. TR

LA-UR -&\ 270

AONT - Sttt - -|

TITLE: Vectorization of Algorithms for Solving Systems
of Difference Equations

AUTHOR(S): . 1. Buzbee “ksm

SUBMITTED TO: conference on Simulation Methods for Nuclear
Power Systems, Tucson, Arizona,
January 26-28, 1981.

msCLAMER

By scoaptance of this article, the publisher recognize) 1nat the
U.8. Govenvment meaine @ nomexciutive, rovaity-free licenie
10 publish or reproduce the publithed form of this contribu:
tion, or to stlow orher 10 do s0. for U.5. Governmeny pur:
poees.

The Los Alemos Beientific Laborsory mauests that the pub:
lisher identify this article @ work perferrmed under the aus:
pions of the U.S. Departrant of Energy,

.g
c
S
)
—
®
&
L
o
2
I
o
=
c
-

LOS ALAMOS SCIENTIFIC LABORATORY

Post Otfice Box 1883 Los Alamos, New Mexico 87545
An Affirmative Action/Equal Opportunity Employer

Aot 10N OF THIS DOCUMENTY 1§ UHHM&VN
Form Neo. 834 A3 UNITED BYATER ot

L No. 0 BEPARTMENT GF anEmav
1am

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

VECTORIZATION OF ALGORITHMS
FOR SOLVING SYSTEMS OF DIFFERENCE EQUAT]ONS

B. L. Buzhee
Computing Division
Los Alamos National Lsboratory
Los Alamos, New Mexico

ABSTRACT

Today's fastest computers achieve their highest level of per-
formance when processing vectors. Consequently, considerable effort
has been spent in the past decade developing algorithms that can be
expressed as operations on vectors. In this paper we define two
types of vector architecture. We discuss the variation of yerform-
ance that can occur on a vector processor as a function o algorithm
and implementation, the consequences of this varistion, and the per-
formance of some basic opevators on the two classes of vector archi-
tecture. We also discuss the performance of higher level operators,
including some that should be ured with caution. Using both types of
operators, we discuss the implementation of techniques for solving
systems of difference equations. Included are fast Poisson solvers
and point, line, and conjugate gradient techniques.

1. INTRODUCTION

To provide the arithmetic power required by large-scale numeri-
cal simulations, the fastest computers today (for example, the Cray-1
and the Cyber 205) incorporate vector processing. In such computers,
a vector is an n-tuple of numbers systematically stored in memory.
Because these computers attain their highest level of performance
when processing vectors, considerable effor: has been spent in the
past decade develoy:.ng algorithms that can be « '‘pressed as operations
on vectors.

In Section I1 of this paper we define two types of vector archi-
tecture. We then discuss the variation in performance that can occur
on a vector processor as a function of algorithm and implem.ntation,
the consequences of this variation, and the performance of some basic
operators on the two classes of vector architecture. We also discuss
the performance of some higher level operators that shculd be used
witiu caution. In Section IIl we review the implementation of terh-
niques for solving systems of difference equations using the opera-
tors discussed in Section J1. Included »ie Fast Poisson solvers and
point, line, block, and conjugant gradient schemes. In Section IV we
note some areas of research.

I11. VECTOR PROCESSCRS

Are Vector Algorithms Obsolete?

Recent developments have caused many people to ask if Josephson
Junction (JJ) technology will eliminate the need for vector proces-
sors? Unfortunately, the answer is negative. Figure 1 displays the
execution bandwidth in scalar mode of supercomputers for the past 30
years. (We define a supercomputer to be the fastest computer avail-
able at any point in time.) This data shows the diminishing growth
rate in scalar performance of supercomputers. It further suggests
that there is an upper bound on the scalar performance of computers
and this data is consistent with projected scalar performance of com-
puters built with JJ technology. For example, Robinson projects that
JJ technology will produce scalar processors with a cycle time of 2-5

9
0 I L A
8 Trend in execution bondwidth
10 I~ Cray-1 .
- |07F— 7600 —
§ i
a8 _
o 10 r—
£
% 0 _
L
c 704
8 1]
Maniac 020
[22(l-¢)
53 3 Bre X X YT
5 10— —
o
®
. —
0 Accounting
Machines
100 N [L1
19490 19%0 1960 1970 1980

Fig. i. Execution bandwidth of supercomputers.

nanoseconds;l Matisoo projects 3 nanoseconds.2 Since JJ technology
will not be available until the late 1980's, it does not provide a
quantum jump in performance relative to Fig. 1. Further, because
some calculations require3a two order of magnitude increase in per-
formance over the Cray-1," JJ technology will not provide scalar pro-
cessors with processing power sufficient for future needs. Provision
of that power will probably require incorporation of JJ techuology
into vector processors, and perhaps multiple vector processors. Thus
we anticipate a continuing need for, ard interest in, algorithms that
can exploit vector and multiprocessing capability.

Impact of Vector Processors on Algorithms

Performance on a vector processcr can very widely as a function
of algorithm and implementation. For example, when solving dense
linear systems of equations, Cray-1 performance varies as follows.

Mode of Implementation Performance Level
Scalar Fortran 2-6 megaflopsa
Vector Fortran 2-30 megaflops
Vector Assembly Language 2-120 megaflops

amegaflop = one million floating point operations
per second,

As we will see, the consequences of this variation are substantial,
because on any computer

Execution Time = N*T ,

where N is the number of operations and T is the average time per
operation.

On scalar computers there is little variation in T. Thus,
throughout the age of electronic computation, we have focused on
minimizing N, i.e., optimal complexity. There is a large varistion
in T on vector processors, 50 in devising vector algorithms we must
minimize the product N*T., Consequently, we may find it desirable to
use algerithms that are nonoptimal in (-omplexityA grovidcd we can do
the additional work at a sufficiently high rate. '" For example, a
numerical simulation at Los Alamos requires the complimentary error
to be evaluated miliions of times. This function can be nicely ap-
proximated by the inverse of a sixth d=gree polynomial rzaised ¢o the
fourth power. Direct evalustion of thys approximation on a scalar
computer encompasses significant amounts of arithmetic operations.
On scalar computers, it is tsbulated and the function is evaluated
through interpolation on that table. This results in a small number
of arithmetic operations but requires table lookup. On a vector pro-
cessor, table lookup is relatively slow, and the faster thing to do
is to evaluate tl.c polynomial approximation; namely, although N is
large, N'T is amall.

The class of algorithms that minimizes N*T is probably larger
than the class that minimizes N. Thus, we have a larger "forest" in
which to seek algorithms. However, care must be exercised. A con-
sistent algorithm is defined to be one that is optimal in arithmetic
complexity. A little thought shows that for sufficiently large prob-
lems a consistent algorithm will always outperform an inconsistent
algorithm, irrespective of the mode of implementation and computer
architecture. Also, given two consistent algorithms on a vector pro-
tessor, we cannot settle their performance by studying the coeffi-
cients of the low-order term in their complexity. The question is
which one produces the smaller execution time as a function of vector
length. Because of the variation in vector processor performance as
a function of vector length and mode of implementation, we often en-
counter polyalgorithmic software on vector processors.

Vector Architectures

Although a satisfactory taxonomy for vector architectures is yet
te be devised, we define two classes of vector architecture: memory-
to-memory (MM) and register-to-register (RR).

MM ARCHITECTURE. Typically, for an MM architecture to achieve
its highest level of performance, it must process algorithms that
satisfy the following boundary conditions:

o Operand and result vectors must be stored contiguously in
memory; that is, successive elements of the vector must he
stored in adjacent memory lucatiouns.

e Vectors must be long.

Examples of MM architecture are the CPC 7600 when processing vectors
from large-core memory, the Texas Instruments ASC, and the CDC Cyber
200 series.

RR ARCHITECTURE. RR architecture typically involves some sort
of cache between memory and the processing units, with arithmetic
operations being performed on contents of the cache. These proces-
sors achieve their highest level of performance when processing algo-
rithmg that satisfy the following conditions:

e Data memory between memory and the cache is ~inimized.
o Paral)el execution of the functional units is maximized.

Examples of this architecture are the 120B array processor of Float-
ing Point Systems and the Cray-l of Cray Research, Inc.

Basic Operators

The following basic operators are available in either hardware
or software for MM and RR architectures,

1. Vecrtor Diadics
2. Inner Product

3. Matrix Multiply
4. Polynomial Evaluation

A discussion of matrix multiply and polynomial evaluation for RR ar-
chitecture can be found in Ref. 6. Matrix multiplication is a high-
performance operation on vector processors even for banded matrices;
for exanpile,

.'dl:'dz. x-d1®x+d2®i .

(1)

where X is the vector x with the first element deleted.’ The follow-
ing high-level operators also perform well on both architectures.

o Single FFT.>'8 -

o Families of lénear system solvers; for example, FFTs™'" and
tridiagonals. 69

o Banded system solvers, '

We have distinguished families of TFFTs from a single FF1 because the
performance for a family is significantly higher than for a single
FFT.

"Judicious Use' Operators

The following operators should be used with caution on either
architecture:

Re/ ursions

Table lookup
Conditionals
One-to-many mappings
Many-to-one mappings

Caution is required with these operators because their overall per-
formance on a vector processor will be poor if they are not combined
with a sufficient amount of srithmetic. Included in recursions is
the solution of a single tridiagonaé ,Ustcm, which generally does not
perform well on a vec'.or processor. ' Table lookup has implica-
tions for adaptive procedures. Poor performance of conditionals im-
plies that we must foiego our frequently used pointwise convergence
test. See Ret. 11 for a discussion of programming considerations in
tbe use of a vector processor.

111. IMPLEMENTING TECHNIQUES FOR ELLIPTIC PROBLEMS

In this section we discuss the implementation of classes of
techniques for elliptic problems using the aforementioned operatours.

R

A similar discussion was given by Ortega and ‘Joight..l2

Point Schemes

Point Jacobi schemes are attractive on either class of architec-
ture because they are implementable by vector diadics ind banded-
matrix multiply operators involving long vectors. .hese advantages
bave prompted renewed interest in these techniques ~ with an objec-
tive of producing Jacobi techniques with attractive convergence
rates.

Point successive overrelaxation schemes can be implemented on
either architecture with wave fronting on a natural ordering or by
checkerboard ordering. Wave fronting involves processing the mesh by
diagonals. Because vectors must be stored contiguously on MM archi-
tectures, this is not an attractive alternative on them. 1t is
feasible on RR architecture. Using the checkerboard ordering, imple-
mentation on either architecture is figsigle if the red and black
points are stored as separate arrays. ' It fcllows that multigrid
schemes are implementable on either ciass of architecture. Of
course, these techniques involve one-to-many and many-to-one map-
pings. These mappings occur in families and can be vectorized.

Line Schemes

Line relaxation schemes are implementable by using operators for
solving families of tridiagonal systems combined with an odd/even
ordering of lines. Alternating direction schemes are implementable
using operators for solving families of tridiagonals. In the latter
case some care must be used on MM architecture to produce vectors
contiguously stored in memory. For example, Gaussian elimination can
be used in one coordinate direction and odd-eysn reduction in the
other to produce contiguously stored vectors. On RR architecture,
line schemes are sgsily implemented in Fortran and achieve high rates
of vectorization.

Conjugant Gradient Schemes

Conjugant gradient techniques can be implemented on vector pro-
cessors using any of the previously discussed schemes as the approxi-
mate factorization. Also, incomplete Cholesky vectorization can be
implemented on either class of arg itecture. On MM architecture
odd-even reduction has been uisd. and on RR architecture a variant
of block elimination is used,

Fast Poisrcn Solvers

Fast Poisson solvers are implementabie on both MM and RR archi-
tectures by using operators to perform families of FFTs and to solve
families of tridiagonals. On MM avchitecture, some care is required
to ensure that the vectors manipulated are thEed contiguou!ly in
storage. Workers in this field include Buzbee™ and Kascic.

IV. RESEARCH ISSUES

We noted that matrix multiplication is an efficient operator on
vector processors even in the banded case because the operator can be
expressed in terms of vector diadics on the diagonals of the matrix.
This raises the question of whether we can solve linear systems of
equations by manipu]iiing diagonals. Such an algorithm exists for
tridiagonal systems, but not for the general banded case. 1If
available, such techniques would be attractive, especially on MM
architecture.

Three-dimensional problems are occurring with increasing fre-
quency. Typically, the associated mesh is held in secondary storage
of some sort, with the result that overall execution time is a func-
tion of how often the mesh must be transmitted to and from the cen-
tral processor. This suggests developnent of techniques that minim-
ize the number of iterations, perhaps at the expense of additional
arithmetic operations.

REFERENCES

1. A. L. Robinson, "Superconducting Electronics; Toward an
Ultrafast Computer," Science 201 (August 1978).

2. J. Matisoo, "The Superconducting Computer,'" Scientific American
(May 1980).

3. B. L. Buzbee, W. J. Worlton, G. Michael, and G. Rodrigue, "DOF
Research in Utilization of High-Performance Computers," Los
Alamos National Laboratory report LA-8470-MS (1980)

4. N. K. Madsen and G. H. Redrigue, "Two Notes on Algorithm Design
for the CDC-STAR-100," Numerical Mathematics Group Informal
Technical Memorandum 75-1, Lawrence Livermore National
Laboratory (July 19°5),

0. G. Korn and T. T. Lambiotte, Jr., "Computing the Fast Fourier
Transform on a Vector Computer,'" Reprint No. 78-5, ICASE, NASA
Langley Research Center (February 1978).

(6]

6. K. Fong and T. L. Jordan, "Some Linear Algebraic Algorithms and
Their Performance on Cray-1," Los Alamos Natjonal Laboratory
report LA-6774 (June 1977).

7. T. 1. Karush, N. K. Madeen, and G. H. Rodrigue, "Matrix
Multiplication By Diagonals on Vector/Parallel Processors,"
Lawrence Livermore National Laboratory report UCID-16899 (August
1975).

8. C. Temperton, "Fast Fuurier Transforms on Crey-1," European
Centre for Median Range Weather Forecasts report 21 (Jsnuary
1979).

Y.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. G. Voight, "The Influence of Vector Computer Architecture on
Nurerical Algorithms," ICASE, NASA Langley Research Center,
Report 77-8 (March 1977).

N. K. Madsen and G. H Rodrigue, "A Comparison of Direct Methods
for Tridiagonal Systems on the CDC-STAR-100," Lawrence Livermore
National Laboratory report NCRL-76993 (July 1675).

B. Brode, "How to Get More Out of Your Vectcr Processor,"
Proceedings of the 1978 LASL Workshop on Vector and Parallel
Processors, Los Alamos National Laboratory report LA-7491-C
(September 1978).

J. M. Ortega and R. G. Voight, "Solution of Partial Differential
Equations on Vector Computers,” ICASE, NASA Langley Research
Center, report 77-7 (March 1977).

C. Hendrickzon, M. Pratt, and G. Rodrigue, '"The Numerical
Solution of the LaGrangian Diffusicn Equation on a Vector
Processor," Lawrence Livermore National Laboratory report
UCRL-82930 (June 1979).

0. Johnson and G. Pavl, '"Vector Algorithms for Elliptic P.D.E.s
Based On the Jacobi Method," Proceedings, Eliiptical Problem
Solvers Conference, Santa Fe, NM, June 1980 (Academic Press,
1980).

B. Buzbee, G. Golub, and J. A. Howell, "Vectorjzation for the
Cray-1 of Some Methods for Solving Elliptic Difference
Equations,”" Proceedings of the Symposium on High Speed Computer
and Algorithm Organization, Urbana, Illinois (April 1977).

W. Gautzsch, C. Weiland, and D. Muller-Wichards, "Possibilities
and Problems wich the Application of Vector Computers,' German
Research and Tasting Establishment for Aerospace (April 1980).

P. Dubois and G. Rodrigue, "Operator Splitting on the STAR
Without Transposing,” Lawrence Livermorr National Laboratary
repor. UCID-17515 (June 1977).

D. Boley, B. I.. Buzbee, and S. V. Parter, "Applications of Block
Relaxation,’” Proveedings of AIME Symposium on Reservoir
Simulation (February 1979).

T. L. Jordan and M. Mahaffy, private communication, 1980.

B. L. Buzbee, "A Fist Poisson Solver Amenabl. to Parallel
Computstion,”™ IEEE Transactions on Computers C-22 (August 1973).

M. T. Karcic, Jr., "A Direct Poisson Solver on STAR,"
Proceedings of the 1978 LASL Workshop on Vector and Parallel
Processors, Los Alamos National Laboratory report LA-7491-C
(September 1978).

22. T. L. Jordan, "A New Parallel Algorithm for Diagonally Dominant
Tridiagonal Matrices," Los Alamos National Laboratory report
LA-UR-74-1903 (1974).

