
I
, 1,~-UR-78-2691

.

.

TITLE: ?JUMERICAL ALGORITII1!SAND SOFTWARE FOR
ADVANCED COMPUTERS

AUTHOR(S): B. L. Buzbee, C-3

SUBMITTED TO: To be presented and published in the
proceedings at the AESOP-SCIE Symposium
on Advaliccd Computing, October 19, 1978,
Sands Jlotel, Las Vegas, Nevada

By acccptnrtcc of this articlr for publication, the
publisher recognizes the Govcrnmtmt’s (license) rights
in any copyright and the Go\ernmcnt nnd its nulhoriwd
reprewmtntives hnve unrestricted ri~ht to reproduce in
whole or in pnrt said article under any copyright
sscurcd by the publisher.

The Los Alamos Scientific Laboratory requests that the
publisher identify this article as work performed under
the auspices of t!re USMUM.

q)$

s cdarnos
sclentifk flaboratory

of the university ofcalifornia
lCS AlAMOS, NEW MEXIC087S4S

An Aflirmotive Action/Equol Opportunity ErnployGI

Fl,rm NO W)
N so. ?M
1:h

.

UNITEDSTA’IW
EtNfW;Yl {ttSR\R(’11 AN)

DEWNI.01’XIKN’1” Ai)\ll NIS flM’1’loN
CONTIK!’I’ U’.7.Ioij.KNL;, 36

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



,./ ‘ “
i
I

..

NUMERICAL ALGORITHMS AND SOFTWARE
FOR ADVANCED COMPUTERS

by

B. L. Buzbee

ABSTRACT

This report discusses the utilization of large-
scale computers at Los Alamos Scientific Laboratory and
why scientists are constantly seeking bigger and faster
computers. We also follow the trend toward increased
parallelism within the architecture of supercomputers
and show hok-this parallelism is affecting software and
algorithms. Based on this trend and characteristics of
existing simulation models, we indicate some of the
areas where future research will be needed.

I* INTRODIJCTION

Although current generations of a.percomputers can perform
tens of millions of arithmetic operations per second, they are
still i~.~apable of doing all of the numerical simulations that
scientists would like to do. In this’report we discuss the utili-
zation of supercomputers at the Los Alamos Scientific Laboratory,
and provide some insight into why scientists are continually seek-
ing larger and faster computers. We also follow the trend toward
increased parallelism in the architecture of supercomputers and
show how this parallelism is affecting algorithms and software.
Based on this trend and characteristics of present day simulation
models we indicate some future directions of research.

11, LARGE-SCALE COMPUTATION AT LASL

Large-scale scientific computations are those computational
problems that saturate all resources of any available computer,
Examples of such problems include aerodynamic simulation, nuclear
weapon design, atmospheric modeling, bioJ.ogical modeling, economic
modeling, etc. Computers that are best suited for performing



2

large-scale computations are frequently referred to as supercom-
puters. The associated computing systems are generally character-
ized by

● heavy usage of FORTRAN,

● hardware that is very fast in performing floating point
operations ,

● large memory capacities,

● large mass storage facilities,

● interactive graphics,

● state-of-the-art technology.
.

One can also define supercomputers by analogy. For example,
Edward Yourdon [1] attributes four characteristics to the super-
programmer:

1. They are freaks in some sense of the word.

2. They refuse to work regular hours,

3. They tend to use relatively few software tools.

4, They do not get along well with people.

It.is remarkable that a recent LASL document describes supercom-
puters as follows:

10 They incorporate state-of-the-art technology (they are
freaks in some sense of the word).

2. They are relatively unreliable (refuse to work regular
hours ).

3* They tend to be software poor (use relatively few
software tools).

4. There are relatively few of them (do not get along well
with people).

So if you know something about superprogrammers, you, in fact,
know something about supercomputers,

LASL was established in 1943 to develop a nuclear weapon,
Since that time, its activities have diversified, but weapons
design continues to be a major effort and dominates the usage of
supercornputers. This activity accounts for 60-70% of LASL super-
computer utilization. The other 30-40y0 is used by energy research
projects, such as fusion energy studies and fission re!~ctor safety



3

studies. A recent a ‘pical weapon design required approximate-
ly 6000 hours of CDC equivalent processor time, which is
nearly 1 1/2 years’ cc nuous operation. That is an enormous
amount of computation, .~t the cost of it is substantially less
than the total system cost. Because use of numerical computation
reduces the number of weapons tests, accelerates the design pro-
cess, etc., acquisition of supercomputers is, and will continue to
be, justified.

Numerical simulation performs at least three important func-
tions for the design process. One function is the study of fine
structure, that is, study of local behavior whose experimental
observatim is at best difficult, perhaps impossible. Such things
as the behavior in time at the interface of two materials is an
example. Another function is sensitivity, that is, determining
charge in performance as a function of design parameter variation.
Finally, there is the function of optimization--determining op-
timum performance as a function of design parameters. Each of
these functions requires many iterations, and it is through those
iterations that thousands of hours of computation are accumulated.

Several aspects of numerical simulation have important impli-
cations for computing facilities,

● Different codes are used to represent overlapping phases of
device function. As a consequence, a family of programs
must access a common data base, This leads to a require-
ment for large mass-storage facilities.

● There is an upper limit on the time that can be tolerated
for execution of a design code, “Overnight” defines the
largest practical time avaj.1.ablefor a gi’]en iteration. If
execution time exceeds this ~lpper limit, the design process
begins to suffer because of inability to meet design
schedules, machine failure, and because the designer is un-
able to manage seve-.al computa~ions concurrently. This
upper limit varies from 10 hours to 2 days at LASL. A
current design code contains about 90,000 lines of FORTRAN,
requires 67 overlays for execution on a CDC 7600, and needs
10 million words of disk storage for its execution. It
requires 9 hours of central processor (CP) time for its
execution, which meets the “overnight” criterion, and it
performs approximately 100 billion floating point opera-
tions during that 9 hc~;rs. An improved model requires 30
to 40 hours of execut~on time, and that, of course, exceeds
the “overnight” criterion. It needs about 200 million
words of disk storage and will perform approximately 400
billion floating point operations during this execution.
Consequently, the requirement for “overnight” execution
leads us to continually seek bigger and faster computers.
Improvements to the models include increased accuracy in
space and time as well as more and better physics.



4

● Finally, many design codes require interaction with the
designer during their execution, and this leads to the re-
quirement for good interactive graphics capability.

Our ability to design is directly proportional. to the capa-
bility and capacity of advanced computers. Thus, further in-
creases in computer performance will be used t~ improve models
rather than reduce computational time and cost.

III. EVOLUTION OF SUPERCOMPUTER PERFORMANCE AND ARCHITECTURE

The trend of execution bandwidth in supercomputers during the
past 25 years is shown in Fig. 1. Computers in the early 50’s
performed a few thousand operations per second, whereas recent
supercomputers perform 10 to 100 million floating point operations
per second. Thus withi~ the past 25 years arithmetic performance
has increased by five orders of magnitude. These data are nicely
approximated by a double exponential in time that is beginning to
flatten out. We will have more to say about that lat~~r.

Figure 2 shows growth of memory capacity. Comparing the
Maniac 1 with the CRAY-1, memory capacity has increased by some
three orders of magnitude.

I I I I I I I I I

noo

Mania

sow

/ Aecawmno
A M{”., -,

I I I I II
) 1950 1960 lil~ wail

Fig. 1.

Trend in execution bandwidth.

MANIAC I

m ml

“m4

- mwDA

.m

Cocwo

“ml)

CMY-I

UCMORY CAPACITY

Fig. 2.
Growth in memory capacity.

There is a definite trend within computer architecture to-
wards parallelism. Computers in the early 50’s were strictly
sequential in their issue and execution of instructions. That is,
the instruction was fetched from memory, decocled, its operands
were fetched, the operation performed, and the result stored.
Then the next instruction was ;etched, decoded, etc. In the early



5

60’s computers appeared in which the execution of instruction (n)
was overlapped in time with the fetching and decoding of instruc-
tion (n + 1). In the mid 60’s computers had independent function-
al units. For example, the CDC 6600 had independent units for
performing multiplication, addition, etc., and those units were
capable of parallel execution. In the late 60’s computers had
enough parallelism in them to achieve vector mode. By vector mode
we mean that at any time the computer may be processing two or
more results. To achieve this mode, we need parallelism in
memory, obtained by interleaving independent banks of memory; an
instruction stack in the CPU to suppress instruction fetching so
that operand streaming is not disrupted; multiple registers in the
CPU to hold intermediate results; and, finally, segmented func-
tional units to sustain the stream through the CPIJ. Computers
such as the CL)C7600 and the lBM 360/195 have sufficient features
to achieve this mode. In the early 70’s computers appeared with
explicit vector instructions, hardwired instructions that operate
on n-tuples of numbers. The early machines were memory-to-memory
in that the vector instruction was performed on vectors stored in
memory and the result vector was stored in memory. Recent vector
computers perform instructions on the contents of vector registers
in the CPU and then store the results in a CPU vector register.
Examples of memory-to-memory architecture are the Texas Instru-
ments ASC and the CDC Star-100; the Cray Research Inc. , (CRI)
CRAY-1 is an example of register-to-register architecture. Final -
ly, as of 1977, the DAP (Distributed Array Processor) array of
processors is avai”.able from International Computer, Limited,
England. Cf course, arrays of processors have been operational
for several years, but this is the first commercially available
product. Thus there has been a growing trend toward increased
parallelism in architecture. We will also come back to this
point.

IV. IMPACT OF SUPERCOMPUTER ARCHITECTURE ON ALGORITHMS AND
SOFTWARE

Beginning ~ith the introduction of the Star-100, the archi-
tecture of supercomputers has had substantial impact on algorithms
and software. Although computers such as the CDC 7600 had paral-
lelism in their architecture, the average user could get a signi-
ficant gain in performance from the CDC 7600 relative to its
predecessors without any knowledge of the parallelism in it. As
evidenced Ky the following quotations, such is no longer the case.

“NOBODY, AND I MEAN NOBODY, KNOWS HOW TO PROGRAM LARGE PARAL-
LEL MACHINES” - Seymour Cray, Business Week, 12/6/76.

“MANY CURRENT LARGE-SCALE PROGRAMS CANNOT RUN EFFICIENTLY ON
ANY KNOWN HIGH PERFORMANCE MACHINE, ..” - David W. Hogan,
John C, Jensen and Merrill Cornish, Texas Instruments, Inc.



6

“CONVERTING PROBLEMS FOR EFFICIENT EXECUTION ON THE NEW CLASS
OF ‘HIGHLY PAMLLEL’ MACHINES REQUIRES AN ALMOST COMPLETE
REANALYSIS AND REWRITE OF THE PROGMM.” - .J.E. Wirsching and
T. Kishi.

1! ...ALGORITHNS FOR THE COMPUTERS MENTIONED ABOVE MUST BE
DEVELOPED WITH THE SPECIFIC ARCHITECTURE WELL IN MIND IF ANY-
THING APPROACHING THE FULL POTENTIAL OF T1{ESEMACHINES IS TO
BE REALIZED.” - Robert G. Voigt, ICASE.

“AT LLL WE CONSERVATIVELY EXPERIENCE A TEN MAN YEAR EFFORT
PER APPLICATION CODE TO ACHIEVE A SPEED UP OF 2 - 3 ON THE
CDC STAR-1OO OVER A CDC-7600. THIS SHOULD BE CONTPC%TEJ) TO A
NOMINAL EFFORT (MONTHS) FOR A FACTOR OF FIVE IMPROVEMENT IN
THE CODE MIGRATION FROM THE CDC-6600 TO THE CDC-7600.” -
T. Rudy, LLL.

The integral of these statements shows that many existing simula-
tion models do not perform efficiently on new supercomputers and
that in order to make them do so, the models must be reprogrammed
with careful attention to the architecture and in some cases algo-
rithms must be replaced. Furthermore, the total effort required
to do this is greater than what we are accustomed to expending on
the conversion of programs from one generation of computers to
another.

A recent computational experiment at LASL provides quantita-
tive data in s~pport of the foregoing quotations. Table I summar-
izes the results of this experiment in which a single algorithm
was implemented on the CRAY-1 in eight different environments.
The parameter displayed in Table I is millions of floating point
operations per second (megaflops); thus, the higher the number,
the better the performance, Data for’the first seven environments
are from [2]. Datum for the eighth is from [3].

TABLE I

MILLIONS OF FLOATING POINT OPERATIONS/SECOND (MEGAFLOPS)
ACHIEVED IN DIFFERENT ENVIRONMENTS

SGEFA

L
3.
4.
5.
6.
7.
8.

FTNX Inline
CRI Inline VZCT=OFF
CRI FORTRAN BLAS
FTNX FORTRAN BLAS
FTNX Vectorized Inline
CRI Inline VECT=ON
FTNX CAL BLAS
Optimal CAL [4]

1.3
3.3
4.5
6.0

16.6
23,8
27.4

120,0



7

In the first environment, the algorithm was specitied in
FORTRAN without any calls to subordinate routines, i.e. , “inline”,
and compiled by LASL’S FTNX compiler with vectorization prohib-
ited. Environment number two is identical to one, except that
compilation was by the Cray Research, Inc. , CF2’compiler. In en-
vironment three, the innermost DO loop was replaced by a call to a
subordinate routine. This routine is written in FORTRAN and per-
forms the vector operation required by the innermost DO loop. The
routine is written in a fashion that will achieve high performance
on computers that have instruction stacks such as the CDC 7600.
Unfortunately, this mode of specification does not vectorize on
the CRAY-1. Environment three is this mode of implementation with
compilation by the CRI compiler. Environment four is identical to
environment three, except that compilation is by the FTNX com-
piler. Environment five uses ~he inline source from environment
one with compilation by the FTNX compiler and vectorization whez-
ever possible. Environment six is similar to five, except that
compilation is by the CRI compiler. Environment seven is identi-
cal to environment three, except that the vector subroutine is
hand coded in assembly language and uses vector operations. Fi-
nally, environment eight is a hand-coded assembly language imple-
mentation of the algorithm carefully formulated to match the
CRAY-1 architecture.

Table I shows that the performance of a vector computer can
vary widely as a function of software and algorithm specification.
Because of this variation, every laboratory that has acquired a
vector processor has had to restructure compute-bound sections of
simulation models in order to achieve appropriate performance lev-
els from these processors. This restructuring of code accounts
for ‘he relatively large conversion cost alluded to in the quota-
tion by Rudy. Conversion cost must also include development of
new algorithms. For example, in environment eight of Table I, the
algorithm has been very carefully tailored to fit the architecture
of the CRAY-1. In some situations, completely new algorithms must
be developed. For example, the traditional equation of state
table look-up procedure used at LLL does not vectorize. Research
to develop a vectorizable algorithm vas successful and yielded an
algorithm that performs an order of magnitude better on the
Star-100 than the traditional procedure[4].

v, CURRENT SIMULATION MODELS

Generally, the value of vector hardware applied to current
simulation models is not nearly as great as suggested by Table 1.
To assess its value in the average situation, assume that we have
two computers-- one is a scalar computer and the other a vector
computer. of course, vector computers can perform scalar opera-
tions. So let C b{? the average time required by the scalar com-
puter to perforrnsa scalar operation and let C be the average time
required by the vector computer to perform a ~calar operation. As-
sume that the scalar speeds of the two computers are equal and



F

8

that the vector machine performs vector operations in zero time,
that is, it is infinitely fast in vector mode. Figure 3 illus-
trates the performance of the vector computer relative to the
scalar computer under these assumptions as a function of vectori-
zation. If we can vectorize 50% of the total work in our computa-
tion, that wo:-kwill be done in zero time on the vector computer
and we will get a factor of 2 improvement from it relative to the
scalar computer. Now change one of the assumptions. Assume that
the scalar computer is faster and performs scalar operations in
only one-fourth the time required by the vector computer. Figure
4 shows the relative performance. Notice that we must vectorize
75% of the total work just to break even. To really get a perfor-
mance gain from the vector computer in this case, we must operate
in the area of 95% vectorization. That is difficult to achieve.
Iu general, it requires a complete rewrite of the program in as-
sembly programming language. Assume now that the scalar computer
is slower and that it takes twice as long to perform a scalar
operati.on as the vector computer. Figure 5 shows the relative
performance. We start with a factor of 2; if we can vectorize 50%
of the work, we will have a factor of 4.

The CRAY-1 is about 2.5 times as fastas the CDC 7600 in
scalar mode, and our experience is that compilers and other
software packages can achieve 25-50% vectorization of the total
work in existing models. Thus we believe the CRAY-1 wili perform
3-5 times the CDC 7600.

VI. THE FUTURE

During the past 10 years, development of new simulation
models in large-scale computation has been a secondary ac~ivity.
This is easy to understand. If a scientist has a 40 or 50
thousand line FORTRAN program and wants it to run four times fas-
ter, there are two alternatives. One is to modify the program,
optimizing it al~orithmically. The other is to look for a comput-
er that runs four times faster. In the past 25 years, the arith-
metic performance of supercomputers has grown by five orders of
magnitude, so the decision was easy, But things are changing. In
the last decade performance has increased by only one order of
magnitude and there is wide agreement that the growth rate will
continue to diminish. Most people believe that scalar performance
will not increase by more than an order of magnitude in the next
10 years, and some predict that it will grow by only a factor of
4. On the other hand as discussed in Section 11, our demand for
computation is unabated. We have barely scratched the surface in
three-dimensional simulation and there is growing interest in it.

If computers are beginning to level out in their performance
(in other words the exponential in Fig. 1 accurately predicts the
future) and our demand for computation is unsatisfied, what shall
we do? There are two possibilities. One is to use parallel com-
putation. Vector computers are a form of parallel computation.



9

/

%=%/

boo 625 CM 675 -“km

F - fraction of vecto~ work

Fig. 3e
Relative performance when scalar
speeds are equal.

.

507

I

lx

M

a

x

20

m
=q/4

F - fraction of vector work

Fig. 4,
Relative performance when scalar
computer performs scalar opera-
tions four times as fast as the
vector computer.

U3

{

F - fraction of vector work

Fig. 5.
Relative performance when vector
computer performs scalar opera-
tions twice as fast as the
scalar computer.



,.
10

●

But our present algorithms require a large amount of scalar compu-
tation and as long as we only achieve 30, 40, or 50% vectoriza-
tion, scalar performance dominates the overall performance of the
computer. To make vector computation really pay off, we must vec-
torize 95-99% of the total work. This means new algorithms must
be developed. We may also use arrays of processors. But, again,
making them perform well requires development of new algorithms.
A second possibility is to use existing scalar computers but
change the numerical techniques in our models. The National
Aeronautics and Space Administration (NASA) recently commissioned
two vendors to study the question of whether or not they could
build a computer that would perform a billion floating point
operations per second and have 40 million words of memory. They
were led to those requirements because they are interested in
three-dimensional simulation on a 100 by 100 by 100 mesh and they
need 38 variables per mesh point. As people in NASA ha~’epointed
out, the model under consideration has many first and second order
numerical techniques in it, and if those techniques were replaced
by second and fourth order techniques, the associated arithmetic
requirements and memory capacity would be substantially reduced.
Once again, new algorithms must be developed.

Because of the continuing demand for increased computational
ability, future increases in supercomputer performance will be
used to improve models rather than tc reduce computational time
and cost. Because scalar computers are approaching their maximal
performance le~’el,we may have to rely upon par ,llel computation
to achieve the performance levels desired. Because of recent
trends in supercomputer architecture, we already have significant
experience with parallel computation in the form of vector pro-
cessing and this experience has shown that parallel computation is
making–an impact on-software and algorithms-. Thus
decade we will see an increasing effort within DOE
methodologies for exploiting parallel computation.

during the next
to develop

REFERENCES

1.

2.

3.

4.

E. Yourdon, “How to be a Superprogram,mer,” Infosystems,
February 1976, pp. 32-33. ‘- -

J. Dongarra, “Some LINPACK Timings on the CRAY-1,” Los AldrnOS

Scientific Laboratory report LA-7389-Ms (June 1978).

K. Fong and T, Jordan, “Some Linear Algebraic Algorithms and
Their Performance on the CRAY-1,” Los Alamos Scientific
Laboratory report LA-6774 (June 1977).

P. F. Dubois and J. R. Kohn, “Equation of State Table Look-up:
A Case Study in Vectorization,” Lawrence Livermore Laboratory
preprint UCRL-81184 (May 1978).


