CONF-840403--3

CONF- 840403 - - 3 DE84 011656

# PRESSURE-DEPENDENT ELECTRON ATTACHMENT AND BREAKDOWN STRENGTH'S OF UNITARY GASES. AND SYNERGISM OF BINARY GAS MIXTURES: A RELATIONSHIP

S. R. Hunter<sup>®</sup> and L. G. Christophorou<sup>®</sup> Atomic, Molecular and High Voltage Physics Group Health and Safety Research Division, Oak Ridge National Laboratory Oak Ridge, Tennessee 37831

Also, Department of Physics, The University of Tennessee, Knoxville, Tennessee 37916

### ABSTRACT

ŕ,

ŝ

The relationship between the pressure-dependent electron attachment rate constants (k) which have been observed in  $1-C_3F_6$  and in several perfluoroalkanes, and the uniform field breakdown strengths (E/N) in these gases is discussed. Measurements of the pressure dependence of k of OCS in a buffer gas of Ar are presented and the possible pressure dependence of (E/N) im OCS is discussed.

Uniform field breakdown measurements have been performed in  $C_3F_8$ ,  $n-C_4F_{10}$ , and SO<sub>2</sub> over a range of gas pressures ( $3 \leq P_T \leq 290$  kPa) and are reported. All three molecules have been found to possess pressure-dependent (E/N) time values.

The various types of synergistic behavior which have been observed in binary gas dielectric mixtures are summarized and discussed. A new mechanism is outlined which can explain the synergism observed in several gas mixtures where the (E/N) values of the mixtures are greater than those of the individual gas constituents. Model calculations are presented which support this mechanism, and can be used to explain the pressure-dependent synergistic effects which have been reported in  $1-C_2F_c/SF_c$  gas mixtures.

#### KEYWORDS

Electron attachment and ionization coefficients; breakdown field strength; high voltage insulation; synergism in dielectric gas mixtures.

By acceptance of this article, the publisher or recipient ecknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright cover'ing the article.

NOTICE PORTIONS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the best available copy to permit the broadest possible availability.

MASTER

distribution of this document is unlimited

# INTRODUCTION

Several authors have analyzed the influences that electron attachment and ionization have on the uniform field breakdown strength,  $(E/N)_{jim}$ , of dielectric gases (e.g., Christophoron and coworkers, 1979, 1981b). McCorkle and coworkers (1984) have further demonstrated the importance of high electron attachment rate constants in achieving high dielectric strength.

The relationship between the pressure dependence of the electron attachment rate constant,  $k_{a}$ , and  $(E/N)_{1}$  of electronegative gases has been previously outlined (Hunter and coworkers, 1982). It was indicated that the increase in  $(E/N)_{1}$  which had been observed for  $1-C_{3}F_{6}$  (Aschwanden and Biasintti, 1981; Biasintti, 1982; Hunter and coworkers, 1982) and  $C_{3}F_{8}$  (Biasintti, 1982) was due to an increase in <u>stable</u> negative ion production with increasing gas pressure resulting from stabilization of the parent negative ions in  $C_{3}F_{8}$ , and the dimeric parent negative ions in  $1-C_{3}F_{6}$ , over the pressure range for which such stabilization processes are significant. In this paper, we report on measurements of  $k_{a}$  as a function of mean electron energy,  $\langle e \rangle$ , in OCS which has also been found to possess pressure-dependent electron attachment processes similar to those which have been observed in  $C_{3}F_{8}$  and  $n-C_{4}F_{10}$  (Hunter and coworkers, 1982; Hunter and Christophorou, 1984a).

Uniform field breakdown measurements have been performed as a function of gas pressure in  $C_3F_8$ ,  $n-C_4F_{10}$ , and  $SO_2$  by Nakanishi and coworkers (1984). All these molecules have been found to exhibit a marked increase in  $(E/N)_{1 \text{ im}}$  (corrected for gas compressibility) with increasing gas pressure which is believed to result from the pressure-dependent electron attachment processes in these gases over the pressure range of the  $(E/N)_{1 \text{ im}}$  measurements. These findings and the influence that a pressure dependence in k has on the dielectric strength of binary gas mixtures, where one or both of the component gases possess pressure-dependent electron attachment processes at atmospheric pressures, are discussed.

# ELECTRON ATTACHMENT STUDIES

Recently, the gases  $C_3F_8$ ,  $n-C_4F_{10}$ , and  $1-C_3F_6$  have been observed to possess pressure-dependent electron attachment processes in the mean electron energy range ( $1 \le \langle e \rangle \le 5$  eV) in a high pressure buffer gas ( $0.1 \le P_T \le 1.5$  MPa) of either Ar or N<sub>2</sub> (Bunter and coworkers, 1982, 1983; McCorkle and coworkers, 1983; Bunter and Christophorou, 1984a). Electron attachment to  $C_3F_8$  and  $n-C_4F_{10}$  has been interpreted as the result of stabilization of the excited parent negative ion in the following reaction scheme:



An electron associatively attaches to AX with a rate constant  $k_1$  to form a transient parent negative ion, which can either autoionize with a decay constant  $v_2$  and a characteristic lifetime  $\tau_1$ , be collisionally stabilized by another molecule at a number density [N] (usually the buffer gas molecule in these experiments) with a rate constant  $k_3$  to form a stable parent negative ion, or fragment to form negative ions and neutral radicals with a rate constant  $k_{DA}$ . In the absence of dissociative attachment and collisional detachment, competition between autoionization (Reaction 1) and collisional stabilization (Reaction 2) leads to a dependence of the observed attachment rate constant  $k_a$  on the form:

$$k_{a} = \frac{k_{1}k_{3}[M]}{(v_{2} + k_{3}[M])}$$
 (4)

Electron attachment to  $1-C_3F_6$  is considerably more complex, and has been observed to be extremely dependent on gas temperature (k decreases as T increases for  $\langle \varepsilon \rangle \ge 0.1$  eV and T > 300K; McCorkle and coworkers, 1983) and on the partial  $1-C_3F_6$  gas pressure as well as the total gas pressure (Hunter and coworkers, 1983). These observations were interpreted by Bunter and coworkers (1983) to be due to the pressure dependent formation and stabilization of the dimeric anion  $(1-C_3F_6)_2^{-1}$  in the high pressure buffer gas.

Electron attachment measurements to OCS in Ar as a buffer gas have also shown that this molecule possesses a pressure-dependent k ( $\langle \varepsilon \rangle$ ), similar in magnitude and degree to that observed for  $C_3F_8$  and  $n-C_4F_{10}$  (Fig. 1). The pressure dependence of k for this molecule can be modeled--as those for  $C_3F_8$  and  $n-C_4F_{10}$ --using the reaction scheme (1) to (4). These results indicate that the  $(E/R)_{1im}$  of OCS will be dependent on the gas pressure up to perhaps gas pressures of the order of one atmosphere. These measurements have not been performed at this time.

### BREAKDOWN MEASUREMENTS

The observation that  $k(\langle e \rangle)$  in  $C_3F_8$ ,  $n-C_4F_{10}$ , and  $1-C_3F_6$  are dependent on gas pressure led to the prediction that the  $(E/N)_{1 \text{ in}}$  values in these gases are also pressure dependent, provided that the ionization rate constants,  $k_i$ , in these gases are independent of gas pressure, and that  $(E/N)_{1 \text{ in } i}$  is defined as the E/N value for which  $(k_1 - k_2) = 0$  (Runter and coworkers, 1982). Measurements of (E/N) by Aschwanden and Biasiutti (1981), Biasiutti (1982), and Bunter and coworkers (1982) in 1-C<sub>3</sub>F<sub>6</sub> and by Biasiutti (1982) in C<sub>3</sub>F<sub>8</sub> have indeed shown that the  $(E/N)_{1in}$  of these gases is strongly dependent on gas pressure, particularly the  $(E/N)_{1 \text{ in}}$  of these gases is strongly dependent on gas pressure, particularly below 1 atm. The  $(E/N)_{1 \text{ in}}$  measurements in  $C_3F_8$  were repeated by Nakanishi and coworkers (1984) and extended to  $n-C_4F_{10}$  over the gas pressure range  $3 \leq P_T \leq 300$  kPa. They found that both gases exhibit a considerable variation in (E/N) with gas pressure even after the measurements were corrected for gas compressibility (Fig. 2). Previous electron attachment studies have shown that pressure dependent electron attachment processes also exist for N<sub>2</sub>O (e.g., Phelps and Voshall, 1968; Chaney and Christophorou, 1969; Parkes, 1972; Shimamori and Fessenden, 1979) and SO, (Rademacher and coworkers, 1975; Lakdawala and Moruzzi, 1981). Dutton and coworkers (1973) and Biasiutti (1982) have shown that the (E/N) 1 im in N<sub>2</sub>O is pressure dependent. Nakanishi and coworkers (1984) have measured the (E/N) in SO, over the pressure range (7.8  $\leq P_T \leq 290$  kPa) and have also found that (E/N) is dependent on gas pressure after correcting for gas compressibility. These measurements are given in Fig. 2 and show that (E/N) saturates in n-C<sub>4</sub>F<sub>10</sub> at ~100 kPa, in C<sub>3</sub>F<sub>8</sub> at ~150 kPa, and in SO<sub>2</sub> at  $\gtrsim$ 200 kPa. These measurements are summarized in Fig. 3 along with the previous pressure-dependent field strength measurements in these gases and in  $1-C_3F_6$  and N<sub>2</sub>0.



Fig. 1. Electron attachment rate constant, k, in OCS measured as a function of mean electron energy,  $\langle e \rangle$ , and total gas number density,  $N_T$ , at a fixed partial OCS number density,  $N_{OCS}$ , in a buffer gas of argon.



Fig. 2. Uniform field breakdown (E/N) 1im' and (E/N) 1 im Z(P) strength, of SO2, n-C4F10 C<sub>3</sub>F<sub>8</sub>, of and 2.5 function gas presšuřě, Ρ, OT P/Z(P). Open symbols: uncorrected for 885 compressibility Z(P). Solid symbols: corrected for compressibility. (From Nakanishi anð coworkers, 1984).



Fig. 3. The gas compressibility corrected (E/N) values of Nakanishi and coworkers (1984) in  $n-C_4F_{10} - \bigcirc$ ,  $C_3F_8 - \bigcirc$ , and  $SO_2 - A$ ; of Biasiutti (1982) in  $C_3F_8 - \bigcirc$ ,  $1-C_3F_6 - \diamond$ , and  $N_2O - \nabla$ ; of Hunter and coworkers (1982) in  $1-C_3F_6 - \diamond$ ; and of Dutton and coworkers (1973) in  $N_2O - \bigtriangledown$ .

In contrast to  $C_3F_8$ ,  $n-C_4F_{10}$ , and  $1-C_3F_6$  where parent and dimeric parent negative ion stabilization as a function of gas pressure is thought to be responsible for the pressure variation in  $(E/N)_{1 \text{ im}}$ , the apparent variation in k with pressure in  $N_0$  and SO<sub>2</sub> may be also influenced by the competition between the formation of stable anions and the destruction of discociative-attachment ions via ionmolecule reactions (Parkes, 1972; Dutton and coworkers, 1975a,b; Doussot and coworkers, 1982). Three-body parent negative ion formation occurs at near thermal energies in SO<sub>2</sub> (Rademacher and coworkers, 1975; Lakdawala and Moruzzi, 1981) but is insignificant at higher energies ( $\geq 0.6$  eV).

# SYNERGISTIC EFFECTS IN GAS MIXTURES

When an electronegative gas is mixed with another gas (electronegative or not), the (E/N) im of the resultant mixture can vary considerably, depending on the electron scattering and ion-molecule reaction processes occurring within the electrically stressed mixture. Three basic types of behavior for the variation of the (E/N) im with relative gas concentration have been identified and are illustrated in Fig. 4 with reference to three specific gas mixtures:  $1-C_3F_6/SF_6$ (James and coworkers, 1980), N/SF<sub>6</sub> (James and coworkers, 1978), and CF<sub>4</sub>/SF<sub>6</sub> (James and coworkers, 1980). The fundamental processes controlling the discharge characteristics in these mixtures have been described in detail by Christophorou and coworkers (1981a, 1982) and Chantry and Wootton (1981). The simplest case given in Fig. 4 is that labeled as curve C, and occurs when the breakdown strength of the gas mixture is very nearly given by the sum of the partial pressure weighted breakdown strengths of the constituent component gases. This behavior, where each gas acts independently of the other, has been observed in  $CF_4/SF_6$ ,  $c-C_4F_8/SF_6$ , and  $2-C_4F_6/SF_6$  gas mixtures nmong others (James and coworkers, 1978, 1980; Wootton and coworkers, 1980).



Fig. 4. Relative uniform field breakdown strengths of (A)  $1-C_3F_6/SF_6$ (James and coworkers, 1980), (B) N<sub>2</sub>/SF<sub>6</sub> (James and coworkers, 1978), and (C) CF<sub>4</sub>/SF<sub>6</sub> (James and coworkers, 1980)(P<sub>T</sub> = 66.7 kPa).

A second type of behavior (curve labeled B in Fig. 4) shows a marked increase in (E/N) in the gas mixture when a highly attaching gas whose k is pressure independent is admixed into a weakly attaching (whose k is also pressure independent) or a nonattaching gas. The increase in (E/N) of the resultant gas mixture is much larger than that predicted by summing the partial pressure independent) or a nonattaching gas. The increase in (E/N)\_ of the individual gas components. This effect has been termed weighted (E/N). a synergistic effect and, as has been shown by Kline and coworkers (1979) and Chantry and Wootton (1981), can be predicted using the Wieland approximation (Wieland, 1973). The  $(E/N)_{1 \text{ im}}$  in SF<sub>6</sub>/N<sub>2</sub> gas mixtures has been towarately predicted using this technique, which involves summing the partial pressure weighted apparent ionization coefficients  $\bar{a}$  (defined as  $\bar{a} = a - \eta$ , where a and  $\eta$ ionization and attachment coefficients) of the individual gas the are constituents. The most reliable approach for predicting the breakdown strengths these gas mixtures is, of course, by Boltzmann equation analysis. However, of this approach requires a detailed knowledge of the elastic, inelastic, and electron attachment and ionization cross sections of the individual gases if the accuracy of the technique is to be fully exploited. Such knowledge is at present limited, or even nonexistent, for most mixtures of interest.

A third type of synergistic behavior observed in a few gas mixtures occurs when the  $(E/N)_{1in}$  of the mixture is larger than that of the individual component gases (curve A in Fig. 4). This effect, which we define as <u>positive</u> synergism, cannot be predicted using the Wieland approximation, nor has it been demonstrated to occur in any Boltzmann equation analysis of the breakdown behavior in gas mixtures. We propose a mechanism which can account for this behavior based on the observation that in gas mixtures where this effect occurs, <u>the electron attaching properties of one or both of the constituent gases are a function of the total gas pressure of the mixture</u>.

The variations in the relative breakdown strength with gas composition in gas mixtures in which this phenomenon is known to occur are summarized in Fig. 5. These mixtures include  $SO_2/SF_6$  (Wootton and coworkers, 1980), OCS/SF (Christophorou and coworkers, 1979; Wootton, 1982),  $C_3F_8/SF_6$  (Wootton, 1982),  $1-C_3F_6/SO_2$  (Wootton and coworkers, 1980), and  $1-C_3F_6/c-C_4F_8$  (James and coworkers,

1980). An extensive series of breakdown measurements have been performed in  $1-C_3F_6/SF_6$  gas mixtures (James and coworkers, 1980; Wootton and coworkers, 1980; Biasintti and coworkers, 1983)(Fig. 6) and have shown that the breakdown strength in these mixtures is strongly dependent on the total gas pressure, and that the positive synergism observed at lower gas pressure ( $P_T \sim 68$  kPa) decreases in magnitude with increasing gas pressure.

We propose that the positive synergistic effects which have been observed in these binary gas mixtures can be explained as <u>resulting from an increase in</u> <u>stable negative ion production in the gas mixture as compared to the pure</u> <u>component gases</u>. Let us assume that in a binary gas mixture, one component, AI, attaches electrons via a three-body attachment process and another, BC, attaches electrons dissociatively. The total electron attachment in the gas mixture at a given E/N value is the sum of the dissociative electron attachment to BC and the pressure-dependent electron attachment to AI, which is given by the reaction scheme (1), (2), and (4). This scheme assumes that dissociative attachment to AI is negligible and that the stabilizing molecule, N, is either AI or BC. Dissociative attachment to AI can easily be included in this reaction scheme, and has been excluded only for simplicity. The rate of electron attachment in the mixture due to AI alone is then.

$$\mathbf{k}_{AX} = \frac{\mathbf{k}_{1}(\mathbf{k}_{3}[AX] + \mathbf{k}_{N}[BC])}{(v_{2} + \mathbf{k}_{3}[AX] + \mathbf{k}_{N}[BC])}, \qquad (5)$$

where  $\mathbf{k}_N$  is the rate constant for collisional stabilization of  $AX^{-*}$  in reaction (2) by BC. The total rate of electron attachment, including the rate constant,  $\mathbf{k}_{na}$ , for dissociative attachment to BC for the mixture is

$$\mathbf{k}_{A} = \frac{(\mathbf{k}_{AX}[AX] + \mathbf{k}_{DA}[BC])}{N_{T}} , \qquad (6)$$

where  $N_{T} = [AX] + [BC]$ .

Positive synergism can result from an <u>increase</u> in the rate of stable negative ion production which can occur when  $k_N$  is <u>larger</u> than  $k_3$ ; i.e., when the rate,  $k_N$ , of collisional stabilization of  $AX^{-\Phi}N$  by BC is greater than the rate,  $k_3$ , of collisional stabilization of  $AX^{-\Phi}N$  by AX. Similar reaction schemes can be envisioned incorporating collisional detachment (Dutton and coworkers, 1975a,b) and charge transfer reactions, which may also result in enhanced stable negative ion formation, if the resultant anions are more stable (and hence the rate constant for detachment is decreased) than  $AX^-$ . The validity of the proposed reaction scheme [Eqs. (4)-(6)] has been tested by performing a model calculation of the dependence of the positive synergism on the relative composition and total pressure for  $1-C_3F_6/SF_6$  gas mixtures. The following relations were assumed for this system and the talculations shown in Fig. 7:  $k_1 = 1.43 \ge k_N$ ;  $v_2/k_3 =$  $10^{\circ} \text{ cm} = N$ ;  $v_2 = 10^{\circ} \text{ s}^{\circ}$ ; and  $k_N = 5 \ge k_3$  (N is the critical number density; i.e., the number density of AX at which the rate of autoionization of  $AX^{-\Phi}$  is equal to the rate of collisional stabilization). The values of  $v_2/k_3$  and  $v_2$  were chosen to approximately model the pressure dependence of the electron attachment processes at  $\langle \varepsilon \rangle \sim 3$  eV in  $1-C_3F_6$  (Hunter and coworkers, 1983), and the ratios  $k_1/k_N$  and  $k_N/k_3$  were chosen to model the variation of (E/N)  $\lim_{n \to \infty}$  in the  $1-C_3F_6/SF_6$  gas mixtures given in Fig. 6. It can be seen in Fig. 7 that as  $N_T \rightarrow \infty$ , the synergistic effects disappear and the (E/N)  $\lim_{n \to \infty}$  of the gas mixture becomes independent of gas pressure (i.e., independent of  $k_3$  and  $k_N$ ).



Uniform and quasi-uniform Fig. 5. breakdown field strengths of the relative to following gas mixtures, that of  $SF_{\epsilon}(\Xi 1)$ .  $1-C_{3}F_{6}/c-C_{4}F_{8} = 0$ (James and coworkers, 1980)(P. 66.7 kPa); 1-C<sub>3</sub>F<sub>6</sub>/SO<sub>2</sub> -coworkers, 1980)(P<sub>T</sub> (Wootton and 152 kPa);  $SO_2/SF_6 - \nabla$ (Wootion and coworkers, 1980) (Pm = 152 kPa);  $OCS/SF_{6} - O$ (Christôphoron and coworkers, 1979)  $(P_m = 66.7 \text{ kPa}); \text{ OCS/SF}$ 🕨 (Wootton, 1952;  $(P_T = 152 \text{ kPa}); C_3F_8/SF_6$ (Wootton, 1982)  $(P_T = 152 \text{ kPa}).$ The larger synergistic effect, which is observed for the  $1-C_3F_6/c-C_4F_8$  m as compared to the  $1-C_3F_6/SO_2$  $C_3F_c/SF_c$  mixtures, is due to <sub>R</sub> mixture and 1-C<sub>3</sub>F<sub>6</sub>/SF<sub>6</sub> mixtures, is the . higher rate constant, stabilization of 1-C<sub>2</sub>F<sub>6</sub><sup>-\*</sup> k<sub>N</sub>, for by c-CAF than that for SF<sub>6</sub> and SO<sub>2</sub> as outlined in the text.

<

Dependence of the uniform Fig. 6. field breakdown strength in 1-C<sub>3</sub>F<sub>6</sub>/SF<sub>6</sub> SF. gas mixtures, relative to that of on the partial pressure of the constituent gases and total pressure, as measured by James and coworkers (1980) - A, Wootton and coworkers (1980) - O , and Biasiutti and coworkers (1983) - A. The lines have no significance. The reaction scheme proposed in this paper can be used to explain the apparent differences in the breakdown strengths in  $1-C_{2}F_{2}/SF_{2}$ gas mixtures which had been observed in these studies.



Fig. 7. Mode 1 calculations of the dependence of the electron DICSSDIC attachment rate E/N constant at a n to breakdown value close of EA S mixtures, with one gas, AX, possessing pressure-dependent breakdown field strength (e.g., 1-C3F6, C3F8) in another attaching gas, 'BC (e**∶g**:, SF.  $c-C_{A}F_{o}$ ), with a high rate constant for collisionally stabilizing AX-\*. The numerical values of the rate constants are given in the text and were chosen to approximately model the electron attachment and breakdown field strength characteristics in  $1-C_3F_6$  and  $1-C_3F_6/SF_6$  gas mixtures.  $k_N = 5 \times k_3$ . In this case



Fig. 8. Model calculations for the conditions given in Fig. 7 except at total gas two different number and for different relative densities, rate constants of stable negative ion formation enhancement, i.e., different values of the ratio  $k_{\mu}/k_{2}$ . It is assumed that electron attachment in BC is independent of gas pressure.

The effect on the rate of attachment in the mixture by changes in the relative rates of stable negative ion production (i.e., the ratio  $k_N/k_3$ ) at two total number densities is shown in Fig. 8. It may be noted that from the calculations given in Fig. 8 negative synergistic effects may be observed when the rate of stable negative ion formation is less in the mixture than for pure AX (i.e.,  $k_N < k_3$ ). Such effects have not been observed in gas mixtures in <u>uniform</u> fields to the anthors' knowledge.

To make a comparison between the pressure variation in the attachment rate constants predicted in Figs. 7 and 8 and the experimental breakdown measurements given in Figs. 5 and 6, it is necessary to assume that the electron energy distribution function in the gas mixture under electrical stress is unaltered by changes in the relative amounts of one gas in the other at a constant E/N value. This assumption implies that without the aforementioned additional stable negative ion production Dechanisms, the rate of negative ion production in the bas mixture will be a simple linear addition of the rates of electron attachment of the component gases. This situation is shown in Fig. 8 when  $k_N/k_2 = 1$ . A further implication of this assumption is that the rate of ionization in the mixture is a simple linear addition of the rates of the component gases. The calculations in Figs. 7 and 8 have been made at an E/N value close to breakdown while the dielectric strength of a gas mixture was defined as the E/N at which  $(a-\eta)/N_{T} = 0$  (or  $k_{j} - k_{j} = 0$ ), where a,  $k_{j}$ , and  $k_{j}$  are the ionization coefficient and ionization and attachment rate constants, respectively, and  $\eta$  is the attachment coefficient. In general, as the E/N near breakdown for a particular gas mixture is increased,  $\eta/N$  decreases and  $\alpha/N$  increases, and hence the enhancement of k in the gas mixture will tend to be masked in the breakdown measurements. Nevertheless, a comparison between the results given in Figs. 5 to 8 clearly indicates that the positive synergism observed in a number of gas mixtures can be explained using the reaction scheme outlined above. A more detailed account of these investigations will appear elsewhere (Hunter and Christophorou, 1984b).

#### DISCUSSION

The work outlined in this paper has demonstrated the relationship between the pressure-dependent electron attachment rate constants and the pressure dependent (E/N) values observed in several electronegative gases. The (E/N) increases with gas pressure due to the increase in the rate of electron attachment with gas pressure. Further, the positive synergism that has been observed to occur in binary gas mixtures comprised of one of these gases along with another gas possessing only non-pressure-dependent electron attachment processes can also be explained in terms of the pressure dependence in k of one of the component gases.

The observation of positive synergism requires that (i) at least one of the electronegative components of the mixture possesses pressure-dependent electron attachment processes; (ii) the other component has a higher rate constant for stabilizing transient anions, or alternatively, can reduce collisional detachment processes in AX by charge transfer or ion-molecule reactions to form stable negative ions; and (iii) in the total gas pressure range of interest, the dielectric strengths of the two components are not too dissimilar.

#### **ACKNOWLEDGMENTS**

We wish to thank K. Nakanishi for providing us with the breakdown measurements in  $C_3F_8$ ,  $n-C_4F_{10}$ , and SO<sub>2</sub> prior to publication. This research was sponsored by the Division of Electric Energy Systems, U.S. Department of Energy, under contract DE-AC05-840R21400 with Nartin Marietta Energy Systems, Inc.

#### REFERENCES

Aschwanden, Th., and G. Biasintti (1981). Dielectric strength of hexafluoropropylene (C<sub>3</sub>F<sub>6</sub>). J. Phys. D. 14, L189-L192.

Biasiutti, G. (1982). Homogeneous field breakdown strength characteristics of some dielectric gases. In L. G. Christophorou (Ed.), <u>Gaseous Dielectrics III</u>. Pergamon Press, New York. pp. 174-182.

- Biasintti, G., C. Ammann, E. Engler, and W. Zaengl (1983). Electric strength of hexafluoropropylene (C<sub>3</sub>F<sub>6</sub>) and its mixtures with SF<sub>6</sub> at practical pressures. <u>Froc. 4th Int. Symp. Bigh Voltage Engineering</u>, Athens, Greece, September 5-9, 1983. Paper 33.02.
- Chaney, E. L., and L. G. Christophorou (1969). Electron attachment to N<sub>2</sub>O. J. Chem. Phys. 51, 883-892.
- Chantry, P. J., and R. E. Wootton (1981). A critique of methods for calculating the dielectric strength of gas mixtures. J. <u>Appl. Phys. 52</u>, 2731-2739.
- Christophoron, L. G., D. R. James, and R. A. Mathis (1979). On the role of the electron impact ionization and electron scattering cross section in the breakdown strength of dielectric gases. J. Phys. D. 12, 1223-1236.
- Christophorou, L. G., D. R. James, and R. A. Mathis (1981a). Dielectric gas mixtures with polar components. J. Phys. D 14, 675-692.
- Christophoron, L. G., R. A. Mathis, D. R. James, and D. L. McCorkle (1981b). On the role of electron attachment in the breakdown strength of gaseous dielectrics. J. <u>Phys. D. 14</u>, 1889-1901.
- Christophoron, L. G., D. R. James, and R. Y. Pal (1982). Gas breakdown and high voltage inzulating gases. In H.S.W. Massey, E. W. McDaniel, and B. Bederson (Eds.), <u>Applied Atomic Collision Physics - Special Topics</u>, Vol. 5. Academic Press, New York. pp. 87-167.
- Christopherou, L. G., D. R. James, R. Y. Pai, R. A. Mathis, I. Sauers, L. Frees, M. O. Pace, D. W. Bouldin, C. C. Chan, and E. J. Kent (1979). <u>High Voltage</u> <u>Research (Breakdown Strengths of Gaseons and Liquid Insulators) and</u> <u>Environmental Effects of Dielectric Gases</u>, Oak Ridge National Laboratory Report, ORNL/TM-6902, Oak Ridge, Tennessee. pp. 49.
- Doussot, C., F. Bastien, E. Marode, and J. L. Moruzzi (1982). A new technique for studying ion conversion and detachment reactions in oxygen and in O<sub>2</sub>/SO<sub>2</sub> and O<sub>2</sub>/N<sub>2</sub> mixtures. J. Phys. D 16, 2451-2461.
- Dutton, J., F. N. Harris, and D. B. Hughes (1973). Electrical breakdown of nitrous oxide. <u>Proc. IEE 120</u>, 941-944.
- Dutton, J., F. M. Harris, and D. B. Hughes (1975a). Ionization, electronattachment and negative-ion reactions in N<sub>2</sub>O. J. Phys. <u>B</u> 8, 313-324.
- Dutton, J., F. M. Harris, and D. B. Hughes (1975b). Ion-molecule reactions and the electrical breakdown of mixtures of nitrous oxide and oxygen. <u>2</u>. <u>Phys. D</u> <u>8</u>, 1640-1646.
- Hunter, S. R., and L. G. Christophoron (1984a). Electron attachment to the perfluoroalkanes  $n-C_NF_{2N+2}$  (N = 1-6) using high pressure swarm techniques. Journal of Chemical Physics (in press).
- Hunter, S. R., and L. G. Christophorou (1984b). Synergistic effects on the high voltage breakdown strength of binary electron attaching gas mixtures (to be published).
- Hunter, S. R., L. G. Christophoron, D. R. James, and R. A. Mathis (1982). Pressure-dependent electron attachment rates in perfluoroalkanes and perfluoropropylene  $(1-C_3F_6)$  and their effect on the breakdown strength of these gases. In L. G. Christophorou (Ed.), <u>Gaseous Dielectrics III</u>. Pergamon Press, New York. pp. 7-20.
- Hunter, S. R., L. G. Christophorou, D. L. McCorkle, I. Sauers, H. W. Ellis, and D. R. James (1983). Anomalous electron attachment properties of perfluoropropylene (1-C<sub>2</sub>F<sub>6</sub>) and their effect on the breakdown strength of this gas. J. Phys. D 16, 573-580.
- James, D. R., L. G. Christophoron, R. Y. Pai, N. O. Pace, R. A. Mathis, I. Sauers, and C. C. Chan (1978). Dielectric strengths of new gases and mintures. <u>Gaseous Dielectrics (Proc. Int. Symp. Gaseous Dielectrics, Knoxville, Tennessee, March 6-8, 1978</u>), Oak Ridge National Laboratory Report, CONF-780301, pp. 224-251.

- James, D. R., L. G. Christophorou, and R. A. Mathis (1980). New unitary and multicomponent gaseous dielectrics. In L. G. Christophorou (Ed.), Gaseous <u>Dielectrics II</u>. Pergamon Press, New York. pp. 115-125. Kline, L. E., D. K. Davies, C. L. Chen, and P. J. Chantry (1979).
- Dielectric properties for SF<sub>6</sub> and SF<sub>6</sub> mixtures predicted from basic data. J. <u>Appl. Phys.</u> <u>50</u>, 6789-6796.
- Lakdawala, V. K., and J. L. Moruzzi (1981). Attachment, detachment and ion-
- molecule reactions in SO<sub>2</sub> and SO<sub>2</sub>-O<sub>2</sub> mixtures. J. <u>Phys. D. 14</u>, 2015-2026. McCorkle, D. L., L. G. Christophorou, and S. R. Hunter (1983). Temperature Temperature and pressure dependence of the nondissociative electron attachment to perfluoropropylene (1-C<sub>3</sub>F<sub>6</sub>). <u>Proc. 3rd Int. Swarm Seminar</u>, August 3-5, 1983, Innsbruck, Austria, pp. 37-41.
- McCorkle, D. L., A. A. Christodoulides, and L. G. Christophorou (1984). Electron attachment to halocarbons of interest in gaseous dielectrics. In L. G. Christophorou and M. O Pace (Eds.), <u>Gaseous</u> <u>Dielectrics</u> <u>IV</u>. Pergamon Press, New York, pp.
- Nakanishi, K., D. R. James, H. Rodrigo, and L. G. Christophoron (1984). The pressure dependence of the dielectric strength of SO<sub>2</sub> and  $n-C_4F_{10}$ . Journal of Physics D (accepted for publication).
- Parkes, C. A. (1972). Electron attachment and negative ion-molecule reactions in nitrons oxide. J. Chen. Soc., Faraday Trans I 68, 2103-2120.
- Phelps, A. V., and R. E. Voshall (1968). Electron attachment in N<sub>2</sub>O. <u>J</u>. Chem. Phys. 49, 3246-3248.
- Rademacher, J., L. G. Christophorou, and R. P. Blaunstein (1975). Electron attachment to sulphur dioxide in high pressure gases. J. Chem. Soc., Faraday <u>Trans II 71</u>, 1212-1226.
- Shimamori, H., and R. W. Fessenden (1979). Electron attachment to N<sub>2</sub>O at pressures near one atmosphere. J. Chem. Phys. 71, 3009-3015.
- Wieland, A. (1973). Gas breakdown in electronegative gases  $(SF_{\kappa})$  and in gas mixtures. <u>ETZ-A 94</u>, 370-373.
- Wootton, R. E. (1982). Gases superior to  $SF_6$  for insulation and interruption. Electric Power Research Institute Report EL-2620, pp. 4.23-4.31.
- Wootton, R. E., S. J. Dale, and N. J. Zimmerman (1980). Electric strength of gases and gas mixtures. In L. G. Christophorou (Ed.), Gaseous some Dielectrics II. Pergamon Press, New York. p. 137-146.

# DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.