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VECTORIZATION OF ALGORITHMS
FOR SOLVING SYSTEMS OF DIFFERENCE EQUAT]ONS

B. L. Buzhee
Computing Division
Los Alamos National Lsboratory
Los Alamos, New Mexico

ABSTRACT

Today's fastest computers achieve their highest level of per-
formance when processing vectors. Consequently, considerable effort
has been spent in the past decade developing algorithms that can be
expressed as operations on vectors. In this paper we define two
types of vector architecture. We discuss the variation of yerform-
ance that can occur on a vector processor as a function o algorithm
and implementation, the consequences of this varistion, and the per-
formance of some basic opevators on the two classes of vector archi-
tecture. We also discuss the performance of higher level operators,
including some that should be ured with caution. Using both types of
operators, we discuss the implementation of techniques for solving
systems of difference equations. Included are fast Poisson solvers
and point, line, and conjugate gradient techniques.

1. INTRODUCTION

To provide the arithmetic power required by large-scale numeri-
cal simulations, the fastest computers today (for example, the Cray-1
and the Cyber 205) incorporate vector processing. In such computers,
a vector is an n-tuple of numbers systematically stored in memory.
Because these computers attain their highest level of performance
when processing vectors, considerable effor: has been spent in the
past decade develoy:.ng algorithms that can be « '‘pressed as operations
on vectors.

In Section I1 of this paper we define two types of vector archi-
tecture. We then discuss the variation in performance that can occur
on a vector processor as a function of algorithm and implem.ntation,
the consequences of this variation, and the performance of some basic
operators on the two classes of vector architecture. We also discuss
the performance of some higher level operators that shculd be used
witiu caution. In Section IIl we review the implementation of terh-
niques for solving systems of difference equations using the opera-
tors discussed in Section J1. Included »ie Fast Poisson solvers and
point, line, block, and conjugant gradient schemes. In Section IV we
note some areas of research.



I11. VECTOR PROCESSCRS

Are Vector Algorithms Obsolete?

Recent developments have caused many people to ask if Josephson
Junction (JJ) technology will eliminate the need for vector proces-
sors? Unfortunately, the answer is negative. Figure 1 displays the
execution bandwidth in scalar mode of supercomputers for the past 30
years. (We define a supercomputer to be the fastest computer avail-
able at any point in time.) This data shows the diminishing growth
rate in scalar performance of supercomputers. It further suggests
that there is an upper bound on the scalar performance of computers
and this data is consistent with projected scalar performance of com-
puters built with JJ technology. For example, Robinson projects that
JJ technology will produce scalar processors with a cycle time of 2-5
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nanoseconds;l Matisoo projects 3 nanoseconds.2 Since JJ technology
will not be available until the late 1980's, it does not provide a
quantum jump in performance relative to Fig. 1. Further, because
some calculations require3a two order of magnitude increase in per-
formance over the Cray-1," JJ technology will not provide scalar pro-
cessors with processing power sufficient for future needs. Provision
of that power will probably require incorporation of JJ techuology
into vector processors, and perhaps multiple vector processors. Thus
we anticipate a continuing need for, ard interest in, algorithms that
can exploit vector and multiprocessing capability.

Impact of Vector Processors on Algorithms

Performance on a vector processcr can very widely as a function
of algorithm and implementation. For example, when solving dense
linear systems of equations, Cray-1 performance varies as follows.

Mode of Implementation Performance Level
Scalar Fortran 2-6 megaflopsa
Vector Fortran 2-30 megaflops
Vector Assembly Language 2-120 megaflops

amegaflop = one million floating point operations
per second,

As we will see, the consequences of this variation are substantial,
because on any computer

Execution Time = N*T ,

where N is the number of operations and T is the average time per
operation.

On scalar computers there is little variation in T. Thus,
throughout the age of electronic computation, we have focused on
minimizing N, i.e., optimal complexity. There is a large varistion
in T on vector processors, 50 in devising vector algorithms we must
minimize the product N*T., Consequently, we may find it desirable to
use algerithms that are nonoptimal in (-omplexityA grovidcd we can do
the additional work at a sufficiently high rate. '" For example, a
numerical simulation at Los Alamos requires the complimentary error
to be evaluated miliions of times. This function can be nicely ap-
proximated by the inverse of a sixth d=gree polynomial rzaised ¢o the
fourth power. Direct evalustion of thys approximation on a scalar
computer encompasses significant amounts of arithmetic operations.
On scalar computers, it is tsbulated and the function is evaluated
through interpolation on that table. This results in a small number
of arithmetic operations but requires table lookup. On a vector pro-
cessor, table lookup is relatively slow, and the faster thing to do
is to evaluate tl.c polynomial approximation; namely, although N is
large, N'T is amall.



The class of algorithms that minimizes N*T is probably larger
than the class that minimizes N. Thus, we have a larger "forest" in
which to seek algorithms. However, care must be exercised. A con-
sistent algorithm is defined to be one that is optimal in arithmetic
complexity. A little thought shows that for sufficiently large prob-
lems a consistent algorithm will always outperform an inconsistent
algorithm, irrespective of the mode of implementation and computer
architecture. Also, given two consistent algorithms on a vector pro-
tessor, we cannot settle their performance by studying the coeffi-
cients of the low-order term in their complexity. The question is
which one produces the smaller execution time as a function of vector
length. Because of the variation in vector processor performance as
a function of vector length and mode of implementation, we often en-
counter polyalgorithmic software on vector processors.

Vector Architectures

Although a satisfactory taxonomy for vector architectures is yet
te be devised, we define two classes of vector architecture: memory-
to-memory (MM) and register-to-register (RR).

MM ARCHITECTURE. Typically, for an MM architecture to achieve
its highest level of performance, it must process algorithms that
satisfy the following boundary conditions:

o Operand and result vectors must be stored contiguously in
memory; that is, successive elements of the vector must he
stored in adjacent memory lucatiouns.

e Vectors must be long.

Examples of MM architecture are the CPC 7600 when processing vectors
from large-core memory, the Texas Instruments ASC, and the CDC Cyber
200 series.

RR ARCHITECTURE. RR architecture typically involves some sort
of cache between memory and the processing units, with arithmetic
operations being performed on contents of the cache. These proces-
sors achieve their highest level of performance when processing algo-
rithmg that satisfy the following conditions:

e Data memory between memory and the cache is ~inimized.
o Paral)el execution of the functional units is maximized.

Examples of this architecture are the 120B array processor of Float-
ing Point Systems and the Cray-l of Cray Research, Inc.

Basic Operators

The following basic operators are available in either hardware
or software for MM and RR architectures,

1. Vecrtor Diadics
2. Inner Product



3. Matrix Multiply
4. Polynomial Evaluation

A discussion of matrix multiply and polynomial evaluation for RR ar-
chitecture can be found in Ref. 6. Matrix multiplication is a high-
performance operation on vector processors even for banded matrices;
for exanpile,

.'dl:'dz. x-d1®x+d2®i .

(1)

where X is the vector x with the first element deleted.’ The follow-
ing high-level operators also perform well on both architectures.

o Single FFT.>'8 -

o Families of lénear system solvers; for example, FFTs™'" and
tridiagonals. 69

o Banded system solvers, '

We have distinguished families of TFFTs from a single FF1 because the
performance for a family is significantly higher than for a single
FFT.

"Judicious Use' Operators

The following operators should be used with caution on either
architecture:

Re/ ursions

Table lookup
Conditionals
One-to-many mappings
Many-to-one mappings

Caution is required with these operators because their overall per-
formance on a vector processor will be poor if they are not combined
with a sufficient amount of srithmetic. Included in recursions is
the solution of a single tridiagonaé ,Ustcm, which generally does not
perform well on a vec'.or processor. ' Table lookup has implica-
tions for adaptive procedures. Poor performance of conditionals im-
plies that we must foiego our frequently used pointwise convergence
test. See Ret. 11 for a discussion of programming considerations in
tbe use of a vector processor.

111. IMPLEMENTING TECHNIQUES FOR ELLIPTIC PROBLEMS

In this section we discuss the implementation of classes of
techniques for elliptic problems using the aforementioned operatours.

R



A similar discussion was given by Ortega and ‘Joight..l2

Point Schemes

Point Jacobi schemes are attractive on either class of architec-
ture because they are implementable by vector diadics ind banded-
matrix multiply operators involving long vectors. .hese advantages
bave prompted renewed interest in these techniques ~ with an objec-
tive of producing Jacobi techniques with attractive convergence
rates.

Point successive overrelaxation schemes can be implemented on
either architecture with wave fronting on a natural ordering or by
checkerboard ordering. Wave fronting involves processing the mesh by
diagonals. Because vectors must be stored contiguously on MM archi-
tectures, this is not an attractive alternative on them. 1t is
feasible on RR architecture. Using the checkerboard ordering, imple-
mentation on either architecture is figsigle if the red and black
points are stored as separate arrays. ' It fcllows that multigrid
schemes are implementable on either ciass of architecture. Of
course, these techniques involve one-to-many and many-to-one map-
pings. These mappings occur in families and can be vectorized.

Line Schemes

Line relaxation schemes are implementable by using operators for
solving families of tridiagonal systems combined with an odd/even
ordering of lines. Alternating direction schemes are implementable
using operators for solving families of tridiagonals. In the latter
case some care must be used on MM architecture to produce vectors
contiguously stored in memory. For example, Gaussian elimination can
be used in one coordinate direction and odd-eysn reduction in the
other to produce contiguously stored vectors. On RR architecture,
line schemes are sgsily implemented in Fortran and achieve high rates
of vectorization.

Conjugant Gradient Schemes

Conjugant gradient techniques can be implemented on vector pro-
cessors using any of the previously discussed schemes as the approxi-
mate factorization. Also, incomplete Cholesky vectorization can be
implemented on either class of arg itecture. On MM architecture
odd-even reduction has been uisd. and on RR architecture a variant
of block elimination is used,

Fast Poisrcn Solvers

Fast Poisson solvers are implementabie on both MM and RR archi-
tectures by using operators to perform families of FFTs and to solve
families of tridiagonals. On MM avchitecture, some care is required
to ensure that the vectors manipulated are thEed contiguou!ly in
storage. Workers in this field include Buzbee™ and Kascic.



IV. RESEARCH ISSUES

We noted that matrix multiplication is an efficient operator on
vector processors even in the banded case because the operator can be
expressed in terms of vector diadics on the diagonals of the matrix.
This raises the question of whether we can solve linear systems of
equations by manipu]iiing diagonals. Such an algorithm exists for
tridiagonal systems, but not for the general banded case. 1If
available, such techniques would be attractive, especially on MM
architecture.

Three-dimensional problems are occurring with increasing fre-
quency. Typically, the associated mesh is held in secondary storage
of some sort, with the result that overall execution time is a func-
tion of how often the mesh must be transmitted to and from the cen-
tral processor. This suggests developnent of techniques that minim-
ize the number of iterations, perhaps at the expense of additional
arithmetic operations.
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