$$
\begin{aligned}
& \text { LA-UR--E2-2892 } \\
& \text { DEE } 3002067
\end{aligned}
$$

TITLE: THE TILTING MODE IN FIELD-REVERSED CONFIGURATIONS

AUTHOR(8): J. L. Schwarzmeier, D. C. Barnes, H. R. Lewis,
C. E. Soyler, and A. I. Shesrakov NOTICE
PORTIOIS OF THIS REPORT APE ILI. Friable. It has been reproduced from the best available copy to permit the broaciost possie avibilly.
SUBMITTED TO: U.S.-Japan Workshop on Compact Toroids Osaka, Japan, October 19--22, 19 H 2

 the publathed form of this contribution, or to allow others to do co, for U.S. Government purperen

PDMA No ass me
 bl wo ran bis

J. L. Schwarzmeisr, D. C. Barnes, H. R. Lewle, C. E. Seyler, and A. I. Shentakov

Field Reversed Configurations (FRCs) experinentally have exhibited remarkable stability on the magnecohydrodynamic (MDD) timescale, ${ }^{1-3}$ deapite numeroue MHD calculations showing FRCs to be unstable. ${ }^{4-11}$ It is easy ;o believe that local modes are stabllized by finite Larmor radius (FLR) effects, but more puzzling is the apparent atability of FRCe againet global modes, where one would expect FLR effecte to be less important. In this paper we etudy the tiling mode, whict MHD has shown to be a rapidly growing global mode. The tiltitg mode in FRCs is driven by the pressure gradient, and magnetic compreseion and field line bending are the etabilizing forces. A schematic of the evolution of the tilting mode is shown in Fig. 1. The tilting mode is considered dangerous, because it would lead to rapid teariag across the separatrix (see Fig. le). Unlike spheromake, the tilting mode in FRCs has a separatix that is fixed in space, so that the mode is strictly internal.

MHD Remuite

We have etudiad the MHD atability of the tilting mode with two independent codes ${ }^{12}$: a trial. function code that computes eigenfrequencies, and a linear time dependent MHD simulation cofe. The principal conclusione from our linear MHD calculations ara:
1.) All FRC equilibrja with ilux eurfaces ranging from elliptical to highly racetrack are unatable to tilting with typical growth timea (for FRX-B)

2.) The diaplacement \vec{E} in the (r, z)-plane is primarily axial, $\vec{E}_{\mathrm{n}}+\vec{E}_{\mathrm{f}}=\boldsymbol{E}_{\mathrm{z}} \vec{z}_{\text {, }}$ where \vec{E}_{n} and \vec{E}_{f} are the normal and pasallel dieplaceante of a fluid element from a flux urface (ζ_{θ} is deterained from incompreseibility). If ψ labele a flux eurface and e is the arclength along a-line, we find that $F_{z}(y=0,8)=0$. That in, the axial dieplacmant vanichea at the eeparatrix, $\psi=0$. This meane that the tilting mode is internal, so tice calculation is carried out in fapace frow $\psi=-1$ (0 -point.) co $\psi=0$. (Bee Fig. 2d-f.)
3.) For elliptical equilibria each flux eurface has rigid axial dieplacement, $E_{z}(\psi, \psi)=E_{z}(\psi)$, and the maximum diaplacement occura at the 0-point. (See Fig. 2d.)
4.) For racetrack equilibria $\xi_{2}(\psi, 0)$ in atrong function of 0 , with the axial displacement localized to the tipe of the flux surfaces. (See Fig. 2e,f.)

Several reasons have been proposed for the observed stability of FRCs: against tilting: 1) Though unstable the instability aturates at low amplitude (the 3-D MALICE code shows this is not true for elliptical equilibriaj; 2) Nonideal effecta might atabilize the mode (Shestakov's resiative linemr MHD code atill shows instability); 3) PRC apin-up might atabilize the tilt (but $\tau_{\mathrm{g}} \gg$ γ^{-1}); 4) Kinefic effects might be important ${ }^{\text {(hen }}$ for this giobsl mode. We feel that the last poseibility is the mosi likely, particularly aince there ace "betatron" particles that have large radial orbita about the field null (aee F1g. 3b).

Figure 1. Bchematic evolution of the tilting mode. a) Equilibrium atate, b) Linear mode is an axial ehift of flux eurfacen, c) Nonilnoer mode may lead to cearing in dashed circula- :agiona.

Fig. 2 Realistic numericsl equilibria, (a) elliptical case, (b) FRX-B parameters, (c) highly racetrack case. For each equilibrium (a)-(c), in (d)-(f) are shown the corresponding projections of the displacement vector in the $(r, 2)$-plane from the initial value code.

Kinetic Treatment

An exact linear stability formaliem for inhomognneous Vlasov-Maxwell syetems lias been devieed by Lawia, Symon, and Seyler. 13 Sayler and Baines 14 used this formalia to etudy kinetic effects on the tiling mode with the Vlasov-fiuid model (Vlasov lone; cold, maselese electrone). Let $f_{1}\left(\begin{array}{l}\mathrm{P}\end{array} \mathrm{p} ; \omega\right.$) be the Laplace traneform of thu firet order dietribution function of the fone. Since θ is an ignormblo coordinate of the equilibrium, all perturbation quantities have -dependence of $e^{\text {in } \theta, ~ w h e r e ~} n$ is alxed integer for the problem. In gancral we can expand

$$
\begin{equation*}
f_{I}(t, \vec{p} ; \omega)=E \Gamma_{T}(\omega) w_{T}(t, p) \tag{1}
\end{equation*}
$$

The functions we are the Houville agenfunctione, and they eatiefy

$$
\begin{equation*}
L w_{r}=1 \mu_{r} W_{r} \tag{2}
\end{equation*}
$$

where L is the equilibrium Vlasov operator given by the Poisson bracket of the equilibrium Hamiltonian, $L=[, H]$. μ_{r} is the Liouville eigenvalue, and it is a sum of terms containing integral multiples of the bounce frequencies of all the periodic equilibrium particle motions. The subscript retande for the set of single particle invariants that labels a particular orbit, as well as a oe of integers that labels harmonics of the equilibrium bounce motions. The sum over r in Eq. (1) means am over all discrete labele and integrate over all continuous labela. In the case that there are three (exact or adiabatic) constants of the single particle motion in the equilibrium fields, then the
 of equilibrium quantities. When the form (1) is substituted into the linear Vlasov equation the coefficients $\Gamma_{r}(\omega)$ can be found in ierms of the perturbation $\vec{\xi}\left(\mathcal{I}_{;} \omega\right)$. When that result for f_{1} is subatitutéd into the source terme of the linearized Maxwell's equations, one obtains a homogeneous integro-differential equation to be solved for $\stackrel{\rightharpoonup}{\xi}$. In the case of the tilting mode for elliptical FRCB, $\vec{\xi}(\vec{I} ; \omega)+\xi_{z}(\psi ; \omega)$, so the linearized equations of motion have the general form

$$
\begin{equation*}
D(\psi ; \omega) \quad \xi_{z}(\psi ; \omega)=0, \tag{3}
\end{equation*}
$$

where $ل$ is the disperaion opezator. Equation (3) can aiso be obtained from the variation of the dispersion functional Δ, defined by

$$
\Delta\left(\xi_{z}^{\star}, \xi_{z}\right) \sim\left(\xi_{z}, D \xi_{2}\right) \equiv \int d^{3} \Sigma \xi_{z}^{\star} D \xi_{2},
$$

with respect to E_{z}^{*}. In the ylasov-fluid model the dispersion functional has the form

$$
\begin{equation*}
\Delta=-2 \delta W-\frac{1 u e}{c} \int d^{3} r \stackrel{H}{*}^{+} \cdot\left(\vec{\xi}_{\times}^{+} \vec{B}_{0}^{+}\right)-V=0, \tag{4}
\end{equation*}
$$

where δW ie exactly the $M H D$ incompreseible potential energy, and the kinetic teras are contained in V, defined by

$$
\begin{equation*}
V(\omega)=\omega \sum_{x} f_{0}^{\prime}(E) \frac{\left.I\left(W_{r}, H_{1}\right)\right|^{2}}{H_{r}-\omega}, \tag{5}
\end{equation*}
$$

where $r_{0}(E)$ is the equilibrium ion diatribution function, and E is the cotal
energy of a particle. In Eq. (5) H_{1} is the single particle perturbation Haniltonian

$$
H_{1}=e\left(\phi_{1}-\frac{e}{c} v \cdot \vec{A}_{1}\right)=\vec{E}^{c} \cdot\left(\vec{E}_{0}+\vec{v}_{\times \vec{B}_{0}} / c\right) .
$$

The second half of Eq. (6) follows, since in the Vlasov-fluid model one writes \vec{A}_{1}
 orbit integral of the perturbation H_{1} along the orbit r, and the particle resonances occur when $\mu_{r}-\omega=0$. For FRCs the energy E and canonical angular momentum P_{θ} are exact invariants "and in the work of Seyler and Barnes it was assumed that the magnetic moment 1 ! is an adiabtic invariant. In the limit of small Larmor radius this leade to a dispersion functional of the form

$$
\begin{equation*}
\Delta=-2 \delta W+2 \omega^{2} K+\omega F-R(\omega)=0 \tag{7}
\end{equation*}
$$

K is the $H H_{D}$ kinetic energy normalization, F contains the FLR terme, and R contains parallel kinetic effects and particle resonances. If one neglects R and solves Ea. (7) for w, it 18 easy to show that the FLR term F has a stabilizing effect.

Neglecting the R term in Eq. (7) leads to a 2 nd order ODE for $F_{z}(\psi)$. The first case to consider is the pure MHD limit, where fin neglected. One boundary sondition is that $\xi_{z}(\psi=0)=0$, and the other boundary condition is really a regularity condition that eliminates the eingular (logarithmic) solution of $\xi_{z}(\psi)$ about the 0-point. The regular solution has ξ_{z} going to a (nonzero) constant as $\psi \rightarrow-1$. However, wher one adde the F term one finds that eliminating the singular solution of ξ_{z} at the o-puint leade to a regular solution that vanishes at the o-point. That is, the addicion of any amount of FLR terms, no matter how emall, leads to a completely different behavior of the colution in the vicinity of the o-poinc. This result is unphysical and indicates that the amall Larmor radius treatment of the fona in the vicinity of the field null is incorract.

A correct kinetic treatment of the tilling mode in an FRC should recognize that there are large ion orbite, enpecially for the batatron particlea. This introduces two eignificant complicitione into the problem. firat, large ion Larmor radil mean that a local approximation is not valid, and hence the full integro-differential equation muet be dealt with. Second, to even obtain
expreseions for the orbit integrals we need to have another adiabaric invariant to replace μ, which ie not invariant for large orbit ions.

Adiabatic Invarianta

In order for u to be an adiabatic inveriant it is necessery that B change little during one cycloidal period of the particle notion. In current FRCa the radial grajient of the B-field near the separatrix is sufficiently steep that a thermal ion feele atrong variation in B during a radial oacillation. Figure 3 shows particle trajectories for two different thernal ions in the (r, z)-plane for the Spencer-Hewett equilibrium corresponding to FRX-B. In Pig. 3a, b" the time the (cycloidal) particle has raached z - 1 dithas hrd a variation in μ of $\Delta \mu \sim \pm 65 \%$, while $\Delta J \sim \pm 11 \%$, where J is an adiabatic invariant, defined in Eq. (12), with which we replace μ. In Pig. 33 b , the (betatron) particle hae a maximum variation in J of $\Delta J \sim 48 \%$, and for this particle μ is ecaningless. (For FRX-C parametera the variatione in μ and J are about 50% of what they are for PRX-B parameters.) This meane that for current FRCe it is never valid to asame that μ ie an adiabatic invariant, which in turr, means t° at not only 1 . MHD an invalid model for FRCe, but a guiding ceuter description aleo is invaild.

Fortunately there reraine one amall parameter of current FRCe that can be exploited to provide an adiabatic invariant to replace μ. That amall parameter is the slongation of the plasia, c. Typically for an FRC c is in the range . 15 < c.25. We will eee that the radial action J is an adiabatic invariant for elongated FRCs.

The equilibrium aingle particle Hamilonian is (P_{θ} is a parameter throughout)

Figure 3. Particle trajectories sod flux surfaces for a) cycloidal particle, and b) betatron particle, using FRKM -5 marmetare.

$$
B\left(r, P_{r}, z, P_{z}\right)=\frac{P_{r}^{2}}{2 m}+\frac{P_{z}^{2}}{2 m}+U(r, z)
$$

where the two dimensional potential is

$$
\begin{equation*}
U(r, z)=\frac{\left[p_{\theta}-e \psi(r, z) / c\right]^{2}}{2 \pi r^{2}}+e \Downarrow(\psi), \tag{9}
\end{equation*}
$$

and is the electric potential determined from ion pressure balance. The highly elongated nature of FRCs manifests itself in that the potential variation in 2 is much "slower" than it is in r. (This is true except for a highly racetrack equilibrium, where all the axisl variation occurs at the tip of the flux surface on the same spatial scale length as the radial variation. See Fig. 2c.) Thus to do the perturbation theory for alow z variation we replace

$$
\begin{equation*}
U(r, z) \rightarrow U(r, \varepsilon z), \tag{10}
\end{equation*}
$$

triat E as small in the analysis, and then at the end let $\in \rightarrow$. The goal of this perturbation analyeis is to produce the Hamiltonian that determines the radial and axial motion to lowest order in c. A result of this procedure is that the radial action J, defined by

$$
\begin{equation*}
J\left(E_{0}, c \varepsilon\right) \equiv \frac{1}{2 \pi} \oint d r P_{r}\left(r, E_{0}, c z\right), \tag{12}
\end{equation*}
$$

is an adiabatic invariant :

$$
\begin{equation*}
\frac{d J}{d t}=0+0\left(s^{2}\right) \tag{13}
\end{equation*}
$$

The p_{r} in Eq. (12) is

$$
\begin{equation*}
P_{r}\left(r, E_{0}, c z\right)=\left\{2 m\left[E_{0}-U(r, c z)\right]\right\}^{1 / 2} \tag{14}
\end{equation*}
$$

where E_{0} is a conetant value of the radial Hawiltonian H_{0}

$$
\begin{equation*}
H_{0}\left(r, P_{r}, E z\right)=\frac{P_{r}^{2}}{2 m}+U(r, c z)=\text { conet. } \quad E_{0^{\circ}} \tag{15}
\end{equation*}
$$

For each z in Eq. (15), E_{o} varien over a range of values. For each z and E_{0} in Eq. (12), J has a cartain value. Tha ralation $J=J\left(E_{0}, c z\right)$ can be inverted :o
give E_{0} as a function of J and $c z: E_{0}=K_{0}(J, c z)$. By using multiple time scale analyais on 2 as is function of time, it can be shown that the familtonian that produces the lowest order radial and axial motion ia

$$
\begin{equation*}
R\left(J, z, P_{z}\right)=K_{0}(J, \varepsilon z)+\frac{P_{z}^{2}}{2 m}+O\left(\varepsilon^{2}\right) \tag{16}
\end{equation*}
$$

Essentially we have transformed coordinates $\left(r, P_{r}\right) \rightarrow(\phi, J)$, where ϕ is the angle variable confugate to J, and we have eliminated $\$$ frcm the Hamiltonian to order ε^{2}. The function $\phi=\phi\left(r, P_{r}\right)$ can be found in the usual way from the generating function $F(r, J)$, where $p_{r}=\partial F / \partial r$. By solving Eq. (16) for F_{z} and using the equation $d z / d \tau=P_{z} / m$, we can show that the (slow) axial time of a particle's position is (letting $\varepsilon \rightarrow 1$)

$$
\begin{equation*}
\tau(z)=z_{1} \frac{d z^{\prime}}{\left\{\frac{?}{m}\left[E-K_{0}\left(J, z^{\prime}\right)\right]\right\}^{1 / 2}} \tag{17}
\end{equation*}
$$

where E is a constant value of the cotal Hawiltonian R in Eq. (16). If z_{1} and z_{2} are the two turning points of the axial motion, then the axial period T_{2} is a function of E, J, and P_{θ}.

Of course, J (or μ for that matter) is not an adiabatic constant of the motion for particles that pass in the vicinity of the spindle point. In fact, particles with positive P_{θ} have orbits that are not confined axially (ase Fig. 3a), so these particles are lost through the epindle point region in an axial trsnsit time. Since the tilting mode has a displacement that vanishes at the separatrix, one can only hope that difficulties associated with the spindle point are not an essential part of the atabilization of the tilting mode.

Now that we have the Hamiltonian R chat deacribes the lowest order radial and axial motion, we can retura to Eq. (2) to find to lowest ocder in e the Liouville eigenfunctions and eigenvalues. The details of this calculation are lengthy so we merely present the results. In terms of the canonical coordinates ($\phi, J ; \tau, E ; \theta, P_{\theta}$) we have

$$
\begin{equation*}
\omega_{r}\left(\phi, J, \tau, E, \theta, P_{\theta}\right)=d_{\tau} \delta\left(E-E^{\prime}\right) \delta(J-J \prime) \delta\left(P_{\theta}-P_{\theta}^{\prime}\right) e^{i n \theta} u_{r}(\phi, \tau), \tag{18}
\end{equation*}
$$

where

$$
u_{r}(\phi, \tau)=\exp \left\{1\left[\ell \phi+\ell \Omega_{0} \tau_{1}(\tau)+p \Omega_{2} \tau+n \Omega_{\theta} \tau_{2}(\tau)\right]\right\} .
$$

and d_{r} is a normalizing factor. E^{\prime}, J^{\prime}, and p_{θ}^{\prime} are continuous indices (i.e., numbera), and l and p are any integers; these quantities collectively denote the label 1 . The operator L commutes with multiplication by any function of the constants of the motion, and L also commetes with $\partial / \partial \theta$. Thus w_{r} can be chosen to be aimultaneous eigenfunction of these operators, and this explains the delta-functions and the $e^{i n \theta}$ in Eq. (18). The dependence of u_{r} on ϕ and τ (corresponding t, the two nonignorable directions of the equilfbrium, r and z) is chosen sere so that

$$
\begin{equation*}
u_{\tau}\left(\phi+2 \pi, \tau+T_{z}\right)=u_{\tau}(\phi, \tau) \tag{20}
\end{equation*}
$$

That is, EqB. (18-19) are the w_{r} for particles that are trapped; aluilar expression could be written for particles whone orbita are not confined spatially. The remaining quantities in Eq. (19) are given by

$$
\begin{align*}
& \omega_{0}(\tau)=\frac{\partial K_{0}\left(J, P_{\theta}, z(\tau)\right)}{\partial J}=2 \pi\left(\oint \frac{m d r}{P_{r}\left(\bar{T}, J, P_{\theta}, z(\tau)\right)}\right)^{-1} \\
& \Omega_{0}=\frac{1}{T_{z}} \oint d \tau \omega_{0}(\tau) \\
& \tau_{1}(\tau)=\tau-\frac{1}{\Omega_{0}} \int_{0}^{\tau} d \tau^{\prime} \omega_{0}\left(\tau^{\prime}\right) \\
& \Omega_{z}=2 \pi / T_{z} \\
& \Omega_{\theta}=\frac{1}{T_{z}} \oint d \tau \omega_{\theta}(\tau) \tag{21}\\
& \omega_{\theta}(\tau)=\frac{\Omega_{0}}{2 \pi} \oint \frac{m d r}{P_{r}\left(r, J, P_{\theta}, z(\tau)\right)} \frac{v_{\theta}^{2}(r, z(\tau))}{r} \\
& v_{\theta}(\tau, z)=\left[P_{\theta}-e \psi(r, z) / c\right] / m \\
& \tau_{2}(\tau)=\tau-\frac{1}{\Omega_{\theta}} \int_{0}^{\tau} d \tau^{\prime} \omega_{\theta}\left(\tau^{\prime}\right)
\end{align*}
$$

All quantitiea $i n(21)$ can be calculated from the equilibriun, and they are functions of the congtante E, J, and P_{θ}. The Liouville eigenvalue is

$$
\begin{equation*}
\mu_{r}=l \Omega_{0}+p \Omega_{\Sigma}+n \Omega_{\theta} \tag{22}
\end{equation*}
$$

and clearly $\mu_{r}-\omega=0$ describes resonances between the wave and harmonics of the radial, axial, and azimuthal drift motions of the particles.

Kith the Liouville eigenfunctions defined by (18) we can simplify the orbit Integrals as

$$
\begin{equation*}
\left(w_{r}, H_{1}\right) \rightarrow d_{r} \oint d \phi \oint d \tau u_{r}(\phi, \tau) H_{1}\left(r, \tau, \xi_{2}(\psi)\right) . \tag{23}
\end{equation*}
$$

$\psi(r, z)$ is known from the equilibrium, and we can expand

$$
\begin{equation*}
\xi_{z}(\psi ; \omega)=\sum_{n=1}^{N} a_{n}(\omega) r_{n}(\psi), \tag{24}
\end{equation*}
$$

where $\left\{\eta_{n}\right\}$ is a chosen set of expansion functions, and the coefficients σ_{n} are to 认e found. Thus $H_{1}\left(r, z, \xi_{z}\right)$ can be written as a function of r and z. By uaing the transformations $r=r\left(\phi, J, P_{\theta}, z\right)$ and $z=z\left(\tau, E, J, P_{\theta}\right)$, we car express $H_{1}\left(r, x_{1} \xi_{z}\right)=f\left(\phi, \tau ;\left\{a_{n}\right\}\right)$. Finally, the sum over r in the kinetic term V of Eq. (5) meane that

$$
\begin{equation*}
\underset{\boldsymbol{r}}{\Sigma}+\int \mathrm{dE}^{\prime} \int \mathrm{dJ}^{\prime} \int \mathrm{dP}_{\theta}^{\prime} \sum_{\ell, \mathrm{P}}^{\Sigma}: \tag{25}
\end{equation*}
$$

A dispersion matrix $D_{n, n^{\prime}}(\omega)$ is constructed from the dispersion functional as

$$
D_{n, n^{\prime}}(\omega) \equiv \frac{\partial \Delta}{\partial a_{n^{\star}} \partial a_{n^{\prime}}} .
$$

and the eigenfrequency ω is determined by requiring that
$\operatorname{det} D(\omega)=0$.

The procedure just outlined is a completely general formulation of the kinetic tifting calculacion. The numerical computationa involved are formidable, but we hope feasible. It may be necessary to approxinate various aspects of the kinetic torm V of $E q$. (5) befor numerical evaluation beging. For instance, the highly elongatad nature of FRis implies that the time acales of the radial, azinuthal, and axial motions are quite separated from one another, with

$$
\begin{equation*}
\Omega_{0} \gg \Omega_{\theta} \gg \Omega_{z} . \tag{26}
\end{equation*}
$$

This meang that $1 /\left(\mu_{r}-\omega\right)$ is emall, except for $\ell=0$. Additional approximations in the orbit integrals may also be posaible.

In eummary, che MHD analysis of the tilting mode in $\mathrm{F}_{\mathrm{D}} \mathrm{CB}$ has beer completed, witl the concluaion that all FRC equilibria should be very unstable to tilting. Of the possible reasong for explaining the observed stability of the experiments, kinetic effects appear to us to be the most likely stabilizing mechanism. This problem is very difficult, because the equilibrium is two-dimensional and the mode is global. The magnetic moment μ is not conserved for current $;$ RC parameters, but the radial action J is a suitable adiabatic invarient for elongated equilibria. We have obtained a general expreasion for the dispersion functional for the kinetic tilting calculation which is in a form suitable for numerical evaluation, Posaible analytical approximations of the problem have been indicated.

REFERENCES

1. W. T. Armetrong, et. al., Phys. Fluids, 24,2068 (i981).
2. W. T. Armetrong, et. al. (eubmitted to Phyw. Fluids).
3. A. G. Ea'kov, et, al. in Plasma Physics and Controlled Nuclear Fusion Reacarch (Internaticnal itomic Energy Agency, Vienna, 1978), Vol. II, P. 187.
4. W. A. Newcomb, Phys. Fluids, 23, 2296 (1980).
5. J. R. Cary, Phys. Fluide, 24, 1818 (1981).
6. D. C. Barnes, C. E. Seylēr, and D. V. Anderson, in Proceedings of the Symfosium on Compact Toruses and Energetic Parifcle lijection (Princeton University, Princeton, N. J., 1979), p. 110.
7. A. I. Sheatakov, at. in Proceedings of the iymposium on Compact Toruses and Euergetic Particle Injertion (Princeion, N. J., 1979), p. 126.
8. H. Weitener, Personal Commication.
9. D. C. Barnas, t. al., Proceedings of the 3 rd Gymposlum nin the Phyaice and Technology of Compact Toroids in the Magnetic Fusion Energy Hiogram, Los Alamos Report La8700-C, Loe Alamon, NM, Dec. 2-4, 1980.
10. Yu. A. Dreizin and E. P. Sokolov, Sov. J. Plasma Phya.. 7. 516 (1981).
11. W. Grogamann, E. Hameiri, and H. Weltzner (to appaar in Phya. Fluids).
12. J. L. Schwarmaler, et. al., (aubmitted to Phya. Fluide) 1982.
13. K. R. Symon, H. R. Lewia, and C. F. Seyler, J. Plaema Phys., 13 (1982).
14. C. E. Seyler and D. C. Barnea, Phys. Fluide, 24, 1686 (1981).
