b)] (4.2.25)
R
4D ;t—z/V )
2,2 m m
-0 (witws ) (t-z/V_)
F—1 }e m1 2 m =—_—1'7—e (4.2.26)
4ed_(t - 2-)

wnere h(x) is the unit step function.

On setting



o = D (t-z/Vy) (4.2.27)
2
 “rmlt2 V) - ﬁ
G, o i(zZatsxy) == ——{h(X-n+a) h(x-n-a)]dn.
aMyd T 2
Ve
fwe_nzmg (h(y-n*b)-h(y-n-b)]d
=——— [h{y-n*b)-h(y-n-b)1dn
-0 2 /?
2 n?
e Arm(t_Z/vm) x+a e—n e X-a e_ 4o
e [N n
" /. 2 /e [ 2/
_ 4
y-b, 3
-f dn (4.2.28)
w2 Ve
To simplify set = ¥ then
e
xta a-x
-8 -2V ) 2V e 2 2/
y) = & " / -
Gr,m,j(Z,t,x,Y) =7 _[ e dp+ o e dy (4.2.29)
by
12 ,—_ 2
VAL HICL /2“ T
¢ 0

/2v9
0

Fach integral can be expressed as the (tabulated) error function. If we define

Em(ciu,g) = erf S N+ orf ey (4.2.30)
2V Dme 2/ Dmg
Tiren
e'Arm(t'Z/vm) , ,
Gr,m,j(z,t;x,y) =y Em( , vm)- Em(bty,t - V;),m#] (4.2.31)

Equation (4.2.23) differ from Eq. (4.2.22) in that m=1, 8y =0 and that t—z/Vm
is replaced by Z/V]. If these changes are made in the last egquation and the
expressions for 6. . :; and Hy are supstituted into the general solution

Es. (4.2.24) there results finaliy:
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A
-(ﬁ)’
n Z
N](z,t;x,y) = i— N?e ¢~|(t - ’5—]) E](a*sz)E](b*y-i_‘l) +
*m
1-1 1 -y .
1 (3)yo e (i)
4 z A] Nj z Biji Z Drm Er(aix,r -‘ZI—) .
J=1 m=j m i=J 2/, r
r#m
)3
; (T - V;) "
Er(bty,x - V:) e ¢j(t—1)d1 (4.2.32)

To obtain some insight into the physical character of this solution let us
consider the mother nuclide concent-ation field which is wiven by the first
term for 1=1. Dropping the subscript,

A

o - —)Z "
Nz tsx,y) =8 e ¥ §'(t - Z) E(asx,2)E(bey,2) (4.2.33)
4 v v v
The effects of lateral diffusion are contained in the two bracketed terms as
can be seen from Eq. (4.2.30). As D»0, the error function tends to unity and

the solution (4.2.33) tends to:

&)

N{z,i5x,y) = e Y 28" (t - (4.2.38)

v

which is the well known solution for the dispersion free case. In this case
the repository surface emits the mother nuclide in form of a beam of cross
sectional area (2ax2b). This beam retains this cross section with increasing
distance z from repository, with the nuclide concentration decreasing expo-
nentially. The effects of lateral diffusion can be judged in terms of a
boundary layer which builds around this beam. 7o see this, consider the con-
centration profile in the y direction at a fixed x position. It is convenient
to rewrite E(bxy,z/V) as follows:



E(bty,z/V) = erf( K0\ 4 opp/ L20/D (4.2.35)
ZV/EE* ZV/P£ '
wl’ vb2
This function is shown in Figure 4.2.2 for a number of parameter values
(z/vb?).

In view of this the concentration profile obtained from Eq. (4.2.33) at the
repository surface (z=0) is a sharply defined beam. As z increases, lateral
diffusion in the y direction takes place. The point where N vanishes can be
taken as the edge of a boundary layer. Ode can estimate this position as

follows:

Since (y/b) > 1 and erf(-n) = erf(n)

+ 1

Elyrb, 22 = erf () erf (U/E)_' 1\ (4.2.36)

b W £ /02 /
vb vb
Now E=0 when Ly/b)*1 ) .8. In case of the negative sign
/_E_
\/ vb?
yib=1+3.6/ %2 (4.2.37)

which shows the growth o7 the boundary layer with the distance z and its
dependence on the dispersion coefficient and the ground water velocity. The
equation can be rewritten in dimensionless variable form
‘7% z Vb
=1+ 3.6VEs L v, v, Pespo (4.2.38)
where Pe is the Peclet number. In a comparable way the growth of the boundary
layer in the x direction is given by
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Figure 4.2.2 E(by,z/V) from Equation {4.2.35) as a function of y/b and z/V.
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“x* =¥+ 3.6 % s r*=§— : X*=ﬁ— (4.2.39)

This enlargement of the effective cross-section due to dispersion causes a
decrease in the nuclide concentration over the dispersion free case which can
be computed without difficulty from the general solution Eq. (4.2.24).

As discussed above, nuclide transport takes place across the boundary
surfac~ of the beam emitted from the repository suriace. Suppose the
repository wall dimensions are such that b<<a., Tr. estimate when longitudinal
dispersion effects become negligible compared to transverse dispersion consider
the repository dimensions such that b<<a. In this case, losses from the beam
occur primarily in the y direction and those in the z direction can be ignored.

The principal terms in Eq. (4.2.1) which account for dispersion in the y

and x direction are of the form

2 2

o
N'
o
@
ro| =

X

)
<
@

If dispersion in the transverse direction is characterized by a length scale
of order b, dispersion effects in the transverse direction are importzant

compared to longitudinal dispersion if

@
=

=
£
a
<

S

> 1 (4.2.40)

o
|m
2

>
a2
b3

[aS]

or for

™~
Ny

X
<L (4.2.41)
X

k<D| o

Treating also Tongitudinal dispersion effects interior to longitudinal

D
convection yields 75 < Xx. Combining this with Eq. (4.2.41) leads to the

criterion:



2 D
< (4.2.42)
Y
When the inequalities (4.2.41-42) are fulfilled, longitudinal dispersion can
be neglected in favor of transverse dispersion. However for small distances
from the repository the solution to the complete equation may be needed.
A numerical example of the application of Eq. (4.2.33) is given in

Sec. 4.3.2.
4.2.3 Longitudinal and Transverse Dispersion

OIU’
r\:| >

<

We now extend the above analysis to include the effect of longitudinal
2

. N .
dispersion. [n this case the term Dzi ; is included in Eq. (4.2.1). On
32
setting
Vi Vf
Ni(z,t; X,y) = exp ( ) z - (A1+ ] > t} U.(z,t:x,y) (4.2.43)
20, 21 !

Eq. (4.2.1) reduces to the simpler form

aU1 3 Ui 3 U1 3 U1
=D +D,: +D_. +
st xi ax2 yi yz zi az2
L Niatier (symy )t .
K, e Us 30 25=0, i=l,2... (4.2.48)
:
where By ="y - EU;;

The boundary conditions are, from Eqs. {4.2.3-4)

—B.t "
S;y) e (), Ixl<a,lyl<b,tso

)
Ui(o,t;x,y) = N ;

1

=0, |x|>a, ly|>b (4.2.45)

and the initial conditions
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Ui(z,o;x,y) =0 -~ w< (XY) oy 0<Z< (4.2.46)

The solution to this system is obtained with help of the Green's function
method discussed by the writer in Section 4.3 of Ref. (Hl). In place of
Eq. {4.73) the Green's function for this three-dimensional problem is

2 2 2
[ ey ! 'y 1 1 X—X') ( - ') (Z—Z')
6(z,2", T;x-x"',y-y') = exp <- —[L—+—LL+— D
B[wr]3/2[Dx1Dy1 o, 2172 ’ Tl Dy Dy Dy
N ] 2 1 2 t 2
- exp (- = [AXE;) + (%;/ ). (ZE;) ])‘ (4.2.47)

Analogous to Eq. (4.74), Ref. (H1) the recursive solution is then given by

Us(z,t5x,y) = [0,0; 21]1/7 ff 0,73x",y") G(0 7', =T, x-x",y-y')dx "' dy'

(4.2.48)
K1 1* 1—1 i )
+—— T dzf[ i_l(z,z‘,T,x‘,y')G(z,z',t—'r;x—x',y—y')dx'dy'

'I

The integrations are tedious to carry out and will not be reproduced here.
However, the mother concentration is readily evaluated. We consider the case
where Dx1=Dyl=Dzl=D and Sl(x,y) is given by Eq. (4.2.25). Only the

first term is present in eq. (4.2.48) so,

0 _B T 1t
ZN t b 14, (1) 2 1324,2
. 1 - 1 (x-x')"+(y-y')"*z
Up(z,t5%¥) = f ddef dy exp!-
1 8(1!0)3/2 o -a -b 1_5/2 4D(t—T)

(4.2.49)
In terms of the E function defined in Eq. (4.2.30) this takes on tne form

N t -, (t-1) - Z—
1 1 4Dt v dt
Uy (z,t5%,y) ———f e E(ax, T)E(b%y, 1)¢; (t-t) (4.2.50)
1 8(,;0)1/2 aat 372

If this is combined with Eq. (4.2.43) one obtains, by grouping the exponents

as follows



2 2 2
_ %ﬁ-z + %ET + 3%? + AMT=NT + (zazr) » (4.2.51)
the result 2 o
Nl(z,t;x,y) = =77 e —"—37?——5(6*X,T)E(b*y,T)dT
8(x0)""Yo T {4.2.52)

This answer is in form of a (thermal) dipole which is due to the structure ot
the Green's function given in Eq. (4.2.47) because G vanish2s on the boundary
z2=0. From a numerical point it is more convenient to represent this resuit in

an alternate form. Let

S & 29 - - 4/Ddy (4.2.53)
et 4Dy 32
then:
2
o ANA AT
N - ¢\ Ty \NA T 2 22
N (z,t5x,y) = —= e ) ( - )
11Ea % 1 z
2/m 212 /Bt 4Dy
Z2 22
E(azx, —%5) E(b*y, ——2> du (4.2.54)
4Dy 4Dy

A comparison with Eq. (4.2.33) shows that now a quadrature is required to find
the mother concentration when longitudinal dispersion is present.

4.3 Comparison of Concentrations from an Array of Discrete Sources with
Concentrations from an Infinite Plane Source
The purpose of this section is to clarify the effect of transverse disper-

sion on the migration behavior in a one-dimensional flow field. Parameter
studies are made by using the solution in Section 4.1 and 4.2, assuming a radio-
nuclide with no precursor. We compare the concentration fields for a finite
plane source, for an array of point sources, and for the infinite plane source.

4.3.1 Parameters Used

The longitudinal and transverse dispersion coefficients DL and DT are
related to the groundwater velocity v and the molecular-diffusion coefficient
Dm by:



DL =g v Dm (4.3.1)

o= eVt Dy (4.3.2)
Where a and ap are the longitudinal and transverse dispersivities. Usually
Drn is of the order of 10_2m2/yr, and is small enough to be neglected in
(4.3.1) and (4.3.2). There are only limited sources of data concerning a and

ar. Schmocker (S1) has suggested values for three geologic media.

Table 4.3.1 Values of @ and ar suggested by Schmocker (S1), for

v = 100 m/yr
a s M ap, m aL/uT
Granite 30 10 3
Sandstone 10 3 3
Clay 0.2 0.07 3

Values of a and ay are also seen in the numerical demonstrations of
the SWIFT (D1) and IONMIG (R1) codes developed by the Sandia Laboratories for
calculating the migration of radionucliides, as shown in Table 4.3.2.

Table 4.3.2 Values of o and ar used by SWIFT (D1) and IONMIG (R1)

v, m/yr a, m ars m "L/“T
SWIFT 73 150 15 10
TONMIG Very small 6.1 0.61 10




4-45

For the purpose of the parametric studies presented herein, we adopt the range
of dispersivities shown in Table 4.3.3.

Table 4.3.3 The Range of Dispersivities Assumed in these Calculations

as m ors m aL/aT

0.1 ~ 150 6.01 ~ 15 3~10

In these parametric studies, the longitudinal dispersion is first neglected
so as to clarify the effect of transverse dispersion. The quantity
2= zDT/v =az then becomes a key parameter in evaluating the effect of
the transverse dispersion, as shown later in Section 4.3.2 and 4.3.3.

A configuration of a conceptual repository is shown in Figure 4.3.1.

Az
biosphere or
/“ upper aquifer
T Zm

repository

d

74
7 waste
\

Figure 4.3.1 A conceptual configuration of a geologic respository

& o)
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These assumptions are made:
1) Waste canisters are buried at a depth up to 1000 m.

2) The waste canisters are arranged in a square planar array (a=b) of
overall dimensions a2.
3) The thickness c of the waste layer is small enough to be neglected.

4) The waste is assumed to consist of 10-year old waste from a PWR, with
' heat generating rate of:
Spent fuel: 550W/assembly, with one assembly per canister.
High-level reprocessing waste: 1740 W/canister.
5) The areal loading of the repository is 20 WimZ.
6) A maximum number of the waste canisters emplaced in the repository is
assumed to (e 8000.
Using assumption 1 and Table 4.3.3, the range of :DT/v is defined as:

2D
1<~ <15 x10% of (4.3.2)

The pitch d of the waste canisters is given by assumption 4 and 5:

——

Ispent fuel /B8 - 5.24 m (4.3.4)
—

dreprocess1ng waste = 11%% =9.33m (4.3.5)

We will adopt:

a
n

5 m for spent fuel
d = 10 m for reprocessing waste

The array dimension a is given by assumption 6 and d = 10 m.
a=v 8000 x 10 = 890 m (4.3.6)

We will adopt a = 900 m.
4,3.2 Comparison for a Finite Plane Source and for an Infinite Plane Source

We will assume here that the plamar array of canisters can be approximated
as a plane source of dimensions 2a < 2b. The solution of t«e transport



equation for the concentration of a radionuclide with no precursor for a
finite plane source cf dimensions 2a x 2b, without longitudinal dispersion,
and for a step release is given by applying Eq. (4.2.33):

Ply ¢ t) i e i f
X, Ys2, = l:f‘
1 Z \2/|T 2 D -
ha | .
erf (—-‘-’-"3’—) . (—b-'y—) h (v t-2) (4.3.7)
/02 Ay
A

v

Where Ng is the concentration of ISt nuciide at the source. The
solution for an infinite plane source, without longitudinal dispersion and
w'th the same dissolution rate per unit overall area of source, is (H1l):
© © 0 _xlt
Nl(z,t) = Ne h(vlt—z) _ (4.3.8)
e 1440

Dividing (4.3.7) by {4.3.8), and noting that N1 P M-, both N and t
disappear, and there results:

ply
Ny (X, y,2,t)
.1 f<23+" erf(za"‘ r'f( b+y)+ erf( Zb‘y )
N.{z,t J
1zt K /% Py? s
v v v v

(4.3.9)}

If DX = Dy = DT’ Eq. (4.3.9) becomes:

| PIN(,y,2,t)
AL 1 [erf(‘“’" ) + erf (k"—j]ﬁsrf(b"—y)+ erf(P:y—):] (4.3.10)
Ny (z,t) NG ENGY PG N

where =210

T/v.
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In (4.3.10), a, b and @ are the only parameters which affect the ratio of
the two solutions. Since Eq. (4.3.10) does not include M and t, it holds
for any nuclide and for any time t > z/v.

Figure 4.3.2 shows the relative concentration of the mother nuclide at
x =0, y=0, as a function of the variable  for four sets of dimensions of
the planar array. In the case of a relatively small array of 100m x 100m, the
relative concentration at x = 0, y = O begins to decrease at € » 100 m“. For
example, if v = 100 m/yr and DT = 100 mzlyr, the effect of the transverse
dispersion becomes important at z > 100 m. For the larger array of
800m x 800m, the concentration profile along a normal through the center of
the array (at x=y=0) is identical with the concentration profile predicted
from no transverse dispersion, over the range of £ shown here.

The concentration profiles in the direction of groundwater flow, along
normals from the edges of the planar array, i.e., at x=a, y=b, will decrease
more rapidly with @ than shown in Figure 4.3.2.

4.3.3 Comparison for an Array of Point Sources and for an Infinite Plane Source

We will make a translation from an array of point sources to an eguivalent
infinite plane source in the water phase. First, we will translate from a
single point source to an equivalent Tinite plane source of overall dimensions
dz, where d is the pitch between point sources on a square array. We can do
this by writing a material balance which expresses the rate at which total
waste dissolves into the water. For the point source of initial total atoms
Ho, and for a totat leach time T, the rate of dissolution of total atom is
w°/T. The point source strength for the nuclide is:

(4.3.11)

where ng is the initial atom fraction of nuclide 1 in the waste.

This tolal rate of waste dissolution for the equivalent plane source must
also equal w°/T. The plane-siurce strength must be expressed as the rate of
dissolution per unit cross-sectional area of water flow associated with the
plane of overall dimension dZ, The initial total waste atoms WO/s per

unit cross-sectional area of water flow, as appearing in Eq. (2.1.20), is then:
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Figure 4.3.2 Relative nuclide concentration (a finite plane
source/an infinite plane source) for four dimensions of

planar array as a function of the distance parameter Q.
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W = = >: (4.3.12)

where ¢ s the porosity. The strength of the plane source of the nuclide in

the water phase is then:

5 (8) = —o 0 e E (4.3.13)

We now assume that Eq. (4.3.13) also characterizes the source strength of
nuclide 1 for an infinite plane source, so it now defines the plane scurce for
calculating Nl(z,t) fror Eqs. (2.1.20) and (2.1.41). Alternatively, for the
case of no axial dispersion, we could adopt the simpler form of the solution
for the infinite plane source (Hl):

-2, t
“Ny(z,t) = P e 1 n(t - zpv)) (4.3.14)

Here, by a material balance at the source location, in the absence of axial

dispersion, Ng is obtained from:

Won?
- ed?v'”m‘l’ (4.3.15)

Which holds for either a finite or infinite plane source, in the absence of
axjal dispersion.

Substituting Eq. (4.3.15) into Eq. (4.3.14), and dividing the resulting
equation into the point-source egquation (4.1.66), we obtain the ratic of the
concentration resulting from a single point source tc the concentration
resulting from an equivalent infinite plane source:

t
P N (x.y,2,t) 42 W2+ 2
=% exp (- 211 (4.3.16)
°°N( ) 4xQ 4Q
142
zD
where QE—T-

v



As in the case of Egq. (4.3.10), the concentration ratio of Eq. (4.3.16) is
independent of A and t. It is a function of the axial-distance parameter,
Q.

We can now use Eq. (4.3.16) to predict the concentration ratio for an
array of identical point sources. For an array with canisters occupying M
positions on the x coordinate and N positions on the y coordinate, the

concentration ratio for the array is given by:

aNl(x,y,z,t) . 1 Z

"
TNp(zt) TNy(z,t) el

N pt
Z]_ Nl(x_xma.y“ynszyt) (4-3.17)
n=

where LA is the coordinate for each canister locatiorn. Eg. (4.3.17)
has been used to predict the concentration ratio shown herein.

Figure 4.3.3 shows the distribution of the relative nuclide concentration
along the transverse coordinate x, normal to the direction of water flow, for
values of the distance parameter £ of 1, 4, 10, and 100 m2. The radionuclide
source consists of one hundred waste canisters emplaced in a square planar
array in the x-y plane. The overall array dimensions are 100m x 100m, with a
canister pitch of d = 10m. Sources are located at +x=d/2, 3d/2, 5d/2, etc.;
ty~0, d, 2d, 3d, etc.

For @ as large as 10m2 or greater, the array solution becomes almost
identical with the solution for the infinite plane source. For & of 10m2 or
less each concentration profile is periodic with respect to the transverse
coordinate, with a period equal to the distance d between adjacent sources.
The greatest deviations from the infinite-plane-source solution occur nearer
the source, where £ is small,

Figure 4.3.4 shows the relative nuclide concentration as a function of the
distance parameter @ for an array of point sources, with a source spacing of
10 m and for overall array dimensions varying from 10-canisters x 10-canisters
to 80-canisters x 80-canisters. The near-field concentration ratios, for
less than 10 m2, are shown for the transverse peak (x=d/2, y=0) and for the
minimum between adjacent sources (x=0, y=0). These two branches coincide at
greater than about 10 m2, where the array concentration becomes identical
with that from an infinite plane source. The effect of the spacing of the
point sources in the array on the convergence to the plane-source solution is
shown in Figure 4.3.5, for pitches of 5 m and 10 m.
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Figure 4.3.3 Distribution of the relative nuclide concentration (an
array of point sources/an infinite plance source) for four
vilues, of along the transverse coordinate x, at y = 0.



Relative concentration, ®Ny(x,0, z,1)/ ©Ny(z, 1)

o
™

Q

o
T

2
N

4-53
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Figure 4.3.4 Relative nuclide concentration as a function of the

distance parameter Q for an array of point sources at y = 0.
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Figure 4.3.5 Effect of pitch of point sources on relative concentration
profile (an array of point sources/an infinite plane source). The
highest peaks are at x = 2.5 mand 5 mand y = 0. The lowest neaks are
at x =y = 0.
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Figure 4.3.4 shows that the concentration ratio remains unity until a
larger value of the distance parameter is reached, depending upon the size
of the array. The array concentration then becomes less than the infinite-
plane-source concentration, because of overall transverse dispersion into the
prajected regions outside the array (-a»>x>a,-b>y>b). Thus, comparing the con-
centrations in the porous medium, in a volume projected from the array surface
in the direction of water flow, the array concentration will depart signif-
icantly from the infinite-plane-source concentration in the near field (<~10 mz)
due to discontinuities between discrete point sources in the source plane.
These departures disappear at greater distances from the source plane, in the
direction of water flow, because of local transverse dispersion, where the con-
centration field from the array of point sources becomes identical with that
for a finite plane source. As has already been shown in Fig. 4.3.2, the con-
centration from the finite plane source is identical with that from the infinite
plane source up to axial distance parameters @ of about 100 m2 or greater, for
the array size considered herein. The concentration field of the array finally
decreases below that of the infinite plane source because of transverse
dispersion into the porous medium outside the projected region of the array.

4.3.4 Effect of Transverse Dispersion and Longitudinal Dispersion

When the longitudinal dispersion is taken into consideration, the solution
for a point source is no longer the simple form of Eq. (4.3.18) which has a key
parameter . Here the effects of longitudinal and transverse dispersion on the
concentration profiles were examined by varying the ratio of the two disper-
sivities for an array of point sources. Parameters for the demonstrations and

the array of the sources are shown in Table 4.3.4 and Figure 4.3.6.



4-56

Table 4.3.4 Parameters used in evaluating the effects of o and at

Figure 4.3.7 Figure 4.3.8
Nuc .ide: 237Np Calculation for a fixed Calculation for a
DT and for varying fixed DL and for
6 :
T1/2 = 2.14x10" yr DL/DT. varying DL/DT
K1=100, v = 100m/yr .
at t=10% yr z=103 m b = 3x102 gzlyr DL = 3x10° m2/yr
DL/DT =10"%, 10, 20 DL/DT =3, 5, 1C
AZ
V =100 m/yv
waste
10m
10 wastes

~—
Y / 10 wastes

Figure 4.3.6 An array of point sources of 10 x 10,

Figure 4.3.7 shows the effect of varying DL for a fixed DT on the con-
centration profile of 237Np along the x-axis at z=1000 m. In spite of the
large variation in the ratio of DL/DT’ from 10"2 to 20, there is little
effect of DL on the peak concentration and overall concentration profiles.
However, as shown in Figure 4.3.8, the increasing DT spreads the
concentration in the transverse x direction and lowers the peak concentration
at x=0, y=0.

We may conclude that it is not necessary to take into account longitudinal
dispersion in evaluating the effect of transverse dispersion.
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Figure 4.3.7 Effect of axial dispersion on concentration profiles
of 237Np along the transverse coordinate x at t = 104 yr and
2=10% m (v =100 myr, b = 3 x 10% n¥/yr, K = 100).
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4.5 Nomenclature

E(1,d,K,x,¥,2,t) :

Fu,a,b)
F*(u,a,b)
G{a,u)
h{t)

J

J

: 22 x 2b is a size of the plane source

: 2a x 2b is a size of the plane source

: coefficient of the Bateman equation, Eq. (4.1.25)
: thickness of the repository

: arbitrary constant, £q. (4.1.53)

: pitch of the emplaced wastes

: dispersion coefficient, m2/yr

: Longitudinal dispersion coefficient, m2/yr

: Molecular diffusion coefficient, m2/yr

: Transverse dispersion coefficient, m2/yr

; dispersion coefficient in the x direction, m2/yr
: dispersion coefficient in the y direction, m2/yr
: dispersion coefficient in the z direction, m2/yr
: overall dispersion tensor

: dispersion tensor in the iiquid phase

: dispersion tensor in the solid phase

function defined by (4.1.48)

: function defined by (4.1.47)

: function defined by (4.1.78)

: Gaussian function defined by (4.1.31)

: Heaviside step function

: Dispersive current (atoms/mz—sec)

: Rate of dispersion across a boundary (atoms/sec)
: sorption equilibrium corstant

: Retardation coefficient

: Characteristic dispersion length, m, Eq. (4.1.13)

: Distance from the repository to a lateral boundary, m
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m, : Total amount of the ith nuclide released in a medium,
2toms

M? : Atoms of isotope i at t=0

h? : Release rate, at t=0

MIJKL : Constant defined by (4.1.56)

N? : Concentration Jof the ith nuclide released by its
precursor, atoms/m3 of liquid

N§ : Concentation of the ith nuclide released from the
waste, atoms/m3 of Tiquid.

Ni] : Concentration of the 1th nuclide in 1iquid phase,
atoms/m3 of liquid

s : Concentration of the i nyclide in solid phase,

atorns/m3 of solid

N? : Concentration of the ith nuclide resulting from a band
release, atoms/m3 of liquid

N? : Concentration of the ith nuclide resulting from a step
release, atoms/m3 of Tiquid

NE : Concentration of the ith nuclide in an unbounded
medium, atms/m3 of Tiquid

Nl(z,t) : Concentration of lst nuclide in water phase for
infinite plane source (1-D solution)

ptNl(x,y,z,t) : Concentration of lst nuclide in water phase for a
point source

aNl(x,y,z,t) . Concentration of 15% nuclide in watar phase for an
array of point sources

p]Nl(x,y,z,t) : Concentration of ISt nuclide in water phase for a

plane source
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N? : Corzentration of ISt nuclide at the plane source

Q : Flow rate of the ground water, m3/yr

Qi : Amount of the ith nuclide released in an impulse release,
atoms

) : Cross-sectional area of the repository, m2

S : Volumetric source term for the ith nuclide, atoms/m3.s

(cf section II.1)

th nuclide, for point source, atoms/s

S.(t) : Source term for the i
S.i S : Source terms for the ith nuclide, respectively in liquid and
solid phase (atoms/sec)

: Release rate at x=y=z=0 (Section 4.1.3)

ni
[4 : General source term defined by (4.1.17)
t : Time variable, yr
T : Duration of nuclide release, yr
v : Water velocity in z direction, m/yr
7 : Flow velocity vector in three dimensions, m/yr
Vs : Velocity of the ith nuclide in the absence of dispersion,
m/yr
X : Defined by (4.1.8)
y : Defined by (4.1.9)
wo or W0 : Initial amount of waste in the repository, atoms
X,¥,2 : Space varicbles, m
z : Unit vector in z direction

z : Defined by (4.1.12)
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Greek letters:

oL
o1
8

419
Y1K

4.6
Al.

B1.
82.
Bs.
CL.

ce.
bl.

: Longitudinal dispersivity

: Transverse dispersivity

: Space-domain of dinterest, section 4.1.4
: Constant defined by (4.1.44}

: Constant defined by (4.1.45)

: Constant defined by (4.1.43)

: Delta function

: Porosity

: Time dummy variable

ih 1

. Radioactive decay constant of the i nuclide, yr~

: Constant defined by (4.1.50)

th

: Atom fraction of the 1 nucride in the waste

: zDT/v
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5. The Transport of Radionuclides in Three-Dimensional
Hydrological Flow Fields
5.1. The Formulation of the Governing Equations
This research is concerned with the analysis of the transport of a radio~
nuclide chain in two and three dimensional flow fields in porous media. This
analysis is an extension of our analytic work which has up to this point dealt
with one-dimensional flow problems only. The results of the analysis are
limited by the following
Assumptions: (1) The hydrological ground water flow is time independent,
incompressible and is a Darcy type flow.
(2) Dispersion effects are neglected in Sections 5.1 through
5.5. Adsorption equilibrium is assumed and media proper-
ties characterizing soil, water and the radio-chemistry

are treated as isotropic and constant unless otherwise
noted.
Subject to assumption (2) one can write the conservation equation for the
nuclide concentration Nn for the nth specie in the water as follows
(Ref. Hl, Eq. (2.52)):

aN
n -
Ko 3t ¥ oeWVeNn) = ek 1hn aMNay = eeKpaphy (5.1.1)

n=1,2, ..., xo=0

€f
In view of the incompressibility assumption, the ground-water velocity Vf
satisfies the conservation of mass relation

>

Ve =0 . (5.1.2)
On dropping the subscript f Eqs. (5.1.1) and (5.1.2) combine into

aN

n >
Knat "V VN KN = K N - (5.1.3)
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We shall solve this system of equations for n = 1,2,... with g = 0 so that
Nl(P,t) is the mother concentration. In general terms we shall seek the
solutions for Nn = Nn(P,t) in an open domain subject to the following side

conditions, see Fig. 5.1.1

-

\ / Fig. 5.1.1

The initial conditions at any point PeR are

N, (P,0) = 0 (5.1.4)

and the boundary conditions on §

N,(Q,t) = N6, (Q,t) where QeS, t >0 (5.1.5)
with
G, (Pst) =0 , t<O , PeRUS . (5.1.6)

The Gn functions are the concentration boundary condtion functions (such

as the Bateman functions) prescribed at the repository surface S and allow a
position dependent release of nuclides on S. In view of Assumption (1) one
can express the hydrological velocity field Vasa Darcy flow with help of
velocity potential function ¢(P) as

V= —kvo . (5.1.7)

If the soil is homogeneous and isotropic. k is the permeability constant of
the so0il which is assumed constant. By defining the ground water potential

function
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p=keo (5.1.8)
Eg. (5.1.3) becomes in view of Eq. (5.1.7)

a1

Eakl (W) (%) * A€ =2, 16y » M=L2Zye5a,=0 (5.1.9)
where

Cn(P,t) H KnNn(P’t) . (5.1.10)
For the new variables Cn there are the

Initial conditions Cn(P,O) =0 , PeR (5.1.11)
and

Boundary condition € (Q,t) = €26, (Q,t) , QS , t>0  (5.1.12)
and

Gn(P,t) =0 , t<0 , PeRUS (5.1.13)

U (5.1.14)

The Egqs. (5.1.9) through (5.1.14) form the system of governing equations to

be solved.

Before proceeding with this task we note the following generalization.

If the soil is anisotropic one can take the coordinate axes in the principail

directions of permeability.
that

> 3o 3
V= ('kxx Ky 3y o

Then Darcy's law states, in place of Eq. (5.1.7),

-k (5.1.15)

32)
Zz 3z
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where ¢ = o(x,y,z) and kii are the three principal permeability
coefficients. By introducing the new coordinatas

X = . =L, 7.2 (5.1.16)
./E; /kyy /lg
the convection term (v¢)-(an) in Eg. (5.1.9) remain invariant under the
transformation Eq. (5.1.16). Furthermore g is again a harmonic function in
the (X,y,z) space which facilitates the solution of Eg. (5.1.9) as we will
show later.

In summary, our task is to obtain the general solution (non-recursive)
for the system of Egs. (5.1.9), i.e., the Cn function with the potential
function either known through field measurements or to be found by analytical
means.

5.2. Two-Dimensional Potential (Darcy) Flows

Suppose the open domain R is two-dimensional and S is one-dimensional.

Suppose p(x,y) is a two-dimensional potential function related to the stream

function ¥(x,y) by the Cauchy-Riemann Equations

@ _ 2y 2 _ _ay

X sy 3y ~  ax " (5.2.1)
From Eqs. (5.1.7) and (5.1.8) we have then for the fluid velocity components
3y s v =_@.=ﬂ (5.2.2)

With these the governing transport Eq. (5.1.9) reads

aC 1
at Kn

(5.2.3)

3C
# Tn.ab o tn)., oo
(ax X ay ay Ancn B An-lcn—l
Instead of the cartesian coordinate system {x,y) let us now introduce the new
coordinates #(x,¥), ¥(x,¥). It is well known in hydrodynamics that these
functions form an orthogonal coordinate system, i.e., they satisfy
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_3 3y, a8 3y _
(w)(v) =37 s+ 4w 5 =0

(5.2.4)

Furthermore #(x,y), w(x,y) are harmonic functions, i.e., they satisfy Laplaces
equation. In transforming the convective term in Eq. (5.2.3) one obtains with
help of Eq. (5.2.4}

C aC 3C aC
ab %n | a0 n_ 3¢(""n 3ad n 3
ax 3% 3y 3y ='a—(aa a_x+a¢. ?il')
C aC 2 2\ aC
ag o LT n 32 3p 3d n
s X e ﬁ)=([a—x] [?y{,)ﬂ‘ (5.2.5)

Hence there results for Cn(¢,¢,t) the greatly simplified equation

aCn 1 acn
aT+K—n- el ann=xn_1Cn_1 , n=11,2, ... , x°=0 (5.2.6)
where
do = - dé >
)" |28
3x 3y
dg 2 2 2
- - q_2 »oat =V VD (5.2.7)

Since the velocity potential has the physical dimensions of a velocity times
a length and the denominator is the square of the speed g of the fluid, ¢ has
the dimensions of time. By Eq. (5.2.7), o can of course be only a function
of position P(x,y). We will show that 5'?) represents the time needed for
a fluid particle to travel along a fixed streamline ¢ = const, between two
points lying on y. This flow is on account of Eq. (5.2.4) in the direction of
the gradient of the velocity potential.

Since the gradient of ¢ and o are thus parallel but of opposite sign one
can assume without loss of genevality that
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ad 30 . 3 30 _
X ;{‘"-a—y— ay"l (5.2.8)

We want to find the behavior of « as the point (x,y) moves along a fixed
streamline y(x,y) = constant. Then

-0 < 3¥ ay
dy = 0 = % dx + 2y dy

it

-—:%dx + 28 4y (5.2.9)

by Eq. (5.2.1). Therefore, for some parameter A, Eq. (5.2.9) is satisfied if

ki) dy = 2, (5.2.10)

dx = 3y > ay

Therefore

3o dg
da=n—dx+wdy

30 3 , 3o 3P\
=(?)? —3—;+W —BTY.) A (5.2.11)

Comparing this with Eq. (5.2.8) we see that i = —dv and by Eq. (5.2.10)

dx = - 24, dy=-%§l,do , (5.2.12)
along a fixed streamline. But
VRN
dg = 3% dx + 2y dy (5.2.13)

so along a fixed streamiine we have on using Eq. {5.2.12)

2 2
de = _([:_:i] +[;)_$] )do (5.2.14)

which is precisely the relationship, Eq. (5.2.7).
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Equation (5.2.7) (or Eq. {5.2.12)) may be used to determine the travel
time o as a function of x and y (or P) since the velocity potential #(x,y) is
known either by measurement or analysis.

The analytical process of constructing o(P) is simplified by representing
the flow field in the complex z{=x + iy) plane. It would then be convenient
to use z and z as independent variables instead of x and y. Since

w -~z o 3y 3z s3
one has
3 3 3 3 3 E]
i 3= 2=, - 7 2 = (5.2.15)
3z
On applying the first operator to the complex function p + iy
3 X 3 ., 5 3 .
22 o+ in) = (i D)@
3z
TIPS TR | N T
= 3% + i % + i 5y "3y " 0 (5.2.186)

in view of the Cauchy-Riemann Egq. (5.2.1). From this one concludes that {p +
iy) is independent of z and a function of z only so that

$ + v = F(z) (5.2.17)

F(z) is called the "complex potential.” This holomorphic function F(z) allows
one to effectively introduce complex variable techniques into the process of
determining the details of the underground water flow field. The basic Eq.
(6.2.7) can be cast as follows. From Eq. (5.2.17)

) (5.2.18)

3x X =

so that by Eg. (5.2.1)
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3 . 3P '
5% " By = F'(z) > (5.2.19)
Hence
2 2
(2 + (@) - |r)? (5.2.20)
which yields
do=- 9 (5.2.21)

along a fixed streamline.
Equally well one can re-express this as follows: For short hand notation

set W= ¢ + 9, so that

(¢ + W) = F(z2) (5.2.22)

=
)

Consider this equation solved for z in terms of w

2 = f(w) (5.2.23)
Since
%5 = dé = F‘lz (5.2.24)
dz

dz 1 dz 1
T . = g (5.2.25)
dw vx - 1Vy dvi Vx + IVy
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Hence
dz , dz _ __1
L A
x y
or
2
g_ﬂ =_21_ (5.2.26)
q°(d,¥)

It js iwaportant to note that since z is expressed as a function of w by Eq.
(5.2.23) that q is a function of ¢ and ¢. With this the form of Egs. (5.2.7)
or (5.2.21) changes to

Qizd¢ (5.2.27)
dw 2.

do = -

In summary the key formulas for the computation of the time distance function
o(P) are Egs. (5.2.7) and (5.2.8), (the latter is not explicit in o), (5.2.21)
and (5.2.27). The use of these formulas will be illustrated in Section 5.4.
The reader unfamiliar with the use of the complex potential in hydrodynamics
may find the following remarks of use, OQur original formulation of the two
dimensional groundwater flow was represented in an (x,y) or (z) nlane. the
potential and stream function are harmonic functions in that plane, i.e., they

satisfy Laplaces equation

-0 , vly=0 in R (5.2.28)

A1l this has now been replaced by a formulation in terms of the single complex
potential function W = F(z) which is a holomorphic function of zeR. However,
the solution of the flow field must not only satisfy the partial differential
Eqs. (5.2.24) but also certain conditions along the boundary of R. Hence in
terms of the complex potential, W = F(z) must be holomorphic in R and in
addition its real and imaginary parts must satisfy specific boundary
conditions on S, the boundary of R.
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In some cases of ground water fiow, along a given part of the boundary
S in the z plane, either the potential or the stream function assumes a
constant value. Since lines of constant ¢ or y represent straight lines
in the W = F(z) plane, the original boundary conditions along $ map irco
straight lines in the w plane defining a contour K. The geometric disposi-
tion of the mapping is then as shown below for a particular example

Y (2) ¥ (W)
c V=0 d ;
w=F) 2 e
S
R R K
¢=c, s~ ¢=c, P S ,
d ¥v=c 3 ! La
A B | b o
. b1 ¢2
Fig. 5.2.1

Here R has mapped onto R' and the boundary points have their corresponding
images. Now suppose that one has found that particular mapping function w =
F(z) that satisfies the required boundary conditions on K, then F{z) gives
the complete solution to the problem because it yields by Eq. {5.2.17) both
the potential function #(x,y) and the stream function y(x,y). This is a
direct consequence of the following Theorem (Ref., Cl, Section 9.4)., Let D be
an open set in the z-plane whose boundary B is a Jordan contour. Let D map
by w = w(z) where w(z)} is holomorphic, onto an open set E in the w—plane
whose boundary C is a Jordan contour. Suppose

2, .2
20.+2%_0 in b
ax? oyt

alx,y) o(e,y) * blxy) X _cy) o B,

where n is the distance measured perpendicular to B. Then

2%(u,v) 2% (u,v) =0 in E
au2 3V2
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a(u,v) #(u.v) + blu,v] ’gg- %W #p(u,v) = c{u,vy) on C

where N is the distance measured perpendicular to C. The same theorem hold
for the stream function ¥, The gist of the theorem is that the mapping w =
F(z) preserves the harmonic character of ¢ and ¥ in going from the R into the
R' plane. Furthermore for "simple" boundary conditions, where the cozffi-
cients b is equal to zero, the marping assures the invariance of the boundary
conditions. The solution for such "simpie" boundary value problems can hence
be obtained by determining the conformal mapping function w = F(z) which maps
the region R in the z-plane into the region R' in the w-plane. For this we
have the extensive apparatus of conformal mapping techniques available to us.
Some illustrations are given in Section 5.4.

Returning to the evaluation of o(P), the key equations for o are
integrated in the direction of decreasing potential §. The constant of
integration is chosen so that

s(Q) =0 for QeS (5.2.29)

o(P) then attains positive values downstream of the repository surface in its
"shadow 1egion®

o(P) >0 . (5.2.30)

These properties of the trivel time function are used in its construction.

As a very simple example consider the case of a flow field induced by a
sink located at z = 0. The zero potential line, i.e., the aquifer is located
at r = a. Adopting polar coordinates and

2
0 =X In (alr) KC—Z%) >0 (5.2.31)

and

v= Ko (5.2.32)
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./ Eg. (5.2.17)
F(z) = K 1n (a/z) (5.2.33)
Then F'(z) = K/z and so by Eq. (5.2.21)

2
do = _%da (5.2.34)

But by Eq. (5.2.31), dé = (K/r) dr, so do = - £ dr. Therefore, with the
initial condition Eq. (5.2.29)

ofP) = gp (a®-r%) , ogrca (5.2.35)

Fig. 5.2.2 shows the time-path history of a fluid element leaving the ring
r = a at o(a) = 0,

Nin
s

1 r/a

Fig. 5.2.2

5.3. The Solution of the Two Dimensional Transport Equation
We established in Section 5.2 that with the new orthogonal coordinate system

(#,%) the nuclide transport equation system takes on the form given by Egs.
‘5,2.6) and (5.2.7)

a(:rl 1 aCn
5T + K; e + chn =26y N 1,2, o. Ay = 0 (5.3.1)
do = - 9% (5.3.2)
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for the functions Cn(ﬁ,w,t). We established the fact that o(P) is a scalar
function, with the properties that, see Egs. (5.2.29) and (5.2.30),

a(;) =0 for QeS (5.3.3)

o(P) >0 for PeR , (5.3.4}
and that the gradient of o is parallel to the gradient of #, see Eq. (5.2.8).
This implies that ve is paraliel with the streamiines ¢(x,y). These
properties can be written

(v)-(va) = -1 (5.3.5)
or as the orthogonality condition

{(ve)<(ve) = 0 (5.3.6)

Consider now the simple case that the boundary S is contracted to a single
point which represents the repository as shown in Fig. 5.3.1.

streamlires
\ = constant
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According to the properties of o, discussed in Section 5.2 the ‘Tuid moving
along the streamline ¥(x,y) = c1 which passes through S will be the carrier
of the radionuclides and we can determine their travel time history by inte-
gration of Eqs. (5.3.1). However, these equations are precisely of the type
for which recursive as well as general solutions were already derived by the
author (Ref. Hi). It was shown there, see Eq. {4.77), that

aN. aN. K-
i i i-1 :
ET_'+ Vi On + xiNi = —K;_ NNy 1= 1,2, .., Ay = 0 (5.3.7)

with

N(0,t) = M08, (t) , t>0 with $(t)=0 , tco0

Ni(z,O) =0 , z>0

has recursive solutions given by Eqs. (4.82) and (4.85) of Ref. Hl and the
general solution given by Eq. (4.127). To make the comparison complete
we nced to append the side conditions (Eqs. (1.1.11) and (1.1.12)) to
Eg. (5.3.1). The boundary points Q in the functions Cn and g, are now
described by the single point 3 = ¢ v = Cyy SeE Fig. 5.3.1, so *he side
conditions are

I.C. Cn(P,O) = Cn(¢,w,0) =0 , all ¢,y (5.3.8)

o
B.C. Cn(Q,t) = Cn(cl,cz,t) = cngn(cl,cz,t) , to>0

By recalling ihe scaling relation (Eg. {5.1.10)), the comparison between

the equation system (Egs. (5.3.11) and (5.3.8) with {5.3.7) is immediate and
one can write down at once the solutions with help of the above mentioned
equations.

Before doing this we first generalize the repository shape to a contour
segment. We introduce at this point a mild but convenient restriction in
that we assume that S coincides with a potential line as shown in Fig. 5.3.2
In this case the nuclida transport occurs along the streamlines intersecting
S forming the shadow region R'. This restriction is mathematically described

by the condition



(v8)-(vg,(Qt)) =0 , t>0 (5.3.9)

But in view of the Lemma of Section 5.2 this means that gn(Q,t) is independent
of ¢ and can thus only depend on ¢. Hence the boundary condition becomes

C,(¥st) = COg (B,505t) » (5.3.10)

Shadow region R’

W = constant “\W \ .~ -
NV Y

¢¥constant

Fig. 5.3.2

As can be seen from Fig. 5.3.2, ¢ is a function of the position P in the x-y

coordinate system. P from now on is defined as a point lying on a trajectory

(streamline) passing through the downstream side of the repository surface

S. Thus one can write in place of Eq. {5.3.10)

Colust) = Cog (P,t) ,  PeR’ (5.3.11)
For later use we generalize Eq. (5.3.9) for the scalar function gn(P,t) to
(vﬁ)-(vgn(P,t)) =0 PeR' , t>0 (5.3.12)

Equation (5.3.10) is a very general relation in that it specifies a concen-
tration boundary condition which can vary on each streamline penetrating the
repository surface S. Since the analytical nearfield solution to the nuclide
migration problem is as yet unknown a reasonable assumption consists in
considering a spatially constant release from S so that one can write the
separable form of the boundary condition



5-16

Colwst) = Cothly ~wy) = hly =yt 9.(t) 5 gy <y, (5.3.13)

The bracketed term represents a step function in ¢ with wl and wz the
bounding streamlines of the repository contour, see Fig. 5.3.2, and §n(t) the
release rate.

We now set out the solutions for the above equations in terms of the
original Ni(P,t) variables, see Eq. (5.1.10).
Recursive Solution

We quote only one of these, i.e., Eq. (4.95), Ref. Hl

n-1 ¢ -x K o(P)
N (Pt) = T T Ny o(Pat = Ko(P))h(t ~ K o(P))
r=1 ?
—AnKnc(P)
- e Ny (Pat = Kpo(P)) h(t - Koa(P)) (5.2.14)

-1 K a(P)
* Noe g (it - K a(P))

where

General Solution
Here we make use of the authors result, Eq. (4.127), Ref. Hi.

—AnKna(P)
No(Pat) = Nje 9,(P,t - K o(P))
n-1 ) n —Ameo(P) n )
v Ay i Z Ml : L 0 {9p(t) * a5(P,t)) (5.3.15)
j=1 m=j Pn r=j

J#m
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The symbols have the same meaning as defined earlier except that with b =

“rm

0, t< Kmo(P)

Iem(t) = § o (1K o(P
" e ot (%)) .t >Ko(P) . :

(5.3.16)

The formula for the mother nuclide (n = 1) is

N, (P,t) = a0 e_leld(P)
1P =N gl(P t- K a(P)) (5.3.17)

and that for the first daughter, n = 2, from Eq. (5.3.14)

—AlKla(P)
Ny(P,t) = e N, 1(Pot = Kpa(P)) h(t - Kja(P))
—x K a(P)

P,t =~ Kya(P)) h(t - Kya(P))

Mo 1!
0o K a(P)
N e 9p(Pst = Kya(P)) (5.3.18)

where

MK gy oot
N21(Pa") =X _Kl e f QI(P,'l ) e dr
el

2

The corresponding expression from Eq. (5.3.15) is

~A,Koo{P)
Hy(Pt) = N3 @ 20 gy(Pyt - Kya(P))

(1),
D X K,alP)
e IE% A ST
1
(1
D -A,K,a(P) )
%e Koo [glz(t)®gz(P,t)h (5.3.19)

B>
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This can be shown to agree with the previous result. As a simple illustration
consider again the nuclide transport in a flow field caused by a sink located
at z = 0. The time-distance function was found in Eq. (5.2.35). The matri-
archy can now be constructed from Egs. (5.3.15). Since the gn(P,t) depend,

in a two-dimensional flow field, only on the stream function, by f£gqs. (5.2.29)
and (5.3.10) we may consider these, functions of e and t only, i.e., 9, =
gn(e,t). By Eg. (5.3.17) the mother concentration is

A K
11 ,.2 2
X (a® - r%)

- K
o
N (Ft) - e Ny oot - or (2 - rP) (5.3.20)

If the repository is located between the rays e, < e<e, and the emission
1 2

is independent of e,

ilfl (aZ_rZ) K
2K Ng %h(e—el)—h(e—ez)g 9 «t-?% (a2 - rzﬂ

Ny (P,t) = e
(5.3.21)

5.4. The Computation of the Time-Position Function in Two-Dimensional

Flow Fields
It is apparent from the previous discussion that the principal task in

solving the governing equations is the determination of the time-position
function o{(P). Once this function has been found, its substitution into
formulas (5.3.14) or (5.3.15) yields the analytical solution of nuclide
transport along a given streamline.

In this section a number of illustrations are given for the determination
of o(P). Both isotropic and non-isotropic media are considered.
A. The Source and Sink Flow Field

Consider a recharge and a pumping well in an infinite, homogeneous and
isotropic medium. The flow iield is assumed to be two-dimensional and the
two wells are idealized by a line source and a line sink of equal strength y.

With the source located at (a,0) and the sink at (-a,0) the complex
potential function for this flow field is given by

Weg+iv=wtn (352) <o (5.4.1)
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The multiple valued logarithm is made singl valued by cutting the complex z
plane along the real axis for Re(z) < - a, Re(z) > a as shown in Fig. 5.4.1,

v {2)

sink source

Fig. 5.4.1
Equation (5.4.1) allows one to find the inverse function z = f(w) incroduced
in Eg. (5.2.23) so that one can ewploy the algorithm for computing o(P) from
Eq. (5.2.27). It follows from Eq. {5.4.1) that

w/u a-2
e = 372 {5.4.2)

vhich yields

zZ=-a tanh(%:) , Z=-a tanh(g:) .

With this
il - @) brolty) o]
- afg) o5 )+ confe B
(&) o) o)
:
"V o o

This is a particularly useful form for integrating o because, as explained in
detail in Section 5.2, the stream function ¢ is held constant. With the
initial condition (Eq. (5.2.29)) taken on the potential line ¢ = ¢0

2 po /v
a(P) =E-f C—x (5.4.5)
v [coshx + c]
o/u



where
¢ = cos(¥/u) (5.4.5a)
The quadrature can be expressed in terms of elementary function. For ¢ #:+1

2 ($5/u)

op) = & 1 2{ sinhx ____2c ol (%_% tanh %)} " (5.4.6)

A + coshx \ﬁ B cz Ju)

For ¢ = ! which corresponds to the stream lines v = 0 and ¢ = 2n, the
integral in Eg. (5.4.5) yields

(¥o/0)

a(P) = %E %% tanh(%) - % tanh3(%)% o1) . (5.4.7)
u

This last resuit holds on the geodesic streamline connecting the source and
sink. The streamline flow pattern is shown in Fig. 5.4.2. The circles with
center on the x axis represent the lines of constant potential which varies
over the range -» < g < », The circles with center on the y axis represent
the stream lines ¢ for 0 < ¥ < 2r. For a source point located arywhere in
the field, say at (¢°, ub), the Eqs. (5.4.6) or (5.4.7) yield the travel
time along ¥ towards the sink.
8. The Source in a Uniform Flow Field

Suppose a source located at the origih is superposed on a uniform field
of flow in the x direction. For this the complex potential is given by

Ww=@¢*+iv="F2)=yulnz+ Uz . (5.4.8)

u and U are real constants, which characterize the source strength and the
flow field velocity respectively.

The streamlines of this flow pattern are shown in Fig. 5.4.3. The stream-
lines are symmetrical about the x-axis. There is no flow across this axis.
The dividing streamline BAC passes througn the stagnation point A and
separates the flow into two regions. One can suppose this dividing stream-
line to be replaced by an impenetrable boundary. The flow pattern
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Ficure 5.4.2 Potential and streamlines for the point
source and point sink flow.

XBL 812.178Y

Fiqure 5.4.3 Streamlines for the uniform flow field with a point source.

Ly

\\\\. d:Cxys!
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: - . -X

X8l 812:179Y

Fiqure 5.4.4 Potential and streamlines for the stagnmation
point fiow.
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above the streamline BAC offers several interesting physical intorpretations.
For example, one can regard £q. (5.4.8) as giving the ground water flow in a
homogeneous isotropic medium in the neighborhood of one end of a ‘ong bluff

impenetrable substrate. The repository surface S could be situated as shown

in Fig., 5.4.3.

Equation (5.4.8) cannot be solved readily for z = f(w) so it is best in
this case to consider w = F(2) and employ Eq. (5.2.21) for the determination

of o(P). From Eq. (5.4.8)

F'{z) = % +U .
Therefore by Eq. (5.2.21)

1,2
du=———‘z dé .
lu + Uz]

(5.4.9)

(5.4.10)

Now introduce the polar coordinates (r,e) and set z = re'®. By Eq. (5.4.8)

p Inr + Ur cose

S
]

Y= ue t Ur sine
Along a fixed streamline it follows from the last eguation that
U sing dr = ~(y + Ur cose) de

Therefore by Eq. (5.4.11)

Ur sing d¢p = U sine{u + Ur cose) dr - U2r2 sinze de

[(u + Ur cose)2 + Uzrzsinze] de

L}

- (u o+ Ure'®)(u + Ure”"®) do

1

~fu * UZ|2 de

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)
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This expresses the change in potential in terms of the change in the polar
ray e. Combining this with Eq. (5.4.10), since |z] =

do —mde (5.4.15)

So that on substituting Fg. (5.4.12)

- _—“9—‘-‘9-2-de (5.4.16)
(U sine)

Ore can integrate this, starting at 8,s to e holding ¢y constant in
conformity with the discussion of Section 5.2.

8
o
a(P) =l2'f (ux -y ) cscx dx
vt

9 e
= l? (ux —¢) cot x - 3? ln(sinx)
[ U
()
- ‘Z ) (we~4) cote - [1e -4) cote - u 1n ::2;’ lg (5.4.17)
The ray o = 8, intersects the potential line ¢ = at r=a. On ﬁo

the boundary data is prescribed. The relation between ﬁo and ¥, R is
gbtained by combining Egs. {5.4.11) and (5.4.12).

v - u9

¢0 = ‘"(U‘ETHB?) + (- ue”) cota0 . (5.4.18)

Equation (5.4.17) can be used as follows. Construct the ¢ -y flow net and
locate the intersection of the pot:ntial Tine ¢o and the streamline y where
the boundary source point (a,en) is lgcoted. (This is more convenient than
trying to solve Eq. (5.4.18)). The point P moving along the streamline i,
then characterized by the intersection of the variable ray e with the stream-

line y = constant. See Fig. 5.4.3.
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We now turn to an alternate analytical method for the determination of
a(P). It is based on the derivative relation (Eg. (5.2.8)) which couples the
gradient field of the velocity potential function ¢(x,y) with that of the

scalar function o(x,y)

ag\ 3o 3\ 3g _ _

(;; LU (3}) 2. (5.4.19)
Since ¢ and its derivatives are known in principle one can introduce the
functions

ap 3 _

ax = 0y 50 = 8(0y) (5.4.20)

There results the first order linear partial differential equation

91 (x,y) 3%+ B,(x,y) %% =-1 (5.4.21)

The genera! solution can be constructed by the method of characteristics and

is of the form
uy(x,y) = glug (x,¥)) (5.4.22)

Here ul(x,y) =G and u2(x.y) = ¢, are any two independent solutions
of the associated ordinary differential equation system

dx_____dy ___
N R R N e Bl (5.4.23)

The construction of this general solution proceeds as follows. One first

solves the equation

gy B0y
G N ) (5.4.24)

or its inverse. The solution can be represeted in the form ul(x,y) = Cl'

This result allows one to express say y in terms of x and Cq- Then one
considers the remaining equation in Eg. (5.4.23), say
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[=5

g 1
% - 5o (5.8.25)

Before integrating one expresses y in terms of x and Cye After integrating
one replaces < in terms of (x,y). The resulting solution is of the form

u; =@ *hix,y) =c, , (5.4.26)
On substituting this into Eg. (5.4.22) there results the general solution
a{x,y) = glug(x,¥)) - h(x,y) (5.4.27)

Here h and ¢, are defined functions and g is an arbitrary function which
must be determined from the boundary condition, Eq. (5.2.26)

a(xgs¥,) =0 (5.4.28)

where (xo,yo) is a point on the boundary curve which defines the
repository position.
C. The Stagnation Point Flow
Consider the potential function #(x,y) = a(2xy) which describes the flow
in the neighborhood of a stagnation point. The flow net is shown in Fig. 5.4.4.
Eguations (5.4.21) and (5.4.23) have the form

3o 30 1
2y X + 2% W= g (5.4.29)
dx dy
2y = 7x = ol

The first pair of equations yield

ulxy) =8 o g (5.4.30)

and with this the first and last term can be written

X = —ads (5.4.31)
2Vx¢ - c1
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This integrates into
_ 1 -
u,(x,y) =as + 3 cosh 1(—"—): <,

= ag + % cosh'l(————li-—j) = ¢, (5.4.32)
x y2

Thus the general solution is

aa(x,y) = g(x? - y?) - % cosh™ —"——) (5.4.33)
XT -y
in agreement with Eq. (5.4.27). Suppose that ¢ = 0 along part of the
potential line xy = 1. Then
2 2y 1. yt
a(y™ - ¥°) = 5 cosh™{ —L—— (5.4.34)
Vy?Z - y2

which determiu.s the arbitrary function g. To find its functional form set

2 _ 2 (5.4.35)

Then for y > 0

-1 217—— He (5.4.36)
yos (u2 +4) ¢ u o

Both square roots are taken positive. Substituting for in tei 1s of u yields

1/2
1 -1 2 coa =
= h .4.37
g(U) Vi cos! <[—'(—7—+'m7-2-7] ) (b 3 )
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With g determined, the time-distance function o{x,y) becomes with Eq. (5.4.33)

o(x,y) = l’l cosh™! 2 1z
Toefe 0f - PIE-yD)F + a4l e - (F - P2

X -y

- COSh—l([—z——x—z']—l-rQ)( (5.4.38)

If the repository surface S given by xy = 1, is restrictecd by X, € X <X
one must restrict the range in y to stay in the "shadow region."

The methcd just discussed is nol restricted to rectangular Cartesian
coordinates (x,y). 7Tn general curvilinear coordinates ny Eq. (5.4.19)

takes on the form.

g oo 13 20 _ ;4 (5.4.39)

where the g.. are thr metric coefficients. The Egs. (5.4.23) are replaced

by

dnl dn2
=T3¢ = -do (5.4.40)

3
11 3m 92 9

:

|

[{=}

For cylindrical polar coordinates for example 9 = 1, 95 = re, mo="r
n, = 6. In case the integrations in Egq. (5.4.40) are difficull to perform
numerical integralion method are obviously called for.

Before concluding this section we consider some generalizations mentioned in

Section 5.1. The construction of the travel time distance function can be carried
out even if the ground has an anisotropic permeability. This is very important
in practical applications. '

Consider a two-dimensional groundwater flow in a homogeneous anisotropic
medium with principal axis permeabilitie. ky, ky. The combination of con-
servation of mass of the fluid and Darcy's law leads to the elliptic equation

Lld) + Ll ). 0 (5.4.81)
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where ¢ is the potential function first introduced in Eq. (5.1.7).
by kx this can be written

2 k k
e, 3_ 3% _ o
" Vk'f 3y (Vﬁf ay)

With the new (scaled) Y coordinate

and

ihere results the potential equation for an isotropic medium

32¢ + QEE =0
;;§ aY2

One can of course equally well rescale the x coordinate.

On dividing

(5.4.42)

(5.4.43)

(5.4.44)

Suppose now tnat the boundary value problem for the harmonic function ¢
has been solved from Eq. (5.4.44). Then the conjugate stream function y(X,Y)
and the couplex potential F(Z) can be constructed as follows. In view of Eq.

(5.2.17) ‘the complex potential F(Z) has the form
F(Z) = ofX,Y) + Tu(X,Y)
With

Z=Xt+tiYy , I=X-14Y ,

F(Z)=¢(Z;Z : ——Z2;2>+w<—zgz : —?—-—Z]Z) .

(5.4.45)

(5.4.46)

(5.4.47)
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Now set Z = Z, then
F(Z) = ¢#(2,0) + iy(Z,0) (5.4.47a)

To find F(Z), given the isotropic potential ¢(X,Y) one computes from Eq. (5.4.45)

Fr(z) =28+ 28
ap ad
SEUN (5.4.48)

by using the Cauchy-Riemann gqs. (5.2.1). Since § and its derivatives are in
principle known function set.

20 - 9 (K.Y) (5.4.49)

Thus

FU(Z) = 8y (X,Y) - idy(X,Y) (5.4.50)
which with help of Eq. (5.4.47) becomes

F(2) = 8,(2,0) - i6,(2,0) (5.4.51)

On integrating there results the com-lex potential

Z
fz) = | (8,(2',0) - i8,(2',0)] &z’ (5.8.52)

from which one can readily isolate the stream function u.
As a simple illustration consider again the stagnation point potential

#(X,Y) = a{2 XY). Then
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¢1(X3Y) = a2Y H ¢2(X:Y) = a2X (5.4.53)
so that

¥4
F(Z) =_{ [-ia22'] dZ'

= ~iaZ? (5.4.54)

Once w = p(X,Y) + W ({X,Y) = F(Z) has been constructed o(P) can be determined

by the methods discussed. Then one replaces the distorted coordinates (X,Y)

or the distorted flow net ¢ - ¢ with help of Eq. (5.4.43) in order to recover
the original physical field variables in the anisotropic field.

5.5. The Solution of the Three-Dimensional Transport Equation

The construction of the solution to the transport equation in two
dimensional flow fields depends seemingly on the existence and employment
of the potential and stream functions describing the flow pattern.
Unfortunately this conjugate pair of harmonic functions does not exist for
three dimensional flows. Of course one has a ground water potential function
for such flows but its mathematical coupling to the three-dimensional stream
surface function is not as analytically connected as the Cauchy-Riemann
equations in twu-dimensional flow fields. Thus one must seek an alternate

approach.
The proper suggestion comes from the properties of the functions which

vere required in the solution of the two dimensional problem. These are given
by Eqs. (5.3.3), (5.3.4) and (5.3.5), i.e.,

(vé)- (va) = -1 PeR (5.5.1)
a{Q) =0 , QS (5.5.2)
ofP) >0 , PeR (5.5.3)

It will be shown that if one postulates the existence of a travel time position
relation ¢ = o{P) which satisfies the properties (Egs. (5.5.1) and (5.5.3)) that
one can then obtain the solution to the governing Eq. (5.1.9)

aC
n 1
3T - K; (o) (vC ) * 2 L= 30, n=12, .. ,a,=0 (5.5.4)
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The side conditions are {Eqs. (5.1.11) through (5.1.13))

Cn(P,O) =0 , PeR {5.5.5)
Cp{@st) = Clg Q) , Qs , t>0 (5.5.6)
gn(P,t) =0, t<0 PeRUS {5.5.7)

In view of Eg. {5.5.1) we now assume only the existence of a flow potential
function ¢(P) and the travel-position function o(P) which generates an ortho-
gonal gradient field described by Eq. (5.5.1), with o obeying the minor,
non-negative properties of Egs. (5.5.2) and (5.5.3). In addition we shall
impose the geometrical restriction (Eq. (5.3.9)) on the position of the
repository surface which leads to (see Eq. (5.3.12))

(v8)-({vg (P,t)) =0 , t>0 , PeRUS (5.5.8)

The above formulation has the interesting conseguence that the solution to
these governing equations presented below will also be the solution for the
one, two and three dimensional flow fields. The reader must, however, keep
in mind that it is now no longer possible to reduce the transport Eq. (5.5.4)
to the single form given by Eq. (5.3.1) but Eq. (5.5.4) must be solved in the
three dimensional space. We shall construct the general (non-recursive)
analytical solution. The method employed is a generalization of the
classical solution method described by the writer in Ref. (Hl), p. 427.

The solution for the mother concentration (n=1) of Eq. (5.5.4) is

-2, Ky0(P)
¢ (p.t) = cfe T g (Pt - Kpa(P)) (5.5.9)

as already obtained for the two-dimensional case in Eq. (5.3.17). That this
satisfies the three dimensional problem is verified by computing

e—lela(P) agy

=0 5 (Pt - Kja(P)) (5.5.10)
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-AlKla(P)
(96) -(vg, (Pt - K (P)}) - K, (v8) (o)

(v8)+(vC;) = Ce
=
T (P,t - Klo(P)) + Algl(P,t - Klo(P))

o -xlkla(P) 3G
= ClKle [?f_ (P,t - Kla(P)) + xlgl(P,t - ch(P)ﬂ (5.5.11)
by using Egqs. (5.5.1) and (5.5.8). Substitution of these expressions into

Eq. (5.5.4) verifies the solution Eq. (5.5.9) forn =1 (xo = 0). Further-
more Egq. (5.5.9) satisfies the initial condition (Eq. (5.5.5)) because

of Eq. (5.5.7). Finally, Eq. (5.5.9) obeys also the boundary condition

(Eq. (5.5.6)) on account of Eq. (5.5.2).

The only remaining quantity to be constructed is ¢ = o{P). Once a is known
the mother concentration is completely determined. o arises in the solution of
every member of the radionuclide chain and the determination of this function
can be obtained from the solution of the partial differential Eq. (5.5.1).

We now extend the result (Eq. (5.5.9)}) and propose for the general solution
of the governing Eq. (5.5.4),

n n -prpa(P)
Cn(P,t) =y E: e fn’p,q(P,t - KPa(P»
p=1 g=l
~x K o(P)
+ g (F,t -Ka(pdle "™, n-1,2, . (5.5.12)
The functions fn p.q are unknown at thss point and are to be found subject
to the imposed asymmetry condition
= - f {P,t , t 5.
fn,p,q(Pst) n,q.ptret) >0 (5.5.13)

and where

- Yy =
fn,p,q(P’t) = fn,p,q(Q’t’ 0 , 1«0 (5.5.14)
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The determination of the fn’ , functions proceeds in a number of stages.
Their determination rests on the fact that if C (P,t) is the solution of
. (5.5.4) then the fn,p,q functions must satisfy certain constraining
eguations. If the reader is not interested in the mathematical details of
the solution he may wish to turn to the final result, €q. (5.5.50).
By using the asymmetry condition (Eq. (5.5.13)) one can re-write Eg. (5.5.12)

as follows

n n - ¥ g(P) -2 K o(P)
Gt =3 L Te 7 f o (PitkolP)) —e 90
p=1 q=1
° —XnKnc(P)
p’q(P,t~an(P)) + Cogn(Pst - Kna(P)) e . (5.5.15)

From this one observes that the proposed solution form for En(P,t) obeys the
initial condition (Eq. (5.5.5)) by using Eqs. (5.5.3), (5.5.7) and (5.5.8).

The boundary conditions (Eq. (5.5.6)) are also satisfied in view of Eq. (5.5.2).
Therefore the only remaining condition to be met is to show that Cn(P,t)

obeys the governing partial differential equation. Substitution of Eq. (5.5.12)
into Eq. (5.5.4) and using Eqs. (5.5.1) and (5.5.8) yields

n K K
-~ - 2 _
p§1 q}i[( n) 2 Fop,q(Pet = Kpo(P)) + (n % Kﬂ) foo.qlPot Kpa(P))]
~x K _o(P) n-1 n-1 -2 K a(P)
PR Lo (P, - K o(P)) e PP
e s » € g e
1 &y & Tn-lpsa p
-2 1K So(P)
£ 00 a9,y (Pt =K _yo(P)) e ML (5.5.16)

Here use has been made of a property of the as yet unknown functions

f , t.e.,
n,p,q

(V¢)'(an,p,q(P’t)) =0 , PeRUS , t>0 (5.5.17)
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This property will be verified subsequently.
It is Eq. (5.5.16), together with the various constraints such as Egs.
(5.5.13), (5.5.14) and {5.5.17), which when solved will yield the solution to

the problem.
On equating coefficients of the different exponentials in Eq. (5.5.16)

and slightly re-arranging the equations one gbtains

o LI
— +
q}=:1[at 9,0t * ¥ pfn,p,qt] - oo [21 fa-1,p,q{> 1)

p =
)
“p,n-1cn_19n_1("’t)] s, p=1,2, «.on-1 (5.5.18)
where
A Ko - K 0, ifj
= -pp g9 e T )
“p,q = Yq,p S 833 ,1 , izj (5.5.19)

The differential-difference equation system (Eq. (5.5.18)) for the functions

fn £, can be reduced in several stages to a simpler difference equations

’ i

system for a new set of unknown functions hn p.q° For this purpose introduce
3 £ ]

the integral transformation

(P,t) = J(up’q s h (Pys) , t) s (5.5.20)

f";an ,P,q

where the integral operator J is defined by

~nt t us
e [ p(s)e ds , 50

J(u, p(s) , t) = o (5.5.21)
0, t<0

One finds from Egs. (5.5.20) and (5.5.21) that fq 0 q(P) i¢ a solution of

df
n,p, _
—gER (pt) =y oL PE) Ry o (PE) . (5.5.22)
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Furthermore by Eqs. (5.5.13) and (5.5.22) there follows the asymmetry condition,
p,q{Pst) = =hy o o (Pet) . (5.5.23)

If the iast two equations are substituted into Eq. (5.5.18) there results with
heip of Eq. (5.5.19)

n n
T lugp gy (P,t) + 2 b, (Pot) =

P4’ N,D.q gm1 ToPed
A 4K n-1
n-1"n-1 " o
= AT ot pg ) * Coifp 181 (o) (5.5.24)
n p q=1
The key to the solution of this equation is the fact that h and f
n,p,q n,p.q
satisfy the recurrence relations
X K
~1"n 1
h (P,t) = N h {(P,t) P.q=1,2 ... (n-1)
4 - - -1 ’ ) ’
P-4 Ko = Xp ¥n,p7 ¥p,q ™1aPo0
(5.5.25)
A 1K
-1"n 1
f (P,t) = = = f (Pst) , pg=1,2... (n-1)
n,p,q K, Kp a0~ MpLg n-1,p,q
{5.5.26)

One shows that if Eq. (5.5.25) is assumed valid then Eq. (5.5.26) is
a consequence of Eq. (5.5.20). Furtherfore, one establishes that if Eq.
(5.5.23) is valid then Eq. (5.5.25) hold for the function pairs (h n,0,q°
h ) and (h ). mecm1mwcmmmeEm.(552M

h
n—l,P,q n’Q9p, n—lstD
and (5.5.26). There results a cancellation of the two sums leaving only

1Kn

A
ot =

Pﬂ:

0 .
n cn-lsp,n-lgn-l(P’t) p=1,2, ... n -1 (5.5.27)

1

q

Once this difference equation is solved, the hn, g functions when substi-
tuted into Eq. (5.5.20) yield the function f which then determine the
general solution given by £q. (5.5.12). It 15 the solution of £q. (5.5.27)
which constitutes the major part nf the following analysis. One observes
from Eq. {5.5.23) that



hn,p,p(P’t) =0 {(5.5.28)
Now suppose p > q. It will be seen later that this condition allows one to
satisfy the symmetry condition {Eq. (5.5.13)). One can then solve the Eq.
(5.5.25) fiteratively for n leading to

L
SR . 5.
"nipaaPrE) = Ty g(Pat) o P> (5.5.29)

where for short hand notation we have set

Ry q(Poth = by o Pst) (5.5.30)
Ln,p is defined by

bnp = ®nrac ) (Kopdap) oo (Kpagd ) p=1,2, ... , n-1(5.5.31)
Ln,n = 1. Un,p,q is defined by

Unpq = Bnup(¥paa) Gnelpl¥pg) « + ¢ Bpep,plip,g)sn >P >4 {5.5.32)

Un,p,q =1 n=p>q
where

Gp,qm = (Kq - Kp)(z - up’q) (5.5.33)

A number of properties of Gp (z) are derived in Appendix G. If the
solution {5.5.29) is now substituted into Eq. (5.5.27) and the asymmetry
condition, Eq. (5.5.23), is used there resuits

n L
Lap 2 T 1 hy Pt = 2 U—th.p(P,t)
=1 M, 77 9=p n,g,p
A 4K
n-1"n 0
= K - Kp Gp,n—lcn-lgn—l(P’t) , p=1,2, ... ,n-1 (5.5.34)
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This system determines the functions hp q successively beginning with h2 1
These functions are linear combinations of the boundary condition functions
gk(P,t) as can be seen from £q. (5.5.34)., For the solution of this equation

set
p
Pt = T Ap'q’kcggk(P,t) P>a (5.5.35)
k=1
The Ap 4.k are unknown constant coefficients. It follows from Eq. (5.5.28)

and (5.5.30) that

hp'p(P,t) =0 (5.5.36)

and so in Eq. (5.5.35)

Ao ook k=1,2, ... p (5.5.37)
At this point one can verify the validity of Eq. (5.5.17). By Eqs. (5.5.8)
and {5.5.35)

(vg)- (vh (P,t)) =0 . (5.5.38)

p.q

So that by Eq. (5.5.29)

(vé)e(vh, , o(Pst)) =0 . (5.5.39)

P.q

Then in turn by Eq. (5.5.20)

(va) (an’p’q(P.t) =0 . (5.5.40)
Thus, Eq. (5.5.17) is seen not to be an additional assumption but the natural
outgrowth of condit ¢ns (Eq. (5.5.8}). One can now turn to the determination
of the coefficients Ap q K*

Substituting Eq. (5.5.35) into (5.5.34) and interchanging the orders of

the double sums



p
1 0
L > A g, {P.t) - (5.5.41)
n,p B=1 q=k Un,p,q P.Q;k k 7k
P n L
- XY T A kg (Pat) =
k1 g=p mawp P 51
P ¢
n-1"n
= K;":T(;“ p.n-1%n- 19n 1 (Pst) . p=1,2, ... (n-1)
Equating coefficient of the 9% functions gives for k < n - 2
(5.5.42)
P 1 L Ln
e LU Pk T LU T Rgpk t 0 P b2 e (D)
q:k sPs q=p s9sP k = 1’2’ e (n_2)
and for k =n -1
L
__Nyn=1 . (5.5.43)

A =
n,n-1,n-1 Kn—l -

If one separates out the g = n term in Eq. (5.5.42)

;s p=1,2, ... (n-1)

1,2, ... (n-2)
(5.5.44)

E L Z T

A =
";P,k = n ,0,9

n,q,p Q:P’

i}

The problem has thus been finally reduced to the solution of this difference
equation. It is shown in Appendix H that the required solution is given by

L

p,k 1
A = = ,P>q>k (5.5.45)
Psdsk = kg =Ky By qlup,q)8ke1,qlug q) - Bpo1 q(op,q)

Here it is to be understood that the factor Gp q("p J is to be replaced
by 1 when this term appears in the denominator. ’
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We can now summarize the solution, Consider the expression for cn(P,t)
in Eq. (5.5.12). By Eq. (5.5.13) there is no contribution when p = q. The terms
corresponding %o q > p can be associated with those corresponding to q < p by
interchanging p and q and then using Eq. (5.5.13). There results

-1 —x k o(P)
[ fo.0.q(Pst = Ko(P)) (5.5.46)

-2 K a(P)
e WA (Rt ok U(P))] Crgy(Pst - Ka(P) e " "

3y Eqs. (5.5.20) and (5.5.29) with fp,q(P,t) = fp,p,q(P’t)

L
o MeP
frp,q(P:t) Uy o0 RLAL (5.5.47)

In turn by eduations {5.5.20) and {5.5.30)
f = L] Il Y ‘—- .
p,q(Pst) J(up’q hp,q(p 1), t) (5.5.48)

so that by equation {5.5.35)

9
Y 0
Toa®t) = Ay qcdlp g0 G8(Pae) 5 1) (5.5.49)

On combining Eqs. {6.5.46) and (5.5.47)

n o p- -2 K o{P}
CplPut) = 2 b3 [——"—Eq—F q(P,t)] #e T (b Lt - K aP)
p=1 q=1-"P
(5.5.50)

where

_prpq(p) -Aqan{P}
< - Y. -
Fp,q(P,t) =e fp’q(P,t KDU(P)/ e fp’q(P,t qu(P))

(5.5.51)
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This represents the final form of the general solution to our problem. The
functions fp'q(P,t) are given in terms of the boundary data by Eq. (5.5.49)
with the A , ’k's Tixed by Eq. (5.5.45). The solution holds for a radio-
nuclide chain of arbitrary length. In the following are set out the first
three members of the matriarchy.

The mother concentration (n = 1) is obtained from either Eqs. (5.5.9) or
(5.5.50} with help of the scaling relation (Eq. (5.1.10}))

o —AIKIU(P)
Nl(P,t) = Nje gl(P,t - Kla(P)) (5.5.52)

The first daughter {n = 2) concentration by Eq. (5.5.50) is

L -r,K50(P)
22 o 272
CZ(P,t) = UE;I F21(P,t) + Coe gZ(P,t - Kza(P)) (5.5.53)

But Uppy = 1 by Eq. (5.5.32) and L22 =1 by €q. (5.5.31). Thus with
Eq. (5.5.51)

L =-2,K,a(P) -2, K,0(P)
22 272 1"
Ty Fpy(Pst) = e fop (Pt - Kyo(P)) - e f21(Pst - Kya(P))
(5.5.54)
In turn by Eg. (5.5.49) and (5.5.21)
TP R HaqT
£y (Pst) = Ay CCln(t) e 2 g g, (P.1) e 2l 4 (5.5.55)
where h(t) is the step function and by Egs. (5.5.43) and (5.5.31)
A o2
211 R _ K,
K, a
2"1
= —e (5.5.56)
K1 - K2
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If these results are substituted into Eq. (5.5.53) and the scale relation
(Eq. (5.1.10)) is employed one obtains

—llKlu(P)
Ny(P,t) = e Ny 1(Pat = Kyo(P)) B(t - Kja(P)) (5.5.57)
-1,K,0(P) o ~AoKs0(P)
e Z N, ((Put - Kys(P)) h(t - KyolP)) + Nge g,(P.t - K,0(P))
where ,
;
MK NS et Hyp T
Ny p(Pat) = Ei—é-%f e [ g e o (5.5.58)

[}

This expression formally agrees with the solution (5.3.18) except that o(P)
differs for these two flow fields.
Without filling in all the details of the solution for the second

daughter (n = J) one has from Eq. (5.5.50)

L
Ca(P’t) = [@%)‘ FZI(P’t) + F31(P,t) + F32(P»t)]

AqKa0(P
+e A? 3 )cgg3(P,t - Kga(P)) (5.5.59)

By Eq. (5.5.35)

0
h3p(Pst) = A3110191 (P,t)
(5.5.60)

o (4]
M3a(Pst) = AgprCyey (Pat) + AgpCa0,(Pst)

These two functions are used in the construction of the f .q functions in
Eq. (5.5.48). In turn, the f , ‘s are used in forming the Fi,j function
with help of Eq. (5.5.51). Finally, the coefficients Ai,j,k are obtained
from Eqs. (5.5.43) and (5.5.45)
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T S S ) S (5.5.61)
M TR =Ky Gluy)  * 32 T Ky =Ky Bpplagy)
L3p

Rppy = S
322 7 K, - Ky

The L and G coefficients are given in Egs. (5.5.31) and (5.5.33) respectively.
The construction of the analytical solution for additional members of the
radio nuclide chain proceeds then in the same manner. The reader should note
that with the wppropriate form of o(P) Eq. (5.5.50) represents the geneial
(non-recursive) solution of the nuclide transport in one, two and three-
dimensional flow fields.

The time position function o(P) tfor a three-dimensional field is as
previously the trajectory of a particle of fixed identity. The governing
equation is Egq. (5.5.1), which in arbitrary curvilinear, orthagonal
coordinates n, with metric coefficients g;; can be written

1 38 3o 1 20 3o 1 28 30 _ (5.5.62)

This is an extension of Eq. (5.4.39). The path line of a fluid particle which
is the locus of its position in space as o increase is described by the
ordinary differential equations system

i S SR B (5.5.63)
_L_pﬂ_) _L_@Q_) _L_@Q_)
91187 9pp'dnp/ 93393
For shorthand notation set
1 2 _ .
Ty Wy o Fi(npangsn3) i=1,2,3 (5.5.64)

These functions are known in principle because the potential ¢ is assumed known.
Then

dn; dn, dn
1__"2_ "B _ 4 (5.5.65)
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To find ¢ it is necessary to solve the system

dn; dn, dn, dng dny h3
il RN relal PR Tl P (5.5.66)

These equztion in turn are equivalent to the ordinary differential equation

system
T2 g sy e ng)
= = ) s
HHI F1 1'7 2 3
(5.5.67)
dn F
3 3
—=====0g,(n » Ny » Ng)
" 2 2\ 2 3
o s . 0 (] 0,
If f and g are analytic in the neighborhood of (n1 » Ny s N3]
the Cauchy Majorant method assures the existence and uniqueness of the
solution to the system (5.5.66). The solution has the general form
fL(nl,nz'n3;C1,C2)=0
(5.5.68)

n
[=]

fz(ﬂl > Ny > N3 5 cl ’ Cz)

In order tu actually construct the solutions by quadratures a number of
methods may be employed.

(a) It may happen that one ot the equations in Eq. (5.5.66) can be
integrated directly due to the absence of one of the variables. Let it be
the first equation and suppose ul(n1 s n2) =q is its integral.

With help of this one can eliminate n from the second equation or n,
from the third equation. One obtains respectively uz(n2 . n3) =<y
or Vz(n1 s n3) = C3.

(b) It may happen that two of the equations (Egs. (5.5.66)) are of such
a form that they contain only the variables whose differentials enter the
equations. Then one can integrate these two to obtain two sclutions, say of
the form

“1(n1,n2) =C H u2("1»ﬂ3) = CZ (5.5.69)
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(c) One can re-state the Eg. (5.5.66) with help of the fraction as follows

dnl dn2 dn3 kldnl + kzdnz + k3dn3

FoT 5, T F3 N lel + kze + k3F3

(5.5.70}

where kl’ k2 and k3 are any multipliers, not necessarily constants,
which may be chosen as any functions of nys Ngs Mge The choice can be

made so that
i) The last expression in Eq. (5.5.70) taken with one of the first three

terms yields an equation which can be solved by quadrature. With this
integral one can proceed as done under (a}.
ii) Two different choices of (kl’kZ’k3) are made so as to give two

inteyrals
iii} Choose the multipliers so that

le1 *koF, + kFg = 0 (5.5.71)

Then the numerator in the last term in Eg. (5.5.70) must vanish also which
gives rise to the Pfaffian equation
Kldnl + kzdnz + k3dn3 =0 (5.5.72)

If one defines the vector k with help of the unit vectors Ei

kK = aky * 52k2 + E3k3 (5.5.73)
the condition of integrability of Eq. (5.5.72) is that
kx curl k = 0 (5.5.74)

1f this is met, Eq. (5.5.72) can be integrated by standard means.

In summary the above method give rise to integrals of the form
of Eg. (5.5.69). These equations can be used to construct the scalar function
a(P) as follows. Consider that Eg. (5.5.65) is solved say for the last pair



do -1
E"G = _F]. (‘113“29“3) (5-5-75)

Now eliminate n and ny from the right hand side with help of Eqs. (5.5.09).
The resultant integral will be of the form

uz = o+ ho(n3,c1,c2) = (5.5.76)

If ¢ and c, are replaced again with Eq. (5.5.69)
uy=o* n(nl,nzm3)= cq (5.5.77)

where h is a specific function.
Now the general solution of the original partial differential £q. {5.5.62)
is of the form

ug(nganyong) = gluyngsamy) 5 uy(ng,ang)) (5.5.78)
where g 15 an arbitrary function. Thus one has finaily

olnysngang) = glug(ngany) 5 up{ngang) = hng,npsng)) (5.5.79)
The arbitrary function g is determined from the boundary condition (Eg. 5.5.2)
where Q is & point on the potential surface which coincides with the

repository surface. As a very simple illustration consider the three-
dimensional flow field into a sink. The potential function is given by

oir) = -2 . (5.5.80;

Equation (5.5.62) takes on the form with np =T np =8 n3 =¥ 0y =1,
955 = r2, 933 = (rsine)2 (spherical coordinate system)

A do -1 39
r_za‘r‘”’ﬁ*oa'w“‘ . (5.5.81)

The associated ordinary differential equations system (5.5.63) is

2. de d
redr =0—°=0—"’= —do (5.5.82)
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sg that e and ¢ are constant and

3
Ao(r) =C - 3 . (5'5'83)
If o =0 at r =R then
oP) =3 R-r%) , 0crgR . (5.5.84)

We will discuss the travel time position function ¢(P) for a number of three-
dimensional flow fields of interest to usc in a forthcoming report.
5.6. The Nuclide Transport in Presence of Dispersion

In this last section we introduce the effects of dispersion on the nuclide
transport in two-dimensional hydroloegical flow fields. With dispersion taken

into account Eq. (5.2.23) reads

aCn 1 acn acn D azcn azcn
R Ty ) Tl o) el (56

The velocity components are determined with help of eith2r the potential
function #(x,y} or the stream function y(x,y) by using Eq. (5.2.2)

v @y _a¢_wm (5.6.2)
Recall that ¢ and y are harmonic functions

w0 , vi =0 ) (5.6.3)

and that they form an orthogonal coordinate system

(vg)-(vp) = 0 . (5.6.4)

As in Section £.2 one introduces instead of the Cartesian coordinate system
(x,y) the new coordinates #{x,y), w(x,y). The convective terms in £q. (5.6.1)
becomes with help of Egs. {5.6.2) {see also Eq. (5.2.5)),
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aC aC aC
n n 2 "n
VXF" Vya—y—=-q —aT (5.6.5)
where
@ -2+ V§ (5.6.6)

is the square of the fluid velocity vector. The Laplacian operator transforms

as follows
aZCn aZCn 5 ) aCn 2 azcn 78-9%) a2Cn
+ = (V ) +q + 2(vd-vy
ax2 ay2 T a¢2 aday
2
aC 3 C
+ w%) = ¢? =t (5.6.7)
3y

In view ¢f Egns. (5.6.3) and (5.6.4) this simplifies to (Lamme, 1835)

2 2 2 2
3Cn + 3°Cn 2 (a Cn ] Cn)

= q (== +* —= (5.6.8)
ax ay2 aﬁz 3y

When Egs. (5.6.5) and (5.6.8) are combined with Eq. (5.6.1i) there results

2 2

aC 2 aC 3 C a C
n, 3 (d.w) n _pd [ s9) n n _ ~
I g el m 0 (quf * wa) ¥ Anealaop 2 M=1h2 el A0

(5.6.9)

In this egquation one must treat q2 as a function of the independent
variables @,y. This relation has already been derived in Eq. (5.2.26)

0% (bay) = . (5.6.10)

Recall that one can always construct in principle the inverse function z = f{w)
to the complex potential w = F(z). With f(w) the derivative on the right hand
side is then known. The side conditions for Eq. (5.6.9) are, see Egs. (5.3.8)
through (5.3.12})



C,(8,9,0) = 0 (5.6.11)
o
Coldgs¥s t) = Clg (v, t) (5.6.12)

Equation (5.6.9) is a variable coefficient linear, parabolic partial differ-
ential equations system. The solution to this set of governing ecuations will
be discussed in our next report.

I wish to acknowledge many helpful discussions with E. J. Pinney about this

work.
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6. Finite Element Analysis of Radionuclide Migration
6.1 Introduction

The prediction of the space and time dependent concentration of radio-
nuclides in geologic media from various analytical and/or numerical methods may
give some important imnlications in the underground storage and disposal of
high level nuclear wastes. Analytical solutions of the one dimensional trans-
port equation for aqueous concentrations of nuclides in sorbing media, with and
without dispersion, have been published (H1, H2, L1). Although these analyt-
ical solutions give exact expressions and valuable insight, they can be applied
only to the limiting cases where the transt rt parameters are assumed to be
constant or to the transport in geomet. ically si ~lified space. In order to
solve the more general prcbiem we must eventually rely on some numerical
technique. The numerical solution to the radionuclide migration problem based
on the finite difference method has been carried out by R. 7. Dillon, R. B.
Lantz, and S. B. Pahwa (D1) The finite difference method is a useful method
to solve the partial differential equation directly, but this method is not
well matched to the transport problem with complicated geometrical boundaries.
A more effective method is that of finite element matrix analysis, which allows

us to solve a more generalized problem (Yl}.

We here present twa matrix transport equations; one is for transport with
constant water velocity and the other is for the general case. The matrix
equations are appiied to compute the agueous concentrations of a three-member
decay chain in a one dimensional geological medium with constant parameters.
The finite element solutions for the concentration boundary condition are
compared with the analytical solutions. It is found that the finite element
approach gives a sufficiently good approximation to the exact analytical
solution.

The finite-element solutions for a current boundary condition and those for
transport with a dissolution source term are presented, and the differences
resulting from these three different boundary situations are discussed.

The application of the finite element matrix equation to the transport in
one dimensional, multi-layered geometric media and to the transport in muiti-
dimensional geologic media are also discussed.
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6.2 Thegretical Approach
6.2.1 Basic Model Equaticns

The basic equation which governs the water fiow in the porous medium can
be derived in part from the eguation of continuity

T (Eow) * V-lpv) =49 (6.2.1)

®ja>

where v (vx,vy,vz) is the velocity of water, oy is the density of the
water, q{(x,y,z,t) is the source of the water, ¢ is the porosity of the porous
medium. The water velocity v is given by Darcy's law

v = -fw (6.2.2)

where k is the Darcy's constant (k=(kx’kykz))’ u is the viscosity of the
water, and ¢ is the pressure and gravitational potentials

$=p - pwﬂ (6.2.3)

For noncompressible fluids, Eg. (6.2.1) can be written as

v(p v} =g (6.2.4)

Substitution of £q (6.2.2) with Eq. (6.2.3) into Eq. (6.2.4) gives the
basic equation which governs the static pressure

3 ( 3Py « 2 3Py .3 2B
ax(kx ax) * ay (ky ay) * az(kz az)
3 ., 39 a ;. 80 3 aQ u
-, = (K, 22) - o (k=) - p —(k, % =YX q (x,y,z5t) (6.2.5)
W 3x ‘"X ax W oay''y ay W 9z''2 az) Py

where the Q and g are known functions. When the pressure field is solved as a
function of the space, we can immediately calculate the profiles of the water
velocity from Darcy's law.

The transport equation for the aqueous concentration N; of nuclide i in
ground water flowing at velocity v through a porous medium results from the
mass balance



N. N.
Y+ 2 (v.N.) -2 3_‘) CIY)) a_l)

Npd o+ aglvhy ax''x ax ' " ay‘ yay

3 a_ 2_
Ef(KiNi) * ax(VxNi) * ay(vy

aN.
1 N
—) + AiKiNi - Ai—lK'i—lN'i-].: 0, »\0 =0, i=1,2,3,... (6.2.6)

3
- az(Dz 3z

where K, is the sorption constant defined by K = 1+(1-:)KDile’ KDi is
the distribution coefficient, Dx’Dy’ and DZ are components of the
dispersion coefficient D, and A is the decay constant of nuclide i.
Generally the sorption constant, dispersion coefficient, and water velocity
are given by space-dependent functions.

Before the initial release of nuclides begins the concentration of each
nuclide is considered to be zero.

N.i(xsy)zao) =0 (6.2.7)

These systematic equations shouid be solved simultaneously under the
appropriate beundary conditions.

6.2.2 Boundary Condition
For the hydrogeological transport equation, three different types of source

boundary conditions are considered. One is the concentration boundary condi-
tion, the boundary problem of the first kind. Another is the current expres-
sion, which includes convective and dispersive transport at the boundary, the
boundary problem of the third kind. The analytical solutions for the first
kind have been obtained by D. H. Lester, G. Jansen, and H. C. Burkholder (L1)
and the analytical solution for the third kind has been presented 1n recursive
form in our previous work (Hl). Another important and realistic boundary con-
dition is the source condition, which can be directly inserted in the basic
transport equation (Hl). The physical schemes of these three different
boundary conditions are shown in Fig. 6.2.1.

The infinite medium boundary condition is

Ni(x,y,2,t) =0 X,¥,2€ S (6.2.8)

where SI denotes the boundary at infinite distance from the repository.



N(O1 = B(t)

% Cunn;znlration field
%/ -D a—a'!l-' +y Ni(o,t)

—
Fi(t)
Filt)
(a) Concentration (b) Current bcundary (c) Transport with source
boundary condition condition
z
Fig. 6.2.1 Physical scheme of three different boundary

conditions
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For a step release, the concentration bourdary condition at the vepository

is given by
Nj(x,y,2,t) = B;(t) X,¥,Z € § (6.2.9)

where SR denotes the surface of repository. The Bi(t) is given by the

Bateman equation

i
Bi(t) = J§1 by exp(—x‘].t) (6.2.10)

with the Bateman coefficient

I o1 i .
bji m§1 Nm('I:lm A]) 11./ \En (A] - xj,‘ {s.2.11)
(143)

If we assume that the nuclear waste matrix and its contained radionuclides
dissolve at a constant leach rate over the time period T and neglect the
dispersive transport at the repository, the initial concentration of i-th
nuclide can be written by

N? - M?/QT (6.2.12)

where M? is the initial amount of nuciide i per unit initial amount of

vaste, and Q is the volume flow rate of water per unit time, per unit initial
amount of waste.
For a band release, the concentration boundary condition is given by

Ni(x,y,z,t) = Bi(t) [h(t) - h{t-T)], x,y,2 € SR (6.2.13)
Another important boundary condition is that of the third kind which
results from the consideration that the leach rate of nuclide must be equal to

a sum of the rates of convective and diffusional transport, thus

0
M
7 [N(t) - h(E-T)] = DN, + v N (x,y,2,t) , %,¥,2€ S (6.2.14;
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where SR is the area of waste surface in the water phase.
In the special case without diffusional transport at the repository,
Eq. (6.2.14) becomes

0
M
T_‘s [h(t) - a(t-T)] = v Ni(x,¥,2,t) (6.2.15)

This is equivalent to Eq. {6.2.13).

6.3 Finite Element Approach

We apply the finite element method of weighted residuals to solve the
system of equations for watar flow and hydrogeological transport. We present
two matrix equations. One is convenient for solving the problem with constant
migration velocity and with concentration boundary condition. The other is
convenient for solving the proclem wit. thz current boundary condition.

6.3.1 Matrix Equation of Darcy Flow
Consider the pressure, graviational potent1a], and source fields in a
given arbitrary element, We assume these fields to be approximated as

M

(&) 1y = 3 Htyaz)e, (6.3.1)
1
M

o) _ ey = T wxy.2)g (6.3.2)
1

q(e) = Hq] {q} z H !ysz)qi (6'3'3)

where HP, H, Hq are the interpolation shape fuuctions for the pressure,

gravitational potential, and water source fields, P., 2 and q; are the

i
numerical values of the pressure, potential, and of the flux of the water at
i-th node of the element, and m is the number of nodes in the element con-
sidered. The notations [ ] and { } denote the row and column matrixes,

respectively.



6-7

Generally the Darcy cnnstant is space dependent, and we express the

components as

k(o) o THkT )

k
[H] {ky}

k(&) o i )

(6.3.4)

(6.3.5)

(6.3.6)

In Egs. (6.3.1) ~ (6.3.6), different shape functions are used, but use of
a single shape function will not introduce significant errors. To simplify

the mathematical treatment, we put

(4] = [H 1 = [H9] = (W] = [W¥] = (M)

(6.3.7)

According to the Galerkin's method of weighted residuals, multiplying the both
sides of Eg. (6.2.5) by the weight function Hi and integrating the resultant

equation over the volume of the element, we have

‘E(e) E(E) E(e)
JCe Hi [gi'(kx aax )+ %}'(ky :y )+ %?(kz :z )] dve

(e) (e} (e)
2 a0 3 28 g 38
-eydve Hilax(ky 5%) * ay(ky ay) * etk a2 ] dve

ke
- JyeH;a(x,y,2,t)dve

After integrating the first and second terms by parts, we have

aH.ap(e)
Jomk2Bas, - [ T & TPy e
Se* iT an’" Ve Ve g=x,2 q 3q ag
aH; , (e)
- 3p ~iag
Puw Se(Hi k an)dse * °w~j;e[q=x§;,z kq aq aq Jave

- B
= » j\;eHiq dve

(6.3.8)

(6.3.9)
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Substitution of Eq. (6.3.1) ~ (6.3.6) into Eq. (6.3.2) gives the finite
element equation for Darcy flow in porous media

aH.
S U S Gitnitey Htlyiav,] ave to)

q=X,¥,Z

> (—[H]{k 2 javeta e 2 S IHltgdave (6.3.10)
g=X,Y

N

(e
-f;erL)dSe+pwj; k"” —) dse
or in matrix form:

€y (6.3.11)

[ky1te) = o, [ky1(@} + {SF )= {so}+n &5 &

where

IG) = Sy S0 (1,3 20D+ 2 pyy 1y ¥0HD

+ A8 ryy gk, 3 Alygve (6.3.12)
{ss}=:—w JyelH1{q} ave (6.3.13)
e o L, kap( ))dSe
5p1 = Jse (6.3.14)
. @
1523 = S (hk )dse. (6.3.15)

This is an inhomogeneous algebraic equation for P1sBose s By and should

be salved if given values of & and g;. After constructior of the global
matrix, the pressure gradient and gravitational potential gradient surface-
integrals will vanish from a force balance at the interface area o9f adjacent

elements.
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6.3.2 Matrix Transport Equation with Concentration Boundary Condition
We approximate the concentration field in a given element as

n{e) = (M n =}E‘ i, (6.3.16)

The HE (k=1,2,...m) are shape functions, Ni,k is a value of Ni at

k-th node of the element, and m is the number of nodes. As stated in
Section 6.2, the dispersion voefficient, sorption constant, and the water
velocity are generally given by the functions of space

(&) D R.D

Uq = [H"] (Dq} = {Hk Dq,k s 4 = X,¥,2 (6.3.17)
MO TS WOR S " (6.3.18)
i ° i = & TkTik e
(e} v L

Vg | = [H'] {vq} = }E He Yo,k 0 0= X352 (6.3.19)

From the similar consideration used in above section, we put

UYL QT (6.3.20)

In accordance with Galerkin's weighted residual method, multiplying the
both sides of Eq. (6.2.6) by the shape function Hk and integrating the
resultant equation over the volume of the element, we have the finite matrix
representation

J;e He [%f'(KiNge)) + %; (v N (e)) 57 by N(e)) + a =l N(e))

(e) (e) (e)
aN: N}
- %E(Dx a; ) - %? (Dy ay Sy - ( z ;z )
+ xikiN_ge) = 2 gk Ie%] dve = 0 (6.3.21)

The diffusive terms can be reduced to much a simpler expression, which
involves only the space derivatives of the first order, by integrating by
parts:
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(e) aH, an, ()

aN. -
k i
S bl T 20 —) Jdve=- [ F 0 ——=—1 Jdve
Ve 'k Q=Ko ¥sZ 3¢ g 39 J;e a=x5,2 g aq aq
aNge)
_-I;e Hk D n dSe (6.3.72)

where we used the Gauss theorem to replace the divergence terms by the surface
integral terms.

At this stage, we approximate the nonsteady term by a finite difference
and write as

(e) (e) ‘{e)
3K NIT7)  KGNST/(t) - K.N, Y7/ (t-at)
;t1 - A]c - . (6.3.23)

Substituting Eqs. (6.3.22) and (6.3.23) into Eq. (6.3.21) and arranging
the result, we have

Jie e i # 2 00+ 3 (1 1vg) L

q=x3Y» %4
aH, a[H]
3[H] z kT
¥ q=X§/,z s (gt (M 7 gy, 2 Dgag g ) e (N

K, anie)
i’ i L
- j\',er[H] AN 2y Ky N Dave + Jo B 0 o dSe (5.3.24)

Equation {6.3.24) can be reduced to the algebiaic equation afier
evaluation of the volume and surface integrals

(k8D Ny = r®) +s%) (6.3.25)
where
6] = Sy ) [0 g+ o)D)+ 3 0H) vt
q=X,y,2
aH
+ oy Mlaame 3o 2 (5.3.26)
a=x,y,z " 4=X,¥,2 :



Ko,

(r® = oM} THD (g Ny} +2gq Kyp Ny} ) dve (6.3.27)
ante)

(s°1 = fgo TH} D 55— dSe (6.3.28)

At the boundary between two adjacent elements, the continuity of mass is

el

aN:
v o 3y (6.3.29)

Titn = [N

aNi
n

(e}
[N_i v-0D 3

In the usual case where the concentration profiles and water velocity are
continuous *unctions, Eq. (6.3.29) can be rewritten as

an{el auge)
[0 == 35 n = [0 57T (5+1) (6.3.30)

With aid of this equation, the surface-integral terms in all elements,
with the exception of the boundary element, cancel after assembling the matrix
element equations into a single globul equation. The global equation then
takes the form

k9 3 = %) (6.3.31)

or

j=21 kEJ. Ny g = re s k=123 .. n (6.3.31)
where n is the total number of nodes in the space of interest. Our problem is
now reduced to that of snlving the n linear, nonhomogeneocus algebraic

equations with the appropriate boundary condition.

This equation cannot be applied to the problem with the boundary condition
of third kind, because the equation does not inciude the current term given by
Eq. (6.2.14) in explicit form. But use of this equation is ccnvenient for the
concentration boundary condition, in which the diffusional transport at the
boundary is strictly zero.
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6.3.3 Matrix Transport Equation with Current Boundary Condition

It is necessary to extend the matrix equation in 6.3.2 to include the
problem with a discontinuous concentration field. In order to derive the

matrix element equation in more general form, we split the convective
transport term in Eq. (6.3.21) into two terms. Thus,

ante)

3y nle) - i
f\', ¥ 5 (qu,; Jav, ‘-[\'(e q=x§y,z Vq 3q— dve

v
+fq=x);y,z (5 1{®)yave

(6.3.32)

Substituting Egs. (6.3.23) and (6.3.29) into Eq. (6.3.21) and arranging

the resulting equation by use of the similar way in 6.3.2, we have

[x&7 ;) = {(r&1+ {351

but with

K
(k%3 = SyetHd Llgp * 2 4K)IHD - I, g [l

vy p Il gy
g=X,y,z 339 29

K.
e 1 '
Y = fie MY DY GGp 1+ 2y 4K 1N} )dve

- v Nge)) dSe

(6.3.33)

(6.3.34)

{6.3.35)

(6.3.36)

Assembly of the element matrix equations with help of the relation given

by Eq. (6.3.29) yields the global equation

(K97 I, b= (P9}« 9

ar

(6.3.37)
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n
g -8 -
Tk N e s k=123, .
(6.3.37)

rg + SE s K = ayBaysess

=
EanT=1
.
=
-
-
o~
n

where the integers a«,8,y,... denote the number of nodes at which the nuclide
sources are located. Equation (6.3.37) involves the current surface integra-
tions, which account for convective and dispersive transports. This matrix
equation can be applied directly to solve the transport equation subject to
the current boundary condition.

6.4 One Dimensioial Transport with Concentration Boundary Condition-Constant

Parameters
The purpose of this section is to show the applicability of the finite
element approach to the migration of an arbitrary radionuciide chain in
geologic media. For this purpose we consider the threec-member radionuclide
chain 234U > 230Th > 226Ra in a one dimensional medium with constant
physicochemical parameters, and we present a comparison of the finite element
solutions with the analytical solutions (H1).

6.4.1 Numerical Method

We first check the error due to different ways of subdivision of the
migration space. For this purpose we select three different elements. They
are a) a two-nodal linear element, b} a three-nodal quadratic element with two
rods of equal size, and r) a three-nodal guadratic element witn two rods of
different size as shown in Fig, 6.4.1. The linear and quadratic interpolation
functions used in the computations are, respectively,

(H) = [t 1] (6.4.1)

[H) = [(2Ly-1)Ly  (2Ly-1)L,  4LyL,) (6.4.2)
where Li(i=1,2) denotes the normalized, natural coordinate system, Li

takes the value from zero to unity. When the element a) or b) is used to sub-
divide the space, all memebers of the volume integrations in the matrix [ke]

and € can be integrated analytically.



(@)
.—'——lg du ig df,Zje
z{)  z(3)  z{2)

o0 223 2 @

H_td. o =1

(3) (2)

N

XBL 812-28]

Fig. 6.4.1 Finite elements used in this computation, a) two-nodal linear
element, b) three-nodal quadratic element with two rods of equal
size, and c) three-nodal quadratic element with two rods of

d1fferent size,
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Let zy and z, be positions of two nodal points which are measured in
the original z-scaie, then we can write L1 and L2 as

L, = (Z'Zl)/(ZZ'Zl) = £ (6.4.3)

L 1-¢ (6.4.4)

2 = (272)(2572))

where & is the relative coordinate measured fror: z= 2y From Egs. (6.4.3)
and (6.4.4), we have the derivative of shape function

a[H 1 3aH
=TT _f - ‘j‘ [1 -1] (6.4.5)
where |J| is the Jacobian |J| = z,-z;. Introducing Egs. (6.4.1) and
(6.4.5) into the integration terms which are included in the element matrices

given by Fgs. (6.3.26) and (6.3.27) and using the integrations:

113 1/6]
H} [H] dve = |9 6.4.6
Syt TH] v (6.4.6)
/6 1/3]
12 -1/
H
St 2L ave - - (6.4.7)
12 -1/
L/ 12]
: 1 -1
HY alH 1
Se 3 ove - T3] (6.4.8)
11
we have /
13 1/6 2 -112 1 -1
[ke]=(——+xk lal -V w%[ (6.4.9)
16 1/3 12 12 11

. 113 1/6 (K /a0N; 3+ 2y Ky gNy g
r"} = |9 . (6.4.10)
1/6 173 (Ki/atINg 5+ 2y (Ko gN 4 s
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For element b) similar mathematical treatment gives

2/12 -1/30 1/15
K.
(K] = (g1 + AK) 9 -1/30  2/15  1/15

At
1/15 1/15 8/15

12 1/6 -2/3 713 1/3  -8/3
-vi-1/6 12 23 +I%I 13 7/3 -8/3
213 -2/3 0 8/3 -8/3 16/3

2/15 -1/30 1/15 (Ks /At) 1 11K 1N1_1 1

Py

-~

——
!

= || |-1/30  2/15 1/15 K1/At)Ni,g
1/15 1715 8/15 (Ki/At)Ni 3t

where [d| = 7,-7y.

i-1 i-l i—l,2
i-1Ki-1Mi1,3

{6.4.11)

(6.4.12)

For the quadratic element c), the integrations of all members in the

element matrix must be evaluated by some numerical technique.

of Gauss quadrature is employed, the elements k?j and r? can be

calculated directly from

m
1 kit M, ghin

L

where

H. —l[4L1-1 4L+ AL, ]

When the method

(6.4.13)

(6.4.14)

(6.4.15)
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d = (4L1-l)z1 + (4L2—4L1)z3 + (-4L2+1)z2 (6.4.16)

The (Hi)l denotes the value of the shape function at a given point
L2=(L2)l, and Wy is the numerical weight factor. In this computation the
5-point approximation is used

L L2 Wy

1 0.0469100770 0.1184634425
2 0.2307653449 0.2393143353
3 0.5 0.2844444444
4 0.7692346551 0.2393143353
5 0.9530899230 0.1184634425

In computing the finite element solution, the semi-infinite space was
replaced by a finite space ranging from z=0 to z=10,436 m. This model space
is sufficiently large enough to be regarded here as an infinite space, since
radionuclides do not reach such a distance within a time scale of tens of
thousands of years. The model space was divided into 50 elements and the size
of each element was determined by a series of equal ratio, namely
|Jj| =a bj"l, with a=1 m and b=1.16 (see first column in Table 6.1).

The time step at=1000 year was used from t=0 to t=10,000 year. After this
at=2000 year was used. The computations were continued until the time reached
52,000 year.

6.4.2 Numerical Results —Error Due to Subdivision

The finite-element solutions were computed for the concentration profiles
of the three-member decay chain 234U > 230Th > 226Ra in a geologic medium
with constant parameters. As an illustration of the results, the concentra-
tions of 234U, 230Th, and of 226Ra at time t=10,000 year, computed by use
of three different elements, are compared in Tables 6.4.1 ~ 6.4.6. The assumed

constant physicochemical parameters are listed at the bottom of the tables.
As seen from a comparison among these three finite-element solutions, the
errors resulting from the use of different elements are very small. The
maximum error is less than ten percent, with the exception of the results at
greater distance. Therefore, the two-nodal linear element which yields the
most simple matrix transport equation is most preferable for use of
computations.
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Table 6.4.1 Finite-element solutions for 234U > 230Th > 226Ra chasa
resulting from three different subdivisions, concentrations
of 23'4U at t=;D 000 year, assumed parameters are
T=3.33 x 10 year, v=110 m/yr, KU_l 43 x 10
Kpy=5.00 X 104 Kpy=5+00 x 10%,
D=1.76 x 10 m" lyr (For element b the distance
should be replaced by ZZ'i:(ZZi-l 21.*_1)/2.)
Nede  Distance Element a) Element b) Element c)
0 0 0
N1/N1 x 10 Nl/Nl x 10 N1/N1 x 10
1 0.000 9.7229 9.7229 9.7229
? 1.00 9.7087 9.7075 9,7088
3 2.16 9.6911 9.6910 9.6909
4 3.51 9.6691 9.6671 9.6692
5 5.06 9.6414 9.6412 $.6410
6 6.88 9.6064 9.6031 9.6066
7 8.98 9.5615 9.5611 9.5607
8 11.4 9.5035 9.4981 9.5042
9 14.2 9.4281 9.4274 9.4267
10 17.5 9.3290 9.3198 9.33GS
11 21.3 9.1982 9.1972 9.1957
12 25.7 9.0243 9.0082 9.0272
13 30.9 8.7925 8.7914 8.7881
14 36.8 8.4839 8.4565 8.4889
15 43.7 8.0757 8.0752 8.0687
16 51.7 7.5424 7.4974 7.5471
17 60.9 6.8609 6.8628 6.8531
18 71.7 6.0183 5.9528 6.0119
19 84.1 5.0244 5.0323 5.0288
2 98.6 3.92%87 3.8521 3.8973
21 115 2.807! 2.8234 2.8473
22 135 1.7909 1.7458 1.7718
23 157 0.98452 1.0015 1.0475
24 184 0.44724 0.44356 0.46438
25 214 0.15891 0.17070 0.20105
26 249 0.040882 0.046582 0.056257
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Table 6.4.2 Finite-element soluiions for 234y > 230Th 5 226Ra

chain resulting from three different subdivisions, concentra-
tions of 234y at t-50,000 year, assumed parameters are

T=3.33 x 104 year, v=110 m/yr, Ky=1.43 x 104,

KTp=5.00 x 103, Kpa=5.00 x 102, D-1.76 x 103 m2/yr

(For element b, the distance should be replaced by

22i=(224-1 *+ 22i+1)/2.)

Node Distance Element a) Element b) Element c)
Z (m) n 9 x 10 Ny /N x 10 Ny /ND x 10
1 0.00 0.0000000 0. 0000000 0.0000000
2 1.0C 0.0033915 0.0036980 0.0033665
3 2.16 0.0075926 0.0076464 0.0076566
4 3.51 0.01£339 0.013370 0.012843
5 5.06 0.019450 0.019585 0.019616
6 6.88 0.027860 0.028662 0.027885
7 8.98 0.038666 0.038925 0.038997
8 11.4 0.052702 0.054249 0.052717
9 14.2 0.07113¢ 0.071591 0.071753
10 17.5 0.095634 0.098338 0.095534
11 21.3 0.12855 0.12930 0.12966
12 35.7 0.17328 0.17813 0.17279
13 30.9 0.23469 0.235866 0.23671
14 36.8 0.31973 0.32863 0.31820
15 43.7 0.43825 0.43993 0.44195
16 51.7 0.60394 0.62041 0.60038
17 60.9 0.83515 0.83701 0.8417¢
18 71.7 1.1551 1.1847 1.1496
19 84.1 1.5907 1.5910 1.6005
20 98.6 2.1674 2.2155 2.1673
21 115 2.8997 2.8935 2.9035
22 135 3.7754 3.8365 3.7996
23 157 4.7367 4.7183 4.7071
24 184 5.6669 5.7047 5.7107
25 214 6.3949 6.3690 6.3174
26 243 6.7268 6.6866 6.7263
27 290 6.5001 6.4874 6.4268
28 338 5.6492 5.5336 5.5613
29 392 4,2720 4,2824 4.2781
30 456 2.6730 2.5986 2.6289
31 530 1.2877 1.2993 1.3601
32 616 0.43136 0.44459 0.48806
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Table 6.4.3 Finite element solutions for 234y 5 230Th 5 226R,3

chain resulting _from three different subdivisions, con-
Th at t=10,000 year, assumed parameters
r, Ky=1.43 x 104,
KRa=5.00 x 10<, D=1.76 x 103 m?/yr,

centrations of 23
are 1=3.33 x 10% year, v=110 m/y
KTh=5.00 x 104,

(For element b, the distance should be replaced by

22i=(22i_1 *+ 22i+1)12.)

Node Distance Element a) Elemer.t b) Element )
z (m) /8D x 10 N,/ND x 10 Ny/ND X 10

1 0.00 2.6537 2.6537 2.6537

2 1.00 2.5837 2.5785 2.5837

3 2.16 2.5047 2.5046 2.5047

[4 3.51 2.4141 2.4075 2.4141

5 5.06 2.3132 2.3130 2.3132

6 6.88 2.1982 2.1901 2.1982

7 8.98 2.0724 2.0720 2.0724

8 11.4 1.9305 1.9210 1.9305

9 14.2 1.7798 1.7789 1.7798
10 17.5 1.6121 1.6019 l.6121
11 21.3 1.4423 1.4406 1.4423
12 25.7 1.2575 1.2476 1.2575
13 0.9 1.0832 1.0802 1.0831
14 36.8 0.89970 0.89132 0.89970
15 43.7 0.74237 0.73799 0.74237
16 51.7 0.58393 0.57733 0.58393
17 60.9 0.46034 0.45559 0.46034
18 71.7 0.34066 0.33571 0.34066
19 84.1 0.25245 0.24857 0.25245
20 98.6 0.16863 0.16573 0.16863
21 115 0.11159 0.10837 0.11159
22 135 0.060985 0.059464 0.060985
23 157 0.033132 0.030691 £.033132
24 134 0.013104 0.012221 0.013104
25 214 0.0053444 0.0042892 0.0053444
26 249 0.0013560 0.0010674 0.0013560
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Table 6.4.4 Finite element solutions for 234y » 2307n 5 226Ra
chain resulting from three different subdivisions, con-

centrations of

OTh at t=50,000 year, assumed parameters

are T=3.33 x 10% year, v=110 m/yr, Ky=1.43 x 109,
KTh=5-00 x 104, Kpa=5.00 x 102, 0=1.76 x 103 m2/yr
(For element b, the distance should be replaced by

zzi=(22i *+ 229+1)/2.)

Node Distance Element a) Element b) Element ¢}

z (m) NZIN? x202 MY x 102wyl x 107
1 0.00 0.000000 0.000000 0.000000
2 1,00 0.024066 0.026056 0.023738
3 2.16 0.053832 0.053831 0.053922
4 3.51 0.090870 0.093942 0.090344
5 5.06 0.13723 0.13721 0.13746
6 6.88 0.19557 0.20040 0.19468
7 8.98 0.26933 0.26924 0.26980
8 1.4 0. 36291 0.37059 0.36144
9 14.2 0.48177 0.48149 0.48259
10 17.5 0.63250 0.64466 0.63042
11 21.3 0.82251 0.82179 0.82371
12 25.7 1.0593 1.0777 1.0576
1 30.9 1.3485 1.3468 1.3493
14 36.8 1.6910 1.7161 1.6935
15 43.7 2.0787 2.0751 2.0752
16 51.7 2.4886 2.5141 2.5002
17 60.9 2.8801 2.8738 2.8630
18 71.7 3.1975 3.2076 3.2110
19 84.1 3.3816 3.3736 3.3494
20 98.6 3.3926 3.3750 3.3852
21 115 3.2307 3.2256 3.2083
22 135 2.9419 2.9140 2.9262
23 157 2.5955 2.5956 2.5983
24 184 2.2474 2.2274 2.2479
25 214 1.9152 1.9192 1.9258
26 249 1.5845 1.5637 1.5815
27 290 1.2379 1.2430 1.2489
28 338 0.88099 0.86186 0.87227
29 392 0.54744 0.55200 0.56406
30 456 0.28151 0.27722 0.28646
31 530 0.11141 0.11448 0.12611
32 616 0.030530 0.033315 0.038836
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Table 6.4.5 Finite element solutions for 234y 5 230Th 5226Ra chain
resulting from three different subdivisions, concentrations of
230Th at t=50,000 year, assumed parameters are T=3.33 x 104 year,
v=110 mfyr, Kys1.43 x 104, K1,=5.00 x 104, Kpa=5.00 x 102,
D=1.76 x 103 m2/yr (For element b, the distance should be

replaced by zpi=(z2i_1 * z2i+1)/2.)

Node Distance Element a) Element b) Element c)
0 3 1} 3 0 3
Z (m) N3/N1 x 10 N3/N1 x 10 N3/N1 x 10
1 0.00 0.41373 0.41373 0.41373
Z 1.00 0.48170 0.48698 0.48211
3 2.16 0.55792 0.55778 0.55765
4 3.51 0.64289 0.64334 0.64335
5 5.06 0.73698 0.73663 0.73631
6 6.88 0.84031 0.84783 0.83920
7 8.98 0.95272 0.95210 0.95146
8 11.4 1.0736 1.0821 1.0744
9 14.2 1.2019 1.2010 1.1998
10 7.5 1.3360 1.3448 1.3370
11 21.3 1.4733 1.4719 1.4701
12 25.7 1.6109 1.6193 1.6122
13 30.9 1.7451 1.7433 1.7406
14 36.8 1.8718 1.8786 1.8731
15 43.7 1.9865 1.9844 1.9808
16 51.7 2.0851 2.0891 2.0862
17 60.9 2.1631 2.1609 2.1568
18 71.7 2.2169 2,2174 2.2177
19 84.1 2.2428 2.2408 2.2366
20 98.6 2.2378 2.2340 2.2377
21 115 2.1999 2.1986 2.1950
22 135 2.1295 2.1218 2.1280
23 157 2.0091 2.0288 2.0271
24 184 1.0936 1.8935 1.9016
25 214 1.7584 1.7594 1.7601
26 249 1.5999 1.5889 1.5981
27 290 1.4313 1.4326 1.4351
28 338 1.2566 1.2457 1.2548
29 392 1.0794 1.0810 1.0849
30 456 0.90369 0.89394 0.90207
31 530 0.73393 0.73547 0.74033
32 616 0.57497 0.56767 0.57447
33 716 0.43152 0.43277 0.43770
34 831 0.30764 0.30353 0.30875
35 965 0.20615 0.20705 0.21101
36 1120 0.12814 0.12682 0.13027
37 1300 0.072662 0.073242 0.075683
38 1510 0.036794 0.036910 0.038668
39 1750 0.016942 0.016509 0.C17598
40 2030 0.0059845 0.0062648 0.0068668
41 2360 0.0017754 0.0018957 0.0022125
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Table 6.4.6 Finite element salutions for 234y » 230Th » 226Ra chain
resulting from three different subdivisions, concentrations of
230Th at t=50,000 year, assumed parameters are T=3.33 x 104 year,
v=110 m/yr, Ky=1.43 x 104, Kyp=5.00 x 104, Kp,=5.00 x 102,

D=1.76 x 103 m2/yr (For element b, the distance should be
replaced by zpi=(2pi_1 * 224+1)/2.)

Node Distance Element a) Element b) Element c)
0 2 0 2 0 2
Z (m) N3/N1 x 10 N3/N1 x 10 N3/N1 x 10
1 0.00 0.0000000 0.0000000 0. 0000000
2 1.00 0.0024280 0.0026370 0.0024016
3 2.16 0.0054360 0.0054507 0.0054596
4 3.51 0.0091861 0.0095234 0.0091536
5 5.06 0.013899 0.013934 0.013960
6 6.88 0.019869 0.020420 0.019817
7 8.98 0.027493 0.027557 0.027616
8 11.4 0.037306 0.038220 0.037201
9 14,2 0.050031 0.050133 0.050256
10 17.5 0.066640 0.068180 0.066%23
11 21.3 0.088429 0.088573 0.088827
12 25.7 0.11710 0.11971 0.11669
13 30.y 0.15482 0.15499 0.15549
14 36.8 0.20424 0.20861 0.20366
15 43.7 0.26840 0.26852 0.26939
16 5l1.7 0.35042 0.35734 0.35007
17 60.9 0.45290 0.45274 0.45381
18 71.7 0.57708 0.58679 0.57793
19 84.1 0721894 0.72100 0.72115
20 98.6 0.88312 0.89426 0.88532
Z1 115 1.0541 1.0523 1.0502
22 135 1.2264 1.2364 1.2285
23 157 1.3921 1.3893 1.3852
24 184 1.5438 1.5506 1.5461
25 214 1.6746 1.6712 1.6655
26 249 1.7753 1.7766 1.7777
27 290 1.8335 1.8304 1.8234
28 338 1.8352 1.8273 1.8323
29 392 1.7702 1.7687 1.7636
30 456 1.6386 1.6238 1.6308
31 530 1,4535 1.4536 1.4545
32 616 1.2380 1.2242 1.2333
33 716 1.0159 1.0169 1.0226
34 831 0.80416 0.79461 0.80371
35 965 0.61245 0.61351 0.61988
36 1120 0.44632 0.44092 0.44816
37 1300 0.30899 0.30977 0.31477
38 1510 0.20151 0.19951 0.20435
39 1750 0.12257 0.12314 0.12621
40 2030 0.068737 0.068595 0.071158
41 2360 0.035045 0.035397 0.036858
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6.4.3 Comparison with Analytical Solutions

The analytical solutions for concentrations of a three member decay chain

for band release have bzen presented in our previous report (Hl).

S,. S ,
Ni(z’t) = Ni("t) - Ni[z, t-T, bjiexp(—AjT)]n(tuT)
where the N? is the solution for step release

Nf(z,t) = by E(1,151)

N(z,t) = )i‘, b, E(3.3;2) ! [E{1,1;2) - E(1,1;1)
A~ VilagpigTyp) T

+ E(1,2;1) - E(1,2;2)]

> Yo f 2 e
N (Z,t) = b. E(j;j;3)+_ E\]\] 3
3 Em L Vo jo Wp3rg

- E(§,d;2) + E(2,3;2) - E{2,3;3)]

(6.4.17)

(6.4.18)

(6.4.19)

(6.4.20)

. 3
MAPy o E(1,1;§)
ViV .
172 J=1 S(Ay 52 Ty 5) (g 3=3qT5)
k]
[E]
E(k,J i) rp;E(1.359) ]
O *ka)(rlJ"vJ‘FkJ"lJ) (A]J AT T(h A 7Ty gA)
with
A Al
kK 2y 101
Ay = — - == Tps = o = o
kJ Vi Vj ’ kJ Vi vJ
(Z/Zu— B = R
E(i,d:k) = = fz exp -[y2+¥(z/4ay)?] ay (6.4.21)

4 %vk T



Ay i=]
L P 1]
y=1+% 4u(xk—s1-j)/vk
e = Dfv, vi=v/K,

The finite element solutions for the concentration profiles of three-member
decay chain 234U > 230Th > 226Ra at t=10,000 year and at t=50,000 year,
which are computed by use of the linear element are compared with the analyt-
ical sc tions in Figs. 6.4.2 and 6.4.3. The assumed param:ters used in
calculavions are included in these figures. The concentration profiles of
234U and of 230Th at t=10,000 year (t<T) computed by the finite-element
method agree well with those given py the analytical sclutions.

Although the finite-element sglution for the concentration of 226Ra gives
slightly higher values than those given by the amalytical solution, its con-
centration curve is closely related to that from the analytical solution. At
the leach time T, the concentration at the repository becomes zero discontin-
uously, subject to the band-release boundary condition. This discontinuous
concentration with respect to time t at the repository can introduce error in
numerical results at time t greater than T. In analytical treatments the
superposition theorem is easily applied (Hl1), but in numerical analysis there
is no effective method corresponding to superposition. In spite of this
difficulty at t>T, the finite element salution gives a good approximation to
the exact solution, as shown in Fig. 6.4.3, In this computation the time step
used is every 1000 year at t<10,000 year and every 2000 year at t>10,000 year,
whereas the leach time is T=33,300 year. If one selects the time step such
that the leach time T is included in the commutation time .series
t=(n-1)At (n=1,2,..), better results are obtained.

Comparisons of finite~element solutions with the analytical solutions given
in Figs. 6.4.2 and 6.4.3 demonstrate that the finite element method is a useful
numerical technique to predict the migration behavior of radionuclide chains

in geologic media.



6-26

30— , S— -
t:IXIO4yr
o T=333x10%r
v =110m/yr
. Ki 2143 =104
230 3 U
20 7 Thx10 Kry=500%10% -1
o Kga=500xI10°
< = D=1.76 xI0m3/yr |
z \ — Analytical
234 | ylica
ok ’/ UxI0 \ —— Numerical
(FEM)
0 o apnt I T A AR S AT Ju-\\_uum
04 03 102 o | lo}
Distance, km
XBLBI2-18lY

Fig. 6.4.2 Comparison u; rinite element solution with analytical solution,
concentration profiles of the 234y » 230Th » ~226Ra decay chain
at t = 1 x 107 year, concentration boundary condition.
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6.5. One Dimensional Transport with Current Boundary Condition
We describe here the application of the general matrix transport fjuation
given by Eq. (6.3.33) to the one-dimensional problem with constant parameters.

6.5.1 Numerical Method

According to the similar mathematical treatment ‘a2 Sec. 6.4.11, we can
reduce the matrix equation into the simpler algebraic equation. The members
included in the element matrices given by Eqs. (6.3.24) and (6.3.35) are
for element a)

‘. 13 1/6 /2 12
%] = (g * A4Kq) 19) + v
1/6 1/3 -l/2  -1/2
1 -
+ TD%I' (6.5.1)
-1

1
13 VO [(RG/AtN; 1+ g Ky Ny g
¢ =l (6.5.2)

176 1RILIKGIatINg 5% 2 1K1 Ni 2

-
u

for element b)
2/15 -1/30 1/15

K.

e i
[K®T < (g * agky) [9] [-1730 215 1715
1/15 1/15 8/15

/2 -1/6 2/3 713 1/3 -8/3
D
+vlie -1z 23| +E |13 73 -8/3 (6.5.3)
T
~2/3 213 0 [-8/3 -8/3 16/3

2/15 -1/30 1/15 (Kl/At)Ni,l + Ai—lKi-lNi—l,l

e } 1
= 9] |-130 215 1715 | H(K /8t 5 F agKg g
(6.5.4)

/15 1/15  8/15 | [(K;/at)N; 3+ ag K 1N g g
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The mode] space and the subdivision of the space are the same as those
described in Sec. 6.4.1.

6.5.2 Numerical Results
The concentration profiles of the three-member decay chain 4U >
230Th > 226Ra at t=10,000 year for the current boundary condition are shown
in Fig. 6.4.4. The assumed constant parameters are listed on the figure. The
solid curves in the figure show the finite-element solution for the concentra-
tion boundary condition. As has already been discussed in Sec. 6.3.2 the con-
centration boundary condition covers only the convective transport of nuclides
at the repository and is not physically consistent with the basic transport
equation when the concentration of each nuclide at the repository is specified
by the source term. Use of the concentration boundary condition can introduce
a significant error in the prediction of the behaviour of nuclide migration
near the repository, especially when the diffusional transport is relatively
large. In fact, as seen from Fig. 6.4.4, these solutions for two different
boundary conditions give appreciably different curves for the concentration
profiles of the nuclides near the repository. The concentrations of 234U
and 230Th for the current boundary condition are lower than those for the
concentration boundary condition, whereas the concentration of 226Ra for the
current boundary cendition is higher than that for the concentration boundary
226Ra has a relatively

23

condition. This physical meaning is clear. Since
higher mobility compared with those of precursors nuclides, there arises a peak
in concentration (reconcentration) at a relatively early time, less than the
leach time. The peak concentration occurs near the leading edge of the 23OTh

226Ra concentration at the waste causes

precursor. The positive gradient of
dispersive transport in the negative direction. Consequently, the concentra-
tion af 226Ra for the current boundary condition can reach higher values than
for the concentration boundary condition. The gradients of concentration of
234U and of 230Th, on the other hand, have ncgative values at the waste,
and dispersive transport in the positive direction causes 234U and 230Th
concentrations to decrease with distance.

The finite element solutions for the concentration profiles at
t=50,000 year, about 17,000 year after the assumed leach time, for the two
different boundary condition are a'so compared in Fig. 6.4.5. The solution for
the current boundary condition, in contrast to that for the concentration
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three members do not disappear at the repository. At t greater than T all
members have maxima in their concentration profiles, and the nuclides in the
region between the waste and the peak undergo dispersive transport towards the
waste. At distance greater than the locus of maximum concentration there is
no appreciable difference between these two results. The concentration
profiles for the concentration boundary condition und those for the current
boundary condition are almost identical near the leading edges of the bands.
We can conclude that the effects of dispersive transport near the waste source
on concentration profiles of nuclide chain are important near the repository,
but are less significant at greater distances. :

6.5.3 Finite-Element Solution of the Transport Equation with a Dissolution

Source Term
The transport equation which includes the source term can be expressed by

]
DK + v (Ny) = B (DING) + agKyNy - ag qKgNip = (z.t) (6.5.5)

where 6.(z,t) is the source term.
The matrix transport equation becomes

1IN} = %) + (55 +rs'(e)y (6.5.6)

where the matrices [k&], {r€}, and {s©} are given by Eqs. {6.3.34;,
{6.3.35), and (6.3.36). The {s'(e}} is given by

s (8 g dg(zt) dve (6.5.7)

Since all members in the surface-integral column matrix are canceled out
by use of Eq. (6.3.29), the global matrix equation reduces to

fkg]{Ni}={rg} + {slg}
or

n
g ~rd+s'9 k-
P N R I TR XN (6.5.8)

This equation has the same form as that given by Eq. (6.3.37), with the excep-
tion that the surface-integral column matrix is replaced by the source-term
column matrix. If the source term is given by a plane source at 222y, the

column matrix {s'€} becomes
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0
) M.
s & = Jye {H}Tlg 8{z-z4)dve,

(6.5.9)

o
T H

TS k=2
0 k#l

where k=f denotes the position of the plane sonrre.

6.5.4 One Dimensional Transport with Plane Source

Consider a plane source located at 2=z, the interface between 1-th and
(2+1)-th elements. When the nuclides from the source ar~ transported away by
convective and dispersive transnorts, the following mass balance equation
should hoid

L0 al, ( aN; ) 1ds
D — +v N} - (-Ds=—+ VN, d
S 2z TV oaaz 0 2z V2=z +0
% %
= % f22+;)¢i(t)5(2—zg)dz ds {6.5.10)
2 - .
)

Thus, in the global matrix equation, the plane source volume-integration term
can be replaced by the current surface integration. Therefore, we can applyv
the matrix transport equation given by Eq. (6.3.37) to nuclida transport with
a plane source by regardiny the current surface-integration column matrix as
the source-volume-integration column matrix. In this problem of one dimen-
sional flow with infinite plane source in an infinite medium in x and y, a
nuclide can migrate in the positive and negative z-directions, but there s no
transverse dispersion.

If we apply the matrix equation to the concentrations of nuclides in
infinite medium but not in semi-infinite medium, the matrix equation will lead
us directly to the solution for the transport equation with a plane source.

In this section, instead of transforming the modeled space, we adopt the
iteration procedure for a semi-infinite medium. We first compute the solution
for the current boundary cundition. Then we can know the dispersive current
in the negative directivn ana calculate- a new correct current in the positive
direction, for tiie case of dispersive transport in both directions. After
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setting the new current as an input quantity and solving the matrix transport

equation, we have another solution for the aqueous concentrations of nuclides.
Successive iterations yield the convergent soilution, which is identical to the
solution of the transport equation with a source term.

In Fig. 6.5.1 the finite element solutions or the transport problem with a
source term, which are computed by use of the linear element, are coupared with
the analytical solutions given by Eq. (6.4.18) ~ (6.4.20), with the function
E(i,j:k) defined by

E(i,j3k) = e(zlza ﬁiit)f%; 45712722: exp{—[vy2+(zl4ay)2]} dy (6.5.11)

Although the finite--element solutions give slightly lower vaiues for the
concentration of 234U and slightly higher values for the concentrations of
230Th and of 226Ra, they give good approximations to the concentration
profiles given by the exact analytical solutions.

In Fig. 6.4.4 the finite-element solutions for the problem with a source
term are also shown with the dashed urves. The concentrations of 234U and
230Th take the lowest values, and that of 226Ra takes the highest value
near the waste source, when compared with the concentrations given by the
salutions for the concentration and current boundary conditions.

At greater distance these three solutions show almost identical concentra-
tion profiiles and the effects of dispersive transport as the repository becomes

less important.

6.6 Application to Transport to Multi-Layered Media

There are many instances where the prediction of the migration behavior of
radionuclides in geologic media composed of several layers is impo-tant. As
has already been discussed in Section 5.5.4 in the previous work (Hl), the
sorption equilibrium constant is one of the most important parameters whici
have significant effects on the concentravion profiles of nuclides. We here
apply the matrix transport equation to the problem of migration of nuclide in
multi-layered geologic media of which constituent layers have different

sorption equilibrium constants.

6.6.1 One Dimensional Transport in Two-Layered Media
u, 230Th, and 226p, in geologic

The concentration profiles of 234
media composed of two layers which have different sorption constants are
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computed for the concentration boundary condition. The numerical results at
t=10,000 year are shown in Fig. 6.6.1. In this situation, we selected the two
layer media which are in contact with each other at z=98.6 m from the dissolv-
ing waste. The interface between the two layers is perpendicular to the direc-
iion of groundwater flow. The assumed parameters used in computations are
included in the figure. The solid curves show the concentration profiles in a
single infinite medium, with K ~1.43 x 10%, K, =5.00 x 0%, and K, -5.00 x 10°.
The dashed curves show the concentration profiles of nuclides in a two-layer
medium, with reduced sorption constants in the outer medium. For the assumed
time of 10,000 year, the leading edges of the 234U and 230Th bands locate

in the outer medium. The presence of the second layer has no significant
effect on the coricentration profiles in the inner medium, but it causes a local
maximum in the concentration of 230Th in the outer layer. This local peak
results because of the higher mobility of 230Th in the second layer. For
226Ra we find no appreciable change in concentration in the inner layer, but
its lower sorption constant in the outer layer results in an increase in the
maximum concentration and a shift in the locus of the maximum to a greater
distaice. The concentration profiles of 23%U, Z3%h, and 2%Ra at

t=50,000 year are shown in Fig. 6.6.2. Here the nuclides have penetrated
farther into the outer layer with lower assumed sorption constants, resulting
in increased local maximum concentrations of each nuclide. The locus of each
maximum is shifted to greater distance from the waste source.

6.7 Application tc Multi-Dimensional Problem
In this section, we discuss briefly the application of the finite-element
method to the multi-dimensional transport of radionuclides through geological

media.

6.7.1 Two Dimensional Dispersion with Constant Parameters

As an illustration we present the finite-element solutions for the concen-
tration profiles of the three member decay chain 234U > 230Th > 226Ra in two
dimensional geologic media. We adopt the concentration boundary condition.

We select the two dimensional space in y-z plane, the rectangular area of
O0<y<160m, -40m < z < 240 m for the domains of 234 and 23%1 and the
other rectangular area of 0 < y < 320 m, -160 m < z < 96C m for the domain
cf 226Ra and split these domains into 52 triangular elements of different
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Fig. 6.6.1 Concentration profiles of the 25% - 230Th » 226Ry decay
chain migrating through two layer geologic medium at t = 1 x 104
year, concentration boundary condition.
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sizes, The discretization of the model space is shown in Fig. 6.7.1. The
concentration field is approximated as

6
(e) _ n
UL R LY (6.7.1)

where Nij is the value of concentration at j-th node of the element and H is
the shape function. The shape function used here is

rul _ _ _ -

H) = [(2Ll 1)L1 (2L2 1)L2 (2L3 1)L3 4L1L2 4L2L3 43L1] (6.7.2)

where Li's are natural coordinates (or surface coordinates) for the triangle
element, among which the following reiation holds

Lrl*ls= 1 (6.7.3)
The coordinates y and z in the modei space are approximated by the shape
functions as

6
g =[Hl{q} = 2 Hig5 » 0 =¥,z (6.7.4)
o1

From Eq. {6.7.3) we can put
Ll =z, L2 = TNy L3 =1- L - (6-7.5)

Then we have

" [H]]
oz 4L1 -10 1- 4L3 4L2 —4L2 4L3 - 4L1
i = (6.7.6)
3[H
| o0 0 4L2 -1 1 - 4L3 4L1 4L3 - 4L3 -4L1
but
_ -
a[H] 3[H
3T 3z
= (6.7.7)
a[H] 3[H
| "an | ay
where
3z a3y
Jll le 3L dr
J = = (6.7.8)
Y1 2 2z 3y
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From Eq. (A.7.7} the derivatives of shape functions can be writter as

a[H a[H
1z ag
=gt (6.7.9)
a[H] a[H]
3y an
The Jacobian J is given by . _
L Y
I ¥
z y
4L1—1 0 1—4L3 4L2 —4L2 4L3—4L1 3 3
J = 2 y (6.7.10)
0 4L2-1 1--4L3 4L1 4L3—4L2 —4L1 | 4 z
;. Yg
126 26

where (zi’yi) is the position of ith node of the triangular element which
is measured on tha z-y scale. If we wish to compute the solution for the space
which has curvel linear boundaries, we can select the points arbitrarily to fit
the bounidaries.

Although the matrix transport equation given by Eq. (6.3.31) with
Eq. (6.7.2) and (6.7.9) can be directly applied to solve the two dimensional
dispersion with two dimensional water flow, we here present the results for
the simple case of two dimensional dispersion with one dimensional water flow
in z-direction. In computations, the time dependent concentration given by
Eq. {6.2.13) was applied at z=0 and y=0 for the boundary condtion.

The concentration profiles of the 234U, 230Th, and 226Ra decay chain
in the z-direction at y=0 at time t=10,000 year are shown in Fig. 6.7.2. As
easily seen from a comparison of these curves with those for the one dimen-
sional which is given in Fig. 6.4.2, the concentration of each member takes
much smaller values than those given by the one dimensional solution. The
maximum concentration of 226Ra is one fourth less than that given by the one
dimensional solution. This lower maximum concentration is explained by the
effects of transverse dispersion which smoothes the concentration peak. The
figure suggests that the effect of transverse dispersion on the concentration
profiles is very important for the exact prediction of radionuclide migration
behavior.
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6.8 Proposed Future Study

The Darcy flow matrix equation and the general matrix transport equation
have been derived here. Although these flow and mass-transport equations can
be applied to the general problem of the transport of radionuclides in sorbing
media, only the solutions for some limiting cases {one- and two-dimensional
problems with constant parameters) have been gemonstrated. The solutions of
the Darcy flow problem have not been presented., There remain some important
problems to be solved for future study.

They are

1. Solutions of one-dimensional transport with space-dependent physico-

chemical parameters.
2. Solutions of muitidimensional transport with space-dependent physico-
chemical parameters and of multidimensional transport with geometrically
complicated boundaries for the three different boundarv conditions.
Solutions of coupled Darcy flow and mass-transport eq .tions in multi-
dimensional geologic media, including three-dimensional transport with

w

Darcy flow.

4. Introduction of the concept of secular equilibrium between precursor
and daughter nuclides into the matrix transport equation and into the
solutions for concentration profiles of multi-member nuclide chains.

5. Derivation and solutions of the general matrix equation for the
transport of radionuclides without local chemical equilibria.

6. Formulation of the matrix equation for transport with space- time-
dependent physicochemical parameters.

7. Formulation of the energy matrix transport equation which describes
thermal effects on mass transport.

6.9 Conclusion

In this chapter we have presented some apptlications of the finite element
method to the prediction of behaviour of radionuclides which migrate through
geologic media. Based on the discussion above we can conclude:

1. From comparisons of the one-dimensional finite element solutions with
the analytical solutions the finite element method gives sufficiently good
approximations to the exact solutions. The finite-element solution is,
therefore, a useful numerical technique to evaluate radionuclide migration.
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2. The finite-element matrix equations presented here can be applied to
problems with concentration and current boundary conditions and also to solving
the transport equation with a source term. The finite-element solutions for
the problem with a current boundary condition of third kind, and also with a
source boundary condition, agree well with the physical phenomena of near-field
radionuclide migration.

3. The finite-element matrix equations can be ap’ lied directly to the
migration of the radionuclides through multi-layer gcologic media. The effects
of the second layer in two-layer media are discussed in Sec. 6.6.1. Even when
the physicochemical parameters and the water velocity are space dependent, the
matrix transport equations can be applied simply by changing the input data
for these parameters.

4, The finite-element method can be applied to the muitidimensional
radionuclide transport problem by finding a set of suitable discretizations.
Although demonstrations of the solution for the problem with curved linear
boundaries have not been given here, the finite-element matrix equations can
be easily extended to include the migration problem with such complicated
boundary geometries.

5. The matrix transport equations are not restricted in terms of the
number of members in a nuclide chain. They can easily be applied to calculate
the concentration profiles of multimember nuclide chains.

6. The finite-element analysis presented here is a more effecti&e approach
to the solution of the basic transport equation than 1is the direct numerical
solution of the partial differential equation.

6.10 Nomenclature

bji : Bateman coefficient

Bi(t) : Bateman equation

D : Dispersion coefficient

H : Shape function
k(kx,ky,kz) : Darcy's constant

[k] : Matrix for mass transport

[ky] : Matrix for flow



: Source

: Volume

wastes

: Column

terms

: Column
: Column
: Column

: Column
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: Natural coordinate

: Pressure

of water

: Distribution coefficient
: Retardation coefficient

: Order of Gauss quadrature approximation

: Number of nodes in element

: Initial amount of nuclide i

+ Tatal number of nodes

: Unit vector normal to surface

: Concentration of radionuclides in aguifer

: Initial concentration of nuclide i

flow rate of water per initial amount of

matrix for

matrix for
matrix for
matrix for

matrix for

nonsteady and decay generation

surface integration of flux
source term
surface integration of pressure

surface integration of

gravitational potential

: Time

¢ Leach time

: Column matrix for source of water
: Area of surface of repository
: Area of surface of element

: Area of surface of infinite medium
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v(vx,vy,vz) : Velocity of water

Ve : Volume of element

X, ¥,2 : Cartesian coordinate

a : Longitudinal dispersivity factor = D/vZ
€ : Porosity of sorbing medium

A : Decay constant of nuclide i

u : Viscosity of water

Oy : Density of water

¢i (t) : Plane source term in the water phase
¢i(z,t) : General source terni in the water phase
Q : Gravitaticnal potential

Subscripts

e

9
5

q

6.11
D1.

F1.

L1.

H1.

: Element
: Global
: Nuclide

DXY,.z
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Appendix A. The Semiequilibrium Transport Equation with Irreversible
Mineralization
With Eq. (4.2} in our previous report (Hl) we presented a one dimensional
differential equation, the transport eguation, which includes the assumption
that the atoms dissolved in water, Ni’ and the ones adsorbed on the solid,
Mi’ are at anytime in local chemical equilibrium:

l](z,t) = KD,imi(z’t) (A.1)
concentration of nuclide
. libes _ i adsorbec on solid
KD,i = sorption equilibrium constant = concentration of nuclide 1 in water

Here we show how it is possible to include into the transport equation the
effect of a possible irreversible mineralization of the sorbed species into a
different chemical species, which contributes no Tonger to the transport
process.

We assume that an isatope i can be found only in three different states:

(1) Ni’ dissolved in water;

(2) M;, sorbed on the solid, and in equilibrium with Ni according to

Eq. (A.1);

(3) Mi’ mineralized on the solid.

The sorbed nuclide undergoes an irreversible chemical reaction at a rate R:

. + 3
;= KMy, atoms/ {yr) Meo1id (A.2)
where ;i = first-order reaction rate constant for irreversible mineralization
of species i, sorbed in the solid, l/yr. We also assume that a mineralized
species m decays to a daughter L which is also mineralized.

If we note by Fi the sorption rate, i.e., the net rate, per unit volume
of solid, of which the nuclide transfers from the 1iguid to the sorbed phase,

the previous assumptions can be characterized by:
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Water Solid
+
k,
i
N, M., —————p- M
i i i

Figure A.1: Irreversible mineralization reactica schematic.

A mass balance on nuclide i becomes (Hl):

aN 3 N"I BN_i 1-g\e o

e D—;;?-— Vi - ‘iNi + Ai—lNi-l - ( . )ri + ¢i (2,t) (A.3)
aM-I . >

3T° MM AN T o kM (A-4)
zTi = =A.m, + A, .M + k.M (A.5)
at i i-17i-1 it e

We multiply now Eq. (A.4) by (1 - £), add it to Ea. (A.3), use K, defined by
Egq. (2.1.3) and rearrange, and we obtain the one-dimensional semi-equilibrium
transport equation for Ni(z,t):

LN (2,t) = &y 1Ky Ni_ (2.t) * 6" (2,1) (A.6)

where



S 3 3 3
L‘i = -D ;E + vy 3z + K'i T + “'iKi (AR.7)
n; being given by:
kK
1 - ¢} "iD,i
ng =gt é_T?_J __K;L. . (A.8)

Comparing £q. (A.6) and Eq. (A.7) with Eq. (4.2) in Ref. (Hl), it is apparent
that we have indeed the same differential equation, the only difference being
the constant A in the previous transport equation (Hl) is now replaced by

"I.i-
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Appendix B. Non Recursive Solution of the One-Dimensional Equilibrium

Transport Equation

A) With dispersion
We must solve Eq. (2.1.1), with the conditions of Eqs. (2.1.7) and (2.1.8).

Let Ni(z,p) be the Laplace Transform of Ni(z,t):

H.(2,0) = LIN(z,0)] = §7 PP N(z,t) dt (8.1)

[¢]

Define also:

¥;(z,ps = Ny{z:p) eTvz/2D (8.2)

If we use Eq. (B.l) and the initial condition Eq. (2.1.8) in Eq. (2.1.1), and
then Eq. (B.2) in the resulting expression, we get:

2--

d%y.(z,p) - . ~ -

—Z TS -(B1a7iat 5 8 (0) ) (8.3)

where:
3, (2,p) = L8 (2,1)] (8.4)
2

1 v

5 = 5035 i) (8.5)
Kias

-~ 11

B, = 5 — (B.6)

Yi = K.iP + K-i"l-i (B~7)

Due to the condition of Eq. (2.1.7), we can use the Fourier Transform F for
y , and for ¢ too, because we can expect, for physical reasons, the
general source term ¢ to behave as Eg. (2.1.7). Accordingly we define:
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Fism) = FT ] < b [ e Ttz @ (8.8)
where i = /1. Equations (B.3) and (B.8) give:
52.;-; + g'i‘;;i = ?i(s’p) + ;i—l‘;i—l (8.9)
where:
~ ~an -
Filssp) = -é— Fl8, (z.p) e vel2Dy (8.10)
From Eq. (B.10) we get the recursive formula:
S 1 A -~ ~
. = ————— (F, *+ B, s . 8.11
Yi=Z, N (Fy * 85_1%51) (8.11)
Then:
g =0 (8.12)
. F
v = L (B.13)
50t gy
F F
o 2 ~ 1
Yo = + 38 (B.14)
25Ty, e+ o)
R (B.15)
¥3== R B, "2 Z B8y 2F1 T
s™* 93 (s” + 92)(5 * 93) (s° + gl)(s + 92)(5 + 93)

and so on, which suggests:



. i i F.(s,p)
Ji(s,p) = 3 A @ [E‘.%]TL;—‘ (.16)
S NCEEN)
m=j
where
soovs ] g o
J i 1
A'i =A__.[H.Tl_] (B.17)
i p1=3 1
e = D/V (B.18)

Equation (B.16) is a non recursive formula. “e can take its inverse Fourier
and Laplace transforms by the use of tables (e.g., Ref. (Cl)) and the use of
the convolution properties of these transforms (see Ref. (H3), pages 67 and
263). Aiter use of Eq. (B.2), the solution given in Section 2.1 follows.
Notice: In order to find the inverse transforms in the tables, we must rewrite

such fractions as:

; -1
2

[ 0 (s™ gm)]
m=j

as:
. - +
1 Cm +—Cm
m=3 vﬁa -is /g o s

where C; and C; are constants which can be found by standard

mathematical methods. These operations impose the following restrictions on

the solution:
Br,m # Bl,k if  r,mé T,k (8.19)

where 8, o is defined by Eq. (2.1.26), and

v # v if rém (B.20)
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"
The general time-dependent plane source oi(t) of nuclide i at z = 0,
for tha stép release, is given by Eq. (2.1.17):

85(t) = % g (t) h(t) (8.21)
i\t =T g .
where Bi(t) is defined by Eq. (2:1.12). ]

The step-release functions F;’i(z,t) and Fﬂ’m(z,t), given by
Eq. (2.1.35) and (2.1.36) respectively, are obtained by substituting Eq. (B.21)
into Eg. (2.1.33) and (2.1.34): the following formulas, derived from
Ev. (5.33) in Ref. (H1) by « change of variablie and integration by parts,
are used to perform the integrations:

2
-t t e(xq‘“i) e-(z-vie) 14v,a0
e f e V]. - de = E _i(Z,t) (B.22)
0 »/41r9uV,i 9.9,

and

q q
e _{ e VE. o o(z.0) do (B.23)
1
= ri;f:jg;;y [Er,m,m(z’t) - Eq,q,m(z’t)] , forrém
where Eq a,i and Er,m,m are given by Eq. (2.1.32).

Notice: ,The preceding mathematical operations introduce the factor v at the
denominator in Eqs. (2.1.35) and {2 1.36).

B) MWithout dispersion

We set D = 0 in Eq. (2.1.2). The procedure is then the same as the one
for the case with dispersion. Equation (B.2) is no longer needed.
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Appendix C. The Superposition Equation for the Time-Dependent Source
of Section 2.3
When the release rate at the repository depends on t or t2, as in
Section 2.3, the superposition presented by Eq. (2.1.18) is no longer valid.

Such a release can be expressed as:
B1(t) = 328 (t)[cy * o)t + c,t?Ih(E) - h(t - T)] (c.1)

The correct superposition is given by Eq. (C.11), which is derived here. For
simplicity sake, we consider a single-member chain, and a release rate such as:

ol At
"’1” s B, pte” (c.2)
where
1
Bl,l = nfc1 (C.3)

We seek a function N?(z,t) which satisfies:

[Nz, 1) - S—z 1Bl,lte‘“[h(t) “h(t - T)] s(2) (c.4)

with conditions of Eqs. (2.1.7) and (2.1.8). N?(z,t) is given by:

b 15 1
N1 = nl(z,t, Bl,l)

1,

By g) * 03z, - T3 1E;Ll)] (c.5)

- h(t - T)[lni(z,t -7 1

where:

et 5 tey ) = B2 18 jie™Mnce) s(2) (c.6)
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{03zt 131’1) -fe 1al,le"th(t) s(z) (€.7)
1,5 and %S sati 2.1.7) and (2.1.8); and:
ny and n satisfy Eqs. (2.1.7) and (2.1.8); and:
1. 1y T
By = By@ (€.8)

Proof: When T < 0 Eq. (C.5), clearly satisfies Eq. (C.4). When t > T, by
substituting Eqs. (C.5) to Eq. (C.8), into Eq. (C.4) we get:

B ’lte“ts(z) (€.9)

- B% [lBl,le'xT(t -Me - (t-T) Tv B1 18 ATe'X(t'T)] s(z) =0
(q.e.d.)
Furthermore, Eq. (C.5) satisfies Eqs. (2.1.7) and (2.1.8) because lnf
and oni‘ satisfy such equations.
Notice: Although Eqs. (C.4) and (C.6) do not represent a band or a step
reiease, because the release rate is time dependent, we still used the super-
scripts b (band) and s(step) as a convenient way to characterize the step

functions in Egs. (C.4) and C.6).
By the same way we can show that the solution to:

A b b R
LN (2,0) = ay gk N3 g (20t) + 2B By (1)
“[eg * gt * e t230h(t) - h(t - T)I6@)-w <2<, t >0 (C.10)

with the conditions Egs. {2.1.7) and {2.1.8), is given by the following
superposition:

Ny p(zt) = %nB(z,t) + Tnliz,0) + Znb(z,0) (c.11)
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where
0,.b _0s .0 0,5 .0,
ni(z,t) = ni(z,t R Bi,q) - h{t - T) ni(z,t -T3 Bi,q) {C.12)
1b _1ls At \
n;{z,t) = "nilz,t ; Bi,q) -~ h{t - T}
d1s Ll 0 s Ll
[ n(z,t - T ; Bi,q) + T nl(z,t ~-T; Bi,q)] (€.13)
2 b _2s 4
ni(z,t) = “nilz,t ; Bi,q) - h{t - T)
2.5 L 25! 1s L2y
[ni(z,t -1 Bi,q) + 2T Tnp(z,t - T a].’q)
+ 72 0n?(z,t -1 %, )] (C.14)
1’q
X8 - 5 M ¢ x = 0,1,2 (C.15
i,q = 2 "o = b +15)
m=1
. - T
XEi,q 5xB1,qe d x =G,1,2 (C.16)
X7 q s defined by Eq. (2.1.14) and *n3(z,t 5 Y8, q) is a solution of:
XS .Y _ X5 .Y
Li ni(z,t H Bi,q)' Xi—lKi—l ”i-l(z’t H Bi,q)
i -t
Rp 4x Y q
+Et q; By q° h(t) (C.17)

with conditions Egs. (2.1.4) and (2.1.8).
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Appendix D: Description of the Computer Program UCBNEZ25
D-1) The following flowchart describes the structure of the program UCBNE2S5:

Initialize

Data input (see data input cards description below)

Print
nuclide (see sampie output, Table 2.7.14a)
parameters

Times for beginning of leaching (ts)

Leach times (T)

Water velocities (v)

Path iength (2}

Evaluate
extremum for | (see subroutine in next page)
each nuclide

"int
results (see example out.ut, Table 2.7.14b)

______.—_’T//’_—_
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Subroutine to evaluate the extremum for each nuclide

and

Eq. (2.7.28)
n “~J
Eq. (2.7.29)

and

Table (2.
Eq. (2.7.

7.5)
38)

and

Table (2.
Eg. (2.7.

7.9)
60)

Equate
activity
parent

with

Do for
every NNCL
nuclides

? 1st
member

? 2nd
member

? 3rd
member
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D-2) Description of the data cards for UCBNE25

The following cards are read by UCBNE25:

1) 1st card: Initial system description:

VARIABLE FORMAT DESCRIPTION
NNUCL 12 total number of nuclides being considered

z¢ Ei2.4 first value of path length to be used (meters): (zé ¢ 0)

Té El2.4 first value of leach time to be used (yrs); (T¢ 4 0)

7] E12.4 first value of water velocity to be used (m/yr); (vé # 0)
TBL¢ F.2.4 first value of time for beginning of leach {yr); (TBLé # 0)

2) 2nd card: System parameters variation description

VARIABLE FORMAT DESCRIPTION

M1 12 total number of different path length cases to be evaluated
ML =1,2

DEI L E10.4 multiplying factor for d:fferent path length cases:
z=12z¢ x {DEL1)"; n =1,2 ... M1

~2 12 total number of different leach time cases to be evaluated
M2 = 1,2 ...

DEL2 £10.4 multiplying factor for different leach time cases:

T=Té x (DEL2)"; n=1,2 ... M2

M3 12 total number of different water velocity cases to be
evaluated, M3 = 1,2

DEL3 £106.4 multiplying factor for different water velocity cases
vWw = v¢ x (DEL3)N; n=1,2 ... M3

M4 12 total number of different time for beginning of leachina'
cases to be evaluated, M4 = 1,2,3 ...

DEL4 E10.4 multiplying factor for different time for beginning of
leaching cases
TBL = TBL¢ x {DEL4)"; n = 1,2 ... M4



A-14

3) 3rd through (NNUCL + 2}th card: Nuclides description

NNUCL cards.

VARIABLE FORMAT

NN
NUCL
NH

NP1

NP2

HFLV

Kp

TOX

12
A6
12

I2

12

£12.4

£12.4

E12.4

E12.4

It is required one card for each nuclide being considered, for a total of
Each card has the following inputs:

DESCRIPTION
Nuclide jdentification number
Nuclide name {e.g., TH-229)

Nuclide hierarchy:
NH =1 : if it is a first member of a chain

NH = 2 : if it is a second member of a chain
NH = 3 : if it is a third member of a chain
NH = 4 : if it is in secular equilibrium with the nearest

long lived precursor
NP1 = ideniification number of the lst precursor if NH = 2
or 3. NPl = identification number of the nearest long lived
precursor if NH = 4, NPl = 0 if NH = 1

If NH = 3, NP2 is the identification number of the 2nd
precursor. NP2 = 0 otherwise

Nuclide half-life (yr)

Nuclide sorption coefficient,KD = 1 + Ql_g_il ocky

Nuclide maximum permissible concentration (MPC}); (Ci/m3)

%nitia] activity at the time of emplacement, i.e., tg = 0,
Ci)
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Appendix E. Radioactive Transmutation of a Mineralized Species.

The equations of Section 2.1 are applicable to completely irreversibie
mineralization (B =y = 0). However, it is reasonable to expect that radio-
active transmutation of a mineralized radionuclide may result in a radioactive
daughter which, because it is a different chemical element, reverts back to
the non-mineralized sorbed species. The equations of Sections 3.3.1-2 are
applicable to this case by setting % =0 and retaining v as a finite quantity.
The explicit solutions for a three-member decay chain, assuming a step release
with the source term given by Eq. (2.1.17), are as follows:

. ezv1/201 t it
Nj(z,t) = —- 'i‘_(t -1 e 01(2,1:) dr (£.1)
Kb, o
. eZVZ/ZDZ t Ay
ND(Z,t) = =———] o5(t - ©) e " a,(z,7) dt
2 — 2 2
ZKZV'«DZ o
zv, (2D 1
2'7°2 p= -2'v,/2D
+ E_"_____-!' 2e ).I. 2(z',t - 1)
152 bt []
..Xz
e 02(Z ~ z', 1) dr}jdz' (E.2)
zv, /2D
3/c¥3 |t —AqT
Ng(l,t) =t ¢§(t -1) e 3 a3(z,7) dt
2K3 11D3 0
zv, /2D ™~
3773 L7 —ztvefeD t
el I 3“ B(z',t - 1)
Nng —c0 0

_A3T
- e 03(2 - 2',7) drydz’ (E.3)



where;

Pr, ey _ L [
izt = g [Kir i (2.8)
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i () '“1-1(2"”]

and the other symbols have been defined in the previous sections.
Equations (E.1) through (E.3) yield the following non-recursive formulas:

S
Nl(Z,

Tive functi

Nl,l(z’t

N

N

N

N

Nz(z

S

N3(z,

3

21!

2, 2(

3.1¢

3,2(

1t)

t) =

t) -

z,t)

z,t)

zZ,t)

z,t) =

Nl,l(z’t)

3
> Nz’j(z,t)

> N3’j(z,t)

J=1

ons Ni j(z,t) (i =1,2,3, j =1,2,...) are given by

= B,,E(1,1:1)

11

= BZZE(2,2,2)+821E(1,1:

2)

BiiKyaqv
- __T_-:%iy%-l-%x—y- [E(1,131)-E(1,231)-E(1,1;2)+E(1,2:2))

il

LA e e L2
(=31%815)" (vy-¥y)

- [1+(a

BiyyqAi(ny=aq) v
WL 1L 2 WE(1,2;1)-6(1,2:2)] -

1812 EILE(L,151)-E(1,1:2)]

= 833E(3,3,3)48,5,E(2,2,3)*B4E(1,1,3)

KorpVp Boo
K3lvy-¥3) B3 -2

K2 2V B
3( Vp=vq) B23"

[E(2,2:2)-£(2,2:3)-E(2,3;2)+E(2,3:3)]

{E(1,1;2)-E(1,1;3)-E(2,3;2)+E(2,3:3)]

(E.4)

(E.5)

(E.6)

(E.7)

(£.8)

(£.9)

(£.10)

(E.11)

(E.12)

(£.13)



N3, 3l

z,t) =

Ny lz0t) =

129811

1
E(1,1;3)
V{ValyaTog (3178 3] (-Bp3™ry)

AqA,B
1*2%1 1
- £(1,3;3)
ViValyaTos (-31*813)(-813%853)

A2pB1g

1
£(2,3;3)
V1Vl 3Ta3 151378530 (~Bp374)

A8y

1
E(1,1:2)
ViVplaplyp (-3*835)(=81,"2)

A8y 1
V1V, TaT1p (-31%835)(-B3)%6y5)

£(2.3:2)

A A B
122811 1
_ E(1,2:2)
V1¥oT3plp (~B3,781,)(-B1p")

AAoByq

1
E(1,1:1)
VVpToyTap (-3*8p1) (831%4)

M8y 1
ViValor Ty (=3 %8530 (=85,%83;)

E(1,2:1)

A1AqB
1*28n 1
E(1,3;1)
ViVaTpTay (Bp1%83;1(-B31%2y)
viarp(ng-2y) Byy

V1¥aT13T23 ;

1
. ¥ .+ t-
[( M1 AT T (e )2 e, )

+

+

(=2;#B,5)* (-2 %8,,)
1713 1 723 ] E(1,1;3)

1

> E(1,3;3)
(-By3*21 )" (-By3*By3)

1
(~82373)) (-85578)3)

£(2,3;3)

J
(Continued un next page)

(€.18)
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-

¥1A- 5o (N1=21 )B (=xq+8., )+ (-2 481, )
-2 t 3 r} r1 A (-x1+832j1(—x1+3157 t- 1+ 52)2 1,( i
1'2'32°12 (-2 *835) (2 By,)
1
X + E(2,3;2)

— 1
(-83p%3 )" (-B3p*815)

. 1 £(1,2:2)

2
IR G Ut

ZJ £(1,1;2)

Yih2p(mA 06y 1 P A DA b L
- + —_ +
V1¥alaiT3y (28 17830 7 (a %8,))8 (a7 )
x |+ . E(1,2;1)
(~81%A1 ) (-8p *83))
" 1 E(1,3;1)

¥4
(“B31+'\1) (‘831"'321)

val-vy) Aaplng=ay) vaByy

Ny (2,t) =
3.5 vi-Yy
| 1 P AP DA W
(-A1+12)(-x1+s31f (—A1+x2)2(—kl+ﬂ3p
x + L [E(z.2:1) - €(2,2;3})

(-3g73) (=278)
1
Z

t (=B31*a )7 (=B, *A5)

[Ea,3:1) - £(1,3;3)]

qx [E,1n - e,13)]

2] E(1,151)

J(E.15)

(E.16)
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v2h2lnpg) vy 1

N, ~(2,t) =
3,6 Vomv3 22 (_A2+823)2

- [1+ (ap-Bpg) t] x [E(2,232) - E£(2,233)]

1
£(2,2;2) - E(2,2;3)
(53,5 T{-8p3%,) ’

_x2rplnaAp) ¥ 1

Vg"’3 521 X+ W E(1,1;2) - E{1,1;3)

1
+ £(2,3;2) - £(2,3;3)  (E.17)
[ 378230 (=853 |

Y2rplnpag) By

N, ,(2,t) =
3.7 V1¥9h13T93

E(1,1;3)

1
(A" ) (A #8130 (=21 %853)

1
+ { :
('X2+A1)(_A2+813)(—A2+823] B2.2:3)

1
+ .
o B oy o) Fi)

+

1
£(2,3;3)
(-Bp3™ap (=837 ) (-By37813)

= J

(Continued on next page)
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L Y2 alngag) By

V1¥al3al1e
[( VLS VO I () +; o megy E(1152) -
RS YU ST
+ 1 E(2,2:2)
(2gFa {2,830 (=3,81 50 727"
¥ T-85,%x 7(-8 1+x J{-83,%87,) £(2,3:2)
322 (8™, ) (=855%8y 5
. 1 £(1,2:2)
| 1 )R Rp ) (-8 pTR,) Tt ]
, Yorrralngmap) By
V1¥eTo1Tay
1 E(1,1:1)
(APl -2y *8y ) (-ag %y ) 2
+ L £(2,2:1)
xRy By Imhg ey ) 0
T e B2
By A i By TR ) =By "By
. _ L L E(1,3:1)
U ERPUS R ]

Y1725 ng=3 ) np-2y) By

V1¥2

1
t
F13%23 ["‘1*‘2)(“‘1+313)@‘1+323’

A7) 0078y 30t (0481 5) (1830 (317 8p3) (i 1)

(a7 2l v )

1 1 — E(2,2:3)

+

F13723  (caytag ) o(-ayt8y3) (- thyg)

(Continued un next page)

] £(1,1;3)

7
A 78y3)

(E.18)
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1 1 £(1,3:3)

T13723  (-8y4%2))%(-813%2,) (81 3*8p3)

1 1 £(2,3;3)

2P ?
13723 (-83721)"(-83"5) (~853%813)

1

1
T3pTp [(“1""2) (3 78510y BT

i ("‘1”2)(‘*1"932)*(“1*832)("‘1+"12)+(“1+812)("‘1”2)] "
(a+ag)2(oag¥35) (g ¥y )

1 i E(2,2;2)

2
3o (-2,%31)*(=2*B3,) (-2,%8; )

L 1 £(2,3:2)

52Nz (835000 -85y (-835%81)

1 1 E(1,2;2)

32712 (-8t )2 (-815%0,) (-81,%85,)

1

1
t
1531 [(“1*"2)(“1""21)(“‘1*“31)

(=21*2p) (21789 )* (=21 %877 ) (A1 *Ryy)* (21 #8531 ) (-2 1)

1,1;2)

z 7 )
(=a2,) 7 (=2 7851 ) (=21 %84, )

1 1 E(2,2;1)

TaIT3L (may*ag ) e (-ay*By1 ) (~2y%8g))

1 1 £(1,251)

BT 2
21731 (-8p1"2q )7 (-851%2p) (871 *85;)

1 1 E(1,3;1)

IS (agg)(-ayy i) -8y py)

] E(i,1;1)

(E.19)
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where the function E{i,j;k) is related to the function Ei j k(z,t) defined
by Eq. (2.1.32) as
Llz,t) (E.20)

The explicit solutions for the band release can be obtained from the
superposition Eg. (2.1.18).
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Appendix F. Consistency of Point-Source and Plane-Source Solutions

When we compare Figs. 4.3.2 and 4.3.4 in Section 4.3, four lines in each
figure, which show the size of the repository and the corresponding array of
point sources, agree with each other where 10 < Q for d = 10m, and where 4 ¢ &
for d = 5m. As a result, the solution to the finite plane source gives a good
approximation to that to the array of point sources where Q is relatively

large.
Here we will consider the relationship between Eqs. (4.2.33) and (4.1.65).

Equation (4.1.65) can be extended to the solution for the finite plane source
by using a superposition method with respect to x and y.

2 2
b a (x-n) (y-8)
1 1o Mt [ exp(— Esz7v> exp(— 4z0 Jv
Pin (x,y,2,t) = PINJe Y/ dnde  (F.1)
w2 X ’E‘nZDy
v v

-b -a

where the double integral can be célculated separately.

a
exp |- {x - n)2 dn = /r ‘[_Z___Ex arff—2 3 X\ 4 appf 2 X (F.2)
L P I A v 2D /D
-a v v
b = r )
- + -
f exp <— (—{’;Z—D—?\)T) de - 72 Y—Llerr zi; + erff-2 Z; (F.3)

=)

v v

Finally Eq. (F.1) can be written by substituting Eqs. (F.2) and (F.3).

plNo

at[

p]Nl(x,y,z,t) - —z—l e ! lerfl-2XX N4 opff2-X
z z
2 Y X 2 Y X

| v v

] 4
+ -
x | erf b*y Y+ erf( b-y (F.4)

3 3
- Y
eV ey
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Equation (F.4) is identical to Eq. (4.3.7), which means that the solution for
the plane source by superimposing the injected point sources is identical to
the solution for the plane source with the concentration boundary condition,
if longitudinal dispersion is neglected.
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Appendix G. Properties of the Function Gp _{z) for the Solution of the
4
Three-Dimensional Transport Equation

0y

Property 1
u - u -
pr ~ar _ fpd ~a.r (6.1)
p g p
From Equation (5.5.19)
(Kp = Kedlup p =g = (Kg = Kpd g o = (K = Kq + Kg = Kpd g e
= - - - - +
Apr HKr (Kp Kq) Yg,r AqKq HKr
= 3pKp = Ak = (Kp = Kg) ug
= - - - K
(Kp = Kg) up,q = (K5 = Xg) vg,r

= (K, - Kg)u ).

p~Na’Yp,g T Va,r

On dividing by (Kp - Kq)(Kp - Kr) there results Eg. (G:1). Note that Eq. (G.1)
can be expressed also in terms of the function Gp q(z) defined by Gp q(z) = (Kq -
)‘ »

Kp)lz - up q

Property 2

G, of ) = ) (G.2)

n,p¥p,q" = Cn,ql¥p,q

Property 3

Gp,q(z) = —Gq’p(z) (6.3)

Property 4

G =0 (G.4)

p.q(¥n,q)
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Property 5

q’p(z) . (G.5)

Gp,q (2) = Kq - Kp) = -6

These properties are an immediate consequence of the definition of qu(z).
Let

Gn,p,k(z) S Gk,p(z) Gk+1,p(z) vee Gp-l,p(z) Gp+1‘p(z) cas Gn,p(z) (G.6)
Property 6
Gn,p,k(“p,q) =0 for k<qg<p (G.7)

because one of the terms in the product is Gq p("p q) which vanishes by Eq. (G.4)

Property 7

Gn,p,k("p,q) = "(Kq - Kp) Gn,p,k(“p,q) (G.B)

This resuit is obtained by termwise differentiation of Gn p k(z) and making use
of £gqs. (G.4) and (G.7).
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Appendix H. Verification of the Solution for;ﬁp in the

q,k
Three-Dimensional Difference Eq. (5.5.45)

To verify Eq. (5.5.45) note that when p = 2 and g = k = 1 (Eq. (5.5.45))
is satisfied in view of the comment below this equation. By the method of
induction we now assume the equation to be valid for p = 3,4, ... (n - 1) and
prove it to be valid for p = n. For this one substitutes Eq. (5.5.45) for
p = (n - 1) into the right-hand side of Eq. (5.5.44). We denote the right-hand
side of this equation by R and use the shorthand notation introduced in
Eg. (G.6)

iy -l
(DR et B R 1)
( - ) & p.k(¥p,q) g=pt' P q n,p,k ¥p,q’

by Eq. (G.8) and with

= Ln,k

bopbpk =tak > bndtak
can be shown to transform into
n-1 1
A NP I g o | (-2)

3=k n,p,kiTp,q
q#p

To study Lhis sum consider the integral

. 1 dz .
i= i?fj.e 1z (#.3)
C

where € is a Jordan curve enclosing M, p? Mgelp t vt Mpel,p? Mpt1,p  t ¥n.p®

By the residue theorem

Z r'—(—T : (H.4)

n.p,k*"p,q

Thus Eq. (H.2)
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it
R=-L I - (H.5)
"'k[ G,p.k ¥p,n

But G",n’k(l) is a polynomial of degree n -k >n-p > 1. So Gn,p,k(l)

is a polynominal of degree at least 2., Therefore the residue of GElp k(z) at

infinity is zero. Hence by Eq. (H.3} [ = 0 and therefore by Eq. (H:S)

L
R = n,k . (H.5)

[ .
6,0,k ¥p,n

But by Eq. (G.8)

(H.7)

§

Gn,p,k(”p,n) = -{K, - Kp) dn,p.k(“p,n)

So that

(H.8)

R - Ln,k
K. -K

p n Gk,p(”n,p) Gk+1.p(“n,p) e Gn-l,p("n.p)
Here the factor Gp p(“n p) has been replaced by 1 by our convention. This
equation is precisely of the form of the right-hand side of Eq. (5.5.45) when
p is replaced by n and g is replaced by p. This establishes the validity of
Eq. (5.5.45) as a solution of Eq. (5.5.44) for arbitrary values of n.



