
-—...

LA-UR -a -Z7CJ

TITLE: Vectorization of Algorithms for Solving Systems
of Difference Equations

,.

AUTHOR(S): B. L. Buzbee

SUBMITTED TO: Conference on simulation Methods for Nuclear
Power Systems, Tucson, Arizo~a,
January 26-28, 1981.

QV M-~M- Of lhh WCIO, !hc BuMIIKr rWO@EQJ m! w
U.S.Oovonmwmmmrman~uclulw, rovaltv.fmclimnic

to subhh Or r.pmdrm the publhMd fOrR’Iof !hit contnbu.

don, or to SNOW oIhm to do Io. fof U.S,Gowmwnl pw.
m-m.

LOSALAMOS SCIENTIFIC LABORATORY
Poet Offlco BOX 1683 LOD Alamos, Now Mexko 87545
An Affknmuve Actbn\Ewd Oppwimty En’@oyw

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

VECTORIZATIONOF ALGORITHMS
FOR SOLVING SYSTEHS OF DIFFERENCE EQUATIONS

B. L. Buzbee
Computing Division

Los Alamos National L&boratory
Los Alamos, New Mexico

ABSTRACT

Today’s fastest computers achieve their highest level of per-
formance when processing vectors, Consequently, considerable ●ffort
has been spent in the past decade developing ●lgorithms that can be
expressed as operations on vectors, In this paper we define two
types of vector architecture. We discuss the variation of #perfor-
mance that can occur on a vector processor as a function o< algorithm
and implementation, the consequences of this variation., nnd the per-
formance of some basic ope?ators on the two classes of vector archi-
tecture. We also discuss the performance of higher level operators,
including some that should be ured with caution. Using both types of
operators, we discuss the implementation of techniques for solving
systems of difference ●quations. Included are fast Poisson solvers
and point, line, and conjuaate gradieht techniques.

1. INTRODUCTION

To provide the arithmetic power required by large-scale nluneri-
cai simulations, the fastest computers today (for example, the Cray-1
and thu Cyber 205) incorporate vector processing. In such computers,
a vector ia an n-tuple of numbers systematically stored in memory,
Because these computers attain their hi8hest level of performance
when processing vectors, considerable ●ffor: has been spent in the
past decade dweloy:.n~ algorithms that can be (‘pressed as operations
on vectors.

In Section 11 of thic paper we define two types of vector archi-
tecture. We then discuss th~ ‘~ariation in performance that cnn occur
on a vector processor as a function of algorithm ●nd implem~.ntation,
the conaequencea of this variation, and the performance of some baaic
operators on the two c?.asaes of vector architecture. We also discuaa
the performance of some hisher level operators that shfuld be used
with caution. In Section 111 we review the implementation of tech-
niques for aolvin8 systems of difference ●quationm uain8 the opera-
tora diacusned in Section 11, Included ?tie Fast Poisson solvers ●nd
point, line, block, ●nd conjugant gr~dient schemes. in Section IV we
note some areaa of research.

11. VECTORPROCESSORS

Are Vector Algorithms Obsolete?

Recent developments have caused many people
Junction (JJ) technology will eliminat,~ the need

to ask if Josephson
for vector proces-

sors? Unfortunately, ~he answer is negative. Fi~ure 1 displays the
●xecution bandwidth in scalar mode of supercomput~rs for the past 30
years. (We define a sLpercomputer to be the fastest computer avail-

able at any point in time,) This data shows the diminishing growth
rate in scalar performance of supercomputers. It further suggests
that there is an upper bound on the scalar performance of computers
and this data is consistent with projected scalar performance of com-
puters built with JJ technology. For example, Robinson projects that
JJ technology will produce scalar processors with a cycle time of 2-5

109

d’

I07

K?

I05

I34

I03

I02

I0’

Ic”

Trend in.xecu?lon bondwld?h

,6.OW

6600

Momoc

Seat

x!!!!’~.-l--ti-
1949 1950 1960 I970 1980

~ia. i. Execution bandwidth of aupercomputers.

.. .

1 2
nanoseconds; Hatisoo projects 3 nanoseconds. Since JJ technology
will not be available until the late 1980’s, it does not provide a
quantum jump in performance relative to Fig. 1. Further, because
some calculations require a two order of magnitude increase in per-
formance over the Cray-1,

3 JJ technology will not provide scalar pro-
cessors with processing power sufficient for future needs, Provision
of that power will probably require incorporation of JJ technology
into vector processors, and perhaps multiple vector processors. Thus
we ●nticipate a continuing need for, arid interest in, algorithms that
csn ●xploit vector and multiprocessing capability.

*! of vector processors ‘n Al~o.4YK

Performance on a vector process~r can very widely as a f(il)~t.lolt

of algorithm and implementation. For ●xample, wherl solving drnsr
linear systems of equations, Cray-1 performance varies as follows.

Mode of Implementatio~ Performance Le\’el

Scalar Fortran 2-6 megaflopsa
Vector Fortran 2-30 megaflops
Vector Assembly Language 2-120 megaflops

amegaflop = one million floating point operations
per second.

As we will see, the consequences of this variation are suilstantial,
because on any comput~r

Execution T~.me ❑ N$’T ,

whtre N is Lhe
operation.

On scalar
throughout the

number of operations ●nd T is the avera~e time per

computers there ib little variation in ‘f’, Thus ,
age of ●lectronic comput~tion, we have focused on

minimizing N, i,e,, optimal comple~i~y, Tt,ere is a large vari~tio:l
in T on vector proc~ssors, !WOin devising vector algorithms wc must
minimize the product N$~T, Conseqwntly, we may find it desirable to
use a18crithms that are nonopt{mal in complexi ty4,~rovidcd we can do
the ●dditional work at ● sufficiently high rat~, For ●xamplt’, a
numerical simulation at Los Alamos requires the complimentary •r~’or
to be ●valuated million~ of tim~s, This function can be nicely ap-
proximated by the inverse of ● sixth d?~ree polynomial rnised co thr
fourth power, Direct ●valuation of thl,s approximation on ● scalar
computer ●ncompasses tianificant ●mount~ of arithmetic operation.
On ocalar computers, it ia tabulated and thr function is evaluated
through interpolation on thnl, table, l’hia results in a small number
of arithmetic operations but requires table lookup, On a vector pro-
cessor, table lookup iB relatively slow, and the faster thing to do
iR to ●valuate tl.e polynomial approximation; namrly, although N ia
large, N’~Tis nmall.

The class of algorithms that minimizes N-~’Tis probably larger
than the class that minimizes N, Thus, we have a larger “forest” in
which to seek algorithms. However, care must be exercised. A con-
sistent algorithm is defined to be one that is optimal in ●rithmetic
complexity, A little thought shows that for sufficiently large prob-
lems a consistent algorithm will always outperform an inconsistent
algorithm, irrespective of the mode of implementation and computer
architecture. Also, given two consistent algorithms on a vector pro-
cessor, we cannot settle their performance by studying the coeffi-
cients of the low-order term in their complexity. The question is
which one produces the smaller execution time as a function of vector
length. Because of the variation in vector processor performance as
a function of vector length and mode of implementation, we ofLen en-
counter polyalgorithmic software on vector processors,

~ector Architectures

Although a satisfactory taxonomy for vector architectures is yet
to be devised, we define two cl~ssss of vector architecture: memory-
to-memory (MM) and register-to-register (RR),

NM ARCHITECTURE. Typically, for an tffl architecture to achieve
its highest level of performance, it must process algorithms that
eatisfy the following boundary conditions:

● Operand and result vectors must be stored contiguously in
memory; that is , successive elements of the vector must be
stored in adjacent memory lucations,

● Vectors must be long.

Examples of ti?l architecture ● re the C!?C 7600 when processing v~ctors
from large-core memory, the Texas Instruments ASC, and the CDC Cyber
200 aeriesi

RR ARCHITECTURE. RR architecture typically involves some sort
of cache between memory ●nd the processing units, with arithmetic
operations bein8 performed on contents of the cache. These proces-
sors achieve their highest level of performanc~ when processing algo-
rith,mu that sstisfy the following condition:

● Data memory between memory and th~ cache is r~nimizrd.
● Parallel execution of the functional units is maximized.

Uxamples of thio ●rchitecture are the 120B ●rray processor of Floiit-

inu Point Systems ●nd the Cray-1 of Cray Research, Inc.

Bb8ic Op●raters

The following basic operators ● re avtilable in ●ith?r hardware
or rnoftware for tUl snd RR architecture,

1, Vertor Diadict
2. Inner Product

3. tlatrix Hultiply
4. Polynomial Evaluation

A discussion of matrix multiply
chitecture can be found in Ref.
performance operation on vector
for ●xample,

1. ● \

(*d1~:2B*.)x
\ “/

and polynomial ●valuation for RR ar-
6. tlatrix multiplication is 8 hi8h-
processors ●ven for banded matrices;

‘d@X+d xi ,2 0
(1)

where ~ is the vector x with the first element deleted.
7 The follow-

ing high-level operators also perform well on both architectures,

o Single FFT. 5,8

0 Families of l’near system solvers; for example, FFTs
h

5,8 and

tridia80nals.
6,9

0 Banded system solv~rs,

We have distinguished families of FFTs from a single FFI because the
performance for a family is si8nificant]y ili8her than for a single
FFT .

“Judicious Use” Operators

The following operators should be used uith caution on ●ither

architecture:

RelurB~ons
Table lookup
Conditional
One-to-many mappings
tlany-to-one mappin8s

Caution is required with these operators b~cause their overall per-
formance on a vector proces~or will be poor if th~y are not combined
with a sufficient ●mount of arithmetic. Included in recursions is
the solution of a single tridiagona ~,!tistcm, which generally does not
perform well on a ver”.or proceaaorl Table lookup has implica-
tions for ●daptiv~ procedures. Poor performance of conditional~ im-
plies that we must foleuo our frequently used pointwise convergence
tent. See Ref. 11 far ● diecumsion of programing considerations in
the uae of ● vector proceasoro

111. IIIPLEHENTINGTECHNIQUESFOR ELLIPTIC PROBLEtlS

In this cection we discuss the implementation of cl~otes of
techniques for ●lliptic problems usint tne ●forementioned operators.

A similar discussion was given by Ortega and Voight.
12

Point Schemes

Point Jacobi schemes are attractive on ●ither class of architec-
ture because they are implementable by vector dia ~~cs >nd banded-
matrix multiply operators involving long vectors. 14 .hese advantages
have prompted renewed interest in these techniques with an objec-
tive of producing Jacobi techniques with attractive convergence
rates.

Point successive overrelaxation schemes can be implemented on
●ither architecture with wave franting on a natuial ordering or by
checkerboard ordering. Wave fronting involves processing the mesh by
diagonals. Because vectors must be stored contiguously on HM archi-
tectures, this is not an attractive alternative on them. It is
feasible on RR architecture. Using the checkerboard ordering, imple-
mentation on ●ither architecture is f

~5~~e1eI~ff~~~o~~dt~~~ ~~~~fgridpoints are stored as separate arrays.
schemes nre implementable on either ciass of architecture. Of
course, these techniques involve one-to-many and many-to-one n~ap-
pings. These mappings occur in families and can be vectorizrd.

Line Schemes

Line relaxation schemes are implementable by using operators for
solving families of tridiagonal systems combined with nn odcifeven
ordering of lines. Alternating direction schemes ar~ implementable
using operators for solving families of tridiagonals, In the latter
case some care must be used on Iftl ●rchitecture to produce vectors
contiguously stored in memory. For ●xampl~, Gaussian ●lamination can
be used in one coordinate direction and odd-eyyn reduction in the
other to produce contiguously stored vectors. On RR architecture,
line schemes ● re “~grlly implemented in Fortran and achieve hi~h rates
af vectorization.

Conjugant GradienJ Schemes

Conjuganl gradient techniques can be implemented on v?rtor pro-
cessors using ●ny of the previously discusstd schemes as the approxi-
mate factorization Also, incomplete Cholesky vectorization can be
implemented on ●ith~r clash of ● r f~it~ctu:e, On Hll architecture

‘old-even ‘eduction has been ‘f!d’
and on RR architecture a variaf~t

of block ●lamination is used,

Fast Poiuson Solvers

Faat Poia~on solvers are impl~mentabie on both KM●nd RR archi-
tectures by using operators to perform families of FFTs and to solve
familiea of trid~agonala. On FOl ●rchitecture, some care is required
to ●nsure that the vectors manipulated ● re st~~rd contiuuou
storaue. Workers in this field include Buzbee ●nd Ra~c1c2~y ‘n

Iv. RESEARCHISSUES

We noted th~t matrix multiplication is an ●fficient operator on
vector processors even in the banded case because the operator can be
●xpressed in terms of vector diadics on the diagonals of the matrix.
This raises the question of whether we can solve linear systems of
●quations by manipul~~ing diagonals, Such an algorithm exists fOr
tridia~orral systems, but not for the general Landed case. If
●vailable, such techniques would be attractiv~, especiall;~ on tl?l
architecture.

Three-dimensional problems are occurrin8 with increasirlg fre-
quency. Typically, the associated mesh is held in secondary stora8e
of some sort, with the result that overall execution time is a func-
tion of how often the mesh must be transmitted to and from the cen-
tral processor. This suggests develop,lent of techniques that minim-
ize the number of iterations, perhaps at the expense of additional
arithmetic operations.

REFERENCES

1. A. L, Robinson, “Superconducting Electronics; Toward an
Ultrafast Computer,” Science 201 (Au8ust 1978).

2. J. Hatisoo, “The Superconducting Computer,” Scientific Americar)
(Hay 1980).

3. B. L. Buzbee, W. J. Worlton, G. Michael, and G. Rodrigue, “DOE
Research in Utilization of Hi8h-Performance Computers,” Los
Alamos National Laboratory report LA-8470-IIS (1980)

14, N. K, tladsen and G. H. Rcdrigue, “Two Notes on Algorithm Design
for the CDC-STAR-1OO,” Numerical llathematic~ Group Informal
Technical ?lemorandum 75-1, Lawrence Livermore National
Laboratory (Ju!y 19”5),

5. 0, G, Kern ●nd T. T. Lambiotte, Jr,, “Computin~ the Fast Fourier
Transform on ● Vector Computer,” Reprint No. 78-5, ICASE, NASA
Langley Research Center (February 1978).

6. K. Fong and T. L. Jordan, “Some Linear Algebraic Al&orithms and
Their Performance on Cray-1,” Los Alamos National Laboratory
report LA-6771i (June 1977).

7. T. 1, Karush, N, K. t4ad~en, and G. H. Rodrigue, “tlatrix
Htiltiplication By Diagonaln on Vector/Parallel Processors,”
Lawrenre Livennore National Laboratory report UCID-16899 (August
1975),

8. C, Temperton, “Fast Fuurier Transforms on Crt,y-1,” European
Centre for I’ledian Ranse Weather Forecasts report 21 (January
1979).

9.

10.

11.

12.

13.

14.

15.

16.

17,

113,

196

20.

21.

R. G. Voiglll, “T’lIe influence of Vector Computer Architecture on
Numerical Algorithm,” ICASE, NASA Langley Research Cenler,
Report 77-8 (tlarch 1977).

N. K. Hadsen and G. H Rodrigue, “A Comparison of Direct flethods
for Tridiagonal Systems on the CDC-STAR-100,” Lawrence Livermore
National Laboratory report NCRL-76993 (July 1975).

B. Brode, “How to Get Here Out of Your Vecter Processor,”
Proceedings of the 1978 LASL Workshop on VecLor and Parallel
Processors, Los Alamos National Laboratory report LA-7491-C
(September 1978).

J. H. Ortega and R. G. Voight, “Solution of Partial Differential
Equations on Vector Computers,” ICASE, NASA Langley Research
Center, report 77-7 (March 1977).

C. Hendrickson, tl. Pratt, and G, Rodrigue, “The Numerical
Solution of the LaGrangian Diffusiun Equation on a Vector
Processor,” Lawrence Livermore National Laboratory l-~port
UCRL-82930 (June 1979).

O. Johnson and C. Paul, “Vector Algorithms for Elliptic P.D.E.s
Based OrI the Jacobi llethod,” Proceedings, Elliptical Problem
Solvers Conference, Santa F~, NM, June 1980 (Academic Press,
1980).

B. Buzbee, G. Golub, ●nd J. A. Howell, “Vectorization for the
Cray-1 of Some ?lethods for Solving Elliptic Difference
Equations,” Proceedings of the Symposium on High Speed Computer
and Algorithm Organization, Urbana, Illinois (April 1977).

W. Gautzsch, C. Weiland, and D. tluller-Wichards, “Possibilities
●nd Problems wi~h the Application of Vector Compu~ers,” Germ~n
Research ●nd Testing Establishment for Aerospace (April 1980).

P. Dubois and G. Rodrigue, “Operator Splitting on the STAR
Without Transposing,” Lawrence Livermor~ National Lahorarory
reperk UCID-175]5 (Jun~ 1977).

D. Boley, B, 1,. !9uzbee, and S. V, Part~r, “Applications of Block
Relaxation,” Pro(’eedings of Alhl Symposium on Reservo]r
Simulation (February]979).

T. L, Jordan ~nd H. Hahaffy, private conununication, 1980,

B. L. Buzbee, “A F&st Poisson Solver Amenabl~ to Parallel
Computation,” IEEE Transactions on Computers C-22 (Au8uat 1973)..—

H. T. Kafcic, Jr., “A Direct Poicson Solver on SI’AR,”
Proceedings of the 1978 LASL Workshop on Vcrtor ●nd Parallrl
Procesaoro, Los Alamos National Laboratory report LA-7491-C
(September 1978).

22. T. L. Jordan, “A New Parallel Algorithm for Diagonally Dominanl
Tridiagonal Hatrices,” Los Alamos National Laboratory repor~
LA-UR-74-1903 (1974).

