Development of an Advanced, Continuous Mild Gasification Process for the Production of Co-Products Task 4.6: Economic Evaluation

Topical Report

Les R. Cohen, Xytel-Bechtel, Inc. R. Frank Hogsett, AMAX Research & Development Center Jerry E. Sinor, J.E. Sinor Consultants, Inc. Robert O. Ness, Jr., Energy & Environmental Research Center Brian D. Runge, Energy & Environmental Research Center

Work Performed Under Contract No.: DE-AC21-87MC24267

For

U.S. Department of Energy Office of Fossil Energy Morgantown Energy Technology Center P.O. Box 880 Morgantown, West Virginia 26507-0880

By

University of North Dakota Energy and Environmental Research Center Box 8213 University Station Grand Forks, North Dakota 58202

October 1992

REVIEW OF MILD GASIFICATION TOPICAL REPORT

The principal finding of this study was the high capital cost and poor financial performance predicted for the size and configuration of the plant design presented. The XBi financial assessment gave a disappointingly low base-case discounted cash flow rate of return (DCFRR) of only 8.1% based on a unit capital cost of \$900 per ton year (tpy) for their 129,000 tpy design. This plant cost is in reasonable agreement with the preliminary estimates developed by J.E. Sinor Associates for a 117,000 tpy plant based on the FMC process with similar auxiliaries (Sinor, 1989), for which a unit capital costs of \$938 tpy was predicted for a design that included char beneficiation and coal liquids upgrading-or about \$779 tpy without the liquid upgrading facilities. The XBi assessment points out that a unit plant cost of \$900 tpy is about three times the cost for a conventional coke oven, and therefore, outside the competitive range for commercialization. Modifications to improve process economics could involve increasing plant size, expanding the product slate that XBi has restricted to form coke and electricity, and simplifying the plant flow sheet by eliminating marginally effective cleaning steps and changing other key design parameters.

Improving the financial performance of the proposed formed coke design to the level of a 20% DCFRR based on increased plant size alone would require a twenty-fold increase to a coal input of 20,000 tpd and a coke production of about 2.6 million tpy-a scaling exponent of 0.70 to correct plant cost in relation to plant size.

Other avenues for improving profitability besides increasing plant size would involve changes in the design and product slate, including as the most important possibilities:

- 1. Liquid Products--Additional quenching of off-gas from the carbonizer to obtain salable liquid products, which in Sinor's preliminary assessment more than doubled the revenue obtained from char and electricity while increasing capital cost by only about 20%, could substantially improve process economics. Questions concerning liquid quality and marketability still need to be answered, particularly the lower level of oxygenates reported by Merichem compared to the EERC analyses. The EERC analyses showed high levels of phenolics which, if stabilized and separated, could yield valuable cresyllic acids. The lower levels reported by Merichem could have resulted from polymerization that reduced the chromatographable oxygenates due to sample aging. A mild stabilization step could be important to improving coal liquids economics. The EERC tests have established that the 720°F (382°C) distillation residue is an excellent binder for char briquettes. A value for the heavy tar as a binder could be established by comparison with the cost of asphalt emulsion. The available test data on other liquids uses should be summarized, including the use of polymerized heavy tar as a chemical feedstock for electrode production and the use of the light liquid fraction as diesel fuel blending stock.
 - 2. Coal and Char Cleaning-Elimination of marginally effective solids cleaning steps would simplify the process and improve char yield. Unit processes that could be removed include the gravity separation tables for cleaning feed coal, the magnetic separation on char between the carbonizer and calciner, and the gravity separation on calcinate fines. The char cooling step between the carbonizer and calciner would also be eliminated.

- 3. Carbonizer--Reduction in char residence time in the carbonizer from 3 hours to the 20 or 30 minutes used in EERC tests would correspondingly reduce the volume of gas needed to maintain fluidization. Less heat input would be required in relation to coal flow, and more gas/liquids should therefore be available for liquid product and electricity revenue streams.
- 4. Calciner--Changes to be considered in the calcination step should include a reduction in char residence time from 3 hours to on the order of 1 hour or less, the substitution of a rotary-hearth or kiln design to greatly reduce the gas flow rate requirement of the bubbling-bed design, provision for heating the calciner both by firing quenched carbonizer off-gas and injecting air and possibly steam for internal oxidation and gasification, and the use of the hot off-gas from calcining with a suitably augmented heating value as the main heat source for the carbonzier--without cooling or compression. The only gas requiring compression would be the cool quench gas from the carbonizer.

Other questions on the design report not related to economic performance are concerned with:

- 1. The feasibility of compressing partially quenched gas realizing that some condensation may occur during compression;
- 2. The feasibility of discharging hot briquettes into air;
- 3. The relatively low 50% efficiency for 10 micron and 4 micron solids in cyclones;
- 4. Any comment that can be offered on bed support in a commercial carbonizer based on scaling up the EERC/Boley design;
- 5. The need for an explanation of the XBi changes in the EERC material balances for the carbonizer and calciner.

Additional comments and corrections have been marked on the attached copy of the subject report.

EXECUTIVE SUMMARY

Under DOE/METC Contract No. DE-AC21-87MC24267, Amax Research & Development Center (AMAX) of Golden, Colorado, Xytel-Bechtel, Inc. (XBi) of Houston, Texas, and J.E. Sinor Consultants, Inc. (Sinor) of Niwot, Colorado, worked with the University of North Dakota Energy & Environmental Research Center (EERC) of Grand Forks, North Dakota, to develop an advanced continuous mild coal gasification (MCG) process for the production of co-products. This topical report presents the technical and economic evaluation of the process at the 1000-tpd commercial demonstration plant scale (Task 4.6).

Based on the results obtained during bench-scale studies with a continuous fluidized-bed reactor (CFBR) and operation of a 100-pound/hour mild gasification process research unit (PRU) and companion studies on coal and char cleaning, char calcining, and calcinate briquetting at various scales between bench scale and PRU scale, a commercial process flowsheet was developed for a 1,000 tpd coal processing plant to produce a formed coke product and electrical power. The plant will be located at an Amax coal mine near Terre Haute, Indiana.

Feed coal for the MCG process was a typical high-sulfur midwestern bituminous coal (Indiana No. 3) (4.2 wt%) that contained a relatively high percentage of organic sulfur species (1.8%). This coal proved to be difficult to process, and sulfur rejection ultimately turned out to be lower in the PRU than projected based on earlier benchscale studies. Project timing dictated that the design for the 1000-tpd plant be frozen before final bench-scale and PRU results were available. Input to the Task 4.6 topical report was distributed as follows:

1. <u>EERC</u>

Equipment specifications, design criteria, and performance and yield data for mild gasification, liquid collection, and char calcining, plus updating formed coke technology.

2. <u>AMAX</u>

Commercialization potential, coal supply, coal physical beneficiation, char beneficiation, operating costs, process review, plant site infrastructure, and selection of final products.

3. <u>XBi</u>

Process simulation for material and energy balance, detailed design, flowsheet development, equipment list and capital cost estimate, plus a critique on the technical aspects of the process.

4. Sinor

Marketing assessment, product revenues, and economic analysis.

The process plant will consist of six major unit operations, which include coal preparation, mild gasification (carbonization), liquid and gas quenching, char

beneficiation and calcining, formed coke briquetting and curing, and electrical power generation from reject solids and noncondensable volatiles.

Preparation consists of storage, crushing, surface moisture drying in a fluidizedbed reactor, coal sizing, and physical beneficiation to reject ash and sulfur using air tables. The mild gasification, or carbonization, step is done in spouted fluidized-bed reactors under nonoxidizing conditions to produce a devolatilized char and off-gas stream containing the volatiles. High boiling point volatiles are quenched and collected in a scrubber tower as a pitch product that is used as a binder in the formed coke process.

Hot char is cooled and then screened into three size fractions prior to physical beneficiation by high-intensity magnetic separation to remove pyritic sulfur. The cleaned char is then calcined in a bubbling fluidized-bed reactor to eliminate additional volatiles. A final physical cleaning step using air tables removes additional ash and sulfur from the calcinate. This cleaned calcinate material is briquetted using the pitch product as a binder. The briquettes are cured at high temperature, which carbonizes some of the pitch and volatilizes the rest. After cooling, the briquettes are sold as a formed coke product with a targeted specification of less than 10% ash, 1% sulfur, and 2% volatiles.

When all of the rejected coal, char, and calcinate solids plus noncondensed volatiles are burned for their fuel value, excess energy over that required for the process is generated. This thermal energy is converted into steam and used to produce electric power as a product. The solid materials are burned in an atmospheric fluidized-bed combustor to produce steam, while the volatiles are burned in direct-fired burners to produce the hot, low-oxygen-content, fluidizing gases required for drying, carbonization, calcining, and coke curing.

Capital cost of the 1000-ton coal/day commercial demonstration plant is estimated at \$116.4 million with an accuracy of minus 5% to plus 20% and includes a contingency factor of 20%. Using 1992 as the base case, operating costs are estimated at \$15 million. The plant will produce about 129,000 tons/year of formed coke product valued at \$150 per ton. In addition, the plant will produce 19.2 net MW of electricity valued at \$0.05 per kWh. Using these base-case values, the DCFRR at \$0 NPV for the plant is 8.1%, assuming a 3-year construction period and 20-year operating life. Sensitivity analysis on capital cost, operating cost, and revenue gave a DCFRR of 0% to 12%.

ACKNOWLEDGMENTS

The authors would like to acknowledge and show our appreciation and thanks to a number of organizations and people for their support and effort, which was a prerequisite for the successful completion of this task and topical report.

Project funding was provided by the Department of Energy's Morgantown Energy Technical Center under Contract Number DE-AC21-87MC24267 to the EERC as prime contractor and then to AMAX, XBi, and Sinor under various subcontracts. Project managers at METC were Sophie Lai and Jagdish Malhotra during the initial phases of the project and James Westhoff during the final phase.

The project manager at the EERC was initially Robert O. Ness, Jr. and was completed under the direction of Brian Runge. During the Task 4.6 study, Mr. Runge also provided the principal interface and liaison with the three subcontractors and worked closely with XBi on mild gasification and calcining technology and general day-to-day activities. Additional assistance was provided by Laura Sharp for material balance input data and Brian Young on formed coke briquetting and curing technology. A special thanks to Julie Entzminger, Don Cox, Ann Olson, the graphics and office services for the support and involvement in the project.

In addition to being the principal author of the XBi sections of this report, Les R. Cohen also served as project manager during the last half of the XBi subcontract. Project management during the first half of the project was provided by Scott McFeely. Process and/or discipline engineers working on the project were Jeanette Fong, Sam Cheng, Mahendra Dave, and Gobind Gidvani.

At Sinor, associates Robert E. Pressey and Trevor Ellis provided input and analysis in support of Jerry E. Sinor on the marketing and economic analysis tasks.

Within the internal AMAX organization, Mahesh C. Jha served as the project manager at Amax R&D. R. Frank Hogsett authored sections of the report, oversaw preparation of all input data for the economic evaluation, and provided general liaison among the task participants, in addition to process and project engineering functions. Mark H. Berggren and Robert L. McCormick supervised the coal and char physical beneficiation activities.

Special thanks go to Ms. Wendy Kennedy of Amax R&D who over the past few years has provided virtually all of the secretarial skills and word processing duties required for the AMAX involvement in the project.

TABLE OF CONTENTS

LIST OF FIGURES	ix
LIST OF TABLES	x
1.0 INTRODUCTION 1.1 Project Organization 1.2 Scope of Work 1.2.1 Evaluation of Existing Pilot Plant Data 1.2.2 Heat and Material Balances 1.2.3 Conceptual Flow Diagrams 1.2.4 Mechanical Design 1.2.5 Plot Plan 1.2.6 Utility Summary 1.2.7 Capital and Operating Costs 1.2.8 Economic Analysis 1.2.9 Topical Report	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.0 PROCESS OVERVIEW AND CRITIQUE 2.1 Discussion of the EERC, XBi, AMAX and Sinor Contributions 2.2 Process Overview 2.2.1 Coal Preparation 2.2.2 Carbonization 2.2.3 Char Cooling and Screening 2.2.4 Magnetic Separation 2.2.5 Calcining 2.2.6 Gravity Separation 2.2.7 Fines Removal and Gas Quenching 2.2.8 Briquetting and Curing 2.2.9 Gas Compression 2.2.10 AFBC 2.2.11 Power Generation 2.3 Technical Critique and Recommendations	5 6 6 8 8 8 8 8 9 9 9 10
3.0 PROJECT DESIGN BASIS 3.1 General 3.2 Site-Specific Data 3.2.1 Site Conditions 3.2.2 Utilities Available at Site 3.2.2.1 Fuel Gas 3.2.2.2 Electricity 3.2.2.3 Steam 3.2.2.4 Raw Water 3.2.2.5 Potable Water 3.2.2.6 Instrument/Plant Air 3.2.3 Facility Service Requirements	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

3.3	Feed and Product Specifications, Process Wastes	16
0.0		
	3.3.1 Feed Specifications	
	3.3.1.1 Coal	
	3.3.1.2 Limestone	
	3.3.2 Product Specifications	17
	3.3.2.1 Formed Coke	17
	3.3.3 Process Wastes	17
	3.3.3.1 AFBC Ash	17
3.4	Plant Capacity and Product Slate	
3.5	Process Model	
3.6	Design Parameters from the EERC and AMAX	
5.0	5	18
	3.6.1 Coal Beneficiation	
	3.6.2 Carbonization	18
	3.6.2.1 Carbonizer Feed	
	3.6.2.2 Carbonizer Conversion	
	3.6.2.3 Carbonizer Effluents	19
	3.6.2.4 Carbonizer - Other Design Parameters	20
	3.6.3 Char Beneficiation	20
	3.6.4 Calcination	21
	3.6.4.1 Calciner Feed	21
	3.6.4.2 Calciner Conversion	
	3.6.4.3 Calciner Effluents	
	3.6.4.3 Calciner - Other Design Parameters	
	3.6.5 Calcinate Beneficiation	
	3.6.6 Briquetting	
3.7	Design Factors Applied by XBi	
۱.	3.7.1 On-Stream Factor	
	3.7.2 Minimum Storage Capacities	
	3.7.3 Bulk Solids Belt Conveying	
	3.7.4 Pneumatic Conveying	23
	3.7.5 Cyclones	24
	3.7.6 Baghouses	
	3.7.7 Dusty Vent Lines	
	3.7.8 Solids cooling	
	3.7.9 Compressors	
	3.7.10 Heat Exchangers	$\frac{24}{24}$
		24 24
	3.7.11 Carbonizer Off-gas In-line Burners	
	3.7.12 Gas Quenching/Oil Recovery	24
3.8	Safety and Environmental Constraints and Compliance	24
	3.8.1 General	24
	3.8.2 Safety Considerations	25
	3.8.2.1 MSHA and OSHA	25
	3.8.2.2 Fire and Explosion Protection	25
	3.8.3 Safety Design Features	25
	3.8.3.1 Fire Water System	

.

.'

		3.8.3.2Fire/Explosion Detection and Prevention3.8.3.3Fire/Safety Around Specific Areas or Equipment3.8.4.1Enivronmental Regulations3.8.4.1Air Emissions3.8.4.2Water Discharge Quality3.8.4.3Sanitary Discharge3.8.4.4FAA3.8.4.5Noise3.8.4.6HVAC3.8.5Environmental Compliance Design Features3.8.5.2Wastewater3.8.5.3Solid Wastes	26 27 27 27 27 27 27 27 27 27 28
4.0	PRO	CESS DESCRIPTION AND PHILOSOPHY	29
	4.1	General	
	4.2	Coal Storage and Preparation Area	
		4.2.1 Coal Receiving and Storage	
		4.2.2 Coal Preparation	
		4.2.3 Coal Beneficiation	
	4.3	Carbonizer Area	
			31
		4.3.2 Char Beneficiation	32
	4.4	Carbonizer Gas Quench System	33
		4.4.1 Gas Quench and Liquids Recovery	
/		4.4.2 Gas Recompression and Reheat	34
	4.5		35
		4.5.1 Calciner Operation	35
		4.5.2 Calciner Gas Recycle System	35
		4.5.3 Calcinate Beneficiation	36
	4.6	Formed Coke	36
		4.6.1 Briquetting	
		4.6.2 Briquette Curing and Coking	
	4.7	Site-Generated Utility Support Facilities	37
	4.8	Steam and Power Generation	37
		4.8.1 AFBC, Boiler, and Steam Systems	38
		4.8.1.1 Fluid-Bed Combustor (AFBC) and Accessories	38
		4.8.1.2 Fuel and Limestone Handling	39
		4.8.1.3 Boiler Emissions Control and Ash Handling	39
		4.8.1.4 Steam and Condensate Systems	39
		4.8.1.5 Boiler Feed Water System	40
		4.8.2 Power Generating Facilities	40
		4.8.2.1 Turbine Generator	40
		4.8.2.2 Auxiliary Turbines	41
		4.8.2.3 Power Distribution	41

Pa	ge

٦

	4.9 Water Systems 41 4.9.1 Cooling Water 41 4.9.2 Water Treatment 41 4.9.3 Cooling Brine 43 4.9.4 Fire Water 43 4.10 Other Utility Systems 43 4.10.1 Instrument/Plant Air 43 4.10.2 Fuel Gas Supply 43 4.10.3 Backup Power Supply 43 4.11 Process Control System 44 4.11.1 Control Philosophy 44 4.11.2 Control Room 44	
5.0	PROCESS FLOW DIAGRAMS	
6.0	MASS AND ENERGY BALANCE 46 6.1 General 46 6.2 Discussion 46	
7.0	FACILITY PLAN AND LAYOUT517.1 General51	
8.0	TECHNICAL EQUIPMENT LIST 54 8.1 General 54	
9.0	ON-SITE UTILITY CONSUMPTION779.1 General779.2 Consumption Basis and Use Factors779.2.1 Electrical Power Consumers779.2.1.1 Cooling Water Users779.2.1.2 Cooling Brine Users779.2.1.3 Steam Consumers779.2.1.4 Natural Gas Consumers78	
10.0	CAPITAL COST ESTIMATE AND SCHEDULE8610.1 General8610.2 Capital Cost Estimate8610.2.1 Assumptions8610.2.2 Elements of the Cost Estimate8710.2.2.1 Mechanical Equipment8710.2.2.2 Electrical Equipment8710.2.2.3 Instrumentation and Control8710.2.2.4 Bulk Materials8710.2.2.5 Construction Manpower8710.2.2.6 Indirect Field Costs88	

...

	10.3	10.2.2.7Construction Management Fee8810.2.2.8Engineering and Home Office Fee8810.2.2.9Contingency8810.2.2.10Accuracy of the Estimate88Engineering and Construction Schedule88
11.0	PRO	JECT FINANCIAL ANALYSIS
11.0		General
		Formed Coke Value
		Electricity Value
		Product Rates
		11.4.1 Formed Coke
		11.4.2 Electricity
	11.5	Capital Costs
	11.6	Operating Costs
		11.6.1 Coal
		11.6.2 Limestone
		11.6.3 Disposal Costs
		11.6.4 Water
		11.6.5 Chemicals
		11.6.6 Supplies and Maintenance
		11.6.7 Other Costs
		11.6.8 Manpower
		11.6.9 Operating Cost Summary 116
	11.7	Financial Evaluation
		11.7.1 Evaluation Parameters
		11.7.2 Base-Case Results
		11.7.3 Sensitivity to Electricity Prices
		11.7.4 Sensitivity to Coal Cost
		11.7.5 Probability Distribution on Cost Sensitivity
APP	ENDI	X A: REFERENCES
APP	ENDI	X B: COMMERCIAL MILD GASIFICATION PLANT PROCESS-FLOW DIAGRAMS

Å.

•

LIST OF FIGURES

•

<u>Figure</u>		<u>Page</u>
1	Mild coal gasification 1000-tpd plant block flow diagram	7
2	Electric power one-line distribution	42
3	Plot plan, showing approximate plot projections or structure and stand-alone equipment, with relative distances and proximities	52
4	Conceptual 3-D layout, indicating functional "blocks" and major interconnecting conveyances within the facility	53
5	DCFRR as a function of capital cost and formed coke prices	118
6	DCFRR as a function of formed coke and electricity prices	120
7	DCFRR as a function of coal costs and formed coke prices	122
8	DCFRR as a function of capital cost and formed coke prices	124

.

LIST OF TABLES

<u>Table</u>	Page
1	Operating Cost Summary
2	Capital Cost Sensitivity
3	Electricity Price Sensitivity
4	Coal Cost Sensitivity
5	Probability Distribution on DCFRR as a Function of Capital Cost and Coke Prices

· .

DEVELOPMENT OF AN ADVANCED, CONTINUOUS MILD GASIFICATION PROCESS FOR THE PRODUCTION OF CO-PRODUCTS

1.0 INTRODUCTION

To expand the use of coal, our primary indigenous resource for energy, in an environmentally acceptable and economically feasible manner, the United States Department of Energy (DOE) has been sponsoring research and development of new, promising coal conversion technologies. The conversion of coal to liquid and gaseous products can expand the markets for coal into transportation and other sectors of the energy market, as well as in large chemical markets. The enormous costs of liquefaction and gasification processes requiring hydrogen or oxygen plants and high-temperature, high-pressure operations have hampered the commercialization of these processes aimed at producing a single product.

As an alternative approach, Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of co-products from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization.

In a typical mild gasification process, coal is devolatilized under nonoxidizing conditions at mild temperature (900° - 1100°F (482° - 593°C)) and pressure (1-15 psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant as a premium fuel. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

However, before the technology can be made economic for large-scale utilization, it has to be developed and demonstrated on a commercial scale. With eventual commercial demonstration as a goal, DOE/METC awarded several contracts in October 1987 to different project teams (consisting of research organizations, coal companies, engineering companies, and potential product users) to develop advanced mild gasification and product upgrading processes for the production of marketable coproducts.

Under one of these contracts, No. DE-AC21-87MC24267, "Development of an Advanced, Continuous Mild Gasification Process for the Production of Co-products", the University of North Dakota Energy & Environmental Research Center (EERC) of Grand Forks, North Dakota, worked with Amax Research & Development Center (AMAX) of Golden, Colorado, Xytel-Bechtel, Inc. (XBi) of Houston, Texas, and J. E. Sinor Consultants, Inc. (Sinor) of Niwot, Colorado, to develop a process using a high-sulfurcontent midwestern coal, Indiana No. 3, as the feedstock. The DOE project consisted of the following four tasks:

- Task 1. Literature Survey and Market Assessment
- Task 2. Bench-Scale Mild Gasification Study
- Task 3. Bench-Scale Char Upgrading Study
- Task 4. System Integration Studies

1.1 Project Organization

The EERC was the prime contractor and had the primary responsibility for development of the spouted fluidized-bed mild gasification process, first at the bench scale under Task 2 and later in a 100-pound/hour process research unit (PRU) under Task 4. AMAX had the primary responsibility for selection of a product slate that would enhance the commercialization potential of the technology (Task 1) and development of a char upgrading process at both the bench scale (Task 3) and in a 50pound/hour PRU (Task 4).

Task 1 was completed in January 1988 and the findings were published in topical and summary reports.⁵⁶⁻⁵⁷ It was concluded that economic viability of the mild gasification technology, at least for a few initial smaller plants, will critically depend upon upgrading of char to a higher-value product. A number of options were identified to enhance the value of the char. In order to enhance commercialization potential and properly focus project activities, AMAX had Sinor perform a preliminary commercialization and economic analysis in February 1989 that evaluated the different char upgrading processes.⁵⁸ A formed coke product for use in the steel industry produced from Indiana bituminous coal was chosen as the preferred product.

Since then, all of the tasks of the project have been completed. Results from Task 2 were submitted as a summary report by the EERC in December 1989.⁵⁹ Results from Task 3 by AMAX were presented in quarterly technical progress reports submitted by the EERC to METC during the July 1989 to December 1991 time period.¹⁻¹⁰ Likewise, the Task 4 results of the 100-pound/hour mild gasification PRU operation were presented in the same quarterly technical progress reports.¹⁻¹⁰ Information contained in these quarterly reports will be summarized in a final project report to be issued by the EERC.

In late 1990, DOE modified the the EERC contract and added Task 4.7 to perform a preliminary design and cost estimate for a 24-tpd mild gasification and productupgrading process development unit (PDU). the EERC solicited combined proposals for both Tasks 4.6 and 4.7 and awarded the contract to XBi in early 1991. The bulk of the XBi contract was to be spent on Task 4.7 with only a minor amount of the effort devoted to Task 4.6. However, in May 1991, DOE/METC redirected the scope of work and withdrew the requirement for Task 4.7. The scope of work for the XBi contract was down-scaled in the overall effort, but the final effort for the remaining Task 4.6 was actually increased in scope over the original proposal.

1.2 Scope of Work

The XBi scope of work was broken down into two main tasks. One was to prepare a conceptual plant design for the 1000-tpd commercial scale mild gasification and product-upgrading facility, including a technical appraisal of the process flowsheet, and the second was to provide an estimate of the capital cost of the 1000-tpd plant. Specific subtasks in the XBi scope of work, plus the AMAX and Sinor tasks, are as follows:

1.2.1 Evaluation of Existing Pilot Plant Data

XBi assimilated the process information received from the EERC, AMAX, and others (as far as applicable) into a format suitable for the computer simulation effort. The mass and energy balance developed by XBi incorporates the physical characteristics of feeds, intermediates, and products as provided.

1.2.2 Heat and Material Balances

After preliminary data screening and evaluation of several alternate flow schemes, an optimum configuration was selected. XBi computer-modeled a mass and energy balance by 1) assimilating data received from the EERC and AMAX, 2) prorating the pilot-scale material flows and yields up to the 1000-tpd commercial-scale feed rate, and 3) applying other factors needed to complete the simulation. Commercial software (HYSIMTM, Hyprotech, Ltd.) was used for the simulation.

1.2.3 <u>Conceptual Flow Diagrams</u>

Conceptual process flow diagrams were developed by XBi in conjunction with the mass and energy balance. These diagrams identify all major processing equipment within the facility, as well as all major process piping and conveyances. Equipment sizes, capacities, materials of construction, and major control loops are also indicated.

1.2.4 Mechanical Design

XBi developed a technical (sized) equipment list for all major equipment within the facility. This list is intended to communicate equipment requirements to mechanical engineers and will be used for equipment pricing for the basis of the capital cost estimate. Physical size and configuration of major pieces, as indicated in the equipment list, was used for layout and planning purposes. A considerable amount of equipment data was solicited from specific equipment and system designers and manufacturers.

1.2.5 Plot Plan

A plot plan and conceptual plant arrangement was developed. These drawings depict all major structures which house process and utility units and auxiliary buildings, stand-alone equipment, and interconnecting conveyances. Approximate plot space requirements and dimensions of the overall facility are indicated.

^.,

1.2.6 Utility Summary

A utility summary (user list) was generated in order to establish total facility power and steam demand and cooling load. The summary indicates maximum and normal utility loads. Operating labor requirements are also provided.

1.2.7 Capital and Operating Costs

In addition to providing input data and technical information for the Task 4.6 report, AMAX reviewed the 1000-tpd XBi capital cost estimate, compared the equipment and installation costs to other recent mild gasification-type and mineral processing projects, and determined that the capital cost estimate was in-line with the other studies. AMAX also supplied the unit cost factors and estimated the consumption rates and yearly operating costs for the plant.

1.2.8 Economic Analysis

All of the cost information, plus the yearly production rates for the formed coke and electricity products, was given to Sinor who estimated yearly revenues and performed the economic assessment and sensitivity analysis.

1.2.9 Topical Report

The topical report for Task 4.6, herein presented, describes the results of work performed by XBi, AMAX, and Sinor regarding all of the above-named project "subtasks."

2.0 PROCESS OVERVIEW AND CRITIQUE

2.1 Discussion of the EERC, XBi, AMAX and Sinor Contributions

Basic mild gasification (MG) concepts and design parameters were developed by the EERC in their pilot facilities at Grand Forks, North Dakota. Similar information on coal and char beneficiation was developed by AMAX at their facilities in Golden, Colorado. This information was transmitted to XBi throughout the project in letters, facsimiles, telephone conversations, and meetings (documentation listed in Appendix A). In order to integrate these essential concepts and design data into a plan for a grassroots 1000-tpd commercial MG facility, XBi and the other project team members capitalized on a number of other information sources, including:

- 1. Data provided by AMAX, as required, based on their coal handling/processing experience and commercial-scale testing of specific operations related to various unit operations used in the process flowsheet.
- 2. Extensive coal handling and previous coal mild gasification experience of Bechtel Power Corporation.
- 3. The experience of Bechtel Power Corporation in providing the design criteria, process flowsheet, and equipment specifications for the waste heat atmospheric fluidized-bed combustor (AFBC) and steam and electric power generating facilities.
- 4. The experience of the cost-estimating department of the Bechtel office in Houston, Texas.
- 5. A substantial amount of practical data solicited and received from many equipment and system manufacturers and vendors, as suitable to specific areas of the facility.

In addition to the unit operations required for the mild gasification and calcining steps, XBi's scope of work also included the conceptual design of all auxiliary plant operations. This activity included the development of systems for coal and char handling, product upgrading (coke agglomeration, briquetting), and coal liquids recovery and conditioning, as well as the definition of all utilities and support systems required to sustain day-to-day plant operation.

Two key elements of the MG process design are the process flow diagrams and the mathematical computer model developed by XBi. These define the mass and energy balance around the MG process. The model provided stream flows and physical properties which supported the subsequent activity of estimating process and auxiliary equipment capacities and duties. The resultant equipment and system data were then developed into a definition package upon which the capital and operating cost estimate is based.

J. E. Sinor Consultants, Inc. has provided consulting services to the coal, oil and gas, and synfuels industries for about the last 15 years. The company has been involved with this project since inception and completed the first task in the project,

which was market assessment (Task 1). They were particularly well-suited to estimate the product revenues and perform the economic and sensitivity analysis for Task 4.6.

2.2 Process Overview

Figure 1 is a block flow diagram of the 1000-tpd coal mild gasification process evaluated in Task 4.6. The block flow diagram of the process plant consists of 16 unit operations, which include coal preparation, mild gasification (carbonization), fines removal from the carbonizer off-gas, liquid and gas quenching, liquid storage, gas compression, char cooling, char magnetic separation, calcining, fines removal from the calciner off-gas, a second stage of gas compression, gravity separation of the calcinate, calcinate storage, formed coke briquetting and curing, and electrical power generation from reject solids and noncondensable volatiles burned in an AFBC to produce steam.

A brief summary of major unit operations follows with emphasis on process temperatures and solids composition. The process description section of this report gives a much more complete explanation of the process flowsheet.

2.2.1 <u>Coal Preparation</u>

Preparation consists of storage, crushing, surface moisture drying in a fluidizedbed reactor, coal sizing, and physical beneficiation to reject ash and sulfur using air tables. The coal is crushed from minus 2 inches to minus 6 mesh and then dried from about 13% moisture down to 8% moisture to eliminate surface moisture. Hot fluidizing gas to the dryer at 400°F (204°C) heats the dried product to about 200°F (93°C) and results in an off-gas temperature of about 250°F (121°C).

The dried product is screened into three size fractions (6 to 10 mesh, 10 to 24 mesh, and minus 24 mesh). Each size fraction is processed on a dedicated air table with the float material passed on as feed to the next step. The gravity or reject material is burned for its waste heat value in the AFBC. Feed coal at 4.2% moisture (as-received basis at 8% moisture) and 12% ash is cleaned to 3.9% sulfur and 9.9% ash with a weight recovery of 77%.

2.2.2 Carbonization

The mild gasification, or carbonization, step is done in a spouted fluidized-bed reactor under nonoxidizing conditions to produce a devolatilized char and off-gas stream containing the volatiles and some fines carryover. Part of the noncondensable volatiles from mild gasification (gas) are burned to provide hot fluidizing gas at 2480°F (1360°C) with minimal oxygen content. The char product is discharged at 1000°F (538°C).

Weight recovery from feed to char is 65% (45% overall). Product char analysis is 2.4% sulfur and 15.3% ash. Obviously no ash is eliminated during mild gasification, so the concentration increases proportionally to the weight loss during this processing step.

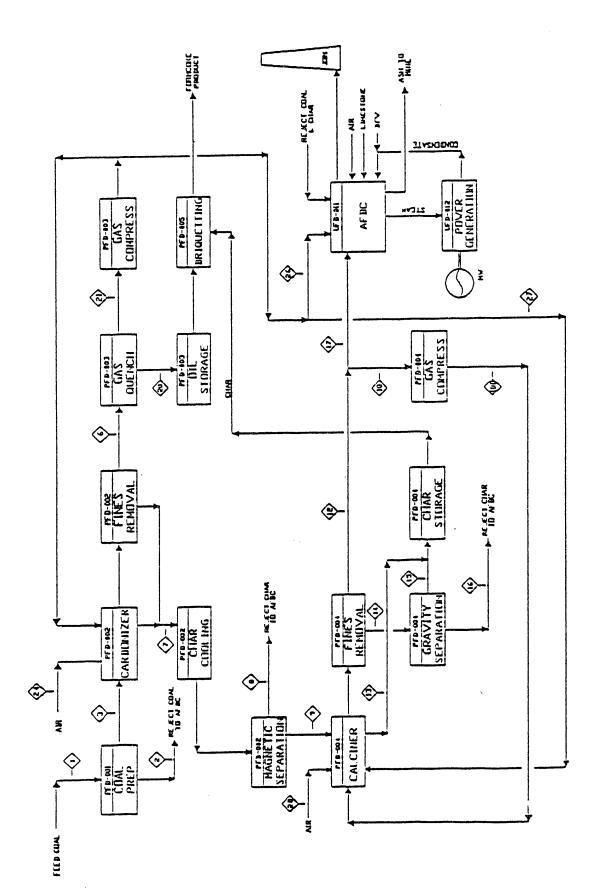


Figure 1. Mild coal gasification 1000-tpd plant block flow diagram.

2.2.3 Char Cooling and Screening

The hot char has to be cooled from 1000°F (538°C) down to 200°F (93°C) prior to magnetic separation. This is done indirectly in a Holo-Flite type unit using cooling water as the heat transfer media. Enthalpy loss from hot to cooled char is about 15 million Btu/hr (22.9 MM to 7.7 MM). The cooled char is then screened into three size fractions of plus 20 mesh, 20 by 40 mesh, and minus 40 mesh.

2.2.4 Magnetic Separation

Due to the rare earth permanent magnets used in the high-intensity separation process, the feed char has to be cooled to 200°F (93°C) to extend magnet life. A magnetic separator is dedicated to each size fraction to improve the efficiency of sulfur and ash rejection. Weight recovery in the nonmagnetic product is 87% (44% overall). The product analysis is 2.1% sulfur and 13.5% ash.

2.2.5 <u>Calcining</u>

Calcining at 1800°F (982°C) lowers the volatile content of the char from about the 14%-16% range down to about the 2%-4% range. Weight recovery during calcination is 85% (38% overall). The calcinate analysis is 1.7% sulfur and 15.8% ash. Although the ash composition increases, the weight of ash in the calcinate actually decreases due to some ash constituents being volatilized (limestone to lime and carbon dioxide as an example). As in the mild gasification reactor, part of the gas from mild gasification, plus the off-gas from the calciner, is burned at stoichiometric conditions to provide hot fluidizing gas to the conventional fluidized-bed reactor at 2394°F (1312°C). Heat input to the reactor in fluidizing gas is approximately 81 million Btu/hr, so the heat lost in cooling the char prior to magnetic separation (15 MM) accounts for about 19% of the heat input to the calcination step.

2.2.6 Gravity Separation

At this point in the process, there has been some attrition of calcinate particles as they have progressed through the various process steps. This has liberated some of the sulfur and, more particularly, the ash, so additional cleaning is effective on the finer fractions. The calcinate is cooled from 1800° F (982°C) down to 200° F (93°C) in another indirectly water-cooled unit. Fines elutriated out of the calciner are also water cooled and go through a final air table cleaning step. Recovery of final calcinate is 98% (37% overall). Cleaned calcinate analysis is 1.5% sulfur and 15% ash. Cooling the calcinate is required prior to briquetting and is not done solely for the purpose of the cleaning step.

2.2.7 Fines Removal and Gas Quenching

Off-gas from both the carbonizer and calciner passes through primary and secondary cyclones to remove particulates down to 4μ m in size. Cyclone underflows are combined with the product discharged from each of the reactors and go through the respective cooling, sizing, and beneficiation steps associated with the carbonizer and calciner operations. Ultimately, most of the cyclone underflow materials are burned for the fuel value in the AFBC.

The off-gas from the calciner is burned for its fuel value, but the gas from the carbonizer is quenched to recover high boiling point volatiles. Quenching is done in a disc- and donut-scrubber tower using recirculating condensate as the scrubbing liquor. Operating temperature of the scrubber liquor is $175^{\circ}F$ (79°C) which results in an exit gas temperature of 190°F (88°C) and a recovered condensate temperature of 370°F (188°C). At these conditions, about 65% of the total condensable volatiles are collected as a pitch-type material, which is used as the formed coke binder. The rest remains in the gas phase as uncondensed volatiles and adds to the fuel value of the gas.

2.2.8 Briquetting and Curing

Pitch from oil storage and calcinate material are blended to uniformly mix the pitch for use as a binder. Briquetting is done in a roll-type press that forms about 2-inch pillow shapes. The green briquettes are screened to eliminate fines and then cured at 450°F (232°C), which volatilizes some of the lower boiling point species in the pitch and initiates polymerization in the binder. The briquettes are then coked at 1600°F (871°C) which carbonizes about 60% of the remaining binder and volatilizes the rest. Volatiles from the coking step supply enough heat to autogenously fuel this process step; however, natural gas is required to supply heat on start-up. Hot briquettes are then cooled and transferred to the product silo prior to rail shipment as product which is sold as a formed coke product with a targeted specification of less than 10% ash, 1% sulfur, and 2% volatiles.

2.2.9 Gas Compression

Uncondensed volatiles from both the carbonizer and calciner are cooled and compressed for distribution back to the burners supplying heat to the fluidizing gas in the carbonizer and calciner fluidized-bed reactors. There is more fuel value in these gases than required to supply the heat requirement for the reactors, so the excess gas is burned in the AFBC to make steam. Since air is used as the oxidizer in the burners, the recirculating gas streams would become saturated with nitrogen unless nitrogen was continuously bled out of the system. The excess gas burned in the AFBC performs this function and holds the nitrogen and other noncondensables and nonburnables to an acceptable equilibrium value.

2.2.10 AFBC

All of the waste solid streams from the various physical beneficiation cleaning steps, plus the excess gases from the carbonization, calcining, and briquetting steps, are burned in an AFBC to generate steam. Limestone is added to the bed of the AFBC for sulfur capture. Excess limestone and sulfur compounds, plus ash from the coal/ char/calcine solids, are hauled back to the mine for disposal. Prior to disposal, bottom ash is cooled with water, and fly ash is collected in a baghouse. Steam capacity of the AFBC is 280,000 pounds/hour at 1200 psig and 960°F (516°C).

2.2.11 Power Generation

Steam from the AFBC is converted to electric power in a 24-MW unit. The turbine generator is an extracting/condensing, nonreheat, 3600-rpm unit rated at 37,000 kVa at 13.8 kV. Approximately 5 MW of the power output is consumed in the mild gasification and supporting processes, which leaves 19 MW for export.

2.3 Technical Critique and Recommendations

Conceptual design of the gasification (carbonizing and calcining) and briquetting portions of the MG facility is based largely on experimental and somewhat speculative data, given the degree of scale-up and extrapolation. The design strategy for all other operations in the plant, including support facilities, is based on commercial-scale operating data and experience. The following describes what XBi and AMAX consider to be areas of moderate-to-high technical risk, which should be further investigated prior to commencement of detailed design:

- A centrifugal-type dewatering device to remove the bulk of free (surface) water prior to the fluid-bed coal dryer should be considered. This could significantly lower the cost of the fluid-bed dryer and the volume of hot air required for drying.
- Recent beneficiation tests on the subject coal do not support gravity table separation efficiencies used in this report. An investigation should be carried out to determine whether or not further testing or a change in design is justified (Topical Report for Task 4.6, Technical Evaluation).
- The efficiency of the magnetic separation step between mild gasification (carbonizer) and calcining is questionable. Performance on sulfur removal was marginal, considering the thermal energy required to cool the char from 1100 to 200°F (93°C) and then to heat it back to 1800°F (982°C). Either the step should be eliminated or the mild gasification temperature should be lowered so that less pyritic sulfur is converted to organic forms during gasification. Recent tests indicated there is more magnetic material produced at 1000°F (538°C) than 1100°F (593°C) (Topical Report for Task 4.6, Technical Evaluation).
- Midwestern coals with high organic sulfur content such as the Indiana No. 3 tested at the PRU scale may not be the appropriate feedstock for this process where low sulfur values are required in the formed coke product. Alternative coals should be evaluated for this process, particularly those coals that are more amenable to physical beneficiation for removal of sulfur and ash. Even with aggressive recoveries and efficiencies used in the beneficiation steps, the final product did not meet the targeted product specifications of less than 1% sulfur and 10% ash (Topical Report for Task 4.6, Technical Evaluation).
- The pressure profiles of all gas, liquid, and pneumatic conveying systems need to be confirmed during the detailed design, based on actual plant layout. The pressure drop for each piece of equipment should be verified.

ţ

- Scale-up from gasification pilot test data to the commercial plant is based on superficial velocity and residence time requirements only. Specification of actual reactor geometry requires more definitive verification. Specifically, carbonizer pilot test results are based on a residence time of about 20 minutes, whereas residence time in the commercial-scale carbonizer will be about 3 hours. This was done in order to duplicate the test run fluidizing gas-to-solid weight ratio and the superficial gas velocity and still have a reasonable reactor L/D ratio. Scale-up of the calciner is a similar situation. The effects of longer residence time on coal/char in the carbonizer and calciner require further study.
- Several simplifying assumptions (see Section 6.2) were made in order to complete the process simulation. As these hypotheses effect some uncertainties in the mass and energy balance, they must be resolved in the final design.
- Carbonizer and calciner bed supports have not been designed and specified. Operating temperatures preclude the use of metals. The use of ceramic balls may be a workable solution for both support and gas distribution, but this method may not be proven in commercial operation. Further investigation is required.
- Minimum freeboard space requirement in both the carbonizer and calciner should be verified. This will ensure that there is adequate solids separation from the gas, thus preventing excessive carryover to the cyclones.
- The potential hazards associated with hot char (1100°F [593°C]) and calcinate (1800°F [982°C]) contacting at mospheric oxygen at several transfer points in the process have not been addressed. These need to be investigated to determine whether or not nitrogen/inert blanketing is required.
- In the present design, the calciner recycle gas compressor operates at an inlet temperature of 375°F (191°C) to prevent oil condensation. Depending upon commercial compressor limitations, the gas may have to be cooled to below the oil dew point, which would necessitate a change in the design in order to handle this condensation.
- The present design assumes complete burning of off-gas combustibles, with no excess oxygen in the burners. If complete combustion is not attainable, off-gas may not be able to provide sufficient heat to maintain carbonization at about 1100°F (593°C) while meeting the total fixed fluidizing gas rate. Fluidizing gas includes cooler conveying gas used to transport the coal into the carbonizer.
- The formed coke system presented in this report is a preliminary scheme. Further investigation and testing should be made into the specific requirements of briquetting and curing the subject material. Disposition of tars driven off in the curing kiln is another concern.
- The material balance calls for about 14-wt% oil to be used as binder in the calcinate briquettes. Recent tests indicated the binder level can be as low as 10 wt%. (Topical Report for Task 4.6, Technical Evaluation). Also, depending on heat losses from the process and exact operating conditions, combustion of

the noncondensables provides more heat than the process requires. This extra heat is eventually converted to electrical energy product. The recovery of more condensables by using a lower quench temperature and the use of less oil as binder will result in excess oil that can be sold as an additional product. This will improve the economics to some extent and should be investigated before proceeding to a detailed design for a commercial-size plant.

• Due to a number of uncertainties in the coal-cleaning steps, heat balance, and condensable yield data, the process will have to be piloted at the 10- to 30-tpd scale before proceeding to a commercial-size plant.

3.0 PROJECT DESIGN BASIS

3.1 General

The mild coal gasification plant is intended to produce metallurgical-grade formed coke briquettes from a feedstock of Indiana No. 3 coal. Production capacity is based on a nominal coal feed rate of 1000 tpd (dry basis). The conceptual plant design comprises of the following major processing steps and auxiliaries:

- Coal Receiving/Storage
- Coal Preparation
- Coal Beneficiation
- Coal Carbonization
- Char Calcining
- Gas Quench/Liquid Separation
- Waste Treatment
- Calcinate Beneficiation
- Calcinate Agglomeration
- Coke Storage
- Power Generation
- Other Required Utility Systems

The facility will be sited at Amax Coal Company's Chinook mine in Clay County, Indiana. Overall plant configuration is based upon carbonizer and calciner unit material balance/yield data provided by the EERC, based on previous pilot plant tests. Material balance and yield data for the physical beneficiation cleaning steps on coal, char, and calcine were provided by AMAX.

3.2 Site-Specific Data

3.2.1 Site Conditions

The plant will be located approximately 20 miles east of Terre Haute, Indiana, at the Chinook mine in Clay County.

The following climatological data apply:

Elevation, feet above Mean Sea Level	700
Ambient Temperature Outdoor, °F	
Maximum	100
Minimum	-20
Annual Snowfall, inches	30
Average Annual Relative Humidity, %	72
Average Temperature, °F ²⁹	
January	27
February	32
March	42
April	54
May	64

June	73
July	76
August	74
September	67
October	56
November	43
December	33
Average Precipitation, inches ²⁹	
January	2.9
February	2.4
March	3.5
April	3.6
May	5.0
June	5.3
July	3.4
August	3.2
September	3.1
October	3.0
November	3.1
December	2.6
Wind Loading, mph	80
Direction of Prevailing Wind	NW
Snow Loading, psf	20
Live Load, Platforms, psf	100
Dead Load, Platforms, psf	200
Seismic Zone (uniform building code)	No. 2

3.2.2 <u>Utilities Available at Site</u>

3.2.2.1 Fuel Gas

Natural gas is available at the plant battery limits.

A high-pressure natural gas pipeline crosses the plant property. Gas can be taken out of this line at any pressure desired. At present, the mine does not use any natural gas.

Natural gas composition:²⁹

Component	<u>Volume %</u>
Carbon Dioxide	1.12
Nitrogen	0.44
Methane	95.28
Ethane	2.53
Propane	0.38
i-Butane	0.07
n-Butane	0.09
i-Pentane	0.03
n-Pentane	0.02

Hexanes			0.04
Specific Gravi Lower Heating	ty, gm/cm³ g Value, Btu/scf		0.587 929
3.2.2.2 E	lectricity		
Power is availab	ole at plant battery limits a	at 13.8 kV. ²¹	
3.2.2.3 St	team		
Steam is not av	ailable from an outside sou	rce.	
3.2.2.4 R	aw Water		•
Raw water is av	ailable at plant battery lin	nits. ²¹	
	ry Limits Pressure, psig ry Limits Temperature, °F		85 50
Raw water anal	ysis (in ppm) is: ²⁹		
	Hardness g/gal Ca (as CaCO₃) Mg Fe Mn Cl F Si Si Na pH	400 23.6 300 160 < 0.3 0.16 0.30 1 Not Available Not Available 7	

3.2.2.5 Potable Water

....

The existing Chinook mine potable water system will be extended to the MG facility via one supply line. This line will provide drinking water and water for domestic use, as well as for safety showers and eyewashes.

3.2.2.6 Instrument/Plant Air

Not available, to be supplied by new system.

3.2.3 Facility Service Requirements

The following services will be required at/in the plant site:

Railroad:	ISBL spur for limestone receiving, product shipping, ash disposal, and large equipment/parts delivery
Roadways:	Exterior service, interior plant roads to be minimum 30 feet wide
Storm Drainage:	Surface slope of 0.5%, open trench slope of 1%
Fire Protection:	Hydrant loop system
Freeze Protection:	Electric heat tracing
Utilities:	Site-generated, except as stated above

3.3 Feed and Product Specifications, Process Wastes

3.3.1 Feed Specifications

3.3.1.1 Coal

The plant is designed to utilize Indiana No. 3 coal from Amax's Chinook mine. Feed coal has the following characteristics:³⁴

. •

Coal Rank Mine Proximate Analysis, wt% as-received	Bituminous Chinook, Brazil, Indiana
Moisture	8.20
Ash	12.12
Volatile Matter	34.79
Fixed Carbon (by difference)	<u>44.89</u>
Total	100.00
Sulfur (total)	4.20
Sulfur (pyritic)	2.25
Sulfur (organic)	1.81
Sulfur (sulfate)	0.14
Specific Gravity	1.32
Apparent Density, -6 mesh, lb/ft ³	47.4
Feed Coal Size	2 inch x 0 mesh

÷

3.3.1.2 Limestone (for AFBC)

Crushed limestone will be delivered to the plant site via truck/rail. The following specifications are required:

Size 1/4 inch x 0 mesh

3.3.2 Product Specifications

3.3.2.1 Formed Coke

Formed coke product (briquettes) is expected to meet quality specifications as determined by the following standard test procedures:

- Drop Strength Test for Shatter Resistance
- Tumble Test for Abrasion Resistance
- Compressive Strength Test for Crush Resistance
- Immersion Test and Shower Test for Resistance to Water Penetration
- Weight Loss Test under Reducing Conditions
- Ash, μ m, S

3.3.3 Process Wastes

The following process wastes are generated at the MG plant and are subject to disposal in accordance with existing local and federal EPA regulations:

3.3.3.1 AFBC Ash

Fly ash and bottom ash from the AFBC are collected and sent by truck/rail to the Chinook mine for underground disposal.

3.4 Plant Capacity and Product Slate

The facility is designed to process feed coal at a rate of 1000 standard tons/day (dry basis) from the mine, received via off-site feed conveyor from the Amax Chinook mine washing plant.

The primary plant product is formed coke consisting of briquetted and cured calcinate/binder mix. Recovered coal liquids from the gasification process are used as a binder material for the formed coke. Only sufficient liquid for binding is recovered; no excess liquid product will be produced at this facility at the assumed 14% binder level.¹⁸

Electrical power is generated on-site for plant consumption. It is intended that the quantity of power generated will be commensurate with the utilization of the combined chemical heat content of all reject solid material and gaseous effluents from the various coal/char beneficiation steps. Excess power generated from waste materials only may be sold into the grid. Should the burning of wastes not provide sufficient power, supplementary fresh coal may be utilized to meet on-site power demand. However, fresh coal may not be used to generate merchant power.

3.5 **Process Model**

Process simulation software, $HYSIM^{TM}$ (Hyprotech, Calgary), was used to model the process in conjunction with the Peng-Robinson equation of state for estimating physical properties and vapor-liquid equilibria. In the simulation, feed coal is represented by moisture- and ash-free material (maf), ash, and water. Ash is treated as inert. No heat of formation is included for the solids.

Product oils were characterized for input to $HYSIM^{TM}$ using an approximate ASTM D2887 assay with 10 boiling point fractions. As the nature of the oil components is hypothetical, heats of formation and heats of combustion for these are not available from $HYSIM^{TM}$ and had to be estimated by approximating standard components. The carbonizer and calciner were modeled as stoichometric reactors.

Sulfur was not included in the simulation, as 1) modeling the transformation of sulfur compounds as they pass through the carbonizer and calciner is not practical and 2) sulfur is relatively insignificant in the energy balances. Instead, the sulfur balance was performed externally to the model. As a result, gas streams in the mass balance (Section 6.0) showed somewhat higher sulfur contents than was found in the simulation output (Appendix B).

3.6 Design Parameters from the EERC and AMAX

Data in this section constitute the basis for the mass and energy balance and are used as design criteria for specific plant systems and equipment. General arrangement of design data herein is presented according to the order of process flow.

3.6.1 Coal Beneficiation

The following separation parameters were provided by AMAX for coal separation by gravity tables:³⁴

<u>Component</u>	Weight % Rejected	
maf	7.75	
Ash	25.0	
Water	9.99	
Sulfur	15.01	
Volatile Matter	7.0	

١

3.6.2 Carbonization

2

3.6.2.1 Carbonizer Feed

AMAX provided the following carbonizer feed composition:³⁴

Coal (-6 mesh, as-received) maf	<u>lb/hr</u> 64,505 52,778	<u>% by Weight</u>
Ash	6,438	10.9

Water	5,290	8.9
Sulfur	2,514	4.2
Volatile Matter	23,191	39.2

3.6.2.2 Carbonizer Conversion

Coal conversion in the carbonizer is based on the EERC's initial material balance.³⁴ Fluidizing gas rate to the carbonizer was maintained at 91,833 lb/hr in accordance with the EERC's balance. However, with regard to char formation, a change has been made from the EERC's basic balance. The EERC's data show a significant quantity of oxygen in the fluidizing gas, based on runs performed in their test facility. In the commercial plant, oxygen will not be present in the carbonizer. This difference is reflected by the suppression of CO_2 and a corresponding increase in char yield. Accordingly, XBi established the following changes in coal/char composition (conversion) in the carbonizer:

	Yield, lb/100	Weight % in
Component	<u>lb Feed maf</u>	<u>Overhead Gas</u>
maf	+67.52	10.0
Ash	0.00	10.0
Oxygen	0.00	100.0
Nitrogen	0.00	100.0
Carbon Dioxide	0.00	100.0
Methane	+2.49	100.0
Hydrogen	+0.78	100.0
Carbon Monoxide	+2.09	100.0
Hydrogen Sulfide	+2.33	100.0
Ethane	+0.53	100.0
Ethylene	+0.13	100.0
Propane	+5.98	100.0
Propylene	+0.15	100.0
Water	0.00	100.0
Condensable Hydrocarbon	+18.00	100.0
	100.00	

3.6.2.3 Carbonizer Effluents

The quantities and compositions of carbonizer char and effluent gas are based on conversion parameters derived by XBi from the EERC data (see table above). The following data regarding hydrocarbon and sulfur in the exit gas were also given by the EERC:

• CARBONIZER GAS

- Condensable hydrocarbon: 9500 lb/hr (fixed).
- Simulated ASTM distillation:²⁸

<u>ABP, °F</u>	Weight %
320	0.0
392	24.0
482	66.0
572	90.0
662	97.5
752	99 .0
842	100.0

- Includes 345 lb/hr total sulfur.

• CARBONIZER CHAR

Based on the XBi conversion parameters above, the following total char (bed + fines) is produced in the carbonizer:

	<u>lb/hr</u>
Total Char	42,090
maf	35,652
Ash	6,438
Sulfur	1,011
Volatile Matter	5,557

3.6.2.4 Carbonizer - Other Design Parameters

- Superficial Gas Velocity: 4 fps.⁴³
- Residence Time: 3 hours,¹⁷ minimum is 30 minutes.¹⁸
- Carbonizer Geometry:¹⁰ Bed L/D = 1, Freeboard (Top) L/D = 1, Overall L/D = 2.
- Heat loss: 7 MM Btu/hr (approximately 10% of heat load).¹⁸

3.6.3 Char Beneficiation

ł

The following separation parameters were given by AMAX for char magnetic separation: $^{\rm 34}$

	Weight % Rejected
maf	11.11
Ash	22.76
Sulfur*	23.80
Volatile Matter	13.44

* Adjusted value in order to maintain char sulfur at 2.1 wt% to calciner.

3.6.4 Calcination

3.6.4.1 Calciner Feed

Quantity and composition of feed to the calciner are derived from 1) the carbonizer effluent given above and 2) beneficiation of the carbonizer char by magnetic separation according to the above separation factors. The following calciner feed composition was used:

Total Char maf Ash Sulfur* Volatile Matter	<u>lb/hr</u> 36,363 31,691 4,972 770 4,810	
* Adjusted value in order to maintain char sulfur at 2.1 wt%.		

r

3.6.4.2 Calciner Conversion

Char conversion in the calciner is based on the EERC's initial material balance.³⁴ Fluidizing gas rate to the calciner was maintained at 100,000 lb/hr in accordance with the EERC's balance. However, with regard to calcinate formation, an adjustment has been made from the EERC's basic balance. Accordingly, XBi established the following changes in coal/char composition (conversion) in the carbonizer:

	Yield, lb/100	Weight % in
Component	lb Feed maf	Overhead Gas
maf	+83.0	20.0
Ash	0.0	20.0
Oxygen	0.0	100.0
Nitrogen	0.0	100.0
Carbon Dioxide	+9.05	100.0
Methane	+1.86	100.0
Hydrogen	+0.56	100.0
Carbon Monoxide	+1.86	100.0
Hydrogen Sulfide	+0.83	100.0
Ethane	+0.06	100.0
Ethylene	+0.01	100.0
Propane	+0.66	100.0
Propylene	+0.02	100.0
Water	+1.68	100.0
Condensable Hydrocarbon	<u>+0.19</u>	100.0
-	100.00	

3.6.4.3 Calciner Effluents

The quantities and compositions of calcinate and effluent gas are based on conversion parameters derived by XBi from the EERC data (see table above). The following data regarding hydrocarbon and sulfur in the exit gas were also given by the EERC:³⁴

• CALCINER GAS

- Condensable hydrocarbon: 59 lb/hr (fixed).
- Simulated ASTM distillation:³⁵

<u>ABP, °F</u>	<u>Weight %</u>
176	0.0
392	32.0
572	68.0
752	86.0
932	98 .0
950	100.0

- Includes 1-lb/hr sulfur.

• CALCINATE

Based on the XBi conversion parameters above, the following total calcinate (bed + fines) is produced in the calciner:

	<u>lb/nr</u>
Total Calcinate	31,372
maf	26,4 00
Ash	4,972
Sulfur	521
Volatile Matter	1,336

3.6.4.3 Calciner - Other Design Parameters

- Superficial Gas Velocity: 2 fps.¹⁰
- Residence Time: 3 hours,¹⁷ minimum is 30 minutes.
- Calciner Geometry:¹⁷ Bed L/D = 0.5, Freeboard (Top) L/D = 1, Overall L/D = 1.5.
- Heat loss: 7 MM Btu/hr (approximately 10% of heat load).¹⁸

3.6.5 Calcinate Beneficiation

The following separation parameters for calcinate fines (cyclone underflow) by gravity table were derived from data given by AMAX for coal gravity table separation:³⁴

<u>Component</u>	Weight % Rejected
maf "	7.75
Ash	25.0
Sulfur*	24.4
Volatile Matter	7.0

 Adjusted value in order to maintain calcinate fines sulfur at 1.6 wt%.

3.6.6 Briquetting (Formed Coke)

Formed coke contains 6 - 10 wt% recovered liquids for binder.

3.7 Design Factors Applied by XBi

3.7.1 On-Stream Factor

• Operation 330 days per year (approximately 90% on stream).

3.7.2 Minimum Storage Capacities

- Coal feed: 48-hour reserve at 1000 tpd (8% moisture by weight).
- Formed coke product: 48-hour capacity.
- Intermediate coal/char surge hoppers: 2-hour capacity.
- Calcinate storage: 48-hour capacity.
- Reject coal/char storage: 24-hour capacity.
- Reject calcinate storage: 24-hour capacity.

3.7.3 Bulk Solids Belt Conveying

- Belt conveyors are generally used for bulk conveying cool solids.
- Conveying design capacity is approximately twice normal (continuous) requirement for feeding downstream equipment.
- Maximum incline for belt conveyors: 15°.
- Belt conveyors are enclosed.

3.7.4 Pneumatic Conveying

- Maximum 8:1 solids-to-air ratio.
- Piping is sized for 6000 to 7000 fpm.
- All bends are sweeps; no ells are used.

3.7.5 Cyclones

- Primary cyclones remove particles $>10\mu$ m with 50% efficiency.
- Secondary cyclones remove particles $>4\mu$ m with 50% efficiency.

3.7.6 <u>Baghouses</u>

- Maximum 3:1 air-to-cloth ratio.
- Maximum solids discharge to atmosphere is 0.002 grain/scf.

3.7.7 Dusty Vent Lines

• Minimum incline/decline: 60°.

3.7.8 Solids cooling

• Design duty is 115% of the normal rate.

3.7.9 <u>Compressors</u>

- Carbonizer gas: design capacity is 110% of normal flow.
- Calciner makeup gas: design capacity is 120% of normal flow.

3.7.10 Heat Exchangers

• Design duties are 120% of normal rate.

3.7.11 Carbonizer Off-gas In-line Burners

- 10:1 carbon-to-hydrogen weight ratio for condensables in off-gas.
- Air compressors: design capacity is 120% of normal flow.
- Heat loss not included in duty.

3.7.12 Gas Quenching/Oil Recovery

- Oil circulating pump and cooler: design capacity is 130% of normal rate.
- Oil storage tank: 48-hour reserve at 5,278 lb/hr.
- Heat loss is 0.65 MM Btu/hr.
- Oil transfer pump: design capacity is about three times the normal flow.

3.8 Safety and Environmental Constraints and Compliance

3.8.1 General

The MG facility is to be detail designed in accordance with all applicable national safety codes and standards. These include, but are not limited to:

ASME Sections I, II, V, VIII, and IX	RMA
ASTM	AWS
ANSI B31.1	OSHA

HI Standards	MSHA
ASHRAE	AFBMA
SMACNA	NFPA
AMCA	AGMA
TEMA	FM
ASME Performance Test Codes	UL
HEI	NFPA
CEMA	

Design, construction, and operation of the plant is also governed by applicable federal, state, and local environmental and health regulations which include CAA, CWA, HSWA, and SARA.

3.8.2 Safety Considerations

3.8.2.1 MSHA and OSHA

AMAX's existing Chinook mine is currently regulated by the Mining Safety and Health Act (MSHA). The new MG facility, considered to be an addition to the mining operation, will thus be regulated by MSHA as far as applicable. For industrial safety and health concerns beyond those administered by MSHA, the Occupational Safety and Health Act (OSHA) will apply.

3.8.2.2 Fire and Explosion Protection

National Fire Protection Administration (NFPA) codes and guidelines as applicable to coal processing/handling will govern. State-of-the-art fire and explosion prevention technology will be applied; e.g., all coal, coke, and dust-laden conveyances and handling equipment are to be protected by venting, explosion-suppression devices, and/or water sprays, as applicable.

3.8.3 Safety Design Features

3.8.3.1 Fire Water System

A fire water loop is provided to supply water to hydrants, hose stations, and fixed automatic water suppression systems. Fire water is supplied by an electric motor-driven primary pump and backup diesel engine-driven pump. The system is continuously pressurized by one partial capacity jockey pump. The pumps take suction from a single, above ground raw water tank. In the event the jockey pump cannot maintain the system pressure, the main fire pumps will start sequentially.

The following equipment and areas are protected by fixed automatic water suppression systems:

- Coal/char conveyors, galleries, and solids handling structures.
- Main and auxiliary transformers.
- Turbine lube oil reservoir.
- Areas under the turbine generator operating floor.

- Cooling tower.
- Warehouse and other facilities, as required.

3.8.3.2 Fire/Explosion Detection and Prevention

An alarm system utilizing ionization detectors is provided for the electrical cable spreading room and electronic rooms. Fixed-temperature detectors and rate-of-rise detectors are provided in the coal and char handling areas, cooling tower, and main and auxiliary transformer areas. These are protected by deluge water spraying systems.

UV/IR flame detectors are provided for the boiler in the AFBC firing aisles. A permanent Halon extinguishing system is provided for the electronic/computer room. Permanently installed Fike or Fenwall flooding systems are provided for the protection of each dust-collection system.

Permanently installed fire protection systems are augmented by the following portable equipment:

- Manual carbon dioxide and/or Halon extinguishers for electrical equipment and switchgear in confined areas where this type of extinguisher is effective.
- Multipurpose ABC dry chemical extinguishers throughout the plant.
- A carriage-mounted 150-pound dry chemical unit on each level of the turbine bay.
- A fire truck with 3500-gallon capacity and 250 gpm pump capable of passing a 3-hour National Board of Fire Underwriters Class A acceptance test.
- Hose stations with 1-1/2-inch fire hose in areas not readily accessible by hydrants.

3.8.3.3 Fire/Safety Around Specific Areas or Equipment

Coal Storage: A fire water loop is not provided around inactive coal storage areas. Enclosed storage areas are ventilated to prevent the accumulation of explosive or combustible gas and dust mixtures. Continuous venting of the space at the top of coal storage silos is provided.

Conveyors: Bureau of Mines fire retardant conveyor belt material is standard. Conveyor galleries are provided with bulkheads or draft curtains to inhibit potential spread of fire by drafts or natural air convection. Conveyors are further protected by fixed water spray systems.

Transformer Areas: A dry-pipe, open-head deluge water spray system is provided for the main and auxiliary transformers. The deluge system will comprise of an automatic deluge valve interlocked with the transformer protective relays.

We are the second se

. .

3.8.4 Enivronmental Regulations

3.8.4.1 Air Emissions

Atmospheric airborne discharges from the MG facility are regulated by USEPA, Indiana EPA, and applicable local air quality regulatory agencies under the 1990 Amendments to the Clean Air Act (CAA), the Hazardous and Solid Waste Amendments (HSWA), and the Superfund Amendments and Reauthorization Act Community Right-to-Know Act (SARA Title III).

3.8.4.2 Water Discharge Quality

Aqueous discharges from the MG facility must meet all pollution criteria as prescribed by the Water Quality Act (WQA), National Emissions Standards for Hazardous Air Pollutants (NESHAP), the Hazardous and Solid Waste Amendments (HSWA), the Toxic Characteristic Leaching Procedure (TCLP, effective 1994), and the Superfund Amendments and Reauthorization Act Community Right-to-Know Act (SARA Title III). These regulations are enforced by USEPA, Indiana EPA, and applicable local regulatory water quality agencies.

3.8.4.3 Sanitary Discharge

Sanitary wastes will be sent to the existing Chinook mine waste disposal facilities. It is assumed that the existing facility is in compliance with current regulations.

3.8.4.4 FAA

-

The height limitation and visibility of facility structures and equipment are governed by FAA regulations, Obstruction Marking and Lighting, A.C. 70/7460-1C.

3.8.4.5 Noise

Noise levels within the plant boundaries are not to exceed MSHA standards for Occupational Noise Exposure as stated in the Federal Register, Section 1910.95.

3.8.4.6 HVAC

Design of HVAC and HV systems are based on ASHRAE guides and AMCA standards. Heat load calculations and equipment selection are based on outdoor conditions listed in the ASHRAE Handbook of Fundamentals.

3.8.5 <u>Environmental Compliance Design Features</u>

3.8.5.1 Air Emissions

Emission species which are controlled to meet environmental requirements include sulfur compounds (H_2S , SO_2 , COS, and complex organic sulfur compounds), nitrogen oxides (NO_x), particulates, carbon monoxide (CO), hydrocarbons, and others (NH_s , HCN, alkali metals, etc.). In the MG facility, some of these are generated in both the gasification process and from the combustion of coal and char in the AFBC. Those produced during gasification, however, are sent with the process off-gases to the AFBC, where they are burned. Thus emission of the controlled species, with the exception of particulate matter (see below), is limited to AFBC flue gas.

AFBC: Design of the AFBC is predicated on compliance with Federal EPA and local agency air quality requirements. Emissions of SO_2 , NO_x , CO, and particulate matter (fly ash) from the AFBC will not exceed these standards. The boiler stack is designed to comply with Good Engineering Stack Height as defined by Federal Register 40 CFR 51.

Particulates: All coal and char in the MG facility is conveyed and processed in closed systems. Prior to atmospheric discharge, each gas stream which has been used in the process and/or for solids conveying is passed through a dedicated, suitably designed baghouse. Baghouses reduce the discharge particulate level of these vents to 0.002 grains/scf in order to meet current federal and local air emissions standards.

3.8.5.2 Wastewater

The process normally uses no water and does not generate aqueous process wastes. Coal, char, and ash are not stored in open piles on-site. Thus process runoff or leachate from these need not be considered.

Oil-lubricated equipment or equipment which contains regulated materials (e.g., transformer oil) are located in diked areas. Runoff from these is collected and pumped to the Chinook mine wastewater handling system for further treatment. Cooling tower blowdown, boiler blowdown, and water treatment backflush are also collected and pumped to the mine wastewater treatment facility. Domestic wastewater is pumped to the existing Chinook mine area sanitary waste disposal system.

3.8.5.3 Solid Wastes

All reject process solids (coal and char) are burned as fuel in the AFBC. Fine solids (particulates) which are collected in baghouses throughout the processing facilities are either returned to the process or burned in the AFBC. Fly ash and bottom ash from the AFBC are collected in closed hoppers and transported by truck/rail to the Chinook mine for underground disposal. The need for the routine disposal of other solid/hazardous wastes is not anticipated.

, î

4.0 PROCESS DESCRIPTION AND PHILOSOPHY

4.1 General

The mild coal gasification plant flow scheme is divided into five main processing areas. These are:

- Coal storage and preparation (Appendix B, PFD-001) which comprises:
 - Receiving and storage.
 - Preparation (crushing and drying).
 - Coal beneficiation (screening and gravity separation).
- Coal carbonization (Appendix B, PFD-002) which comprises:
 - Carbonization and char cooling.
 - Carbonizer char beneficiation (screening and magnetic separation).
- Carbonizer liquids recovery (Appendix B, PFD-003) which comprises:
 - Gas quench and liquids storage.
 - Carbonizer gas recompression and burning.
- Char calcination (Appendix B, PFD-004) which comprises:
 - Calcination and calcinate cooling.
 - Fines recovery and beneficiation (gravity separation).
 - Calciner gas recompression.
- Coke briquetting (Appendix B, PFD-005) which comprises:
 - Char and binder feed mixing.
 - Briquetting.
 - Briquette curing and coking.
 - Gas handling.

In addition to the coal handling and processing units, facility on-sites also incorporate all equipment and utility systems required to support and maintain continuous independent operation. These include:

- AFBC and auxiliaries (Appendix B, UFD-011).
- Steam/power generation (Appendix B, UFD-012).
- Water treatment and storage (Appendix B, UFD-013).
- Plant cooling water, fire water, and brine facilities.

As in the previous section, several references to sources of information are cited. A list of these references is given in Appendix A.

4.2 Coal Storage and Preparation Area (Appendix B, PFD-001)

4.2.1 <u>Coal Receiving and Storage</u>

Coal enters the plant battery limits via a belt conveyor from the mine. From the plant boundary, feed coal is transferred by the Coal Receiving Conveyor F-101, to the Coal Silo, T-101. A belt scale (an accessory to F-101) records the quantity of coal which crosses the plant boundary. Air vented from the Silo is passed through Baghouse G-101 to eliminate fugitive coal dust emissions, then discharged by the Baghouse Blower K-101.

The Coal Silo has twin bottom discharge cones, each feeding one of two equal and parallel process trains. All equipment from this point (except as noted otherwise) is identified by suffixes "A" and "B" for respective trains on flow diagrams, the equipment list, etc. For clarity in the process description, however, suffixes are not used, and the description refers to each train.

Feed coal from T-101 is first carried a short distance by Belt Feeder F-102 to the main Belt Conveyor F-103, which lifts the coal to Surge Bin T-102. As coal is conveyed on F-103, it encounters a scale, magnetic separator, and metal detector. These auxiliaries verify the mass of coal to be processed and ensure that no large metallic debris is passed through to possibly damage downstream equipment.

Bin T-102 provides feed surge and consistent flow for the Coal Crusher J-101. Both F-103 Conveyors discharge to only one T-102. As with the T-101 bin, air from T-102 is vented through a baghouse and discharged to the atmosphere via a blower (G-102 and K-102, respectively, single-train). T-102 also has twin bottom discharge cones; from here the process again splits to two parallel trains.

4.2.2 <u>Coal Preparation</u>

Feed coal received at the site is approximately 2 inch x 0 mesh and wet. In order to facilitate downstream processing, the coal is first crushed,¹⁶ then screened and surface-dried to no more than 8% moisture.¹⁵ Crushing the coal prior to drying permits fluidization in the dryer, thus enhancing the dryer's effectiveness.

From each discharge cone of T-102, Belt Feeder F-104 carries feed coal into Crusher J-101. J-101 is a double roll-type crusher which reduces the coal to approximately 1/4-inch mesh. Crushed coal from J-101 falls onto the belt-type Dryer Feed Conveyor F-105, which carries the coal up to the feed chute of Coal Dryer H-101 above the 5th level (approximately 90 feet above grade). The dryer is a fluid-bed type in which the coal is dried with hot air from the AFBC air preheater. Air enters the dryer at 400°F (204°C). Dryer capacity is based on drying 45 tph (dry basis) of coal containing 13% to 8% moisture maximum.

Exhaust air from the dryer is discharged to the Coal Cyclones C-101 (two cyclones in parallel). Here the larger coal particles still entrained in the air are removed. Cyclone overflow is sent to Baghouse G-103, where the remaining fine coal particles are eliminated by the cloth filter bags. Air leaves the dryer at approximately 250°F (121°C), suitably above the water dew point to prevent downstream condensation and sticking of char fines in the cyclones and baghouse. Coal fines collected in the cyclones and baghouse are discharged by rotary valves to the Reject Hopper T-103.¹⁴

4.2.3 <u>Coal Beneficiation</u>

Feed coal typically contains three types of sulfur compounds, viz., organic, pyritic, and sulfates (inorganic). Pyritic sulfur occurs in distinct particles and is approximately three times the density as the coal itself.⁵⁰ This allows some amount of physical rejection of pyritic sulfur to be achieved. Furthermore, reducing the amount of pyrite fed to the carbonizer decreases the degree of gravity separation required downstream and reduces the conversion of pyritic sulfur to organic sulfur during carbonization.²³

Coal from the dryer flows by gravity into the Coal Screener C-102. The Screener has two vibrating screens in series which separate the coal into three fractions: 10 mesh and over, 10 to 24 mesh, and <24 mesh (fines). The purpose of this operation is to facilitate the next step, beneficiation by gravity separation, by limiting the size distribution range of coal to each of the gravity tables.²³

Crushed, dried, and segregated coal from the screener is fed by gravity to three gravity tables (C-103, C-104, and C-105), which operate in parallel. In the gravity tables, air from blowers (K-103, K-104, and K-105, respectively) is blown upward through a sloped vibrating deck, fluidizing the lighter coal particles. Heavier particles (containing pyrite and ash) are not fluidized and thus are carried upward by the motion of the deck toward the high end. The lighter particles, disengaged from the deck, "float" downslope and are discharged from the low end.

The denser fraction from each gravity table is fed by gravity to the Reject Hopper T-103. This fraction contains a higher concentration of pyrites than the coal in the light fraction. Reject coal from T-103 is pneumatically conveyed to the AFBC reject coal hopper¹⁴ with air from Blower K-106.

The lighter fraction from each gravity table, now somewhat reduced in pyritic sulfur and ash content, is gravity fed to Surge Hopper T-104 through the Carbonizer Feed Mixer M-101. M-101 is a vertical static mixer which ensures that the varying particle sizes from all three gravity tables are well blended before feeding to the carbonizer.

4.3 Carbonizer Area (Appendix B, PFD-002)

4.3.1 Coal Carbonization

Processed feed coal from Hopper T-104 is carried by belt-type Feed Conveyor F-106 to the Carbonizer Feed Hopper T-301. Coal is pneumatically conveyed¹⁵ from T-301 into the bottom feed section of the Carbonizer R-301. Fresh coal is fed at a constant rate to the carbonizer. Recycled and reheated gas at 2800°F (1538°C) is simultaneously injected into the bottom of the carbonizer. A portion of the recycled carbonizer gas stream is used for conveying feed into the carbonizer. Temperature of the conveying gas is maintained at approximately 600°F (316°C) by mixing reheated and cold recycle gas.¹⁶ Total gas to the carbonizer (feed gas plus conveying gas) is maintained at a constant rate.

31

The carbonizer operates at approximately 1100°F (593°C).¹ A range of 1050° to 1125°F (566° to 607°C) is optimum.¹⁸ High-temperature carbonization is recognized as the principal carbonization technique for the production of metallurgical coke as 1) coke produced in this manner is less porous and less reactive, and 2) recovered liquids coproduction is not as essential for commercial viability.⁵⁰

Hot gas is fed into the carbonizer char bed through a distribution device.¹⁸ Coal is fed to the carbonizer through multiple ports, creating a spouted-bed operation. During a residence time of 3 hours in the carbonizer, char (enriched coal) is formed as volatile compounds are driven out of the coal. The spouted-bed design was chosen based on favorable results with caking coals in other gasifier systems. In this carbonizer configuration, the internal recycle of char back to the bottom of the bed reduces agglomeration.¹

7^{68.....}

Volatiles from the carbonizer are carried off by the exit gas. Gas exits the top of the carbonizer at about 1100°F (593°C). Char particulate matter is separated from the gas by passing it through a two-stage (series) cyclone system. Each of the primary and secondary carbonizer cyclones, C-301 and C-302, is comprised of two units in parallel (four cyclones in all) for capacity considerations. Primary cyclones are designed to separate 10 μ m particles with 50% efficiency; secondaries are designed for 4 μ m particle separation at 50% efficiency.¹ Underflow solids are discharged by rotary air locks from the bottom of the four cyclones and cooled prior to further processing (see below). Gas from the cyclones is sent to the quench section for cooling, condensation of volatiles, and liquids recovery.

Devolatilized char is discharged from the top of the char bed of the carbonizer via a chute and rotary air lock into the Char Cooler H-301. Separated char fines from the cyclones (see above) are combined with the carbonizer char into H-301. H-301 is a screw-type cooler with hollow flights filled with circulated cooling brine.¹⁶ Char enters the cooler at the carbonizer temperature of 1100°F (593°C) and exits at about 200°F (93°C). Cooling the char prior to calcining is not energy efficient, but the char must be cooled to less than 250°F (121°C) in order to protect the permanent magnets in the magnetic separators which are used prior to calcining.²³ Cooled char drops by gravity from the discharge end of the cooler into the Screener Feed Hopper T-302.

4.3.2 Char Beneficiation

Although coal beneficiation reduces the pyritic sulfur content (see above), carbonizer char still contains significant pyritic sulfur in the form of pyrrhotite. During carbonization, pyrite (FeS₂) is converted to pyrrhotite (FeS_x) with the extra sulfur either reporting to the off-gas or remaining in the char as elemental sulfur. Where the sulfur goes is influenced by reducing conditions and other factors that cannot be fully explained. Pyrrhotite is magnetic, while pyrite is paramagnetic and elemental sulfur has very little magnetic susceptibility. At temperatures of 800° to 1100°F (427° to 593°C), the conversion of pyrite to pyrrhotite is maximized, and there should be a good opportunity to use magnetic separation to remove sulfur from the char, assuming the pyrrhotite mineralization is liberated from the other constituents in the char. At temperatures below 800°F (427°C), conversion to pyrrhotite is not possible, and at temperatures above 1100°F (593°C), the pyrite converts completely to iron compounds and elemental sulfur. Magnetic separation may remove the iron compounds and improve the ash content, but it is not effective on elemental sulfur.

Char is transferred by belt-type Conveyor F-301 from grade level (under Hopper T-302) to the top of the Char Screener C-307 at approximately 90 feet above grade. The screener has two vibrating screens in series which separate the char into three fractions: 20 mesh and larger, 20 to 40 mesh, and <40 mesh (fines). The purpose of this operation is to limit the particle-size distribution range of char to each magnetic separator in order to enhance separation efficiency.²³

Char is fed by gravity from the screener to three magnetic separators (C-304, C-305, and C-306), which operate in parallel. High-strength magnetic elements on a rotating drum in each magnetic separator draw away char particles which have a high pyrrhotite content. The high-pyrrhotite char is then discharged to one side of the separator (reject magnetic discharge), while the nonmagnetic char (product) is discharged from the other side. Reject char is discharged from the three separators gravity flows to the Reject Char Hopper T-303. Reject char from T-303 is then pneumatically conveyed to the AFBC reject char hopper¹⁴ with air from Blower K-302.

Nonmagnetic (product) char from each magnetic separator, now somewhat further reduced in pyritic sulfur content, is gravity fed to Surge Hopper T-304 through the Calciner Feed Mixer M-301. M-301 is a vertical static mixer¹⁸ which ensures that the varying particle sizes from all three separators are well blended before being fed to the calciner.

Atmospheric discharge of coal and char dust is prevented by feeding the vent lines from all carbonizer area equipment (i.e., hoppers, screeners, gravity tables, and conveyors) to Baghouse G-301. The baghouse filter medium ensures that discharge gas does not exceed the EPA airborne dust criterion of 0.002 grain/scf.¹⁸ Vent draft is induced through the baghouse by Exhaust Blower K-301.

4.4 Carbonizer Gas Quench System (Appendix B, PFD-003)

4.4.1 Gas Quench and Liquids Recovery

Recovered coal liquids are not intended to be a discrete product of this plant.¹⁸ Thus the liquids recovery system is operated at conditions which limit the amount of liquid recovered to only that required as binder in the formed coke process (see Section 3.6).⁴² Surplus condensable components which evolve during carbonization are allowed to exit with the make gas to be burned in the AFBC.¹⁴

Hot gas at $1100^{\circ}F$ (593°C) from the carbonizer cyclones enters the bottom section of the Quench Tower Q-501 and flows upward through a series of disc-and-donut trays. Recirculating recovered coal liquids at 175°F (79°C) are introduced onto the top tray in Q-501 and flow downward, contacting the gas. The gas is thus quenched, and higher boiling fractions in the gas are condensed into the liquid. Gas leaves the top of the tower at 190°F (88°C); liquid exits the bottom of the tower at 370°F (188°C). The tower operates at a top pressure of 1.5 psig. At these operating conditions, water will not condense from the carbonizer gas stream in the quench tower.^{1,5} Liquid from the bottom of Q-501 is pumped by the Circulating Pump P-501 (spared by P-502) to the Oil Cooler H-501 where it is cooled by brine to 175°F (79°C), then recirculated to the top of the tower. The return rate to the tower is manually set at about 520 gpm. Level control for the tower bottom determines the portion of the cooled stream that is removed. Net bottoms liquid is thus equivalent to the amount of material which condenses from the gas as it passes through the tower.

Net bottoms liquid from the quench operation is stored in Storage Tank T-501. This tank is split-range pressure controlled; i.e, it is nitrogen-padded to eliminate air when operating below atmospheric pressure and evacuated by the Off-gas Compressor K-504 (spared by K-505) to prevent overpressure.¹⁶ The Compressor discharges off-gas to the AFBC where it is burned. Liquid temperature in the tank is maintained at 175°F (79°C) by the self-regulating electric bayonet Tank Heater H-502. This temperature is warm enough to prevent the liquid from setting up like asphalt, yet not high enough to significantly weather the liquids by boiling off lighter components.¹⁶ Furthermore, tank contents are stirred by the paddle-type Mixer M-501, which also reduces the tendency of the oil to set up, stratify, or polymerize.¹⁶ The Oil Transfer Pump P-503 (spared by P-504) delivers liquid from T-501 to T-603 in the briquetting area as required. All equipment in the liquid storage system (i.e., T-501, H-502, M-501, K-504/505, and P-503/504) is common to both trains.

4.4.2 Gas Recompression and Reheat

Gas from the top of the quench tower is sent to the Compressor Suction Drum T-502, where entrained liquid droplets are removed prior to compression of the gas. Liquid recovered in T-502 is returned to the tower by Pump P-505. Scrubbed gas, at approximately 0.5 psig, from T-502 is then compressed to 18 psig by the Carbonizer Gas Compressor K-501. K-501 is a steam turbine-driven centrifugal machine. Quench tower operating pressure (compressor suction) is maintained by controlling the steam rate to the K-501 turbine driver.

A sidestream is taken from K-501 at 10 psig and approximately 300°F (149°C). Part of this stream is returned directly to the carbonizer area where it is used to convey feed coal from the feed hopper into the carbonizer (see above), the remainder of the sidestream is flow-controlled to the Carbonizer Recycle Gas Burner B-501. Here combustibles in the quenched, recompressed gas are burned with air. Combustion air is supplied to the burner by Compressor K-502. Air rate to the burner is set by ratio control to the combustibles content of the quench tower overhead stream. Compressor output is regulated by controlling the steam rate to its steam turbine drive. Reheated gas from the burner at approximately 2800°F (1538°C) is then recycled to the bottom of the carbonizer.

The final stage of K-501 discharges at 18 psig and approximately 400° F (204°C). Part of this gas is vented off to maintain pressure in the recycle gas system. This vent gas is sent to the AFBC where it is burned. The remainder of the high-pressure discharge from K-501 is flow-controlled to the Calciner Makeup Gas Burner B-502, where combustibles in the gas are burned with air, as in B-501 above. Combustion air is supplied to the burner by Compressor K-503. Again, air rate to the burner is set by ratio control to the combustibles content of the gas stream, and air compressor output is regulated by controlling steam rate to the turbine drive. Reheated gas from B-502 at approximately 2800°F (1538°C) is then sent to the calciner area where it is mixed with recycle gas before entering the bottom of the calciner.

4.5 Calciner Area (Appendix B, PFD-004)

4.5.1 <u>Calciner Operation</u>

Product char from magnetic separation is transferred by belt-type Conveyor F-302 from grade level (under Hopper T-304) into the top of the Calciner Feed Hopper T-401 at approximately 120 feet above grade. From T-401, char is gravity fed by rotary air lock into a pneumatic conveying line which transports it into the bottom of the char bed in Calciner R-401.

Calciner feed rate is dependent upon the char production rate of the carbonizer. Residence time of the char in the calciner is approximately 3 hours.¹⁷ Calciner bed temperature is maintained at 1800°F (982°C) by the circulation of reheated gas into the bottom of the bed which exits the top of the calciner. Total gas to the calciner (feed gas plus conveying gas) is maintained at a constant rate, sufficient to affect fluidization.¹ Calcinate (enriched char) is formed under these conditions as the hot fluidizing gas drives off an additional amount of volatile compounds (compared with the Carbonizer) from the char.

Calcinate is discharged from the top of the char bed of the calciner via a chute and rotary air lock into the Bed Calcinate Cooler H-401, a screw-type cooler with hollow flights filled with circulated cooling brine. Calcinate enters the cooler at the calciner temperature of 1800°F (982°C) and exits at about 200°F (93°C). The cooled calcinate drops by gravity from the discharge end of the cooler into the Calcinate Product Storage Hopper T-402. From T-402, calcinate is pneumatically conveyed to the Product Calcinate Formed Coke Feed Hopper T-601 with air from Blower K-402.

4.5.2 Calciner Gas Recycle System

Gas exits the top of the calciner at about 1800°F (982°C) and enters a two-stage cyclone system to remove entrained calcinate particles. The system comprises the Primary Cyclone C-401 and Secondary Cyclones C-402 and C-403. Each of the primary and secondary carbonizer cyclone services require two units in parallel (four cyclones in all) for capacity considerations. Primary Cyclones are designed to separate $10\mu m$ particles with 50% efficiency; secondaries are designed for $4\mu m$ particle separation at 50% efficiency.¹ Underflow solids are discharged by rotary air locks from the bottom of the four cyclones and cooled prior to further processing (see below).

Pressure of the deentrained gas from the secondary cyclones is boosted by the Calciner Recycle Gas Compressor K-406 and recycled to the bottom of the calciner. Prior to recompression, the gas is cooled first to 1200° F (649°C) by heat exchange with the compressor discharge stream in Heat Exchanger H-403. The temperature of the gas is further reduced to 375° F (191°C) in Gas Cooler H-404 with cooling brine. The gas is then passed through the Suction Drum T-405 in order to deentrain any liquids which may condense as the gas is cooled. Liquids from T-405 are returned to the tower by Pump P-402. As the compressor suction gas is cooled in H-403, the compressor discharge stream is preheated from 450° to 1150° F (232° to 621° C).

Recycle Compressor K-406 is a steam turbine-driven centrifugal machine. Calciner operating pressure is maintained by controlling the steam rate to the K-406 turbine driver. Recompressed gas at 21 psig and 500° F (260°C) from K-406 is reheated in Exchanger H-403 (see paragraph above), then recycled to the calciner. A flow-controlled portion of this preheated recycle calciner gas stream is used to convey feed into the calciner. The remainder of the recycled gas is mixed with makeup gas from Burner B-502 and fed to the bottom of the calciner.

4.5.3 <u>Calcinate Beneficiation</u>

Separated calcinate fines from the cyclones (see above) are cooled from 1800 to 200°F (982° to 93°C) with brine coolant in the Calcinate Fines Cooler H-402. The design and operation of H-402 is similar to H-401 above. Cooled calcinate from H-402 is discharged by gravity into Gravity Table C-405. C-405 operates in the same manner as the coal gravity tables (see above). Heavier calcinate particles are discharged to the Reject Calcinate Hopper T-403, while lighter material is collected in the Calcinate Fines Product Hopper T-404. It was decided to gravity table only calcinate fines, as these particles have been newly generated by attrition, whereas the coarser particles are probably separated as well as possible.²³

4.6 Formed Coke (Appendix B, PFD-005)

4.6.1 Briquetting

Calcinate and calcinate fines from Feed Hoppers T-601 and T-602, respectively, together with recovered coal liquids (oil) via Metering Pump P-601 from Tank T-603, are fed simultaneously into Feed Mixer M-601. Calcinate and oil are both fed to M-601 at constant rates and in correct proportion. M-601 is a paddle-type blender which thoroughly commingles the calcinate and oil (binder) prior to briquetting.

The homogeneous mixture from M-601 is gravity-fed to the charge hopper of the Briquette Press J-601. J-601 is a roll-type briquetter in which matching pockets on the rolls squeeze and compact the feed mixture into dense, cohesive shapes (briquettes). Freshly formed, "green", briquettes are discharged by gravity from the briquetter into Screener C-602, where fines are separated from the soft, green, briquettes. Fines from the bottom of C-602 are lifted by the bucket-type Briquette Conveyor F-602 and recycled back to the briquetter feed hopper.

4.6.2 Briquette Curing and Coking

Green briquettes are relatively soft and crumble easily. Initial briquetting is thus followed by a two-step curing process which sets the binder and hardens the briquettes (formed coke).

Briquettes from the screener are transferred by the belt-type Green Briquette Conveyor F-601 to the Curing Oven H-601. Hot air from the AFBC air preheater is used in the oven to heat the briquettes to 450°F (232°C). At this temperature, some of the lighter volatiles in the binder are driven off and burned in the oven and some polymerization occurs in the binder. Exhaust gas from the oven is passed through Cyclone C-602 to remove entrained coke fines and then sent to the AFBC to ensure incineration of unburned organics which may be present.

Cured briquettes are gravity-discharged from the oven onto belt-type Conveyor F-603 which, in turn, drops the briquettes into the feed hopper of Briquette Elevator F-604. F-604 lifts the briquettes, discharging them into the top of the Coking Kiln B-602. The kiln is a shaft-type roaster in which the briquettes are coked at 1500° - 1600° F (816° to 871°C). Heat to B-602 is provided by burning volatilized organics from the binder and natural gas via its own fired heater. During coking some high boiling volatiles are evolved from the briquette binder. These are burned in the kiln atmosphere, providing most of the heat for coking.

Hot briquettes are discharged from the bottom of the kiln onto the Cooling Conveyor F-606. F-606 has an open-mesh belt through which cooling air is blown from Blower K-604. The cooled briquettes are then transferred from the cooling conveyor by the Product Conveyor F-605 to the Product Silo T-604. Product formed coke is loaded into railcars from this silo.

Dusty vents from the briquetting operation are discharged through Cyclone C-601 and Baghouse G-602. Hot vent gas containing tars from the curing oven and kiln are scrubbed in Cyclone C-602 and then sent to the AFBC. Cool dusty vents from the cooling conveyor and product silo are cleaned in Baghouse G-601 before discharging to the atmosphere.

4.7 Site-Generated Utility Support Facilities

The MG plant is a stand-alone facility, and all utilities essential for continuous operation are generated on-site. The plant is tied into the local power grid for start-up and for support of basic services while the plant is shut down. The plant receives raw well water for makeup to all process and utility services; potable water is obtained from the local domestic water supply. Natural gas is available from a local pipeline.

Site-generated/distributed utilities include:

- AFBC and auxiliaries for steam generation.
- Power generation.
- Water treatment and storage.
- Cooling water facilities.
- Plant and instrument air systems.
- Fuel gas receiver.
- Fire protection system.

4.8 Steam and Power Generation

The generation of steam and power at the mild coal gasification facility is based on a single unit 24-MW reject coal- and char-fired power plant using one atmospheric fluidized-bed combustor/boiler (AFBC) and common facilities. The design of associated equipment and systems is based on utilizing all reject coal and char and other waste products generated by the two-train mild coal gasification process. Tresh feed coal is to be used in the boiler only during start-up or during an upset condition.

4.8.1 <u>AFBC, Boiler, and Steam Systems (Appendix B, UFD-011 and UFD-012)</u>

4.8.1.1 Fluid-Bed Combustor (AFBC) and Accessories

An AFBC is provided to generate steam for the turbine-generator. The boiler is a drum type with a balanced draft furnace equipped for firing reject coal and char. Sulfur dioxide emissions are controlled by limestone injection in the furnace. The design includes natural gas as the start-up/ignition fuel. The AFBC (Appendix B, PFD-011) includes:

- Atmospheric fluidized-bed combustor (AFBC).
- AFBC feed (reject coal/char and limestone) storage and handling.
- Fly ash and bottom ash storage and handling.
- Flue gas system with stack.

Guaranteed maximum evaporation capacity for the boiler is approximately 280,000 lb/hr at 1200 psig and 960°F (516°C). These output conditions were chosen as suitable for subsequent use in the turbogenerators.

Provision is made in the system for obtaining the required soot-blowing steam at essentially all loads. The boiler is designed to achieve a stable operating load range without auxiliary fuel firing from 30% load to maximum continuous rating (MCR) when firing the designated fuel. The main steam temperature control range will be 50% to MCR. The following is the predicted performance of the boiler, using designated fuel, and calculated for 20% excess air:

Evaporation, lb/hr	280,000
Temperature at superheater outlet, °F (°C)	960 (516)
Pressure at superheater outlet, psig	1,200
Feed water temperature entering Economizer, °F (°C)	380 (193)
Ambient air temperature, °F (°C)	80 (27)
Process air heating, scfm	87,000
Process air temperature, °F (°C)	450 (232)

The boiler is furnished as a complete package with the following accessories:

- Induced-draft (ID) and forced-draft (FD) fans.
- Primary air (PA) fan.
- Soot blowing system, including controls.
- Tubular air heater for process air.
- All necessary boiler trims and appurtenances, including safety relief valves.
- Support steel, insulation, and legging.
- Cyclone ash reinjection and sealing systems.
- Two fuel silos, one for reject char and the other for reject coal.
- One limestone silo.
- System for fuel handling from silo to boiler.
- System for limestone injection.
- Baghouse for emissions control.

4.8.1.2 | Fuel and Limestone Handling

The conveying capacity of the fuel handling system from the reject coal and char storage bins to the boiler silos will be 12.5 tph. The conveying capacity of the feed coal is 4.6 tph for start-up purposes and upset condition. Two fuel silos are provided, one for reject coal and the other for reject char. The feed coal, when required, will be conveyed to the reject-coal silo.

The unloading capacity of the limestone handling system is 21 tph. Reclaim conveying capability is twice the limestone feed rate required by the AFBC at full load. Two 100% capacity limestone pneumatic transport systems are provided to feed prepared limestone to the AFBC silo. Limestone conveyor capacity is sized on a limestone density of 90 pounds/cubic foot.

4/8.1.3 Boiler Emissions Control and Ash Handling

A reverse-air cleaning-type baghouse, equipped with multiple compartments, is provided for controlling particulate emissions from the boiler. Baghouse design is based on collecting 85% of the total ash generated in the boiler. The total fly ash generated is the sum total of the ash in the waste fuel and unreacted lime and calcium sulfate from the limestone reaction. The baghouse will have a minimum collection efficiency of 99.99% and an outlet grain loading not exceeding 0.002 grain/scf. The baghouse is sized assuming one compartment is out of service for maintenance and one compartment is out of service for cleaning. Two reverse-air cleaning fans are provided for the entire installation, each fan rated at 100% of total required capacity.

The ash handling system is sized to accommodate fuel ash and the unreacted lime and calcium sulfate from the limestone reaction; 35% of this amount will be bed ash, 5% will be economizer ash, and 60% will be fly ash. Two separate ash handling systems are provided; one system will be for bed ash and the other for fly ash and air preheater ash. The conveying and removal rate for the fly ash handling systems is approximately twice the design ash production rate. Both fly ash and bed ash silos are provided with 24 hours storage capacity.

/ The bed ash system consists of two 100% capacity flight chain enclosed mechanical conveyors that will collect cooled bed ash from the boiler and convey it to the bed ash silo by means of silo feed conveyors. The fly ash system will consist of a pressure transfer system. Fly ash is transported from the baghouse, economizer, and air preheater hoppers to the fly ash silo. Two 100% pressure blowers are provided. Each ash storage silo is equipped with two truck unloading spouts complete with ash conditioners.

4.8.1.4 Steam and Condensate Systems

A single line from the AFBC boiler will transport the main steam to the turbine generator. Medium pressure steam, extracted from the main turbine at 400 psig, is sent to the distribution system for use in several turbine drivers of equipment in process and utility service. Low pressure steam, extracted from the main turbine at 65 psig, is distributed for used in deaerating boiler feed water and for several miscellaneous heating services. Exhaust steam which exits the turbine at 3- to 5-in HgAbs. is condensed in the surface condenser. Excess low pressure steam at 50 psig is reinjected into the main turbine to increase power output from the generator.

Hi.

ы

Two, full-capacity, motor-driven, vertical can-type, multistage, condensate pumps are provided. A full-flow condensate polishing system is provided to maintain condensate water quality. The system includes two 50% capacity vessels and are of the precoat type, with disposable ion-exchange media.

4.8.1.5 Boiler Feed Water System

Feed water is pumped from the deaerator by the boiler feed water pumps through one high-pressure feed water heater to the boiler economizer inlet. The feed water system will also provide spray water for both superheater attemperator and mediumpressure steam header temperature control. The major equipment in the feed water system consists of one deaerator, two boiler feed water pumps, and a high-pressure (HP) feed water heater.

The deaerator provides the first stage of feed water heating. It is a tray-type deaerating heater consisting of a heater and storage tank. The design will comply with requirements of the ASME B&PV Code, Section VIII, Division 1, and HEI standards for deaerators. The deaerator storage tank is sized to supply feed water to the boiler feed water pumps for approximately 10 minutes at full load. The deaerator is designed to deliver feed water with a dissolved oxygen content of 0.005 cc/L or less at all loads. The deaerator will have no free carbon dioxide.

One auxiliary turbine-driven, 100% capacity boiler feed water pump and one 40% capacity electric motor-driven start-up boiler feed water pump are provided. The pumps are multistage horizontal, centrifugal, split-case-type construction. The HP feed water heater is horizontal, single-train, shell and tube type with integral drain coolers. The heater is designed in accordance with HEI standards for closed feed water heaters. The HP feed water heater shell and ends are constructed of carbon steel. The HP feed water heater tubes will be seamless. Tube material will be SA-688 Type 304 stainless steel.

4.8.2 Power Generating Facilities (Appendix B, UFD-012)

4.8.2.1 Turbine Generator

The turbine generator is an extracting/condensing, nonreheat type, 3600 rpm unit. The turbine operates at design main steam conditions of 1200 psig, 940°F (504°C) from the AFBC at the throttle, one controlled extraction at 400 psig and one additional admission at 50 psig, 3.5-in HgAbs at the exhaust, 1-1/2% makeup, and with one highpressure feed water heating while supplying steam for the boiler feed pump turbine and compressor drive turbines.

The generator is air cooled with water-cooled stator windings. The generator will be rated at approximately 37,000 kVA, 0.90 power factor when operating at 3600 rpm. The generator is a 3-phase, 60-cycle, 0.58-scr machine. All stop and intercept valves are hydraulically operated for automatic tripping.

40

4.8.2.2 Auxiliary Turbines

An individual auxiliary turbine drive is provided for the main boiler feed water pump. Driver brake horsepower satisfies the maximum boiler feed pump design rating power requirements when using the medium-pressure steam, exhausting to the main condenser at an auxiliary turbine exhaust pressure, which is 0.50-in HgAbs greater than the condenser pressure. This power requirement determines the auxiliary turbine rating.

Process gas recompressors are also steam turbine-driven and supplied with medium-pressure steam.

4.8.2.3 Power Distribution (Figure 2, One-Line Diagram)

Figure 2 is a one-line sketch showing conceptual electrical service distribution inside the MG facility. A dual-buss concept is shown to provide critical electrical service redundancy.

4.9 Water Systems (Appendix B, UFD-013)

Raw well water is supplied to the plant by the raw water well pumps. On-site raw water is stored in a 5000-barrel tank. This tank supplies water to the water treating system and also contains the required fire water reserve. Water from the raw water tank is used directly for makeup to the cooling tower and supply to the treatment (demineralized) system.

4.9.1 <u>Cooling Water</u>

The circulating water system will dissipate waste heat from the unit thermal cycle and plant equipment coolers. A cooling tower is used as the heat sink. The cooling tower is a field-erected, wooden construction designed to cool circulating water from 105° to 88° F (41° to 31° C). The ambient wet bulb temperature is assumed to be 77° F (25°C). The cooling tower is provided with one extra cell. Each cell will require a 200-HP air fan. The cooling tower will be erected on a 162- x 52-foot concrete basin.

Three 50% capacity, vertical, mixed-flow-type, wet pit, pull-out pumps will be provided. The pumps will be located in the cooling tower basin, discharging into a common circulating water line to the main condenser and the auxiliary cooling water heat exchanger, and returning to the distribution header of the cooling tower.

4.9.2 <u>Water Treatment</u>

Raw water must be treated (demineralized) in order to be suitable for makeup to the boiler. The boiler feed water makeup (water treatment) system consists of:

- Two full-capacity activated-carbon filters.
- Two full-capacity zeolite softeners.
- Acid and antiscaling chemical dosing systems.
- Two full-capacity cartridge filters.
- Two 60% capacity reverse osmosis systems.

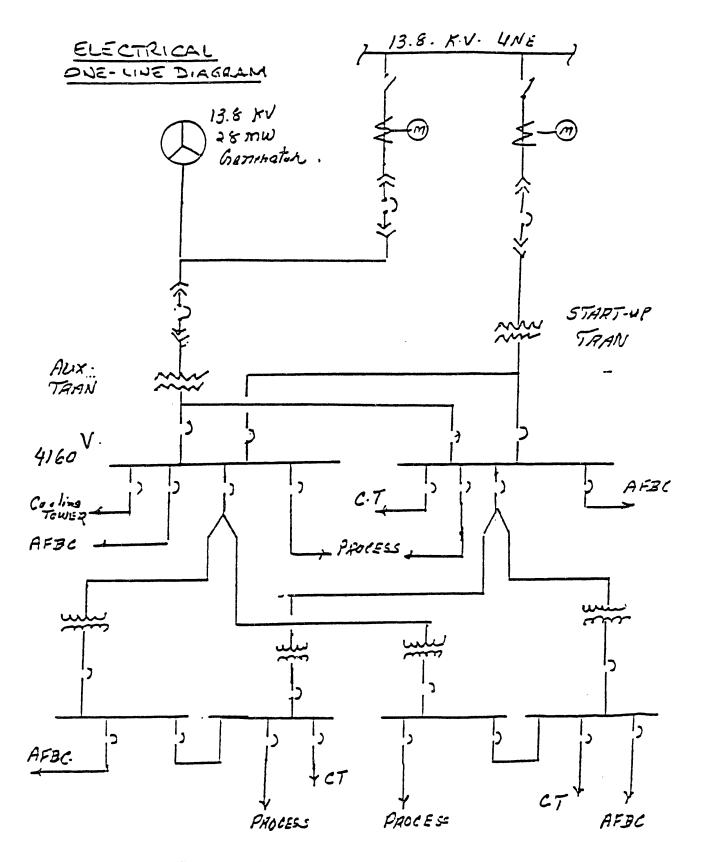


Figure 2. Electric power one-line distribution.

- Two 60% capacity mixed-bed units.
- One full-capacity demineralized water storage tank.

The treatment system is sized to provide 200% of the feed water makeup flow required for the boiler.

4.9.3 <u>Cooling Brine</u>

A 50/50 mixture of ethylene glycol and water in the closed-loop system is pumped through the shell side of the auxiliary cooling water heat exchangers for heat rejection to the circulating water; the cooled media of 50/50 mixture of glycol and water is circulated to the various equipment and returned to the heat exchanger. Two 100% capacity cooling media pumps are provided.

4.9.4 Fire Water

A fire loop is provided to supply fire protection water to fire hydrants, hose stations, and fixed automatic water suppression systems.

The fire protection water supply is provided by means of an electric motor-driven fire pump and a backup diesel engine-driven fire pump. The system will be continuously pressurized by one partial-capacity jockey pump. The pumps shall take suction from a single, above-ground, 5000-barrel raw water tank. In the event the jockey pump cannot maintain the system pressure, the main fire pumps will start sequentially.

4.10 Other Utility Systems

4.10.1 Instrument/Plant Air

Instrument and plant air are provided by a single air compressor/dryer system. Filtered air is compressed to 150 psig, then cooled and dried. Both instrument and plant air are dried to a dew point of -40° F (40° C) in order to prevent condensation and icing during cold weather. The dryer is a desiccant type with prefilters and afterfilters. Separate receiver for instrument air and plant air maintains system supply pressures during compressor cycling. Combined air capacity is 1000 scfm; the compressor is fully spared.

4.10.2 Fuel Gas Supply

The fuel gas system will supply the main boiler gas ignitors and warmup gas nozzles during start-up. The system will be sized to carry 25% of main boiler load.

4.10.3 <u>Backup Power Supply</u>

Backup power is supplied in the form of Uninterruptible Power Supplies (UPS) for the computer control, instruments, safety, and electrical control systems in the plant. Standby generators are used to supply power to critical circuits such as some of the blowers, vent fans, and condensate pumps. A diesel-driven pump is used to supply fire water in the event of electrical power failure.

4.11 Process Control System

4.11.1 Control Philosophy

A distributive control system (DCS) provides hierarchical control of the MG complex. All major operating unit programmed logic controllers (PLC) are connected to the DCS by a plant-wide data highway. The DCS is to use Iconics' GenesisTM software, or equivalent, as its operating system.

Instrument and control systems are designed with safety interlocks to ensure the safety of plant personnel and provide protection for plant equipment. Redundancy is provided as necessary for critical process measurements and safety features. Equipment with local and remote control capability are designed in a manner so that only one has control over the equipment at any given time. Equipment with local control systems are interfaced with the central control room for operation and status.

4.11.2 Control Room

The central control room houses the main system which primarily 1) controls alarm/shutdowns, and 2) monitors and provides supervisory data. It is also the engineering interface point. Each operating unit, generally contained within a physical unit structure, contains its own PLC system and has a local operator interface and monitoring station.

The control room is situated strategically so operators can keep a vigil on the surrounding equipment in operation and quickly attend to the critical systems in the event of an emergency. The control room is a controlled environment-type designed for human comfort and equipment protection. Typical equipment resident in the control room includes:

- Operator consoles with CRTs and keyboards for the operation of boiler, turbine/ generator, and other auxiliary equipment.
- Printers.
- Auxiliary consoles containing CRTs to monitor support units and provide historical trending, production scheduling, and plant status updates.

5.0 PROCESS FLOW DIAGRAMS

5.1 General

The process flow diagrams (PFDs) illustrate the flow of process materials through the mild coal gasification facility as described in Section 4.0 Process Description and Philosophy. The PFDs show all major process equipment, process lines/conveyances, and key process control functions. Operating conditions are also indicated where necessary for process understanding. For many process systems, the relative vertical position of adjacent equipment is represented on the PFDs for increased comprehension of the operation, especially where flow is by gravity.

The following PFDs are contained in this section of the report:

Coal Receiving and Preparation
Carbonizer
Gas Quench and Recompression
Calciner
Coke Briquetting and Curing

In addition, the following utility flow diagrams are also contained in this section of the report:

UFD-011	Atmospheric Fluid-Bed Combustor
UFD-012	Boiler-Feed Water (BFW), Steam, Condensate,
	and Turbine Generator
UFD-013	Water Treatment, Cooling Water, and Brine
	System

6.0 MASS AND ENERGY BALANCE

6.1 General

The mass and energy balance contained in this section is a summary of the process simulation model (see Section 3.5 and Appendix B). The balance indicates total flow for both process trains, based on 330 operating days per year. Provided are stream-by-stream flow rates and operating conditions, as well as stream-average molecular weights, densities, heat contents, and component analyses. Total sulfur is also shown for each stream; sulfur characterization (e.g., organic, pyritic), however, is not indicated.

Stream numbers indicated in the mass and energy balance are keyed to stream numbers on the PFDs (see Section 5.0). For process comprehension, discrete stream numbers have been used whenever there is a change in stream composition (reaction) or a significant change in operating conditions or phase change.

6.2 Discussion

The simulation is based on empirical, practical, and experimental data provided by the EERC and AMAX (see Section 3.6). Much of the experimental data was derived from the EERC's pilot units and required scaleup to the 1000 tpd production level. Data received from these sources were supplemented by XBi in order to develop a complete balance for the MG plant. Among the assumptions and uncertainties associated with completing the mass and energy balance were:

- Mass and energy balances around the carbonizer and calciner are based on pilot test yield data. Elemental balances or thermodynamic balances have not been attempted within the scope of this study. These should be performed to provide at least some confirmation of the experimental data.
- Carbonizer pilot tests were run using direct combustion of natural gas to provide the heat for the devolatilization process. The commercial plant uses no auxiliary combustion in the carbonizer or calciner, but instead uses the combustion of off-gas in the in-line burners external to the carbonizer and calciner. Therefore, the coal/char will be exposed to a somewhat different devolatilizing environment. Although several pilot tests have shown that this change in environment has little effect on carbonizing/calcining, this may not be true in a large scale unit.
- Although reasonable sulfur contents are represented in the mass balance, sulfur and the transition of its forms through carbonizing and calcining were not included in the simulation. As a result, combustion gases and recycle gases represented in the balance generally have a higher sulfur content than that shown in the simulation output. The actual effect of this sulfur on carbonization or calcination is uncertain. This may be demonstrated by pilot tests using a lower-sulfur coal or coal which has been desulfurized.

	ADJ WEL-BOREL NG.										
			UND/EER	IC MILD C	OAL GAS	IFICATIO	RC MILD COAL GASIFICATION PROJECT	ст			
			1000 T/	1000 T/D COAL FEED	I	IATERIAL	MATERIAL BALANCE				01 - Apr - 92
				(Flows sh	(Flows shown are total for both trains)	for both trai	ns)				Page 1 of 4
St	Stream No.	-	2	0	-	5	9	7	7A	8	6
De	Description		Reject	Carbonizer	Conveying	Hul Gas	Hot Gas	Total	Cooled	Carbonizer	Carbonizer
	1 Julis	Feed	Coal kom Clanning	Feed	Gals to Carhonizar	to Carhoolzer	lt om Carhonizar	Carbonizer Char	Carbonizer Chur	Rajact Char	Char to Catcher
Vapor Fraction		0	0	0000	1.000	1.000	1.000	0.000		0000	0000
Temperature	ų.	60	60	60	600	2,400	1,101	1,101		200	200
Pressure	psia	14.7	14.7	14.7	21.9	21.9	16.4	14.7	14.7	14.7	14.
Molar Flow	th•mol/h			491.2	400.2	2,911.9	4,107.6	270.2	0		229.5
Mass Flow	11/cl	83,340	18,835	64,506	10,751	81,082	114,251	42,090	42,090	5,427	36,663
Enthalpy	MMBhulh			6.45	3.40	73.48	59.07	22.93	7.66	1.03	6.63
Mole Weight				131.3	26.86	27.85	27.81	155.8	155.8	133.2	159.8
Density	c)I/qI	83.4		81.3	0.051	0.019	0.028	56.1	56.1	58.8	55.8
Component:											
Indiana Coal	\\/q	66,407	13,629	52,778	0	0	0	0	0	0	0
Ash	u/q	10,099	3,661	6,438	0	0	0	6,438	6,438	1,466	4,972
Nitrogen	ų/q			0	6,182	54,730	60,913	0	0	0	0
Oxygen	ll/dl			0	0	0	0	0	0	0	0
Carbon Monoxide	ų/q			0	118	137	1,356	0	0	0	0
Carbon Dioxide	u/q			0	1,518	13,437	14,954		0	0	0
Methane	u/q			0	139	162	1,605	0	0	0	0
Ethane	५/व			0	30	35	342	0	0	0	0
Ethylene	u/q			0	7	8	.83	0	0	0	0
Propane	u/q			0	338	393	3,889	0	0	0	0
Propene	u/q			0	8	10	95	0	0	0	
Hydrogen Sulfide	u/वा			0	132	153	1,516	0	0	0	
Sulfur Dioxide	u/qI			0	117	1,033	1,150	0	0	0	
Water	u/q	6,834	1,545	5,290	1,667	10,406	-	0	0	0	
Hydrogen	u/q₁			0	44	51	509		0	0	а
Oil	h/đ			0	452	526	10,478	0	0	0	0
Carbonizer Char	u/q			0	0	Ó	0	35,652	35,652	3,961	31,691
Calciner Char	u u g			0	0	0	0	•	0	0	
Total Sulfur	u/q	3.500	986	2,514				1.011	1011	941	077

47

i,

XBI MEL-HEGHIEL, MC.	EL, ING.										
			UND/EER	IC MILD C	RC MILD COAL GASIFICATION PROJECT	IFICATIO	N PROJE	ст			
			1000 T/	/D COAL FEED	1 .	ATERIAL	MATERIAL BALANCE	L1			01 - Apr - 92
				(Flows sh	(Flows shown are total for both trains)	for both trai	us)				Page 2 of 4
S	Slream No.	10	=	12	13	13A	14	14A	15	16	17
	Description	Conveying	Hot Gan	Hot Gas	Ded	Cooled	Calciner	Cooled Calc.	Calcinate	Calciner	Calciner
		Gas to	2	from	Calcinate	Bed	Cyclone	Cyclane	Fines	Reject	Oti - gas
Vanor Fraction						Calcinate	CIMI FINES	Char Fines	ž		IO AFBC
Temperature	4	1 150	2.304		1 800	0000	0.000 F	000			
Pressure	psia	33.7	33.7		14.7	14.7	14.7			14.7	28.2
Molar Flow	u//our-di	191.6	3,407.0	3,8	584.9	584.9	146.1	146.1	132.4	13.8	2,584.8
Mass Flow	lb/h	5,238	94,762	105,288	25,100	25,100	6,272	6,272	5,614	657	70,669
Enthalpy	MMBIu/h	2.41	81.59	71.53	23.03	4.49	5.75		0.99	0.13	48.01
Mole Weight		27.34	27.81	27.34	42.9	42.9	42.9		42.4	47.7	27.34
Density	cN/cll	0.052	1 60.0	0.033	56.2	56.2	56.2			61.5	0.033
Component											
Indiana Coal	u/q	0	0	0	0	0	0	0	0	0	0
Ash	h/đ	0	0	0	3,978	3,978	994	994	745	248	0
Nitrogen	ų di	3,360	64,170	67,529	0	0	0	Ö	0	0	45,325
Oxygen	h/d	0	0	0	0	0	0	0	0	0	0
Carbon Monoxide	ų/đ	44	244	876	0	0	0	0	0	0	588
Carbon Dioxide	u/q	1,036	16,940	20,827	0	0	0	0	0	0	13,979
Methane	u/q	44	244	876	0	0	0	0	0	0	588
Ethane	@/q	-	8	27	0	0	0	0	0	0	18
Ethylene	u/a	0	8	2	0	0	0	0	0	0	4
Propane	u/q	15	90	308	0	0	0	0	0	0	207
Propene	ų/q	0	8	7	0	0	0	0	0	0	S
Hydrogen Sulfide	u/q	19	109	391	0	0	0	0	0	0	263
Sulfur Dioxide	u/q	63	1,211	1,275	0	0	0	0	0	0	855
Water	Чa	638	11,648	12,815	0	0	0	0	0	0	8,601
Hydrogen	Wa	13	73	262	0	0	0	0	0	0	176
IIO	u/q	4	24	87	0	0	0	0	0	0	59
Carbonizer Char	u/q	0	0	0	0	0	0	0	0	0	0
Calciner Char	wa -	0	0	0	21,122	21,122	5,278	5,278	4,869	409	0
Total Sulfur	ll∧dl				402	402	119	119	00	06	795

XBi xtel-decartel, MG.	. MG										
	••		UND/EER	IC MILD C	OAL GAS	AC MILD COAL GASIFICATION PROJECT	N PROJE	CT			
			1000 T/	1000 T/D COAL FEED	I	MATERIAL BALANCE	BALANCE	1.1			01 - Apr - 92
				(Flows sh	lown are tota	(Flows shown are total for both trains)	ns)				Page 3 of 4
SIL	Stream No.	18	18A	18B	18C	18D	19	19A	20	21	22
De	Description	LP Calciner	LP Calciner	LP Calciner	HP Calciner	11P Catcher	Quench	Cooled		Quench	Conveying
		Recycle	Recycle Gas	Recycle Gas	Recycle Gas	Hecycle Gas	Tower	Quench	Recovered	Tower	Recycle Gas
	nuts		= .	6X. 1	ex. K-406	ex. 11 - 403	Bottoms	Tower Bims			
Vapor Fraction		1.000				1.000	0000	0.000	0000	1.000	
Temperature	"	1,800		375	503	1,150	357	170	170	191	305
Pressure	psia	28.2	25.7	23.2	35.7	33.7	16.4	40.0	14.7	16.2	24.9
Molar Flow	Wom•dl	1,266.3	1,266.3	1,266.3	1,2	1,266.3	1,933.2	1,933.2	27.8	4,079.9	346.8
Mass Flow	11/11	34,619	34,619	34,619	34,619	34,619	367,136	367,136	5,278	108,975	9,263
Enthalpy	MMBIUN	23.52	16.63	7.79	9.07	15.96	32.77	(6.14	60.0)	20.25	2.06
Mole Weight		27.34	27.34	27.34	27.34	27.34	189.9	189.9	189.9	26.71	26.71
Density	6N/d1	0.033	0.038	0.071	0.096	0.052	44.0	48.9	48.9	0.061	0.080
^c Component:											
Indiana Coal	h/h	0	0	0	0	0	0	0	0	0	0
Ash	.u/q	0	0	0	0	0	0	0	0	0	0
Nitrogen	u/qI	22,204	22,204	22,204	22,204	22,204	43	43	1	60,912	5,178
Oxygen	u/n	0	0	0	0	0	0	0	0	0	0
Carbon Monoxide	h/d	288	288	288	288	288	-	**	0	1,356	115
Carbon Dioxide	1)/d	6,848	6,848	6,848	6,848	6,848	30	30	0	14,954	1,271
Methane	u∕q	288	288	288	288	288	2	2	0	1,605	136
Ethane	h/d	6	6	6	6	6		1	0	342	29
Ethylene	µ/q	2	8	2	2	S	0	0	0	83	7
Propane	µ/q	101	101	101	101	101	23	23	0	3,889	331
Propene	u/d	2	2	2	2	2	-	1	0	92	8
Hydrogen Sullide	n/d	129	129	129	129	129	9	9	0	1,516	129
Sulfur Dioxide	u/qı	419	419	419	419	419	6	0	0	1,150	96
Water	u/qı	4,213	4,213	4,213	4,213	4,213	40	40	-	17,362	1,476
Hydrogen	५/व	86	86	86	86	86	0	0	0	503	43
Oil	n/u	29	29	29	29	29	366,980	366,980	5,276	5,205	442
Carbonizer Char	५/व व	0	0	0	0	0	0	0	0	0	0
Calciner Char	u/a	0	0	0	0	0	Ò	0	0	0	0
Total Sulfur	u∕q								192		

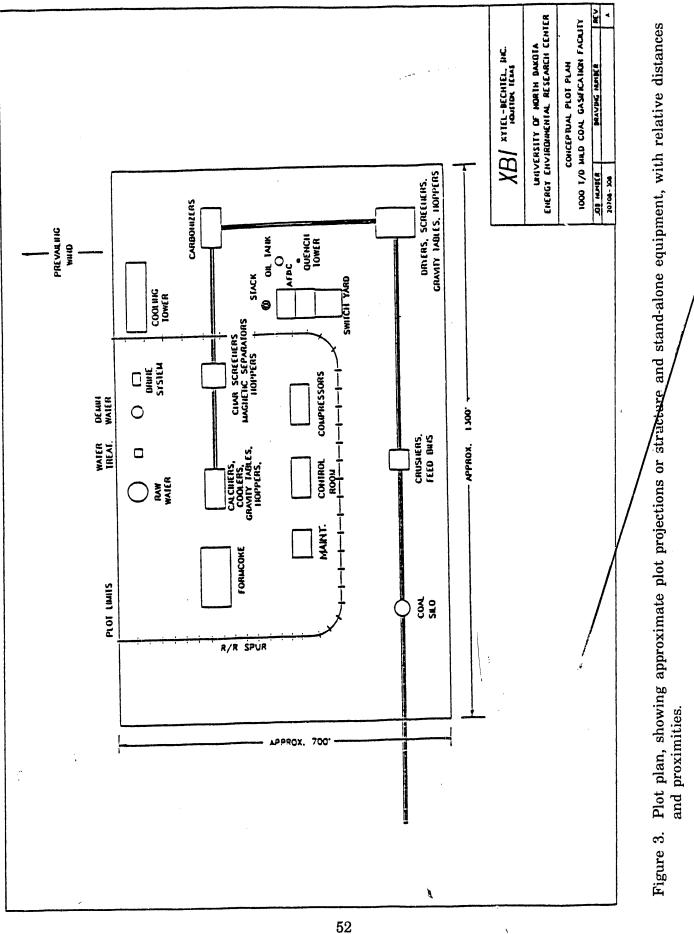
49

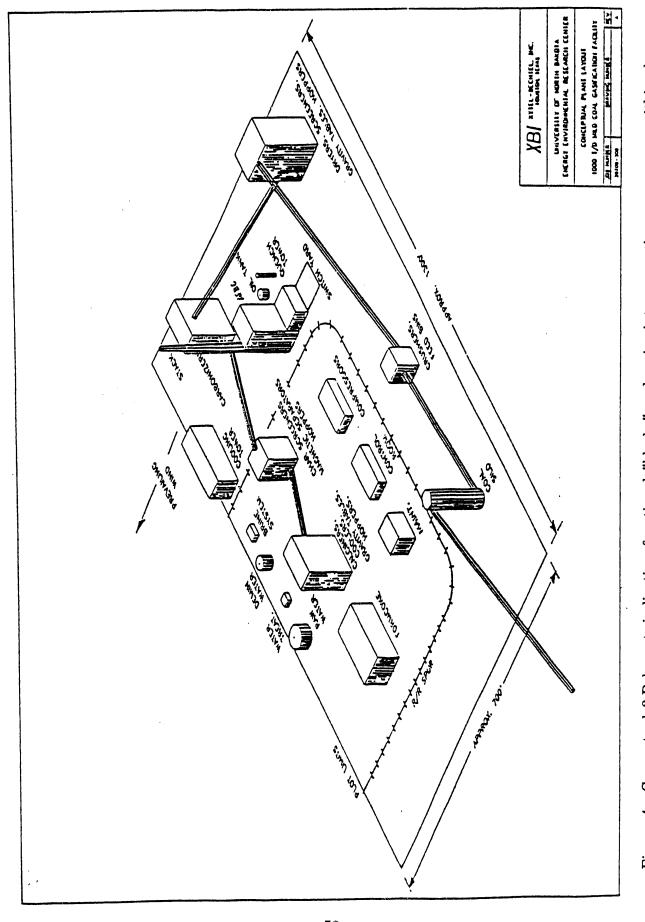
~

	. MG.										
			UND/EER	IC MILD C	OAL GAS	SIFICATIO	UND/EERC MILD COAL GASIFICATION PROJECT	ст			
			10001/	D COAL FEED		IATERIAL	- MATERIAL BALANCE				01 - Apr - 92
			-	(Flows sh	own are total	(Flows shown are total for both trains)	us)				Page 4 of 4
SIL	Stream No.	23	24	25	26	27	28	29	22A	25A	
De	Description	Compr. Gas	Campr. Ak	Car bonk er	Car bonker	Compr. Gas	Compr. Ak	Hot Makeup	Carbonizer	Recycled	
		to Carbonizer	to Carbonizer	Burner	Off-gas	to Calcinur	to Calciner	Gas	Burnar	Hot Gas	
	Units	Burner	Burner	Efituent	to AFBC	Burnor	Burner	to Calcinar	Bypass	to Carbonizer	
Vapor Fraction		1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Temperature	÷	305	172	2,887	402	402	273	2,968	305	2,480	
Pressure	psia	24.9	24.9	21.9	37.7	37.7	37.7	33.7	24.9	21.9	
Molar Flow	n/jour-di	952.3	1,591.5	2,545.2	1,487.9	872.7	1,458.4	2,332.3	420.1	2,965.3	
Mass Flow	u/q	25,437	45,911	71,348	39,743	23,310	42,071	65,381	11,222	82,570	
Enthalpy	MMBIUN	5.65		72.33	10.08	5.91	7.42	68.05	2.49	74.83	
Mole Weight		26.71	28.85	28.03	26.71	26.71	28.85	28.03	26.71	27.85	
Density	c11/c1	0.080	0.107	0.017	0.110	0.110	0.138	0.025	0.080	0.019	
Component:											
Indiana Coal	u/qI	0	0	0	0	0	0	0	0	0	
Ash	¶/di	0	0	0	0	0	0	0	0	0	
Nitrogen	ll∕dl	14,218	35,244	49,452	22,214	13,029	32,296	45,325	6,273	55,735	
Oxygen	u/cn	0	10,667	0	0	0	9,775	0	0	0	
Carbon Monoxide	µ/qı	316	0	0	494	290	0	0	140	140	
Carbon Dioxide	µ/qI	3,491	0	12,144	5,454	3,199	0.	11,128	1,540	13,683	
Methane	lh/h	375	0	0	585	343	0	0	165	165	
Elhane	u/qI	80	0	0	125	73	0	0	35	35	
Ethylene	4/q	19	0	0	30	18	0	0	8	8	
Propane	u/qı	908	0	0	1,418	832	0	0	400	400	
Propene	11/11	22	0	0	35	20	0	0	10	10	
Hydrogen Sutlide	u/q	354	0	0	553	324	0	0	156	156	
Sulfur Dioxide	h/di	268	0	934	419	246	0	855	118	1,052	
Water	th/d	4,053	0	8,809	6,332	3,714	0	8.072	1,788	10,597	
Hydrogen	u/cli	119	0	0	185	109	0	0	52	52	
OI	h/dl	1,215	0	0	1,898	1,113	0	0	536	536	
Carbonizer Char	u/q	0	0	0	°	0	0	0	0		
Calciner Char	4/4	0	0	0	0	0	0	0	0	0	
Total Sulfur	u∕qı				826						

7.0 FACILITY PLAN AND LAYOUT

7.1 General


A preliminary facility layout was developed in order to establish a general physical perception of the operating plant and its auxiliaries and to approximate the size of the overall plot space required. The following drawings are included in this section:


- Figure 3. Plot plan, showing approximate plot projections of structure and stand-alone equipment, with relative distances and proximities.
- Figure 4. Conceptual 3-D layout, indicating functional "blocks" and major interconnecting conveyances within the facility.

It should be noted that these are conceptual arrangements only. These drawings do not represent exact dimensional requirements, nor has the arrangement shown been optimized. The following are approximate sizes of facility structures and buildings which house specific plant operations:

Coal Crushers, Feed Bins	50' x 50' x 60'
Coal Dryers, Screeners, etc.	100' x 75' x 125'
Carbonizers	100' x 50' x 100'
Char Screeners, Mag Separators, etc.	60' x 60' x 70'
Calciners, Coolers, etc.	100' x 50' x 60'
Formcoke	125' x 75' x 50'
Control Room, Lab	80' x 40' x 20'
Compressor Building	100' x 50' x 30'
AFBC, Generators	75' x 50' x 110'
Maintenance Shop	60' x 40' x 40'

Principal plant administration, maintenance, and warehousing functions required for the MG plant are to be added to, and integrated with, corresponding facilities of the existing Chinook mine operation.¹⁸ A small local maintenance shop is shown, but no other physical representation for the remainder of these functions is included in the layout.

Conceptual 3-D layout, indicating functional "blocks" and major interconnecting conveyances within the facility. Figure 4.

8.0 TECHNICAL EQUIPMENT LIST

8.1 General

The equipment list included in this section of the report provides a description for each item of process and support equipment required in the operation of the MG facility. As a minimum, the level of detail of equipment descriptions is adequate as input to a plant budget estimate. In many cases, especially for relatively expensive and/or "nontypical" items, manufacturer names and model numbers are included. As added support for the selections of these types of equipment, confirmations of suitability to specific service and written price quotations were requested from appropriate suppliers.

While the equipment list provides data for all process and utility equipment, it should be noted that the following is not included:

- Buildings and structures.
- Laboratory facilities.
- Stationary maintenance equipment such as hoists and monorails or mobile equipment such as forklifts, cranes, etc.
- Stationary safety/fire equipment (other than primary fire water supply) and mobile safety/emergency equipment.

The instrument list is contained in Appendix C.

XI	Bi	XTTEL-SECHTEL	NG.
		ATTES CORDENTING	

EQUIPMENT LIST

Page 1 of 22

Client: UND/EERC Location: CLAY COUNTY, INDIANA Unit 1,000 T/D MILD COAL GASIFICATION

TABLE OF CONTENTS

EQUIPMENT TYPE	ITEM CODE	PAGE
Fired Equipment	8	
	-	2
Classifiers, Screeners	C	3
Belt Conveyors	F	4
Bucket Elevators	F	5
Dust Collectors, Baghouses	G	6
Heat Exchangers	н	7
Compressors, Blowers, Fans	ĸ	8
Centrifugal Pumps	Р	10
Positive Displacement Pumps	P	12
Storage Tanks, Bins, Silos	Т	13
Pressure Vessels	V	15
Packaged Equipment	Z	16
Major Electrical Components & Control System Components		18
Miscellaneous Equipment	C, H, J, M,	19
••••	N, Q, R	

...

	······				
			1		
A	07-Apr-92	CLIENT APPROVAL/BUDGET ESTIMATE	· · · · · ·		
REV	DATE	ISSUED FOR:	BY	APPROVED	CLIENT

7

XBi "	XBi wiel-begiel ng						20				
Clippe	IND/CCDA					CUULTMENI LISI	181				
Location:	CLAY COUNTY, INDIANA	NA		Calt:	1.000 T/D M	Unit: 1,000 T/D MILD COAL GASIFICATION	ASIFICATIO	z			Rav. A
					FIRED	FIRED FOUIPMENT	MENT				
		Fuel Type			Op. Temp.						
ltem No.	Name	MMBlufh	0A Dimensions	Des. Press. Psig	Des. Temp.	Materials Housing E	lis Elements	N A	Mt. Model No	Reg. No.	
B-501AB	CARBONIZER RECYCLE GAS BURNER	Off-gas 35.8		2	2,800	Steel					Incl. 20% design margin
B-502MB	CALCINER MAKEUP GAS BURNER	Off-gas 32 A		23	2.800	Steel				FFD-003	Retractory lined Incl. 20% design mergin
										PFD-003	Refractory lined
B-602VB	BRIQUET KALN	Natural cas				.					
					0.20	Sleel				PFD-005	Referry lined
			4 B								
								1			
										1	
NOTES:								1			
											Page 2 of 22

XBi "	XBi mel-bechiel no.				EQUI	EQUIPMENT LIST	ISI						
Client: Location:	UND/EERC CLAY COUNTY, INDIANA		Undi:	1,000,1	D MILD C	1,000 T/D MILD COAL GASIFICATION	FICATION						Rev. A
			CLA	SSIF	IERS, \	ASSIFIERS, VIBRATING SCREENS	ING SC	REEN	1S				
		Screen Area hit	l louistry 1. W. t to	0.d0		Metalele		Motor	3				
Item No.	Name	Mesh H			Housing	Liner	Screen	l du	E a	Model No.	P&I No.	Remarks	
C-102NB	COAL SCREENER	10 & 24*		250	s		SS	10			PFD - 001	30 th capacity, ea. * Double deck	
C-307A/B	CARBONIZER CHAR SCREENER	20 & 40*		250	ខ		ŝŝ	9			PFD - 002	15 Vh capacity, ee. • Double deck	
C-603A/B	BRIQUET SCREENER			20	CB		88	01			PFD-005		
												-	
					x								
											•		
NOTE8:													
												Page 3 of 22	3 01 22

XBi "	XBi MTEL-BECHTEL, MC				EQU	EQUIPMENT LIST	LIST						
Client:	UND/EERC			Unit:	1,000 T/	Unit: 1,000 T/D MILD COAL GASIFICATION	DAL GASI	FICATION					Rev
Location:	CLAY COUNTY, INDIANA	VN											07 - Apr - 92
					JELT	BELT CONVEYORS	YORS						
ltem No.	Name	Capacity	Whith. In OAL In	ų	Lhn. Vel. from	Lin. Vel. Max. Op.	Matorials	1	Motor	۲¥ :	Conveyor	Reg. No.	
F-101	COAL RECEIVING	250		18	FOD A			lied	wd//u		Mr.	PAINO.	Remarke
	CONVEYOR		000						2			PFD-001	Bulk density: 83 4 !b/IF
F-102AB	FEED TRANSFER CONVEYOR	3	89	0	8				7.5				Bulk density: 63.4 lb/fe
F-103AB	CRUSHER FEED BIN	8		75	200				3	T		PF0-001	
	CONVEYOR								2			PFD-001	buik density: 63.4 lb/lf
r-104//B	CRUSHER FEED CONVEYOR	8	90 01	0	901				7.5				Bulk density: 83.4 lb/fP
F-105NB	DRYER FEED CONVEYOR	8		125	200				8				Bulk density: 63.4 lb/tf
F-106A/B	CARBONIZER FEED CONVEYOR	20	24	8	200				15			B-at	Bulk densky: 63.4 lb/ff
F-107AB	AFBC FRESH COAL	15	3									PFD-001	
	CONVEYOR								<u>.</u>			PFD-001	Bulk density: 13.4 tb/te
F-301A/B	CARBONIZER CHAR CONVEYOR	33	24	75	200				15				Bulk density: 53 lb/fP
F-302AB	CALCINERFEED	8	24	2	June of the second seco							PFD-002	
	CONVEYOR		200	3					2			PFD-002	Bulk density: 53 lb/fF
F-601AB	GREEN BRIGUET CONVEYOR	8	24						01			PED_MK	Bulk density: 65 lb/tP
F-603AB	CURED BRIQUET CONVEYOR	ଷ	24						0			PED_MK	Bulk density: 55 lb/fP
F-605AB	FORMCOKE PRODUCT CONVEYOR	ଷ୍ପ	24	75	00 00				01			DED_ME	Bulk density: 85 lb/IF
F-600AB	FORMCOKE COOLING CONVEYOR	8	24						01			PFD-005	Bulk density: 55 lb/iP
NOTE8:]	
													Page 4 of 22

													ſ
XBi	XBI MTEL-RECHTEL, NO.					EQU	EQUIPMENT LIST	LIST					
Client: Location:	UND/EERC CLAY COUNTY, INDIANA			Unit:	1,000 T/D	1.000 T/D MILD COAL GASIFICATION	GASIFICA	TION				Rav. A 07-41-00	< . >
						BLICKE	RUCKET FLEVATORS	ATOPS					
			Flavator	Ruckal	1 10000								
		Capacity	W WY	INV III	<u>, ></u>	Op. Temp.	Materials	la la	M	MŁ,	Reg. No.		
ILER NO.	Name	44	H.H	Ч Ч	8		Housing	Buckets	a	Model No.	P&INO.	Remarks	Τ
F-602NB	GREEN BRIQUET RECYCLE ELEVATOR											Bulk densky: 55 kv/k², 7 t/h	T
F-604AB	KILNFEED ELEVATOR										110-003	Bulk densky: 55 ku/k², 7 Vh	Τ
											PFD-005		Τ
													Τ
													Τ
													Τ
													Τ
													<u> </u>
NOTES:													1
												Page 5 of 22	122

¢,

	XYTEL-BECHTEL, NG.					EQU	EQUIPMENT LIST	LIST					
Client	Client: UND/EERC Location: CLAY COUNTY, INDIANA	Ş			н Со <u>ж</u>	1 (J/L 000'1	1,000 T/D MILD COAL GASIFICATION	GASIFICA	NOIL				Rev. A 07 - Apr - 92
					DUST	COLLE	DUST COLLECTORS,		BAGHOUSES				
		Rutention Acce hi		Flamente	Housing Dismotor In	Op. Press	Op. Press Op. Tenn.		Matatala	3	ł	No No	
ttem No.	Name	Part. Size	No.	D/L. h	OAL, N			tousing	Elements	a	Model No.	PAINO.	Remarks
G-101	COAL SILO BAGHOUSE	113			8	Atm		-	Felled	850	Mikropul		Notes 1, 2
		104			9.11	H			Polyester		12-8-160	PFD-001	For Blower, see K-101
G-102	CRUSI JER FEED BIN BAGHOUSE	101			30	Atm ±17in. WG	8 95	S	Felled Potvester	850	Mikropul 12-8-160	PFD-001	Notes 1, 2 For Blower, see K-102
G-103AB	COAL DRYER BAGHOUSE	7.540			30.5'L×10.5'W	_		ۍ ت	Felted	35,000	1		Notes 1, 2
		701			23	±17/n. WG	00		Nomex		640K - 10	PF0-001	For Blower, and K-107AB
G-301AB	CARBONIZER	113			8	Atm	500	cs	Felled	850	Mikropul		Notes 1, 2
	BACHOUSE	104			11.6	11.6 ±17/n.WG	300		Nomex		12-0-160	PFD-002	For Blower, see K-301A/B
	1												
G-401AB	CALCINER BAGHOUSE	113			8	Atm	200	SS	Felted	850	Mikropul		Notes 1, 2
		701				DA ULT			Nonex		001-0-71	B 	FOR DIOWER, 696 N-401 AD
G-601AB	FORMCOKE FINES	113			8	Atm		cs	Felled	850	Mikropul		Noles 1, 2
	BAGHOUBE	104			11.6	±17h. WG			Nomex		-1	PFD-005	For Blower, see K-601AB
G-602AB	BRIQUET FEED BAGHOUSE	104			30	Atm ±17in.WG	8 8	ខ	Felled Nomex	850	Mikropul 12-8-160	PFD - 005	Notes 1, 2 Far Blower, see K-602VB
NOTES:	 Puise - jet type, complete with air header and timer/controller, exhaust blower. Equip with Fike or Fenwall explosion suppression system. 	lete with at h wall explosic	ieader Xn supj	and timer/c pression sy	controller, exhe stem.	aust blower.							

;

XBi "	XBi XTEL-BECHTEL NO.				Equif	EQUIPMENT LIST	LIST						
Client	Client: UND/EERC			Unit:	U/T 000.1	MILD CO	AL GASI	1.000 T/D MILD COAL GASIFICATION					Rev. A
LUCAUOI.	LUCARDI: CLAT COUNTY, INDIANA	VV											07 - Apr - 92
	······································			Ξ	HEAT EXCHANGERS	XCHAI	NGER	S					
			Design	Transfer	Tubes	S	Shellside/Tubeside	ubeskle		Total			
llem No.	Name	IEMA Type Size	Duty MMBluth	Sur lace	OD. In Pitch, In	DP Pst	10 %	Material	ء ن	ž a	Mt. Model No.	Reg. No.	Remarka
			· · · · · · · · · · · · · · · · · · ·										
H-403AB	CALCINER GAS HEAT			610		S	1300		none				20% design margin
H_ANA N	CALCHER OAR COOL CO		¥.13	(peuu)		35	2000		euou			PFD-004	
	CALCINEN LAS COULEN		5.3	(finned)		35 100	1400	cs	none 1/8			PFD-004	20% design mergin
H-501 NB	OIL COOLER		e uc	6,900				30433					30% design margin
			S.G.			8	250		Pon			PFD-003	
508-H	HP BOILER FEEDWATER HEATER		8		<u> </u>	500	750						
H 905	MAIN SURFACE CONDENSEE			30,000		15	120	cs	3/8				
H-908	Reine COCI ED	a	8				120	30455	e lone			UFD-012	
8		raie	137.4	13,900		001	250	304SS Diates	none	30,000	Mb-Laval M30-EG		10% design margin
												5	
						+-							
NOTES:													
													Page 7 of 22

XBi	XBi xmel-degatel, MC					EQUI	EQUIPMENT LIST	LSI1.					
Cller	Client: UND/EERC				Unit:	1,000 T/D	MILD CO	AL GAS	1,000 T/D MILD COAL GASIFICATION				Rev. A
LOCATIO	LOCABON: CLAY COUNTY, INDIANA								ľ				07 - Apr - 92
		ļ			COMPRESSORS, BLOWERS	ESSOF	IS, BL	OWE	RS, FANS	٨S			
		Cap'y SCFM	۵P	Potor Dia., In	Malerial Case	Dilver	đH	Totaî Wi.	Seal Type	Compr./Blwr. Mf.	Coupling Mf.	Reg. Nc.	
liem No.	Name	ICFM	- Psl	udj	Rotor	Type	ng Ng	ą	Matorial	Model No.	Model No.	P&INo.	Remarks
K- 101	BLOWERFOR BAGIOUSE G-101	600	18"SP		CS		3			Robinson 12MH		PFD-001	Vendor peckage with G-101
K-102	BLOWERFOR BAGHOUSE G-102	009			cs		0			Robinson			Vendor peckage with G - 102
K-103AB	2	000'2					8					100-014	Vendor package with C-103
K- 104AB	AIR BLOWER FOR GRAVITY TABLE C-104AB	7,000					8					PFD-001	Vendor package with C – 104
K-105AB	AIR BLOWER FOR GRAVITY TABLE C-105AB	12,000	-				8					PFD-001	Vendor package with C – 105
K-106AB	REJECT COAL BLOWER	410	6.6				80					PFD-001	Solid: 18,835 lb/h @ 84 lb/h ⁵ 30% design margin
K-107AB	BLOWERFOR BAGHOUSE Q-103AB	42,000 10°8P	10°8P		cs		125			Robinson		PFD-001	;
K-301AB	BLOWER FOR BAGINUSE G-301AB	809	10°8P		C8		3			Robinson		PFD-002	Vendor package with G - 301
K-302A/B	CARBONIZER REJECT CHAR BLOWER	175	5.5				10					PFD-002	Bolkd: 5,427 lb/h @ 58.8 lb/ff 30% deskon merolo
													1
K-401AB	BLOWER FOR BAGHOUSE G-401 AB	600	10°8P		CB		Ð			Robinson		FD-004	Vendor package with G - 401
K-402AB	CALCINATE PRODUCT BLOWER	620	Q				25					PFD-004	Solid: 25,100 lb/h @ 56.2 lb/ff 30% design meraln
K-403A/B	REJECT CALCINATE BLOWER	8	7				1.5					PED-004	÷
K-404AB	0	170	5.5				7.5					PF0-004	
K-405AB	TABLE OWER FOR GRAVITY TABLE C-405AB	5,000					15					PFD-004	+
K-406A/B	CALCINER RECYCLE CAS COMPRESSOR	4.870	12.5				300 bhp					PFD-004	Steam turbine driven 20% design mercio
NOTE8:													7

Cllen	Client: UND/EERC Location: CLAY COUNTY, INDIANA	<			Unlt:	0/1 000'l	MILD CC	AL GAS	1.000 T/D MILD COAL GASIFICATION				Rev. A
					COMPR	ESSOF	IS, BL	OWE	OMPRESSORS, BLOWERS, FANS	٨S			
		Cap'y		Rotor	Material	Driver		Total	Seal	Compr./Blw.	Counting		
llem No.	Name	SCFM	AP Jed	Dia In rpm	Case Rotar	Tvpe	믭	Υ.	Type	Model No.	MI.	Reg. No.	
K-501AB	CARBONIZER GAS		4				1455 bhp						Nation As Steam trakina defred
	COMPRESSOR	17,810										PF0-003	10% design movelo
K-602AB	CARBONIZER BURNER		10.2				205 bhp						Steam turbine driven
K. EASAB	An COM RESSOR	210										PFD-001	20% design mergin
	AIR COMPRESSOR	5.610	S				510 bhp						Sleam turbine driven
K-504	OIL TANK OFF-GAS		1				0.6					PF0-03	20% design margin
-1,2	COMPRESSOR & SPARE	2.4					2.2					PFD-003	30% desko merolo
K-601A/B	BLOWER FOR BAGHOUSE						3	-					Vendor neckene: see G601
d/ CUS - X	G-601AB	600	600 18°SP									PFD-005	- Deer 's Revond sources
	BLUWEN FON BAGHOUSE		0.010				0						Vendor package; see G-602
K-6034/8		3										PFD-005	
	PLOWER TIMES		¥.				1.5						
K-604A/B	FORMCOKE COOLING	3					7.6	1				PFD-005	
	AIR BLOWER						0.2						
k-605AB	CURING OVEN EXIMUST						7.5					89-AL	
	BLOWER		Ì									PFD-005	
			Ť										
			Ť										
			Ť	Ī									
NOTES													
801E9:													

.

a. UNDEFIC Just 1,000 T/D MILD COAL GASIFICATION mark a a. CAX COUNTY, NIXMA Impact of the control of	Init: 1,000 T/D MILD COAL GASIFICATION Init: 1,000 T/D MILD COAL GASIFICATION CENTRELICAL PUMPS CENTRELICATION CENTRELICATION CENTRELICATION CENTRELICATION Maintelling Fend Fend Maintelling Fend Maintelling Fend Maintelling Fend Maintell	۶.	XBi mel-bechiel no.					EQUI	EQUIPMENT LIST	LIST						
Rturd Cupy DP 0 Inputs DP 0 Rturd Pum DP 0 Material Pum DP 0 Seal Types DP 0 MAIN DP 0 Read Pum DP 0 Material Pum DP 0 Read Pum DP 0 Main Pum DP 0 Read Pum DP 0 Read Pum DP 0 Read Pum DP 0 Rea	Rivel (a) Input (b) (b), (b) CENTRIFUGAL PUMPS Rivel (a) Input (b) Input (b) Rivel (b) Matrixin (b) Matrixin (b) Matrixin (b) Matrixin (b) Matrixin (b) Rivel (c) Rivel (c) R		UND/EERC CLAY COUNTY, MDIAN/	<			1 -	T/D MILE	COAL (GASIFI	CATION					Rev. A
Poton Deton Deton <th< th=""><th>Poind International Anne Poind Point Prime Prime Prime Road Prime Prime Manue Prime Point Prime Point Prime Prime Prime Prime Prime Prime Prim</th><th>ľ</th><th></th><th></th><th></th><th></th><th>C</th><th>ENTRI</th><th>FUGAL</th><th>PUM</th><th>PS</th><th></th><th></th><th></th><th></th><th></th></th<>	Poind International Anne Poind Point Prime Prime Prime Road Prime Prime Manue Prime Point Prime Point Prime Prime Prime Prime Prime Prime Prim	ľ					C	ENTRI	FUGAL	PUM	PS					
Number GPIII Dar, EPII Madeial FID In Ib Model No.	Manual Billing Dir Aller Billing Manual Imm			Raled Cap'y		Impellar Dia., in	Rated Pump	Material <u>Case</u>	Seal Type	Motor LIP	Baseplate L/W	Total WI	Pump Mt.	Coupling Mt.	Reg. No.	
V-001AG SUCTION IDFUNE 10 23 C Cl 0.6 1 7 7 PINUE 10 23 C Cl 1800 2 1800 7 7 7 OLENCITIONER 600 29 C Cl 1.00 7 7 7 7 OLENCIATI ENLE 600 29 C Cl 1.00 7 7 7 7 OLENCIATI ENLE 600 29 C Cl 1.00 7 <	V-IOLAGE V-IOLAGE IO CI 0	1			61. Pa	ACI./Max.	md	Impeller	Malerial	maj	5	<u>a</u>	Model No.	Model No.	P&I No.	Remarks
Molecular Clearchit Puwer Clearchit Puwer A Strate A Strate V-BONDE BLUCTIONORIUM CI CI </td <td>All Classes All Classes</td> <td>1</td> <td>V - 401 AB SUCTION DRUM FLIMP</td> <td></td> <td></td> <td></td> <td></td> <td>5 8</td> <td></td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	All Classes	1	V - 401 AB SUCTION DRUM FLIMP					5 8		0.5						
CUENCH TOWER CI CI ZI ZI <thzi< th=""> ZI ZI</thzi<>	OLCENCH TOWER EBD 29 CII 25 1000 FFD-001 FFD-001 CLINCALAT FUNUE 40 20 CIS 1000 1 7 FFD-001 A SFARE 40 20 CIS 1005 1 100 7 FFD-001 V-NOLVAS INTANSE 4 7 0 1 0.0 0.0 7 7 7 V-NOLVAS INTANSE 60 1500 CIS 0.05 1 0.05 1 7 7 7 V-NOLVAS UNTER 560 1500 2 1 0.05 1 1 7 7 7 MAN BOGUENTEED WATEN 560 1500 2 2 0.05 1 1 7 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>Ī</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FD-09</td> <td></td>	1					Ī	3							FD-09	
40 30 C <thc< th=""> C C C</thc<>	40 30 CI 1 5 1 60 7 <th7< th=""> 7 7 7</th7<>	1	QUENCH TOWER CIRCULAT. PUMP & SPANE					ច ខ្ល		25						Viking type, thermal jacket
DRUM I0 22 C1 0.0 MTEN 560 1500 2 1600 7 7 MTEN 560 1500 31633 3600 7 7 7 MTEN 560 1500 31633 3600 7 7 7 7 MTEN 560 1500 31633 3600 7 7 7 7 MTEN 560 1500 31633 3600 7 7 7 7 MTS 3500 30 2 3600 7 7 7 7 MTS 35000 30 2 3600 7 7 7 7 MTS 35000 30 2 1600 7 7 7 7 7 MTS 35000 30 2 1600 7 7 7 7 7 7 7 7 7 7 7 7 <td>DRUM 10 22 C C3 0.05 C 7.0-04 WIER 560 1500 2 0.05 1 0.05 1 7.0-04 WIER 560 1500 2 31653 3600 1 0.05 1 7.0-04 FD 31653 3600 3 3600 1 1 1 1 FD 31653 3600 3 3600 1 1 1 1 FD 33500 30 1</td> <td></td> <td>OR TRANSFER PUMP A SPARE</td> <td></td> <td></td> <td></td> <td></td> <td>ទួ</td> <td></td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Viking type, thermal jacket</td>	DRUM 10 22 C C3 0.05 C 7.0-04 WIER 560 1500 2 0.05 1 0.05 1 7.0-04 WIER 560 1500 2 31653 3600 1 0.05 1 7.0-04 FD 31653 3600 3 3600 1 1 1 1 FD 31653 3600 3 3600 1 1 1 1 FD 33500 30 1		OR TRANSFER PUMP A SPARE					ទួ		1.5						Viking type, thermal jacket
MIER 560 1500 31653 MIA MIA MIA ED 220 1500 31653 3600 100 100 100 ED 220 1500 31653 3600 100 100 100 100 ED 220 1500 31653 3600 10 100 1	WIEn 560 1500 1600		V-501AB SUCTION DRUM PUMP				Í	50		0.5						nig wan niger and
WIER 560 1500 CI N/A N/A N/A U/FD-012 ED 220 1500 31658 3600 0 0 U/FD-012 CLE 560 500 0 3600 0 0 U/FD-012 CLE 560 500 0 0 0 0 U/FD-012 CLE 560 50 0 0 0 0 U/FD-012 CLE 560 50 0 0 0 0 U/FD-012 MPS 35,000 30 CS 1800 0 U/FD-013 MPS 35,000 30 CS 1800 U/FD-013 U/FD-013 MPS 35,000 35 CS 1800 U/FD-013 U/FD-013 35,000 35 CS 1800 U/FD-013 U/FD-013 35,000 35 CS 1800 U/FD-013 U/FD-013 MPS 35,000 35	WIER 560 1500 Cl NA NA Mail Mail </td <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PFD-001</td> <td></td>	·						3							PFD-001	
ED 220 1500 Cl 900 Cl 900 CLE 5600 500 31653 36600 160 170 170 CLE 560 500 500 7 31653 36600 7 160 100 CLE 560 500 500 7 1600 7 170	ED 220 1500 0 1 400 1 1 400 1 <td>·····</td> <td>MAIN BOILERFEED WATER PUMP</td> <td>260</td> <td></td> <td></td> <td></td> <td>CI 31638</td> <td></td> <td>V/N</td> <td></td> <td></td> <td></td> <td></td> <td>LED-012</td> <td>Multistage Stante techna deba</td>	·····	MAIN BOILERFEED WATER PUMP	260				CI 31638		V/N					LED-012	Multistage Stante techna deba
CLE 560 CI C	CLE 560 E0 E		STARTUP BOILEAFEED WATEA PUMP	220				CI 316SS		006 0090						Multistage
ID 30 CC 5 CC 5 CC 5 CC 5 CC 6 CC 10 30 CC 10 30 CC 10 30 CC 10	III 35,000 30 CI CI <t< td=""><td></td><td>CONDENSATE RECYCLE PUMP & SPARE</td><td>560</td><td></td><td></td><td></td><td>CI 316SS</td><td></td><td>360 8</td><td></td><td></td><td></td><td></td><td></td><td>Canned pump</td></t<>		CONDENSATE RECYCLE PUMP & SPARE	560				CI 316SS		360 8						Canned pump
35,000 30 Cl 1000 35,000 30 Cl 1000 35,000 30 Cl 1000 35,000 35 Cl 1000 35,000 35 Cl 1600 35,000 35 Cl 1600 35,000 35 Cl 1600 1600 1560 Cl 1400-013 50 35 Cl 1600 50 60 Cl 1600 50 50 Cl 1600	35,000 30 C 1000 C <thc< td=""><td></td><td>FLASH TANK WATER PUMP</td><td>01</td><td></td><td></td><td> </td><td>ទួ</td><td></td><td>1800</td><td></td><td>İ</td><td></td><td></td><td></td><td></td></thc<>		FLASH TANK WATER PUMP	01				ទួ		1800		İ				
3.500 35 CI 150 3.500 35 C3 150 3.500 35 C3 1600 3.500 35 C3 1600 1.60 1.50 150 1600 1.60 35 C3 1600 170 1.60 35 C3 1600 1600 1600 1.60 35 C3 1800 1600 1600 1600 1.60 3600 35 C3 1600	3:500 3:5 C </td <td></td> <td>COOL NG WATER PUMPS A SPARE</td> <td>35,000</td> <td></td> <td></td> <td></td> <td>ច ខ្ល</td> <td></td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Vertical</td>		COOL NG WATER PUMPS A SPARE	35,000				ច ខ្ល		000						Vertical
3.500 35 CI 100 1.50 35 CS 150 1.50 35 CS 1600 1.50 35 CS 1600 1.50 35 CS 1600 1.50 S600 S60 CS 1700	3500 35 CC 150 3500 35 CS 1800 CI CI 6 013 CS 3600 6 013		Brine Pumps 4 Spare	3.500				ठ <u>१</u>		150						
3500 35 CS 1800 VIE 50 60 1	3500 35 CS 1800 VIE 50 80 CI 1 C3 C3 3600 1 1		RAW WATER PUMP					ō		15					uru-013	Vertical well pump
50 80 CS 3600	50 50 Seco	+	A BLANE WATER TREATMENT	200				ខ្លួច		1800					UFD-013	
			FEED PUMP & SPARE	8				CS		3600					LFD-013	

Cliant: UND/EERC allon: CLAY COUNTY, MUINNA -1 FIRE WATER PLUMP FIRE WATER PLUMP BOA ER MAKEUP PLUMP A BPARE 2 BAARE 2													
	E E		Unit: 1	1 000'	JIM Q/	,000 T/D MILD COAL GASIFICATION	ASIFI	CATION					Rav A
-2 BACKUP FIRE WATER PUMP FIRE WATER PUMP FIRE WATER POCKEY FIRE WATER PUMP BOKER MAKEUP PUMP & 9 PARE & 9 PARE 													07 - Apr - 92
-1 FIRE WATER PUMP -2 BACKUP FIRE WATER PUMP FIRE WATER JOCKEY FIRE WATER JOCKEY PUMP BOALER MAKEUP PUMP 4 BPANE 4 BPANE			- F	5		CENTHIFUGAL PUMPS	PUM	PS					
-1 FIRE WATER PUMP -2 BACKUP FIRE WATER WATER PUMP BOLER MAKEUP PUMP 4 BPARE 4 BPARE 4 BPARE 5	Rated Cap'y II	TOLL N	_		Material Case	Seal Type		Baseplate L/W	-	Pump MI.	Coupling	Ben No	
-2 BACKUP FIRE WATER PUMP FIRE WATER JOCKEY PUMP BOK ER MAKEUP PUMP & BOK ER MAKEUP PUMP			CHI/MAX.		CI	Material	ud u	٤	<u>a</u>	Model No.	Model No.	PAINO.	Remarks
FINE WATER JOCKEY FUNE BOILER MAKEUP PUMP & SPARE	000	8			CS		360					160-011	
FIRE WATER JOCKEY PUMP A BPARE A BPARE	1.000	9			ច ដូ		N/A		İ				Diesel encine dubre
		3			3 5							UFD-013	
	8	8			5 S		3600						
	60	2			ច		o						
	 	3			21022	Ť	360					UFD-011	
								**					
		$\frac{1}{1}$			Ť				Ì				
OTES:													
TOTES:													
OTES:				┼		1							
AOTES:		$\frac{1}{1}$											
OTES:													
AOTES:													
OTES:													
AOTES:			+										
AOTES:		\neg											
VOTES:						-	,						
VOTES:				 							Ì		
							1						
									•				Page 11 of 22

-

(Bi "	XBi XTEL-BEGREL NG.					EQU	EQUIPMENT LIST	LIST							
Ctient: Location:	Client: UND/EERC Location: CLAY COUNTY, INDIANA	Ş		Unit:	1,000 T	/D MILD	,000 T/D MILD COAL GASIFICATION	ASIFIC	CATION					Rev. A	Rev. A
				PO	OSITIN	VE DIS	PLACE	MEN	SITIVE DISPLACEMENT PUMPS	SS					
ltem No.	Name	Type	Rated Cap'y BPM	d d Ied	Stokes Per min.	Material Case Internals	Seal Type Material	Motor 11P TPm	Baseplate L/W in	Total Wi Ib	Pump <u>Mf.</u> Model No.	Coupling <u>Mt</u> Model No.	Reg. No. P&I No.	Remarks	
P-601AB	BINDERFEED PUMP	Metering													
						3							110-003		
															T
NOTES:			Ī												

XBi "	XBi mei-begnel ng					EQU	EQUIPMENT LIST	LIST						
Client: Location:	Client: UND/EERC Location: CLAY COUNTY, INDIANA				Cudit:	1,000 T/D M	1,000 T/D MILD COAL GASIFICATION	GASIFIC	CATION				- 10	Rev. A 07-Apr-92
			ST	STORAG	ш	S (ATM	TANKS (ATMOSPI-IERIC, API), BINS &	AIC,	API), BI	NS &	SILOS			
			Wkg		Des. Press.	<u>Op. Temp.</u>	4	Materials		Total				
ltem No.	Name	Type	<u></u> 2 2 2	<u>Plameter</u> Helght	Positive Vacuum	Des. Temp. •F	Vessel	۽. ن	Uning	호 된	Fabricator Shop/Field?	P&I No.	Remarks	
T-101	COM SHO		0000	40, 000 100, 041			cs					PFD-001	48h capacity	
T - 102	CRUSHER FEED BIN		4,675	20' Sq 25' OAH			cs					PFD-001		
T-103AB	REJECT COAL HOPPER			11'-C' 29'-C			S '					PFD-001	24h capacitý	
T-104AB	COAL BURGE HOPPER		780	90 13'-0			ဗ					PFD-001	2h capacity	
T-301A/B	CARBONIZER FEED HOPPER		780	- 0- 0 - 0- 0			S				-	PFD-062	2h capacity	
T-302A/B	CARBONIZER BCREENER FEED HOPPER		150	9'-0' 12'-0'			CS					Pf0-002	2h capacky	
T-303A/B	CARBONIZER REJECT CHAR HOPPER		1,100	100 . 150			S				-	PFD-002	24h capacity	
T-304A/B	CARBONIZER CHAR SURGE HOPPER		660	80 . 110			CS					PFD-002	2h capacity	
										-				
T-401AB	CALCNER FEED HOPER		999	90 110			cs					PFD - 004	2h capacity	
T-402AB	CAL CINATE PRODUCT 8TORAGE HOPPER		11,000				CS					PFD - 004	48h capacity	
T-403A/B	CAL CINATE REJECT HOPER		260	6'-0" 10'-0"			CS					PFD-004	24h capacliy	x 21
T-404A/B	CAL CINATE FINES PRODUCT HOPPER		2,400	12'-0' 22'-0'			CS					FFD-001	48h capacity	
NOTES:														
													Pag	Page 13 of 22

.

YRY	XBI WIEL-BECHTEL, NC.					EQL	EQUIPMENT LIST	LIST					
Cileni Location	Client: UND/EERC Location: CLAY COLINTY INDIANA				Unit:	1.000 T/D A	1,000 T/D MILD COAL GASIFICATION	GASIFIC	CATION				Rev. A
													07 - Apr - 82
			ဂြ	LORAG	IE TAN	(S (ATM	STORAGE TANKS (ATMOSPHERIC, API), BINS &	IIC,	API), B	INS &	SILOS		
			Wkg		Des. Press.	<u>Op. Temp.</u>	2	Materials		Total			
ltem No.	Name	Type	2 2 2	<u>Diameter</u> Height	Positive Vacuum	Des. Temp. •F	Vessel	ء ن	1 hina	₹ £	Fabricator Shoo (Solds	Reg. No.	-
T-501	OL STORAGE TANK	API 12D	000.1 Idd	21°-6° 16°-0°	8 oz/in² '/s oz/in²		cs	8		2			18h capacity
T-601A/B	BRIQUETTING FEED HOPPER		1014	76"			CS						2h capacity
T-602A/B	BRIQUETTING FINES FEED HOPPER			•			cs					PFD-005	Zh capachy
T-603A/B	BUNDERFEED TANK		8 4				CS					PFD-005	Zh capacity
T-601AB	FORMCOKE PRODUCT S& O						CS					PFD-005	
												PFD-005	
T-903	BRINE TANK	API 12D	000 Iq	21'-6' 16'-0'	8 oz/m² Moz/m²		cs	1/8	1				6min haldup, fut
T-904	RAW WATER TANK	API 120	5,000 bbi	55'-0' 24'-0'	3 oz/m²		cs	1/8		1		UFD-013	
T-905	DEMIN WATER TANK	i AP 120	3.000 bbb	29'-9" 24'-0"	4 oz/in² ½ oz/in²		cs	0	Epoxy - contact			UFD-013	
								1					
				İ									
NOTES:													
													Page 14 ol 22

, r` , •4

i m	XBi XTEL-BECHTEL MC.					EQU	EQUIPMENT LIST	IST						
	Client: UND/EERC				Unit:	1.000 T/D M	1,000 T/D MILD COAL GASIFICATION	ASIFI	ICATION				Rev. A	<
	Location: CLAY COUNTY, INDIANA	≤											07 - Apr - 92	- 82
						PRESSURE	URE VE	VESSELS	il.S					
			Total		Op. Press	<u>Op. Temp.</u>	N N	Materiais	5					1
	Name	=>	Wkg Vol	<u>Dlameter</u> Tan - Tan		Des. Temp.	Vessel	<u>۽</u> ڊ		₹ 4	Vessel 111	Reg. No.		
	CALCINER RECYCLE GAS	1>			8.5	375	SS		2	2	- THE 199901		Incl. demister pad	Τ
		1	<u>g</u>	5	S	8						PFD - 004		
T	CARBONIZER GAS COMP.	>		6 ⁻ -C	1.5	180	CS							
	BUCILICN DRUM		310		15	9						PFD - 003		
	DEAERATOR	>			8		SS	3/8		8.000				
	BOILER BLOWDOWN	>			28		616-70 C3	14		3,000		UFD-012		1
1	DRUM	12	280		75							UFD-012		
	CUNUCHAAIE FLASH TANK	>	100		Alm 15		SS	M	 	1,500		160-012		
	DEAERATOR STORAGE TANK	Ξ			30		C8	1/2	1	17,000		20-00		
	FUEL CAS DRUM	>					CS					UFD-012		Τ
1		1												
														1.
								1						T
														Ī
		1												
,														1
1														
								1						
													Paga 15 00 22	2

		EQUIPMENT LIST			
Locatio	CHERIC UND/EERC LOCATION: CLAY COUNTY, INDIANA	Unit: 1,000 T/D MILD COAL GASIFICATION			Rev. A
		PACKAGED EQUIPMENT & SYSTEMS	S		07 - Apr - 92
ltem No	Name	Description		-	
106-7	ATMOSPIERIC FLUIDIZED BED COMBUSTER (AFBC)	200 Kyh steam @ 1200pela & 050F, with heales (11.112, H3, & 114), steam dum (T4), object char (T2) aject char (T2) aject char (T2) algo cutteti, ge outleti, ge ou		UFD - 011	Hemaks
2-902	TURBOGENERATON SYSTEM SYSTEM	Double automatic arkaction/condensing steam turbine complete with 3600 rpm, 19,920 NVa totality - enclosed synchronous generator and brushless excitation system includency 1. Complete consisted hydraulic and lube of system with reservor, no fulk capacity AC motor - driven pumps, one DC emergency of pump, hoo lube of coolers, fullers, etc. 2. Steam seal system 3. Woodward 50 SE governor and selected instruments and controls 4. Four fin - lube subce at coolers for gennator heat sink (water to at coolers) 8. Lube of contor of steam seal and leak - off piping 6. AC motor - driven turning gears, 61 piping	y	UFD-012	
NOTES:		/. Gland steem condanser (11)			

XBi "	XBi met-recuter, no.	EQUIPMENT LIST				
Clier	Clier点 UND/EERC	Unit: 1,000 T/D MILD COAL GASIFICATION				Rev. A
I ocation	LOCALIQUE CLAY COUNTY INDIANA					24 - 70 - 70
		PACKAGED EQUIPMENT & SYSTEMS	EMS			
Item No.	Name	Desciption	₹ 3	Equie: Mfr. Model No.	<u>Pal No.</u> Pal No.	Remarks
2-503	water treatment SYSTEM	 60 gµm beatment system to provide demin water to the AFBC. Bystem includes: 1. Two full capacity cachon filters (X1 & X2) 2. Two full capacity zeolitie softeners (X3 & X4) 3. Two full capacity zeolitie softeners (X3 & X4) 4. Two full capacity reublidge filters (X3 & X6) 4. Two full capacity reublidge filters (X3 & X6) 6. Two full capacity reublidge filters (X0 & X10) 6. Two full capacity deminenties (X3 & X10) 7. There BOX capacity to lead paintines (FQ) units (X7 & X8) 8. Two full capacity deminenties (ead pumps (P4, P3 & P3) 7. There BOX capacity deminenties (ead pumps (P4, P3 & P9) 8. Chemical lajection systems for actual and anti-acaling (T2 & F7, T3 A F8) 9. RO product storage bank (T1) 10. Interconnecting pipling and velves. PLC-based controller 		Giegg Water Cond. Co.	UFD -013	
2-904	COOL MG TOWER	Five -cell (Including apere) field erected, wooden, counter - flow, cooling tower with the following leatures and accessories: 1. 65,000 gpm cooling water capacity & com 105T to 88T with 77T wat buth 2. 2401. x 48W Ramswork with 240'x54' concrete leatu 3. Five (5) fans, each with 200) fit 460 V motor and gear reducer 4. Deluge type fire protection system			uf0-013	
S08 - Z	ABILLUNDLING BYSTEM	Bottom seth and fly seth removal system to handle astres generated at the fluidited bed combustor. By stem includes: 1. Buttom ash tropper (T1) & fly ash hopper (T2) 2. Weise cooled drag stain for bottom sath g ¹) 3. Bottom sath fluid bed at blower (K3) & at heater (h1) 4. Fly sath Ruid bed at blower (K3) & at heater (h12) 6. Fly sath larginouse (G1) and vent blower (K1) 9. Fly ash larginouse (G2) and vent blower (K2)			LIFD - 011	
2-908	CHEMICAL INJECTION BYSTEM	Chemical injection tank and six pumps each with 2 HP motor			UFD-013	
2-607	PLANT A INSTRUMENT AUR BYSTEM	1000 BCF M at aystem to supply plant and instrument at to the entite plant Bystem includes: 1. Comparesor and spare equipped with intel litker, intercooler and aftercooler to produce 150 psig 2. Complete automatic dryer unit to provide – 40°F dew point 3. Instrument at receiver 4. Plant at receiver				
NOTE8:						Page 17 ol 22

XBi	XBi met-securet, no.	EQUIPMENT LIST				
Client:	Client: UND/EERC	Unit: 1,000 T/D MILD COAL GASIFICATION				Rev. A
		MAJOR ELECTRICAL & CONTROL SYSTEM COMPONENTS	OME	ONENTS		01-AP92
ltem No.	Name	Description	ža	Equip: Mt. Model No.	Reg. Ng. Påi No.	Remarks
2 Required	METER	13 BAV				
1 Required	BWTCH GEAR	24MVa. 13 BKV				
2 Required	BWTCH GEAR	6MVa, 13 8NV				
2 Required	TRANSFORMER	eMVe. 13 eM Plmary; 4160V Secondary				
2 Required	TRANSFER BWTCH	The second second second second second second second second second second second second second second second se				
8 Required	DISCONNECT	4160V				
4 Required	TRANSFORMER	IMVe. 4100V Pilmury: 400V Secondary				
20 Required	TRANSFORMER	30AVa, 480V Piknary: 120V Becondary				
I Required	DC3 9Y8TEM A A38OCATED COMPONENTS					
1 Required	UP8 8YBTEM	BONVa Statio converter type				
-						
NOTES:						
						Page 10 of 22

•

XBi 🛛	<i>ХВі х</i> лет-весилет, мо.	EQUIPMENT LIST				
Cllent:	Client: UND/EERC	Unit: 1,000 T/D MILD COAL GASIFICATION				Rev. A
Location:	Location: CLAY COUNTY, INDIANA					07-Apr-92
	,	MISCELLANEOUS EQUIPMENT	L			
Item No.	Name	Description	ž a	Equip: Mft. Model No.	Rog. No. PAINg.	Bemarka
C-101 AB-1,2	COM. CYCLONE	113' Dia X 30' 14 es, Des. ± 17' WG @ 300'F, CS	3,400	Sprout 11-ento		2 cyclones in parallel, each sain
C-103AB	FINE COAL GRAVITY TABLE	25 Nº deck area, 2 NP deck dive motor, 20 NP blower mular, -24 mesh	6.000	Triple/S Dyn.		15 (h) ea
C-104AB	INTERMEDIATE COAL GRAVITY TABLE	25 Nº deck area, 2 1 Mº deck dive motor, 20 1 Mº blower motor, 10 X 24 mesh	6,000	Triple/9 Dyn.		15 (h) en
C-105AB	LARGE COAL GRAVITY TABLE	25 ft ^s dock area, 2 HP dack d/ve motor, 20 HP blower motor, Yr X 10 mesti	6,000	Triple/S Dyn. S-25 Stoner	PFD - 001	15 VI • 105
C-301 NB-1.2	PRIMARY CARBONIZER CYCLONE	113" Dia X 30' itt ea, Dea. 20 paig @ 1400°F, rahactory-lined CS	3.400 + Ing	Sprout HI-epin	PFD - 002	2 cyclones in parallel, each train
C-302 <u>NB-1,2</u>	BECONDARY CARBOHIZER CYCLONE	113" Dia X 30" ili ee. Dee. 20 paig @ 1400"F. rehectory-lined CS	3,400 † Ing	Sprout 11-spin	PfD-002	2 cyclones in parallel, each train
C304NB	FINES MAQNETIC BEPARATOR	36-Dla X 12-W Drum, 300 fpm drum speed, 3 tif molor, - 43 meeh	2.700	Erlez DF-R	PED-002	15 (f) ea
C-305AB	INTERMED. MAGNETIC SEPARATOR	36'Dla X 12'W Drum 300 fpm drum speed. 3 1 fP molor, 40 x 20 meel	2,700	Erlez DF-A	PFD - 002	15 Vh ea
C-306AB	LARGE PARTICLE MAG. BEPARATOR	36'Dla X 12'W Drum, 300 (pm drum speed, 3 HP molor, 4 20 meeh	2,700	Erlez DF - A	PFD-002	15 th ea
NB-1.2	CYCLONE CYCLONE	113" Dia X 30' I it ee. Dee 30 peig @ 1900°F. reheclary -ihied C3	3.400 + Ing	Sprout Hil-spin	PFD-004	2 cyclones in parallel, each tain
C-402 <u>AB-1,2</u>	BECONDARY CALCINER CYCLONE	113" Dia X 30" hit ea, Des. 30 psig @ 1000°F, rehaciory-lined CB	3.400 + Ing	Sprout Hil-soln	PFD - 004	2 cyclones in parallel, each train
AVC01-0	CALCINER GRAVITY TABLE	26 Rº deck area, 2 NP deck útive motor, 10 NP blower molor, - 40 mesh		Triple/8 Dyn. 8 - 25 Stoner	PFD - 004	2 Vh 🐽 Widi K-405
C-601AB	BRIQUET FINEB CYCLONE					
NOTE8:					770-005	
						Page 19 of 22

Control UND/Efficition Lut. Loop ID MILE CONT AMILE CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT AMILE CONT CONT CONT CONT CONT CONT CONT CONT	XBi "	XBi wiel-beginel mg.	EQUIPMENT LIST					
Name Description MISCELLANEOUS EQUIPMENT Foundation None Execution No Execution No Execution Pro-point Pro-point <td>Cilent Location:</td> <td>E UND/EEIIC E CLAY COUNTY, INDIANA</td> <td>Unlt:</td> <td></td> <td></td> <td></td> <td>Ruv. / 07 - Aix - 9</td> <td>- 82</td>	Cilent Location:	E UND/EEIIC E CLAY COUNTY, INDIANA	Unlt:				Ruv. / 07 - Aix - 9	- 82
Nume Nume Nume Description Nu Early bit Mail Prior Mail Prio Mail Prior Mail P								
Controctor Fires Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Criccionis Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 13% to 6%, Control Final and Type, 42 (h, n, moharenakalion form 14, n, moharenakalion form 14, n, moharenakalion form 14 (h, n, moharenakalion form 14, n, moharenakalion form 14 (h, n, moharenakalion form 14, n, moharenakalion form 14 (h, n, moharenakalion form 14, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moharenakalion form 14 (h, n, moh	liem No.	Nanie	pition		Equip. Mit. Model No.	Reg. Ng. Pai Ng.	Remarks	
Cot Dityen Fud hard type, 41 (h. e., molure reduction from 13% lo #S. T T T T Code Dityen Ecolor at reare type, 43 th e., molure reduction from 13% lo #S. Holo - File FPD - 001 109 119 1 Code DityEn Code at reare type, 10.7 Mulburh, e., Dialge: Scare 150 pilg, dated 30 pilg, GS Hold - File FPD - 001 15% datedim margin Display Display Display - 10.7 Mulburh, e., Dialge: Scare 150 pilg, dated 30	C-602MB	FORMCOKE FINES CYCLONE				PFD-008		
COAL DIVIERIA Full bad type, 4 th a, modue reduction form 13k to 6 k, Prip.								
Condensitie Condensitie <thcondensitie< th=""> <thcondensitie< th=""></thcondensitie<></thcondensitie<>	8/V101-11	COAL DRYER	Fluid bed type, 45 Vh ee, moleiue reduction from 13% to 8%			PFD-001		
CARBONIZER CIUN Condatarew Vps., 10 A Mulburh, na, Davign: Scaw 100 pilg, Jackat 30 pilg 44,660 Holo-Filie FFD-002 Site magin FED CACENTIE COOLER 2016 madia Coolad arew Vps., 10 7 Mulburh, a., Davign: Scaw 150 pilg, Jackat 30 pilg, Jackat 30 pilg 44,660 Holo-Filie FFD-002 Site magin FED CACENTIE COOLER Coolad arew Vps., 10 7 Mulburh, a., Davign: Scaw 150 pilg, Jackat 30 pilg, Jackat 30 pilg Holo-Filie FFD-001 FFD-001 Site magin CACENTIE COOLER 2016 madia Coolad arew Vps., 10 7 Mulburh, a., Davign: Scaw 150 pilg, Jackat 30 pilg, Jackat 30 pilg Holo-Filie FFD-001								
BED CALCENTE COOLER Consider areaw type, 10.7 MMBluch ex, Darljer: Stave 150 prig. Activa 30 prig. CS Holo-Filia Holo <filia<< td=""><td>H-301AB</td><td>CARBONIZER CIVAR COOLER</td><td>ee, Deelgn: Sciew 150 paig Jackel 30 paig. CS</td><td>4.860</td><td>Halo-Filio Q-2424-6</td><td>PFD - 002</td><td>15% design margin</td><td></td></filia<<>	H-301AB	CARBONIZER CIVAR COOLER	ee, Deelgn: Sciew 150 paig Jackel 30 paig. CS	4.860	Halo-Filio Q-2424-6	PFD - 002	15% design margin	
RED CALCHAYRE COOLEN Conditionation be, Davige: Staw 100 prig. Jackat 30 prig. GS 44,660 Holo-File Pile Pile CALCHAYRE COOLEN Joile mains D - 2424 - 6 FFD - 004 105% davign margin CALCHAYRE FINES COOLEN Joile mains D - 2424 - 6 FFD - 004 105% davign margin CALCHAYRE FINES COOLEN Jilf mains D - 2420 - 6 FFD - 004 105% davign margin Conditionent View, Illiphich ee, Davign: Baow 160 prig. Jackat 30 prig. GB 10,800 Billiphi margin 10,5% davign margin Conduct Toward Jilf mains Illiphich P - 2420 - 6 FFD - 004 104% davign margin Realed Howard Jilf mains P - 2420 - 6 FFD - 004 104% davign margin Realed Howard A - 4 View of Howard P - 2430 - 6 FFD - 004 104% davign margin Realed Howard A - 4 View of Howard A - 4 View of Howard P - 2430 - 6 FFD - 003 104 FFD - 003 Realed Howard A - 4 View of Howard A - 4 View of Howard FFD - 003 104 FFD - 003 104 FFD - 003 Realed Howard A - 4 View of Howard A - 4 View of Howard FFD - 003 11000 FFD - 003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>								
CALCENTE FINES COOLER Cooled acrew type. 2.7 MMBLM. e., Dealgn: Screw 180 prils, Jackat 30 prils, Call 19,860 1100-File Frepco1 15% dealgn murgin An STOPACE TWIK Elected beyonet, 350,000 BLM. Elected beyonet, 350,000 BLM. 19,860 100-File Frepco1 15% dealgn murgin An STOPACE TWIK Elected beyonet, 350,000 BLM. Elected beyonet, 350,000 BLM. 19,860 100-File Frepco1 16% dealgn murgin BRIQUET CURRIDA Elected beyonet, 350,000 BLM. Elected beyonet, 350,000 BLM. 19,800 160-Co1 Frepco1 16% GeoSk affic BRIQUET CURRIDA Elected beyonet, 350,000 BLM. Elected beyonet, 350,000 BLM. 19,800 160-Co1 16% GeoSk affic BRIQUET CURRIDA Elected beyonet, 350,000 BLM. Elected beyonet, 350,000 BLM. 11,000 Frepco1 16% GeoSk affic BRIQUET CURRIDA Attributer Attributer 11,000 PomPayAmala 16% GeoSk affic BRIQUET FRES Attributer Attributer 11,000 PomPayAmala 17,000 1000 BRIQUET FRES BRIQUET FRES Attributer 11,000 PomPayAmala 17,000 1000 1000 1000	11-401 AB	BED CALCINATE COOLER	h ee, Deelgn: Screw 150 peig Jeckei 30 peig CS	4.860	Hala-Flile 0-2424-6	PFD-004	15% design margin	
On a TOPACCE TVNK Elected bayonal: 350,000 Blu/h 191 101 191 100 191 100 191 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 181 100 90% 100	11-402A/B	CALCINATE FINES COOLER	aa. Daalyn: 8ciaw 150 paly Jacket 30 paly C8	9.690	110/0 - Fille D - 2420 - 6	PFD-001	16% design nærgin	1
OL BTORACE TANK Elected bayonat, also coo Buuh. Elected bayonat, also coo Buuh. Elected bayonat, also coo Buuh. HEATER III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								
BINOLIET CURNIG OVEN BINOLIET CURNIG OVEN I <td>H-602</td> <td>OIL BTORAGE TANK HEATER</td> <td>Electric bayonel; 830,000 Blugh</td> <td></td> <td></td> <td>PFD-003</td> <td>191 KW @ 80% afficiency</td> <td>Τ</td>	H-602	OIL BTORAGE TANK HEATER	Electric bayonel; 830,000 Blugh			PFD-003	191 KW @ 80% afficiency	Τ
BHOULET CLEANG OVEN BHOULET CLEANG OVEN P								
COAL CRUBIER 01. x 4 W x 611 double - Ioil type. 600h capacity, eke reduction £ 2°x0 to ½°x0 11.000 Pennsylvania FIO 4 molear ea: 2 @ 131 P. 3 @ 301 P 11.000 Pennsylvania FPO BNOUET PRESS 1 FPO 1 FPO	H-601AB	BRIQUET CURING OVEN				PFD - 005		T
COAL CRUBIER 81 x 1 W x 611 double - rold type. 600h capacity, site reduction it 2"x0 to 1/"-10 11,000 Penneytania 4 molase est: 2 @ 191F; 2 @ 301F 9 001F PDR PDR BRIQUET PRESS PDR PDR PFD-001								
	J-101AB	COAL CRUSHER		1,000	÷	200		T
BNQUET PRESS				$\frac{1}{1}$	Ī	100-n1-		T
	8/109-r	BNOUET PRESS						
	NOTES:			1		PFD-005		T
Page 20 al 22		14						
							Page 20 of 2	22

XBi "	XBi Met-Regiment MG	FOLIPMENT LIST				
Client: Location:	Client: UND/EERC Location: CLAY COUNTY, INDIANA	Unit: 1,000 T/D MILD COAL GASIFICATION				Hev. A 07 - Ani - 92
		MISCELLANEOUS EQUIPMENT	11			
llem Na.	Name	Deactption	₹ ₹	Egule. Mt. Modul No.	Reg. Ng. Pal No.	Romarka
M-101AB	CARBONIZER FEED MIXER	Vertical static type, 20 Vh ea		Katia	PFD-001	
M-301AB	CALCWERFEED MIXER	Vertical static type, 10 Mi ea		Kalla	PFD-002	
M-501	OR. STORAGE TANK MIXER	Padule – lype, rood – mounted agliator, CS shaf, 310SS blades 7.5 i lP with gear reducer			PFD-003	
M-601AB	BRIQUETTING FEED MIXER				PFD-005	
108-N	BORERSTACK	Steel, 300' Ni. with 8'da. @ top and 12'da. @ bottom			LFD-011	
Q-601AB	QUENCI TOWER	Veilical vessel: 8°0° Dla x 37° T - T, Des. 20 psig/FV @ 1400°F, C9 w/1/8°CA 10° sket Trays: 9 disce/9 donuts @ 20° spacing. 41059			PFD - 003	
R-301AB	CARBONIZER	8pouled bed type, multiple cuel injection, 11'-3'dia X 28'-6'a, 4500 ft' ea Deelign 20 pelg @ 1400'f, reheactory -lined CS, w/ceremic diet builon medium			PFD-002	4 Naec superficial gas vel., L/D = 2 3 tra residence time
	•					
R-401AB	CALCINER	Bubbiling bed type, 17'-3'dia X 28'se, 6000 h' ea Deellen 30 pely @ 1940'f, reheatlary - lined CB, w/serembo dist huiton medium			PFD-004	2 Maeo auperticial gas vel., L/D = 1.5 3 ive realdance time
NOTES:						
						Page 21 of 22

XBi "	XBi xtel-dechiel w.	EQUIPMENT LIST					
Client:	Client: UND/EEAC	Unit: 1,000 T/D MILD COAL G				9	Rev. A
Location:	LOCENON: CLAY COUNTY, INDIANA	Y				07 - A M - 92	1-92
		MISCELLANEOUS EQUIPMENT	17				
llem Na.	Name	Desciption	ž ₹	Equip. Mt. Model No.	Reg. Ng. Pål No.	Remarka	
MISC.	48 AIRLOCKS	CS. 1 tif motor ea.		Sprout or			
	2 SCREWFEEDERS	C8, 2 1 Protor ea.		Mikropul			
	2 SLIDE GATES			Pebco BD - 49,60			
	METAL DETECTORS	60 th capacity		Erlez MD-1250			
	2 OVERNIEAD EL ECTRO - MAQUETIC SEPARATORS	50 Vh capacity. 1 http motor ea.		Erlez cc= 7926			
	2 BELT SCALES	t	88				
			8				
NOTE8:							
						Page 22 of 22	0 22

,

9.0 ON-SITE UTILITY CONSUMPTION

9.1 General

This section provides a tabulation of all consumers of electrical power (motor list), steam, cooling water, brine coolant, and fuel gas. Estimates of individual user consumption and total consumption of each utility/service is listed.

9.2 Consumption Basis and Use Factors

The following definitions/clarifications are provided to facilitate interpretation of the tabulated data:

9.2.1 <u>Electrical Power Consumers</u>

Connected horsepower = installed motor horsepower. Operating horsepower is assumed at 65% (average) of motor horsepower. Operating kW = .75 x operating horsepower.

Spare equipment and equipment not used in normal operation is shown at 0 operating horsepower.

Values in italics are estimates with no support data for confirmation.

9.2.1.1 Cooling Water Users

Design duties/flows are approximately 10% over normal requirement.

Temperature rise is that across user at design conditions; bulk temperature rise is weighted average for all users.

9.2.1.2 Cooling Brine Users

Design duties/flows are 15% to 30% over normal requirement, depending upon service.

Brine is 50/50 ethylene glycol/water; average heat capacity is 0.85 Btu/lb-°F.

Temperature rise is that across user at design conditions; bulk temperature rise is weighted average for all users.

9.2.1.3 Steam Consumers

Pressure shown is required supply pressure at user inlet.

Design duties/flows are approximately 20% over normal requirement.

Total condensate return rate assumes all condensate is collected.

9.2.1.4 Natural Gas Consumers

.

.

Lower heating value of natural gas is 929 Btu/scf.

÷

XBI MTEL-BECHTEL MC.

UND/EERC - MILD COAL GASIFICATION FACILITY UTILITY SUMMARY

ELECTRICAL POWER CONSUMERS

07-Apr-92 Page 1 of 7

	ELECTRICAL POWER CONSUMERS			Page 1 of 2
	T	ESTO PO	OWER REQU	REMENT
ITEM NO.	DESCRIPTION	CONN. HP		OP'G kW
C-102A	Coal Screener	10	6.5	and the second se
C-102B	Coal Screener	10	6.5	5.4
C-103A	Fine Coal Gravity Table	2	1.3	1.1
C-103B	Fine Coal Gravity Table	2	1.3	1.1
C-104A	Intermediate Coal Gravity Table	2	1.3	1.1
<u>C-1048</u>	Intermediate Coal Gravity Table	2	1.3	1.1
C-105A	Large Coal Gravity Table	2	1.3	1.1
C-1058	Large Coal Gravity Table	2	1.3	1.1
C-304A	Fines Magnetic Separator	3	2.0	1:6
C-3048	Fines Magnetic Separator	3	2.0	1.6
C-305A	Intermediate Magnetic Separator	3	2.0	1.6
C-3058	Intermediate Magnetic Separator	3	2.0	1.6
C-306A	Large Particle Magnetic Separator	3	2.0	1.6
C-3068	Large Particle Magnetic Separator	3	2.0	1.6
C-307A	Caroonizer Char Screener	10	6.5	5.4
C-3075	Carbonizer Char Screener	10	6.5	5.4
C-405A	Calciner Gravity Table	2	1.3	1.1
C-4058	Calciner Gravity Table	2	1.3	1.1
C-603A	Briquette Screener	7.5	4.9	4.0
C-603B	Briquette Screener	7.5	4.9	4.0
F-101	Coal Receiving Conveyor	75	48.8	40.4
F-102A	Feed Transfer Convevor	7.5	4.9	4.0
F-1025	Feed Transfer Convevor	7.5	4.9	4.0
F-103A	Crusher Feed Bin Conveyor	15	9.8	8.1
F-1038	Crusher Feed Bin Convevor	15	9.8	8.1
F-104A	Crusher Feed Conveyor	7.5	4.9	4.0
F-1048	Crusher Feed Conveyor	7.5	4.9	4.0
F-105A	Dryer Feed Conveyor	20	13.0	10.8
F-1058	Drver Feed Conveyor	20	13.0	10.8
F-106A	Carbonizer Feed Convevor	15	9.8	8.1
F-1068	Carbonizer Feed Conveyor	15	9.8	8.1
F-107	AFBC Fresh Coal Conveyor	15	-	
F-301A	Carbonizer Char Conveyor	15	9.8	8.1
F-301B	Carbonizer Char Conveyor	15	9.8	8.1
F-302A	Calciner Feed Conveyor	15	9.8	8.1
F-3025	Calciner Feed Conveyor	. 15	9.8	8.1
E 6014	Cross Brayet Casuara			5.4
F-601A	Green Briquet Conveyor	10	6.5	the second second second second second second second second second second second second second second second s
F-601B	Green Bricuet Conveyor	10	6.5	5.4
F-602A	Green Brouet Recycle Elevator	10	6.5	5.4
F-6025	Green Briquet Recycle Elevator	10	6.5	5.4
F-603A	Cured Briquet Conveyor	10	6.5	5.4
F-6038	Cured Briquet Conveyor	10	6.5	5.4

		_
XBi	XYTEL - BE	NC

UND/EERC - MILD COAL GASIFICATION FACILITY

07-Apr-92 Pace 2 of 7

	ELECTRICAL POWER CONSUMERS (Cont'd)			Page 2 of 7
		EST D PO	WER REQUI	REMENT
	DESCRIPTION	CONN. HP	OP'G HP	OP'G kW
ITEM NO.		10	6.5	5.4
F-604A	Kiln Feed Elevator	10	6.5	5.4
F-6048	Kiln Feed Elevator	10	6.5	5.4
F-605A	Formacke Product Conveyor	10	6.5	5.4
F-6058	Formocke Product Conveyor	10	6.5	5.4
F-606A	Formcoke Cooling Conveyor	10	6.5	5.4
F-6068	Formaake Cooling Conveyor			
H-101A	Coal Dryer	25	16.3	13.5
	Coal Dryer	25	16.3	13.5
H-101B		1		•
11 2014	Carponizer Char Cooler	30	19.5	16.2
H-301A	Carbonizer Char Cooler	30	19.5	16.2
H-301B				
		30	19.5	16.2
H-401A	Bed Calcinate Cooler	30	19.5	16.2
H-4018	Bed Calcinate Cooler	3	2.0	1.6
H-402A	Calcinate Fines Cooler	3	2.0	1.6
H-402B	Calcinate Fines Cooler			
				191
H-502	Cil Storage Tank Heater			
	Coal Crusher	90	58.5	48.5
J-101A	Coal Crusher	90	58.5	48.5
J-1018	Coal Crushel			
	Zriguette Broch	150	97.5	80.8
J-601A	Briquette Press	150	97.5	80.8
J-6018	Briquette Press			
K-101	Blower for Baghouse G-101	3	2.0	1.6
K-102	Blower for Baghouse G-102	3	2.0	
	Air Blower for Gravity Table C-103A	20	13.0	10.8
K-103A	Air Blower for Gravity Table C-103B	20	13.0	10.8
K-103B	Air Blower for Gravity Table C-104A	20	13.0	10.8
K-104A	Air Blower for Gravity Table C-1048	20	13.0	10.8
K-1048	Air Blower for Gravity Table C-105A	20	13.0	10.8
K-105A	Air Blower for Gravity Table C-1058	20	13.0	10.8
K-1058	Reject Coal Blower	20	13.0	10.8
K-106A	Reject Coal Blower	20	13.0	10.8
K-1068	Slower for Saghouse G-103A	125	81.3	67.3
K-107A	Slower for Baghouse G-1038	125	81.3	67.3
K-1078				
K-301A	Slower for Saghouse G-301A	3	2.0	the second second second second second second second second second second second second second second second se
K-301B	Blower for Baghouse G-3018	3	2.0	
K-302A	Carbonizer Reject Char Blower	10		and the second designed in the second designe
K-3028	Carbonizer Reject Char Blower	10	6.5	5.4
	Slower for Baghouse G-401A	3	2.0	1.6
K-401A		3	the second second second second second second second second second second second second second second second s	
K-401B	Blower for Baghouse G-4018 Calcinate Product Blower	25	the state of the local division of the local	
K-402A			And and a second second second second second second second second second second second second second second se	

XBI ATTEL-BECHTEL MG

· . .

UND/EERC - MILD COAL GASIFICATION FACILITY

ELECTRICAL POWER CONSUMERS (Cont'd)

07-Apr-92 Page 3 of 7

	ELECTRICAL FOWER CONSUMERS (CONE d)			Page 3 of 1
			WER REQU	REMENT
ITEM NO.	DESCRIPTION	CONN. HP	OP'G HP	OP'G kW
K-403A	Reject Calcinate Blower	1.5	1.0	0.8
K-4038	Reject Calcinate Blower	1.5	1.0	0.8
K-404A	Calcinate Fines Product Blower	7.5	4.9	4.0
K-4048	Calcinate Fines Product Blower	7.5	4.9	4.0
K-405A	Air Blower for Gravity Table C-405A	15	9.8	8.1
K-4058	Air Blower for Gravity Table C-405B	15	9.8	8.1
K-504-1	Oil Tank Cff-gas Compressor	0.5	0.3	0.3
K-504-2	Soare Oil Tank Off-gas Compressor	0.5	0.5	0.3
K-601A	Blower for Baghouse G-601A	3	2.0	1,ć
K-601B	Blower for Bagnouse G-6018	3	2.0	1.6
K-602A	Blower for Baghouse G-602A	3	2.0	1.6
K-6028	Blower for Baghouse G-6028	3	2.0	1.8
K-603A	Formcoke Fines Blower	5	3.3	2.7
K-6038	Formcoke Fines Blower	5	3.3	2.7
K-504A	Formcoke Cooling Air Blower	7.5	4.9	4.0
K-6048	Formooke Cooling Air Blower	7.5	4.9	4.0
K-605A	Curing Oven Exhaust Blower			
K-6058	Curing Oven Exhaust Blower			
M-501	Cil Storage Tank Mixer	7.5	4.9	4.0
M-601A	Briquetting Feed Mixer	15	9.8	8.1
M-601B	Briquetting Feed Mixer	15	9.8	8.1
P-401A	K-406A Suction Drum Pump	0.5	0.3	0.3
P-4018	K-406B Suction Drum Pump	0.5	0.3	0.3
P-501-A1	Guench Tower Circulating Pump	25	16.3	13.5
P-501-81	Guench Tower Circulating Pump	25	16.3	13.5
P-501-A2	Soare Quench Tower Circulating Pump		0	0
P-501-82	Spare Quench Tower Circulating Pump	30	0	0
P-503-1	Cil Transfer Pumo	1.5	1.0	0.8
<u>P-503-2</u>	Soare Oil Transfer Pump	1.5	0	0
P-505A	V-501A Suction Drum Pump	0.5	0.3	0.3
P-505B	V-501B Suction Drum Pump	0.5	0.3	0.3
P-601A	Sinder Feed Pumo		0.7	0.5
P-601B	Binder Feed Pump	1	0.7	0.5
2-902	Startup Boiler Feed Pump	400	0	0
P-903-1	Condensate Recycle Pump	50	32.5	26.9
P-903-2	Soare Concensate Recycle Pump	50	0	0
P-904	Flash Tank Water Pump	5	0	0
P-905-1	Cooling Tower Pump	1000	650.0	538.6
P-905-2	Cooling Tower Pump	1000	650.0	538.6
P-905-3	Spare Cooling Tower Pump	1000	0	0

81

.

le.

10 F F F

and the second second

Concernant and the

XBI ATTEL-BECHTEL INC.

UND/EERC - MILD COAL GASIFICATION FACILITY

	UTILITY SUMMARY		Ň	
	ELECTRICAL POWER CONSUMERS (Cont'd)			07-Apr-92 Page 4 at 7
		ESTO OF		
ITEM NO.	DESCRIPTION	CONN. HP	OP'G HP	OPG kW
P-906-1	Brine Pump	150	97.5	80.8
P-906-2	Sine Pump	150	97.5	80.8
P-906-3	Soare Brine Pump	150	0	0
P-907-1	Raw Water Pump	150	97.5	80.8
P-907-2	Soare Raw Water Pump	150	0	0
P-908-1	Water Treatment Feed Pump	5	3.3	2.7
P-908-2	Spare Water Treatment Feed Pump	5	0	0
P-909-1	Fire Water Pump	40	26.0	21.5
P-910	Fire Water Jockey Pump	5	3.3	2.7
P-911-1	Boiler Makeup Pump	3	2.0	1.5
P-911-2	Soare Boiler Makeup Pump	3	0	. 0
	· · ·			
Packaged Eg	uipment & Systems			
Z-901	ATMOSPHERIC FLUIDIZED BED COMBUSTER (AFBC)			
- 71	Reject Coal Feeder	10	ô.5	5.4
- F2	Reject Char Feeder	10	ô.5	5.4
- F3	Limestone Feeder	10	6.5	5.4
– K1	Blower for Baghouse G1	3	2.0	1.6
– K2	Blower for Bagnouse G2	3	2.0	1.5
- K3	Blower for Baghouse G3	3	2.0	1.6
- K4	Limestone Slower	20	13.0	10.8
– K5	Induced Draft Fan	1000	650.0	538.6
- K6	Fiv Ash Transfer Blower	10	6.5	5.4
– K7	Secondary Air Blower	1000	650.0	538.6
- K8	Primary Air Fan	300	195.0	161.6
— К9	Seal Pot Blower	150	97.5	80.8

0 10.8

13.5 13.5 13.5 2.7 2.7 2.7 0.3 0.3

538.6

2.1 1.3 1.3 2.1 2.1

٦

– K5	Induced Draft Fan	1000	650.0	
– K6	Fly Ash Transfer Blower	10	6.5	
– K7	Secondary Air Blower	1000	650.0	
– K8	Primary Air Fan	300	195.0	
- K9	Seal Pot Blower	150	97.5	
	Electromagnetic Relief Valve	2	0	
	Soot Blower Control System & Motors	20	13.0	
Z-903	WATER TREATMENT SYSTEM			
- 21	RC Feed pump	25	16.3	
- 22	RO Feed pump	25	16.3	
- 23	RO Feed pump	25	16.3	
- P4	Demineralizer Feed Pump	5	3.3	
- P5	Demineralizer Feed Pump	5	3.3	
- 25	Demineralizer Feed Pump	5	3.3	
- P7	Sulfuric Acid Feed Pump	0.5	0.3	
- 28	Anti-Scaling Feed Pump	0.5	0.3	
Z-904	COOLING TOWER			
	5 Fans (5 @ 200 HP ea., 4 op./1 spare)	1000	650.0	
Z-905	ASH HANDUNG SYSTEM			
- F1	Bottom Ash Drag Chain Conveyor	5	3.3	
- K1	Blower for Bagnouse G1	3	2.0	
– K2	Blower for Baghouse G2	3	2.0	
– K3	Bottom Asn Fluid Bed Air Blower	5	3.3	
- K4	Fiv Ash Fluid Bed Air Blower	5	3.3	

XBI ATTEL-BECHTEL MG.

UND/EERC - MILD COAL GASIFICATION FACILITY UTILITY SUMMARY

	UTILITY SUMMARY			
	ELECTRICAL POWER CONSUMERS (Cont'd)			07Apr Page 5 of
			WER REQU	REMENT
ITEM NO.	DESCRIPTION	CONN. HP	OP'G HP	OPGK
Z-906	CHEMICAL INJECTION SYSTEM			
	Chemical Injection Package (6 pumps @ 2HP ea.)	12	7.8	6
Z-907	PLANT & INSTRUMENT AIR SYSTEM			
– K1	Air Compressor	350	227.5	188
- K2	Soare Air Compressor	350	0	
Miscellaneou	s Motors			
	Airlocks - 48 @ 1HP ea. (average)	48	31.2	25
	Screw Feeders - 2 2HP ea.	4	2.5	2
	Slide Gates - 2 @ 2HP ea.	4	0	
????	2 Overhead Electromagnetic Separators			10
	with Beits	2	1.3	
,				
Other Users	i a intina			
	Jighting	+		
	Electric Tracing Heating & Ventillation			
	Instruments & Control Systems	+		
	Instruments & Control Systems			
		<u> </u>		
		+		
		+		
		+		
		1		
		<u> </u>		
		<u> </u>		
		<u> </u>		
		<u> </u>		
		<u> </u> +		
		<u> </u>	1	
		<u> </u>		
	Summary:			
	Total Combined Connected Motor HP 10,623			
	Total Operating Motor HP 5,477			
	Total Operating kW Demand 4,791			

	UTILITY SUMMAR				07 - Acr -
	COOLING WATER (TOWER) USE				Page 6 of
		TEMP.		COUNG WAT	
		RISE	DES. DUTY MMBtu/h	FLOWRAT	DESIGN
ITEM NO.	DESCRIPTION		MMGLGITT	101.001.0	
				20.400	
H-905	Main Surface Condenser	17.0	250.0	25.460	29.40
H-906	Brine Cooler	17.0	137.4	14.535	16,15
	Summary:			A	
	Total Combined Cooling Load, MMBtu/h	387.4		Buik AT, 🤧	
	Total Normal Flowrate, gpm	40,995		17.0	
	Total Design Flowrate, gpm	45,550			
	COOLING SYSTEM (BRINE		ESTD CO	DOLING MED	
	COOLING SYSTEM (BRINE	TEMP.		OLING MED	
ITEM NO.					
ITEM NO.	COOLING SYSTEM (BRINE DESCRIPTION	TEMP. RISE	YTUG	FLOWRA	TE, GPM
	DESCRIPTION	TEMP. RISE	YTUG	FLOWRA	TE. GPM MAX 39
H-301A	DESCRIPTION Carbonizer Char Cooler	TEMP. RISE •F	OUTY MMBtu/h	FLOWRA	TE. GPM
	DESCRIPTION	TEMP. RISE *F	DUTY MMBtu/h 7.6 7.6	FLOWRA NORMAL 342 342	TE. GPM MAX 39 39
H-301A H-301B	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler	TEMP. RISE *F	DUTY MMBtu/h 7.6 7.6 9.3	FLOWRA NORMAL 342 342 416	TE. <u>GPM</u> MAX 39 39 4
H-301A H-301B H-401A	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler	TEMP. RISE *F 50 50 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3	FLOWRA NORMAL 342 342 416 416	TE. GPM MAX 39 39 41 41
H-301A H-301B H-401A H-401B	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler	TEMP. RISE *F 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3	FLOWRA NORMAL 342 342 416 416 104	TE. GPM MAX 39 39 41 41 41 11
H-301A H-301B H-401A H-401B H-402A	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler	TEMP. RISE *F 50 50 50 50 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3	FLOWRA NORMAL 342 342 416 416 104	TE. GPM MAX 39 39 41 41 41 11
H-301A H-301B H-401A H-401B H-402A H-402B	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler	TEMP. RISE *F 50 50 50 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3	FLOWRA NORMAL 342 342 416 416 104 104 123	TE. GPM MAX 33 33 34 4 4 1 1 1 1
H-301A H-301B H-401A H-401B H-402A	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler	TEMP. RISE *F 50 50 50 50 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3	FLOWRA NORMAL 342 342 416 416 104	TE. GPM MAX 33 33 34 4 4 1 1 1 1
H-301A H-301B H-401A H-401B H-402A H-402B H-402B H-404A H-4048	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4	FLOWRA NORMAL 342 342 416 416 104 104 123 123 123 1.096	TE. GPM MAX 3! 3! 4 4 4 1 1 1 1 1 1 1 1 1
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 80 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4	FLOWRA NORMAL 342 342 416 416 104 104 123 123	TE. GPM MAX 35 35 45 45 11 11 11 14 14 1,45
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 80 80 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4	FLOWRA NORMAL 342 342 416 416 104 104 123 123 1,096 1,096	TE. GPM MAX 3: 3: 3: 4: 4: 1 1 1 1 1 1 1 1
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 80 80 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5	FLOWRA NORMAL 342 342 416 416 104 104 123 123 123 1.096	TE. GPM MAX 3! 3! 4 4 4 1 1 1 1 1 1 1 1 1
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$ $H = 501B$ $Z = 905 = F1$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 40 40 40	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5	FLOWRA NORMAL 342 342 416 416 104 104 123 123 1,096 1,096	TE. GPM MAX 39 39 41 41 41 11 11 11 11 11 11 11 11 11 11
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404B$ $H = 501A$ $H = 501B$ $Z = 905 = F1$ $Z = 907 = H1$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 60 80 80 80 80 80 80 80 80 80 80 80 80 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36	FLOWRA NORMAL 342 342 416 416 104 104 104 123 123 123 1.096 1.096 7	TE. GPM MAX 39 39 41 41 41 41 11 11 11 11 11 11 11 11 11
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402B$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$ $H = 501B$ $Z = 905 = F1$ $Z = 907 = H1$ $Z = 907 = H2$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 50 50 7 7 20 20 20	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36 0.27	FLOWRA NORMAL 342 342 416 416 104 104 123 123 123 1,096 1,096 1,096 7 2 40 30	TE. GPM MAX 33 39 41 41 41 41 11 11 11 11 11 11 11 11 11
H = 301A H = 301B H = 401A H = 401B H = 402A H = 402B H = 402B H = 404A H = 4048 H = 501A H = 501B Z = 905 = F1 Z = 907 = H1	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 60 80 80 80 80 80 80 80 80 80 80 80 80 80	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36 0.27	FLOWRA NORMAL 342 342 416 416 104 104 104 123 123 123 1.096 1.096 7 2 40	TE. GPM MAX 33 39 4 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 4 1 1 4 1 1 4
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402B$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$ $H = 501B$ $Z = 905 = F1$ $Z = 907 = H1$ $Z = 907 = H2$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler Air Compressor Intercooler Air Compressor Lube Oil Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 50 50 7 7 20 20 20	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36 0.27	FLOWRA NORMAL 342 342 416 416 104 104 123 123 123 1,096 1,096 1,096 7 2 40 30	TE. GPM MAX 33 39 41 41 41 41 11 11 11 11 11 11 11 11 11
H = 301A H = 301B H = 401A H = 401B H = 402B H = 402B H = 402B H = 404A H = 501A H = 501B Z = 905 = F1 Z = 907 = H1 Z = 907 = H2	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler Air Compressor Intercooler Air Compressor Lube Oil Cooler Summary:	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 50 50 7 7 20 20 20	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36 0.27 0.11	FLOWRA NORMAL 342 342 416 416 104 104 104 123 123 1.096 1.096 1.096 7 2 40 30 25	TE. GPM MAX 33 39 41 41 41 41 11 11 11 11 11 11 11 11 11
H = 301A $H = 301B$ $H = 401A$ $H = 401B$ $H = 402A$ $H = 402B$ $H = 402B$ $H = 404A$ $H = 404B$ $H = 501A$ $H = 501B$ $Z = 905 = F1$ $Z = 907 = H1$ $Z = 907 = H2$	DESCRIPTION Carbonizer Char Cooler Carbonizer Char Cooler Bed Calcinate Cooler Bed Calcinate Cooler Calcinate Fines Cooler Calcinate Fines Cooler Calciner Gas Cooler Calciner Gas Cooler Calciner Gas Cooler Oil Cooler Oil Cooler Bottom Ash Drag Chain Conveyor Air Compressor Intercooler Air Compressor Intercooler Air Compressor Lube Oil Cooler	TEMP. RISE *F 50 50 50 50 50 50 50 50 50 50 50 50 50	DUTY MMBtu/h 7.6 7.6 9.3 9.3 9.3 2.3 2.3 2.3 4.4 4.4 4.4 19.5 19.5 19.5 7 0.36 0.27 0.11	FLOWRA NORMAL 342 342 416 416 104 104 123 123 123 1.096 1.096 7 2 40 30 25	TE. GPM MAX 39

XBi XTEL-BECHTEL INC.

UND/EERC - MILD COAL GASIFICATION FACILITY

STEAM CONSUMERS

07-Apr-92 Page 7 of 7

		FSTIL	ATED STEAN	AUSE
		PRESS	FLOWRA	_
ITEM NO.	DESCRIPTION	PSIG	NORMAL	MAX
H-903	HP Boiler Feed Water Heater	400	38.608	46.3
		_		
K-406A-T	Calciner Recycle Gas Compressor (Turbine Drive)	400	7.504	9.00
K-4068-T	Calciner Recycle Gas Compressor (Turbine Drive)	400	7.504	9.00
14 CO.1 11 T				
K-501A-T	Carbonizer Gas Compressor (Turbine Drive)	400	34.980	43,56
K-5018-T	Carbonizer Gas Compressor (Turbine Drive)	400	34.980	43.56
K-502A-T	Carbonizer Burner Air Compressor (Turbine Drive)	400	7,333	8.80
K-5025-T	Carbonizer Burner Air Compressor (Turbine Drive)	400	7.333	8.80
K-503A-T	Calciner Burner Air Compression (Turbine Drive)	400	12.769	15.32
K-5038-T	Calciner Burner Air Compressor (Turbine Drive)	400	12.769	15.32
P-901	Main Boiler Feed Water Purno	400	27.000	32,40
Z-901				
<u>-H2</u>	ATMOSPHERIC FLUIDIZED BED COMBUSTER (AFBC) Steam Coll Primary Air Heater			
<u>– H2</u>	Steam Coll Primary Air Heater Steam Coll Secondary Air Heater	50	9.200	11.04
-H4		50	3.900	4.68
	Transfer Air Heater	50	2.000	2.40
Z-905	ASH HANDLING SYSTEM		·····	
<u>– H1</u>	Bottom Asin Fluid Bed Air Heater			
-H2	Fly Ash Fluid Bed Air Heater	50	800	96
- 1 169			800	96
*** <u>*</u> *********		-+		
	Summary:			
	Total Normal Steam Flow, Ib/h	207,480		
	Total Maximum Steam Flow, Ib/h	252,150		
	Design Condensate Return Rate, gpm @ 60°F	504		
	NATURAL GAS CONSUMERS			
		ESTD N	ATURAL GAS	USE
		DES. DUTY	FLOWRAT	
TEM NO.	DESCRIPTION	1 · · · · · · · · -	NORMAL	MAX
	Science Kile	+		
3-602A	Briquet Kiln	?	?	
8-6028	Sriquet Kiin	?	?	
		++		
	Summary: Total Normal Natural Gas Flow, ft ³ /h 0 Total Maximum Natural Gasm Flow, ft ³ /h 0			

п

, m 11 ,

10.0 CAPITAL COST ESTIMATE AND SCHEDULE

10.1 General

This capital cost estimate was done by the Estimating Department of the Bechtel Houston office for XBi. It is based on the technical equipment list provided in Section 8.0 and the instrument list provided in Appendix C. Factors were then applied to arrive at the final cost. The 1000-tpd mild coal gasification facility is estimated to cost \$116.4 million dollars, including the cost of the 24-MW power generation facility. The engineering and construction schedule calls for 44 months from start of preliminary engineering to final commissioning.

10.2 Capital Cost Estimate

10.2.1 Assumptions

The following assumptions were used:

- Overall project schedule is 42 to 48 months.
- The project consists of:
 - 1000 tpd mild coal gasification.
 - Formed coke production.
 - Electric power generation at 24 MW.
- The plant battery limits start with a 500-foot-long conveyor from the mine. Coal feeding to the conveyor is by the mine operations. The battery limits stop at the 13.8-kV switchgear and the storage silos/hoppers for the formed coke product and solid waste products. Wiring from the 13.8-kV switchgear to the utility's service line is not included along with disconnect switches and any required voltage step-up or step-down transformers.
- Base date of the estimate is second quarter 1992. Escalation factors are not included in the estimate.
- Items specifically included in the estimate are:
 - Buildings and structures.
 - Lab facilities.
 - Stationary maintenance equipment (hoists, monorails, etc.).
 - Stationary fire/safety equipment.
 - Civil/structural/architectural (concrete), piping, electrical wiring and raceways, communications, cathodic protection, freeze protection, grounding, etc.
- Items specifically excluded from the estimate are:
 - All facilities outside the battery limits.
 - Laboratory equipment.

- Mobile equipment such as bulldozers, forklifts, cranes, trucks, etc.
- Electric power transmission lines.
- Taxes such as sales, local, and use.
- Land and land rights.
- Allowance for funds during construction (cost of money).
- Operation and maintenance costs during start-up and commissioning.
- The owners' organization costs.

10.2.2 Elements of the Cost Estimate

The cost estimate of \$116.4 million is presented in the tables at the end of this section, which comprise 21 sheets. The first sheet summarizes all of the inputs into the cost estimate including mechanical equipment, packaged systems, major electrical and instrumentation items, bulk materials, labor, subcontracts, freight, construction contractor's fee, engineering and home office fees, and contingency.

10.2.2.1 Mechanical Equipment

Equipment specifications and quantity are based on the equipment list presented in Section 8.0. Budget quotations from equipment vendors were used for most of the equipment and packaged systems except for the briquetting system. Bechtel in-house data was used for the remaining equipment. The vendor that supplied the quotation is listed on the estimating cost sheets. If no vendor is listed, then the information came from the in-house files. An allowance was made for miscellaneous equipment items such hoists, monorails, strainers, etc., that are not on the equipment list.

10.2.2.2 Electrical Equipment

The quantity of major electrical equipment is based on the single line electrical drawing and the equipment list. The smaller electrical items were factored from the major equipment list based on Bechtel experience with similar projects.

10.2.2.3 Instrumentation and Control

Instrumentation and control items were taken from the instrument list and from the process and utility flow diagrams.

10.2.2.4 Bulk Materials

Bulk material costs were factored from either the equipment or instrument lists.

10.2.2.5 Construction Manpower

Construction is based on a 40-hour work week at 8 hours per day, 5 days per week. Man-hours required for installation of all equipment, electrical, instruments, and bulk materials was estimated from Bechtels' in-house files. The average composite wage rate was estimated to be \$45 per hour. Calculations showing how the composite wage rate was estimated are shown on page 89.

and the second second second second second second second second second second second second second second second

....

. . . .

and the second as given and the

10.2.2.6 Indirect Field Costs

Indirect field costs such as temporary facilities, temporary construction services, construction equipment, tools, welders' certification, security, field supervision, project engineering, administration, safety, warehouse, and project insurance are included in the composite man-hour rate (45/hr) at 120% (24.22) of the direct field labor cost (20.18).

10.2.2.7 Construction Management Fee

The construction management fee for overhead and profit is calculated at 2% of the total field cost excluding the cost of equipment materials and subcontracts.

10.2.2.8 Engineering and Home Office Fee

Architect, engineering and home office fees, including overhead and profit are estimated at 10% of the total installed cost, which includes the contingency allowance.

10.2.2.9 Contingency

The contingency factor consists of two values, which are 15% of equipment materials and subcontracts and 30% of installation man-hours.

10.2.2.10 Accuracy of the Estimate

The accuracy of the estimate as defined herein by the equipment list and the scaling factors discussed above is -5% and +20%.

10.3 Engineering and Construction Schedule

The engineering and construction schedule, shown on page 90, is based on Bechtel's (XBi) experience on similar gasification/fluid-bed boiler projects. The schedule is dictated, in large part, by lead time for environmental permitting and the long delivery time for the AFBC. The overall project activities and durations are:

	Months
Engineering, Licensing, Permitting	15 - 18
Procurement and Deliver	30
Construction (6-Month Overlap with Above)	14
Start-up, Commissioning	3 - 6
Overall Schedule, Planning to Full	
Production with Overlaps	42 - 48

FILE:\XYTEL\MCB-WR1

20708-308 / UND/EERC AND AMAX MILD COAL GASIFICATION PROJECT - 1000 T/D CLAY COUNTY, INDIANA

		ISTRIB- V FION I	DPEN SHOP V RATE + PER DIEM		OPEN SHOI WEIGHTED	•
		*	\$/MH		\$/MH	
	MECHANICAL	65.0%	18.12		11.78	
	CIVIL	35.0%	17.62		6.17	
	SUBTOTAL				17.95	
ALLOW	J'MAN:APP 45/55 % APP @ 70% JMAN RATE				-2.96	
	ADJUST	-16.5%			-2.90	
	SUBTOTAL				14.98	
	FMAN DIFF GFMAN DIF P/R T+I INCLUDS WC	10.0% 3.0% 30.0%	3.97 4.82		0.40 0.14 4.66	
	SUBTOTAL				20.18	
ALLOW	DISTRIBS @	120.0%			24.22	
	TOTAL			USE	44.40 \$45.00	INCLUDING ALLOW- ANCE FOR TURNOVER

DESCRIPTION		151617		111011		TISTIC	12112112112													
		•••							נווננזכ	זוכדוכ	ritaria	כוצעוציו	nciociu							HIGHZI
	THE MINUT LEASEN IN .		••••	••••	••••	 	· · · ·	••••	••••	••••	•••	••••	••••	•.•••	• • • • • • • •	••••	••••		• • •	
1	गानग :	Bielit Licingale		••••	••••	••••		••••	••••	 	 . .	 	• • • • • • • •	••••	• • • • • • • •		••••			. .
PLRINT 1 LWG] _	SHUNWAL :	. 51	· ·	 ·	· · · ·	• • • •	••••	• • • • • • • •	••••	• • • • • • • •	• • • • • • • •	••••	• • • • • • • •	••••	••••	••••	••••	••••	· · · · ·
								· • • · • •	· • • • • •		•••			· · · · · ·	····	••••	•••• •••		
DOLLER		BILL	•••			 	••••	••••	••••	• • • • •	•••	••••	 	••••	••••	• • • • • • • •	••••	••••		••••
E XCHANGERS	••••	SALANAN		 	 											••••	••••	••••	•••	· · • •
CONTRACT SSORS	· · · · ·	COZCIUN)		···· ····				••••	••••	• • • •	 	• • • • • • • •	••••	• • • • • • • •		••••	••••			 . .
VISEIS	• • • •	SURSEN	••			 		••••• ••••	•••	•••	• • • •	••••	•••	• • • •	••••	••••	••••	•••	• • •	· · ·
INIGRIAL HANDLING		National	pittela area ina		· - [•••••					· · · ·	···÷	••••						••••
	CAMSTONCT NUM			••	 	. .			•	- . - .	· · ·	· . . .	· · · · · ·	· · ·	•••				
STIEWORK		• • • • • • • •	••••	••••	••••	•••		• • • •	••••	• • • • • • • •			••••	•••	••••	 	••••	••••	••••	••••
CONSTRUCTION	••••	••••	••••	••••	••••	••••	· · · · ·	••••	••••	• • • • • • • •	U			···· <u>3</u>	••••	• • • • • • • •	••••	••••	• • • •	••••
ICSI ING	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	ŀ		 .				•••	••••
STARTUP AND CONTISSIONING	••••	••••		• • • •	••••	••••	••••	••••	••••		••••	• • • • • • • •	••••	 	••••	••••	1 .			••• 5
	•••	•••	•••	•••	• • •		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	ш 		
	••••	••••	••••	••••	••••	••••	••••	•••	•••	• • • •	••••	• • • •	••••	••••	••••	•••	• • • •		•••	. .
	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••		. .
	••••	••••	••••	••••	••••	••••		• • • •	••••	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	· • • •
	••••	•••• ••••	••••	••••	• • • •	••••	••••	••••	••••	••••	• • • •	• • • •	 	• • • •	••••	••••	••••		• • •	••••
	• • • • • • • •	••••	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	••••	••••	• • • •	••••		••••	••••	••••
	••••	••••	••••	••••	• • • •	••••	••••	••••	•••	•••	• • • •	••••	••••	••••	••••	••••	••••		•••	••••
	••••	••••	••••	••••	••••	•••	• • • • • • • •	• • • •	••••	••••	•••	••••	•••	••••	• • • •	• • • •	••••	••••		••••
	••••	• • • •	••••	••••	••••	••••	••••	•••	••••	••••	 	••••	 	••••	••••	••••	••••		• • • •	• • • •
	••••	••••	•••	•••	•••	••••	• • • • • • • •	••••	•••	••••	•••• • • •	•••	•••	••••	••••	••••	• • • •	••••	••••	• • • •
	 	• • • • • • • • • • • •	••••	••••	••••	•••	••••	••••	••••	••••	••••	••••	•••	•••	••••	••••	· • • •	• • • • •	• • • •	••••
	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	•••	••••	• • • • • • • •	••••	••••		••••	••••		••••	••••
		• • • • • • • •	••••	••••	••••	••••	••••	••••	••••	••••	• • • •	••••	• • • •	••••	••••	•••	••••	••••	••••	• • • • •
	••••	•••	••••	•••	•••	••••		••••	••••	•••	••••	•••	•••	•••	••••	• • • •	••••	••••	•••	
	· · · ·	• • • • • • • •	••••	••••	•••	•••	••••	••••	• • • •	••••	••••	•••	•••	•••	•••	••••	••••	••••	•••	•••
	•••• ••••	•••		••••	••••	••••	• • • • •	•••	•••	•••	•••	• • • •		••••	•••	••••	•••		•••	••••
	•••• ••••	•••		••••	••••	••••	••••	•••	 	•••	•••	••••	••••	••••	••••	••••	•••	••••	•••	••••
	•••••	••••			••••	••••	••••	••••	••••		••••	••••	• • • • •	••••	• • • • • • • •	••••	••••	••••		 . .
	 	•••	••••	••••	••••	•••	•••	•••	· · ·	•••	••••	• • • •	••••	•••	•••	•••	•••	•••	•••	• • •
	···	· · · · • • • • • • • • • • • • • • • •		••••	d	····]					• • • • •	 	••••	••••	••••	••••	••••	••••	
Control Attivity Berlia Ir Jain	-				N	UNIVERSITY	11Y OF	NOR	NURIII DAKOTA	VID		Sheut	et t of	-	 		ATTEL-BECHTEL, Inc.	III. NO		-
teres have be					NILD	\circ		ICATI	GASIFICATION PROJECT	DJCCT					Date.	Ļ	Bellin		1 allow	Unter Barn
		Partice 1	i i incli	Contr		MILL	MILESIONE	SCIIF DUL	DULE											
Primera Systems, he. 1711 1911	Ę	I vojeci i	hojeet fluish. 2001 C	25.01								Pal	Pala Doler	SPAUL 1						
												Ĩ	100	WILE .						

COST CODE	COST CODE ITEM AND DESCRIPTION		UNIT CC		1.0		TOTAL COST		
:		÷	<u> </u>		IUIAL 3/KH	MATERIAL		SUB-CONT.	TOTAL
	FIRED EQUIPMENT	6 EA			1 400	WU UUU			
	CLASSIFIERS, VIBRATING SCREENERS	6 EA			UCL	007 72			
	BELT CONVEYORS, BUCKET CONVEYORS								10,010
	NIST COLLECTORE BACKWARES				1,260	4,840,000			4,840,000
	VOJ COLLECTORS, BAGROUSES	12 EA			430	274,000			274,000
	HEAT EXCHANGERS	9 EA			3,240	1,180,400			1, 160, 400
	COMPRESSORS, BLOVERS, FANS	46 EA			6,940	6,234,400			6, 234, 400
	CENTRIFUGAL PUMPS, POSITIVE DISPLACEMENT PUMPS	32 EA			3,330	1,151,800			1.151.800
	STORAGE TANKS, BINS, SILOS	34 EA			4,550	585,800		<u>868.</u> 200	1 454 000
	PRESSURE VESSELS	9 EA			260	238.600			DOA AUC
	PACKAGED EQUIPMENT & SYSTEMS	10 EA			18.050	8 780 000	÷	17 100 000	
3	MAJOR ELECTRICAL, AND CONTROL SYSTEM COMPONENTS	47 EA			11.360	3.020 000	-		
N, O, N	TI SCELLANGAUS CUULTERI				29,280	10,042,400			10,042,400
	BULKS				309,650	9,122,400		4,717,000	13, 639,400
	SUBJOTAL	382 EA			396,070	46,146,000			69.331.000
	FREIGHT	ED							
	SALES TAX NOT INCLO	(CLD						4	NOT INCLUDED
	TOTAL DIRECT COST				020 021	000 771 77			
	FIELD INDIRECTS INCLUDE	DED					j	nn, cai ,ca	INCLUDED
	TOTAL FIELD COST				304 070 25	UVV LCT 21 UVV 971 97			
	CONTRACTOR'S FEE: (FR TOTL FLD COST MINUS EQP MAT & S/C)	2.02							
				. <u></u>					633,000
	CONTINGENCY- EQUIP.: 15.0X BALANCE: 31	30.0%							av, /a/, /uu
	SUBTOTAL							-	105 700 000
	ENGINEERING & M.O.	10.0%						•	10 580 000
	OWNERS' COST- HOLID	ICI D						-	
		Transferra						z	

FILE: XYTEL VHCG-F1 DATE 07-May-92 02:40 PM SHEET 2 0F 3/	TOTAL COST LABOR SUB-CONT. TOTAL							
- 2 F	TOTA MATERIAL LAB			160,000	160,000	280,000		600,000
TAKEOFF PRICED CHECKED	MANHOURS 1 TOTAL \$/MH			100 200	100 200	500 1,000		1,400
E ESTIMATE**	UNIT COST UNIT			80,000	80,000	140,000 5		
** CONCEPTUAL FACTORED BUDGET ESTIMATE**	OTY UNIT MAT'L			2 EA BC	5 EA	2 EA 140		6 EA
** CONCEP1			at'i REFRCI enent LINED	Yes	Yes	Yes		
44X JECT- 1,000 T/D			Op PressOp Temp Mat'l Mat'l psig F Housing Element	2,800 Steel	2,800 Steel	1,500 Steel		QUARTER 1992
BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- JOB LOCATION CLAY COUNTY, INDIANA	ITEM AND DESCRIPTION		FUEL, Op Presso DUTY- psig MMBtu/h	of f-GAS 10 35.8	off-GAS 23 32.8	Nat. Gas		TOTAL ESTIMATED PRESENT DAY- 2HD QUARTER 1992
CRPORATION CLIENT 20708-308 MILD COAL JON CLAY COUN	ITEN A	FIRED EQUIPMENT			SUMMER CALCINER HAKEUP GAS BURNER	BRIGUET KILN		TOTAL EST IMATED
BECHTEL C JOB NO. / JOB TITLE JOB LOCAT	COST CODE			8-501A/B	B-502A/B	B-602A/B	-	

ECHTEL C DB NO. / DB 111LE DB 10CAT	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB 111LE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	/ UND/EEF GASIFICAT	kc and an 110n proj Va	IAX IECT - 1,	0/1 000'		CONCEPTU	AL FACT	EL IMINA (ORED B	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	HATE**		TAXEOFF PRICED CHECKED		FILE: XYTELWCG-F1 DATE 07-Hay-92 SHEET 3 0F	02:40 PH
COST CODE	ITEN A	ITEM AND DESCRIPTION	NO1 14					9TY	1111	LINI COST	COST S/C		MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
	CLASSIFIE	RATING SCI	REENERS													
		Screen Area-sf, Mesh	CAP. Op t/hr	0p Tenp F	Mat'l Housing	Mat'l Screen	HP, RPM,									
C-102A/B	COAL SCREENER, DOUBLE DECK	10 24	30	250	S	SS	10	2	EA	13, 700		3	120	27,400		
C-307A/8	CARBONIZER CHAR SCREENER, DOUBLE DECK	40 70	15	250	S	SS	10	~	E	12,300		20	100	24,600		
C-603A/8	BRIQLET SCREEMER,	2		58	S	s	2	N	S	12,300		8	90 1	54,600		
	TOTAL ESTIMATED PRESENT DAY- ZND GUARTER 1992	PRESENT D	AY- 2ND (CUARTER	1992			55552255555 6 EA		· · · · · · · · · · · · · · · · · · ·		the second second second second second second second second second second second second second second second s			76,600	
								•						* * * * *		

466-F1 447-92 02:40 PH OF 2/	.CMT. TOTAL																			
FILE: XYTEL WCG-F1 DATE 07-Hay-92 SHEET 4 0F	TOTAL COST LABOR SUB-CONT.																			
	MATERIAL	- <u></u>		500,000	60,000	000,003	60,000	1,000,000	400,000	300,000	800,000	400,000	200,000	160,000	300,000	200,000		30,000	30,000	
I MEOFF PRICED CHECKED	MANHOURS TOTAL \$/MH			750	160	006	160	1,250	009	400	006	600	380	160	520	160		160	160	
				750	8	450	8	625	300	200	450	300	130	8	260	8		8	8	 the second second second second second second second second second second second second second second second s
î IMA]E≏ª																				4 134 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PRELIMIMARY ** CONCEPTUAL FACTORED BUDGET ESTIMATE**	NAT'L COST			500,000	30,000	300,000	30,000	500,000	200,000	150,000	300,000	200,000	100000	80,000	150,000	100,000		15,000	15,000	
CTORED	IINU			EA	EA	EA	EA	EA	EA	EA	EA	E	E	EA	EA	EA		EA	E	
IUAL FA	414			-	8	2	~	2	N	N	2	N	2	~	~	8		2	N	
** CONCEP			HP, RPM	2	7.5	15	7.5	20	15	15	15	15	10	10	10	10	HP, RPM	10	10	
			vel. fpm	500	100	200	100	200	200		200	200			100		LINEAR VEL. ids			1
1,000 1/0			LIFT fr	125		ĸ		125	20	77 0	2	20	77 30	32 0	ĸ	0 22				KERSKER 1000
ANAX Oject - 1,			W- inch OAL - FC	*	585	222	ž×:	229	szs Z	77 12	24	8×8	24			2%29 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ELEVATOR BUCKET LXN, in LXN, in H, it H, in	77 12 27 12	77 72 77 30	
ERC AND ATION PR ANA	HOI 14	BUCKET CONVEYORS	DENSITY CAPACITY LB/CF t/hr	250	50	50	20	50	20	5	20	20	20	20	20	20	cap. cf/hr			
/ UND/EERC GASIFICATI IY, INDIANA	ITEN AND DESCRIPTION	BUCKET C	DENSITY LB/CF	83.4	63.4	83.4	83.4	83.4		83.4	83.4	83.4	83.4	83.4	83.4	83.4	DENSITY LB/CF	55	25	
ITEL CORPORATION NO. / CLIENT 20708-308 / UND/EERC AND AMAX TITLE NILO COAL GASIFICATION PROJECT- LOCATION CLAY COUNTY, INDIANA	ITEN A	BELT CONVEYORS, 1	-	COAL RECEIVING	FEED TRANSFER	CRUSHER FEED BIN	CRUSHER FEED	DRYER FEED	CAR PONIZER FEED	AFBC FRESH COAL CONVEYOR	CARBONIZER CHAR	CALCINER FEED CONVEYOR	GREEN BRIQUET	CURED BRIQUET	FORMCOKE PRODUCT	FORMCOKE COOLING CONVEYOR	-	GREEN BRIQUET RECYCLE FLEVATOR	KILN FEED ELEVATOR	TOTAL CETTATED DECEMENTS
BECHTEL CORP JOB NO. / CL JOB TITLE JOB LOCATION	COST CODE	Ŀ		F-101	F-102A/8	F-103A/B	F-104A/B	f-105A/B		F-107A/B	F-301A/B	F-302A/B	F-601A/B	F-603A/8	F-605A/B	F-606A/B		F-602A/3	F-604,A/B	

MGG-F1 May-92 02:40 FM OF 21	SUB-CONT. TOTAL											
FILE: XYTEL MCG-F1 DATE 07-May-92 SHEET 5 0F	TOTAL COST LABOR SUB-CON			-		9	9	9			274,000	
	MATERIAL			000'1	2,000	180,000	50,000	50,000	20,000	20,000		:
TAKEOFF PRICED CHECKED	MANHOURS TOTAL \$/MH			25	52	180	20	20	50	20	(30	
-20				2	55	8		\$2	8	ະວ		
PREL IMIARY ** CONCEPTUAL FACTORED BUDGET ESTIMATE**	UNIT COST			2,000	2,000	90 [°] 000	10, 600	10, 000	10,000	10,000		
MINARY**	UNIT HAT			EX	EA	 E	۲۲ ۲۲	10 	EA 10	E		
*°PRELI AL FACTOR	ary un			-	-	2	2	2	2	2 2	12 EA	
** CONCEPTU			Housng Dia-in, OAL-ft, Ut-lb	30	11.6	Felted 30.5x10.5 Nomex 35000 35000	30 11.6 850	30 11.6 850	30	30 30 850	Zi Ek	
9			Mat'l Mat'l Housing Element	Felted Polyster	Felted Polyster	Felted Nonex	fel ted Nouex	Felted Nomex	Felted Noaex	Felted Nonex	SUPPRESSI	
1,000 1/0			Mat'l Housing	CS	S	CS	C	CS	cs	CS	10922 NOI 2992	
			Design Tenp. F	150	150	300	300	300	150	150	WALL EXE	
ERC AND ATTON PR ANA	IPT ION	ES	Design Press. in. WG	21-/+	21-/+	21-/+	21-/+		21-/+	21-/+	E OR FEH 347 - 240	
/ UMD/EI GASIFIC	ITEM AND DESCRIPTION	BAGHOUS	Retentn. Design Area-sf, Press. Particle in. WG Size- Micron	113	11	7,540	113	113	113	11 10	UDES FIKI	
BECHIEL CORPORATION JOB NO. / CLIENI 20708-308 / UMD/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- JOB LOCATION CLAY COUNTY, INDIANA	ITEN A	DUST COLLECTORS, BAGHOUSES		COAL SILO BAGHOUSE	CRUSHER FEED BIN CRUSHER FEED BIN BAGHOUSE	COAL DRYER BAGHOUSE Vndr: Mikropul	CARBONIZER BAGHOUSE Vridr: Mikropul	CALCINER BAGHOUSE Vrdr: Mikropul	FORMCOKE FINES BAGHOUSE	BRIGUET FEED BAGHOUSE Vndr: Mikropul	NOTE: PULSE JET TYPE, INCLUDES FIKE OR FEMMALL EXPLOSION SUPPRESSION SY BLONERS ARE IN "K" ACCOUNT BLONERS ARE IN "K" ACCOUNT 101AL ESTIMATED PRESENT DAY- 2ND QUARTER 1992	***********************
BECHTEL CO JOB NO. / 1 JOB TITLE JOB LOCATIO	COST CODE	9		6-101	G-102	G-103A/B	G-301A/B	G-401A/B C	G-601A/B	G-602A/B	NOTE: PULSE BLOW	•

BECHTEL CO JOB NO. / JOB TITLE JOB LOCAT	BECHTEL CORPORATION JOB NO. / CLIENI 20708-308 / UND/EERC AND ANAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	L UND/EI GASIFIC	ERC AND / ATION PRC NNA	NMAX DJECT - 1,	0/1 000		** CONCEPTU	**PREL	RED BU	** CONCEPTUAL FACTORED BUDGET ESTIMATE**		TAKEOFF PRICED CHECKED		FILE: XYTEL WGG-F1 DATE 07-MAY-92 SHEET 6 0F	02:40 PH
COST CODE	11EM A	ITEM AND DESCRIPTION	IPT LON					л утр		UNIT COST		MAHHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
	HEAT EXCHANGERS														
	-	Duty MMBtu/h	pp Shell, psie	DI Shell, Fbe	Mat'l Shell, Tube	CA-in, Transi Sheli, Surfa Tube Wi-lb sf	ransfer Surface sf								
H-403A/B	CALCIMER GAS HEAT EXCHANGER	4.13	22	1,300	316 SS 1 800	None None	610 Firmed	~	EA	40,000	3	20	80,000		
8/V%05-H	CALCINER GAS COOLER	5.3	×8	1,400 316 SS	a) 316 SS		None 650 0.125 fimed	~	EA	18, 700	8	50	37,400		
H-501A/B	OIL COOLER	25.3	50	250	304 55	Nane	5,900	N .	EA	226,000	20	100	452,000		·
N-903	NP B OILER FEEDUATER HEATER	92 24	1,500	220 200				-	EA	96,000	80	99	96,000		
506-H	MAIN SURFACE CONDENSER	250	51 51	120	SOC SS	0.375 Hone	30,000	-	EA	390,000	2,880	2,880	390,000		
906 - #	BRIME COOLER (Requires 2 parailel paths) Vrdr: Alfa-Lavai	4.751	8	250	PLATES	Каче Каче 30,000	13, 900	-	5	125 , 000	a 	Q	125,000		·
	TOTAL ESTIMATED PRESENT DAY - 2ND QUARTER 1992	PRESENT	DAY - 2ND	QUARTER	1992			9 EA				3, 240	1,180,400		
										- - - - - - - - - - - - - - - - - - -					

BECHTEL CI JOB NO. / JOB TITLE JOB LOCATI	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	EERC AND Cation Pr Iana	AMAX Roject - 1	9/1 000 '		CONCEPTU	**PRE	DRED E	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	AlE**	⊢	TAXEOFF PRICED CHECKED		FILE: XYTELWG-F1 DATE 07-Hay-92 SHEET 7 0F	02:40 PH
COST CODE	ITEM AND DESCRIPTION	LIPT ION					01.Y		MAT'L SS/	osi s/c		MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
<u>×</u>	COMPRESSORS, BLOWERS, FANS	SNN													
	Cap'Y SCFM ICFM	Delta P psi	Rotor Día., in rph	Mat'l Case, Rotof	Seal - Type Mat ¹ (NP. RPM								-	
101-X	BLONER FOR BAGHOUSE G-101 600 VICAC: BAALOOCO	18"SP		S		m	-	EA	5,000		S	55	5,000		
K-102	BLONER FOR BACINER FOR BACINUSE CF 102 600 VICATOR BACING	18"SP		S		M	-	E	5,000		22	25	2,000		
K-103A/B	VILIF: KUUINSON AIR BLOUR FR GRVTY TABLE C-103A/R & 500					15	~	E	N/C-103A/B		ŝ	60	N/C-103A/B		
X-104A/B	AIR BLOUR FR GRVIY					20	2	EA	8/V2-104A/B		40	80	N/C-103A/B		
K-105A/B	AIR BLOWR FR CRVTY AIR BLOWR FR CRVTY TARIF C-1054/8 15 000	_				30	2	E	N/C-105A/B		20	100	N/C-103A/B		
K-106A/B	REJECT COAL BLOUER Sol Ida: 16, 835 (b/h,	6.5				20	2	EA	19,400		07	80	38,800		
K-107A/8	a st lb/cf BLOKER FOR BAGHUSE G-103A/B 42,000 Vrdr: Robinson	10"SP		ខ		125	~	5	13, 100		120	240	26,200		
K-301A/B	BLOKER FOR BAGHUSE G-301A/B 600	10"SP		CS		м	~	EA	5,000		S	20	10,000		
K-302A/B	VIGT: KODINGON CARBONIZER REJECT CIAR BLOWER Solids: 5,427 lb/h, B 58.8 lb/cf	5.5				10	~	E3	12,800		×	20	25,600		
K-401A/B	BLONER FOR BAGHUSE G-401A/8 600 Voide: Baticoon	10"SP		S		M	2	EA	5,000		\$	50	10,000		
K-402A/B	VILLE KUDINGU CALCINATE PRODUCT BLOKER Sol Ids:25, 100 1b/h,	ŝ				25	2	E	22,600		45	06	45,200		
K-403A/B	L JO.C ID/CF REJECT CALCINATE BLONER Sol Ids:657 (b/h,	~	-			ŝ	2	£	9,800		\$2	50	19,600		
K-404A/B	a 01.5 1b/cf Calcinate Fines Product Bloker 170 Solids:5,614 1b/h,	5.5				7.5	~	EA	12,500		52	20	25,000		
K-405A/B	TARE BLOWR FR GRUTY TABLE C-405A/B 5,000	_				25	2	E E	N/C-405A/B		5	90	N/C-405A/B		
10141	IOIAL ESIIMATED PRESENT DAY - 2ND CUARTER 1992	DAY - ZN	D QUARTER	1992			26	1				1,040	210,400		

.

0 i u

BECHTEL CORP JOB NO. / CL JOB TITLE JOB LOCATION	CORPORATION / CLIENT 20708-308 / UND/EERC AND AMAX LE MILD COAL GASIFICATION PROJECT- 1,000 1/D ATION CLAY COUNTY, INDIANA	/ UND/E GASIFIC Y, INDI.	ERC AND ATTON P	AHAX ROJECT-	1,000 1/	٩	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	AL FACT	LIMINA ORED B	RYA* NDGET ESTI	HATE**	220	TAKEOFF PRICED CHECKED			FILE: XYTEL WCG-F1 DATE 07-May-92 SHEET 8 0F	٣	02:40 PM
COST CODE	ITEN AND DESCRIPTIO	ITEN AND DESCRIPTION	IPTION		• • • • • • • • • • • • • • • • • • •	- 		01Y		HALTL SSI	COST S/C	R L	MANHOJRE TOTAL \$/	HIN/S	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL	
	compressors, BLOWERS, FANS (Contd)	IERS, FA	WS (Con	(b)														
		Cap'Y SCFM ICFN	Del ta P psi	Rotor Día., in rpm	Mat'l Case, Rotor	Seal - Type Mat'	, MA MAN											
15 19 19 19 19 19 19 19 19 19 19 19 19 19	CALCINER RECYCLE GAS COMPRESSOR, STM TLURBNE DRIVEN	4,870	12.5				300 bhp	2	EA	482,000		400	800		964,000			
K-5016/B CJ	CARBONIZER GAS COMPRESSOR	17,810	23				1,455 bhp	~	EA 1	1,450,000		1,200	2,400		2,900,000			
K-502A/B C/	SIM TURBNE DRIVEN CARBONIZER BURNER AIR COMPRESSOR, 6	6,120	10.2				295 bhp	2	EA	474,000		400	800		948,000			
K-503A/B C/	IN TURBNE DRIVEN ALCINER BURNER IR COMPRESSOR,	5,610	23				510 thp	~	E	555,000		800	1,600		1,110,000			
K-504-1,2 01	SIM TURBNE DRIVEN OIL TANK OFF-GAS COMPRESSOR, SPARE	2.4	71				7.5	2	EA	10,400		ß	20		20,800			
K-601A/B BI	BLONER FOR	201	181100				m	8	EA	5,000		23	20		10,000			
K-602A/B BI	BLONER FOR						m	2	EA	5,000		52	20		10,000			
X-603A/B FC	FORMCOKE FINES						S	~	EA	9,800		25	50		19,600			
K-604A/B FC	DRMCOKE COOLING			_			7.5	~	EA	10,400		22	20		20,800			
K-605A/B C	CURING OVEN EXHAUST BLONER						7.5	~	5	10,400		22	20		20,800			
10	TOTAL ESTIMATED PRESENT DAY- 2ND QUARTER 1992	PRESENT	DAY - 2N	ID QUARTE	R 1992			20 EA					5,900		6,024,000	6, 024,000		11

OTE CHE ITEN AND RECENTION OTE CHE ITEN AND RECENTION OTE CHE	BECHTEL (JOB NO.) JOB TITLE JOB LOCAT	BECHTEL CORPORATION JOB NO. / CLIENI 20708-308 / UND/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 1/D JOB LOCATION CLAY COUNTY, INDIANA	/ UND/EE	RC AND AMAX TTON PROJEC	1- 1,000 1/0	1	CONCEP TUA	**PREL	RED BUD	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	lEat	220	TAKEOFF PRICED CHECKED		FILE: XYTELWCG-F1 DATE 07-May-92 SHEET 9-0F	02:40 PH
Centricative was resolved was Centricative was resolved was Cantor Laws, manual resolved manual resolve	COST CODE	ITEN AND	DESCRI	PT ION						Ę :				HATERIAL		TOTAL
Total Line Total Line <thtotal line<="" th=""> Total Line Total Li</thtotal>	<u> </u>	CENTRIFUGAL PUMPS,	POSITI	VE DISPLACEI	samna tham											
00 000000000000000000000000000000000000	CENTRIFUC	••		DH-ft, Impeleita P Dia. psi Act//	<u> </u>	ieal - ype lat 1	KPY,									
M0 Description Descripro <thdescription< th=""> <thdescri< td=""><td>P-401A/B</td><td>V-401A/B SUCTION DRUM PUMP</td><td>10</td><td>ន</td><td>23</td><td></td><td>1,800</td><td></td><td></td><td>11,400</td><td></td><td>ß</td><td>50</td><td>22,800</td><td></td><td></td></thdescri<></thdescription<>	P-401A/B	V-401A/B SUCTION DRUM PUMP	10	ន	23		1,800			11,400		ß	50	22,800		
With Vision With n Wision Wision With Vision With Vision With Vision With Visio	P-501A/B	QUENCH TOMER CIRC PUMP & SPARE Viking Type Thrut	-	59	CI		1, ⁸⁰⁰	4	EA	16400		ß	100	65 ,600		
Main Notifier Design of the field of the fi	P-503 -1,2	OIL TRANSFER PUMP & SPARE Viking Tyre Thrmf		30	52		1,800			11,600		8	70	23,200		
Will RMM Virtual RMM Sol 1,500 16 Sol <	P-505A/B		10	22	28		1,800	2		11,400		S	50	22,800		
Transmission Transmission<		WAIN BOILER FEED WATER PUMP	260		516 SS		N/N	-		¢0°000		410	410	140,000		
Total State State		FILT TETAGE STALLUT STARTUP BOLLER FEED WATER PUMP	10 UT 220		CI 316 SS		400			67,000		250	250	67,000		
3 Virtical, JSOK, With COLUE WITE, I. 1 E.A 1,600 25 25 11,600 3 Virtical, JSOK, SS,000 30 GG 1,800 3 E.A 190,000 450 1,350 570,000 3 Virtical, JSOK, SS,000 30 GG 1,800 3 E.A 22,600 130 67,800 3 Virtical, JSOK, SS,000 35 GG 1,800 3 E.A 22,600 130 67,800 1 Virtical, JSOK, SS,000 35 GG 1,800 3 E.A 22,600 130 67,800 1 Virtical, Usit 3,500 35 C 1,800 2 E.A 24,500 130 67,800 1 Virtical, Usit 1,000 50 C 1,000 50 50 14,600 Virtical, Usit 1,000 50 C 1,6,000 50 50 50 50 50 Virtical, Usit 1,000 50 C 1,6,000 50 50 5,000 50 5,000		CONDENSATE RECYCLE PUMP & SPARE	260		CI 316 SS		3,600	2		10,000		20	100	20,000		
3 TOUNG MIRE FUNCE 13-50X 500 3 EA 190,000 650 130 570,000 3 FUNCE 15 State FUNCE 13-50X 350 35 CG 1,800 3 EA 22,600 130 570,000 3 FUNCE 13-50X 35 CG 1,800 3 EA 22,600 130 57,000 3 FUNCE 13-50X 35 CG 1,800 2 EA 24,500 130 27,000 1 FUNCE 14 10,100 50 CG 1,800 2 EA 10,500 25 50 21,000 2 FUNCE FUNCE WILE 100 50 CG 1,000 50 50 1,000 2 FUNCE FUNCE WILE 1,000 50 CG 3,600 50 1,000 50 1,000 2 FUNCE FUNCE WILE 1,000 50 CG 3,600 50 1,000 50 1,000 2 FUNCE FUNCE WILE 1,000 50 CG 1,6,000 50 1,000 50 1,000		FLASH TANK WATER	01		52		1 800	-		11,600		52	22	11,600		
3 Biller 1.500 3 EA 22,600 130 300 67,000 3-50X 35 C 1,800 2 EA 24,500 130 300 67,000 3-50X 35.50X 35 C 1,800 2 EA 24,500 130 200 67,000 1 Ware Area 3,500 35 C 1,800 2 EA 24,500 130 200 67,000 1 File Nume 5 0 C 1 66 1 60 67,000 1 File Nume 1 1 EA 16,000 50 14,800 700 15,000 1 File Nume 1,000 50 C 14,800 50 14,800 1 EA 1 1 EA 15,000 50 14,800 15,000 15,000 1 File Nice 1,000 50 C 1 15,000 50 14,800 1 EA 1 1 EA 1,500 25 <t< td=""><td></td><td>COOLING WATER PLMPS & SPARE 3</td><td>22,000</td><td></td><td>323</td><td></td><td>88</td><td>m</td><td></td><td>00'00</td><td></td><td>450</td><td>1,350</td><td>570,000</td><td></td><td></td></t<>		COOLING WATER PLMPS & SPARE 3	22,000		323		88	m		00'00		450	1,350	570,000		
MULTER Vertical Surface Vertical Vertical Vertical Vertical Vertical		PLMPS & SPARE	3,500		SC		1,800	m		22,600		130	390	67,800		
Interview Solution CI Solution Solutiteteee Solutitee Sol		PLAN WATER PLAN & SPARE Vertical Volt	3,500	35	53		1,800		·····	24,500		130	260	49,000		
PURP PURP PURP PURP PURP PURP PURP PURP		FEED PUMP, SPARE		8	525		3,600	2		10,500		ß	50	21,000		
C MUN THE WALK 1,000 50 50 50 15,000 DIESEL ENGINE DR PLAPE 1,000 50 CS 3,600 5 1 EA 7,200 55 7,200 DIESEL ENGINE DR PLAPE 100 50 CS 3,600 25 25 7,200 DIESEL ENGINE DR PLAPE 100 50 CS 3,600 25 25 7,200 BOILER MAKEUP 50 60 316.SS 3,600 25 50 21,000 BOILER MAKEUP 50 60 316.SS 3,600 25 50 21,000 TOTAL ESTIMATED PRESENT DAT- 2ND GLARER 1992 30 EA 10,500 23,280 1,138,600		PUNP PUNP PICKU FIST INTER	1,000	50	22:		3,600	.		14,800		20	20	14,800		
FIRE WATER JOCK 100 50 CI CI 5 1 EA 7,200 25 25 7,200 PUMP & SPARE 50 60 316 SS 3,600 2 EA 10,500 25 50 21,000 TUMP & SPARE 50 60 316 SS 3,600 25 EA 10,500 25 50 21,000 TOTAL ESTIMATED PRESENT DAY 2ND GUARTER 1992 30 EA 30 EA 3,280 1,138,600		BALKUP FIKE WAIEK PUMP Dieces suciue De	1,000	50	28		N/N	-		15,000		20	20	15,000		
BOILER MAKEUP CI CI <thci< th=""> CI <thci< th=""> CI CI</thci<></thci<>	P-910	FIRE WATER JOCKY	100	50	33		2 YUU		EA	7,200		22	25	7,200		
30 EA 3,280 1,138,500	2'1-	BOILER MAKEUP PLMP & SPARE	20	09			3,600			10, 500		\$2	20	21,000		* ***
30 EA 3,280 1,138,600	5 6 8 9 9 9 9 9	12985665525665588668 17714 - Crimates												****		
				AT - 2NU UUAN	(IEK 1992	•			E				3,280	1,138,600		

e.

g-F1 02:40 РН 0F	NT. 107AL		
FILE: XYTELWGG-F1 DATE 07-Hay-92 SHEET0 0F	TOTAL COST LABOR SUB-CONT.		13,000
	MATERIAL		and the local division of the local division
TAKEOFF PRICED CHECKED	MANHOURS TOTAL S/MH	o,	50
	LIN:		the second value of the se
** CONCEPTUAL FACTORED BUDGET ESTIMATE**	UNIT COST NAT'L S/C	°, 500	
IMINARY Red Budg		<u>ح</u>	
AL FACTO	0 V 10	£ ∾	2
** CONCEPTU		- x	i i
D ANAX Project - 1,000 t/d	_	Apple of the displacement puepe (contd) Cap'y TDH-ft, impeller Mat'i Seal- gpm Deita P Dia., in Case, Type Deita P Dia., in Case, Type CI CI CI	ZHD QUARTER 1992
BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	ITEN AND DESCRIPTION	P CENTRIFUCAL PUMPS, POSITIVE DISPLACEMENT PUMPS (contd) Capity IDN-ff, Impelier Matti Seal- POSITIVE DISPLACEMENT PUMPS: P-601A/B BINDER FEED PUMP Distring, Poss Disp Metring, Poss Disp CS	TOTAL ESTIMATED PRESENT DAY- 2ND QUARTER 1992
BECHTEL CORF JOB NO. / CL JOB TITLE JOB LOCATION	COST CODE	Positive Dis Positive Dis Me	51

BECHTEL C JOB NO. / JOB TITLE JOB LOCAT	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND ANAX JOB TILLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, HADIANA	AND ANAX ON PROJECT-	1,000,1/0		** CONCEPTU	**PREL	LININARY ⁴⁴ RED BLIDGE	**PRELIMINARY** Iceptual factored Budget estimate**	1	TAKEOFF PRICED CHECKED			6- 5-	02:40 PN
COST CODE	ITEN AND DESCRIPTION	NO				01Y U	UNIT MAT'L	UNIT COST		3	TOTAL \$/MH	HATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
1	STORAGE TANKS (ATMOSPHERIC, API),	BINS,	SOLIS											
	Cap'Y Size Wkg Vol Dia-ft f cf Ht-ft	DP Vacuum	Mat'l Vessel, Lining	CA- in Fabricted WT- lb Shop, Field	abricted Shop, Field									
101-1	COAL SILO, AO DOD DAN	40	S			-	EA 140	140,000	2,800		2,800	140,000		
T-102	CRUSHER FEED BIN 4.675 OAH 25	20.5	S		_	-	EA 50	50,000	1,000		1,000	50,000		
T-103A/B	REJECT COAL HOPPER, 24h cap'y 2,700	,=&	CS			2	EA 33	33,800		3	120	67,600		
1-104A/B	COAL SURGE HOPPER, Zh cap'y 780	<u>٥</u>	ខ			8	EA 15	15,200		S	50	30,400		
1-301A/B	CARBONIZER FEED HOPPER 2h rad'v Zan	٥ <u>،</u>	S			2	EA 15	15,200	- <u> </u>	22	20	30,400		
		<u>io</u> 5	CS			2	EA 14	14,800		ß	20	29,600		
		:6t	S			N	EA 17	17,300		30	60	34,600		
I-304A/B	CARBNZK CHAR SUKGE HOPPER, Zh cap'y 660	io =	S			~	EA 14	14, 100		22	50	28,200		
T-401A/B	CALCINER FEED HODDED 21, Cantury 440	¢;	CS			2	EA 14	14, 100		ß	50	28,200		
1-402A/B	CALCNTÉ PROD STRGE	-2×	CS			2	EA	92,600	200				185,200	
	CALCINATE REJECT HOPPER. 24h cap'v 260]∿ē	S			2	EA 10	10,600	-	22	50	21,200		_
1-404A/B	CALCHTE FINES PROD HOPPER, 48h cap'y 2,400	222	S			2	EA 33	33,200		3	120	66,400		
105-1	011 STORAGE TANK API 120,48h cap 1000 bbt	21.5 B oz/si 16 0.5 oz/si		0.125		-	EA	28,400	00,		<u></u>		28,400	
1-601A/8	017	7.5	cs			2	EA 12	12,700		2	50	25,400		
1-602A/B			CS			2	EA 8	8,400		ß	50	16,800		
I-603A/B	2 7	 	CS			2	EA 8	8,500	-	S	50	17,000		
8/V%09-1	i	•	cs			7	EA	207,700	002				415,400	
£06-1	BRINE TANK, API 120.6min cap1000 bbl	21.5 8 oz/81 16 0.507/s1	S	0.125		-	EA	28,400	8				28,400	
206-1		55 3 oz/si 24 0.502/si	CS	0.125	_	-	EA	136,700	200				136, 700	
506-1		29.75 4 02/81 24 0.502/81	CS Epoxy			-	EA	74,100	00				74, 160	
	TOTAL ESTIMATED PRESENT DAY- ZND QUARTER 1992	ZHD QUARTER	1992			34 EA				. بر را	4, 550	585,800	585,800 B68,200	
										•				

с н **н**

BECHTEL (JOB NO. / JOB TITLE JOB LOCAT	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND ANAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 1/0 JOB LOCATION CLAY COUNTY, INDIANA	/ UND/EL GASIFICI	ERC AND / ATTON PRC ANA	NAX JJECT- 1,	0/1 000		** CONCEP	TUAL FACI	IORED B	**PRELIMIMARY** ** CONCEPTUAL FACTORED BUDGET ESTIMATE**	{E++	222	TAKEOFF PRICED CHECKED		FILE: XYTELWCG-F1 DATE 07-May-92 SHEET 12 OF	02:40 PH
COST CODE	E ITEN AN	ITEM AND DESCRIPTION	IPT ION					710	LIND	HAT'L SV		TINU TINU	MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
_>	PRESSURE VESSELS															
	3	Cap'y ukg vol c cf 1	Size Dia-ft 1/T-ft	0P psig	10 -	Mat'l Vessel	CA- In WI- Ib									
V-401A/B	CALCINER RECYCLE GAS COMP S DRUM Vert., demist pad	125	7	22	200	CS		2	EA	12,400		ŝ	50	24,800		
V-501A/B	CARBONIZER GAS COMP S DRUM Vert.	310	126	15	1,400	S		~	E	43,000		ß	20	B 6,000		
v - 902 v - 902 v - 905 v - 905	DEAERATOR Vert. BOILER BLONDOMA Vert. CONDENSATE FLASH TANK, HOFIZ. FLEL GAS FLEL GAS DRUM, Vert.	110 280 1,700	メア ろうなので	おおおろ		516-70 55 516-70 55 55 56-70	8,000 3,002 1,000 1,000 1,000 1,000		د د د د د د د د د د د د د د د د د	80,000 18,700 10,700 18,400		8 X X 8 X X 8 X	8 % % %	000,00 18,700 10,-V/W 18,400		
	TOTAL ESTIMATED PRESENT DAY- 2HD QUARTER 1992	PRESENT C	DAY - ZND	QUARTER	1992			6	E				260	238,600		
													-			

,

102

BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB TITLE NILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	A*PRELIMI JAL FACTORED	**PREL IMINARY** ** CONCEPTUAL FACTORED BUDGET ESTIMATE**		TAKEOFF PRICED CHECKED		FILE: XYTELWGG-F1 DATE 07-Mey-92 02 SHEET 73 0F 21	02:40 PK
COST CODE ITEM AND DESCRIPTION	OTY UNIT	MIT COST		MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT. TO	TOTAL
PACKAGED EQUIPMENT & SYSTEMS				•		•	
 AIMOSPHERIC FUUDIZED BED COMBUSIOR (AFBC): INCLUDES ERECTION Verndor: Tampella Power Co. Composite boilder system (B), to generate 280,000 lb/h steam a '1200psia B' (MB), and (MB), economizer (MS), unsternalls, and drums, boilder trims, and soot blowers. The backage includes: and feed equipment (F1 & F2, 10 HP/ea) The set of the silo of 13, 11 mestione feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestione feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 13, 11 mestion feed equipment (F3, 10 HP/ea) The set of the silo of 100 HP motor (KB) The set of the silo of 100 HP motor (KB) The set of the silo of 100 HP motor (KB) The set of the silo of 100 HP motor (KB) All ducts and breechings All ducts and breechings Soot blower with 1000 HP motor (KB) Soot blower set of the silo of 100 HP motor (KB) Soot blower set of the silo of 100 HP motor (KB) Soot blower set of the silo of 100 HP motor (KB) Soot blower set of the set of the set of the silo of 10. Soot blower set of 10. Soot blower set of 100 HP motor (KB) Soot blower set of the set of the set of the set of the set of the set of 10. Soot blower set of 100 HP motor (KB) Soot blower set of the set of t	5 -	00000091				16,000,000	
ISIS OF: 8'0,46'S/S,75.5' 0' LIFT,20 HP	~		2,600	2,600	000 [°]		
TOTAL EST HATED PRESENT DAY - ZND QUARTER 1992	2 EA			2,600	645,000	16,000,000	

BECHTEL CORP JOB NO. / CL JOB TITLE JOB LOCATION	DRATION IEHT 20708-308 / UND/EERC AND AMAX Mild Coal Gasification Project- 1,000 t/d Clat count, indiana	**PRELI ML FACTOR	**PRELIMIMARY** ** CONCEPTUAL FACTORED BUDGET ESTIMATE**	SI IMATE**	220	TAXEOFF PRICED CHECKED		FILE: XYEL WGG-F1 DATE 07-May-92 SKEET 14- OF	02:40 PH
COST CODE	ITEM AND DESCRIPTION	ary un	T-IW IIN	UNIT COST	NH T NU	MANHOURS TOTAL \$/HH	HATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
	PACKAGED EQUIPMENT & SYSTEMS (contd)								
2-902	TURBOGENERATOR SYSTEM: Verdor: ABB	-	EA 6,200,000	0	4,400	4,400	6,200,000		
	Double automatic extraction/condensing steam turbine complete with 360 rpm, 19,020 kva totally-enclosed synchronous generator and Drushless excitation system, including: system with reservoir, two full capacity AC motor-driven pumps, one DC energency oil pump, two lube oil coolers, filters, etc. 3. Voodard 50 SE governor and selected instruments and controls from fine turbe surface air coolers for generator heat four fin-tube surface air coolers for generator heat 5. Lube oil, control oil, steam seal and leak-off piping 6. AC motor-driven turbing gar, 5 HP 7. Gland steam control of a SIE	F01		100,000				100,000	
z-903	WATER TREATMENT SYSTEM: Vendor: Glegg Water Cond. Co.	-	EA 650,000		850	850	650,000	,	
	 9 Ham frequent system to provide demin water to the AFBC. 5 yatam frequent system to provide demin water to the AFBC. 2. Two full capacity carbon filters (X1 & X2) 2. Two full capacity zeolite softeners (X3 & X4) 3. Two full capacity reverse osmosis (R0) units (X7 & X8) 4. Two full capacity reverse osmosis (R0) units (Y9 & X10) 6. Three 50X capacity Marked bed demineralizers (Y9 & X10) 6. Three 50X capacity Marineralizer feed purps (P1, P2 & P3 25 HP/ea) 7. Three 50X capacity Manineralizer feed purps (P4, P5R96, 5 HP/ea) 8. Chemical injection systems for acid and anti-scaling 9. R0 product storage tank (11) ' 9. Interconnecting piping and valves, PLC-based controller 								
2-904	COOLING TOWER: Vendor: MARLEY	-	EA	120000				1,200,000	
	Five-cell (including spare) field erected, wooden, counter-flow, cooling tower with the following features and accessories: 1. 65,000 gam cooling water capacity from 105°F to 88°F with 77°F wet bulb 2. 240°L x 48°W framework with 240°x54° concrete basin 3. Five (5) fans, each with 200 MP 460 V motor and gear reducer 4. Deluge type fire protection system								
	TOTAL ESTIMATED PRESENT DAY- ZND QUARTER 1992	**********				5,250	6,850,000	1,300,000	0,000
			_		•				

	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND ANAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAT COUNTY, INDIANA	**PRELIN UAL FACTORE	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	TAKEOFF PRICED CHECKED			FILE: XYTEL WCG-F1 DATE 07-May-92 SHEET /5 OF 2	02:40 РН
COST	COST CODE ITEM AND DESCRIPTION	TINU YIQ	I HAT'L S/C	UNIT TOTAL	RS L S/HH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
506-2	PACKAGED EQUIPHENT & SYSTEMS (contd) ASH HANDLING SYSTEM: Vendor: JOY Bottom ash and fly ash removal system to handle ashes generated at the fluidized bed combustor. System includes: 1. Bottom ash hopper (T1) & fly ash hopper (T2) 2. Water cooled drag chair for bottom ash (f1, 5 HP) 3. Bottom ash fluid bed air blower (T3, 5 HP) 4 air heater (H1)	-	650,000	o'6 000'6	6, 000	000'059		
NOTE: 2-906	 4. Fly ash fluid bed air blower (K4, 5 HP) & air heater (H2) 5. Bottom ash baghouse (G1) and vent blower (K1, 3 HP) 6. Fly ash baghouse (G2) and vent blower (K2, 3 HP) 6. Fly ash baghouse (G2) and vent blower (K2, 3 HP) 801E: JOY OFFERS SCREW CONVEYOR FOR 2.ouOTE ADJUSTD FO INCLD DRAG CONVEYOR 2.906 CHENICAL INJECTION SYSTEM: SKID MCUNTED 2.906 CHENICAL INJECTION SYSTEM: SKID MCUNTED 7.906 CHENICAL INJECTION SYSTEM: SKID MCUNTED 7.906 CHENICAL INJECTION SYSTEM: SKID MCUNTED 7.906 CHENICAL INJECTION SYSTEM: SKID MCUNTED 8.100 Chemical Injection tank and six purps each with 2 HP motor 	1 EA	35,000	8	100	35,000		·
206-2	PLANT & INSTRUMENT AIR SYSTEM: Vendor: Vendor: 1000 SCFM air system to supply plant and instrument air to the en the entire plant. System includes: 1. Compressor and spare equipped with inlet filter, intercooler and aftercooler to produce 150 psig. 2. Complete automatic dryer unit to provide -40°F dew point 3. Instrument air receiver 4. Plant air receiver	E F	300, 000	90 2	200	300,000		9 (19 (19) - 19 (19) - 19 (19) - 19 (19) - 19 (19) - 19 (19) - 19 (19) - 19 (19) - 19 (19) -
806 - 2	100% CONDEMSATE POLISHER \$YS: JOX FLOU REQUIRED = 170 GPM	5	000,00E		60	300,000		
	TOTAL ESTIMATED PRESENT DAY- 2ND QUARTER 1992	4 EA		10		1,285,000		

105

BECHTEL CORPORATION JOB NO. / CLIENI 20708-308 / UMD/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA		**PREL	ININARY*	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	-20	TAKEOFF PRICED CHECKED		FILE: XYTEL WCG-F1 DATE 07-Ney-92 SHEET 16.00 22	21 21
COST CODE ITEM AND DESCRIPTION	ND DESCRIPTION	ary	AN TINU	UNIT COST MAT'L S/C		MANHOURS TOTAL \$/NH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
MAJOR ELECTRICAL, AND	MAJOR ELECTRICAL, AND CONTROL SYSTEM COMPONENTS				-				
METERS-	13.8 KV G IO DATA PLUS 2 OR EQUAL	5	EA	2,000	2	40	۲ [°] 000		
SWI ICHGEAR-	13.8 KV, 24 MVA 3 BRKRs, 1200 A		EA 12	120,000	170	170	120,000		
SVI TCHGEAR-	4160 V, 6 MVA 2 BRKRs, 800 A	8	E	35,000	3	120	70,000		<u> </u>
TRANSFER SULTCH-	4160 V, 6 NVA, AUTOMATIC ALLON	~	EA 4	40,000	8	120	80,000		
DISCONNECT SUITCH-	4160 V HANUAL	8	EA	2,500	63	64	20,000		
I RANSFORMER -	13.8 KV - 4160 V, 6 NVA	~	EA 12	120,000	200	400	240,000		
I RANSFORMER -	4160 V - 480 V, 1 MVA	*	EA S	24,000	100	400	96,000		
TRANSFORMER-	480 V - 120 V, 30 KVA	50	EA	1,500	22	500	30,000		
UPS SYSTEM-	50 KVA Static converter type Inclos batterles, racks, chargers, inverters	-	EA 20	200,000	250	250	200,000		
BALANCE EQUIPMENT-		-	101	310,000	2,100	2, 100	310,000		
DCS SYSTEM & ASSOCIATED COMPONENTS-		یہ 	LOT 1.50	1.500,000	6.600	6.600	1 500 000		
STACK MONITORING SYSTEM-	ER-			200,000	350	350	200.000		
WATER/STEAN SAMPLING SYSTEM-	SY STEM-	د. م	101	150,000	250	250	150,000		
VENDOR REPRESENTATIVE -	- 300 DAYS & SITE		LOT	300,000				300,000	
TOTAL ESTIMATED PRESENT DAY - 2ND QUARTER 1992	TOTAL ESTIMATED PRESENT DAY- 2ND QUARTER 1992	25				11,360	3,020,000	300,000	
			•		•	-	_		-

.

ΪX.

BECHTEL CO JOB NO. / JOB TITLE JOB LOCATI	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	UND/EERC ASIFICATIO INDIANA	AND AN DN PROJ	WX IECT - 1,	a/1 000'		** CONCEPTUAL FACTORED BUDGET ESTIMATE**	AL FACT	LIMINA ORED B	udget est	IHATE**	-40	TAKEOFF PRICED CHECKED		FILE: XYTEL WCG-F1 DATE 07-Hay-92 Sheet 12 0f _	02:40 PH	:
COST CODE	ITEN AND DESCRI	ITEM AND DESCRIPTION	NO					710		UNIT UNIT	UNIT COST	M TINU	HANHOURS 101AL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL	
"W'r"H" 2"	MISCELLANEOUS EGUIPPIENT Size Dia- In Ht- ft	-	DP psig	1a J	Mat'l	41 - 1N	HP.										
C-101A/B	COAL CYCLONE 2 cyclones in parallel,each trn	113 +/-17WG 30	9 m 21	300	CS	3,400		4	E	30,000		ม	100	120,000			
C-103A/B	FINE COAL 6. GRAVITY TABLE -2	.25 t/h 24 mesh				6,000 1	Deck-2 Blowr-15	2	E	22,000		40	80	44,000			
C-104A/B	UNTERMEDATE COALY.	10x24 mesh				6,000	Deck-2 Blowr-20	2	E	30,000		40	80	60,000			<u> </u>
C-105A/B	VIDT: IFPLE/20MI. LARGE COAL GRAVITY TABLE 0. Vrdr: Irple/SDM.	. 25 sr 10 t/h 0.25x10 mesh . 25 sf	£			6,000	Deck-2 Blour-30	2	E	41,000		40	80	82,000			
C-301A/B -1,2	PRIMRY CARBONZR CYCLONE 2 cyclones in parallel,each trn	30	50	1,400	CS REFRÁCT LINED	3 400		4	E	43,000		20	200	172,000			
C-302A/B -1,2	Vrdr: Sprout SECONDY CARBONIZR CYCLONE 2 cyclones in paraliel, each trn	113 30	20	1,400	CS, REFRACT LINED	800/1+ 007 2		4	5	43,000		8	500	172,000			
C-304A/B	Vndr: Sprout FINES MAGNETIC SEPARATOR Vndr: Eriez	1:V drum 15 (/h				2,700	300 fpm, drum spd	~	5	30,000		40	08	000'09			
C-305A/B	INTERND MAGNETIC SEPARATOR Vndr: Eriez	-40 mesn c 36 15 t/h				2,700	300 fpm, drum spd	2	EA	30,000		40	80	60,000			
C-306A/B	40 LARGE PART. MAG SEPARATOR Vrdr: Eriez	40x20 mesh 36 1'U drum 15 t/h +20 mesh				2,700	3 300 fpm, drum spd	ы	EA	30,000		60	80	000'09			
C-401AB	PRIMRY CALCINER CYCLONE 2 cyclones in Parallel, each trn Vndr: Sprout	113	8	1,900	CS LINED	3 400 5 400		Ð	E	43,000		20	200	172,000			
	101AL ESTIMATED P	RESENT DAY - ZHO QUARTER 1992	2ND (QUARTER	1992	61 14 19	24 v 40 v 41 v 42 v 44 v	28	EA				1,180	1,002,000			<u>.</u>

BECHTEL C JOB NO. / JOB TITLE JOB LOCAT	BECHTEL CORPOZATION JOB NO. / CLIENT 20708-308 JOB TITLE MILD COAL JOB LOCATION CLAY COUN	BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB 111LE MILD COAL GASIFICATION PROJECT- 1,000 1/D JOB LOCATION CLAY COUNTY, INDIANA	MX IECT- 1	,000 1/0		* CONCEPTL	**PRE	I IMIN	** CONCEPTUAL FACTORED BUDGET ESTIMATE**	HATE	220	TAKEOFF PRICED CIECKED		FILE: XYTELVICG-F1 DATE 07-May-92 02:40 PM SHEET 7 <u>8</u> 0F 2.1	M
COST CODE	ITEN A	ITEM AND DESCRIPTION					01Y	LINN	UNIT COST NAT'L S/C	COST S/C		MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT. TOTAL	
С, Н, -, Н, И, 0, R	HISCELLANEOUS E	UIPMENT (contd)													
		Size DP Dia-in psig Ht-ft	19.7	Mat'l	41 - IN	RPN,									
C-402A/B -1,2	SECONDY CALCINER CYCLONE 2 cyclones in parallel, each tr	113 30 30	1,900	CS, REFRÁCT LINED	800 j +		4	E	43,000		50	200	172,000		
C-405A/B	VINIT: SPI OUL CALCINER GRAVITY TABLE -40 Vindr:Trple/SDyn. 3	2 t/h -40 mesh . 25 Sf			6,000	Deck-2 Blowr-25	2	E	21,000		40	80	42,000		
C-601A/B	BRIGUET FINES						2	EA	43,000		20	100	66,000		
C-602A/B	FORMCOKE FINES CYCLONE					******	~	E	43,000		20	100	B 6,000		
H- 101A/B	i COAL DRYER- 45 t/h moisture redctn Fluid bed 13% to 6% type	45 t/h Fluid bed type				55	2	E	470,000		2,300	4,600	000'076		
H-301A/B	W/DUCIMORK, CONT CARBONIZER CHAR COOLER Vrdr: Holoflite	PNL 8.8 Screw 150 HMbtu/h Jkt 30 Screw type		C	44 . 860	30	~	EA	305,000		120	240	610,000		
H-401A/B	BED CALCINATE COOLER	10.7 Screw 150 Webtu/h Jkt 30		S	44 , 860	30	2	E	305,000		120	240	610,000		
H-402A/B	Vrdr:Holoflite Calcinate fines Cooler Vrdr:Holoflite	Screw type 2.7 Screw 150 MMbtu/h Jkt 30 Screw type		CS	069'61	m	2	EA	145,000		8	160	290,000		
м-502	OIL STORAGE TK HEATER	0.65 MHbtu/h Electric bayonet type				191 KU	-	E.	10,000		. 42	24	10,000		
H-601A/B	BRIQUET CURING OVEN						~	EA	200,000		1,000	2,000	100,000		
8/V101-r	COAL CRUSHER size reduction 2"x0 to 1/4"x0 Vndr: Penna.	50 t/h 6 t. 4 tV 5 tk 0ble rol (type			11,000	2 a 15 2 a 30	2	E	125,000	*****	130	260	250,000		
8/V109-f	BRIQUET PRESS					750	2	EA	1, 190, 000		5,300	10,600	2,380,000		
	IOIAL ESTIMATED	TOTAL ESTIMATED PRESENT DAY- 2ND QUARTER 1992	DUARTER	1992	44 e 43 e 14 t 16 e 19 e 19 e		25 EA	E				18,600	5,876,000		

BECHTEL (JOB NO. / JOB TITLE JOB LOCAT	BECHTEL CORPORATION JOB NO. / CLIENI 20708-308 / UND/EERC AND ANAX JOB TITLE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	/ UND/EE	RC AND A TION PRO NA	MAX JECT - 1	,000 1/0		**PREL IMIMARY** ** CONCEPTUAL FACTORED BUDGET ESTIMATE**	AL FACT	DRED BI	RY** UDGET ESTI	HATE**	220	TAXEOFF PRICED CHECKED		FILE: XYTELVACG-F1 DATE 07-May-92 SHEET 14 OF 0F	2 02:40 PH
COST CODE	ITEN AND	ITEM AND DESCRIPTION	NOI 14					¥10	LINN	UNU'L	COST S/C	E I S	MANHOURS TOTAL \$/MH	HATERIAL	TOTAL COST LABOR SUB-CONT.	TOTAL
พ. ช. ช. พ. ช. ช. ช. บ. พ. บ. พ.	NISCELLANEOUS EI	DIPMENT (Size Dia-ft	contd) DP psig	10	Mat'l	ca-fn VI- lb	RPM,		<u></u>							
H-101A/B	CARBONIZER FEED	20 t/h Vert Sta-						2	E	2,100		4 0	16	4,200		*****
M-301A/B	VIDIT: KOLLO LUG LYDA B CARBONIZER FEED 10 L/h MIXER Verl Sta- Vidt: Koflo tic type	ic type						2	5	1,400		Q	16	2,800		999 <u></u>
105-M	Alter 1997	6m0, jjli C Paddle type, roof mounted			shaft-CS Blades- 316 SS		7.5 Gear Red	-	EA	11,000		3	60	11,000		
M-601A/B	BRIQUETTING FEED Paddle Mixer	Paddle					15	2	EA	14,200		80	160	28,400		
N-901	BOILER STACK T	1-8,8-12 300 Steel					<u> </u>	-	EA	160,000		4,000	4 '000	160,000		
a-501A/B	QUENCH TOWER Vert, Trays:410 SS, 9 discs,8 domuts, 2 20::	37	20/FV	1,400	S	0.125		N	E	380,000		120	240	760,000		
R - 301A/B	CARBONIZER Spoutd bed type, multiple coal injectn, ceranic distrbin medium, 3hr readnce time,	14.25 28.5 1/0=2 4 fps 0as	20	1,400	cs Refract Lined			2	Ĕ	400,000		600	1,200	800,000		
R - 401A/B	CALCINER Bubing bed type, ceranic distrim nediun, 3hrs residence time	17.25 17.25 2 {ps 2 {ps gas vel	30	1,900	CS Refract Lined			~	EA	480,000		200	1,400	000'096		
	TOTAL ESTIMATED PRESENT DAY- ZND QUARTER 1992	RESENT DAY - ZND QUARTER	AY - 2ND	OUAR LER	1992			14			187 0 187 4 188 9 189 0 189 0 189 1 189 1		060'2	2,726,400	2,726,400	

-

BECMIEL JOB NO. JOB TITL JOB LOCA	DECINICL CURRONNING JOB NO. / CLIENI 20708-308 / UND/EERC AND AMAX JOB TIILE MILD COAL GASIFICATION PROJECT- 1,000 T/D JOB LOCATION CLAY COUNTY, INDIANA	D AMAX PROJECT - 1,000 T/I		- CONCEPTI			LEFTUAL FALIORED BUDGET ESTIMATE"		PKI CEO CHECKED		DATE U7-Hay-92 SHEET 2.0 OF	21
COST CODE	E ITEM AND DESCRIPTION				710		UNIT COST MAT'L S/C		MANHOURS TOTAL \$/MH	MATERIAL	TOTAL COST LABOR SUB-CONT.	TOIAL
N.L.A.O.N	MISCELLANEOUS EQUIPMENT (contd) Size DP Dia-ft psig Ht-ft) DT Mat'l	ca- fn, vr - 16	RPM.				,				
HISC.	AIRLOCK Vndr: Sprout or Nikropul	S		-	62	E	2,500	2	\$ 992	155,000		
	screu feeder Vndr: Mikropul	S		N	N	EA	7,500		80	15,000		
	SLIDE GAIE Vndr: Pebco			2	4	EA	25,000	40	0 160	100,000		
	NETAL DEFECTOR 50 t/h Vndr: Eriez				2	EA	8,500	92 22	09	17,000		
	OVERNEAD ELCIRO- 50 t/h Magnetic Separa- Tor Vndr: Eriez			~	~	Ē	15,000	8 	09	30,000		
	BELT SCALE 250 t/h Vndr: Remsey +/-0.25X		800	<u></u>	-	Ę	11,000	8	0 30	11,000		
	BELT SCALE accuracy Vrdr: Ramsey +/- 0.5% accuracy		007		-	EA	10,000	8	22	10,000		
	STATIONARY MAINT. EQUIPHENT: Others:	HOIST (EA)- Monorail (EA)- Straimers (EA)- Hiscellaneous	229	WILOW	-	LOT	100,000	1,000	000'1	100,000		
	TSULAR TSULAR TSULAR	COOL 910110 M		1SULAR				والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والم			10 10 10 10 10 10 10 10 10 10 10 10 10	
					c	EA			2,410	438,000		

¥		<u></u>	<u></u>		
02:40 PH	TOTAL				
1. VHCG-F1 17-Nay-92 3. 1_0F	SUB-CONT.	324,000	000'509'5	588,000	4,717,000
FILE: XYTEL VHCG-F1 DATE 07-May-92 SHEET 2.1 OF	TOTAL COST LABOR SU				
L O <i>M</i>		000	80	8	18, 500 220,000 200,0000 200,0000 200,00000000
	MATERIAL	1,086,000	3, 160,000	3,74,000	
	S/1/5	8	8	8	212 252 256 256 256 256 256 256 256 256 25
TAKEOFF PRICED CHECKED	MANHOURS		0 124,800	0 135,500	
		41,900	124800	135500	
IMATE**	cost \$/c	324,000	3805000	588,000	
PRELININARY Iceptual factored Budget estimate**	HATL	1,066,000 324,000	3, 160,000	3, 744, 000	250 26,000 26,000 26,000 26,000 26,000 26,000 250 26,000 250 250 250
REL IMINA CTORED B		101	101 1	101	2 2 2222222222
PTUAL FA	710	چە 		-	235-552 3 3
4.4 CONCE					, Ps(5), (5), 0PT((36)
9					INSTRUMENTATION PRIMMRY ELEMENT:FE(12), FFS(10), ULS(3), CAUGES: 16(1), PG(22) GAUGES: 16(1), PG(22), DPG(19), SWITCHES: FS/TFS(12), LS/ULS(45), PS(5), PS(12), PS(12), LS/ULS(45), PS(5), TRANSNITTER: FT(4), PT(20), TT(28), DPT(36), MALYZER: PS(12), PR(19), VILS(5), DPT(36), MALYZER: PS(12), PR(19), VILS(5), PS(136), MALYZER: PS(12), PR(19), VILS(5), PS(136), MALYZER: PS(12), PR(19), VILS(5), PS(136), MALYZER: PLC MALYZER: PLC MALY
1,000,1/1					MIATION PRIMARY ELEMENT:FE(12), TFS(10) GAUGES: 1G (1), FG(22), GAUGES: 1G (1), FG(22), SWITCHES: FS/TFS(12), LS/ TRANSHITTER: F1(4), P1(20), MALYZER: PPS(15), RPHS(1), TANSHITTER: F1(4), P1(20), MALYZER: PPS(15), RPHS(1), MALYZER: FS/TFS(12), LS/ MALYZER: FS/TFS(12), RASS ALLY SCALE: MALYZER: NCLDS ALR ACTU VEIGH SCALE: MALVES: INCLDS ALR ACTU VEIGH SCALE: MALVES: ALLOSA ALR ACTU SOLENOID VALVES: ALSO ALLOGANCE FOR MISSING ITEMS TUBING, LOCAL MOUTING & MISC. TUBING, LOCAL MOUTING & MISC. TEFT & CALIBRATE D PRESENT DAY- 200 QUARTER 1992.
AMAX toject-					:FE(12), IC(1), IC(1), IC(1), IC(1), FI(4), FI(4), PLC ER CONTR INCLDS D VALVES CONTR INCLDS D VALVES E CONTR INCLDS D VALVES
ERC AND ATTON PR ANA	NOI 141				ELEMENT S: L METER: L METER: L METER: L METER: SOLENOIL SALENOIL DAT- ZMMET
/ UND/EI GASIFIC IY, INDI	ITEM AND DESCRIPTION		CTURAL		ATION PRIMARY GAUGES: Sultes: Sultches Analyzer Analyzer Analyzer Analyzer Control Control Control Freshin Present
708-308 708-308 110 coal	ITEN AN	ELECTRICAL	CIVIL/STRUCTURAL	9 I P I MG	INSTRUMENTATION PRIMARY ELEMENT:FE(12), IFS(1) GAUGES: IC(1), PG(22) GAUGES: IC(1), PG(22), I IC(1), PG(22), I SVITCHES: FS/TFS(12), I ANALYZER: PS(15), P(120) ANALYZER: PFC(12), I MAG FLOU WETER: PPC CONTROLLER: PLC VELGH BELT FEEDER CONTROLLER: VELGH BET FEEDER CONTROLLER: VELGH BET FEEDER CONTROLLER: VELGH BET FEEDER CONTROLLER: VELGH BET FEEDER CONTROLLER: VELGH BET FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER CONTROLLER: VELGH FEEDER C
PORATION LIENI 20 MI		BUALKS ELE	C	2	IK IOIAL ES
BECHTEL CORPORATION JOB NO. / CLIENT 20708-308 / UND/EERC AND AMAX JOB 111LE MILD COAL GASIFICATION PROJECT- 1,000 1/D JOB LOCATION CLAY COUNTY, INDIANA	COST CODE				
	50	·····			

.

11.0 PROJECT FINANCIAL ANALYSIS

11.1 General

A preliminary financial analysis was carried out using the capital cost estimate prepared by XBi and an operating cost estimate prepared by AMAX. J. E. Sinor supplied the product revenue data.

11.2 Formed Coke Value

A wide range of opinions exists as to the potential market value of formed coke. Because it is not a currently purchased commodity in the steel industry, there is no precise measure of its value. It is generally expected that formed coke would be somewhat less valuable than conventional metallurgical coke, because the formed coke properties will be less desirable or may require changes in blast furnace operating procedures. A fully optimized formed coke process could theoretically produce a more uniform product and might eventually command a higher market price. Prices of as much as \$200 per ton have been suggested for such a premium, low-sulfur product. At the moment, that possibility is purely speculative.

Because only a small fraction of the total amount of coke produced is actually sold in a market transaction, reported prices fluctuate a great deal in response to changing demand. Prices in the past have generally ranged from about \$80 to \$150 per ton. Current values appear to lie in the range \$100 to \$120. Prices required for investment replacement are expected to be \$150 to \$160 per ton. A value analysis, in which the value of coke was computed as the product of the additional output of steel generated by a marginal increase in coke times the price of steel), led to a price of \$157 per ton.

The biggest hurdle for a formed coke produced from Indiana coal is to make a product that will be marketable from the standpoint of sulfur content. Standard practice is to set an absolute limit of 1.0% sulfur in coke. In actuality, there is nothing magic about this value. Higher sulfur levels simply mean more expense in removing sulfur during the steelmaking process. In the United Kingdom, because of the scarcity of low-sulfur coking coals, a sulfur level of up to 1.5% in metallurgical coke is tolerated. However, there seems to be a general consensus that sulfur should be no higher than 1.0% for the U.S. market.

In spite of the key importance of sulfur in coke, there is no widely accepted scale for coke value as a function of sulfur content. Depending on the individual coke producer, sulfur penalties or premiums may be assessed on coking coal, ranging from \$1.00 to \$2.50 per ton per 0.1% sulfur above or below a desired level such as 0.7%. If it is assumed that these values flow through to the coke and that they can be extended to higher sulfur levels, a 3% sulfur coke might have to carry a discount of \$30 to \$70 per ton. The lower figure might be acceptable, but there is no indication that a 3% sulfur coke could be sold even at a much higher discount.

For the purposes of this analysis, it was assumed that a formed coke with no more than 1.0% sulfur could be produced and that the market value would be between \$100 and \$200 per ton.

11.3 Electricity Value

The project case analyzed has only two products-formed coke and electricity. If the project could be structured as a cogeneration facility, it could obtain "qualifying facility" status from the Federal Energy Regulatory Commission. This results in certain financial benefits for the plant owner. The electrical utility in whose service area the plant is built would be required to purchase the electricity produced by such a facility.

Without designation as a cogeneration facility, the formed coke plant would be classified as an independent power producer (IPP). As an IPP, electricity sales would have to be negotiated with a utility. It would not necessarily have to be the utility in whose service area the plant is located. Electricity could be "wheeled" over the transmission lines of the local utility to the final purchaser.

Current electricity purchase prices offered by Indiana utilities are on the order of 0.03 per kWh (combined energy rate and demand rate). However, the current price being paid for electricity by the Chinook mine is on the order of 0.04 to 0.05 per kWh. Therefore, power could be supplied to the mine by the mild gasification plant to realize an internal income of up to 0.05 per kWh. In the future, when the utilities again begin building new generation facilities, it is expected that their avoided cost could go as high as 0.07 per kWh. Therefore, the electricity prices used for a sensitivity analysis were 0.03, 0.05 and 0.07 per kWh.

11.4 Product Rates

11.4.1 Formed Coke

To obtain a product flow rate for use in the financial analysis, the following streams from the XBi report were used:

- Stream 13: calcinate, 25,100 lb/hr.
- Stream 15: calcinate fines, 5,614 lb/hr.
- Stream 20: tar oil, 5,278 lb/hr.

Streams 13a and 15 are at 7% volatiles content, while the final formed coke product is assumed to be at 4.5% volatiles. Furthermore, it was assumed that 40% of the tar oil used as binder is volatilized during briquette curing. Therefore, total product yield was computed by:

- Stream 13a: $25,100 \ge 0.955 = 23,970$ lb/hr.
- Stream 15: $5,614 \ge 0.955 = 5,361 \text{ lb/hr}$.
- Stream 20: $5,278 \ge 0.60 = 3,167$ lb/hr.
- Total = 32,498 lb/hr.

On the basis of 330 days per year, total formed coke product for revenue is then 128,700 tpy.

11.4.2 <u>Electricity</u>

The gross plant electrical capacity in the XBi design is 24 MW, with a net output for sale of 19.2 MW. On the same basis of 330 days per year, the total production for revenue is 152 million kWh per year. It appears that this figure may be low because it is not clear that the fuel value of that fraction of the binder volatilized during curing has been added to the fuel stream. If that is the case, electrical output should be increased by over 10%.

11.5 Capital Costs

The total capital cost determined by XBi is \$116.4 million in 1992 dollars. A 3-year construction schedule was assumed, with expenditure profile as follows:

- 40% in 1995.
- 30% in 1996.
- 30% in 1997.

The first year of production is 1998, and production starts at full capacity. Operating life is 20 years, and a salvage value of 20% of capital cost was assumed.

11.6 Operating Costs

11.6.1 <u>Coal</u>

The major operating cost is the cost of coal. Plant input is 1,000 tons per day, dry basis, at 8.2% moisture. This translates to 1,089 tpd wet basis, or 359,477 tpy. It takes 2.79 tons of coal to produce a ton of formed coke.

The nominal price of coal is \$20 per ton, and sensitivity cases were run at \$15 and \$25 per ton.

11.6.2 Limestone

To calculate limestone required for sulfur removal, the following data were used:

- 90% sulfur removal efficiency.
- 2,047 lb/hr sulfur removed (streams 2, 8, 16, 20, and 26).
- 1 mole of CaO per mole of sulfur = 1.75 lb CaO per lb of S.
- Limestone = 56% CaO.
- 1.8 stoichiometric ratio limestone/sulfur.
- 45,600 tpy limestone.
- Cost of crushed limestone, \$7/ton.
- Total cost: \$319,000.

11.6.3 <u>Disposal Costs</u>

Fly ash and spent limestone/gypsum are disposed of in the coal mine. Disposal costs were calculated as follows:

- 5,375 lb/hr fly ash (streams 2, 8, and 16).
- 5,117 lb/hr excess limestone.
- 11,000 lb/hr gypsum (CaSO₄•2H₂O).
- Disposal cost, \$2/ton.
- Total cost: \$170,200/yr.

11.6.4 <u>Water</u>

Water requirements were calculated as follows:

- Cooling tower heat load 350 million Btu/hr.
- Assume 75% latent heat transfer.
- 270,600 lb/hr evaporated = 32,000 gal/hr.
- Adding blowdown and drift, need at 40,000 gal/hr.
- • 317 million gal/yr.
 - Cost \$0.50 per 1,000 gal.
 - Total cost: \$158,400/yr.

11.6.5 Chemicals

Water treatment chemicals include:

- Biocide for cooling tower, \$32,000/yr.
- Boiler feed water treatment, \$24,000/yr.
- Makeup brine and glycol, \$8,000/yr.
- Total cost: \$64,000/yr.

11.6.6 Supplies and Maintenance

Calculated as 2.5% of capital cost, or 2,910,000/yr, including labor for maintenance.

11.6.7 Other Costs

There is no cost for electricity, since the 5 MW required to operate the plant is deducted from the gross output of the power plant and is not sold as product. Compressed air is included in the electric power consumption. Some natural gas is used in the plant for starting up the briquette curing oven, but the amount is small and is less than \$5,000 per year so it was not included in the operating costs. Wastewater disposal costs were also so small that they were not included.

11.6.8 Manpower

Operating labor costs were estimated as follows:

- Operations, 40 persons, \$2,617,000/yr.
- Support, 10 persons, \$482,000/yr.
- Engineering, 7 persons, \$534,000/yr.
- Supervision, 7 persons, \$591,000/yr.
- Total cost: \$4,224,000/yr.

11.6.9 Operating Cost Summary

Total operating costs amount to \$15,041,000 per year, as summarized in Table 1.

11.7 Financial Evaluation

11.7.1 Evaluation Parameters

Financial analyses were carried out using the following parameters:

- 4% general inflation rate.
- All costs and revenues inflated at 4% per year.
- 100% equity basis.
- Taxes calculated on stand-alone project basis.
- Project subject to Indiana income taxes.

TABLE 1

Operating Cost Summary (dollars per year)

		Totals
Feedstocks		<u></u>
Coal (\$20/ton)	\$7,190,000	
Limestone	\$319,000	
		\$7,509,000
Chemicals		\$64, 000
Disposal		\$170,000
Supplies and Maintenance		\$2,91 0,000
Utilities		
Gas	\$5,000	
Water	\$158,000	
Wastewater	\$1,000	
		\$164,000
Labor		
Operations	\$2,617,000	
Support	\$482,000	
Engineering	\$534,000	
Supervision	\$591,000	
		\$4,224,000
Grand Total		\$15,041,000

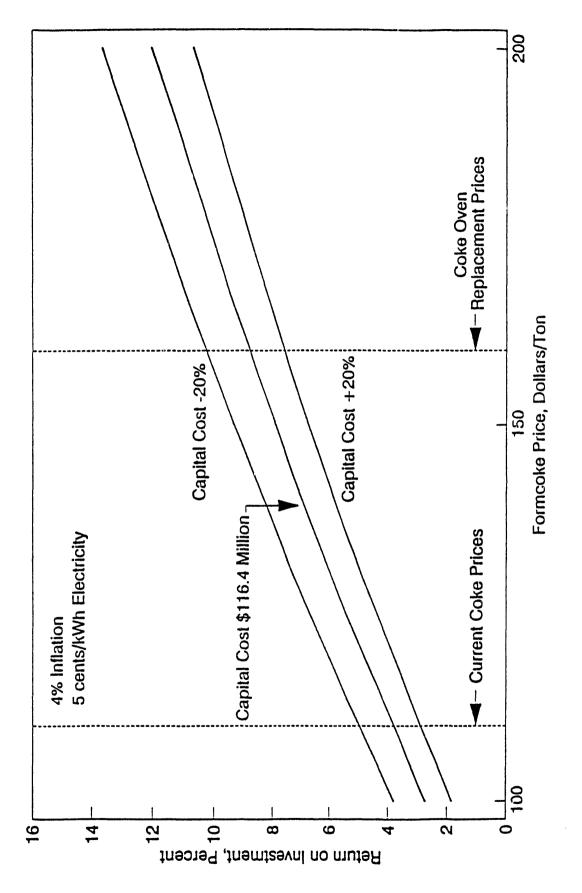
11.7.2 Base-Case Results

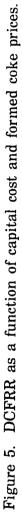
Base-case results are combined with a capital cost sensitivity analysis in Figure 5 and Table 2. For the best-guess capital cost estimate of \$116.4 million, the discounted cash flow rate of return (DCFRR) is 8.1% at a formed coke price of \$150 per ton. Increasing the capital cost by 20% drops the rate of return to 6.9%, and decreasing the capital cost by 20% increases the rate of return to 9.6%.

Indicated in the figure for reference are the estimated formed coke value for current coke prices and also the value required to justify replacing conventional coke ovens. If formed coke values reach the latter level, the base-case DCFRR becomes 8.9%.

The calculated rate of return is not sufficiently attractive to draw outside investors into such a project. The major reason for the poor economics as compared to conventional coke ovens is the small plant size and consequent high cost per unit of capacity. In terms of unit cost, the mild gasification formed coke plant costs \$900 per yearly ton of capacity, about 3 times the estimated cost for conventional coke ovens. This overwhelms the fact that cheaper coals can be used as feedstock. The small size does not appear to be an attractive commercial venture. Thus a plant of this size should more properly be considered a demonstration project and not expected to earn full commercial rates of return on investment.

11.7.3 Sensitivity to Electricity Prices


The effect of three different levels for the price of electricity is shown in Figure 6 and Table 3. The nominal level of 0.05/kWh corresponds to electricity replacement cost at the Chinook mine. As before, the indicated rate of return is 0.1% at a coke price of 150/ton. Decreasing the price of electricity to 0.03/kWh, the current avoided cost offered by Indiana utilities, drops the rate of return to 0.03/kWh, the current price of electricity to 0.07/kWh, the expected future value, increases the rate of return to 0.1%. Electricity prices thus have a major effect on the project's financial performance.

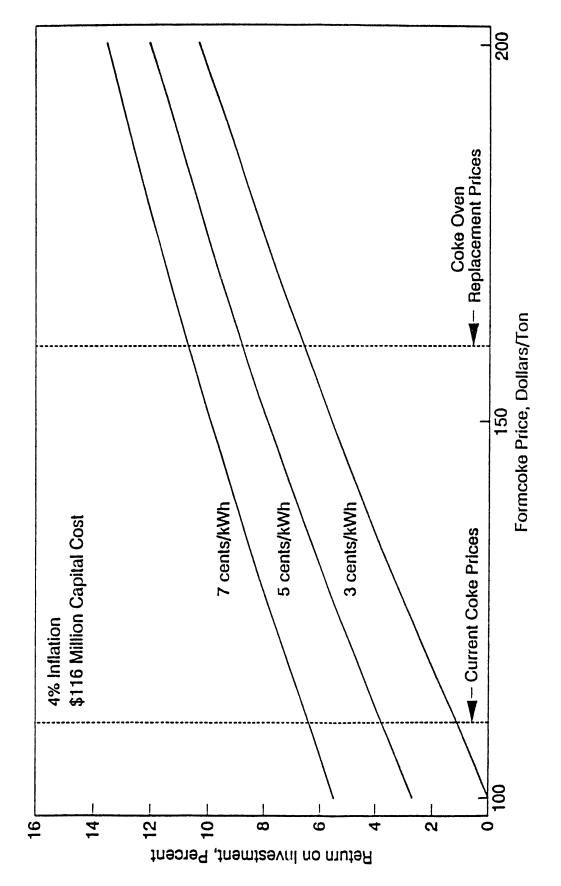

11.7.4 Sensitivity to Coal Cost

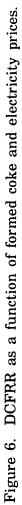
The effect of three different levels for coal cost is shown in Figure 7 and Table 4. The nominal level of \$20/ton corresponds to the expected cost of coal from the Chinook mine. As before, the indicated rate of return is 8.1% at a coke price of \$150/ton. Increasing the cost of coal to \$25/ton decreases the rate of return to 6.8%. Decreasing the cost of coal to \$15/ton raises the rate of return to 9.4%. Although the effect is significant, coal cost swings of this magnitude cannot push the project into an attractive financial regime.

11.7.5 Probability Distribution on Cost Sensitivity

A final economic run investigated the result of a probability distribution on capital costs. The results shown earlier in Figure 5 simply give the values (DCFRR) which would result from specific changes in capital cost. In reality, capital cost may be

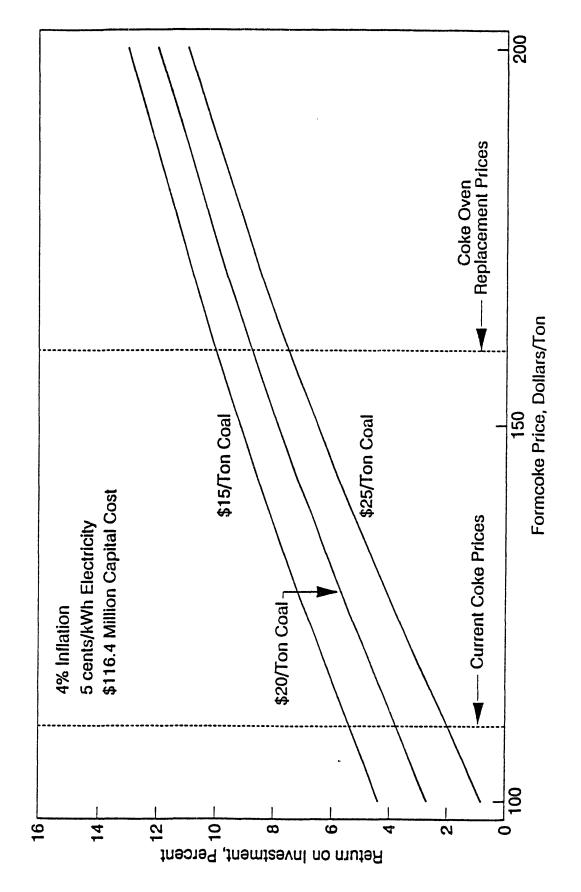
	DCFRR, percent
Nominal Capital Cost	
Coke Price \$100/ton	2.7
Coke Price \$150/ton	8.1
Coke Price \$200/ton	12.0
Capital Cost Reduced 20%	
Coke Price \$100/ton	3.8
Coke Price \$150/ton	9.6
Coke Price \$200/ton	13.7
Capital Cost Increased 20%	
Coke Price \$100/ton	1.8
Coke Price \$150/ton	6.9
Coke Price \$200/ton	10.7

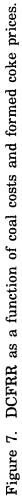

Capital Cost Sensitivity (discounted cash flow rate of return)


thought of as a random variable whose most likely value is the estimate of a \$116.4 million. If the plant is actually built, it could end up costing less than the estimate, but it is far more likely to end up costing more than the estimate. This effect can be analyzed using the technique of Monte Carlo analysis.

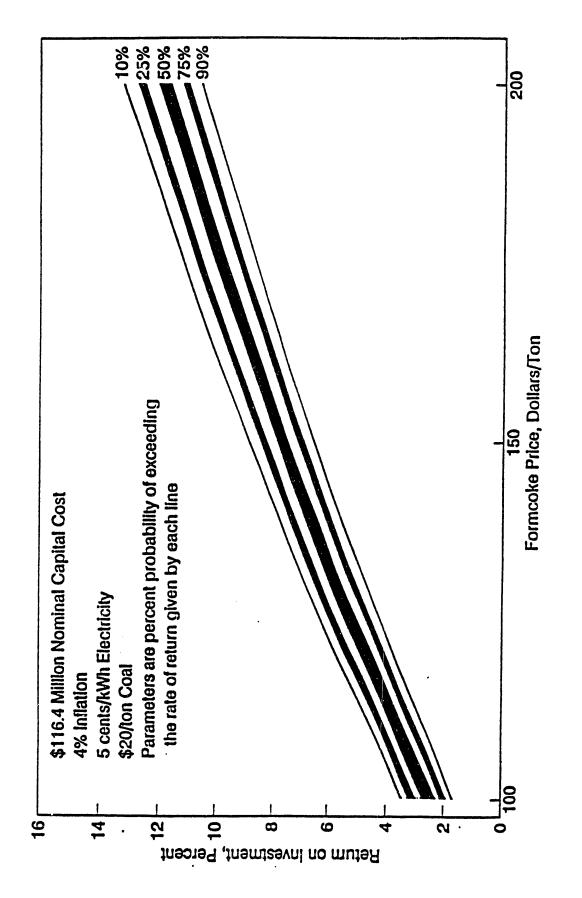
A triangular probability distribution for capital costs was assumed, with \$116.4 million as the most likely value, \$92.8 million as the lower limit, and \$151.3 million as the upper limit. Using a random number generator to choose capital values from the triangular probability distribution, several hundred computer runs were then made to generate probability distributions for the DCFRR as a function of formed coke prices. Results are presented in Figure 8 and Table 5.

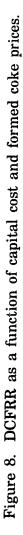
Shown are the DCFRR values for 10%, 25%, 50%, 75% and 90% probabilities. These may be interpreted as follows. For any given coke price, there is a 90% probability that the DCFRR will exceed the values on the lower line in Figure 8, a 75% probability that the DCFRR will exceed the values on the second lowest line, a 50% probability that the DCFRR will exceed the values on the middle (heaviest) line, etc. Thus the thickness of the lines in Figure 8 indicates, in a qualitative way, the likelihood of the actual project rate of return falling in the vicinity of the line. It is most likely to fall near the middle line and increasingly less likely to fall on the lines farther away from the middle.


Because cost overruns are more likely than cost underruns, the probable DCFRR is shifted toward the lower lines. Thus as seen in Table 5, the base-case rate of return (50% probability) at \$150 coke price is 7.9%, compared to 8.1% for the nominal case in Table 2.



	DCFRR, percent	
Nominal Electricity Price (\$0.05/kWh)		
Coke Price \$100/ton	2.7	
Coke Price \$150/ton	8.1	
Coke Price \$200/ton	12.0	
Increased Electricity Price (\$0.07/kWh)		
Coke Price \$100/ton	5.5	
Coke Price \$150/ton	10.1	
Coke Price \$200/ton	13.6	
Decreased Electricity Price (\$0.03/kWh)		
Coke Price \$100/ton	-1.0	
Coke Price \$150/ton	5.8	
Coke Price \$200/ton	10.3	


Electricity Price Sensitivity (discounted cash flow rate of return)



	DCFRR, percent
Nominal Coal Cost (\$20/ton)	
Coke Price \$100/ton	2.7
Coke Price \$150/ton	8.1
Coke Price \$200/ton	12.0
Decreased Coal Cost (\$15/ton)	
Coke Price \$100/ton	4.4
Coke Price \$150/ton	9.4
Coke Price \$200/ton	13.0
Increased Coal Cost (\$25/ton)	
Coke Price \$100/ton	0.8
Coke Price \$150/ton	6.8
Coke Price \$200/ton	11.0

Coal Cost Sensitivity (discounted cash flow rate of return)

	Probability, percent	DCFRR, percent
Formed coke Price \$100/ton	90	1.69
	75	2.09
	50	2.50
	25	2.96
	10	3.41
Formed coke Price \$150/ton	90	6.76
	75	7.33
	50	7.89
	25	8.51
	10	9.12
Formed coke Price \$200/ton	90	10.55
	75	11.19
	50	11.83
	25	12.53
	10	13.22

Probability Distribution on DCFRR as a Function of Capital Cost and Coke Prices (probability of reaching or exceeding the specified discounted cash flow rate of return) APPENDIX A

REFERENCES

REFERENCES

QUARTERLY TECHNICAL REPORTS: Ness, R.O., Jr. and/or Runge, B.D., et al., <u>Development of an Advanced, Continuous Mild Gasification Process for the Production</u> <u>of Co-Products</u>, Quarterly Technical Progress Report for the Period (ref. specific quarter, below), for U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, Morgantown, West Virginia by University of North Dakota, Energy and Environmental Research Center, Grand Forks, North Dakota, (ref. specific issue date, below).

- 1. Report for the Period July September 1989, issued November 1989.
- 2. Report for the Period October December 1989, issued February 1990.
- 3. Report for the Period January March 1990, issued April 1990.
- 4. Report for the Period April June 1990, issued August 1990.
- 5. Report for the Period July September 1990, issued October 1990.
- 6. Report for the Period October December 1990, issued February 1991.
- 7. Report for the Period January March 1991, issued May 1991.
- 8. Report for the Period April June 1991, issued July 1991.
- 9. Report for the Period July September 1991, issued October 1991.
- 10. Report for the Period October December 1991, issued January 1992.

MINUTES OF MONTHLY PROGRESS REVIEW MEETINGS attended by:

- University of North Dakota, Energy and Environmental Research Center (UND/EERC), Grand Forks, North Dakota
- AMAX Coal Company, Research & Development Center, Golden, Colorado
- Xytel-Bechtel, Inc. (XBi), Houston, Texas
- et al., as applicable
- 11. Conference Notes No. CN-001, 07 March 1991 Kickoff Meeting (Grand Forks, ND) with METC, 11 March 1991.
- 12. Conference Notes No. CN-002, 09/10 April 1991 Meeting (Houston, TX), 10 April 1991.
- 13. Conference Notes No. CN-003, 09/10 July 1991 Meeting (Grand Forks, ND), 15 July 1991.
- 14. Conference Notes No. CN-004, 06 November 1991 Meeting (Golden, CO) with Sinor, 11 November 1991.

- 15. Conference Notes No. CN-005, 12 December 1991 Meeting (Houston, TX), 17 December 1991.
- 16. Conference Notes No. CN-006, 21 January 1992 Meeting (Golden, CO) with Sinor, 24 January 1992.
- 17. Conference Notes No. CN-007, 20 February 1992 Meeting (Houston, TX), 25 February 1992.
- Conference Notes No. CN-008, 25 March 1992 Meeting (Houston, TX), 30 March 1992.

CORRESPONDENCE--UND/EERC ET AL. TO XBi: Letters, Faxes, etc.

- 21. Fax: R. Ness to R. Gravois, Subject: Scope of work for 1 t/h unit, 26 March 1991.
- 22. Fax: R. Ness to R. Gravois, Subject: Response to process design questions, 27 March 1991.
- 23. Fax: F. Hogsett (AMAX) to R. Gravois, Subject: Feed coal and char upgrading, philosophy and process description, 03 April 1991.
- 24. Fax: R. Ness to S. McFeely, Subject: Coal analysis, 12 April 1991.
- 25. Fax: R. Ness to S. McFeely, Subject: Carbonizer material balance, 22 April 1991.
- 25. Fax: R. Ness to S. McFeely, Subject: Stream splits from Calciner Cyclones and Fines Magnetic Separator, 26 April 1991.
- 26. Fax: L. Sharp to S. McFeely, Subject: Scope change, 06 May 1991.
- 27. Fax: R. Ness to S. McFeely, Subject: Scope change, 06 May 1991.
- 28. Fax: L. Sharp to S. McFeely, Subject: Liquids boiling point curve, 13 May 1991.
- 29. Fax: R. Shockey to S. McFeely, Subject: Meteorological data for Clay County, natural gas data, 11 July 1991.
- 30. Letter/Fax: L. Sharp to S. McFeely, Subject: Material balance (incomplete), ASTM curves, 18 July 1991.
- 31. Fax: R. Ness to S. McFeely, Subject: Block Flow Diagram, 25 July 1991.
- 32. Fax: L. Sharp to S. McFeely, Subject: Material balances around coal dryer, gravity tables, carbonizer, magnetic separators, calciner, 02 August 1991.

٩,

- 33. Fax: L. Sharp to S. McFeely, Subject: Revised balance around carbonizer, 05 August 1991.
- 34. Fax: L. Sharp to S. McFeely, Subject: Revised balances around coal dryer, gravity tables, carbonizer, magnetic separators, calciner, 07 August 1991.
- 35. Fax: L. Sharp to S. McFeely, Subject: Simulated ASTM distillation on calciner liquids, 07 August 1991.
- 36. Fax: B. Runge to S. McFeely, Subject: Request for calculation of piping heat loss, 17 October 1991.
- 37. Fax: B. Runge to S. McFeely, Subject: Carbonizer and Calciner residence time and particle size distribution, 28 October 1991.
- 38. Fax: B. Runge to S. McFeely, Subject: Revised balance around Calciner, 17 December 1991.
- 39. Letter: R. Ness to L. Cohen, Subject: Response to draft flowsheets, 03 January 1992.
- 40. letter: B. Young to L. Cohen, Subject: Briquetting plant flowsheet, 07 January 1992.

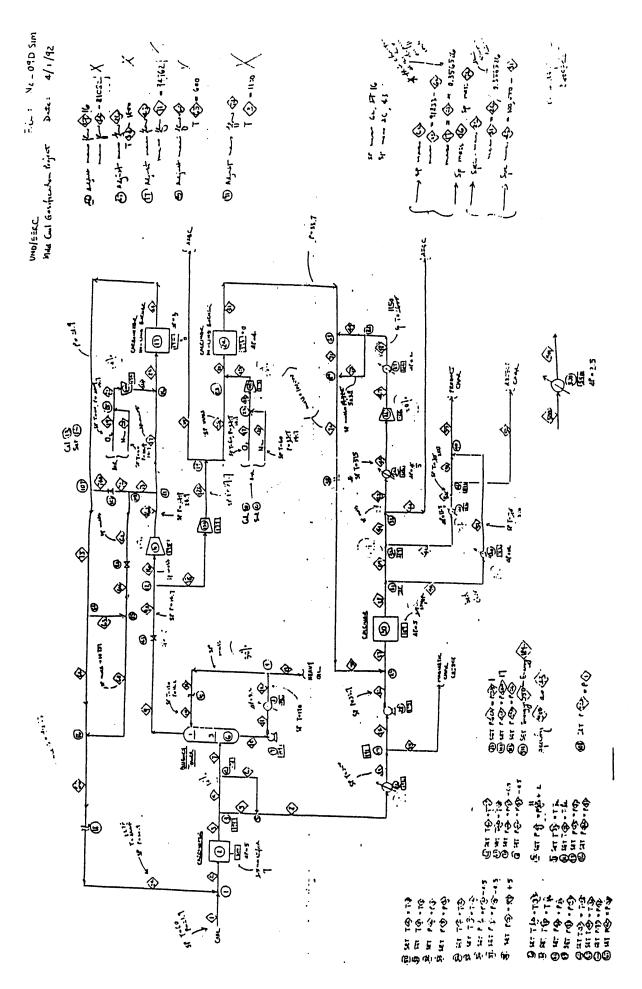
TELEPHONE CONFERENCES--UND/EERC ET AL. AND XBi:

- 41. L. Sharp and S. McFeely, Subject: Material Balance, 05 August 1991.
- 42. L. Sharp and J. Fong, Subject: Oil for Formcoke Binder, 19 September 1991.
- 43. B. Runge and J. Fong, Subject: Carbonizer Sizing Criteria, 15 October 1991.
- 44. B. Runge and S. McFeely, Subject: Calciner Gas Rate, 17 December 1991.

OTHER REFERENCES:

- 50. Edgar, T.F., <u>Coal Processing and Pollution Control</u>, Gulf Publishing Co., Houston, 1983.
- 51. Cheremisinoff, N.P. and Cheremisinoff, P.N., <u>Hydrodynamics of Gas-Solids</u> <u>Fluidization</u>, Gulf Publishing Co., Houston, 1984.
- 52. Kunii, D. and Levenspiel, O., <u>Fluidization Engineering</u>, Krieger Publishing Co., Huntington, New York, 1977.
- 53. Mathur, K.B. and Epstein, N., <u>Spouted Beds</u>, Academic Press, New York, 1974.

- 54. Yaverbaum, L., <u>Fluidized Bed Combustion of Coal and Waste Materials</u>, Noyes Data Corp., New Jersey, 1977.
- 55. Komanoff, C., <u>Power Plant Cost Escalation: Nuclear and Coal Capital Costs</u>, <u>Regulation, and Economics</u>, Van Nostrand Reinhold, New York, 1981.
- 56. Willson, W.G., Ness, R.O., Hendrickson, J.G., Entzminger, J.A., Jha, M., and Sinor, J.E., <u>Development of an Advanced</u>, <u>Continuous Mild Gasification</u> <u>Process for the Production of Co-Products</u>: <u>Literature Survey Results</u>, January 1988.
- 57. Sinor, J.E., <u>Development of an Advanced</u>, <u>Continuous Mild Gasification</u> <u>Process for the Production of Co-Products</u>: <u>Industrial Market Assessment of</u> <u>the Products of Mild Gasification</u>, January 1988.
- 58. Sinor, J.E., <u>Commercial Process Configurations for EMRC Mild Gasification</u> <u>Process</u>, February 1989.
- 59. Ness, R.O., <u>Development of an Advanced</u>, <u>Continuous Mild Gasification</u> <u>Process for the Production of Co-Products</u>, Final Technical Progress Report for the Period February 1988 - March 1989, December 1989.


		HOUSTON, TEXAS	77252-2166		CALC. NO	
SIGNATURE		ATE 11/11/191		·····	DATE	
PROJECT LIND LEESC	Mild Cont Oreit	which is a second secon	JOB NO			
SUBJECT Protour P	عالم المراجع		SHEET		IF SH	EETS
		1_(=)				
			· · · · · · · · · · · · · · · · · · ·			· -
AP -			-	····		.
the second secon				Q.		7
		46-13	******			
			••••			ĺ
	AP-1 WRNU	MFBC .	24 14 14	· · · · · · · · · · · · · · · · · · ·	•••••	
.	<u>-</u>			<u> </u>	to	
				S A d	N A _ H	· .
		<u> </u>	∆ <i>lc</i> =0.](
						≯
	<u>. </u>		<u> </u>	350	<u> </u>)
			······································	نة <u>لم</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	<u></u>	1	<u> </u>	۰ ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		10
			<u> </u>			75
4131.2						
			<u></u>			.
			· · · · · · · · · · · · · · · · · · ·	<u>₹</u>		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	Cedet	Cubi	
		· · · · · · · · · · · · · · · · · · ·			A WITH	• •
					41.7 VIT	- -
20-20-2 20-2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1-2/1			!			•
E C						
		=				
46-5 111	!		41=5 MCC	111	<u>i.</u> <u>-</u>	
		45.1		v =	Provent CHIN- CHIN-	1
-4- (C);(m,1)111	····	CIAN. (GALL		PRODUCT C 11/15		
. 🕄 🛐 .			· · · · · · · · · · · · · · · · · · ·	<u> </u>	1	
·· •···						
					ar uga -againa ang -	
			K			V
· Vr						
-90101 (9/85)						

A-5

	CALCULATION S P.0 BOX 2166	HEET	
	HOUSTON, TEXAS 7725	2-2166	CALC. NO
SIGNATURE	_ DATE _ 4/1/92 DIE	CXED	DATE
PROJECT UND / EER MILL			
SUBJECT Dans dans			
SUBJECT	SHE	t i OF	SHEETS
1			
2 File = N2_09D.SIM	#16.11 € 1.11	· • • • •	e den antipara anti-
	·· ·	••••	and the second second second second second second second second second second second second second second second
s stream \$7	A psia . with	den point = 151°F- m point = 217°F	
5	and de	~ jour= 217'F	·· • •
6		· · ···	· · · · ·
7 Stream (A) P= 14.	7 suis Water	dem point = 1477 .	
8	in den	dem point = 1477 point =188°F	
9		(
$\frac{10}{11} - \frac{1}{12}$		1	· · · · · · · ·
11	r para	ou point - 100.	
	Md	den point = 168"F	
	••••••••••••••••••••••••••••••••••••••		
13 \$AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1.7 para hister	dew point =_187°F لاس point =_217°F	· · · • •
14	~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	Lew. point =_217"F	
15			
16 (= 23	2 arie Later	dew point = 155"F	
17		den point = 155°F	
18		~ ? = 353"F.	
		· · · · · · · · · · · · · · · · · · ·	• • • • • •
19P= 33.	1. pera Lata	. den point = 115 -	
	of d	. den pont = 173"F hun pont = 363°F	• • • • • • • • • • • •
21	• ·		
22	waaraa a ah oo ah ah ah ah ah		· · • • · · • •
23			
24			
25			
26		•	
27		· · · ·	··· • • • • •
25			
29	n is i i i i i i	• •• • • • •	
		•··• •	
30			.
31			
32	•	. .	
33		•	
34			
33	·•		
36			
HG-90101 (9/85)			

A-6

..

A-7

Hyprotech's P Date 92/04/0 Time 14:33:3	•	HYSIN - Licana C1.51 Cas	ed to Bechtel Inc se Name N2_090.SIM
Unit Operatio		•	
Nix	1:-2	24	1
Stoc	Reaction 1 Reactants:	-3 20000 Psi 8aseComp: [N0 -1.000 [N0]CC	AL
	Products:	0.372 C3 0.088 Ethane 0.378 Proper	· · · · ·
Frac	3: 3	199	-4 -5
Frac	4: 4	198	-7 -6
Mix	5:-8	6	5
Colu	6: 7	15	-9 -10
Pump	7: 10 Efficiency:	-11 75.002	197
Cool	8:11 DP: 5	-12 .2000 Psi	-196
Tee	9: 12	-14	-13
Recy	10: 14 Max Numb Ite Wegstein Cn Vapfr Sen Press Sen Rel flow Sen	c: 3 s: 10.000 s: 10.000	
Comp	11: 16 Type: Adiaba Adiabatic Ef		195 Polytropic Eff: 76.46%
Tee	12: 9A	-18	-16
Calc	13: 17 OXYGEN	- 19	*
Set	14: Flow stream 19 =	of stream 20 3.7742 •	a 0.0000 Lbmole/h
Nix	15:-21	20	19
Mix	16:-22	21A	17
Stoc	Reaction 11 Reactants: Products: Reaction 21 Reactants: Products: Reaction 3	BaseComp: Etha -3.500 Oxygen	+ -1.000 Methane + 2.000 M20 ne Conversion: 100.00% + -1.000 Ethane + 3.000 M20 (ene Conversion: 100.00%

4

		Reaction 4				6	100 000
		Reactants:		Oxygen		Conversion: -1.000 Pr	
		Products:	3.000		+	4.000 HZ	
		Reaction 5	BaseCon	io: Prop	ene	Conversion:	
		Reactants:			+	-1.000 Pr	opene
		Products:	3.000		+	3.000 HZ	
		Reaction 6 Reactants:		Cinzs Cxygen		Conversion: -1.000 H2	
		Products:	1.000	i H20		1.000 50	
		Reaction 7	SaseCor	n: Hydro		Conversion:	
		Reactants:	-0.500	Oxygen	•	-1.000 Hy	
		Products:	1 000				
		Reaction 3	SaseCon	o: C3		Conversion:	
		xeactants:	-1.000	uxygen	•	-2.000 CO	
		Products:				•	100.00
		Reaction 9 Reactants:	17 17 179	D: 484()	1_224	Conversion:	
		Products:		cozygen	-	-1.000 NBH 6.073 H2	
		Reaction 10	SaseCon	D: NBP (1	1 369	Conversion:	
		Reactants:	-14.326	Oxygen	+	-1.000 NBI	
		Products:			+	6.576 820	
		Reaction 11	SaseCom	o: N8P (1	1_403	Conversion:	
		Reactants:	-15.429	Oxygen	•	-1.000 NB	
		Products:			* / 7 7	7.083 H20	
		Reaction 12 Reactants:	14 50T	D: NOP()	+		
		Products:			•	7.517 H20	
		Reaction 13					-
		Reactants:	-17.506	Oxygen	•	-1.000 NBF	2(1) 471
		Reactants: Products:	13.719	CO2	+	8.174 H20) –
		Reaction 14	BaseCom	p: NBP (1	1_506	Conversion:	
						-1.000 NBP	
		Products:			* =/ *	8.796 H20	
		Reaction 15 Reactants:			1_342 +	Conversion: -1.000 NBP	
		Products:			•	9.453 820	
		Reaction 16	BaseCom	a: NBP (1	1 574		
		Reactants:	-21.925	Oxygen	-	-1.300 NBP	11 574
		Products:	16.393	CO2	+	10.065 820	1
		Reaction 17	BaseCon	o: N8P (1	1_605	Conversion:	
		Reactants:	-23.300	Oxygen		-1.000 NBP	-
		Products:			• //• *	10.696 820	
		Reaction 18 Recctants:	- 36 370	D: NSP()	1_0+0	Conversion: -1.000 NBP	
		Products:			-	11.504 H20	
			17.411		-		•
Recy	18:	66	- 24				
		Max Numb Ite		15		Type:	Nested
		Wegstein Cn		3	-		
		Vapfr Sen:		10.0000		D Sens:	10.0000
		Press Sen: Rel Flaw Sen:		10.0000		n Sens: D Sens:	10.0000
		KEL FLUM JEIN	3.	0.3000		י משני א	4.4304
Tee	19:	18A	- 25		-25		
Calc		26	-27				
		OXYGEN					
Set	21.	Flow	of stre				
		stream 27 *				Lbmole/h	
				-			
Híx	22:-	29	28		27		
Mix	23:-	30	29A	•	25		
6100		70	. 7 •		107		
Stoc	24:	20	-31		193		

•

4.0000 Psi DP: Reaction 1 BaseComp: Methane Conversion: 100.00% Reactants: -2.000 Oxygen -1.000 Hethane Products: 1.000 CO2 2.000 H20 Reaction 2 BaseComp: Ethane Conversion: 100.00% + -1.000 Ethane + 3.000 H20 Reactants: -3.500 Oxygen 2.000 002 3.000 H20 Products: Reaction 3 BaseComp: Ethylene Conversion: 100.00% -1.000 Ethylene
 2.000 H20 Reactants: -3.000 Oxygen 2.000 CO2 Products: Reaction 4 BaseComp: Propane Conversion: 100.00% + -1.000 Propane + 4.000 H20 Reactants: -5.000 Oxygen Products: 3.000 CD2 Reaction 5 BaseComo: Prope :: 3.000 CD2 4.000 820 Conversion: 100.00% -1.000 Propene
- 3.000 H20 Reactants: -4.500 Oxygen Products: 3.000 002 Reaction 5 BaseComp: H2S Conversion: 100.00% + -1.000 H25 + 1.000 S02 Reactants: -1.500 Oxygen 1.000 H20 Products: Reaction 7 BaseComo: Hydrogen Conversion: 100.00% Reactants: -0.500 Oxygen + -1.000 Hydrogen Products: 1.000 H20 Reaction & BaseComp: CO Conversion: 100.00% + -2.000 CD Reactants: -1.000 Oxygen 2.000 CD2 Products: Reaction 9 BaseComp: NBP[1]_334 Conversion: 100.00% Reactants: -13.228 Oxygen + -1.000 H8P(1]_334 Products: 10.192 CO2 + 6.073 H2O Reaction 10 BaseComp: NBP[1]_369 Conversion: 100.00% Reactants: -14.326 Oxygen + -1.000 NBP(1) 369 Products: 11.037 CO2 + 6.576 H20 Reaction 11 BaseComp: N8P(1]_403 Conversion: 100.00% Reactants: -15.429 Oxygen + -1.000 NBP(1]_403 Products: 11.387 CD2 + 7.083 H20 Products: Reaction 12 BaseComo: NBP(1)_437 Conversion: 100.00% Reactants: -16.593 Oxygen - -1.000 xBP(1]_437 Products: 12.784 CO2 + 7.517 H20 Reaction 13 BaseComp: NBP(1]_471 Conversion: 100.00% Reactants: -17.806 0xygen + -1.000 NBP (1]_471 Products: 13.719 CO2 + 8.174 H20 Reaction 14 BaseComp: NBP(11_506 Conversion: 100.00% Reactants: -19.161 0xygen + -1.000 NBP(1)_506 Products: 14.763 CD2 + 8.796 H20 Reaction 15 BaseComp: NBP(1]_542 Conversion: 100.00% Reactants: -20.592 Oxygen + -1.000 NBP(1]_542 Products: 15.866 CO2 + 9.453 H20 Reaction 16 BaseComp: NBP[1]_574 Conversion: 100.002 Reactants: -21.925 Oxygen + -1.000 N8P(1]_574 Products: 16.893 CO2 + 10.065 H20 Products: Reaction 17 BaseComo: NBP(1]_605 Conversion: 100.002 + -1.000 NBP(11_605 + 10.596 H20 Reactants: -23.300 Oxygen 17.952 002 Products: Reaction 18 BaseComp: NBP[1]_648 Conversion: 100.00% + -1.000 NBP[1]_648 + 11.604 N20 Reactants: -25.279 Oxygen Products: 19.477 CO2 26: 8 - 192 • 33 0.0000 Psi DP: •35 27: 33 191 -34 190 28: 34 -36 Efficiency: 75.00%

36

Mix 29:-37 50

Cool

Frac

Pump

A-10

Stoc	30: 37 -38 -189 0P: 5.0000 Psi Reaction 1 BaseComp: CARE_CHAR Conversion: 100.00% Reactants: -1.000 CARE_CHAR Products: 0.132 CD + 0.231 Nethane + 0.004 Ethane 0.001 Ethylene + 0.030 Propane
Frac	31: 38 188 -39 -40
Frac	32: 39 <u>187</u> -41 -42
Tee	33: 41 -44 -43
Cool	34: 43 -45 -186 DP: 5.0000 Psi
Comp	36: 45 -47 185 Type: Adiabatic Adiabatic Eff: 75.00% Polytropic Eff: 76.29%
Cool	37: 47 -48 184 DP: 2.0000 Psi
Recy	38: 72 -50 Max Numb Iter: 10 Type: Nested Wegstein Cnt: 3 VapFr Sens: 10.0000 Temp Sens: 10.0000 Press Sens: 10.0000 Enth Sens: 10.0000 Rei Flow Sens: 0.5000 Rei Comp Sens: 0.0500
Mix	39:-71 49 31
Cool	40: 40 -51 -183 DP: 14.0000 Psi
Cool	41: 42 -52 -182 DP: 13.5000 Psi
Frac	42: 52 181 -53 -54
Valv	43: 9 -9A
Adju	46: (ignored) Adj Var: Mass_Flow of stream 16 Dep Var: Mass_Flow of stream 64 Target: 81082.00 Lb/hr Tol: 1.0000 Lb/hr Step: 500.0000 Lb/hr Type: Simultaneous
Adju	47: (ignored) Adj Var: Mass_Flow of stream 26 Dep Var: Temperature of stream 38 Target: 1800.00 F Tol: 1.0000 F Step: 100.0000 Lb/hr Type: Simultaneous
Hix	49:-55 53 51
Set	50: Temperature of stream 4 = stream 3 * 1.0000 + 0.0000 F
Set	51: Temperature of stream 5 = stream 3 = 1.0000 + 0.0000 F
Set	52: Pressure of stream 4 = stream 3 = 1.0000 + 0.0000 Psi

Set	53: Pressure of stream 5 = stream 3 ° 1.0000 + 0.0000 Psi
Set	54: (ignored) Temperature of stream 6 = stream 4 * 1.0000 + 0.0000 F
Set	55: Temperature of stream 7 = stream 4 = 1.0000 + 0.0000 F
Set	56: Pressure of stream 6 = stream 4 * 1.0000 - 0.5000 Psi
	57: Pressure of stream 7 = stream 4 ₹ 1.0000 - 0.5000 Psi
	58: Pressure of stream 11 = stream 7 = 1.0000 + 5.0000 Psi
	60: Temperature of stream 34 = stream 33 = 1.0000 + 0.0000 F
	61: Temperature of stream 35 = stream 33 = 1.0000 + 0.0000 F
	62: Pressure of stream 34 = stream 33 = 1.0000 + 0.0000 Psi
	63: Pressure of stream 35 = stream 33 = 1.0000 + 0.0000 Psi
Set	64: Temperature of stream 39 = stream 38 * 1.0000 + 0.0000 F
•	65: Temperature of stream 40 = stream 38 = 1.0000 + 0.0000 F
Set	66: Pressure of stream 39 = stream 38 = 1.0000 + 0.0000 Psi 67: Breesure of stream (0 s
Set	67: Pressure of stream 40 = stream 38 * 1.0000 + 0.0000 Psi 68: Temperature of stream 41 =
Set	stream 39 * 1.0000 + 0.0000 F
Set	Stream 37 * 1.0000 + 0.0000 F 70: Pressure of stream 41 =
Set	stream 39 * 1.0000 · 0.5000 Psi
Set	71: Pressure of stream 42 = stream 39 * 1.0000 - 0.5000 Psi 72: Pressure of stream 47 =
Set	73: Temperature of stream 53 =
Set	stream 52 " 1.0000 + 0.0000 F
Set	74: Temperature of stream 54 = stream 52 * 1.0000 + 0.0000 F 75: Pressure of stream 53 =
JEL	75: Pressure of stream 53 * stream 52 * 1.0000 + 0.0000 Psi

Sec	76: Pressure of stream 54 = stream 52 = 1.0000 + 0.0000 Psi
Adju	77: (ignored) Adj Var: Mass_Flow of stream 43 Dep Var: Mass_Flow of stream 71 Target: 94762.00 Lb/hr Tol: 1.2248 Lb/hr Step: 100.0000 Lb/hr Type: Simultaneous
Tee	81: 16A -73 -17
Valv	82: 62 -62A
Set	83: Pressure of stream 62A = stream 1 ° 1.0000 - 0.0000 Psi
Tee	84: 75 -63 -64
Nix	85 : - 65 62A 63
Nix	86:-66 65 64
Tee	88: 48 -49 -70
Mix	89:-72 71 70
Adju	90: (ignored) Adj Var: Mass_flow of stream 62 Dep Var: Temperature of stream 65 Target: 600.00 F Tol: 1.0000 F Step: 500.0000 Lb/hr Type: Simultaneous
Adju	91: (ignored) Adj Var: Mass_Flow of stream 74 Dep Var: Temperature of stream 3 Target: 1100.00 F Tol: 1.0000 F Step: 100.0000 Lb/hr Type: Simultaneous
Comp	100: 21 -21A 179 Type: Adiabatic Adiabatic Eff: 75.00% Polytropic Eff: 76.77%
Сопр	101: 29 -29A 178 Type: Adiabatic Adiabatic Eff: 75.00% Polytropic Eff: 78.02%
Set	102: Pressure of stream 21A = stream 17 = 1.0000 + 0.0000 Psi
Set	103: Pressure of stream 29A = stream 26 = 1.0000 + 0.0000 Psi
Comp	104:18 -18A 177 Type: Adiabatic Adiabatic Eff: 75.00% Polytropic Eff: 77.46%
Tee	105: 73 -62 -74
Valv	106: 74 -74A
Nix	107:-75 74A Z3
Set	108: Pressure of stream 74A =
Cool	500: 500 -501 -550

Sen: 501: Energy_Flow of streem 550 = streem 184 * 1.0000 + 0.0000 &tu/hr

• .

..

Hyprot	ech's Proces	s Simulator HYSIM -	Licensed to Bechtel Inc
	92/04/01	Version 386 [C1.51	Case Name H2_090.SIM
Time	14:33:37	Prop Pkg PR	

Stream		1	2	2	4	5	6	7	3
Description									
Vapour frac	•	0.0000	0.9481	0.9383	0.9935	0.0000	0.0000	1.0000	0.0000
Tenperature	F	60.0000-	1024.8637	1100.6667	1100.6667	1100.5667	1100.6052	1100.6667	1100.5606
Pressure	Psia	21.8960-	21.8960	16.8960	16.8960	16.8960	16.3960	16.3960	16.3960
Holar Flow	Lbmole/hr	491.1700	3803.2617	4377.5601	4134.6541	243.2057	27.0260	4107.6281	270.2317
Mass Flow	Lb/hr	64506.0018*	156339.1746	156341.1725	118460.3057	37880.8538	4209.2004	114251.1043	42090.0553
Ligvol Flow		3398.0364	11105.3295	13482.4132	10597.5348	2884.8769	320.5529	10276.9819	3205.4298
Enthalpy	Stu/hr	6.44791E+36	8.33271E-07	3.20009E+07	6.13626E+07		2.29318E+06	5.906948-07	2.293142-07
Density	Lbmole/ft3	0.6189	0.0014	0.0011	0.0010	0.3604	0.3604	0.0010	0.3604
Hole Wt.		131.3313	41.1066	35.7118	28.6506	155.7564	155.7466	27.3144	155.7554
Spec. Heat	Stu/lbmole-F	61.0919	18.3895	15.2639	11,7999	74.1549	74.1500	11.3895	74.1544
Therm Cond	Stu/hr-ft-f	0.0425			•••			0.0422	
Viscosity	Ca	3.8684		•••			•••	0.0345	
Z Factor	~	0.0063				0.0028	0.0027	1.0002	0.0027
Sur Tension	Nume/cm	73.7276							•••
Std Density	•	81.2872				56.1294	56.1303	•••	56.1295
IND COAL	Lb/hr	52778.0011*	52777.9998	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	Lb/hr	0.0000-	60912.5829	60912.5813	60912.5819	0.0000	0.0000	50912.5805	0.0000
Oxygen	Lb/hr	0.0000*	0.0131	0.0131	0.0131	0.0000	0.0000	0.0131	- 0.0000
C	Lb/hr	0.0000-	254.8619	1355.8966	1355.8966	0.0000	0.0000	1355.3966	0.0000
coz	Lb/hr	0.0000*	14954.4282	14954.4277	14954 4279	0.0000	0.0000	14954.4276	0.0000
Hethane	Lb/hr	0.0000*	301.6070	1604.5988	1604.5989	0.0000	0.0000	1604.5989	0.0000
Ethane	Lb/hr	0.0000*	64.3474	342.3473	342.3473	0.0000	0.0000	342.3473	0.0000
••••••		0.0000-	15.5082	82.5076	82.5076	0.0000	0.0000	82.5076	0.0000
Ethylene	Lb/hr	0.0000-	730.9320	3888.9337	3888.9336	0.0000	0.0000	3888.9336	0.0000
Propane	Lb/hr Lb/hr	0.0000-	17.8219	94.8211	94.3211	0.0000	0.0000	94.3211	0.0000
Propene		0.0000*	254.9298	1515.9297	1515.9298	0.0000	0.0000	1515.9298	0.0000
HZS	Lb/hr	5290.0006*	17362.7498	17362.7498	17362.7495	0.0000	0.0000	17362.7494	0.0000
H20	Lb/hr	0.0000*	0.0000	35652.0570	3565.2057	32086.8515	3565.2056	0.0000	35652.0559
CARS_CHAR	L5/hr	6438_0009 -	6438.0010	5438.0006	، 2001. كىنى 2001. كىنى	5794.0006	0001.2050	0.0000	6438.0009
ASH	Lb/hr	0.0000*	95.5995	508.5995	508.5995	0.0000	0.0000	508.5995	0.0000
Hydrogen	Lb/hr	0.0000*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CALC_CHAR	Lb/hr	0.0000*	229.8591	1278.4829	1278.4829	0.0000	0.0000	1278.4829	0.0000
N8P [1] _334	Lb/hr	0.0000-	240.7124	1485.7649	1485.7649	0.0000	0.0000	1485.7649	0.0000
NBP [1] _369	Lb/hr	0.0000*	228.2993	1698.8390	1698.8390	0.0000	0.0000	1698.3390	0.0000
NBP [1] 403	Lb/hr	0.0000-	158.5984	1607.6374	1607.6375	0.0000	0.0000	1607.5375	0.0000
NBP (1]_437	Lb/hr	0.0000-	72.3689	1185.5434	1185.5434	0.0000	0.0000	1185.5434	0.0000
NBP (1] 471	Lb/hr	0.0000-	28.8947	933.2022	933.2022	0.0000	0.0000	933.2022	0.0000
NBP [1] 506	Lb/hr	0.0000*	13.4795	1005.2705	1005.2706	0.0000	0.0000	1005.2705	0.0000
NBP (11 542	Lb/hr		4.4089	753.4999	753.4999	0.0000	0.0000	753.4999	0.0000
NBP [1] 574	Lb/hr	0.0000-	0.8778	359.0956	359.0956	0.0000	0.0000	359.0956	0.0000
NBP [1]_605	Lb/hr		0.1163	170.6941	170.6941	0.0000	0.0000	170.5941	0.0000
NBP (1] _648	Lb/hr	0.0000-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] 225	Lb/hr	0.0000-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] _301	Lb/hr	0.0000-		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] _363	Lb/hr	0.0000-	0.0000			0.0000	0.0000	0.0000	0.0000
NBP [2] 427	Lb/hr	0.0000-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [2] _494	Lb/hr	0.0000-	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
NBP [2] 559	Lb/hr	0.0000-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [2]_630	Lb/hr	0.0000-	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
NBP [2] _697	Lb/hr	0.0000-	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000
NBP [2] 767	Lb/hr	0.0000*	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
NBP (2] 901	Lb/hr	0.0000*	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO2	Lb/hr	0.0000-	1149.6723	1149.6723	1149.6722	0.0000	0.0000 4209.2004	1149.5722	42090.0553
Total:	LD/hr	64506.0018-	120224.1140	156341.1725	118460.3057	37880.8538	-207.2004		

-

Hyprot	ech's Proces	s Simulator HYSIM •	Licensed to Bechtel Inc
Oate	92/04/01	Version 386 C1.51	Case Name N2 090.SIM
Time	14:33:37	Prop Pkg PR	-

-

Stream		9	9A	10	11	12	13	14	15
Description							•		
Vapour frac		1.0000	1.0000	0.0000			0.0000	0.0000	
Temperature		191.1279	191.0173	357.0599			170.0000	170.0000	
Pressure	Psia	16.1960	14.6960*				16.1960	16.1960	
Molar Flow	• •	4079.8513	4079.8513	1933.2271	1933.2271	1933.2271	27.7924	1905.4348	
Mass Flow	Lb/hr	108975.3587		367135.7583				361857.7736	
- •	Barrel/day	9839.3729	9839.3728	30453.5347			437.8047	30015.7310	
Enthalpy	Btu/hr		2.325142+07	3.27739E-J7					-6.048125-06
Density	Lbmole/ft3	0.0023	0.0021	0.2315	0.2315	0.2574	0.2574	0.2574	0.2574
Male Vt.		26.7106	26.7106	189.9082	189.9082	189.9082	189.9082	189.9082	-
	Stu/lbmole-F		8.3796	117.7925	117.7885	97.3303	97.3303	97.3303	
Therm Cand		0.0185	0.0184	0.0552	0.0552	0.0663	0.0663	0.0663	0.0663
Viscosity	Cp	0.0169	0.0169	0.3499	0.3499	1.1037	1.1037	1.1037	
Z Factor	•	0.9977	0.9979	0.0081	0.0105	0.0093	0.0093	0.0093	0.0093
Sur Tension		•••	···	15.5282	15.5272	23.7130	23.7130	23.7130	23.7130
Std Density				51.5770	51.5770	51.5770	51.5770	51.5770	51.5770
IND_COAL	Lb/hr	0.0000	0.0000 50911.9644	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*
Nitrogen	Lb/hr			42.9056 0.0000	42.9056	42.9056	0.6168	42.2888	42.2894 -
Cxygen CC	Lb/hr	0.0131	0.0131		0.0000	0.0000	0.0000	0.0000	· 0.0000 ·
CD2	Lb/hr Lb/hr	1355.8823	1355.8823 14953.9989	0.9978 29.9143	0.9978 29.9143	0.9978 29.9143	0.0143 0.4301	0.9834	0.9835-
Methane	Lb/hr	1604.5693	1604.5693	2.0655	2.0655	29.9143	0.0297	29.4843 2.0358	29 .4849* 2. 0359*
Ethane	Lb/hr	342.3324	342.3324	1.0415	1.0415	1.0415	0.0297	1.0266	1.0256*
Ethylene	Lb/hr	82.5047	82.5047	0.2033	0.2033	0.2033	0.0029	0.2004	0.2004-
Propane	Lb/hr	3888.5065	3888.6065	22.8099	22.3099	22.3099	0.3279	22.4819	22.4825
Propene	Lb/hr	94.3139	94.3139	0.5058	0.5058	0.5058	0.0073	0.4985	0.4985
H2S	Lb/hr	1515.8456	1515.8456	5.3671	5.3671	5.8671	0.0843	5.7827	5.7823-
H20	Lb/hr	17362.1727	17362.1727	40.2043	40.2043	40.2043	0.5780	39.6264	39.6272*
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*
ASH	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	a.3000-
Hydrogen	L5/hr	508.5958	508.5958	0.2591	0.2591	0.2591	0.0037	0.2554	0.2554*
CALC_CHAR	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*
	Lb/hr	1223.9620	1223.9620	3842.2173	3842.2173	3842.2173	55.2363	3786,9811	3787.5965
	Lb/hr	1281.4601	1281.4601	14292.7216	14292.7216	14292.7216	205.4744	14087.2477	14088.4170*
	Lb/hr	1214.1678	1214.1678	33688.8168	33688.8168	33688.8168	484.3156	33204.5024	33204.1453*
	Lb/hr	843.3906	843.3906	53183.9796	53183.9796	53183.9796	764.5811	52419.4004	52419.7323*
	L5/hr	387.4800	387.4800	55532.3204	55532.3204	55532.3204	798.3412	54733.9811	54734.2583*
	Lb/hr	153.6486	153.6486	54232.3920	54232.3920	54232.3920	779.6532	53452.7407	53452.8405*
	Lb/hr	71.6767	71.6767	64942.3009	54942.8009	64942.8009	933.6277	64009.1754	64009.2041*
	Lb/hr	23.4439	23.4439	50781.9395	50781.9395	50781.9395	730.0490	50051.8922	50051.3829*
	Lb/hr	4.6677	4.6677	24653.1623	24653.1623	24653.1623	354.4177	24298.7455	24298.7341*
	Lb/hr	0.6184	0.6184	11829.3706	11829.8706	11829.8706	170.0680	11659.8029	11659.7946*
NBP (2] 225	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
NBP (2] 301	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
NBP (2] 363	Lb/hr	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000-
NBP [2] 427	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000+
NBP (2] _494	Lb/hr	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000-
NBP (2] 559	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
NBP [2] 697	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*
	L5/hr	1149.5465	1149.5465	8.7610	8.7610	8.7610	0.1259	8.5350	8.4353*
Total:	Lb/hr	108975.3587	108975.3587	367135.7583	367135.7583	367135.7583	5278.0002*	361857.7736	361860.0127*

Hyprot	ech's Proces	s Simulator HYSIM -	Licensed to Bechtel Inc
Date	92/04/01	Version 386{C1.51	Case Name N2_090.SIM
Time	14:33:37	Prop Pkg PR	-

Stream Description	_	16	16A	17	18	18A	19	20	21
Vapour frac		1.0000	1 0000						
Tencerature			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Pressure		191.0173	304.9376	304.9376	191.0173	402.0992	60.0000*		60.0025
Molar Flow	Psia	14.6960	24.8960*		14.6960	37.5960-		14.6960*	14.5960
Mass Flow		1719.2598	1719.2598	952.3365	2360.5916	2360.5916	333.3513	1258.1276	1591.4789
	Lb/hr Garrel/day	45922.4983*		25437.4994		63052.3690	10667.2402	35243.9283	45911.1696
Enthaloy	Bty/hr	4146.3370	4146.3370	2296.7488	5693.0358	5693.0358	542.0224	2992.7198	3634.7424
Density	Lbmole/ft3	8.534012+06	1.01937E-07		1.17174E+07		1.20000E+06	4.53474E-06	5.734742-06
Hole Vt.	compley rts	0.0021	0.0030	0.0030	0.0021	0.0041	0.0026	0.0026	0.0025
	Stu/lbmole-F	26.7106 8.3796	26.7106	26.7106	26.7106	26.7106	32.0000	28.0130	23.3481
	Stu/hr-ft-F	0.0184	8.5525	8.6525	8.3796	8.3876	6.9984	5.9509	6.7607
Viscosity	Cp	0.0169	0.0215	0.0215	0.0184	0.0241	0.0148	0.0145	0.0146
Z Factor		0.9979	0.0198	0.0198	0.0169	0.0220	0.0204	0.0179	0.0184
Sur Tension		0.9979	0.9982	0.9982	0.9979	0.9985	0.9989	0.9994	0.9993
Std Density			•••		•••	•••	• • •	•••	
IND COAL	Lb/hr	0.0000			•••	•••		•••	•••
Nitrogen	Lb/hr		0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
-	Lb/hr	25668.4583	25668.4583	14218.3333	35243.5080	35243.5080	0.0000*		35243.9223
Oxygen CD	Lb/hr	0.0055	0.0055	0.0031	0.0076	0.0076	10667.2402*	0.0000-	10667.2405
<u> </u>	Lb/hr	571.3723	571.3723	316.4959	784.5101	784.5101	0.0000-	0.0000+	0.0000
		6301.6536	6301.6536	3490.6269	8652.3458	8652.3458	0.0000-	0.0000-	0.000
Methane	Lb/hr	676.1696	676.1696	374.5455	928.3997	928.3997	0.0000-	0.0000*	0.000
Ethane	Lb/hr	144.2597	144.2597	79.9087	198.0726	198.0725	0.0000*	0.0000-	0,0000
Ethylene	Lb/hr	34.7677	34.7677	19.2586	47.7370	47.7370	0.0000-	0.0000-	0.0000
Propane	Lb/hr	1638.6688	1638.6688	907.6953	2249.9378	2249.9378	0.0000*	0.0000-	0.0000
Propene	Lb/hr	39.9548	39.9548	22.1319	54.8591	54.8591	0.0000-	0.0000-	0.0000
HZS	Lb/hr	638.7812	638.7812	353.8352	877.0644	877.0644	0.0000-	0.0000-	0.0000
H20	Lb/hr	7316.4642	7316.4642	4052.7532	10045.7091	10045.7091	0.0000-	0.0000-	0.0000
CARB_CHAR	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
ASH	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
Hydrogen	Lb/hr	214.3236	214.3236	118.7186	294.2722	294.2722	0.0000-	0.0000-	0.3000
CALC_CHAR	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
NBP (1]_334	Lb/hr	515.7807	515.7807	285.7025	708.1813	708.1813	0.0000-	0.0000-	0.0000
NBP [1]_369	Lb/hr	540.0106	540.0106	299.1239	741.4495	741.4495	0.0000-	0.0000-	0.0000
NBP [1] _403	Lb/hr	511.6534	511.6534	283.4163	702.5144	702.5144	0.0000*	0.0000-	0.0000
NBP [1]_437	Lb/hr	355.4070	355.4070	196.8679	487.9837	487.9837	0.0000*	0.0000-	0.0000
NBP (1] 471	Lb/hr	163.2850	163.2850	90.4472	224.1949	224.1949	0.0000-	0.0000-	0.0000
	Lb/hr	64.7479	64.7479	35.8653	88,9007	88.9007	0.0000*	0.0000-	0.0000
	Lb/hr	30.2047	30.2047	16.7311	41.4719	41.4719	0.0000*	0.0000-	0.0000
	Lb/hr	9.8793	9.8793	5.4724	13.5646	13.5646	0.0000-	0.0000-	0.000
	Lb/hr	1.9670	1.9670	1.0896	2.7007	2.7007	0.0000+	0.0000+	0.0000
	Lb/hr	0.2606	0.2606	0.1444	0.3578	0.3578	0.0000=	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.3000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
	Lb/hr	0.000	0.0000	0.000	0.0000	0.0000	0.0000*	0.0000-	0.0000
	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000*	0.0000*	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.000	0.0000	0.0000-	0.0000-	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000-	0.0000
	L5/hr	484.4218	484.4218	268.3321	665.1247	665.1247	0.0000-	0.0000-	0.3000
Total:	LD/hr	45922.4983*	45922.4983	25437.4994	53052 .86 90	63052.8690	10667.2402	35243.9283	45911.1696

Hyprot	ech's Proces	s Simulator HYSIN -	Licensed	to Bechtel Inc
	92/04/01 14:33:37	Version 386/C1.51 Prop Pkg PR	Case	Name N2_090.SIM

Description 1,000	Stream	21A	22	23	24	25	26	27	25
Temestruce F 172.023 228.3721 228.3722 228.3722 4.02.0002 4.01.0000 4.01.0000 Metar Flow Lbm(e/hr 1591.789 25.3843 21.9840 37.4640 37.4640 14.4960 14.4960 Itary Lbm(e/hr 1591.789 254.3153 255.1623 312.011* 1427.050 251.4526 231.111 229.42572 201.4572 588.3221 277.24.178 Gentity Lbm(e/ft3 0.0037 0.0034 0.0004 0.0001* 077.017 358.3784 201.4572 588.3221 277.24.178 Mete V: Lbm(e/ft3 0.0037 0.0034 0.0004 0.0004 0.0001* 0.0024 0.1025 Spec. Hest Stu/hr ft-ft3 0.0037 0.0334 9.3022 9.7726 8.2170 8.2201 0.0002 0.0024 0.0125 Temestrue Stu/hr ft-ft3 0.0171 0.1280 0.0241 0.0124 0.0175 0.0224 0.0175 Temestrue Stu/hr ft-ft3 0.0171 0.0136 0.0200* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	Description								
Pressure Psia 22.8960 21.9960 37.9960								1.0000	1.0000
Hease Flow Limne (v/m 1991 (-789 2253, 2162 332 (-2018 1427, 2030 322 (-2028) 332 (-2018) 1152 (-2028) Liqvot Flow Barret/Casy IA33 (-723 F7134, 1648 F7144, 1647 F7144, 1648 <					2236.9123*		402.0992	60.0000 -	60.000C*
Hess Flow LL/hr 45911.1696 7124.3643 7124.2172 19723.2672 2310.0001* 9773.275 12296.1255 Gentsity Btruthre 6.97902E-06 1.222244-07 7.33722-07 1.30832-07 5.911.046-06 1.39932E-06 1.00254 0.0221 0.0226 0.0226 0.0221 0.0226 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>14.6960-</td><td>14.6960*</td></td<>								14.6960-	14.6960*
Hess Flaw Lb/hr C5911.1676 7134.3422 7134.3423 7134.3424 7134.715 33742.3624 2331.0001* 9777.373 5188.J378 2104.6572 581.221 272.22.1188 Enthalay Buruha 6.97992E-06 1.222424-07 7.337224-07 1.3033E-07 5.91404E-06 3.9024E-06 3.9024E-06 3.0023 Mele VI. 2.83431 28.0477 28.0329 27.7264 26.7106 26.7106 32.0000 28.0122 Spec. Keet Btru/Innet+ft-F 0.0170 0.0184 0.0541 0.0221 0.0120 2.01200 2.0100 2.0120 <	Molar Flow Lbmole/hr				3312.0918-	1487.9050	872.6866	305.4710	1152.9025
Liquei flow Barrel/Cary 3345,7242 5931.912 5857.7256 7707.2376 7368.210 4372 588.3261 274.2 1768 588.726-0 4155.772-039 588.210 10.0007 5.00000 5.00007 5.00000 5.00007 5.0000	Mass Flow Lb/hr	45911.1696	71348.6668	71348.2147	91833.1725	39742.8667	23310.0001=	9775.0715	
Enthairy Stu/hr 6.97992E-06 1.28242E-07 7.3192E-07 5.91406-06 1.39942E-06 1.139942E-06 1.13942E-06	LiqVol Flow Barrel/day	3634.7424	5931.4912	5857.7256	7707.2936	3588.3788	2104.6572	588.3261	
Generativy Limmeleyfc3 0.0037 0.0037 0.0034 0.0004 0.0001 0.0011 0.0014 0.00141 0.0024 0.0023 Spec, Heat Stu/Interf 7.0003 7.5645 9.3302 9.9733 8.3876 6.9784 6.9784 6.9750 Therm Grand Stu/Interf 0.0211 0.0221 0.0221 0.0214 0.0141 0.0121 0.0121 0.0121 0.0221 0.0221 0.0121 0.0121 0.0221 0.0121 0.0111 0.0221 0.0221 0.0111 0.0221 0.0000 0.0222 0.0221 0.0221 0.0221 0.0221	Enthalpy Stu/hr	6.97992E-06	1.252648+07	7.233448+07	7.587925+07	1.00833E+07	5.91406E+06	1.39963E+06	
Hole Ut. 28. 34-31 28. 34-37 28. 30-37 27. 7246 28. 7106 28. 7106 12. 0000 28. 1130 Spec. Hear Stu/Lhrole F 0.0037 0.5645 9. 3302 9. 9710 8. 3876 6. 5996 6. 5996 6. 5996 6. 5996 6. 5996 0.0221 0.0221 0.0143 0.0115 Viscosi (r 0. 9997 0.0221 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0224 0.0225 0.0265 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9996 0.9000 0.0000	Density Lbmole/ft3	0.0037	0.0034	0.0006	0.0008	0.0041	0.0041	0.0026	
Spec, Heat Sturkhort T.0003 T.5645 9.3802 9.9730 8.8276 8.3876 6.3876 6.3976 6.3986 6.3986 7.5645 9.3802 9.9730 8.8276 8.3876 6.3976 6.3986 7.5645 9.3021 0.0221 0.0221 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0200 0.0200 0.9996	Hole Wt.	28.3481	28.0479	28.0329	27.7266	26.7106	26.7106		
Therm Cand Studyn-ft-f 0.0146 0.0431 0.0241 0.0241 0.0241 0.0143 0.0143 Viscosity Cp 0.1213 0.0209 0.0846 0.0558 0.0220 0.0224 0.0177 Zisator 0.9998 0.9990 1.0002 1.0003 0.9985 0.9989 0.9992 Sur Tension Oyne/cm	Spec. Heat Stu/lbmole-F	7.0008	7.5685	9.3802			8.3876		
Viscosity Cp 0.2213 0.0209 0.02858 0.0222 0.0222 0.0224 0.0177 Surfersion Dyme/cm <td>Therm Cond Stu/hr-ft-F</td> <td>0.0170</td> <td>0.0186</td> <td>0.0481</td> <td>0.0541</td> <td>0.0241</td> <td>0.0241</td> <td></td> <td></td>	Therm Cond Stu/hr-ft-F	0.0170	0.0186	0.0481	0.0541	0.0241	0.0241		
Z Factor 0.9998 0.9996 1.0002 1.0003 0.9965 0.0000 0.000	Viscosity Co	0.0213	0.0209	0.0686	0.0558	0.0220	0.0220		
Std Density Lb/ht	Z Factor	0.9998	0,9990	1.0002					
Tub Ccal, Layhr 0.00000 0.0000 0.0000 <	Sur Tension Dyne/cm					•••	• • •	• • •	
Nitrogen Lb/hr 35243.9283 49442.2428 49462.2439 49012.881* 2214.3439 103021.142 10000* 32296.257* Gxygen Lb/hr 10667.2433 0.0107 0.0131* 0.0043 0.0028 9775.071* 0.0000* C2 Lb/hr 0.0000 316.4979 12143.5030 1494.4247 290.233 0.0000* 0.0000* C22 Lb/hr 0.0000 375.4555 0.0019 311.4970* 543.1487 0.0000* 0.0000* Ethane Lb/hr 0.0000 179.555 0.0011 15.5082* 30.091 17.4579 0.0000* 0.0000* 0.0000* Propane Lb/hr 0.0000 97.4552 0.0001 15.5082* 30.091 17.4579 0.0000* 0.0000* 0.0000* Propene Lb/hr 0.0000 373.3332 0.0011 178.219* 34.2189 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	Std Density Lb/ft3	•••	•••	• • •				•••	
Hitrogen Lb/hr 55243.9283 49442.2829 60912.8311 2224.343 13029.1422 0.0000 12266.2572 Grygen Lb/hr 0.0000 316.4959 0.0014 254.4319 494.4247 290.0253 0.0000 </td <td>IND_COAL Lb/hr</td> <td>0.0000</td> <td>0_0000</td> <td>0.0000</td> <td>0.0000*</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000-</td> <td>0.0000-</td>	IND_COAL Lb/hr	0.0000	0_0000	0.0000	0.0000*	0.0000	0.0000	0.0000-	0.0000-
CD Lb/hr 0.0000 316.4959 0.0016 254.4817 290<0253 0.0000 0.0000 CD2 Lb/hr 0.0000 3490.4270 12143.5030 14954.4284 5453.6421 3198.8837 0.0000 0.0000 Ethane Lb/hr 0.0000 74.5455 0.0011 15.5022 30.0891 17.4479 0.0000 0.0000 0.0000 Ethane Lb/hr 0.0000 79.987 0.0004 64.3474 124.8472 73.2254 0.0000 0.	Nitrogen Lb/hr	35243.9283	49462.2628	49462.2639	50912.5811*	22214.3439		0.0000-	32296.2572*
CD2 Lb/hr 0.0000 3490.4270 12143.53030 1456.2282+ 5453.6421 3798.4327 0.0000+	Oxygen Lb/hr	10667.2405		0.0107	0.0131-	0.0048	0.0028	9775.0715*	.0.0000-
Hetnane Lb/hr 0.0000 372,5455 0.0019 301.4070 585.1798 333.2199 0.0000* 0.0000* Ethane Lb/hr 0.0000 79.9087 0.0004 64.3474* 124.8472 73.2254 0.0000* 0.0000* Propene Lb/hr 0.0000 97.9987 0.0044 730.3931* 148.1588 831.779 0.0000* 0.0000* Propene Lb/hr 0.0000 353.3532 0.0018 284.9298* 552.4227 524.217 0.0000* 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	CO Lb/hr	0.0000		0.0016	254.8619*	494.4847	290.0253	0.0000-	0.0000-
Hetnare Lb/hr 0.0000 376.3455 0.0019 301.3070 535.1798 333.2199 0.0000* 0.0000* Ethare Lb/hr 0.0000 19.2536 0.0001 15.5082* 30.0891 17.4479 0.0000* 0.0000* Propane Lb/hr 0.0000 97.6952 0.0044 730320* 1418.1588 831.779 0.0000* 0.0000* Propane Lb/hr 0.0000 353.3352 0.0018 284.9296* 552.8227 324.2417 0.0000*	CO2 Lb/hr	0.0000	3490.6270	12143.5030	14954.4286*	5453.6621	3198.6837	0.0000-	0.0000-
Ethylene Lb/hr 0.0000 19.2586 0.0001 15.5082* 50.0891 17.6479 0.0000* 0.0000* Propane Lb/hr 0.0000 907.6952 0.0046 730.9320* 1418.1588 811.7790 0.0000* 0.00	Hethane Lb/hr	0.0000		0.0019	301.6070-	585.1798	343.2199	0.0000-	0.0000-
Propane Lb/hr 0.0000 907.6952 0.0046 730.9329 1418.1588 831.7790 0.0000* 0.0000* Propene Lb/hr 0.0000 22.1319 0.0001 17.2219* 34.5782 20.2808 0.0000* 0.0000* H2S L5/hr 0.0000 22.7332 886.3813 1207.747* 6331.9133 3713.7958 0.0000*	Ethane Lb/hr			0.0004	64.3474*	124.8472	73.2254	0.0000-	0.0000-
Probene Lb/hr 0.0000 22.1319 0.0001 17.8219* 34.5782 20.2808 0.0000* 0.0000* H2S Lb/hr 0.0000 353.3552 0.0018 284.9298* 552.9227 324.2417 0.0000* <td>Ethylene Lb/hr</td> <td></td> <td></td> <td></td> <td></td> <td>30.0891</td> <td>17.6479</td> <td>0.0000+</td> <td>0.0000-</td>	Ethylene Lb/hr					30.0891	17.6479	0.0000+	0.0000-
HZS Lb/hr 0.0000 353.3352 0.0018 284.0298* 52.3227 324.2417 0.0000* 0.0000* 0.0000* HZO Lb/hr 0.0000 4052.753 8808.3813 12072.7497* 6331.9133 3713.7958 0.0000* 0.00	Propane Lb/hr						831.7790	0.0000-	0.0000-
H20 Lb/hr 0.0000 4052.7532 8808.3813 12072.7497* 6331.9133 3713.7958 0.0000* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.2808</td> <td>0.0000-</td> <td>0.0000-</td>							20.2808	0.0000-	0.0000-
CARB_CNAR Lb/hr 0.0000 0.000								0.0000-	0.0000-
ASH Lb/hr 0.0000								0.0000-	a.sooc+
Hydrogen L5/hr 0.0000 118.7186 0.0006 9.5995* 185.4828 108.7894 0.0000* <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0000-</td><td>0.0000-</td></t<>								0.0000-	0.0000-
CALC_CHAR Lb/hr 0.0000 0.000									
NBP (1] 334 Lb/hr 0.0000 285.7025 0.0015 229.8591* 446.3739 261.8074 0.0000* 0.0000* NBP (1] 369 Lb/hr 0.0000 299.1239 0.0015 240.7124* 447.3432 274.1043 0.0000*<									
NBP(11] 369 Lb/hr 0.0000 299.1239 0.0015 240.7124* 447.3432 274.1043 0.0000* 0.0000* NBP(11] 403 Lb/hr 0.0000 283.4163 0.0014 225.2993* 442.8020 259.7124 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**** 0.0000****				-					
NBP(1]_403 Lb/hr 0.0000 283.4163 0.0014 228.2993* 442.8020 259.7124 0.0000* 0.0000* NBP(1]_437 Lb/hr 0.0000 196.8679 0.0010 158.5984* 307.5811 180.4026 0.0000*									
NBP(1]_47 Lb/hr 0.0000 196.8679 0.0010 158.5984* 307.5811 180.4026 0.0000* 0.0000* NBP(1]_471 Lb/hr 0.0000 90.4472 0.0005 72.3689* 141.3124 82.3826 0.0000*			-						
NBP(1]_471 Lb/hr 0.0000 90.4472 0.0005 72.3689* 141.3124 82.3826 0.0000* 0.0000* NBP(1]_506 Lb/hr 0.0000 35.8653 0.0002 28.8947* 56.0350 32.3657 0.0000* 0.0									
NBP (1] 506 Lb/hr 0.0000 35.8653 0.0002 28.8947* 56.0350 32.8657 0.0000** 0.0000** NBP (1] 542 Lb/hr 0.0000 16.7311 0.0001 13.4795* 26.1402 15.3318 0.0000*** 0.0000*** NBP (1] 574 Lb/hr 0.0000 5.4724 0.0000 4.4089*** 8.5499 5.0147 0.0000*** 0.0000*** NBP (1] 405 Lb/hr 0.0000 1.0896 0.0000 0.8778*** 1.7023 0.9984 0.0000*** 0.0000*** NBP (1] 468 Lb/hr 0.0000 0.1444 0.0000 0.1478** 1.7023 0.9984 0.0000*** 0.0000*** NBP (2] 225 Lb/hr 0.0000 0.0000 0.1444 0.0000 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000**** 0.0000**** 0.0000**** 0.0000**** 0.0000**** 0.0000**** 0.0000**** 0.0000***** 0.0000**** 0.0000***** 0.0000***** 0.0000****** 0.0000********* 0.000									
NBP(1]_542 Lb/hr 0.0000 16.7311 0.0001 13.4795* 26.1402 15.3318 0.0000* 0.0000* NBP(1]_574 Lb/hr 0.0000 5.4724 0.0000 4.4089* 8.5499 5.0147 0.0000* 0.0000* NBP(1]_605 Lb/hr 0.0000 1.0396 0.0000 0.8778* 1.7023 0.9844 0.0000* 0.0000* NBP(1]_643 Lb/hr 0.0000 0.1444 0.0000 0.1163* 0.2255 0.1323 0.0000* 0.0000* NBP(2]_255 Lb/hr 0.0000 0.0000 0.0000* <									
NBP(1]_574 Lb/hr 0.0000 5.4724 0.0000 4.4089* 8.5499 5.0147 0.0000* 0.0000* NBP(1]_605 Lb/hr 0.0000 1.0896 0.0000 0.8778* 1.7023 0.9984 0.0000*									
NBP [1]_605 Lb/hr 0.0000 1.0896 0.0000 0.8778* 1.7023 0.9984 0.0000* 0.0000* NBP [1]_648 Lb/hr 0.0000 0.1444 0.0000 0.1163* 0.2255 0.1323 0.0000* 0.0000* NBP [2]_225 Lb/hr 0.0000 0.0000 0.0000*	NBP[1]_542 LD/hr								
NBP(1]_648 Lb/hr 0.0000 0.1444 0.0000 0.1163* 0.2255 0.1323 0.0000* 0.0000* NBP(2]_225 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000* <td></td> <td></td> <td>• • •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			• • •						
NBP (2] 225 Lb/hr 0.0000 0.0									
NBP (2] 301 Lb/hr 0.0000 0.0									
NBP (2] 363 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000*									
NBP (2] 427 Lb/hr 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
NBP (2] 494 Lb/hr 0.0000 0.0000 0.0000* 0.0000* 0.0000 0.0000*	NBP (2] 303 L3/NF								
NBP [2] 559 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000*									
NBP (2] 630 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000* 0.0000 0.0000*									
NBP [2] 697 Lb/hr 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
NBP (21_767 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000* <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
NBP (21_901 Lb/hr 0.0000 0.0000 0.0000* 0.0000 0.0000* 0.0000 0.0000*	NOF[2] 07/ LD/NF								
SO2 Lb/hr 0.0000 268.3321 933.5402 1149.6724* 419.2349 245.8898 0.0000* 0.0000*	NOF (2) (0/ LD/NF								
19121. Calin #3711.1070 /1340.0000 /1340.214/ 91033.1/20 34/42.000/ 2310.0001* 9//3.0/13 52290.23/5									
	10tat, L3/81	-2711.1070	1340.0000	r 1,200,20,100 f	71022.1760	17146.0001	10.0001-	7113.0113	36270.23/3

Hyprot	ecn's Proces	s Simulator HYSIM -	Licensed to Bechtel Inc
Date	92/04/01	Version 386 [C1.51	Case Name N2_090.SIM
Time	14:33:37	Prop Pkg PR	-

Stream		29	29A	30	31	33	34	35	36
Description									
Vapour frac.	-	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000
Temperature		60.0025	272.9010	328.0337	2967.5684	200.0000*	200.0000	200.0000	200.2339
Pressure	Psia	14.6960	37.6960	37.5960	33.6960	16.3960	16.3960	16.3960	33.6960*
Holar Flow		1458.3734	1458.3734	2331.0599	2332.2946	270.2317	229.4845	40.7472	229.4845
Mass Flow	Lb/hr	42071.3291	42071.3291	65381.3227	55380.9094	42090.0553	36663.1912	5426.8630	36663. 1912
LiqVol Flow		3330.7459	3330.7459	5435.4024	5367.8065	3205.4298	2510.8346	394.5955	2810.3346
Enthaloy	Stu/hr	5.25511E+06 0.0026	7.423225+06	0.0045	6.30514E+07			1.032756-06	
Density	Lbmole/ft3			28.0479	0.0009	0.3604	0.3490	0.4414	0.3490
Hole Wt.	2 million of a c	28.3481 6.9609	28.3481 7.0527	7.6948	28.0329 9.3410	155.7554	159.7632	133.1838	159.7632
	Stu/lbmole-F Stu/hr-ft-F	0.0146	0.0191	0.0209	0.0467	51.3311	52.2785	45.9953	52.2845
Therm Cand		0.0184		0.0231					•••
Viscosity	Cạ	0.9993	0.0236	0.9995	0.0700	0.0064	0,0066	0.0052	•••
Z Factor Sur Tension	3	0.9993	1.0002	0.9993	1.0003	0.0004	0.0000	0.0052	0.0136
Std Density	•					56.1295	55.7561	58.7888	55.7561
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
IND_CCAL Nitrogen	Lb/hr	32296.2562	32296.2562	45325.4189	45325.4186	0.0000	0.0000	0.0000	0.0000
Oxygen	Lb/hr	9775.0712	9775.0712	9775.0740	0.0098	0.0000	0.0000	0.0000	- 0.0000
CO	Lb/hr	0.0000	0.0000	290.0253	0.0015	0.0000	0.0000	0.0000	0.0000
CO2	Lb/hr	0.0000	0.0000	3198.6836	11127.8643	0.0000	0.0000	0.0000	0.0000
Methane	Lb/hr	0.0000	0.0000	343.2199	0.0018	0.0000	0.0000	0.0000	0.0000
Ethane	Lb/hr	0.0000	0.0000	73.2254	0.0004	0.0000	0.0000	0.0000	0.0000
Ethylene	Lb/hr	0.0000	0.0000	17.5479	0.0001	0.0000	0.0000	0.0000	0.0000
Propane	Lb/hr	0.0000	0.0000	831.7790	0.0043	0.0000	0.0000	0.0000	0.0000
Propene	Lb/hr	0.0000	0.0000	20.2808	0.0001	0.0000	0.0000	0.0000	0.0000
HZS	Lb/hr	0.0000	0.0000	324.2417	0.0017	0.0000	0.0000	0.0000	0.0000
H20	Lb/hr	0.0000	0.0000	3713.7959	3072.1383	0.0000	0.0000	0.0000	0.0000
CARB_CHAR	Lb/hr	0.0000	0.0000	0.000	0.0000	35652.0559	31691.1926	3960.3633	31691.1925
ASH	Lb/hr	0.0000	0.0000	0.0000	0.0000	6438.0009	4972.0006	1466.0003	4972.0006
Hydrogen	Lb/hr	0.0000	0.0000	108.7894	0.0006	0.0000	0.0000	0.0000	0.0000
CALC CHAR	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-	Lb/hr	0.0000	0.0000	261.8074	0.0014	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	274,1063	0.0014	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	259.7124	0.0013	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	180.4026	0.0009	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	82.8826	0.0004	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	32.3657	0.0002	0.0000	0.0000	0.0000	0.0000
NBP (1] 542		0.0000	0.0000	15.3318	0.0001	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	5.0147	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (1] 605	Lb/hr	0.0000	0.0000	0.9984	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [1] 548		0.0000	0.0000	0.1323	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HBP (2] 301	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] 427	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
NBP (2] _494	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] 559	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	L5/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] 697	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	245.3898	855.4622	0.0000	0.0000	0.0000	0.0000
Total:	Lb/hr	42071.3291	42071.3291	65381.3227	55380 .9094	42090.0553	36663.1912	5426.8630	36663.1912

..

;

Hyprot	ech's Proces	s Simulator HYSIM -	Licensed	to Bechtel Inc
Oate	92/04/01	Version 386 [C1.51	Case	Name H2_090.SIM
Time	14:33:37	Prop Pkg PR		-

Stream		37	38	39	40	41	42	43	44
Description									
Vapour frac		0.9401	0.8405	0.9634	0.0000	1.0000	0.0000	1.0000	1.0000
Temperature	F	1639.0474	1799.9466	1799.9466	1799.9466	1799.9466	1799.9466	1799.9466	1799.9466
Pressure	Psia	33.5960	28.6960	28.6960	28.6960	28.1960	28,1960	28.1960	28.1960
Molar Flow	Lbmole/hr	3828.0384	4582.1190	3997.2358	584.8837	3851.0901	146.1457	1266.2568	2584.8332
Mass Flow	Lb/hr	136663.1971	136659.7351	111559.5374	25100.2106	105287.7088	6271.8243	34619.1008-	70668.5080
LiqVol Flaw	Barrel/day	11146.4946	11410.2389	9502.7751	1907.4647	9026.1540	476.6209	2967.8425	6058.3114
Enthaloy	8tu/hr	9.06378E+07	1.00307E+08	7.72809E+07	2.30265E+07	7.152725+07	5.75363E+06	2.35185E+07	4.300872-07
Density	Lbmole/ft3	0.0016	0.0014	0.0012	1.3107	0.0012	1.3107	0.0012	0.0012
Hale Wt.		35.7006	29.3246	27.9092	42.9149	27.3397	42.9148	27.3397	27.3397
Spec. Heat	Stu/lbmole-f		12.0725	10.0967	25.5783	9.5091	25.5782	9.5091	9.5091
Therm Cond			•••	•••		0.0520	•••	0.0520	0.0520
Viscosity	Ca				•••	0.0478	•••	0.0478	0.0473
Z Factor	•		•••		0.0009	1.0004	0.0009	1.0004	1.0004
Sur Tension	Ovne/cm	•••		•••	•••	•••	0.0000	•••	•••
Std Density	Lb/ft3		• • •		56.2495		56.2495	•••	•••
IND COAL	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	Lb/hr	67529.1748	67529.1796	67529.1799	0.0000	67529.1772	0.0000	22203.9150	45325.2599
Oxygen	Lb/hr	0,0146	0.0146	0.0146	0.0000	0.0146	0.0000	0.0048	. 0.0098
са ⁷	Lb/hr	288.0033	875.8287	875.8287	0.0000	875.3287	0.0000	287.9767	587.3520
CC2	Lb/hr	17976.0586	20827.2856	20827.2854	0.0000	20827.2854	0.0000	6848.1106	13979.1741
Hethane	Lb/hr	288.0776	876.0536	876.0537	0.0000	876.0536	0.0000	288.0506	528.0030
Ethane	Lb/hr	8.9392	27.1835	27,1835	0.0000	27.1835	0.0000	8.9381	18.2454
Ethylene	Lb/hr	2,1781	6.6234	6.6234	0.0000	6.6234	0.0000	2.1778	4.4456
Propane	Lb/hr	101.4294	308.4391	308.4391	0.0000	308.4391	0.0000	101.4163	207.0229
Propene	Lb/hr	2,4608	7.4831	7.4831	0.0000	7.4831	0.0000	2.4605	5.0225
H2S	Lb/hr	128.5782	391.3122	391.3122	0.0000	391.3122	0.0000	128.6653	252.54-53
H20	Lb/hr	12285.6132	12814.5374	12814.5379	0.0000	12814.5381	0.0000	4213.4811	8601.0565
CARB_CHAR	Lb/hr	31691.1930	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000
ASH	Lb/hr	4972.0004	4972.0008	993.9899	3978.0111	0.0000	993.9899	0.0000	0.0000
Hydrogen	Lb/hr	86.0756	261.7589	261.7589	0.0000	261.7589	0.0000	86.0676	175.3913
CALC CHAR	Lb/hr	0.0000	25400.0343	5277.3284	21122.2054	0.0000	5277.3284	0,0000	0.0000
NBP (1) 334	Lb/hr	0.0020	0.0020	0.0020	0.0000	0.0020	0.0000	0.0007	0.0014
	Lb/hr	0.0021	0.0021	0.0021	0.0000	0.0021	0.0000	0.0007	0.0014
NBP [1] _369 NBP [1] 403	Lb/hr	0.0020	0.0020	0.0020	0.0000	0.0020	0.0000	0.0007	0.0013
NBP [1] 437	Lb/hr	0.0014	0.0014	0.0014	0.0000	0.0014	0.0000	0.0005	0.0009
NBP (1] 471	Lb/hr	0.0006	0.0006	0.0006	0.0000	0.0006	0.0000	0.0002	0.0004
NBP [1] 506	Lb/hr	0.0003	0.0003	0.0003	0.0000	0.0003	0.0000	0.0001	0.0002
		0.0001	0.0001	0.0001	0.0000	0.0001	0.0000	0.0000	0.0001
	Lb/hr Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (1] 574 NBP (1] 505	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
· · · •		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [1]_040	Lb/hr				0.0000	7.9461	0.0000	2.6127	5.3334
NBP (21 225	Lb/hr	2.6129	7.9461	7.9461 5.8956	0.0000	5.3956	0.0000	1.9385	3.9571
	Lb/hr	1.9387 4.5453	5.8956 13.8225		0.0000	13.8225	0.0000	4.5449	9.2777
NBP (2] 363	Lb/hr			13.3225				6.7448	
	Lb/hr	4.7452	14.4304	14.4304	0.0000	14.4304 10.9635	0.0000	3.6048	9.6856 7.3586
	Lb/hr	3.6052	10.9635	10.9635 7.3745	0.0000		0.0000	2.4248	4.9497
	Lb/hr	2.4250	7.3745		0.0000	7.3745	0.0000		
	Lb/hr	1.5722	4.7812	4.7812	0.0000	4.7812	0.0000	1.5721	3.2091
	L5/hr	1.3719	4.1721	4.1721	0.0000	4.1721	0.0000	1.3718	2.8003
NBP [2] 767	Lb/hr	1.2326	3.7484	3.7484	0.0000	3.7484	0.0000	1.2325	2.5159
	Lb/hr	4.7106	14.3252	14.3252	0.0000	14.3252	0.0000	4.7102	9.6150
SOZ	Lb/hr	1274.5311	1274.5312	1274.5312	0.0000	1274.5312	0.0000	419.0719	855.4593
Total:	LD/NC	136663.1971	120024.1221	111559.5374	25100.2106	105287.7088	5271.8243	34619.1008*	70668.5080

..

Hyprot	ech's Proces:	s Simulator HYSIM -	Licensed	to Bechtel Inc
Date	92/04/01	Version 386[C1.51	Case	Name N2_090.SIN
Time	14:33:37	Prop Pkg PR		-

Stream		45	47	48	49	50	51	52	53
Description									
Vapour frac.		1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000
Temperature		375.0000-		1150.0000-	1150.0000	2329.1307-	200.0000-	200.0000-	200.0000
Pressure	Psia	23.1960	35.6960	33.6960	33.6960	33.6960-	14.6960	14.6960	14.5960
Holar Flow		1266.2568	1266.2568	1266.2568	1074.6673	3598.5539*	584.8837	146.1457	132.3718
Hass Flow	Lb/hr	34619.1008	34619,1008	34619.1008	29381.1003	100000.0015	25100.2106	6271.8243	5614.3681
Liquol Flow		2967.5426	2967.8426	2967.8426	2518.7968	3335.6594	1907.4647	476.6209	430.9004
Enthalpy	Btu/hr	7.793916+06		1.59556E+07	1.35415E+07		4.49427E+06		
Density	Lbmole/ft3	0.0025	0.0035	0.0019	0.0019	0.0011	1.3107	1.3107	1.3132
Mole Wt.		27.3397	27.3397	27.3397	27.3397	27.7889	42.9149	42.9148	42.4136
	Stu/lbmole-F	7.5201	7.9819	8.8231	8.8231	9.5787	14.0291	14.0291	13.7139
Therm Cond		0.0218	0.0248	0.0396	0.0396	0.0538			•••
Viscosity	Cp	0.0224	0.0249 0.9997	0.0361	0.0361	0.0582	0.0016	0.0016	
Z Factor		0.9993	0.9997	1.0005	1.0005	1.0004	0.0016	0.0000	0.0016
Sur Tension		~~*	•••	•••	•••		56.2495	56.2495	55.3957
Std Density					0.0000	0.0000-	0.0000	0.0000	0.0000
IND_CCAL	Lb/hr	0.0000	0.0000	0.0000	18844.3790	67529.1735*	0.0000	0.0000	0.0000
Nitrogen	Lb/hr	22203.9150	22203.9150	22203.9150	0.0041	0.0146*	0.0000	0.0000	- 0.0000
Oxygen	Lb/hr	0.0048	0.0048	0.0048	244.4047	288.0033*	0.0000	0.0000	0.0000
CC 	Lb/hr	287.9767	287.9767	287.9767	5811.9657	17976.0581*	0.0000	0.0000	0.0000
CO2	Lb/hr	6848.1106	6848.1106 288.0506	6848.1106 288.0506	244.4675	288.0776	0.0000	0.0000	0.0000
Hethane	Lb/hr	288.0506 8.9381	8.9381	288.0508 8.9381	7.5857	8.9392*	0.0000	0.0000	0.0000
Ethane	Lb/hr		2.1778	2.1778	1.8483	2.1781*	0.0000	0.0000	0.0000
Ethylene	Lb/hr	2.1778	101,4163	101.4163	86.0716	101.4294*	0.0000	0.0000	0.0000
Propane	Lb/hr	101,4163	2,4605	2.4605	2.0882	2.4608*	0.0000	0.0000	0.0000
Propene	L5/hr		128.5653	125.5653	109.1978	125.5782*	0.0000	0.0000	0.0000
H2S	Lb/hr	128.6653 ~ 4213.4811	4213.4811	4213.4811	3575.9656	12285.5132	0.0000	3.0000	0.000
H20		0,0000	0,0000	0.0000	0.0000	0.0000*	0.0000	3.0000	0.0000
CARB_CHAR	Lb/hr Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000-	3978.0111	993.9899	745.4924
ASH	Lb/hr	86.0676	86.0676	86.0676	73.0452	26.0756*	0.0000	3.0000	0.0000
Hydrogen	Lb/hr	0.0000	0,0000	0.0000	0.0000	0.0000*	21122.2054	5277.8284	4868.3758
CALC_CHAR NBP [1] 334	Lb/hr	0.0007	0_0007	0.0007	0.0006	0,0020-	0.0000	0.0000	0.0000
· · · •	Lb/hr	0.0007	0,0007	0.0007	0.0006	0.0021-	0.0000	0.0000	0.0000
	Lb/hr	0.0007	0_0007	0.0007	0.0006	0.0020-	0.0000	0.0000	0.0000
	Lb/hr	0.0005	0,0005	0.0005	0.0004	0.0014=	0.0000	0.0000	0.0000
NBP [1] 471	Lb/hr	0.0002	0.0002	0.0002	0.0002	0.0006=	0.0000	3.0000	0.0000
	Lb/hr	0.0001	0.0001	0.0001	0.0001	0.0003*	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0003	0.0000	0.0001-	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000-	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000*	0.0000	0.0000	0.0000
	Lb/hr	0,0000	0.0000	0.0000	0.0000	0.0000*	0.0000	0.0000	0.0000
NBP [2] 225		2.5127	2.6127	2.5127	2.2174	2.6129*	0.0000	0.0000	0.0000
	Lb/hr	1.9385	1,9385	1,9385	1.6452	1.9387*	0.0000	0.0000	0.0000
	Lb/hr	4.5449	4.5449	4.5449	3.8573	4.5453*	0.0000	0.0000	0.0000
NBP (2] 427		4.7448	6.7448	4.7448	4.0269	4.7452*	0.0000	0.0000	0.0000
NBP (2) 494	Lb/hr	3.6048	3.5048	3.5048	3.0594	3.6052-	0.0000	0.0000	0.000
	Lb/hr	2.4248	2.4248	2.4248	2.0579	2.4250*	0.0000	0.0000	0.000
NBP [2] _630	Lb/hr	1.5721	1.5721	1.5721	1.3342	1.5722*	0.0000	0.0000	0.0000
NBP [2] -597	Lb/hr	1.3718	1.3718	1.3718	1.1642	1.3719*	0.0000	0.0000	0.0000
	Lb/hr	1.2325	1.2325	1.2325	1.0460	1.2326*	0.0000	0.0000	0.0000
	Lb/hr	4.7102	4,7102	4.7102	3.9975	4.7106*	0.0000	0.0000	0.0000
SOZ	Lb/hr	419.0719	419.0719	419.0719	355.6648	1274.5311*	0.0000	0.0000	0.0000
Total:		34619.1008	34619,1008	34619,1008	29381,1003	100000.0015	25100.2106	6271.8243	5614.3681

Hyprot	ech's Proces	s Simulator HYSIN -	Licensed to Bechtel Inc
Date	92/04/01	Version 386 [C1.51	Case Name N2_090.SIM
Time	14:33:37	Prop Pkg PR	-

Stream Description		54	55	62	6ZA	చ	64	65	60
Vapour frac		0.0000	0.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000
Temperature		200.0000	200.0000	304.9376	304.7820	2480.2514	2480.2514	600.3212	2236.9754
Pressure	Psia	14.6960	14.6960	24.8960	21.5960	21.3960	21.8960	21.8960	
Holar Flow		13.7738	717.2555	346.7909	346.7909	53.4376	2911.5573	400.2285	21.3960
Mess Flow	Lb/hr	657.4501	30714.5798	9263.0004 -		1487.9995	81082_2083	10750.9999-	3312.0859
LigVol Flow		45.7200	2338,3651	836.3552	836.3551	123.5217	6747,1361	960.1768	
Enthalpy	Stu/hr	128513.2220		2.05617E-06		1.348438+06	7.34770E+07		7707.3132
Density	Lomole/ft3	1.2873	1.3112	0.0030	0.0027	0.0007	0.0007	0.0019	7.68816E-07
Mole Vt.		47.7320	42.8224	26.7106	26.7106	27.8455	27.3455	26.8622	0.0003
Spec. Heat	Stu/lbmole-F	17.0579	13.9709	8.6525	8.5489	9.8089	9.3089	9.1758	27.7257
Therm Cond	Btu/hr-ft-f	•••	•••	0.0215	0.0215	0.0535	0.0535	0.0288	9.9731 0.0541
Viscosity	Cp	•••		0.0198	0.0198	0.0607	0.0607	0.0259	0.0553
Z Factor		0.0016	0.0016	0.9982	0.9984	1.0002	1.0002	0,9999	1.0003
Sur Tension		•••	•••	•••	•••	•••	•••	•••	
Std Density		61.4688	56.1474	•••	•••	•••	•••	•••	
IND_COAL	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	Lb/hr	0.0000	0.0000	5177.5696	5177.5696	1004.3983	54730.4157	6181.9676	60912.3837
Oxygen	Lb/hr	0.0000	0.0000	0.0011	0.0011	0.0002	0.0118	0.0013	0.0131
CO	Lb/hr	0.0000	0.0000	115.2512	115.2512	2.5162	137,1106	117.7674	254.3750
CC 2	Lb/hr	0.0000	0.0000	1271.1028	1271.1025	246.5893	13436.8367	1517.6921	14954.5239
Hethane	Lb/hr	0.0000	0.0000	136.3898	136.3898	2.9777	162.2585	139.3675	301.6250
Ethane	Lb/hr	0.0000	0.0000	29.0985	29.0985	0.6353	34.6176	29.7338	64.3514
Ethylene	Lb/hr	0.0000	0.0000	7.0130	7.0130	0.1531	8.3431	7.1661	15.5092
Procane	Lb/hr	0.0000	0.0000	330.5349	330.5349	7.2164	393.2268	337.7513	730.9781
Propene	L5/hr	0.0000	0.0000	3.0593	8.0593	0,1760	9.5878	8.2352	17.8231
HZS	Lb/hr	0.0000	0,0000	125.8482	128.8482	2.5131	153.2866	131.6613	284.9473
H20	Lb/hr	0.0000	0.0000	1475,7997	1475.7997	190,9650	10405.3269	1666.7647	12072.5912
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ASH	Lb/hr	248.4975	4723.5034	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	43.2311	43.2311	0.9438	51,4306	44.1749	95.3053
	Lb/hr	408.9527	25991.0816	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-	Lb/hr	0.0000	0.0000	104.0378	104.0378	2.2714	123.7705	106.3092	230.0797
	Lb/hr	0.0000	0.0000	108.9252	108.9252	2.3781	129.5848	111.3033	240.3892
	Lb/hr	0.0000	0.0000	103.2053	103.2053	2.2532	122.7801	105.4585	228.2385
	Lb/hr	0.0000	0.0000	71.6889	71.6889	1.5651	85.2860	73.2541	158.5401
	Lb/hr	0.0000	0.0000	32.9361	32.9361	0.7191	39.1831	33.6552	72.8383
	Lb/hr	0.0000	0.0000	13.0603	13.0603	0.2851	15.5374	13.3454	28.3823
	Lb/hr	0.000	0.0000	6.0925	6.0926	0.1330	7.2481	6.2256	13.4737
	Lb/hr	0.0000	0.0000	1.9927	1.9927	0.0435	2.3707	2.0363	4.4070
	Lb/hr	0.0000	0.0000	0.3968	0.3968	0.0087	0.4720	0.4054	0.8774
	Lb/hr	0.0000	0.0000	0.0526	0.0526	0.0011	0.0625	0.0537	0.1163
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000
NBP [2] 301	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [2] _494	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000
NBP [2] 697	ԼԵ/հո	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP (2] 767	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NBP [2] 901	Lb/hr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Lb/hr	0.0000	0.0000	97.7124	97.7124	18,9566	1032.9609	116.6691	1149.6299
Total:	Lb/hr	657.4501	30714.5798	9253.0004*	9253.0004	1487.9995	81082.2083	10750.9999 *	91833.2072

Hyprot	ech's Proces	s Simulator HYSIN -	Licensed to Bechtel Inc
	92/04/01 14:33:37	Version 386[Cl.51 Prop Pkg PR	Case Name H2_090.SIM

Description 1,000	Stream		70	71	72	73	74	74A	75	177
Temperature F 1150.0000 2354.224 2229.1224 304.3770 304.7820 2400.2514 0.0000 Metar Flow Lbmle hr 191.5894 34.06.902 3576.5515 766.7233 420.1525 3965.2572 0.0000 Ligvol Flow Barret(day 449.4457 7856.6303 8335.4600 1849.5882 1013.2330 8670.5570 0.0000 Ligvol Flow Barret(day 449.4457 7856.6303 8335.4600 1849.5882 1013.2330 8670.5570 0.0000 Density Limmolerf13 0.011 0.0011 0.0011 0.0021 0.0002 0.0002 0.0000 0.0000 Soec. Heat Stu/Intolerf 8.3231 9.3731 9.5737 8.6323 8.6439 9.2089 0.00000 0.0000 0.0000	Description									
Pressure Psia 13: 3640 13: 4640 13: 4640 12: 4641 12: 4641 <th< td=""><td>Vapour frac.</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Vapour frac.	•								
Paiss Flow Emer (in) Emer (in) <themer (in)<="" th=""> <themer (in)<="" th=""> <th< td=""><td>Tenperature</td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></themer></themer>	Tenperature	F								
Heast Alow Layner Str. (2000) Str. (2000) Control Contro Control Control	Pressure	Psia					-	-		
Ligrati flow Sarret(/day	Molar Flow	Lbmole/hr								0.0000-
Enthalpy Sturbr 2.4113E=06 8.15930E=07 8.4071E=07 4.54720E=06 2.9103E=06 7.4234E=07 4.27952E=05 Mole VL 27.3397 27.4142 27.7890 26.7106 26.7106 26.7105 26.7465 27.4453 0.0007 Note VL 27.3397 27.4142 27.7890 26.7105 26.7105 26.7465 2.4303 0.0000 Stock Hest SturUtmole=74 8.4231 9.5731 9.5737 0.0538 0.0215 0.0215 0.0260 1.0660 Viscosity Cp 0 0.0351 0.0538 0.0215 0.0215 0.0267 0.0660 -	Mass Flow	Lb/hr			100000.0101			11221.9985	32570.2100	0.0000-
Density Limit (r) ft3 0.0019 0.0011 0.0011 0.0030 0.0027 0.0007 0.2007 Spec. Heat Stu/Involef 8.3231 9.5731 9.5737 8.4525 8.4525 8.4525 8.4543 9.0089 0.0000 Viscosity Ca 0.0354 0.0353 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0300 0.0000 0.0001 0.0000 0	Liqual Flow	Sarrel/day								0.0000-
Nate V. 27.3397 27.312 27.7800 25.7106 25.7106 25.7106 27.766 27.4345 0.0000 Therm Cond Btu/Ibnoicer 8.311 9.5778 8.64525 8.6429 9.6089 0.0000 Therm Cond Btu/Ibnoicer 8.0001 0.0018 0.00175 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0000	Enthaloy	Stu/hr								4.279925-06
Spec. Heat atu/thmoleri 8.4221 9.5787 8.4525 8.4525 8.4439 9.8089 0.0000 Viscosity Cp 0.0334 0.0572 0.0338 0.0215 0.0215 0.0215 0.0215 0.0205 0.0000 0.0	Density	Lbmle/ft3								0.0000
Therm Cord Study Cord Study Cord Study Cord Cord <thcord< th=""> Cord Cord</thcord<>	Male Wt.						26.7106			0.0000
Viscosity Ca 0.0341 0.0594 0.0582 0.0198 0.01988 0.01984 0.0007 Sind Density Lb/ft3 1.000 1.0000 0	Spec. Heat	3tu/lbmole-f								0.0000
2 Factor 1,0005 1,0004 1,0004 1,0004 1,0004 1,0004 1,0002 Sur Terms ion Dyme/Cm </td <td>Therm Cond</td> <td>Stu/hr-ft-F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•••</td>	Therm Cond	Stu/hr-ft-F								•••
Sur Times ion Dyme/Em Times i	Viscosity	Cp								
Sub res on yubrea Sub res on yubrea	Z Factor		1.0005		1.0004	0.9982	0.9982		1.0002	
Ald Dersity Lb/hr 0.00000 0.0000 0.0000	Sur Tension	Dyne/cm	•-•				•••		•••	
Hitrogen Lu/hr 3359.3356 6410 ² .7981 67529.3323 11450.1250 6227.555. 6272.555. 5573.4182 0.0000 Carygen Lb/hr 0.0007 0.0138 0.0144 0.0014 0.0014 0.014.0 0.0143 0.0007 CD Lb/hr 1034.1443 16939.8103 17775.9752 2811.0267 1539.9253 11539.9253 13643.4270 0.00007 CD2 Lb/hr 1.352.4 7.5861 8.4982 0.0321 1539.9253 136.3254 0.00007 Etmane Lb/hr 1.552.4 7.5861 8.9984 64.3510 35.252 35.2529 0.00007 Propene Lb/hr 0.3727 2.0883 2.406 17.2229 9.7637 9.7637 9.7637 0.9699.7927 0.00007 H20 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	Std Density	Lb/ft3							•••	
Oxygen Lb/hr 0.0007 0.0138 0.0144 0.0012 0.0114 0.01014 0.0120 0.00007 CD Lb/hr 43.5719 244.4062 287.9781 254.3764 139.4252 139.4	IND_COAL	ԼԵ/հг								
C3 Lb/hr 43.5779 224.2022 287.9781 254.3724 139.222 139.6252 139.6284 0.0000 CC2 Lb/hr 1034.1443 16939.8303 17975.9752 281.0267 153.9.9238 1539.9281 13683.4270 0.00007 CC2 Lb/hr 1.3524 7.5861 8.4962 0.00007 Propente Lb/hr 0.3723 2.0883 2.4005 17.8229 9.7637 9.7633 9.7633 0.00000 0.0000 0.00000	Nitrogen	Lo/hr								
CD2 Lb/hr 1036.14.0 1690.8303 1795.9752 2811.0267 1530.9238 1530.9231 1530.9238 1530.923	Oxygen	Lb/hr								
Bethane Layhr Galssall 224.4692 288.0524 301.4241 165.2344 165.2344 165.2343 165.2343 0.0000 Ethane Layhr 1.3524 7.3841 8.7934 64.3510 35.2525 35.2525 35.2529 0.0000 Prosene Layhr 0.3295 1.4642 2.1779 15.5091 3.4961 8.4962 0.0000 Prosene Layhr 0.3723 2.0883 2.4604 17.4229 9.7637 9.7637 9.7638 0.0000 0.0000 Prosene Layhr 0.3773 0.1423 128.6670 284.9460 156.0978 156.0978 0.0000 <t< td=""><td>C</td><td>Lb/hr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	C	Lb/hr								
Ethane Lb/hr 1.3524 7.5861 8.9384 64.3510 35.2525 35.2525 35.2529 0.00000 Ethylene Lb/hr 0.3295 1.8424 2.1779 15.5091 8.4961	CO2	Lb/hr				-				
Ethylene Lb/hr 0.3295 1.8484 2.1779 15.5091 8.4961 8.4961 8.4962 0.0000 Probane Lb/hr 0.3723 2.0883 2.4660 17.829 9.7637 9.7637 9.7637 9.7637 9.7637 9.7637 9.7637 9.7638 0.0000 H2S Lb/hr 19.4675 109.1994 128.5670 284.940 156.0978 156.0973 156.0976 0.0000<	Methane	L5/hr								
Propane Lb/hr 15.3427 86.0759 101.4205 730.9735 400.4386 4	Ethane	Lb/hr								
Propente La/hr 0.3723 2.0883 2.4606 17.8229 9.7637 156.0976 156.0976 156.0976 156.0976 156.0976 156.0977 156.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Ethylene	Lb/hr								
House Light 19.4075 100.1994 128.6670 284.9460 156.0978 156.0973 156.0976 0.0000 0.0000 CARB_CHAR Light 437.5155 11648.1037 12235.6194 3263.7110 1787.9113 10789.7927 0.0000 0.0	Propane	Lb/hr								
L20 L3/hr 637.3155 11648.1037 1225.3194 363.7110 1787.9113 1787.9113 10596.7927 0.0000 CARE_CMAR L3/hr 0.0000	Properte	Lb/hr	0.3723							•••••
CARB_CHAR Lb/hr 0.0000 0.000	H2S	L5/hr								
ASH Lb/hr 0.0000	H20	L5/hr								
Hydrogen Lb/hr 13.0223 73.0458 86.0881 95.6050 52.3739 52.3739 52.3745 0.0000 CALC_CMAR Lb/hr 0.0000 0.	CARB_CHAR	Lb/hr								
CALC CALC <th< td=""><td>ASH</td><td>Lb/hr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ASH	Lb/hr								
NBP (1] 334 Lb/hr 0.0001 0.0019 0.0020 230.0782 126.0404 </td <td>Hydrogen</td> <td>Lb/hr</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Hydrogen	Lb/hr								
NBP (1] 369 Lb/hr 0.0001 0.0020 0.0021 240.8866 131.9614 131.9614 131.9629 0.0000 NBP (1] 437 Lb/hr 0.0001 0.0019 0.0020 228.2372 125.0318 125.0318 125.0333 0.0000 NBP (1] 437 Lb/hr 0.0001 0.0013 0.0014 158.5391 86.8502 86.8502 86.8512 0.0000 NBP (1] 542 Lb/hr 0.0000 0.0002 0.0003 28.8826 15.8223 15.8223 15.8225 0.0000 NBP (1] 506 Lb/hr 0.0000 0.0000 0.0001 0.0001 13.4737 7.3811 7.3812 0.0000 NBP (1] 504 Lb/hr 0.0000 0.0000 0.8774 0.4807 0.4807 0.4807 0.0000 0.0000 NBP (1] 542 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000<										
NBP (11 _ 403 Lb/hr 0.0001 0.0019 0.0020 228.2372 125.0318 125.0318 125.0333 0.0000* NBP (11 _ 471 Lb/hr 0.0001 0.0013 0.0014 158.5391 86.8502 86.8512 0.0000* NBP (11 _ 471 Lb/hr 0.0000 0.0006 72.8378 39.9017 39.9017 39.9021 0.0000* NBP (11 _ 506 Lb/hr 0.0000 0.0002 0.0003 28.8826 15.8223 15.8225 15.8225 0.0000* NBP (11 _ 542 Lb/hr 0.0000 0.0000 0.0000 0.0000 4.4069 2.4142 2.4142 0.4807 0.4807 0.0000* NBP (11 _ 543 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.8774 0.4807 0.4807 0.4807 0.0000* NBP (11 _ 643 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	NBP[1]_334	Lb/hr								
NBP (11 - 437 Lb/hr 0.0001 0.0013 0.0014 158.5391 86.8502 86.8502 86.8512 0.0000 NBP (11 - 471 Lb/hr 0.0000 0.0006 0.0006 72.8378 39.9017 39.9017 39.9021 0.0000* NBP (11 - 542 Lb/hr 0.0000 0.0002 0.0003 28.8826 15.8223 15.8223 15.8225 0.0000* NBP (11 - 542 Lb/hr 0.0000 0.0000 0.0001 13.4737 7.3811 7.3812 0.0000* NBP (11 - 542 Lb/hr 0.0000 0.0000 0.0000 4.4069 2.4142 2.4142 2.4142 0.0000* NBP (11 - 648 Lb/hr 0.0000 0.		Lb/hr			-					
NBP (11 - 471 Lb/hr 0.0000 0.0006 72.8378 39.9017 39.9017 39.9021 0.0000 NBP (11 - 571 Lb/hr 0.0000 0.0002 0.0003 28.8826 15.8223 15.8223 15.8223 0.0000* NBP (11 - 574 Lb/hr 0.0000 0.0001 0.0001 13.4737 7.3811 7.3811 7.3812 0.0000* NBP (11 - 574 Lb/hr 0.0000 0.0000 0.0000 4.4069 2.4142 2.4142 0.4407 0.4807 0.4807 0.4807 0.0000* NBP (11 - 648 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.0000* 0.4807 0.4807 0.4807 0.0000* NBP (11 - 648 Lb/hr 0.0000		Lb/hr								
NBP (11 506 Lb/hr 0.0000 0.0002 0.0003 28.8826 15.3223 15.8223 15.8225 0.0000* NBP (11 542 Lb/hr 0.0000 0.0001 0.0001 13.4737 7.3811 7.3811 7.3812 0.0000* NBP (11 574 Lb/hr 0.0000 0.0000 0.0000 4.4069 2.4142 2.4142 2.4142 0.4807 0.4807 0.0000* NBP (11 605 Lb/hr 0.0000 0.0000 0.0000 0.8774 0.4807 0.4807 0.4807 0.0000* NBP (11 643 Lb/hr 0.0000 0.0000 0.0000 0.1163 0.0637 0.0637 0.0637 0.0000* NBP (21 525 Lb/hr 0.3953 2.2174 2.6127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000* 0.0000 0.0000 0.0000 0.0000*										
NBP(1] 5.22 Lb/hr 0.0000 0.0001 0.0001 13.4737 7.3811 7.3811 7.3812 0.0000* NBP(1] 574 Lb/hr 0.0000 0.0000 0.0000 4.4069 2.4142 2.4142 2.4142 0.000* NBP(1] 605 Lb/hr 0.0000 0.0000 0.0000 0.4807 0.4807 0.4807 0.4807 0.000* NBP(1] 643 Lb/hr 0.0000 0.0000 0.0000 0.0000 0.0437 0.4807 0.4807 0.0637 0.0000* NBP(2] 225 Lb/hr 0.3953 2.2174 2.6127 0.0000										
NBP (1] 574 Lb/hr 0.0000 0.0000 0.4000 0.4000 0.4807 0.4807 0.4807 0.0000* NBP (1] 605 Lb/hr 0.0000 0.0000 0.0000 0.4807 0.4807 0.4807 0.0000* NBP (1] 648 Lb/hr 0.0000 0.0000 0.0000 0.1143 0.0637 0.0637 0.0637 0.0000* NBP (2] 225 Lb/hr 0.3953 2.2174 2.6127 0.0000 0.0		Lb/hr								
NBP (11 605 Lb/hr 0.0000 0.0000 0.0000 0.4807 0.4807 0.4807 0.0000* NBP (11 643 Lb/hr 0.0000 0.0000 0.0000 0.1163 0.0637 0.0637 0.0000* NBP (12 225 Lb/hr 0.3953 2.2174 2.6127 0.0000										••••
NBP (11_648_Lb/hr 0.0000 0.0000 0.1163 0.0637 0.0637 0.0637 0.0637 0.0007 NBP (21_225_Lb/hr 0.3953 2.2174 2.6127 0.0000										
NBP (21 225 Lb/hr 0.3953 2.2174 2.6127 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 301 Lb/hr 0.2933 1.6452 1.9385 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 363 Lb/hr 0.6877 3.8573 4.5449 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 427 Lb/hr 0.7179 4.0269 4.7448 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 559 Lb/hr 0.5454 3.0594 3.6048 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 559 Lb/hr 0.3669 2.0579 2.4248 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 630 Lb/hr 0.2379 1.3342 1.5721 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 697 Lb/hr 0.2076 1.1642 1.3718 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 767 Lb/hr 0.1865 1.0460 1.2325 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 901 Lb/hr 0.7127 3.9975 4.7102 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 901 Lb/hr 0.7127 1211.1270 1274.5341 216.0897 118.3773 118.3773 1051.9176 0.0000		Lb/hr						•• • • • •		
NBP (21_301 Lb/hr 0.2933 1.6452 1.9385 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21_343 Lb/hr 0.6877 3.8573 4.5449 0.0000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
NBP (21_363_Lb/hr 0.6877 3.8573 4.5449 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21_427_Lb/hr 0.7179 4.0269 4.7448 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21_427_Lb/hr 0.5454 3.0594 3.4048 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21_559_Lb/hr 0.3669 2.0579 2.4248 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21_630_Lb/hr 0.2379 1.3342 1.5721 0.0000 0.0000 0.0000 0.0000 NBP (21_697_Lb/hr 0.2076 1.1642 1.3718 0.0000 0.0000 0.0000 0.0000 NBP (21_767_Lb/hr 0.1365 1.0460 1.2325 0.0000 0.0000 0.0000 0.0000 NBP (21_901_Lb/hr 0.7127 3.9975 4.7102 0.0000 0.0000 0.0000 0.0000 NBP (21_901_Lb/hr 63.4072 1211.1270 1274.5341 216.0897 118.3773 1051.9176 0.0000		Lb/hr								
NBP (21 427 Lb/hr 0.7179 4.0269 4.7448 0.0000 0.0000 0.0000 0.0000 NBP (21 494 Lb/hr 0.5454 3.0594 3.6048 0.0000 0.0000 0.0000 0.0000 0.0000 NBP (21 559 Lb/hr 0.3669 2.0579 2.4248 0.0000 0.0000 0.0000 0.0000 NBP (21 630 Lb/hr 0.2379 1.3342 1.5721 0.0000 0.0000 0.0000 0.0000 NBP (21 697 Lb/hr 0.2076 1.1642 1.3718 0.0000 0.0000 0.0000 0.0000 NBP (21 767 Lb/hr 0.1865 1.0460 1.2325 0.0000 0.0000 0.0000 0.0000 NBP (21 901 Lb/hr 0.7127 3.9975 4.7102 0.0000 0.0000 0.0000 0.0000 NBP (21 901 Lb/hr 63.4072 1211.1270 1274.5341 216.0897 118.3773 118.3773 1051.9176 0.0000		Lb/hr								
NBP (Z] 494 Lb/hr 0.5454 3.0594 3.6048 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
NBP (21 559 Lb/hr 0.3669 2.0579 2.4248 0.0000 0.0		Lb/hr								
NBP (2] 630 Lb/hr 0.2379 1.3342 1.5721 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•••</td> <td></td> <td></td>								•••		
NBP (Z]_630 Lb/hr 0.2379 1.3342 1.5721 0.0000 0.0										
NBP [2] 767 Lb/hr 0.1865 1.0460 1.2325 0.0000 <td>NBP [2]_630</td> <td>Lb/hr</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NBP [2]_630	Lb/hr								
NBP [2] 767 Lb/hr 0.1865 1.0460 1.2325 0.0000 <td>NBP (2] _597</td> <td>Lb/hr</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NBP (2] _597	Lb/hr								
SOZ Lb/hr 63.4072 1211.1270 1274.5341 216.0897 118.3773 118.3773 1051.9176 0.0000*		Lb/hr								
		Lb/hr								
Total: Lb/hr 5237.9999* 94762.0097 100000.0101 20484.9990* 11221.9985 11221.9985 82570.2100 0.0000*	soz -	Lb/hr			.	-				
	Total:	Lb/hr	5237.9999*	94762.0097	100000.0101	20484.9990*	11221.9985	11221.9985	32570.2100	0.0000*

Hyprot	ech's Proces	s Simulator HYSIM -	Licensed to Bechtel Inc
		Version 386 [C1.51	Case Name 42_090.SIM
Time	14:33:37	Prop Pkg PR	

Stream		173	179	181	182	183	184	185	186
Description		2 0000-	2 0000-	3 00000	8 4444-				
Vapour frac.		2.0000-	2.0000-	2.0000-	2.0000-	2.0000-	2.0000-	2.0000-	2.0000-
Temperature		0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Pressure	Psia	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
	Lbmole/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Mass Flow	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
LiqVol Flow	•	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	J.JOOC-
Enthalpy	Btu/hr		1.24518E+06				5.38764E+06	1.27412E-06	1.57245E+07
Density	Lbmole/ft3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Male Wt.		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Spec. Heat	Btu/lbmole-F		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3000
Them Cand	Stu/hr-ft-F	•••	• • •	•••	•••	•••	•••	•••	•••
Viscosity	C, D	•••	•••	•••	•••	•••	•••	•••	•••
Z Factor		•••	•••		•••	•••	•••	•••	•••
Sur Tension		•••	•••	•••	•••	•••		• • •	• • •
Std Density		•••	•••	•••	•••	•••	•••	•••	•••
IND_COAL	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Nitrogen	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-
Oxygen	L5/hr	0.0003-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	- 0.0000-
C	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-
CC 2	ԼԵ/հո	0.0000*	0.0000*	0.0000-	0.0000*	0.0000*	0.0000-	0.0000*	0.0000-
Hethane	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
Ethane	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Ethylene	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0000-	0.0000*	0.0000-
Propane	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Propene	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.000*
HZS	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.000-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000+
CARS_CHAR	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000+	0.0000-	0.0000-	0.000-
	L5/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000+	0.000-
Hydrogen	L5/hr	0.0000-	0.0000+	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*
CALC_CHAR	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.000-
NBP (1)_334	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-
NBP [1] 369	Lb/hr	0.0000*	0.0000*	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-
NBP (1] 437	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*
NBP (1] 471	L5/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-
	Lb/hr	0.0000-	0.0000=	0.0000-	0.0000-	0.0000-	0.0000-	0.0000+	0.0000-
	Lb/hr	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
· · · · · · · · · · · · · · · · · · ·	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
· · · ·	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000+	0.0000-
	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0000+	0.0000=	0.0000-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000+	0.0000-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
NBP (2] 363	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
XBP [2] 427	Lb/hr	0.0000-	0.0000*	0 - 0000-	0.0000-	0.0000+	0.0000-	0.0000+	0.0000-
NBP (2] _494	Lb/hr	0.0000-	0.0000=	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	a.saas-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
NBP [2] 767	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
so2 1	b/hr	0.0000+	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000+	0.0000-
· Total: 1	b/hr	0.0000+	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-

-

Hyprot	tecn's Proce	ss Simulator HYSIM -	Licensed to Bechtel Inc
	92/04/01	Version 386(C1.51	Case Name HZ_090.SIN
Time	14:33:37	Prop Pkg PR	

Stream		187	188	189	190	191	192	193	194
Description									
Vapour frac.		2.0000-	2.0000*	2.0000-	2.0000-	2.0000-	2_0000-	2.0000-	2.0000-
Tencerature	۶	0.0000*	0.0000-	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0000.
Pressure	Psia	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Holar Flow	Lbmole/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Mass Flow	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-
LiqVol Flow	Barrel/day	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Enthalpy	Stu/hr	0.0000-	0.0000-	5.99999E-06"	2306.4597	0.0000-	.52709E-07	0.0000-	0.3000-
Density	Lbmole/ft3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hole Wt.		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Spec. Heat	Stu/lbmole-F	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Therm Cond	Btu/hr-ft-F	•••		•••	•••	• • =		***	•••
Viscosity	Ca	•••		•••	•••		•••		•••
Z Factor	-	•••			•••		•••	•••	• • •
Sur Tension				•••			•••	•••	•••
Std Density	•	•••		•••			•••	•••	•••
IND COAL	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
Nitrogen	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-
-	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	- 0.000C-
Oxygen CD	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*
		0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
Methane	Lb/hr	0.0000*	0.0000=	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*
Ethane	Lb/hr	0.0000*	0.0000*	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
Ethylene	Lb/hr		0.0000*	0.0000-	0.0000*	0.0000*	0,0000-	0.0000-	0.0000*
Propane	Lb/hr	0.0000-	0.0000-	0.0000-	0.3000-	0.0000*	0.0000-	0.0000-	0.0000-
Propene	Lb/hr	0.0000*		0.0000*	0.3000-	0.0000-	0.0000-	0.0000-	0.0000-
HZS	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
H20	L5/hr	0.0000+	0.0000-				0.0000	0.0000-	0.0000-
CARB_CHAR	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000" 0.0000"	0.0000-	0.0000-	0.0000-
ASH	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-		0.0000-	0.0000-	0.0000*
Hyarogen	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-			0.0000-
CALC_CHAR	L5/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-
NBP (1]_334	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	
NBP (1] _369	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000*	0.0000+	0.0000-	0.0000-	0.0000-
NBP [1]_403	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
NBP [1] _437	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
NBP (1] 471	Lb/hr	0.0000*	0.0000=	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.00007
אвр(1]_506	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
NBP (1] 542	Lb/hr	0.0000*	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
NBP (1] 574	Lb/hr	0.0000+	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	• 2000. •
NBP [1] _605	Lb/hr	0.0000+	0.0000*	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000*
NBP [1] _548	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-
NBP (2] 225	Lb/hr	0.0000~	0.0000-	0.0000-	0.0 000 *	0.0000-	0.0000-	0.0000-	0.0000*
88P (21 301	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
NBP (2] _363	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
NBP (2] 427	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
N8P (2] 494	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-
NBP (21 559	L5/hr	0.0000*	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000*
NBP (2] _530	Lb/hr	0.0000-	0.000*	0.0000-	0.0000-	0.0000-	0.0000-	0.0000+	0.0000-
NBP [2] _697	Lb/hr	0.0000*	0.0000*	0.0000-	0.0000+	0.0000-	0.0000-	0.0000-	0.0000*
NEP [2] 767	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000*
NBP (2] 901	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-
502	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000-
Toral:		0.0000-	0.0000-	0.0000-	0.0000-	0_0000-	0.0000-	0.0000-	0.0000-

Hyprot	ech's Proces	s Simulator HYSIM •	Licensed to Becatel Inc
Date	92/04/01	Version 386 [C1.51	Case Name 42_390.SIM
Time	14:33:37	Prop Pkg PR	-

Stream Description		195	196	197	198	199	200	500	501
Vapour frac		2.0000-	2.0000-	3 4000-					
Temperature	-	0.0000-	0.0000*	2.0000-	2.0000-	2.0000-	2.0000-	1.0000	1.0000
Pressure	Psia	0.0000-	0.0000-	0.0000* 0.0000*	0.0000*	0.0000-	0.0000-	1799.9466*	1210.1668
Holar Flow		0.0000-	0,0000-	0.0000*	0.0000 - 0.0000 -	0.0000-	0.0000*	28.1960-	25.5960
Mass Flow	Lb/hr	0.0000-	0.0000*	0.0000*		0.0000-	0.0000*	1266.2568*	1266.2568
LiqVol Flow		0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	34619.1008	34619.1008
Enthaloy	Stu/hr	1.559748-06	3.39205E+07	10301.4701	0.0000 - 0.0000-	0.0000*	0.0000-	2967.3426	2967.3425
Density	Lbmole/ft3	0.0000	0.0000	0.0000	0.0000		5.99999E+06=		1.50308E+07
Nole Wt.		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012	0.0014
Spec. Heat	Stu/lbmole-F	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	27.3397	27.3397
Therm Cond	Stu/hr-ft-F			0.0000	0.0000	0.0000	0.0000	9.5091	8.3967
Viscosity	Co			•••				0.0520	0.0409
Z Factor	up	•••					•••	0.0478	0.0371
Sur Tension				•••	•••			1.0004	1.0004
Std Density			•••		•••	•••	•••	•••	•••
IND_COAL	Lb/hr	0.0000-	0.0000-	0,0000-	0.0000+	0.0000-			••••
Nitrogen	Lb/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000*	-0.0000	0.0000
Oxygen	Lb/hr	0.0000-	0.0000*	0.0000*	0.0000-		0.0000*	22203.9171-	22203.9171
CC	Lb/hr	0.0000-	0.0000*	0.0000+	0.0000-	0.0000* 0.0000*	0.0000*	0.0048-	. 0.0048
ωz	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	287.9767	287.9767
	Lb/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000*	0.0000-	6848.1110*	6848.1110
	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*		0.0000*	288.0506*	258.0506
	Lb/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000* 0.0000*	0.0000-	8.9381-	8.9381
	Lb/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-	2.1778*	2.1778
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*		0.0000-	101.4163*	101.4163
	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000-	0.0000 - 3.0000-	0.0000-	2.4605*	2.4605
	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	128.6653*	128.5653
-	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	4213.4815*	4213.4815
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	0.0000
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	3.0000-	0.0000-	0.0000-	0.0000
•	Lb/hr	0.0000-	0.0000-	0.0000+	0.0000-	0.0000-	0.0000* 0.0060*	36.0676*	86.0676
-	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000
· · ·	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0007*	0.0007
	Lb/hr	0.0000*	0.0000-	0.0000-	0.0000*	0.0000+	0.0000*		0.0007
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-		0.0007*	0.0007
-	Lb/hr	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0000* 0.0000*	0.0005* 0.0002*	0.0005
	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000*	0.0000-	0.0002-	0.0002
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	0.0001
	Lb/hr	0.0000-	0.0000-	0.0000-	0.0000+	0.0000-	0.0000-	0.0000-	0.0000 0.0000
	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000*	0.0000-	0.0000-	
	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000+	0.0000=	0.0000*	0.0000 0.0000
· · · · · · · · · · · · · · · · · · ·	Lb/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000-	0.0000*		
	L5/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000-	0.0000-	2.6127*	2.5127
	b/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	1.9385* 4.5449*	1.9385
	b/hr	0.0000-	0.0000-	0.0000-	0.0000*	3.0000-	0.0000-		4.5449
	b/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000*		4.7448=	4.7448
	b/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0 000 - 0.0 000 -	3.5048*	3.5048
	b/hr	0.0000-	0.0000-	0.0000*	0.0000*	0.0000*		2.4248*	2.4248
	b/hr	0.0000-	0.0000-	0.0000-	0.0000*		0.0000-	1.5721*	1.5721
	b/hr	0.0000-	0.0000-	0.0000*	0.0000-	0.0000-	0.0000-	1.3718*	1.3718
	b/hr	0.0000-	0.0000*	0.0000*	0.0000-	0.0000*	0.0000-	1.2325*	1.2325
	.b/hr	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	0.0000-	4.7102-	4.7102
Total: L		0.0000-	0.0000-	0.0000-	0.0000-	0.0000*	0.0000-	419.0720-	419.0720
		0.0000°	0.0000-	4.9000-	0.0000-	0.0000-	0.0000*	34619.1008	34619.1008

Hyprot	ech's Proces	s Simulator HYSIM -	Licensed to Bechtel Inc
Date	92/04/01	Version 386[C1.51	Case Name 42_090.SIM
Time	14:33:37	Prop Pkg PR	-

Chaosa		550		C198 011
Stream Description		550	CALC_OIL	CY88_OIL
•		2.0000-	0.0000	0.0000
Vapour frac		0.0000-	60.0000-	60.0000-
Temperature		0.0000-	14.6960*	14.5960*
Pressure Moloc flow	Psia	0.0000-	0.3243	55.3037
Molar Flow	Lbmole/hr	0.0000-	59.0000-	9500.0003*
Mass Flow	Lb/hr		4.9072	800.3325
Liqual Flow		0.0000* 6.38764 2- 06	-3969.7752 -	
Enchalpy	Btu/hr	-	0.2825	0.2954
Density	Lbmale/ft3	0.0000	181.9169	171.7786
Mole Vt.	Stu/lbmole-f	0.0000 0.0000	81.7146	76.5464
Spec. Heat	Stu/hr-ft-f		0.0734	0.0733
Therm Cand Viscosity	Co		4.3557	2.2559
Z Factor	Cp .		0.0093	0.0089
-	Dumo / om		27.3939	25.0277
Sur Tension	· · · ·		51.3941	50.7400
Std Density		0 0000	0.0000-	0.0000*
INO_CCAL	Lb/hr	°.0000		
Nitrogen	Lb/hr	0.0000-	0.0000*	0.0000*
Oxygen	Lb/hr	0.0000-	0.0000-	
8	Lb/hr	0.0000*	0.0000-	0.0000-
C02	Lb/hr	0.0000-	0.0000*	0.0000-
Nethane	Lb/hr	0.0000-	0.0000-	0.0000-
Ethane	Lb/hr	0.0000*	0.0000-	0.0000-
Ethylene	L5/hr	0.0000*	0.0000-	0.0000*
Propane	Lb/hr	0.0000*	0.0000-	0.0000+
Propene	Lb/hr	0.0000-	0.0000-	0.0000-
HZS	Lb/hr	0.0000-	0.0000-	0.0000*
H20	Lb/hr	0.0000-	0.0000-	0.0000-
CARB_CHAR	Lb/hr	0.000-	0.0000-	0.0000-
ASH	Lb/hr	0.0000-	0.0000-	0.0000-
Hydrogen	L5/hr	0.0000-	0.0000*	0.0000-
CALC_CHAR	L5/hr	0.0000*	0.0000*	•0000.0
NBP (1]_334	Lb/hr	0.0000*	3.0000-	1048.5413*
NBP (11_369	Lb/hr	0.0000-	0.0000-	1245.0707
NBP [1] 403	Lb/hr	0.0000*	0.0000*	1470.5357*
NBP (1]_437	Lb/hr	0.0000=	0.0000*	1449.0710-
NBP [1] 471	Lb/hr	0.0000*	0.0000*	1112.6965*
NBP (1] 506	Lb/hr	0.0000-	0.0000-	904.3082-
NBP (1] 542	Lb/hr	0.0000-	0.0000*	991.7859-
NBP (1] 574	Lb/hr	0.0000-	0.0000*	749.0958*
NBP [1]_605	Lb/hr	0.0000-	0.0000*	358.2151*
NBP [1] _548	Lb/hr	0.0000*	0.0000-	170.5801*
NBP (2] 225	Lb/hr	0.0000*	5.3581*	0.0000*
NBP (2] _301	L5/hr	0.0000-	4.0363*	0.0000-
NBP (21_363	Lb/hr	0.0000	9.2669-	0.0000-
NBP (2] 427	Lb/hr	0.0000-	9.7097	0.0000-
NBP [2] _494	L5/hr	0.0000-	7.3558	0.0000-
NBP [2] 559	Lb/hr	0.0000-	4.9572-	0.0000*
NBP (21_530	Lb/hr	0.0000-	3.2970-	0.0000-
NBP (2] _597	Lb/hr	0.0000-	2.8175	0.0000*
	Lb/hr	0.0000*	2.5369*	0.0000-
· · · · •	Lb/hr	0.0000-	9.6646*	0.3000*
	Lb/hr	0.0000-	0.0000-	0.0000*
Total:	Lb/hr	0.0000*	59.0000*	9500.0 003 *

...

XBi	ANTEL-BECHTEL INC.
	ATTEL - BECATEL MC.

INSTRUMENT COST

Date: 01-Apr-92 Sheet No. 1 of 5

Client UND/EERC ocation: CLAY COUNTY, IN

Une 1,000 T/D MILD COAL GASIFICATION

LEVEL	P&ID No. INSTRUMENTS 1 Transmitter 2 ΔP Transmitter 3 Orifice Plate & Fiange 4 Variable Area Meter (Rotameter) 5 Indicating Meter 6 Signt Fiow Indicator 7 Switch 9 Thermal Flow Switch 9 Thermal Flow Sensor 10 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 17 Ultrasonic Level Sensor 18 19 20 Transmitter 21 Gauge 22 Requiator 23 Switch 24 25 26 Transmitter	QUAN- TITY	\$150 i	HARDWARE COST		TOTAL COST \$2.50 \$2.00 \$7.20 \$7.20 \$6.00
FLOW	1 Transmitter 2 ΔP Transmitter 3 Orifice Plate & Flange 4 Variable Area Meter (Rotameter) 5 Indicating Meter 6 Signt Flow Indicator 7 Switcin 8 Thermal Flow Switch 9 Thermal Flow Sensor 10 11 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switcin 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switcin 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switcin 24 25 25 Transmitter		\$500 \$400 \$800 \$800 \$1.200 \$150			COST \$2.50 \$2.00 \$2.00 \$7.20
FLOW FLOW	2 ΔP Transmitter 3 Orifice Plate & Flange 4 Variable Area Meter (Rotameter) 5 Indicating Meter 6 Signt Flow Indicator 7 Switch 9 Thermal Flow Switch 9 Thermal Flow Sensor 10 Indicating Class 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Class 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18	9	\$500 \$400 \$800 \$800 \$1.200 \$150			\$2,50 \$2,00
LEVEL	3 Orrfice Plate & Flange 4 Variable Area Meter (Rotameter) 5 Indicating Meter 6 Signt Flow Indicator 7 Swritch 8 Thermal Flow Swritch 9 Thermal Flow Sensor 10 Indicating Meter 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Swritch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Sensor 18	9	\$400 \$800 \$800 \$1.200 \$1.200			\$2.00
LEVEL	4 Variable Area Meter (Rotameter) 5 Indicating Meter 6 Signt Flow Indicator 7 Switch 9 Thermal Flow Switch 9 Thermal Flow Sensor 10 Indicating Meter 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 Gauge 19 Gauge 22 Regulator 23 Switch 24 Switch 25 Transmitter	9	\$400 \$800 \$800 \$1.200 \$1.200			\$2.00
LEVEL	5 Indicating Meter 6 Signt Fiow Indicator 7 Switch 8 Thermal Flow Switch 9 Thermal Flow Sensor 10 Indicating Meter 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 Indicator 19 Indicator 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 Imagination 25 Transmitter	9	\$400 \$800 \$800 \$1.200 \$1.200			\$2.00
LEVEL	6 Signt Flow Indicator 7 Switch 8 Thermal Flow Switch 9 Thermal Flow Sensor 10 11 ΔP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 Transmitter	9	\$400 \$800 \$800 \$1.200 \$1.200			\$2.00
LEVEL	7 Swrtch 8 Thermal Flow Swrtch 9 Thermal Flow Sensor 10 AP Transmitter 11 AP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Swrtch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Swrtch 18	9	\$400 \$800 \$800 \$1.200 \$1.200			\$2.00
LEVEL	9 Thermal Flow Sensor 10 Displacer & Float 11 <u>AP</u> Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 Transmitter	9	\$800 \$800 \$1,200 \$150			\$2.00
LEVEL	11 AP Transmitter 12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switcn 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switcn 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switcn 24 25 26 Transmitter	9	\$800 \$800 \$1,200 \$150			
LEVEL	AP Transmitter Displacer & Float Gauge Glass Magnetic Level Indicator Switch Ultrasonic Level Sensor Ultrasonic Level Switch If Gauge Transmitter Gauge Regulator Switch Stransmitter Transmitter Transmitter Transmitter		\$1.200 \$150			
PRESSURE 2 PRESSURE 2 DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	12 Displacer & Float 13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Sensor 18		\$1.200 \$150			
PRESSURE 22 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	13 Gauge Glass 14 Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 26 Transmitter		\$1.200 \$150			
PRESSURE 2 PRESSURE 2 DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	Magnetic Level Indicator 15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18		\$1.200 \$150			
PRESSURE 2 PRESSURE 2 DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	15 Switch 16 Ultrasonic Level Sensor 17 Ultrasonic Level Switch 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 26 Transmitter		\$1.200 \$150			
PRESSURE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 Ultrasonic Level Switch 18 19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 26 Transmitter	7 	\$1.200 \$150			
PRESSURE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 19 J 20 J Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 J 26 Transmitter	7 	\$150 I	1		
PRESSURE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19 20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 25 Transmitter	7 	\$150 I			
PRESSURE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 Transmitter 21 Gauge 22 Regulator 23 Switch 24 25 25 Transmitter	7 	\$150 I			
DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	21 Gauge 22 Regulator 23 Switch 24 25 25 Transmitter	7 	\$150 I			EE 00
DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	22 Regulator 23 Switch 24 25 25 Transmitter	1	i			\$1.05
DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	23 Switch 24 25 - 26 - Transmitter	1		i		
DIFFER- 2 ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3	25 I 26 I Transmitter		!	1	ī	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DIFFER- 2 ENTIAL 2 PRESSURE 2 3 TEMPER- 3 ATURE 3	25 Transmitter	1		j	1	
ENTIAL 2 PRESSURE 2 TEMPER- 3 ATURE 3			1	1		
PRESSURE 2 3 TEMPER- 3 ATURE 3		71	\$1,200		<u>t</u>	\$8.40
TEMPER- 3 ATURE 3	27 Gauge 28 Switch	<u> 7 </u> 7	<u>\$300 </u> \$500			\$2,10 \$2,50
TEMPER- 3 ATURE 3	29		35001			\$3,50
ATURE 3	30	1 1	i			
		1 51	\$100	1	1	\$50
	32 <u>RTD</u>			1		
-	33 Temperature Transmitter 34 Bimetal Thermometer	1 51	\$500			\$2.50
	34 <u>Bimetal Thermometer</u> 35 Regulator		<u>\$150 i</u>		i	\$1.20
	36 Thermowell	1 131	\$150	······		\$1.95
3	Salety Switch	1 1	Ì		1	
	28 Thermostat	!			1	
			<u> </u>			
		<u> </u>			<u> </u>	
	2 Density Transmitter	·····				
4	IS I/P or EP	- +				
	4 Weight Scale	6	\$10,000 i	iiiii		\$60.000
	S Analyzer	1				
4	6 Diaphragm Seal		1			
	7 Control Valve	31	\$4,000	1	1	\$12.00
	B Air-Actuated On/Cif Valve	<u>i 4 </u>	\$4,000	!	<u> </u>	\$16,000
	9 Solenoid Valve	1 301	\$250 i		!	\$7.50
	it Rupture Disc			I		
-	2 Controller PLC	1 1	\$26,000			\$26,000
	3 Weign Beit Feeder Control	7	\$4,000			\$28.00
-	4 Metal Detector	1 11	\$1.000			\$1.000
-	5 APM Sensor Switch	5	\$800	1	1	\$4.000
	6 Vibration Switch	3	\$500		<u> </u>	\$1,500
	7 TOTAL COST			1	1	\$194.900
	9					
	0 i					
	1		<u></u>			

XBi "	TEL -	aecatel ac		NSTRUMENT COST			01-Apr-92 2 of 5	
Client U	ND.	/EERC	Unit	1,000 T/D MILE	COAL GASIFIC	FICATION		
Location: C	LAY	COUNTY, IN						
		Dwg. No P&ID No		Equipment No. Unit No.			-	
TYPE		INSTRUMENTS	GUAN-	UNIT COST	HARDWARE COST	LABOR COST	TOTAL COST	
FLOW		Transmitter					1	
		ΔP Transmitter		the second second second second second second second second second second second second second second second s			\$1,200 \$350	
		Variable Area Meter (Rotameter)			1			
		Indicating Meter	1	1			1	
		Signt Flow Indicator						
		Switch		\$500	1		S1,500	
		Thermal Flow Switch	3	\$400 \$400			\$1,30	
	10						1	
LEVEL	-	AP Transmitter	2	\$1,200	i		\$2,400	
		Displacer & Float					<u> </u>	
		Gauge Glass					<u> </u>	
		Magnetic Level Indicator		5800			\$8,800	
		Ultrasonic Level Sensor					1	
	17	A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWN	1		1		I	
	18							
	:9			<u>\$1,200 </u>			\$1,200	
PRESSURE	20 21	Gauge		the second second second second second second second second second second second second second second second s			\$450	
			1		1		1	
	23	รพกะก	2!	\$500	-		1 \$1,000	
	24		1				l	
	25						67.000	
DIFFER-	25 27	Transmitter Gauce	61	the state of the s			\$7.200 \$1,800	
ENTIAL PRESSURE		Switch	6	S500 (53.000	
1 112000112	29	1	1		I		1	
	30				1		1	
TEMPER-		Thermocouple	51	\$100			\$500	
ATURE		Temperature Transmitter	5		······		\$3,000	
,		i Bimetal Thermometer	1 81	and the second second second second second second second second second second second second second second second	4		1 \$1,200	
		Regulator	1 1					
		Thermowell	131	\$150			\$1.950	
		Safety Switch					1	
	39 39	Thermostat						
	40		1 1	1			1	
OTHER	41	and the second second second second second second second second second second second second second second second	1	1			I	
		Viscosity Transmitter					!	
		I/P or E/P	4	S10.000			\$40.000	
	44 45	Weight Scale Analyzer	4	510,0001			<u>, 3-0.000</u>	
	45	والمستقل فالمنافع والمستعم والمستقل والشارية والمنابع والمستعين والمستعين والمستعين والمستعين والمستع	1 1	1	I			
	47	Control Valve	5				\$20.000	
		Air-Actuated Cn/Cff Valve	81		and the second second second second second second second second second second second second second second second		\$32.000	
	49		101	the second second second second second second second second second second second second second second second s			\$2,500	
	50 51	Safety Relief Valve	1		i		<u>.</u>	
			2	\$25.000			\$52,000	
		Weign Beit Feeder Control	61				\$24.000	
		Digital Connections	1					
	55	APM Sensor Switch	1 61	\$800			\$4.800	
	56	فأجالك والمتعادين ويستبعك النبي والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد		1				
	57	TOTAL COST					\$212,050	
NOTES	58 59							
	59 60							
	61							

Clave: UNCESPC Unc 1.000 T/D MILD COAL GASIFICATION Lossion: CLAY COUNTY, IN Equipment No.	· · · · ·	Date: Sheet No.				-860-1761, INC.	TEL-	Х ВІ "	
Dreg. Na. PFD - 003 PAID Na. Equipment Na. TYPE INSTRUMENTS TTY Unit Na. 2 AP Transmiter 1 \$12001 COST 3 Ordice Plate A Flance 7 \$12001 COST 4 Varable Area Meter (Retameter) 1 512001 1 5 Indicating Neter 1 512001 1 6 Signt Flow Indicator 1 1 512001 7 Switch 1 512001 1 8 Thermai Flow Switch 1 1 512001 9 Thermai Flow Sensor 1 512001 1 10 Magnetic Flow Meter 1 \$1,0001 1 12 Decliseer & Float 3 \$1,2001 1 13 Station 1 \$1,0001 1 1 14 Magnetic Level Sensor 3 \$8001 1 1 13 Station 1 \$1,0001 1 1 14 Magnetic Level Sensor 3 \$1,0001 1 1 15 Counce 1 \$1,00		CATION	COAL GASIFIC	,000 T/D MILD	Unic		VEERC	ND	Client U
PAD Na Unit Na TYPE INSTRUMENTS QUAN- Transmitter 1 31200 Cost Cast Cost							Y COUNTY, IN	:LA'	Location: C
TYPE INSTRUMENTS TTY UNIT COST COST COST COST 2 LP Transmitter 1 \$1.200 1 <				•	-	PFD-003			
2 DP Transmitter 7 \$1,200 3 Orrice J Net & Flance 7 \$350 4 Variable Area Meter (Rotameer) 1 1 5 Indicating Meter 1 1 6 Signt Flow Indicator 1 1 7 Switch 1 1 8 Thermal Flow Sensor 1 1 10 Magnetic Flow Meter 1 54.000 1 11 DP Transmitter 3 \$1200 1 12 Displacer & Float 1 1 54.000 1 13 Gauge Glass 1 \$1.000 1 1 14 Magnetic Level Indicator 3 3800 1 1 14 Magnetic Level Indicator 3 3800 1 1 1 13 Gauge Glass 1 \$1.000 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>TOTAL COST</td><td></td><td></td><td>UNIT COST</td><td></td><td></td><td>INSTRUMENTS</td><td></td><td></td></t<>	TOTAL COST			UNIT COST			INSTRUMENTS		
a) Orfice Plate & Fance 7 \$3501 4) Variable Area Meter (Rismetter) 1 1 5) Indicating Meter 1 1 6) Signt Flow Switch 1 1 7) Switch 1 1 8) Thermal Flow Switch 1 1 9) Thermal Flow Switch 1 54,0001 10) Magnetic Flow Meter 1 54,0001 11 LP Transmitter 3 51,2001 12 Displacer & Float 1 1 13 Gauce Glass 1 51,000 14 Magnetic Level Encor 3 51,2001 15 Ultrasonic Level Switch 1 1 16 Licauce 1 1 1 16 Caras Meter 1 51,2001 1 16 Jauce 1 1 1 1 16 Gauce 1 1 1 1	1 \$1.2								FLOW
4 Varable Area Meter (Rotameter) 1 1 5 Indicating Meter 1 1 6 Signt Flow Indicator 1 1 7 Switch 1 1 8 Thermal Flow Sensor 1 1 10 Magnetic Flow Meter 1 5.4.000 12 DSplacer & Float 3 51.200 13 Gauce Slass 1 51.000 14 Magnetic Level Incicator 3 3800 15 Switch 3 5800 1 16 Ultrasonic Level Sensor 1 5150 1 17 Ultrasonic Level Sensor 1 5150 1 16 Indicator 3 51200 1 21 Gauce Glass 1 5150 1 22 Termal Interror 3 51200 1 23 Switch 1 1 1 1 24 Incital frasmitter 9	58.4						<u>ΔP Transmitter</u>	2	
signt Flow Indicator i i Signt Flow Switch i a Thermal Flow Switch i b Thermal Flow Switch i c I Agreetic Flow Switch i c I Agreetic Flow Switch i c I Agreetic Flow Switch i c I Agreetic Flow Switch i c I Agreetic Evel Incleator i c Switch i i c Gauce i i c Gauce i i c Gauce i i c Gauce i i <t< td=""><td>\$2.4</td><td></td><td></td><td>\$350 </td><td>1 71</td><td></td><td></td><td></td><td></td></t<>	\$2.4			\$350	1 71				
6 Signt Flow indicator I 7 Swrten I 8 Thermal Flow Swrten I 9 Thermal Flow Swrten I 10 Magnetic Flow Meter 1 S4.000 11 AP Transmitter 3 S1.200 12 Dagiacer & Float I I 13 Gauce Glass 1 S1.000 14 Magnetic Level Incicator I I 15 Swrten 3 S800 16 Ultrasonic Level Sensor I I 17 Ultrasonic Level Sensor I I 18 I I I I 19 I I I I 21 Transmitter 3 S1200 I 22 Regulator I I S1200 I 24 I I S1200 I I 25 Transmitter I S1200 I						(Hotameter)			
7 Swrich I 8 Thermal Flow Sensor I 10 Magnetic Flow Meter 1 \$4.000 11 AP Transmitter 3 \$1.200 12 Displacer & Float I I 13 Gauce Gass 1 \$1.000 14 Magnetic Level Indicator I I 15 Switch I I 16 Ultrasonic Level Sensor I I 17 Ultrasonic Level Sensor I I 18 I I I I 19 I I I I 21 Gauce I Sticol I 23 Switch I I I 24 I I I I 25 Transmitter I Sticol I 26 I I I I 27 Sauco I I 28<				· · · · · · · · · · · · · · · · · · ·	+		Signt Flow Indicator	5	
8 Thermal Flow Swrtch Image tic Flow Meter 1 Second 10 Magnetic Flow Meter 1 S4.000 Image tic Flow Meter 1 12 De transmitter 3 S1.200 Image tic Flow Meter 1 12 De transmitter 3 S1.200 Image tic Flow Meter 1 13 Gauge Glass 1 S1.000 Image tic Flow Meter 1 13 Gauge Glass 1 S1.000 Image tic Flow Meter 1 14 Magnetic Level Indicator 1 Image tic Flow Meter 1 Image tic Flow Meter 16 Ultraschic Level Sensor 1 Image tic Flow Meter 1 Image tic Flow Meter 17 Ultraschic Level Sensor 1 S1.200 Image tic Flow Meter 1 18 1 S1.200 Image tic Flow Meter 1 S1.200 21 Tansmitter 1 S1.200 Image tic Flow Meter 1 22 Tansmitter 1 S1.200 Image tic Flow Meter <td></td> <td></td> <td></td> <td></td> <td>++</td> <td></td> <td></td> <td></td> <td></td>					++				
9 Thermal Flow Sensor 1 54.001 LEVEL 11 ΔP Transmitter 3 \$1,2001 12 Distace A Float	1	·····		İ	1 1	1			
EVEL 11 0.9 Transmiter 3 \$1.2001 12 Displacer & Rloat 1 \$1.000 1 13 Gauce Glass 1 \$1.000 1 14 Magnetic Level Indicator 1 \$1.000 1 15 Switch 3 \$600 1 16 Ultrasonic Level Sensor 1 \$1.000 1 18 1 1 1 1 1 19 1 1 1 1 1 20 Transmiter 3 \$1.200 1 1 21 Gauge 1 \$1.501 1 1 23 Transmiter 1 \$1.2001 1 1 24 1 1 1 1 1 1 24 Transmiter 1 \$1.2001 1 1 25 Transmiter 1 \$1.001 1 1 30 Temosauure Transm	1			1	1				
12 Displacer & Float I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	I \$4.0		1	\$4.000	1 11	r	Magnetic Flow Meter	10	
11 Gauge Glass 1 \$1,000 14 Magnetic Level Incleator 3 \$800 15 Switch 3 \$800 16 Ultrasonic Level Sensor 1 1 17 Ultrasonic Level Sensor 1 1 18 1 1 1 1 19 1 1 1 1 21 Gauge 1 \$1200 1 22 Aegulator 1 1 1 23 Switch 1 1 1 1 24 1 1 1 1 1 1 25 1 1 1 1 1 1 1 26 1 1 1 1 1 1 1 26 1 1 1 1 1 1 1 27 Gauge 1 1 1 1 1 1	1 \$3,6	1		\$1,200	3				EVEL
Here Magnetic Level Indicator Image: Constraint of the indicator 16 Ultrasonic Level Sensor Image: Constraint of the indicator Image: Constraint of the indicator 17 Ultrasonic Level Switch Image: Constraint of the indicator Image: Constraint of the indicator 18 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indicator 19 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indicator 21 Gauge: Image: Constraint of the indicator Image: Constraint of the indicator 22 Regulator Image: Constraint of the indicator Image: Constraint of the indicator 23 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indicator 24 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indicator 25 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indicator 26 Image: Constraint of the indicator Image: Constraint of the indicator Image: Constraint of the indindindicator 27					1				
15 Switch 3 \$800 16 Ultrasconic Level Sensor	31.0		!	\$1,000	<u> 1 </u>				
16 Ultrasonic Level Sensor 1 17 Ultrasonic Level Switch 1 18 1 1 19 1 1 10 1 1 11 Cauce 1 12 Cauce 1 13 Sti 200 14 Cauce 1 15 1 1 14 Cauce 1 15 1 1 16 1 1 17 Cauce 1 18 Switch 1 19 1 1 19 1 1 10 1 1 21 Farguator 1 22 Transmiter 9 30 1 1 31 Thermocoule 9 32 Transmiter 9 33 Thermocoule 1 34 Timeratimemeter 9	S2.4			6900	+	2101			
17 Ultrasonic Level Switch 1 18 1 1 20 Transmitter 3 \$1,200 21 Gauge 1 \$150 22 Regulator 1 \$150 23 Switch 1 \$100 23 Switch 1 \$100 24 1 \$100 1 25 Transmitter 1 \$1,200 26 Transmitter 1 \$1,200 27 Gauge 1 1 28 Transmitter 1 \$1,200 29 1 1 \$1,200 1 20 1 1 \$1,200 1 20 Termornitier 9 \$100 1 20 Termornitier 9 \$100 1 20 Termornitier 9 \$100 1 30 Thermocouble 9 \$100 1 31 Thermomete	32,4			30001		sof			
18 1 1 PRESSUR 1 ransmitter 3 \$1,200 21 Cauce 1 \$150 1 22 Regulator 1 \$150 1 23 Switch 1 \$150 1 24 Switch 1 1 \$1,200 25 Transmitter 1 \$1,200 1 24 Switch 1 \$1,200 1 25 Transmitter 1 \$1,200 1 26 Switch 1 1 \$1,200 27 Gauce 1 1 1 28 Switch 1 1 1 29 Stool 1 1 1 20 Temporature framsmitter 9 \$100 1 21 Temporature framsmitter 9 \$150 1 28 Thermoxeti 18 \$150 1 29 1 1									
19 1 1 1 PRESSURE 20 Transmitter 3 \$1,2001 21 Gauge 1 \$1501 1 22 Feculator 1 \$1501 1 23 Switcn 1 1 1 24 Switcn 1 1 1 25 Transmitter 1 \$1,2001 1 24 Gauge 1 \$1,2001 1 24 Gauge 1 \$1,2001 1 25 Transmitter 1 \$1,2001 1 26 Transmitter 9 \$1,001 1 27 RTD 1 1 1 30 Thermocouble 9 \$1,001 1 31 Thermocuble 9 \$1,001 1 32 RTD 1 1 1 33 Thermovell 18 \$1,001 1 34 Thermovell </td <td></td> <td></td> <td></td> <td></td> <td>† – – †</td> <td></td> <td>services and the second statement of the second statement of the second statement of the second statement of the</td> <td></td> <td></td>					† – – †		services and the second statement of the second statement of the second statement of the second statement of the		
21 Cauge 1 \$1501 22 Regulator 1 1 23 Switch 1 1 24 1 1 1 25 1 1 1 25 1 1 1 25 1 1 1 26 Transmitter 1 1 27 Gauge 1 1 28 Switch 1 1 29 1 1 1 30 Thermocouple 9 \$100 31 Thermocouple 9 \$600 32 Regulator 9 \$600 33 Temperature Transmitter 9 \$600 34 Thermosetat 1 1 35 Regulator 1 1 36 Thermosetat 1 1 37 Satery Fwitch 1 1 36 Therorsmitter 1 <td>1</td> <td>i</td> <td></td> <td></td> <td>1</td> <td></td> <td>NAME AND ADDRESS OF TAXABLE PARTY.</td> <td></td> <td></td>	1	i			1		NAME AND ADDRESS OF TAXABLE PARTY.		
22 Regulator	1 \$3.5	ł	1	\$1.2001	3		i Transmitter	20	PRESSURE
23 Switcn I I I I 24 I I I I I 25 I I I Siland I DIFFER- 25 Transmitter I I I DIFFER- 25 Switcn I I I DIFFER- 25 Switcn I I I PRESSURF 25 Switcn I I I 29 Switcn I I I I 30 Temperature Transmitter 9 S600 I I 31 Thermoceupie 9 S150 I I 32 Temperature Transmitter 9 S150 I I 33 Thermovell 18 S150 I I 34 Thermostat I I I I 35 Thermovell 18 S150 I I	! \$1	!		\$150	1		Gauge	21	
24 1 1 1 25 Transmitter 1 \$1.200 ENTIAL 27 Gauge 1 1 ENTIAL 27 Gauge 1 1 PRESSURE 28 Switch 1 1 1 30 1 1 1 1 1 30 1 1 1 1 1 30 1 1 1 1 1 30 1 1 1 1 1 30 1 1 1 1 1 30 1 1 1 1 1 31 Thermocouple 9 \$150 1 1 32 Temperature Transmitter 9 \$150 1 1 33 Thermostat 1 1 1 1 1 34 Iperstry Transmitter 1 1 1 1 1 <td>1</td> <td> </td> <td>1</td> <td> </td> <td> </td> <td></td> <td>Regulator</td> <td>22</td> <td></td>	1		1				Regulator	22	
25 1 1 1 1 DIFFER- 25 Transmitter 1 \$1,200 1 PRESSURE 28 Switch 1 1 1 1 29 1 1 1 1 1 1 30 1 1 1 1 1 1 29 1 1 1 1 1 1 30 Termocouple 9 \$100 1 1 30 Termocouple 9 \$100 1 1 31 Termoreautive Transmitter 9 \$150 1 1 34 Birnetal Thermometar 9 \$150 1 1 1 35 Requiator 1 1 1 1 1 1 36 Thermostat 1 1 1 1 1 1 37 Safety Switch 1 1 1 1 1	!	<u> </u>							
DIFFER- PRESSURE 29 25 Transmitter 1 \$1,2001 PRESSURE 29 20 20 20 20 EMPER- 30 30 9 \$1001 20 EMPER- 30 31 Thermocouple 9 \$1001 20 EMPER- 30 31 Thermocouple 9 \$1001 20 30 Temperature Transmitter 9 \$6001 31 31 31 Thermocouple 9 \$150 31 31 31 32 Thermocouple 9 \$1501 31 <t< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			<u> </u>						
ENTIAL 27 Gauge Image: Control of the second	-			1	<u></u>		ولواري المحافظ بمنابع والبراجي والمتبار والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ		
PRESSURE 28 Swrtcn 1 1 29 1 1 1 30 1 1 1 31 Thermocoupie 9 \$1001 32 Temberature Transmitter 9 \$6001 33 Temberature Transmitter 9 \$5001 34 Bimetal Thermometar 9 \$1501 35 Regulator 1 1 36 Thermowell 18 \$1501 36 Thermostat 1 1 37 Satery Switcn 1 1 38 Thermostat 1 1 39 Tarsmitter 1 1 40 UPror E/P 1 1 41 Density Transmitter 1 1 42 Viscosity Transmitter 1 1 43 UPror E/P 1 1 44 Weight Scale 1 1 45 Analyzer 2 \$20,0001 1 46 Ciantragm Seal 1 1 </td <td><u> \$1,2</u></td> <td></td> <td></td> <td>51.2001</td> <td></td> <td></td> <td>وأكد ويرغدون بيان والتركي والمنتين فتترك فتتلابه المرتقة المتعاد المتبية ببالمكر بيريها فتشرق</td> <td></td> <td></td>	<u> \$1,2</u>			51.2001			وأكد ويرغدون بيان والتركي والمنتين فتترك فتتلابه المرتقة المتعاد المتبية ببالمكر بيريها فتشرق		
29 30 1 1 1 1 TEMPER- 31 Thermocouple 9 \$1001 1 31 Temperature Transmitter 9 \$1001 1 33 Temperature Transmitter 9 \$5001 1 34 Bimetal Thermometer 9 \$1501 1 35 Requiator 1 1 1 36 Thermowell 18 \$1501 1 37 Safety Switch 1 1 1 38 Thermostat 1 1 1 39 1 1 1 1 40 1 1 1 1 41 Censity Transmitter 1 1 1 42 Viscosity Transmitter 1 1 1 43 U/P or E/P 1 1 1 44 Weight Scale 1 1 1 45 Analyzer 2 <t< td=""><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td>كتفت متالعين والمالية القالفة فالبلاقة التراجي المراجع المتراجع المتحد التراجع المحاد</td><td></td><td></td></t<>	1		1				كتفت متالعين والمالية القالفة فالبلاقة التراجي المراجع المتراجع المتحد التراجع المحاد		
TEMPER- ATURE 31 Thermocoupie 9 \$1001 33 Temperature Transmitter 9 \$6001 34 Simetal Thermometer 9 \$1501 35 Regulator 1 1 36 Thermowell 18 \$1501 37 Safety Switch 1 1 38 Thermowell 18 \$1501 39 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 30 1 1 1 41 Density Transmitter 1 1 42 Viscosity Transmitter 1 1 43 I/P or E/P 1 1		i	i		† †		1		
ATURE 32 ATD Image: approximate and approximapproximapproximate and approximapproximate and approx	1	ł	1					30	
33 Temperature Transmitter 9 \$600 1 34 Bimetal Thermometer 9 \$150 1 35 Requiator 1 1 1 36 Thermowell 18 \$150 1 37 Safety Switch 1 1 1 38 Thermostat 1 1 1 39 1 1 1 1 1 39 1 1 1 1 1 39 1 1 1 1 1 39 1 1 1 1 1 39 1 1 1 1 1 30 Thermostat 1 1 1 1 40 Uscossity Transmitter 1 1 1 1 41 Density Transmitter 1 1 1 1 42 Viscosity Transmitter 2 \$20000 1 1 43 I/P or E/P 1 1 1 1 1 <td>59</td> <td> </td> <td>!</td> <td>\$100 i</td> <td>1 91</td> <td></td> <td></td> <td>31</td> <td></td>	59		!	\$100 i	1 91			31	
34 Bimetal Thermometar 9 \$150 35 Regulator 1 1 36 Thermowell 18 \$150 37 Safety Switcn 1 1 38 Thermostat 1 1 39 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 40 1 1 1 39 1 1 1 40 1 1 1 40 Viscosity Transmitter 1 1 41 Density Transmitter 1 1 42 Viscosity Transmitter 1 1 43 I/P or E/P 1 1 44 Weight Scale 1 1 45 Analyzer 2 \$20,000 1 46 Diapragm Seal 1 1 1	1		<u> </u>						TURE
35 Regulator 18 \$150 36 Thermowell 18 \$150 37 Satery Switch 1 1 38 Thermostat 1 1 39 Intermostat 1 1 40 1 1 1 40 1 1 1 40 1 1 1 40 1 1 1 40 1 1 1 40 1 1 1 40 1 1 1 40 1 1 1 41 Density Transmitter 1 1 42 Viscosity Transmitter 1 1 43 I/P or E/P 1 1 44 Weight Scale 1 1 45 Analyzer 2 \$20,000 1 46 Diapragm Seal 1 1 1 47 Control Vaive 8 \$4,000 1 48 Are-Actuated On/Cft Vaive	1 \$5.4	!			the second second second second second second second second second second second second second second second se				
36 Thermoweil 18 \$150 37 Safety Switch 1 1 38 Thermostat 1 1 39 1 1 1 40 1 1 1 41 Density Transmitter 1 1 42 Viscosity Transmitter 1 1 43 I/P or E/P 1 1 44 Weight Scale 1 1 44 Weight Scale 1 1 45 Analyzer 2 \$20,000 1 45 Diapnragm Seal 1 1 47 Control Vaive 8 \$4,000 48 Auri-Accuated On/Cft Vaive 2 \$4,000 49 Solenoid Vaive 1 1 50 Safety Relief Vaive 1 1 51 Rupture Disc 1 1 52 Controller PLC 1 \$25,000 54 Di	1 \$1.3		·	\$150	91		In the second second second second second second second second second second second second second second second	.)	
37 Safety Switch Image: Safety Switch Image: Safety Switch 38 Thermostat Image: Safety Switch Image: Safety Switch 39 Image: Safety Switch Image: Safety Switch Image: Safety Switch 40 Image: Safety Transmitter Image: Safety Transmitter Image: Safety Transmitter 41 Image: Safety Transmitter Image: Safety Transmitter Image: Safety Transmitter 42 Viscosity Transmitter Image: Safety Transmitter Image: Safety Transmitter 43 I/P or E/P Image: Safety Transmitter Image: Safety Transmitter 44 Weight Scale Image: Safety Transmitter Image: Safety Transmitter 45 Analyzer Image: Safety Transmitter Image: Safety Transmitter 44 Weight Scale Image: Safety Transmitter Image: Safety Transmitter 45 Analyzer Image: Safety Transmitter Image: Safety Transmitter 45 Analyzer Image: Safety Transmitter Image: Safety Transmitter 46 Dianal Confect Valve Image: Safety Transmitter Image: Safety Transmitter 51 Rupture Disc Image: Safety Transmitter Image: Safe	52.7			\$1501	1 181				
38 Thermostat I I 39 I I I I 40 I I I I 40 I I I I 41 Density Transmitter I I I 42 Viscosity Transmitter I I I 43 I/P or E/P I I I 44 Weight Scale I I I 45 Analyzer 2 S20,000 I 44 Weight Scale I I I 45 Control Vaive 8 S4,000 I 46 Diapringm Seal I I I 47 Control Vaive 8 S4,000 I 48 Air – Actuated On/Cft Vaive 2 S4,000 I 49 Solenoid Vaive 2 S4,000 I 50 Safety Relief Valve I I I 51 Rupture Oisc I I I 52 Controller <td>1 34.7</td> <td>i</td> <td></td> <td>31301</td> <td></td> <td></td> <td>a de la constante de la constante de la constante de la constante de la constante de la constante de la consta</td> <td></td> <td></td>	1 34.7	i		31301			a de la constante de la constante de la constante de la constante de la constante de la constante de la consta		
40 Image: style in the image: style in t	1	i	i		<u>i</u> i		المراجع والمراجع والمحادث والمتحاد التفاد التفاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد		
A1 Censity Transmitter Image: style in the im	ł	1	1	1	1			39 İ	
42 Viscosity Transmitter 1 43 I/P or E/P 1 44 Weight Scale 1 45 Anaiyzer 2 46 Diaphragm Seal 1 47 Control Vaive 8 48 Air - Actuated On/Cft Vaive 2 49 Solenoid Vaive 2 50 Safety Relief Valve 1 51 Rupture Disc 1 52 Controller 1 53 Weign Seit Feeder Control 1 54 Digital Connections 1 55 RPM Sensor Switch 1 56 Vibration Switch 1 57 TOTAL COST 1	I						1	40 1	
43 I/P or E/P I I I 44 Weight Scale I I I 45 Analyzer I I I 45 Diaphragm Seal I I I 46 Diaphragm Seal I I I 47 Control Vaive 8 \$4.0001 I 48 Air - Actuated On/Cft Vaive 2 \$4.0001 I 49 Solenoid Vaive 2 \$4.0001 I 49 Solenoid Vaive 2 \$4.0001 I 50 Safety Relief Valve I I I 51 Rupture Disc I I I 52 Controller PLC I \$25.0001 I 53 Weign Beit Feeder Control I I I I 54 Digital Connections I I I I 55 RPM Sensor Switch I I S5001 I 56 Vibration Switch I I \$5001 I	1	1		1	1			41	THER
44 Weight Scale 1 1 45 Analyzer 2 \$20,000 46 Diaphragm Seal 1 1 47 Control Vaive 8 \$4,000 48 Air - Actuated On/Cft Vaive 2 \$4,000 49 Solenoid Vaive 2 \$4,000 49 Solenoid Vaive 1 1 50 Safety Relief Valve 1 1 51 Rupture Disc 1 1 52 Controller PLC 1 \$25,000 53 Weigh Belt Feeder Control 1 1 1 54 Digital Connections 1 1 1 55 RPM Sensor Switch 1 1 \$500 57 TOTAL COST 1 1 1 10TES 58 1 1 1	1			1					
45 Analyzer 2 \$20,000 46 Diapnragm Seal 1 1 47 Control Vaive 8 \$4,000 48 Air - Actuated On/Cft Vaive 2 \$4,000 49 Solenoid Vaive 2 \$4,000 49 Solenoid Vaive 2 \$4,000 50 Safety Relief Vaive 1 1 51 Rupture Disc 1 1 52 Controller PLC 1 \$25,000 53 Weign Self Feeder Control 1 1 54 Digital Connections 1 1 55 RPM Sensor Switch 1 1 56 Vibration Switch 1 1 \$500 57 TOTAL COST 1 1 1	1				<u> </u>				
46 Diaphragm Seal 1 1 47 Control Vaive 8 \$4.0001 48 Air - Actuated On/Cff Vaive 2 \$4.0001 49 Solenoid Vaive 2 \$4.0001 49 Solenoid Vaive 2 \$4.0001 50 Safety Relief Vaive 1 1 51 Rupture Disc 1 1 52 Controller PLC 1 \$25.0001 53 Weign Seit Feeder Control 1 1 54 Digital Connections 1 1 55 RPM Sensor Switch 1 1 \$5001 56 Vibration Switch 1 1 \$5001 57 TOTAL COST 1 1 1	1			1 000 003					
47 Control Vaive 8 \$4,0001 1 48 Air - Actuated On/Cff Vaive 21 \$4,0001 1 49 Solenoid Vaive 21 \$4,0001 1 49 Solenoid Vaive 21 \$4,0001 1 50 Safety Relief Valve 1 1 1 51 Rupture Disc 1 1 1 52 Controller PLC 1 \$25,0001 1 53 Weign Seit Feeder Control 1 1 1 1 54 Digital Connections 1 1 1 1 1 55 RPM Sensor Switch 1 1 \$5001 1 1 1 56 Vibration Switch 1 1 \$5001 1 1 1 57 TOTAL COST 1 1 1 1 1 1	\$40.0			320,0001	<u> </u>				
48 Air - Actuated On/Cft Valve 2 \$4,0001 1 49 Solenoid Valve 1 1 1 50 Safety Relief Valve 1 1 1 51 Rupture Disc 1 1 1 52 Controller PLC 1 \$25,0001 1 53 Weign Beit Feeder Control 1 1 1 1 54 Digital Connections 1 1 1 1 55 RPM Sensor Switch 1 1 \$5001 1 56 Vibration Switch 1 \$5001 1 1 57 TOTAL COST 1 1 1 1	\$32.0		<u> </u>	\$4 000 1	81				
49 Solenoid Vaive 1 1 50 Safety Relief Valve 1 1 51 Rupture Disc 1 1 52 Controller PLC 1 \$25,000 53 Weign Selt Feeder Control 1 1 54 Digital Connections 1 1 55 RPM Sensor Switch 1 \$500 56 Vibration Switch 1 \$500 57 TOTAL COST 1 1	\$8.00		1			Valve			
51 Rupture Disc 1 1 1 52 Controller PLC 1 \$25,0001 1 53 Weign Beit Feeder Control 1 1 1 54 Digital Connections 1 1 1 55 RPM Sensor Switch 1 1 1 56 Vibration Switch 1 \$5001 1 57 TOTAL COST 1 1	1	1		1			Solenoid Valve		
52 Controller PLC 1 \$25,000 53 Weign Beit Feeder Control 54 Digital Connections 55 RPM Sensor Switch 56 Vibration Switch 1 \$500 57 TOTAL COST	1			1	1		Safety Relief Valve	50 [
53 Weign Beit Feeder Control I I I 54 Digital Connections I I I 55 RPM Sensor Switch I I I 56 Vibration Switch I I S500 I 57 TOTAL COST I I I OTES 58 I I I			1	1	Ļ				
54 Digital Connections I	\$26.00			\$25,000					
55 APM Sensor Switch I		!			<u> </u>				
56 Vibration Switch 1 \$500 1 57 TOTAL COST I I I I OTES 58 I					<u> </u>				
57 TOTAL COST 1 1			·		<u> </u>				
OTES 58	S50	1				0711 000	والمستعدين والمراجع والمتعادية والفائد أوالت أتحصص المنابعة والمتقادة	-	
	\$144.85			 	1	UTAL CUST	<u> </u>		and the second second second second second second second second second second second second second second secon
					·····		······	-	
60									

XBi ATTEL-BECHTEL INC.

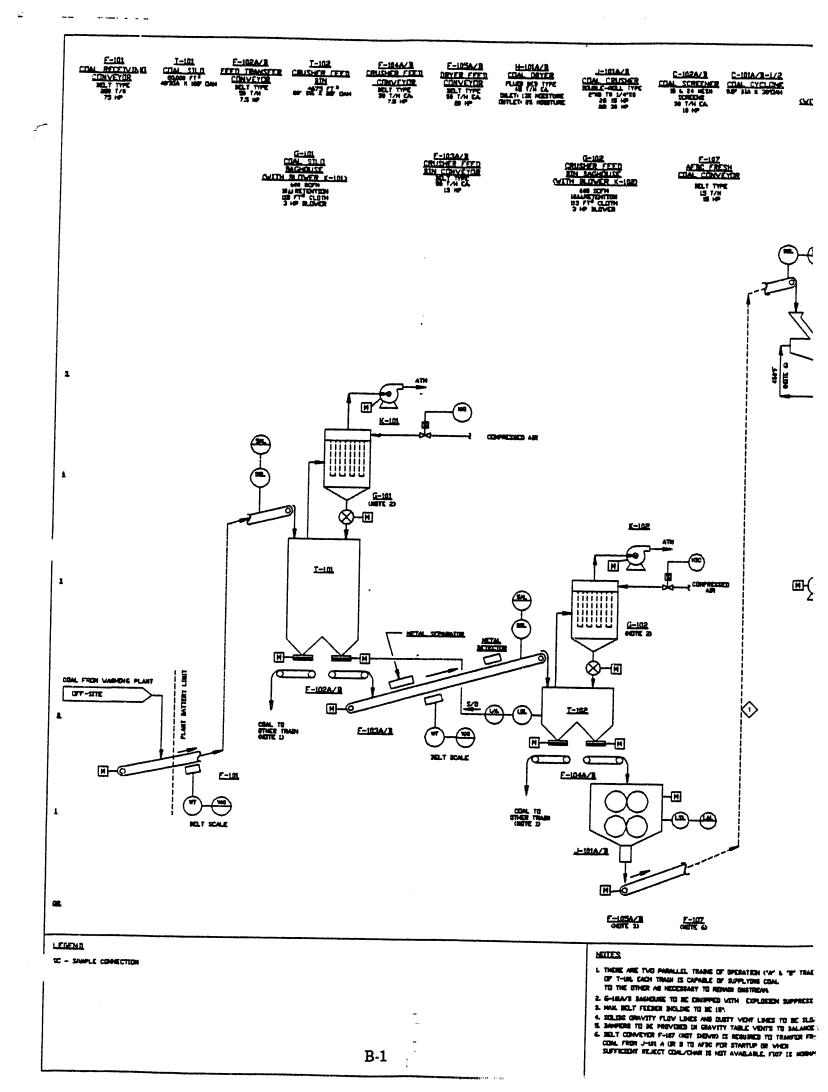
INSTRUMENT COST

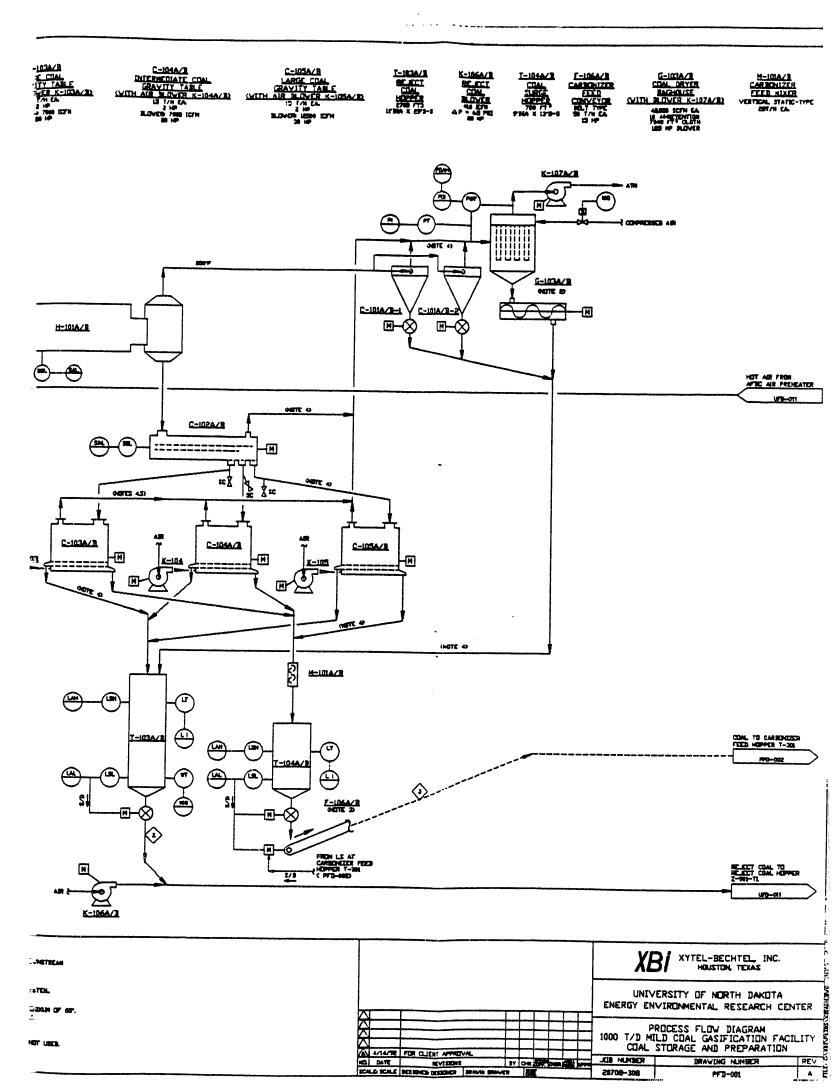
Date: 01-Apr-92 Sheet No. 4 of 5

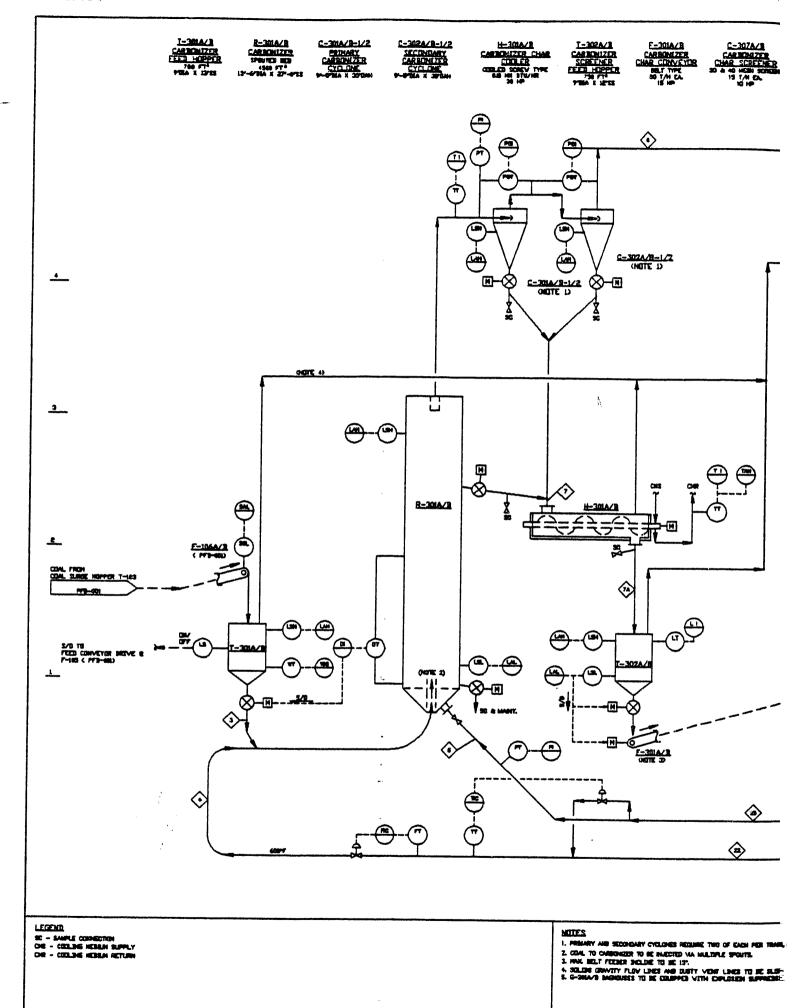
Client: UND/EERC

Unit 1,000 T/D MILD COAL GASIFICATION

	CLA	Y COUNTY, IN					
		Dwg. NoPFD-004		Equipment No.			
		P&ID No.	-	Unit No.		يغدين يعبد معالات ويجب وتغانيهم	
			QUAN-	(COST PER UNIT		TOTAL
TYPE		INSTRUMENTS	ΠΥ	INSTRUMENT I	HARDWARE	LABOR	COST
FLOW	1		!	1			
	2		1				\$1,200
	3		1 1	\$350			\$350
	5						
	5	والمحاج و					
	7		+				
	8	here and the second second second second second second second second second second second second second second	4	\$500			\$2.000
	9		2	\$4001			\$800
	10		1				0000
LEVEL	11		1 1	\$1.2001			\$1,200
	12		T	1			
	13		1	ĺ			
	14	Magnetic Level Indicator	1	İ	i		· · · · · · · · · · · · · · · · · · ·
	15	Switch	12	\$800		i	\$9,600
	16		31	\$1,000			\$3.000
	17		1	\$600 !			\$600
	18	المحادية والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد		1	1		
	19			1	1		
PRESSURE	20	In this way where the second se	1 91	\$1.200	1	1	\$10.800
	21		1 71	\$150	1		\$1.050
	22		1	1			
	23		3	\$500			\$1,500
	24		1 1	1		1	
	25				1		
DIFFER-	25	Transmitter	1 51	\$1,200	1	!	\$6.000
ENTIAL	27	Cauce	4	\$300			\$1.200
PRESSURE	28	Switch					
	29 30		<u> </u>				
TEMPER-	-		<u> </u>			1	
ATURE	31 32		7	\$100			\$ 700
AIUNE	33		71	1			
	34		4	<u>\$600 </u> \$150			\$4.200
	35	Regulator		31301			\$600
	36	Thermowell	101	\$150			\$1.500
	37						31,300
	38	ويتجارب والمحاد والمتحاد والمتحر والمتحر والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد			······································		
	39			i			
	40		;		i	······	
OTHER	41	Density Transmitter	i i	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	42	Viscosity Transmitter		i		1	
		I/P or E/P	1		i		
		Weight Scale	31	\$10,000 i	i i i i i i i i i i i i i i i i i i i		\$30,000
	45	Analyzer		1	i		
		Diaphragm Seal		1	1	i	
		Control Valve	51	\$4,000 ;		1	\$24,000
		Air - Actuated Cn/Cff Valve	10	\$4,000 !	!	l l	\$40.000
		Sciencid Valve	10	\$250	1	1	\$2.500
		Sarety Relief Valve					
		Rupture Disc	I	1		1	+
		Controller PLC I	11	\$26,000	1	T	\$26.000
		Weign Beit Feeder Control		1			
		Digital Connections				1	
		APM Sensor Switch	41	\$800	1	1	\$3.200
	_	Vibration Switch	11	\$500		1	\$500 :
	57	TOTAL COST				i	\$172.500
NOTES	58 1					ويتطعلان أوراقهم المتراجعين وتعامل	
	59 i						· · · · · · · · · · · · · · · · · · ·
							,
	60 i 61 i						,

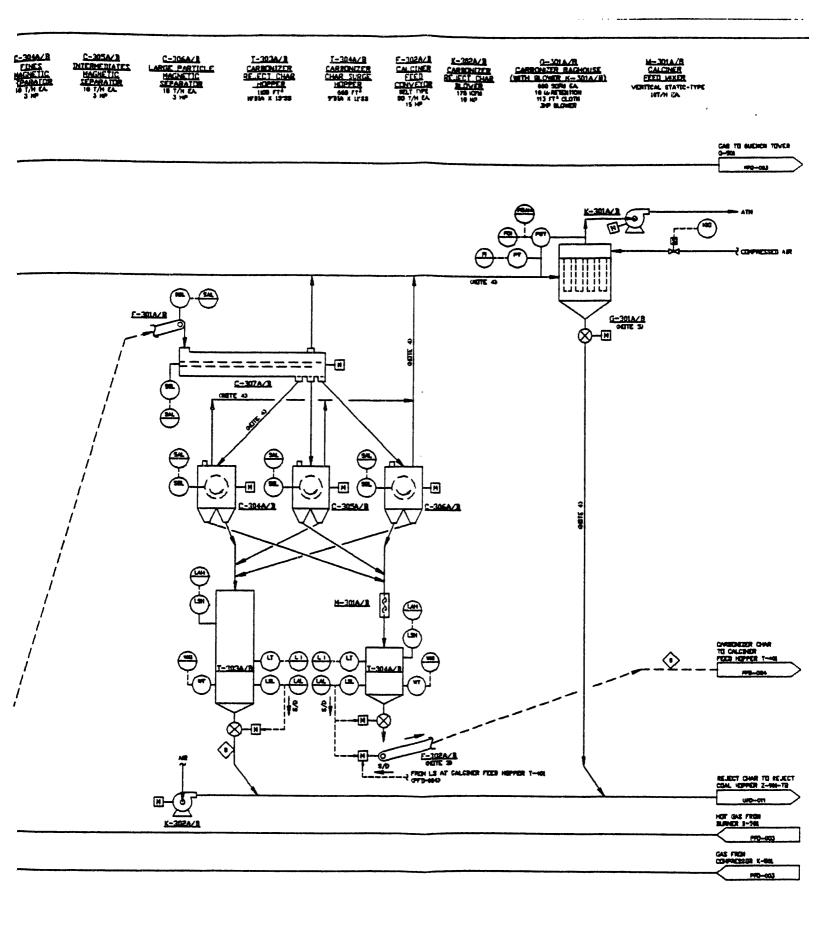

...


XBi x	TEL-	-8ECHTEL INC.	INSTR	RUMENT CO	DST	Date: Sheet No.	01-Apr-9 5 of 5
Client UND/EERC			Unit	ATION			
Location: C	LA	Y COUNTY, IN					
		Dwg. No. PFD-005	_	Equipment No.			
		P&ID No.		Unit No.			_
		1	QUAN-	I			TOTAL
TYPE		INSTRUMENTS	TITY	INSTRUMENT	COST PER UNIT	LABOR	TOTAL COST
FLOW	1	Transmitter	1 3				\$3.60
			1	1			1
		Critice Plate & Flange	3	\$350			\$1,05
		Variable Area Meter (Rotameter)	1				
		Indicating Meter			<u> </u>		<u> </u>
		Signt Flow Indicator	1				1
		Thermal Flow Switch			······		
		Thermal Flow Sensor	1	1			l
	10		I				1
LEVEL	11						
		Displacer & Float	1				1
		Gauge Glass					·
		Magnetic Level Indicator	9	\$800			\$7.20
		Ultrasonic Level Sensor					07.20
	17		ł				
	18		<u> </u>				
	19						the second second second second second second second second second second second second second second second s
PRESSURE		Transmitter	1 2	and the second second second second second second second second second second second second second second second	ويجرز والمراجع والمتكافية والمتحد والمراجع والمتحد والمراجع والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد وا		96140
	21	Gauge Begulator	4	\$150			\$60
		Switch					
	24	الأثاث والمتلبة المتكرمين والمساوية فتتقت وفالمتعاد فالمتلون فتحصل مباليز بطف بيواد تجملت فالمتكم ببريري	1	1	1		
	25	1	1				
DIFFER-	25	Transmitter	2			1	
ENTIAL	27	Gauge	2		and the second second second second second second second second second second second second second second second		\$600
PRESSURE	28 29		2	\$500			\$1,00
	30	أستكال وسأنه كمان فالمشاور بالمراجع والمراجع والمتحاف والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد				······	
TEMPER-	31	الأناك فيتكري والمحبب ومستبله وسنتجو ومقرات المتعاف والمتعاق والمتعاول والمتعاول والمتعاول والمتعاول والمتعاول	1 2	\$100			\$200
ATURE		ATD	İ	1		1	
	33	Temperature Transmitter	2			1	\$1,200
		Bimetal Thermometer	2	\$150			
	35	Begulator Thermowell	1 4	\$150			
		Safety Switch		3130		·····	
	38		; i	1			
	39			i	1		
	40		1	1	1	1	
OTHER	41		!!				
	42 43					i 	
	44		2/1	\$10M / \$80M			\$100,000
		Analvzer	1			1	ومتحاط المرجود بالمتعا المعواني ويجد المواجز
	46	Diaphragm Seal		1	1	1	
	47		1 31			•	\$12,000
		Air - Actuated Cn/Cff Valve	6.1	the second second second second second second second second second second second second second second second s			\$24,000
		Sciencia Valve Safety Relief Valve	20	<u>\$250 i</u>			\$5,000
		Aupture Disc	 				
	52	Controller PLC	1	\$25,000		į	\$26.00
		Weign Beit Feeder Control	1	\$4.0001			\$4,000
		Digital Connections				1	
	55	3PM Sensor Switch	41	\$800		t	\$3.20
	56		<u> </u>			1	
	57	TOTAL COST		<u> </u>	1	i	\$195,350
NOTES	58 59						
	59 (60)						
	61						

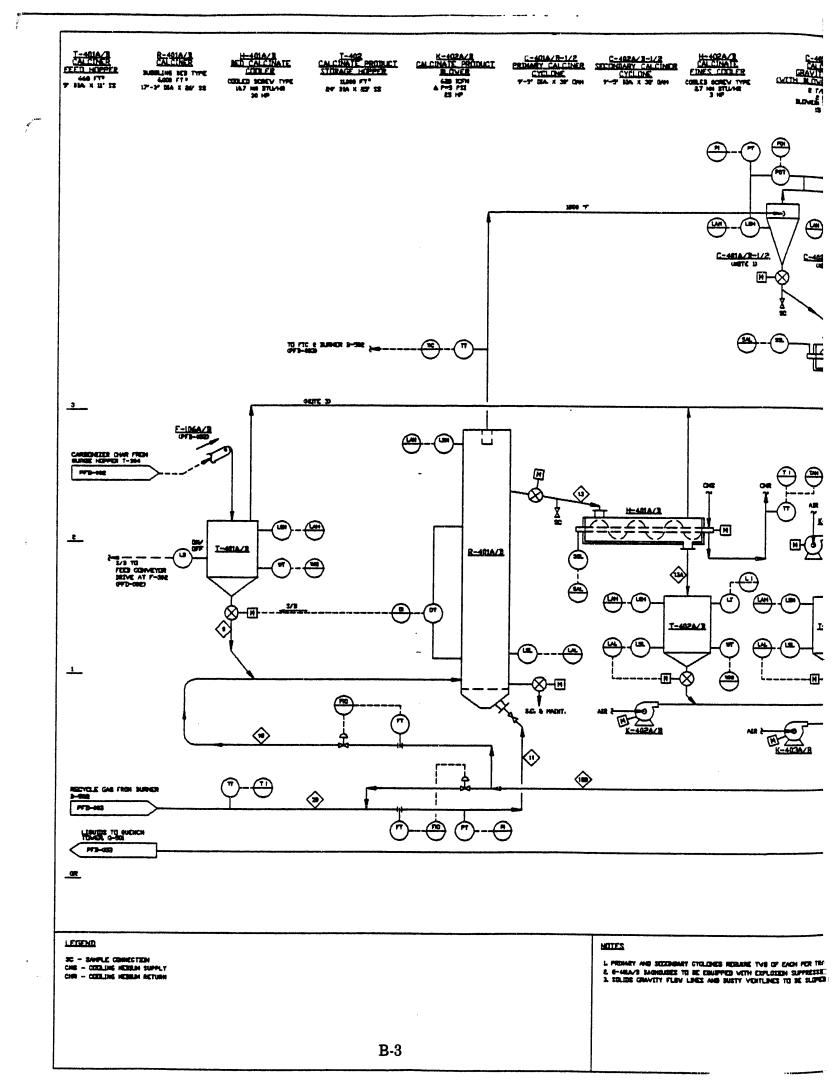

,

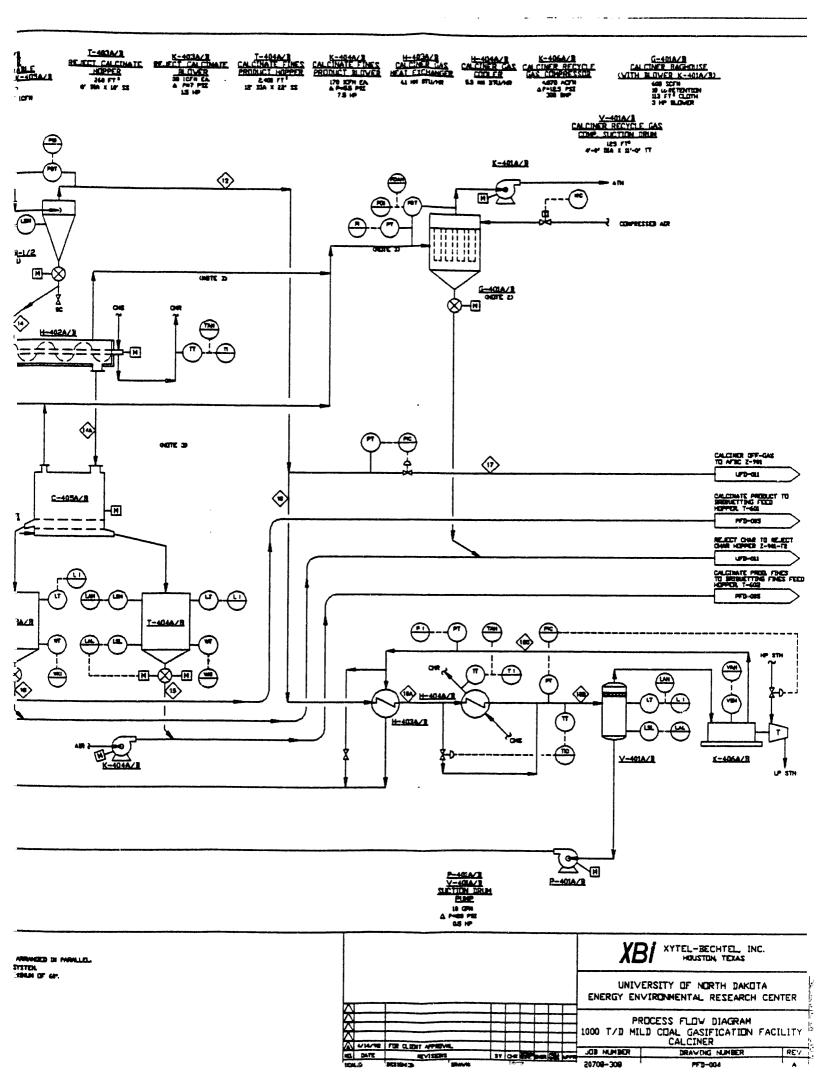
APPENDIX B

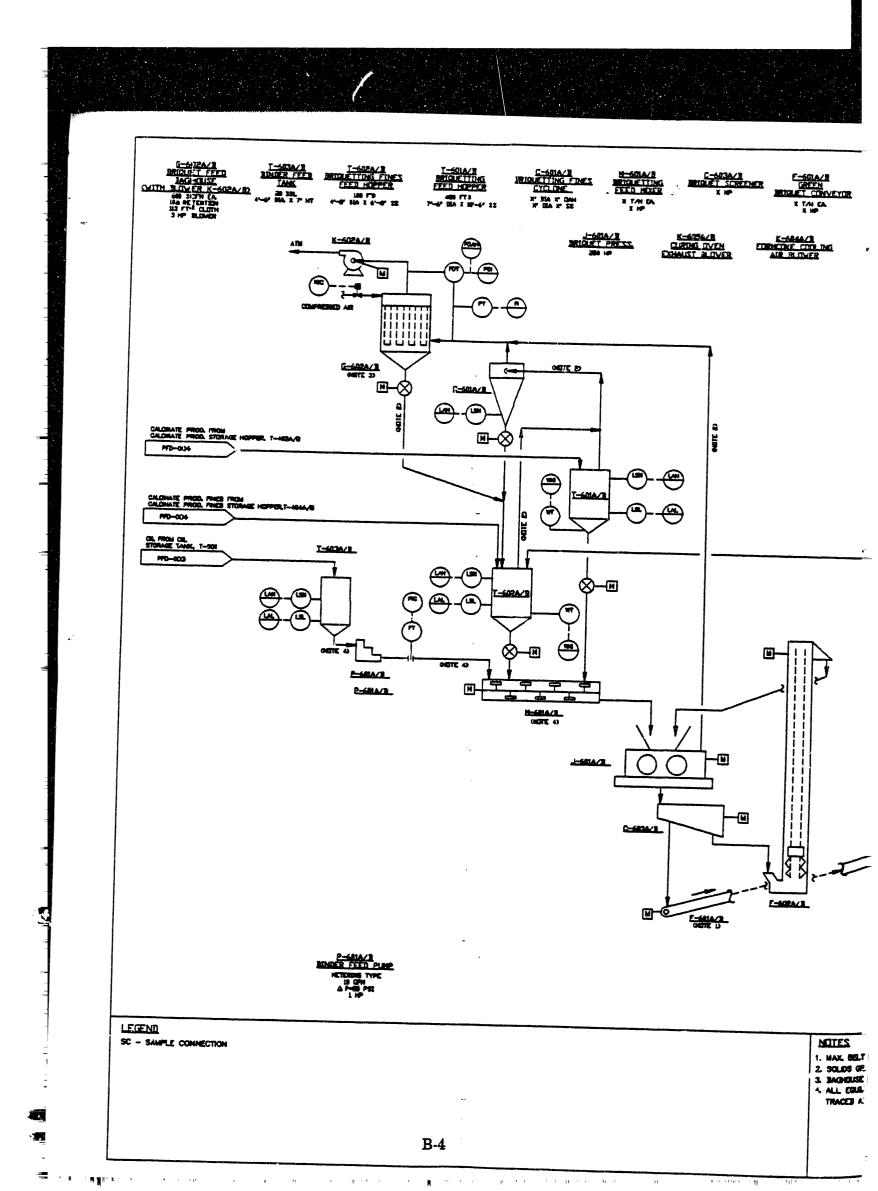
COMMERCIAL MILD GASIFICATION PLANT PROCESS-FLOW DIAGRAMS

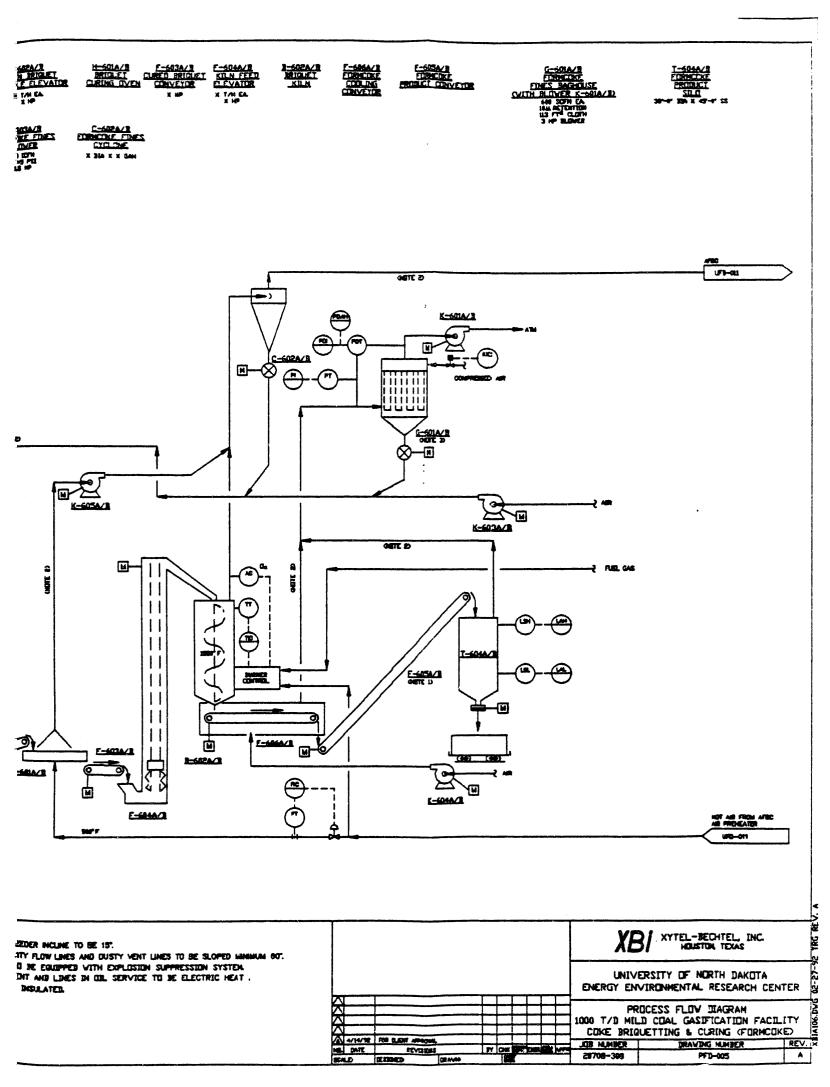


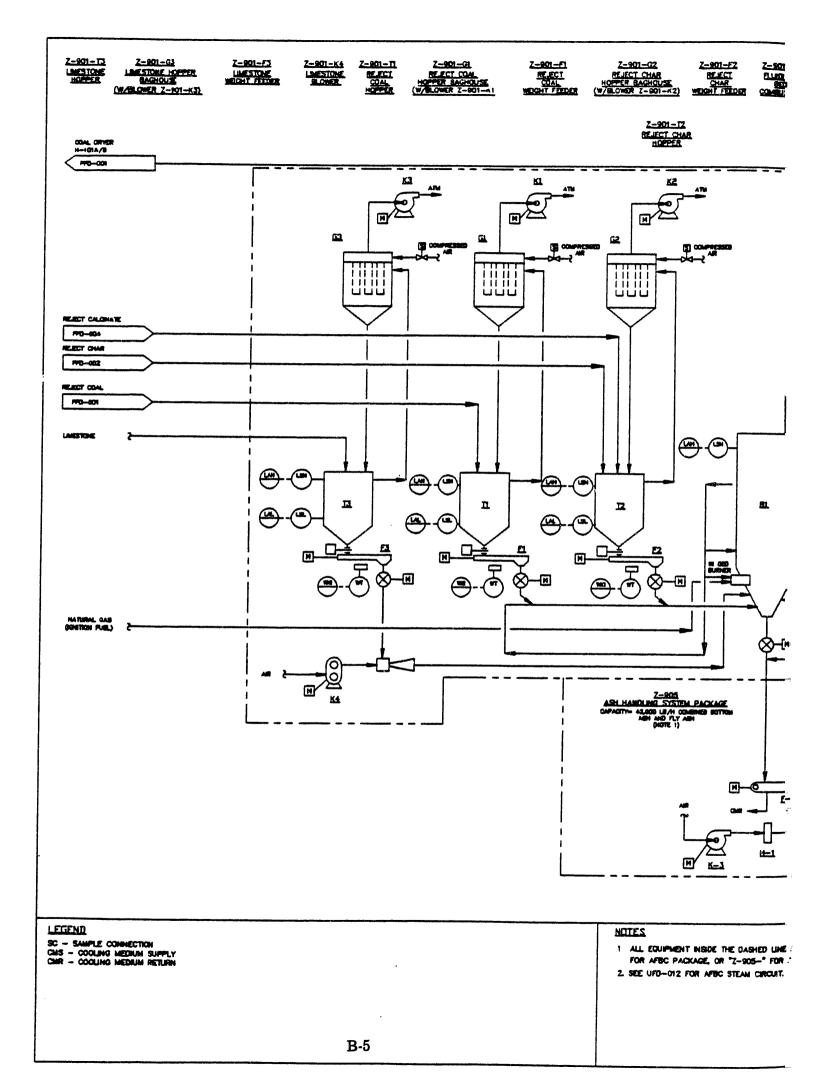
B-2

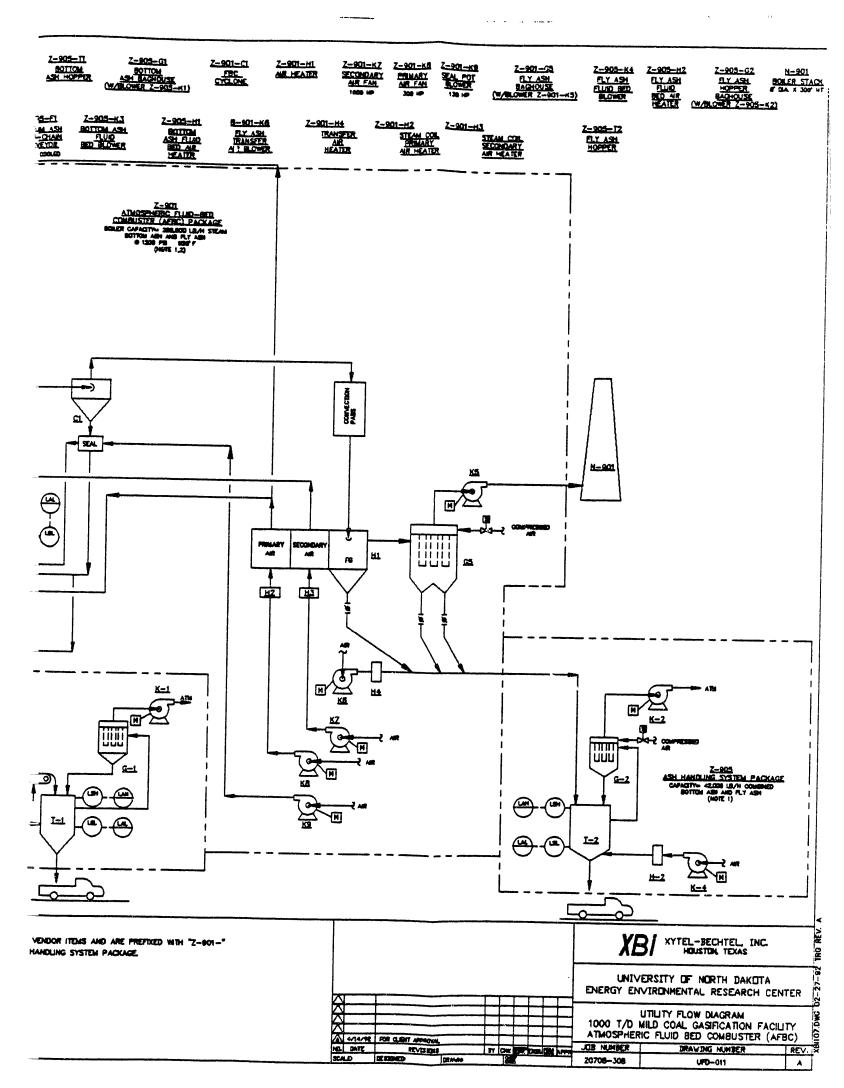

.....

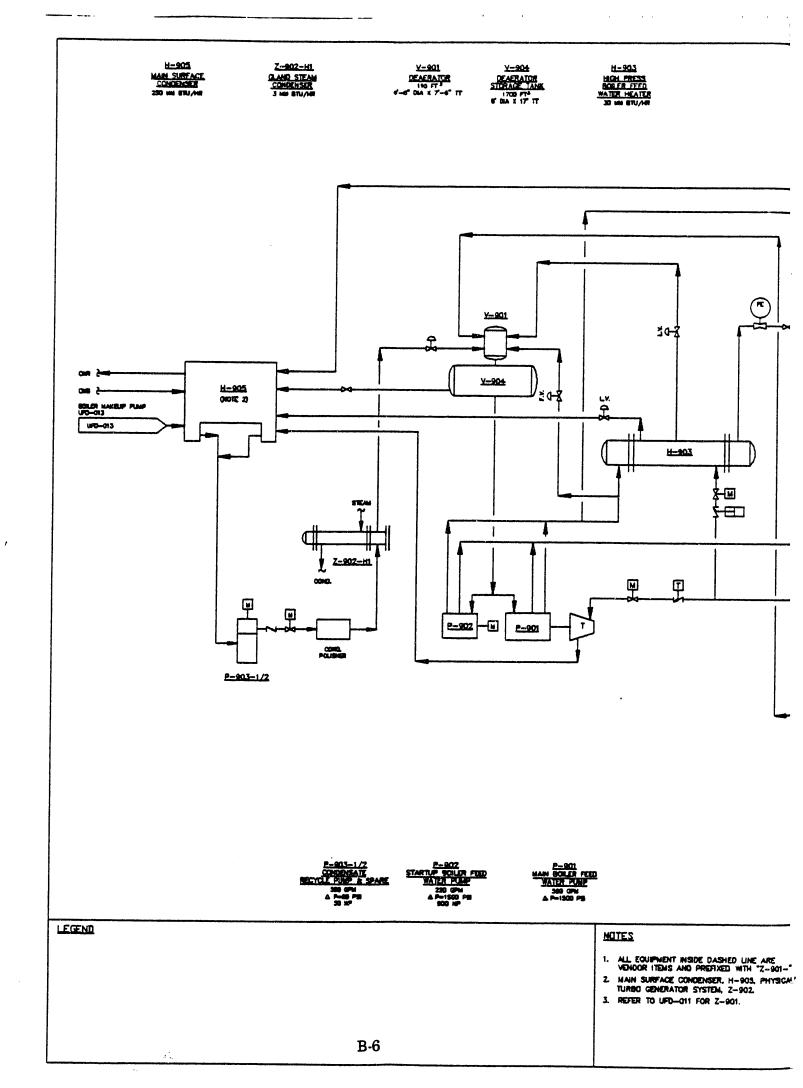


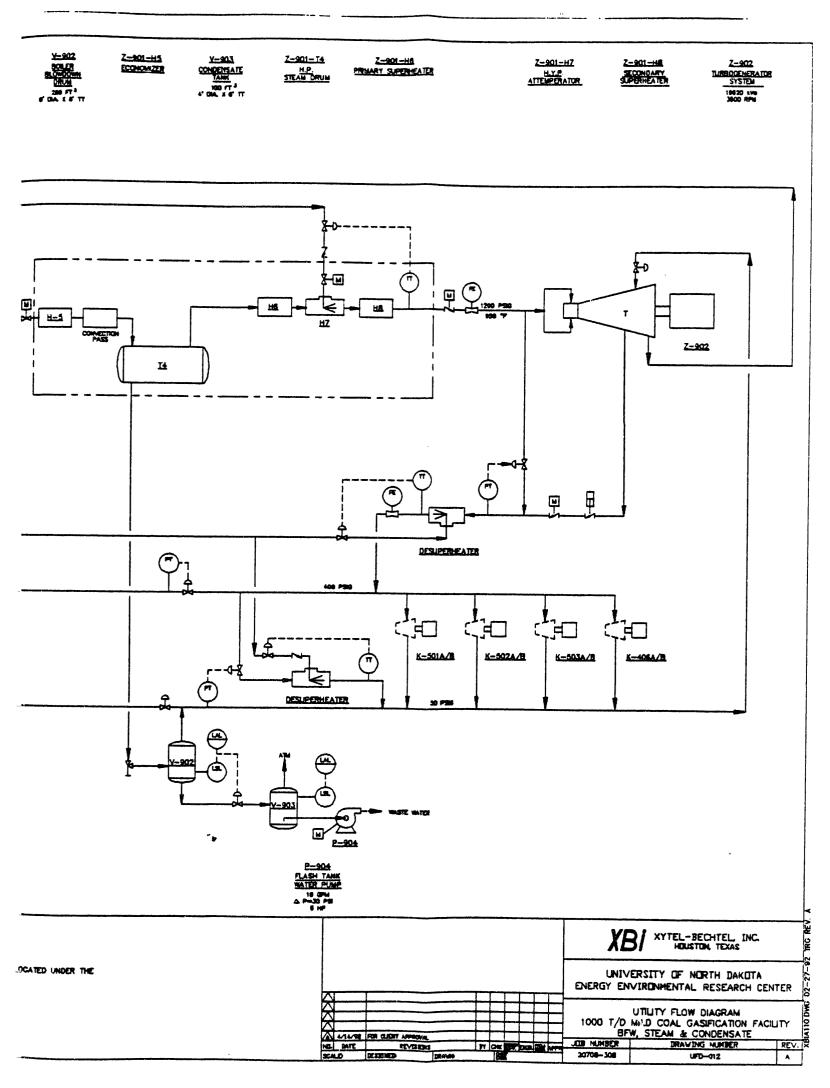

					XBI XYTEL-BECHTEL INC.				
						UNIVERSITY OF NORTH DAKOTA ENERGY ENVIRONMENTAL RESEARCH CENTER			
A					PROCESS FLOW DIAGRAM 1000 T/D MILD COAL GASIFICATION FACIL CARBONIZER				
HEL BATE	NVISION	27 04			JOB NUNDER	DRAVING NUMBER	REV		
the second second second second second second second second second second second second second second second s	MANUTA DESCRIPTION OF	(II)	7	20708-308	860-002				

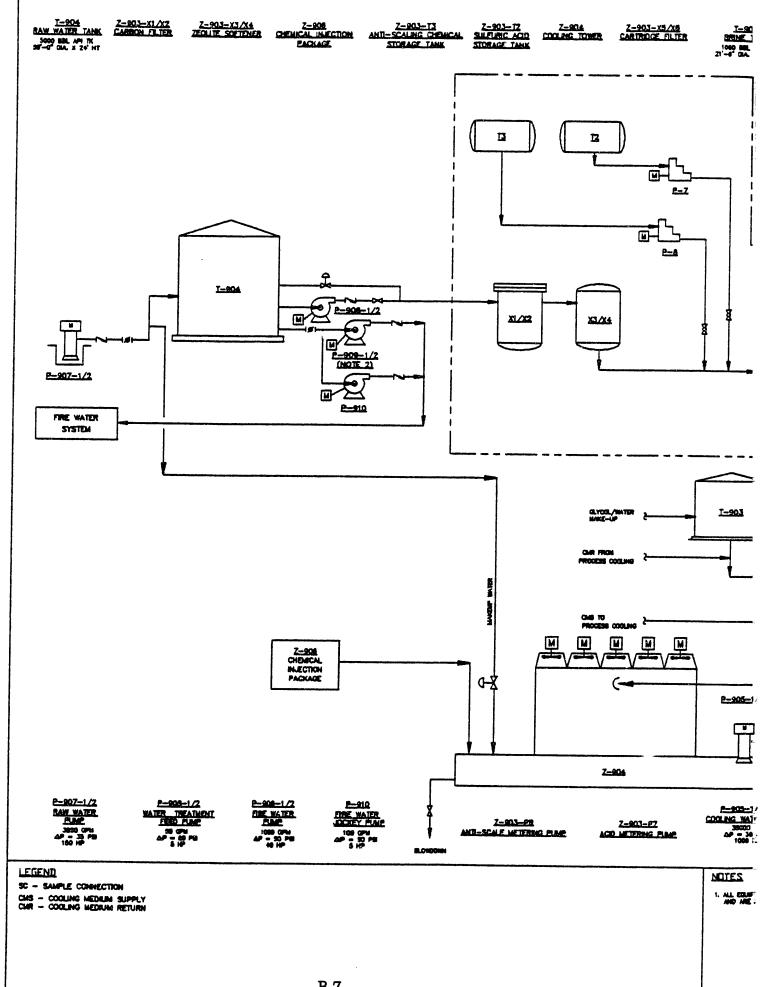

TANGED IN PARALLEL

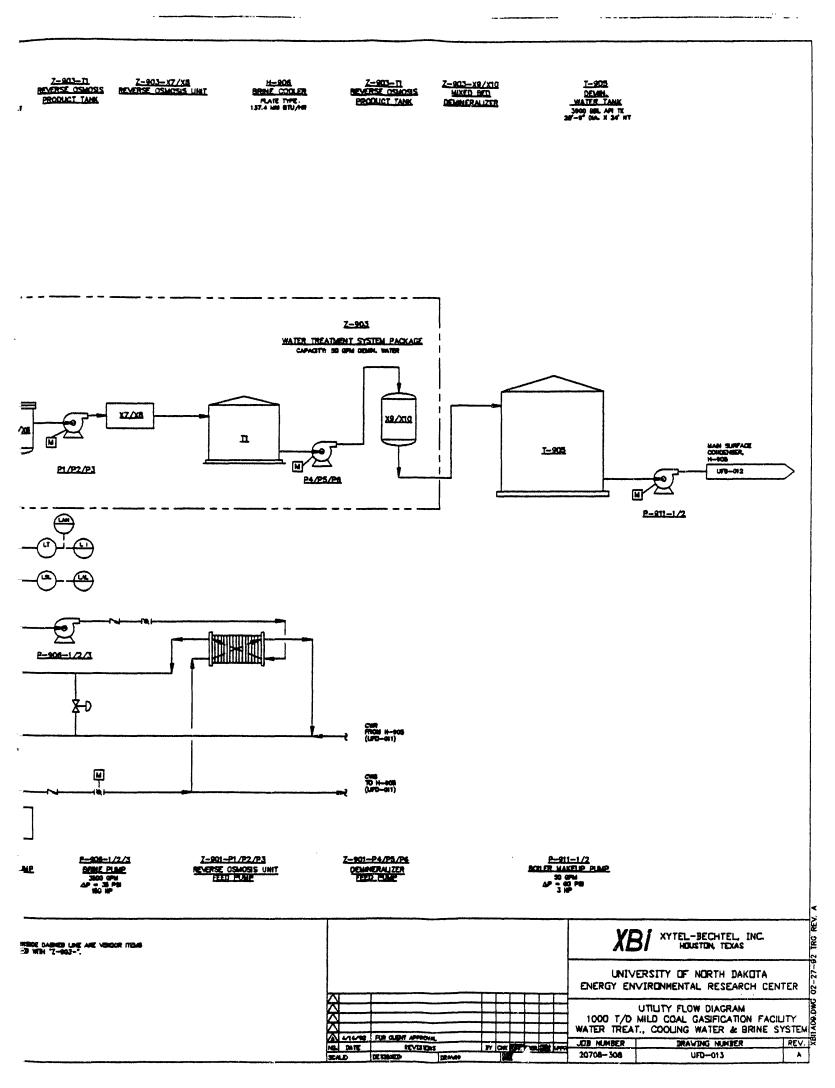

HOGHAN ANT.

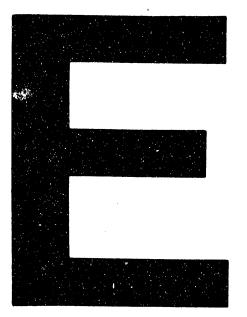


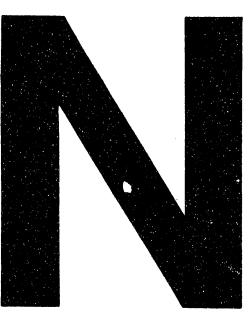


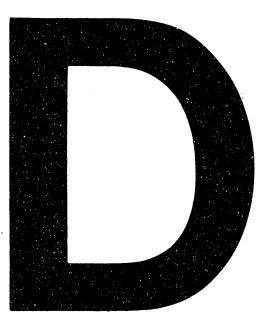











 $\frac{d}{c}$

B-7

DATE FILNED 7/8/93